Sample records for lactate dehydrogenase creatine

  1. THE EFFECT OF EXERCISE ON PLASMA ACTIVITIES OF LACTATE DEHYDROGENASE AND CREATINE KINASE IN RED-TAILED HAWKS (Buteo jamaicensis)

    Microsoft Academic Search

    SHANNON T. KNUTH; SUSAN B. CHAPLIN

    Plasma activities of lactate dehydrogenase (LD) and creatine kinase (CK) have been used as diagnostic indicators of muscle fitness and damage, respectively, in mammals. Activities of these enzymes were measured in three groups of red-tailed hawks (Buteojamaicensis) differing in flight capability (trained, untrained, and disabled) to determine whether their plasma enzyme activities were indicative of muscle fitness and flight training

  2. Enalapril improves heart failure induced by monocrotaline without reducing pulmonary hypertension in rats: roles of preserved myocardial creatine kinase and lactate dehydrogenase isoenzymes

    Microsoft Academic Search

    Kyosuke Ishikawa; Hidekazu Hashimoto; Sachio Mitani; Yukio Toki; Kenji Okumura; Takayuki Ito

    1995-01-01

    We investigated the redistribution of myocardial isoenzymes of creatine kinase (CK) and lactate dehydrogenase (LD) in rats with right heart failure induced by monocrotaline and assessed the effect of enalapril, an angiotensin converting enzyme inhibitor. Wistar rats were divided into four groups: (1) control (n = 20), (2) control + enalapril (25 mg\\/kg\\/day) (n = 22), (3) monocrotaline (50 mg\\/kg)

  3. Evaluation of Creatine Kinase, Lactate Dehydrogenase, and Amylase Concentrations in Umbilical Blood of Preterm Infants after Long-Term Tocolysis

    PubMed Central

    Nakajima, Yoshiyuki; Masaoka, Naoki

    2014-01-01

    Creatine kinase (CK), lactate dehydrogenase (LDH), and amylase levels of preterm infants following long-term tocolysis in pregnant women are limited. The objective of this study was to determine if the tocolytic therapy affects CK, LDH, and amylase levels in the umbilical blood. This study included 215 preterm infants born to women treated with and without ritodrine hydrochloride. CK, LDH, and amylase levels in the umbilical blood at delivery were determined. Infants were divided according to the ritodrine tocolysis, as follows: Group A (n = 91), not exposed to ritodrine; Group B (n = 44), IV ritodrine for <1 week; Group C (n = 80), IV ritodrine for ?1 week. The CK concentration in cord blood of Group C (198.8 ± 14.2?IU/L) was significantly higher in comparison with Group A (155.0 ± 7.3?IU/L, P < 0.05). There was no significant difference in LDH and amylase levels in the three groups. The CK significantly correlated with gestational age (r = 0.42, P < 0.01) and birth weight (r = 0.38, P < 0.01). LDH and amylase levels did not change with gestational age nor birth weight. In conclusion, long-term ritodrine tocolysis leads to increased umbilical blood CK level. PMID:24693289

  4. The Effects of Heart and Skeletal Muscle Inflammation and Cardiomyopathy Syndrome on Creatine Kinase and Lactate Dehydrogenase Levels in Atlantic Salmon (Salmo salar L.)

    PubMed Central

    Yousaf, Muhammad Naveed; Powell, Mark D.

    2012-01-01

    Heart and skeletal muscle inflammation (HSMI) and cardiomyopathy syndrome (CMS) are putative viral cardiac diseases of Atlantic salmon. This study examined the levels and correlated the serum enzymes creatine kinase (CK) and lactate dehydrogenase (LDH) to the histopathology of clinical outbreaks of HSMI and chronic CMS in farmed Atlantic salmon. A total of 75 fish from 3 different HSMI outbreaks, 30 chronic CMS fish, and 68 fish from 3 nondiseased fish groups were used as the study population (N = 173). Serum CK and LDH levels correlated significantly with the total inflammation and total necrosis scores for HSMI fish (P = 0.001). However, no correlation was identified for enzyme levels and histopathology scores for chronic CMS fish. The significantly increased CK and LDH levels and their positive correlations to histopathology differentiate HSMI from CMS clinically suggesting the potential use of enzymes for screening for HSMI is promising. PMID:22701371

  5. Lactate dehydrogenase-elevating virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  6. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system...Chemistry Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test...

  7. D-Lactate dehydrogenase of Peptostreptococcus elsdenii.

    PubMed Central

    Brockman, H L; Wood, W A

    1975-01-01

    D-Lactate dehydrogenase has been purified to near homogeneity from Peptostreptococcus elsdenii. As isolated, the enzyme contains flavine adenine dinucleotide and a tightly bound metal cofactor. Inactivation by ortho-phenanthroline occurs in two steps and is partially blocked by D-lactate. Reactivation by divalent metal ions occurs, with divalent zinc being the most effective. When ferricyanide is used as the electron acceptor, D-lactate has an apparent K0.5 of 3.3 M0.46; its binding is negatively cooperative with a Hill coefficient of 0.46. Replacement of ferricyanide by the other components of the electron transport system yields hyperbolic kinetics with an apparent Km for D-lactate of 26 mM. The apparent Km for ferricyanide is 2.2 X 10(-4) M. Phosphate and pyrophosphate compounds stimulate the D-lactate:ferricyanide activity. These properties suggest that interaction of this enzyme with other electron transport proteins in the chain may enhance D-lactate binding and, hence, the rate of electron transport. PMID:368

  8. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system....

  9. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system....

  10. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system....

  11. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1440 Lactate dehydrogenase test system. (a)...

  12. Lactate dehydrogenase isoenzyme patterns in cetaceans.

    PubMed

    Reidarson, T H; McBain, J; Dalton, L M

    1999-06-01

    Serum lactate dehydrogenase (LDH) isoenzyme activity was analyzed in cetaceans. Animals that were treated by i.m. injection and others that received azole therapy had distinctly different LDH isoenzyme profiles. A third distinctive pattern was occasionally observed in clinically normal animals with elevations in total transaminase and LDH activity levels. DH isoenzyme activity patterns were not affected by mild or moderate hemolysis, refrigeration after 24 hr, or freezing for 24 hr with subsequent thawing. However, severe hemolysis produced artifactual changes similar to those observed in individuals that received injections but of a lesser magnitude. DH isoenzyme activity patterns may provide useful corroboration of other clinical findings when diagnostic modalities are limited, especially to differentiate nonspecific enzyme elevation from nonpathologic elevations in serum enzyme concentrations due to i.m. injections or azole therapy. PMID:10484137

  13. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...in serum. Lactate dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction, and...

  14. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...in serum. Lactate dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction, and...

  15. Urea-requiring lactate dehydrogenases of marine elasmobranch fishes

    Microsoft Academic Search

    Paul H. Yancey; George N. Somero

    1978-01-01

    The kinetic properties — apparentKm of pyruvate, pyruvate inhibition pattern, and maximal velocity — of M4 (skeletal muscle) lactate dehydrogenases of marine elasmobranch fishes resemble those of the homologous lactate dehydrogenases of non-elasmobranchs only when physiological concentrations of urea (approximately 400 mM) are present in the assay medium. Urea increases the apparentKm of pyruvate to values typical of other vertebrates

  16. ISOZYME PROFILES OF LACTIC DEHYDROGENASE AND CREATINE PHOSPHOKINASE IN NEONATAL MOUSE HEARTS

    EPA Science Inventory

    Isozyme profiles of lactic dehydrogenase (LDH) and creatine phosphokinase (CPK) were determined in cardiac tissue of mice during postnatal development. LDH isozymes 1 and 5 showed a definite developmental change, achieving the adult values by 20 days of age, while the other three...

  17. Creatine

    MedlinePLUS

    ... for congestive heart failure (CHF), depression, bipolar disorder, Parkinson’s disease, diseases of the muscles and nerves, an ... to draw firm conclusions from such small numbers. Parkinson’s disease. Creatine might slow the worsening of some ...

  18. Myocardial lactate dehydrogenase isoenzyme distribution in the normal heart

    Microsoft Academic Search

    H.-P. Schultheiß; G. Bispink; V. Neuhoff; H.-D. Bolte

    1981-01-01

    Summary The isoenzyme pattern of the lactate-dehydrogenase (LDH) in different parts of the heart was measured by micro-isoelectric focusing. Samples were taken from the right and left auricle, the outer, middle and inner layer of the myocardial wall of both ventricles and from the papillary muscle of the left ventricle. The results show that the activity of LDHtotal and the

  19. Selective Distribution of Lactate Dehydrogenase Isoenzymes in Neurons and Astrocytes of Human Brain

    Microsoft Academic Search

    Philippe G. Bittar; Yves Charnay; Luc Pellerin; Constantin Bouras; Pierre J. Magistretti

    1996-01-01

    In vertebrates, the interconversion of lactate and pyruvate is catalyzed by the enzyme lactate dehydrogenase. Two distinct subunits combine to form the five tetrameric isoenzymes of lactate dehydrogenase. The LDH-5 subunit (muscle type) has higher maximal velocity (Vmax) and is present in glycolytic tissues, favoring the formation of lactate from pyruvate. The LDH-1 subunit (heart type) is inhibited by pyruvate

  20. Catabolism of circulating enzymes: plasma clearance, endocytosis, and breakdown of lactate dehydrogenase-1 in rabbits

    SciTech Connect

    Smit, M.J.; Beekhuis, H.; Duursma, A.M.; Bouma, J.M.; Gruber, M.

    1988-12-01

    Lactate dehydrogenase-1, intravenously injected into rabbits, was cleared with first-order kinetics (half-life 27 min), until at least 80% of the injected activity had disappeared from plasma. Radioactivity from injected SVI-labeled enzyme disappeared at this same rate. Trichloroacetic-acid-soluble breakdown products started to appear in the circulation shortly after injection of the labeled enzyme. Body scans of the rabbits for 80 min after injection of T I-labeled enzyme revealed rapid accumulation of label in the liver, peaking 10-20 min after injection. Subsequently, activity in the liver declined and radioactivity (probably labeled breakdown products of low molecular mass) steadily accumulated in the bladder. Tissue fractionation of liver, 19 min after injection of labeled enzyme, indicated that the radioactivity was present both in endosomes and in lysosomes, suggesting uptake by endocytosis, followed by breakdown in the lysosomes. Measurements of radioactivity in liver and plasma suggest that the liver is responsible for the breakdown of at least 75% of the injected enzyme. Radioautography of tissue sections of liver and spleen showed accumulated radioactivity in sinusoidal liver cells and red pulpa, respectively. These results are very similar to those for lactate dehydrogenase-5, creatine kinase MM, and several other enzymes that we have previously studied in rats.

  1. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    PubMed

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism. PMID:16758363

  2. POSTNATAL EFFECTS OF HEXACHLOROBENZENE (HCB) ON CARDIAC LACTIC DEHYDROGENASE (LDH) AND CREATINE KINASE (CK) ISOZYMES IN CD-1 MICE

    EPA Science Inventory

    Pregnant CD-1 mice were treated with hexachlorobenzene (HCB) by gavage at doses of 0, 1, 10 and 50 mg HCB/kg body weight on days 6-17 of gestation and studied on day 1 or 21 postpartum (pp). Hearts of the dams and pups were assayed for lactic dehydrogenase (LDH) and creatine kina...

  3. L-lactate dehydrogenase from leaves of Capsella bursa-pastoris (L.) Med

    Microsoft Academic Search

    T. Betsche; K. Bosbach; B. Gerhardt

    1979-01-01

    By ammonium sulfate fractionation and gel filtration an enzyme preparation which catalyzed NAD+-dependent L-lactate oxidation (10-4 kat kg-1 protein), as well as NADH-dependent pyruvate reduction (10-3 kat kg-1 protein), was obtained from leaves of Capsella bursa-pastoris. This lactate dehydrogenase activity was not due to an unspecific activity of either glycolate oxidase, glycolate dehydrogenase, hydroxypyruvate reductase, alcohol dehydrogenase, or a malate

  4. Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles.

    PubMed

    Nesakumar, Noel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru

    2013-11-15

    An electrochemical biosensor was developed to determine lactate that plays an important role in clinical diagnosis, fermentation and food quality analysis. Abnormal concentration of lactate has been related to diseases such as hypoxia, acute heart disorders, lactic acidosis, muscle fatigue and meningitis. Also, lactate concentration in blood helps to evaluate the athletic performance in sports. The main aim of the work is to fabricate NADH/LDH/Nano-CeO2/GCE bio-electrode for sensing lactate in human blood samples. Toward this, CeO2 nanoparticles were synthesized by a hydroxide mediated approach using cerium nitrate hexahydrate (Ce(NO3)3·6H2O) and NaOH as precursors. X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM) studies were carried out to determine the structural and morphological characteristics of CeO2 nanoparticles. XRD pattern indicated the formation of highly crystalline CeO2 nanoparticles with face centered cubic structure. The FE-SEM studies revealed the formation of nanospherical particles of size 29.73±2.59 nm. The working electrode was fabricated by immobilizing nicotinamide adenine dinucleotide (NADH) and lactate dehydrogenase (LDH) on GCE surface with CeO2 nanoparticles as an interface. Electrochemical studies were carried out through cyclic voltammetry using a three electrode system with NADH/LDH/NanoCeO2/GCE as a working electrode, Ag/AgCl saturated with 0.1M KCl as a reference electrode and Pt wire as a counter electrode. From the amperometric study, the linearity was found to be in the range of 0.2-2 mM with the response time of less than 4s. PMID:24034216

  5. Pressure-Adaptive Differences in Lactate Dehydrogenases of Congeneric Fishes Living at Different Depths

    Microsoft Academic Search

    Joseph Siebenaller; George N. Somero

    1978-01-01

    The muscle-type (M4) lactate dehydrogenases of Sebastolobus altivelis, a deep-water scorpaenid, and S. alascanus, a shallower species, are electrophoretically indistinguishable, yet differ in pressure sensitivities. The lactate dehydrogenase of S. altivelis exhibits lower pressure sensitivities of substrate and coenzyme binding and catalytic rate. Such apparently pressure-adaptive kinetic properties may be important for establishing species depth zonation patterns in the ocean.

  6. Pressure-adaptive differences in lactate dehydrogenases of congeneric fishes living at different depths.

    PubMed

    Siebenaller, J; Somero, G N

    1978-07-21

    The muscle-type (M4) lactate dehydrogenases of Sebastolobus altivelis, a deep-water scorpaenid, and S. alascanus, a shallower species, are electrophoretically indistinguishable, yet differ in pressure sensitivities. The lactate dehydrogenase of S. altivelis exhibits lower pressure sensitivities of substrate and coenzyme binding and catalytic rate. Such apparently pressure-adaptive kinetic properties may be important for establishing species depth zonation patterns in the ocean. PMID:208149

  7. Estimation of correlation of lactate dehydrogenase subunits mole quota based on differences in substrate inhibition

    Microsoft Academic Search

    L. M. Gubernieva; E. E. Safronova; V. N. Malakhov; V. B. Mamaev; G. A. Annenkov

    1978-01-01

    A kinetic method of estimating the mole quota ratios of the human lactate dehydrogenase (LDH) H and M subunits based on differences in substrate inhibition of LDH isoenzymes by lactate is proposed. Stability of kinetic constants for a prolonged period of time is demonstrated. The dependence of the activity ratios on the contribution of the mole quota of the M-subunit

  8. Alanine production in an H+-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase.

    PubMed

    Wada, Masaru; Narita, Kotomi; Yokota, Atsushi

    2007-09-01

    Previously, we reported that pyruvate production was markedly improved in TBLA-1, an H(+)-ATPase-defective Escherichia coli mutant derived from W1485lip2, a pyruvate-producing E. coli K-12 strain. TBLA-1 produced more than 30 g/l pyruvate from 50 g/l glucose by jar fermentation, while W1485lip2 produced only 25 g/l pyruvate (Yokota et al. in Biosci Biotechnol Biochem 58:2164-2167, 1994b). In this study, we tested the ability of TBLA-1 to produce alanine by fermentation. The alanine dehydrogenase (ADH) gene from Bacillus stearothermophilus was introduced into TBLA-1, and direct fermentation of alanine from glucose was carried out. However, a considerable amount of lactate was also produced. To reduce lactate accumulation, we knocked out the lactate dehydrogenase gene (ldhA) in TBLA-1. This alanine dehydrogenase-expressing and lactate dehydrogenase-defective mutant of TBLA-1 produced 20 g/l alanine from 50 g/l glucose after 24 h of fermentation. The molar conversion ratio of glucose to alanine was 41%, which is the highest level of alanine production reported to date. This is the first report to show that an H(+)-ATPase-defective mutant of E. coli can be used for amino acid production. Our results further indicate that H(+)-ATPase-defective mutants may be used for fermentative production of various compounds, including alanine. PMID:17583806

  9. Effect of varicocelectomy on sperm creatine kinase, HspA2 chaperone protein (creatine kinase-M type), LDH, LDH-X, and lipid peroxidation product levels in infertile men with varicocele

    Microsoft Academic Search

    Çetin Ye?illi; Görkem Mungan; Ilker Seçkiner; Bülent Akduman; ?erefden Açikgöz; Korhan Altan; Aydin Mungan

    2005-01-01

    ObjectivesTo determine the total sperm creatine kinase, HspA2 chaperone protein (creatine kinase-M isoform), lactate dehydrogenase (LDH), LDH-X activities, and lipid peroxidation product (malondialdehyde [MDA]) levels in infertile men with varicocele and to examine the possible effect of varicocelectomy on these parameters.

  10. Induction of Alcohol Dehydrogenase and Lactate Dehydrogenase in Hypoxically Induced Barley 1

    PubMed Central

    Good, Allen G.; Crosby, William L.

    1989-01-01

    In barley (Hordeum vulgare L.), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) are induced by anaerobiosis in both aleurone layers and roots. Under aerobic conditions, developing seeds of cv Himalaya accumulate ADH activity, which survives seed drying and rehydration. This activity consists almost entirely of the ADH1 homodimer. Activity of LDH also increases during seed development, but the level of activity in dry or rehydrated seeds is very low, indicating that this enzyme may not be involved in anaerobic glycolysis during the initial stages of germination. In contrast to ADH, the LDH isozymes present in developing seeds are similar to those found in uninduced and induced roots. Developmental expression of ADH and LDH was monitored from 0 to 24 days postgermination. Neither activity was induced to any extent in the germinating seeds; however, both enzymes were highly induced by anoxia in root tissue during development. Based on gel electrophoresis, this increase in activity results from the differential expression of different Adh and Ldh genes in root tissue. The changes in ADH and LDH activity levels were matched by changes in the amount of these particular proteins, indicating that the increase in activity results from de novo synthesis of these two proteins. The level of inducible LDH activity in an ADH1? mutant was not found to differ from cv Himalaya. We suggest that although the ADH? plants are more susceptible to flooding, they are not capable of responding to the lack of ADH1 activity by increasing the amount of LDH activity in root tissue. Images Figure 2 Figure 4 Figure 7 PMID:16666889

  11. Ligand Binding and Protein Dynamics in Lactate Dehydrogenase J. R. Exequiel T. Pineda,* Robert Callender,y

    E-print Network

    Callender, Robert

    Ligand Binding and Protein Dynamics in Lactate Dehydrogenase J. R. Exequiel T. Pineda,* Robert dehydrogenase (LDH) binds its substrate via the formation of a LDH/NADHÁsubstrate encounter complex through an enzyme binds its substrate at the earliest stages of binding. We specifically ex- amine the lactate

  12. Structural studies of malate dehydrogenases (MDHs): MDHs in Brevundimonas species are the first reported MDHs in Proteobacteria which resemble lactate dehydrogenases in primary structure.

    PubMed Central

    Charnock, C

    1997-01-01

    The N-terminal sequences of malate dehydrogenases from 10 bacterial strains, representing seven genera of Proteobacteria, were determined. Of these, the enzyme sequences of species classified in the genus Brevundimonas clearly resembled those malate dehydrogenases with greatest similarity to lactate dehydrogenases. Additional evidence from subunit molecular weights, peptide mapping, and enzyme mobilities suggested that malate dehydrogenases from species of the genus Brevundimonas were structurally distinct from others in the study. PMID:9190829

  13. L-lactate dehydrogenase from leaves of Capsella bursa-pastoris (L.) Med. : I. Identification and partial characterization.

    PubMed

    Betsche, T; Bosbach, K; Gerhardt, B

    1979-10-01

    By ammonium sulfate fractionation and gel filtration an enzyme preparation which catalyzed NAD(+)-dependent L-lactate oxidation (10(-4) kat kg(-1) protein), as well as NADH-dependent pyruvate reduction (10(-3) kat kg(-1) protein), was obtained from leaves of Capsella bursa-pastoris. This lactate dehydrogenase activity was not due to an unspecific activity of either glycolate oxidase, glycolate dehydrogenase, hydroxypyruvate reductase, alcohol dehydrogenase, or a malate oxidizing enzyme. These enzymes could be separated from the protein displaying lactate dehydrogenase activity by gel filtration and electrophoresis and distinguished from it by their known properties. The enzyme under consideration does not oxidize D-lactate, and reduces pyruvate to L-lactate (the configuration of which was determined using highly specific animal L-lactate dehydrogenase). Based on these results the studied Capsella leaf enzyme is classified as L-lactate dehydrogenase (EC 1.1.1.27). It has a Km value of 0.25 mmol l(-1) (pH 7.0, 0.3 mmol l(-1) NADH) for pyruvate and of 13 mmol l(-1) (pH 7.8, 3 mmol l(-1) NAD(+)) for L-lactate. Lactate dehydrogenase activity was also detected in the leaves of several other plants. PMID:24318328

  14. Isoenzymes of hexokinase, 6-phosphogluconate dehydrogenase, phosphoglucomutase and lactate dehydrogenase in uterine cancer.

    PubMed Central

    Marshall, M. J.; Neal, F. E.; Goldberg, D. M.

    1979-01-01

    Electrophoresis of cytosol prepared from normal and malignant tissue samples of uterine cervix and endometrium revealed interesting differences which may be relevant to the characteristic alterations in glucose metabolism associated with tumour development. Hexokinase II was detected in 30% of the cancer material from both sources, but in none of the samples of normal cervix. A duplet band of 6-phosphogluconate dehydrognease was seen in the majority of the cancer samples but in no sample of normal cervix; it appeared to be partly due to ageing of the sample, and is not phenotypically related to the malignant process. Analysis of genetic variance for phosphoglucomutase at the PGM1 locus revealed a highly significant excess of the PGM1-1 phenotype in patients with cancer of the endometrium, which may reflect susceptibility to endometrial cancer in patients with this phenotype. At the PGM2 locus, samples of malignant cervix were deficient in "Band f" compared with normal cervix samples, all of which showed this band. Conversely, gene products of the PGM3 locus were found in most samples of malignant cervix and a small minority of normal cervix samples. Compared with the isomorphic distribution of lactate dehydrogenase enzymes in normal uterine tissue, cancers showed a shift towards either a more anodal or a more cathodal pattern. The former may be associated with tumours enjoying a good oxygen supply, and the latter with tumours which, because of their depth or poor blood supply have to function under less aerobic conditions. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:508567

  15. Plasmodium falciparum and Plasmodium vivax: Lactate-Dehydrogenase Activity and Its Application for in Vitro Drug Susceptibility Assay

    Microsoft Academic Search

    L. K. Basco; F. Marquet; M. M. Makler; J. Lebras

    1995-01-01

    Lactate dehydrogenase, the terminal enzyme of anerobic Embden-Meyerhoff glycolysis, plays an important role in the carbohydrate metabolism of human malaria parasites. Based on the ability of malarial lactate dehydrogenase to use 3-acetylpyridine NAD as a coenzyme in a reaction leading to the formation of pyruvate from L-lactate, the enzymatic activity of fresh clinical isolates of Plasmodium falciparum and Plasmodium vivax

  16. Relationship of lactate dehydrogenase activity with body measeurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angus x Charolais cows (n = 87) and their Angus-sired, spring-born calves (n = 86) were utilized to examine relationships between lactate dehydrogenase (LDH) activity and body measurements of beef cows; and the relationship between maternal LDH activity in late gestation and subsequent calf birth we...

  17. Nasopharyngeal Lactate Dehydrogenase Concentrations Predict Bronchiolitis Severity in a Prospective Multicenter Emergency Department Study

    PubMed Central

    Mansbach, Jonathan M.; Piedra, Pedro A.; Laham, Federico R.; McAdam, Alexander J.; Clark, Sunday; Sullivan, Ashley F.; Camargo, Carlos A.

    2012-01-01

    We re-examined the finding of an inverse relationship between values of nasopharyngeal lactate dehydrogenase (LDH), a marker of the innate immune response, and bronchiolitis severity. In a prospective, multicenter study of 258 children we found in a mutlivariable model that higher nasopharyngeal LDH values in young children with bronchiolitis were independently associated with a decreased risk of hospitalization. PMID:22517336

  18. Modification of Rhizopus lactate dehydrogenase for improved resistance to fructose 1,6-bisphosphate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus oryzae is frequently used for fermentative production of lactic acid. We determined that one of the key enzymes, lactate dehydrogenase (LDH), involved in synthesis of lactic acid by R. oryzae was significantly inhibited by fructose 1,6-bisphosphate (FBP) at physiological concentrations. Thi...

  19. LACTIC ACID PRODUCTION BY SACCHAROMYCES CEREVISIAE EXPRESSING A RHIZOPUS ORYZAE LACTATE DEHYDROGENASE GENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work demonstrates the first example of a fungal LDH expressed in yeast. A L(+)-lactate dehydrogenase gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adhl promoter and terminator, then placed in a 2 micron contai...

  20. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity.

    PubMed

    Garrigues, C; Goupil-Feuillerat, N; Cocaign-Bousquet, M; Renault, P; Lindley, N D; Loubiere, P

    2001-07-01

    The distribution of carbon flux at the pyruvate node was investigated in Lactococcus lactis under anaerobic conditions with mutant strains having decreased lactate dehydrogenase activity. Strains previously selected by random mutagenesis by H. Boumerdassi, C. Monnet, M. Desmazeaud, and G. Corrieu (Appl. Environ. Microbiol. 63, 2293-2299, 1997) were found to have single punctual mutations in the ldh gene and presented a high degree of instability. The strain L. lactis JIM 5711 in which lactate dehydrogenase activity was diminished to less than 30% of the wild type maintained homolactic metabolism. This was due to an increase in the intracellular pyruvate concentration, which ensures the maintained flux through the lactate dehydrogenase. Pyruvate metabolism was linked to the flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase, as previously postulated for the parent strain (C. Garrigues, P. Loubière, N. D. Lindley, and M. Cocaign-Bousquet (1997) J. Bacteriol. 179, 5282-5287, 1997). However, a strain (L. lactis JIM 5954) in which the ldh gene was interrupted reoriented pyruvate metabolism toward mixed metabolism (production of formate, acetate, and ethanol), though the glycolytic flux was not strongly diminished. Only limited production of acetoin occurred despite significant overflow of pyruvate. Intracellular metabolite profiles indicated that the in vivo glyceraldehyde-3-phosphate dehydrogenase activity was no longer flux limiting in the Deltaldh strain. The shift toward mixed acid fermentation was correlated with the lower intracellular trioses phosphate concentration and diminished allosteric inhibition of pyruvate formate lyase. PMID:11461143

  1. Lactate Dehydrogenase A Expression Is Necessary to Sustain Rapid Angiogenesis of Pulmonary Microvascular Endothelium

    PubMed Central

    Parra-Bonilla, Glenda; Alvarez, Diego F.; Alexeyev, Mikhail; Vasauskas, Audrey; Stevens, Troy

    2013-01-01

    Angiogenesis is a fundamental property of endothelium, yet not all endothelial cells display equivalent angiogenic responses; pulmonary microvascular endothelial cells undergo rapid angiogenesis when compared to endothelial cells isolated from conduit vessels. At present it is not clear how pulmonary microvascular endothelial cells fulfill the bioenergetic demands that are necessary to sustain such rapid blood vessel formation. We have previously established that pulmonary microvascular endothelial cells utilize aerobic glycolysis to generate ATP during growth, a process that requires the expression of lactate dehydrogenase A to convert pyruvate to lactate. Here, we test the hypothesis that lactate dehydrogenase A is required for pulmonary microvascular endothelial cells to sustain rapid angiogenesis. To test this hypothesis, Tet-On and Tet-Off conditional expression systems were developed in pulmonary microvascular endothelial cells, where doxycycline is utilized to induce lactate dehydrogenase A shRNA expression. Expression of LDH-A shRNA induced a time-dependent decrease in LDH-A protein, which corresponded with a decrease in glucose consumption from the media, lactate production and cell growth; re-expression of LDH-A rescued each of these parameters. LDH-A silencing greatly reduced network formation on Matrigel in vitro, and decreased blood vessel formation in Matrigel in vivo. These findings demonstrate that LDH-A is critically important for sustaining the rapid angiogenesis of pulmonary microvascular endothelial cells. PMID:24086675

  2. Inhibition of stress mediated cell death by human lactate dehydrogenase B in yeast.

    PubMed

    Sheibani, Sara; Jones, Natalie K; Eid, Rawan; Gharib, Nada; Arab, Nagla T T; Titorenko, Vladimir; Vali, Hojatollah; Young, Paul A; Greenwood, Michael T

    2015-08-01

    We report the identification of human L- lactate dehydrogenase B (LDHB) as a novel Bax suppressor. Yeast heterologously expressing LDHB is also resistant to the lethal effects of copper indicating that it is a general suppressor of stress mediated cell death. To identify potential LDHB targets, LDHB was expressed in yeast mutants defective in apoptosis, necrosis and autophagy. The absence of functional PCD regulators including MCA1, YBH3, cyclophilin (CPR3) and VMA3, as well as the absence of the pro-survival autophagic pathway (ATG1,7) did not interfere with the LDHB mediated protection against copper indicating that LDHB functions independently of known PCD regulators or by simply blocking or stimulating a common PCD promoting or inhibitory pathway. Measurements of lactate levels revealed that short-term copper stress (1.6 mM, 4 h), does not increase intracellular levels of lactate, instead a three-fold increase in extracellular lactate was observed. Thus, yeast cells resemble mammalian cells where different stresses are known to lead to increased lactate production leading to lactic acidosis. In agreement with this, we found that the addition of exogenous lactic acid to growth media was sufficient to induce cell death that could be inhibited by the expression of LDHB. Taken together our results suggest that lactate dehydrogenase is a general suppressor of PCD in yeast. PMID:26032856

  3. Characterization of lactate dehydrogenase enzyme in seminal plasma of Japanese quail (Coturnix coturnix japonica).

    PubMed

    Singh, R P; Sastry, K V H; Pandey, N K; Shit, N; Agrawal, R; Singh, K B; Mohan, Jag; Saxena, V K; Moudgal, R P

    2011-02-01

    Lactate dehydrogenase enzyme present in quail seminal plasma has been characterized. Polyacrylamide gel electrophoresis and subsequently with LDH specific staining of seminal plasma revealed a single isozyme in quail semen. Studies on substrate inhibition, pH for optimum activity and inhibitor (urea) indicated the isozyme present in the quail semen has catalytic properties like LDH-1 viz. H-type. Furthermore, unlike other mammalian species, electrophoretic and kinetic investigations did not support the existence of semen specific LDH-X isozyme in quail semen. The effect of exogenous lactate and pyruvate on sperm metabolic activity was also studied. The addition of 1 mM lactate or pyruvate to quail semen increased sperm metabolic activity. Our results suggested that both pyruvate and lactate could be used by quail spermatozoa to maintain their basic functions. Since the H-type isozyme is important for conversion of lactate to pyruvate under anaerobic conditions it was postulated that exogenous lactate being converted into pyruvate via LDH present in semen may be used by sperm mitochondria to generate ATP. During conversion of lactate to pyruvate NADH is being generated that may be useful for maintaining sperm mitochondrial membrane potential. PMID:21074838

  4. Lactate dehydrogenase activity in bovine and porcine muscle as influenced by electrical stimulation, aging, freezing, thawing and heating 

    E-print Network

    Collins, Sharen Sue

    1987-01-01

    LACTATE DEHYDROGENASE ACTIVITY IN BOVINF. AND PORCINE MUSCLE AS INFLUENCED BY ELECTRICAL STIMULATION, AGING, FREEZING, THA&v'ING AiVD HEATING A Thesis by SHAREN SUE COLLINS Submitted to the Graduate College of Texas ARM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Animal Science LACTATE DEHYDROGENASE ACTIVITY IN BOVINE AND PORCINE MUSCLE AS INFLUENCED BY ELECTRICAL STIMULATION, AGING, FREEZING, THAWING AND HEATING A Thesis...

  5. Search for Human Lactate Dehydrogenase A Inhibitors Using Structure-Based Modeling

    PubMed Central

    Nilov, D. K.; Prokhorova, E. A.; Švedas, V. K.

    2015-01-01

    The human lactate dehydrogenase isoform A plays an important role in the anaerobic metabolism of tumour cells and therefore constitutes an attractive target in the oncology field. Full-atom models of lactate dehydrogenase A (in complex with NADH and in the apo form) have been generated to enable structure-based design of novel inhibitors competing with pyruvate and NADH. The structural criteria for the selection of potential inhibitors were established, and virtual screening of a library of low-molecular-weight compounds was performed. A potential inhibitor, STK381370, was identified whose docking pose was stabilized through additional interactions with the loop 96-111 providing for the transition from the open to the closed conformation.

  6. p -Chloromercuribenzoate-Induced Inactivation and Partial Unfolding of Porcine Heart Lactate Dehydrogenase

    Microsoft Academic Search

    Y.-B. Zheng; B.-Y. Chen; X.-C. Wang

    2002-01-01

    Purified porcine heart lactate dehydrogenase was inactivated and partially unfolded with p-chloromercuribenzoate (pCMB). With the increase of pCMB\\/enzyme ratio the enzyme was gradually inhibited till almost completely inactivated at the pCMB\\/enzyme ratio of 20 : 1. Native polyacrylamide gel electrophoresis showed that with the increase of pCMB\\/enzyme ratio the bands of native enzyme decreased till completely vanished. Meanwhile inactive multiple

  7. Cloning and characterization of the lactate dehydrogenase genes from Lactobacillus sp. RKY2

    Microsoft Academic Search

    Jin-Ha Lee; Mi-Hwa Choi; Ji-Young Park; Hee-Kyoung Kang; Hwa-Won Ryu; Chang-Sin Sunwo; Young-Jung Wee; Ki-Deok Park; Do-Won Kim; Doman Kim

    2004-01-01

    Lactic acid is an environmentally benign organic acid that could be used as a raw material for biodegradable plastics if it\\u000a can be inexpensively produced by fermentation. Two genes (IdhL andIdhD) encoding the L-(+) and D-(?) lactate dehydrogenases (L-LDH and D-LDH) were cloned fromLactobacillus sp., RKY2, which is a lactic acid hyper-producing bacterium isolated from Kimchi. Open reading frames ofIdhL

  8. Interdemic variation in haematocrit and lactate dehydrogenase in the African cyprinid Barbus neumayeri

    Microsoft Academic Search

    M. L. M ARTINEZ; L. J. C HAPMAN; J. M. G RADY; B. B. R EES

    2004-01-01

    This study evaluated whether the African cyprinid Barbus neumayeri from Rwembaita Swamp (low-oxygen) and Njuguta River (high-oxygen) in the Kibale National Park, Uganda differed in traits related to aerobic and anaerobic metabolic potential. Haematocrit was measured as an index of blood oxygen-carrying capacity, and tissue activities and isozyme composition of lactate dehydrogenase (LDH) were measured as indices of tissue anaerobic

  9. Cryoprotection mechanisms of polyethylene glycols on lactate dehydrogenase during freeze-thawing

    Microsoft Academic Search

    Yanli Mi; George Wood; Laura Thoma

    2004-01-01

    The purpose of this study was to explore the cryoprotection mechanisms of high molecular weight polyethylene glycols (PEGs)\\u000a (eg, PEG 4000 and PEG 8000) on lactate dehydrogenase (LDH). Ultraviolet activity assays, circular dichroism (CD) spectroscopy,\\u000a gel filtration, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE),14C-PEG 4000 labeling and binding, and cryostage microscopic study were conducted. Different molecular weights and concentrations\\u000a of

  10. Ethanol production by anaerobic thermophilic bacteria: regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum

    Microsoft Academic Search

    Pierre Germain; Fatiou Toukourou; Luiz Donaduzzi

    1986-01-01

    The enzyme lactate dehydrogenase (LDH) in Clostridium thermohydrosulfuricum is controlled by the type and the concentration of the substrate. In batch fermentations an increase of the initial concentration of glucose leads to an increase in the activity of LDH. This increase in activity is related to the accumulation of fructose 1,6-diphosphate (F 1,6-DP), an intermediate of the Embden-Meyerhof-Parnas (EMP) pathway,

  11. Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer.

    PubMed

    Cheung, Yee-Wai; Kwok, Jane; Law, Alan W L; Watt, Rory M; Kotaka, Masayo; Tanner, Julian A

    2013-10-01

    DNA aptamers have significant potential as diagnostic and therapeutic agents, but the paucity of DNA aptamer-target structures limits understanding of their molecular binding mechanisms. Here, we report a distorted hairpin structure of a DNA aptamer in complex with an important diagnostic target for malaria: Plasmodium falciparum lactate dehydrogenase (PfLDH). Aptamers selected from a DNA library were highly specific and discriminatory for Plasmodium as opposed to human lactate dehydrogenase because of a counterselection strategy used during selection. Isothermal titration calorimetry revealed aptamer binding to PfLDH with a dissociation constant of 42 nM and 2:1 protein:aptamer molar stoichiometry. Dissociation constants derived from electrophoretic mobility shift assays and surface plasmon resonance experiments were consistent. The aptamer:protein complex crystal structure was solved at 2.1-Å resolution, revealing two aptamers bind per PfLDH tetramer. The aptamers showed a unique distorted hairpin structure in complex with PfLDH, displaying a Watson-Crick base-paired stem together with two distinct loops each with one base flipped out by specific interactions with PfLDH. Aptamer binding specificity is dictated by extensive interactions of one of the aptamer loops with a PfLDH loop that is absent in human lactate dehydrogenase. We conjugated the aptamer to gold nanoparticles and demonstrated specificity of colorimetric detection of PfLDH over human lactate dehydrogenase. This unique distorted hairpin aptamer complex provides a perspective on aptamer-mediated molecular recognition and may guide rational design of better aptamers for malaria diagnostics. PMID:24043813

  12. Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene.

    PubMed Central

    Kim, S F; Baek, S J; Pack, M Y

    1991-01-01

    An allosteric L-(+)-lactate dehydrogenase gene of Lactobacillus casei ATCC 393 was cloned in Escherichia coli, and the nucleotide sequence of the gene was determined. The gene was composed of an open reading frame of 981 bp, starting with a GTG codon and ending with a TAA codon. The sequences for the promoter and ribosome binding site were identified, and a sequence for a structure resembling a rho-independent transcription terminator was also found. Images PMID:1768113

  13. The determination of lactate dehydrogenase isoenzymes in normal human muscle and other tissues

    PubMed Central

    Emery, A. E. H.

    1967-01-01

    1. A technique has been developed, based on preferential inhibition by urea, for determining the amounts and proportions of the M and H sub-units of lactate dehydrogenase (referred to as LDH-M and LDH-H respectively) in human tissues, including muscle. 2. There was good agreement between the results obtained with urea inhibition and those obtained with starch-gel electrophoresis. 3. With increasing age there was a significant decrease in the total amount of lactate dehydrogenase and the amount of LDH-M in skeletal muscle. This could not be accounted for by the replacement of functioning muscle tissue by fibrous connective tissue. 4. The proportion of LDH-M was less in certain muscles (e.g. soleus and extra-ocular) than in other muscles (e.g. gastrocnemius and rectus abdominis). 5. The proportions of LDH-M and LDH-H did not differ significantly in different superficial limb muscles and were not significantly affected by either age or sex. 6. Specimens of muscle from 86 different individuals (all Europeans) have been subjected to electrophoresis, but no variants of lactate dehydrogenase isoenzymes have been found. PMID:5584002

  14. Effect of a Marathon Run on Serum Lipoproteins, Creatine Kinase, and Lactate Dehydrogenase in Recreational Runners

    ERIC Educational Resources Information Center

    Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A.

    2005-01-01

    The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride…

  15. Lactate Dehydrogenase Is the Key Enzyme for Pneumococcal Pyruvate Metabolism and Pneumococcal Survival in Blood

    PubMed Central

    Gaspar, Paula; Al-Bayati, Firas A. Y.; Andrew, Peter W.; Neves, Ana Rute

    2014-01-01

    Streptococcus pneumoniae is a fermentative microorganism and causes serious diseases in humans, including otitis media, bacteremia, meningitis, and pneumonia. However, the mechanisms enabling pneumococcal survival in the host and causing disease in different tissues are incompletely understood. The available evidence indicates a strong link between the central metabolism and pneumococcal virulence. To further our knowledge on pneumococcal virulence, we investigated the role of lactate dehydrogenase (LDH), which converts pyruvate to lactate and is an essential enzyme for redox balance, in the pneumococcal central metabolism and virulence using an isogenic ldh mutant. Loss of LDH led to a dramatic reduction of the growth rate, pinpointing the key role of this enzyme in fermentative metabolism. The pattern of end products was altered, and lactate production was totally blocked. The fermentation profile was confirmed by in vivo nuclear magnetic resonance (NMR) measurements of glucose metabolism in nongrowing cell suspensions of the ldh mutant. In this strain, a bottleneck in the fermentative steps is evident from the accumulation of pyruvate, revealing LDH as the most efficient enzyme in pyruvate conversion. An increase in ethanol production was also observed, indicating that in the absence of LDH the redox balance is maintained through alcohol dehydrogenase activity. We also found that the absence of LDH renders the pneumococci avirulent after intravenous infection and leads to a significant reduction in virulence in a model of pneumonia that develops after intranasal infection, likely due to a decrease in energy generation and virulence gene expression. PMID:25245810

  16. A lactate biosensor based on lactate dehydrogenase\\/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer\\/multiwall carbon nanotube composite film

    Microsoft Academic Search

    M. M. Rahman; Muhammad J. A. Shiddiky; Yoon-Bo Shim

    2009-01-01

    An amperometric lactate biosensor was developed based on a conducting polymer, poly-5,2?-5?,2??-terthiophene-3?-carboxylic acid (pTTCA), and multiwall carbon nanotube (MWNT) composite on a gold electrode. Lactate dehydrogenase (LDH) and the oxidized form of nicotinamide adenine dinucleotide (NAD+) were subsequently immobilized onto the pTTCA\\/MWNT composite film. The modified electrode was characterized by quartz crystal microbalance (QCM), scanning electron microscopy (SEM), and electrochemical

  17. Catalytic properties of three L-lactate dehydrogenases from saffron corms (Crocus sativus L).

    PubMed

    Keyhani, Ezzatollah; Sattarahmady, Naghmeh

    2002-01-01

    Three L-lactate dehydrogenase isoenzymes were detected in saffron corms, using potassium ferricyanide as the electron acceptor. Their pH optima were 5.5, 7.5 and 9.5, respectively. All three dehydrogenases were substrate-inhibited by ferricyanide, but at different concentrations; maximum enzymatic activity was observed for 250, 100 and 600 microM ferricyanide, at pH 5.5, 7.5 and 9.5, respectively. Catalytic efficiency, calculated per mg corm extract protein, was 1.9, 1.0 and 0.4 min(-1), respectively at pH 5.5, 7.5 and 9.5. Pseudo first order rate constant was also different under the three pH conditions. Malate was an inhibitor for the isoenzyme active at pH 9.5, but had no effect on the others. PMID:12241049

  18. Antibody-independent thrombocytopenia in lactate dehydrogenase-elevating virus-infected mice.

    PubMed

    Su, Dan; Musaji, Andrei; Legrain, Sarah; Detalle, Laurent; van der Kaa, Jos; Verbeek, J Sjef; Ryffel, Bernhard; Coutelier, Jean-Paul

    2012-11-01

    Previously we demonstrated that antibody-mediated thrombocytopenia is strongly enhanced by lactate dehydrogenase-elevating virus (LDV) infection. Here we report that mice infected with LDV develop a moderate thrombocytopenia, even in the absence of immunoglobulins or Fc receptors. A similar decrease of platelet counts was observed after mouse hepatitis virus infection. LDV-induced type I interferon-independent thrombocytopenia was partly suppressed by treatment with clodronate-containing liposomes. Therefore, we conclude that the thrombocytopenia results from increased phagocytosis of nonopsonized platelets by macrophages. PMID:22933286

  19. Human Lactate Dehydrogenase A (LDHA) Rescues Mouse Ldhc-Null Sperm Function1

    PubMed Central

    Tang, Huanghui; Duan, Chongwen; Bleher, Reiner; Goldberg, Erwin

    2013-01-01

    ABSTRACT By targeted disruption of the lactate dehydrogenase c (Ldhc) gene, we demonstrated that spermatozoa require Ldhc for capacitation, motility, and fertilizing capacity. Ldhc expression is restricted to the developing germ cells that, however, are apparently not compromised by the lack of the LDHC isozyme. Because LDHC is abundant in spermatozoa that utilize aerobic glycolysis for energy requirements, its main function was presumed to be the interconversion of pyruvate to lactate with the concomitant oxidation/reduction of NADH to NAD+. We found that sperm without LDHC were still able to convert lactate to pyruvate as mediated by LDHA that is tightly bound to the fibrous sheath. It was assumed that the level of glycolysis was insufficient to power motility and the subsequent fertilizing capacity of the mutated sperm. To investigate whether LDHC possesses certain unique characteristics essential for fertility, human LDHA was introduced as a transgene to Ldhc-null mice. We report here that the exogenous LDHA rescued the phenotype of the Ldhc-null males. Sperm from the LDHA transgenic males with the Ldhc deletion (LDHA+/Ldhc?/?) are motile, capable of protein tyrosine phosphorylation, and able to fertilize, thus restoring these properties to LDHC-null sperm. However, the lactate and ATP levels in the rescued sperm did not differ significantly from sperm lacking LDHC. We suggest that it is the localization of the transgene to the sperm cytosol that is mainly responsible for restoration of sperm function and fertility. PMID:23467744

  20. Diagnosing melanoma patients entering American Joint Committee on Cancer stage IV, C-reactive protein in serum is superior to lactate dehydrogenase

    Microsoft Academic Search

    M Deichmann; B Kahle; K Moser; J Wacker; K Wüst

    2004-01-01

    Lactate dehydrogenase (LDH) in serum has recently been introduced into the American Joint Committee on Cancer (AJCC) staging system for cutaneous melanoma because of its prognostic value. We hypothesised LDH to be of value in discriminating melanoma patients entering AJCC stage IV from patients staying in AJCC stages I, II or III. Lactate dehydrogenase was compared to the acute phase

  1. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Gu, Sol-A; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-07-01

    The thermostable d-lactate dehydrogenase from Lactobacillus jensenii (Ljd-LDH) is a key enzyme in the production of the d-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of d-lactic acid are used as biodegradable bioplastics. The crystal structures of Ljd-LDH and in complex with NAD(+) were determined at 2.13 and 2.60? resolutions, respectively. The Ljd-LDH monomer consists of the N-terminal substrate-binding domain and the C-terminal NAD-binding domain. The Ljd-LDH forms a homodimeric structure, and the C-terminal NAD-binding domain mostly enables the dimerization of the enzyme. The NAD cofactor is bound to the GxGxxG NAD-binding motif located between the two domains. Structural comparisons of Ljd-LDH with other d-LDHs reveal that Ljd-LDH has unique amino acid residues at the linker region, which indicates that the open-close dynamics of Ljd-LDH might be different from that of other d-LDHs. Moreover, thermostability experiments showed that the T50(10) value of Ljd-LDH (54.5°C) was much higher than the commercially available d-lactate dehydrogenase (42.7°C). In addition, Ljd-LDH has at least a 7°C higher denaturation temperature compared to commercially available d-LDHs. PMID:24794195

  2. Novel control of lactate dehydrogenase from the freeze tolerant wood frog: role of posttranslational modifications

    PubMed Central

    Abboud, Jean

    2013-01-01

    Lactate dehydrogenase (LDH), the terminal enzyme of anaerobic glycolysis, plays a crucial role both in sustaining glycolytic ATP production under oxygen-limiting conditions and in facilitating the catabolism of accumulated lactate when stress conditions are relieved. In this study, the effects on LDH of in vivo freezing and dehydration stresses (both of which impose hypoxia/anoxia stress on tissues) were examined in skeletal muscle of the freeze-tolerant wood frog, Rana sylvatica. LDH from muscle of control, frozen and dehydrated wood frogs was purified to homogeneity in a two-step process. The kinetic properties and stability of purified LDH were analyzed, revealing no significant differences in Vmax, Km and I50 values between control and frozen LDH. However, control and dehydrated LDH differed significantly in Km values for pyruvate, lactate, and NAD, I50 urea, and in temperature, glucose, and urea effects on these parameters. The possibility that posttranslational modification of LDH was responsible for the stable differences in enzyme behavior between control and dehydrated states was assessed using ProQ diamond staining to detect phosphorylation and immunoblotting to detect acetylation, methylation, ubiquitination, SUMOylation and nitrosylation of the enzyme. LDH from muscle of dehydrated wood frogs showed significantly lower levels of acetylation, providing one of the first demonstrations of a potential role for protein acetylation in the stress-responsive control of a metabolic enzyme. PMID:23638346

  3. The crystal structure of d-lactate dehydrogenase, a peripheral membrane respiratory enzyme

    PubMed Central

    Dym, Orly; Pratt, Elizabeth Ann; Ho, Chien; Eisenberg, David

    2000-01-01

    d-Lactate dehydrogenase (d-LDH) of Escherichia coli is a peripheral membrane respiratory enzyme involved in electron transfer, located on the cytoplasmic side of the inner membrane. d-LDH catalyzes the oxidation of d-lactate to pyruvate, which is coupled to transmembrane transport of amino acids and sugars. Here we describe the crystal structure at 1.9 ? resolution of the three domains of d-LDH: the flavin adenine dinucleotide (FAD)-binding domain, the cap domain, and the membrane-binding domain. The FAD-binding domain contains the site of d-lactate reduction by a noncovalently bound FAD cofactor and has an overall fold similar to other members of a recently discovered FAD-containing family of proteins. This structural similarity extends to the cap domain as well. The most prominent difference between d-LDH and the other members of the FAD-containing family is the membrane-binding domain, which is either absent in some of these proteins or differs significantly. The d-LDH membrane-binding domain presents an electropositive surface with six Arg and five Lys residues, which presumably interacts with the negatively charged phospholipid head groups of the membrane. Thus, d-LDH appears to bind the membrane through electrostatic rather than hydrophobic forces. PMID:10944213

  4. A detailed investigation of the properties of lactate dehydrogenase in which the 'Essential' cysteine-165 is modified by thioalkylation.

    PubMed Central

    Bloxham, D P; Sharma, R P; Wilton, D C

    1979-01-01

    The reaction of pig heart lactate dehydrogenase with methyl methanethiosulphonate resulted in the modification of one thiol group per protomer, and this was located at cysteine-165 in the enzyme sequence. On reduction, both the thiomethylation of cysteine-165 and any changes in kinetic properties of the enzyme were completely reversed. Cysteine-165 has been considered essential for catalytic activity; however, cysteine-165-thiomethylated dehydrogenase possessed full catalytic activity, although the affinity of the enzyme for carbonyl-or hydroxy-containing substrates was markedly decreased. The nicotinamide nucleotide-binding capacity was unaffected, as judged by the formation of fluorescent complexes with NADH. The enzyme-mediated activation of NAD+, as judged by sulphite addition, was unaffected in thiomethylated lactate dehydrogenase. However, the affinity of oxamate for the enzyme--NADH complex was decreased by 100-fold and it was calculated that this constituted a net increase of 10.4 kJ/mol in the activation energy for binding. Thiomethylated lactate dehydrogenase was able to form an abortive adduct between NAD+ and fluoropyruvate. However, the equilibrium constant for adduct formation between pyruvate and NAD+ was too low to demonstrate this complex at reasonable pyruvate concentrations. A conformational change in the protein structure on selective thiomethylation was revealed by the decreased thermostability of the modified enzyme. The alteration of lactate dehydrogenase catalytic properties on modification depended on the bulk of the reagent used, since thioethylation resulted in an increase in Km for pyruvate (13.5 +/- 3.5 mm) and an 85% decrease in maximum catalytic activity. The implications of all these findings for the catalytic mechanism of lactate dehydrogenase are discussed. PMID:36072

  5. Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells

    PubMed Central

    2013-01-01

    Background Most normal cells in the presence of oxygen utilize glucose for mitochondrial oxidative phosphorylation. In contrast, many cancer cells rapidly convert glucose to lactate in the cytosol, a process termed aerobic glycolysis. This glycolytic phenotype is enabled by lactate dehydrogenase (LDH), which catalyzes the inter-conversion of pyruvate and lactate. The purpose of this study was to identify and characterize potent and selective inhibitors of LDHA. Methods High throughput screening and lead optimization were used to generate inhibitors of LDHA enzymatic activity. Effects of these inhibitors on metabolism were evaluated using cell-based lactate production, oxygen consumption, and 13C NMR spectroscopy assays. Changes in comprehensive metabolic profile, cell proliferation, and apoptosis were assessed upon compound treatment. Results 3-((3-carbamoyl-7-(3,5-dimethylisoxazol-4-yl)-6-methoxyquinolin-4-yl) amino) benzoic acid was identified as an NADH-competitive LDHA inhibitor. Lead optimization yielded molecules with LDHA inhibitory potencies as low as 2 nM and 10 to 80-fold selectivity over LDHB. Molecules in this family rapidly and profoundly inhibited lactate production rates in multiple cancer cell lines including hepatocellular and breast carcinomas. Consistent with selective inhibition of LDHA, the most sensitive breast cancer cell lines to lactate inhibition in hypoxic conditions were cells with low expression of LDHB. Our inhibitors increased rates of oxygen consumption in hepatocellular carcinoma cells at doses up to 3 microM, while higher concentrations directly inhibited mitochondrial function. Analysis of more than 500 metabolites upon LDHA inhibition in Snu398 cells revealed that intracellular concentrations of glycolysis and citric acid cycle intermediates were increased, consistent with enhanced Krebs cycle activity and blockage of cytosolic glycolysis. Treatment with these compounds also potentiated PKM2 activity and promoted apoptosis in Snu398 cells. Conclusions Rapid chemical inhibition of LDHA by these quinoline 3-sulfonamids led to profound metabolic alterations and impaired cell survival in carcinoma cells making it a compelling strategy for treating solid tumors that rely on aerobic glycolysis for survival. PMID:24280423

  6. Phenylpropanoids and flavonoids from Phlomis kurdica as inhibitors of human lactate dehydrogenase.

    PubMed

    Bader, Ammar; Tuccinardi, Tiziano; Granchi, Carlotta; Martinelli, Adriano; Macchia, Marco; Minutolo, Filippo; De Tommasi, Nunziatina; Braca, Alessandra

    2015-08-01

    Two flavonoids, jaceosidin 7-O-?-d-glucopyranosyl-(1?2)-?-d-glucopyranoside (1) and hispidulin 7-O-?-d-glucopyranosyl-(1?2)-?-d-glucopyranoside (2), and one phenylpropanoid, 3,3'-dimethyl-lunariifolioside (3), along with 11 known compounds (4-14), were isolated from the aerial parts of Phlomis kurdica growing in Jordan. Structures of 1-3 were elucidated on the basis of spectroscopic data. These isolated compounds were assayed for their inhibitory activity against isoform 5 of human lactate dehydrogenase. Compound 4, luteolin 7-O-?-d-glucopyranoside, showed an IC50 value comparable to that of galloflavin, used as reference compound. Docking studies were carried out to hypothesize the interaction mode of compound 4 in the enzyme active site. PMID:25890391

  7. Lactate Dehydrogenase B Is Associated with the Response to Neoadjuvant Chemotherapy in Oral Squamous Cell Carcinoma

    PubMed Central

    Sun, Wenyi; Zhang, Xiaomin; Ding, Xu; Li, Huaiqi; Geng, Meiyu; Xie, Zuoquan; Wu, Heming; Huang, Min

    2015-01-01

    Oral squamous cell carcinoma (OSCC) comprises a subset of head and neck squamous cell carcinoma (HNSCC) with poor therapeutic outcomes and high glycolytic dependency. Neoadjuvant chemotherapy regimens of docetaxel, cisplatin and 5-fluorouracil (TPF) are currently accepted as standard regimens for HNSCC patients with a high risk of distant metastatic spread. However, the antitumor outcomes of TPF neoadjuvant chemotherapy in HNSCC remain controversial. This study investigated the role of lactate dehydrogenase B (LDHB), a key glycolytic enzyme catalyzing the inter-conversion between pyruvate and lactate, in determining chemotherapy response and prognosis in OSCC patients. We discovered that a high protein level of LDHB in OSCC patients was associated with a poor response to TPF regimen chemotherapy as well as poor overall survival and disease-free survival. Our in-depth study revealed that high LDHB expression conferred resistance to taxol but not 5-fluorouracil or cisplatin. LDHB deletion sensitized OSCC cell lines to taxol, whereas the introduction of LDHB decreased sensitivity to taxol treatment. Taxol induced a pronounced impact on LDHB-down-regulated OSCC cells in terms of apoptosis, G2/M phase cell cycle arrest and energy metabolism. In conclusion, our study highlighted the critical role of LDHB in OSCC and proposed that LDHB could be used as a biomarker for the stratification of patients for TPF neoadjuvant chemotherapy and the determination of prognosis in OSCC patients. PMID:25973606

  8. Free energy landscape of the Michaelis complex of lactate dehydrogenase: A network analysis of atomistic simulations

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoliang; Schwartz, Steven

    2015-03-01

    It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.

  9. Structural characterization of the apo form and NADH binary complex of human lactate dehydrogenase

    PubMed Central

    Dempster, Sally; Harper, Stephen; Moses, John E.; Dreveny, Ingrid

    2014-01-01

    Lactate dehydrogenase A (LDH-A) is a key enzyme in anaerobic respiration that is predominantly found in skeletal muscle and catalyses the reversible conversion of pyruvate to lactate in the presence of NADH. LDH-A is overexpressed in many tumours and has therefore emerged as an attractive target for anticancer drug discovery. Crystal structures of human LDH-A in the presence of inhibitors have been described, but currently no structures of the apo or binary NADH-bound forms are available for any mammalian LDH-A. Here, the apo structure of human LDH-A was solved at a resolution of 2.1?Å in space group P4122. The active-site loop adopts an open conformation and the packing and crystallization conditions suggest that the crystal form is suitable for soaking experiments. The soaking potential was assessed with the cofactor NADH, which yielded a ligand-bound crystal structure in the absence of any inhibitors. The structures show that NADH binding induces small conformational changes in the active-site loop and an adjacent helix. A comparison with other eukaryotic apo LDH structures reveals the conservation of intra-loop interactions. The structures provide novel insight into cofactor binding and provide the foundation for soaking experiments with fragments and inhibitors. PMID:24816116

  10. Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence

    SciTech Connect

    Millan, J.L.; Driscoll, C.E.; LeVan, K.M.; Goldberg, E.

    1987-08-01

    The sequence and structure of human testis-specific L-lactate dehydrogenase (LDHC/sub 4/, LDHX; (L)-lactate:NAD/sup +/ oxidoreductase, EC 1.1.1.27) has been derived from analysis of a complementary DNA (cDNA) clone comprising the complete protein coding region of the enzyme. From the deduced amino acid sequence, human LDHC/sub 4/ is as different from rodent LDHC/sub 4/ (73% homology) as it is from human LDHA/sub 4/ (76% homology) and porcine LDHB/sub 4/ (68% homology). Subunit homologies are consistent with the conclusion that the LDHC gene arose by at least two independent duplication events. Furthermore, the lower degree of homology between mouse and human LDHC/sub 4/ and the appearance of this isozyme late in evolution suggests a higher rate of mutation in the mammalian LDHC genes than in the LDHA and -B genes. Comparison of exposed amino acid residues of discrete anti-genic determinants of mouse and human LDHC/sub 4/ reveals significant differences. Knowledge of the human LDHC/sub 4/ sequence will help design human-specific peptides useful in the development of a contraceptive vaccine.

  11. Direct evidence of catalytic heterogeneity in lactate dehydrogenase by temperature jump infrared spectroscopy.

    PubMed

    Reddish, Michael J; Peng, Huo-Lei; Deng, Hua; Panwar, Kunal S; Callender, Robert; Dyer, R Brian

    2014-09-18

    Protein conformational heterogeneity and dynamics are known to play an important role in enzyme catalysis, but their influence has been difficult to observe directly. We have studied the effects of heterogeneity in the catalytic reaction of pig heart lactate dehydrogenase using isotope edited infrared spectroscopy, laser-induced temperature jump relaxation, and kinetic modeling. The isotope edited infrared spectrum reveals the presence of multiple reactive conformations of pyruvate bound to the enzyme, with three major reactive populations having substrate C2 carbonyl stretches at 1686, 1679, and 1674 cm(-1), respectively. The temperature jump relaxation measurements and kinetic modeling indicate that these substates form a heterogeneous branched reaction pathway, and each substate catalyzes the conversion of pyruvate to lactate with a different rate. Furthermore, the rate of hydride transfer is inversely correlated with the frequency of the C2 carbonyl stretch (the rate increases as the frequency decreases), consistent with the relationship between the frequency of this mode and the polarization of the bond, which determines its reactivity toward hydride transfer. The enzyme does not appear to be optimized to use the fastest pathway preferentially but rather accesses multiple pathways in a search process that often selects slower ones. These results provide further support for a dynamic view of enzyme catalysis where the role of the enzyme is not just to bring reactants together but also to guide the conformational search for chemically competent interactions. PMID:25149276

  12. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Fenglei Li

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition, evaporation rate can be controlled or adjusted in this method during the crystallization process to favor either nucleation or growing processes for optimizing crystallization process. The protein crystals gotten by this method were experimentally proven to possess high x-ray diffraction qualities. Finally, we crystallized human lactate dehydrogenase 1 (H4) complexed with NADH and determined its structure by x-ray crystallography. The structure of LDH/NADH displays a significantly different structural feature, compared with LDH/NADH/inhibitor ternary complex structure, that subunits in LDH/NADH complex show open conformation or two conformations on the active site while the subunits in LDH/NADH/inhibitor are all in close conformation. Multiple LDH/NADH crystals were obtained and used for x-ray diffraction experiments. Difference in subunit conformation was observed among the structures independently solved from multiple individual LDH/NADH crystals. Structural differences observed among crystals suggest the existence of multiple conformers in solution.

  13. Hypoxically inducible barley lactate dehydrogenase: cDNA cloning and molecular analysis

    SciTech Connect

    Hondred, D. (Michigan State Univ., East Lansing (USA)); Hanson, A.D. (Michigan State Univ., East Lansing (USA) Univ. de Montreal, Quebec (Canada))

    1990-09-01

    In the roots of barley and other cereals, hypoxia induces a set of five isozymes of L-lactate dehydrogenase (LDH; (S)-lactate:NADH oxidoreductase, EC 1.1.1.27). Biochemical and genetic data indicate that the five LDH isozymes are tetramers that arise from random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH were isolated from a {lambda}gt11 cDNA library derived from hypoxically treated barley roots. The library was screened with antiserum raised against barley LDH purified {approx}3,000-fold by an improved three-step procedure. Immunopositive clones were rescreened with a cDNA probe synthesized by the polymerase chain reaction using primers modeled from the amino acid sequences of two tryptic LDH peptides. Two types of LDH clones were found. Nucleotide sequence analysis of one representative insert of each type (respectively, 1,305 and 1,166 base pairs) revealed open reading framed encoding 10 peptide fragments of LDH. The 1,305-base-pair insert included the entire coding region of a 356-residue LDH monomer. The nucleotide sequences of the two LDH cDNAs were 92% identical in the coding region, but highly divergent in the 3{prime} noncoding region, and thus probably correspond to the two postulated Ldh loci. The deduced amino acid sequences of the two barley LDHs were 96% identical to each other and very similar to those from vertebrate and bacterial LDHs. RNA blot hybridization showed a single mRNA band of 1.5 kilobases whose level rose about 8-fold in roots during hypoxic induction, as did the level of translatable LDH message.

  14. Purification and determination of the binding site of lactate dehydrogenase from chicken breast muscle on immobilized ferric ions.

    PubMed

    Chaga, G; Andersson, L; Porath, J

    1992-12-25

    Lactate dehydrogenase from chicken breast muscle was purified to homogeneity in one step by immobilized metal ion affinity chromatography. The purified enzyme was used to localize the binding site to immobilized Fe(III) ions. After cyanogen bromide degradation and digestion with trypsin, small enzyme fragments capable of binding to immobilized Fe(III) ions were obtained. It is proposed that several histidyl groups are involved in the binding. PMID:1487526

  15. Characteristic Changes in Platelet-Large Cell Ratio, Lactate Dehydrogenase and C-Reactive Protein in Thrombocytosis-Related Diseases

    Microsoft Academic Search

    Osamu Kabutomori; Yuzuru Kanakura; Yoshinori Iwatani

    2007-01-01

    We examined the clinical usefulness of 3 parameters of routine laboratory tests [platelet-large cell ratio (P-LCR), lactate dehydrogenase (LDH) and C-reactive protein (CRP)] in 84 patients with thrombocytosis-related diseases (reactive thrombocytosis, chronic myeloid leukemia, essential thrombocythemia and polycythemia vera). These thrombocytosis-related diseases were characterized using the 3 parameters P-LCR, LDH and CRP as follows: high P-LCR and high LDH in

  16. The rodent malaria lactate dehydrogenase assay provides a high throughput solution for in vivo vaccine studies.

    PubMed

    Otsuki, Hitoshi; Yokouchi, Yuki; Iyoku, Natsumi; Tachibana, Mayumi; Tsuboi, Takafumi; Torii, Motomi

    2015-08-01

    Rodent malaria is a useful model for evaluating the efficacy of malaria vaccine candidates; however, labor-intensive microscopic parasite counting hampers the use of an in vivo parasite challenge in high-throughput screening. The measurement of malaria parasite lactate dehydrogenase (pLDH) activity, which is commonly used in the in vitro growth inhibition assay of Plasmodium falciparum, may be the cheapest and simplest alternative to microscopic parasite counting. However, the pLDH assay has not been applied in the in vivo rodent malaria model. Here, we showed that the pLDH assay is reliable and accurately determines parasitemia in the rodent malaria model. pLDH activity measured using a chromogenic substrate reflects the parasite number in the blood; it allows fast and easy assessment using a conventional microplate reader. To validate this approach, we synthesized recombinant PyMSP1-19 protein (rPyMSP1-19) using a wheat germ cell-free protein synthesis system and immunized mice with rPyMSP1-19. The antisera showed specific reactivity on the surface of the Plasmodium yoelii merozoite and immunized mice were protected against a lethal P. yoelii 17 XL challenge. The pLDH assay quickly and easily demonstrated a significant reduction of the parasite numbers in the immunized mice. Accordingly, the pLDH assay proved to be an efficient alternative to rodent malaria parasite counting, and may therefore accelerate in vivo vaccine candidate screening. PMID:25701649

  17. The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path

    NASA Astrophysics Data System (ADS)

    Masterson, Jean E.; Schwartz, Steven D.

    2014-10-01

    Enzymes are the most efficient chemical catalysts known, but the exact nature of chemical barrier crossing in enzymes is not fully understood. Application of transition state theory to enzymatic reactions indicates that the rates of all possible reaction paths, weighted by their relative probabilities, must be considered in order to achieve an accurate calculation of the overall rate. Previous studies in our group have shown a single mechanism for enzymatic barrier passage in human heart lactate dehydrogenase (LDH). To ensure that this result was not due to our methodology insufficiently sampling reactive phase space, we implement high-perturbation transition path sampling in both microcanonical and canonical regimes for the reaction catalyzed by human heart LDH. We find that, although multiple, distinct paths through reactive phase space are possible for this enzymatic reaction, one specific reaction path is dominant. Since the frequency of these paths in a canonical ensemble is inversely proportional to the free energy barriers separating them from other regions of phase space, we conclude that the rarer reaction paths are likely to have a negligible contribution. Furthermore, the non-dominate reaction paths correspond to altered reactive conformations and only occur after multiple steps of high perturbation, suggesting that these paths may be the result of non-biologically significant changes to the structure of the enzymatic active site.

  18. Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen.

    PubMed

    Engstrom, Josh D; Simpson, Dale T; Cloonan, Carrie; Lai, Edwina S; Williams, Robert O; Barrie Kitto, G; Johnston, Keith P

    2007-02-01

    Enzyme activities were determined for lactate dehydrogenase (LDH) powder produced by lyophilization, and two fast freezing processes, spray freeze-drying (SFD) and spray freezing into liquid (SFL) nitrogen. The 0.25 mg/mL LDH aqueous feed solutions included either 30 or 100 mg/mL trehalose. The SFL process produced powders with very high enzyme activities upon reconstitution, similar to lyophilization. However, the specific surface area of 13 m(2)/g for SFL was an order of magnitude larger than for lyophilization. In SFD activities were reduced in the spraying step by the long exposure to the gas-liquid interface for 0.1-1s, versus only 2 ms in SFL. The ability to produce stable high surface area submicron particles of fragile proteins such as LDH by SFL is of practical interest in protein storage and in various applications in controlled release including encapsulation into bioerodible polymers. The SFL process has been scaled down for solution volumes <1 mL to facilitate studies of therapeutic proteins. PMID:17027245

  19. Gene Expression Variation in Duplicate Lactate dehydrogenase Genes: Do Ecological Species Show Distinct Responses?

    PubMed Central

    Cristescu, Melania E.; Demiri, Bora; Altshuler, Ianina; Crease, Teresa J.

    2014-01-01

    Lactate dehydrogenase (LDH) has been shown to play an important role in adaptation of several aquatic species to different habitats. The genomes of Daphnia pulex, a pond species, and Daphnia pulicaria, a lake inhabitant, encode two L-LDH enzymes, LDHA and LDHB. We estimated relative levels of Ldh gene expression in these two closely related species and their hybrids in four environmental settings, each characterized by one of two temperatures (10°C or 20°C), and one of two concentrations of dissolved oxygen (DO; 6.5–7 mg/l or 2–3 mg/l). We found that levels of LdhA expression were 4 to 48 times higher than LdhB expression (p<0.005) in all three groups (the two parental species and hybrids). Moreover, levels of LdhB expression differed significantly (p<0.05) between D. pulex and D. pulicaria, but neither species differed from the hybrid. Consistently higher expression of LdhA relative to LdhB in both species and the hybrid suggests that the two isozymes could be performing different functions. No significant differences in levels of gene expression were observed among the four combinations of temperature and dissolved oxygen (p>0.1). Given that Daphnia dwell in environments characterized by fluctuating conditions with long periods of low dissolved oxygen concentration, we suggest that these species could employ regulated metabolic depression to survive in such environments. PMID:25080082

  20. SYNAPTOSOMAL LACTATE DEHYDROGENASE ISOENZYME COMPOSITION IS SHIFTED TOWARD AEROBIC FORMS IN PRIMATE BRAIN EVOLUTION

    PubMed Central

    Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  1. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases

    PubMed Central

    Boucher, Jeffrey I; Jacobowitz, Joseph R; Beckett, Brian C; Classen, Scott; Theobald, Douglas L

    2014-01-01

    Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this ‘specificity residue’ to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function. DOI: http://dx.doi.org/10.7554/eLife.02304.001 PMID:24966208

  2. Quick histochemical staining method for measuring lactate dehydrogenase C4 activity in human spermatozoa.

    PubMed

    Cui, Zhaolei; Chen, Liangyuan; Liu, Yaohua; Zeng, Zhangxin; Lan, Fenghua

    2015-04-01

    The enzyme activity of lactate dehydrogenase C4 (LDH-C4, due to tetrameric nature of C-subunit) has been proposed as an important parameter in evaluating sperm motility and semen quality. A novel histochemical staining method for detecting LDH-C4 activity in human spermatozoa is described in this report. The staining working solution comprises sodium 2-hydroxybutyrate (an affinity substrate of LDH-C4), nitrotetrazolium blue chloride (NBT), nicotinamide adenine dinucleotide (NAD) and naphthol blue. The positive products were purple black lumps concentrated in the neck segment of the spermatozoa and weakly in the middle piece. A normal reference range for the integral enzyme activity was constructed from 120 healthy males based upon the scoring criteria. The study further compared the staining method with the routine spectrophotometry technique in terms of the results of 96 cases with infertile status. Moreover, we found the down-regulated LDH-C4 expression was significantly correlated with the lowered enzyme activity (r=0.865, P=0.000). Our data suggest that the histochemical staining method hallmarks a relatively high accuracy and may be a better alternative for measuring LDH-C4 activity in human spermatozoa. PMID:25795631

  3. Observation and identification of lactate dehydrogenase anomaly in a postburn patient

    PubMed Central

    Liu, Z; Zhang, Y; Zhang, X; Yang, X

    2004-01-01

    Objective: Lactate dehydrogenase (LDH) anomaly is one of the macroenzymes. Macroenzymes are enzymes in serum that have formed high molecular mass complexes, either by self polymerisation or by association with other serum components. The aim of this study was to identify the properties of LDH anomaly and observe the changes from admission to discharge in a postburn patient with LDH anomaly in his serum. Methods: LDH isoenzymes of the serum were electrophoretically fractionated with terylene cellulose acetate supporting media; LDH anomaly was identified by counter immunoelectrophoresis. Results: An abnormal LDH-4 band and an extra band on the cathode of LDH-5 were observed in the serum of this patient and were found to be part of an LDH-IgG complex. As his symptoms improved, the patient's LDH anomaly gradually disappeared. The appearance and disappearance of the anomaly seemed to be related to the progression of the patient's burns. Conclusion: In clinical practice, it is important to keep in mind the possibility of an LDH anomaly in patients when the LDH level is abnormally high or does not seem to be related to the clinical state. Early discovery of an LDH anomaly in a patient's serum may be useful for diagnosis and treatment. PMID:15299160

  4. Establishment of permanent chimerism in a lactate dehydrogenase-deficient mouse mutant with hemolytic anemia

    SciTech Connect

    Datta, T.; Doermer, P.

    1987-12-01

    Pluripotent hemopoietic stem cell function was investigated in the homozygous muscle type lactate dehydrogenase (LDH-A) mutant mouse using bone marrow transplantation experiments. Hemopoietic tissues of LDH-A mutants showed a marked decreased in enzyme activity that was associated with severe hemolytic anemia. This condition proved to be transplantable into wild type mice (+/+) through total body irradiation (TBI) at a lethal dose of 8.0 Gy followed by engraftment of mutant bone marrow cells. Since the mutants are extremely radiosensitive (lethal dose50/30 4.4 Gy vs 7.3 Gy in +/+ mice), 8.0-Gy TBI followed by injection of even high numbers of normal bone marrow cells did not prevent death within 5-6 days. After a nonlethal dose of 4.0 Gy and grafting of normal bone marrow cells, a transient chimerism showing peripheral blood characteristics of the wild type was produced that returned to the mutant condition within 12 weeks. The transfusion of wild type red blood cells prior to and following 8.0-Gy TBI and reconstitution with wild type bone marrow cells prevented the early death of the mutants and permanent chimerism was achieved. The chimeras showed all hematological parameters of wild type mice, and radiosensitivity returned to normal. It is concluded that the mutant pluripotent stem cells are functionally comparable to normal stem cells, emphasizing the significance of this mouse model for studies of stem cell regulation.

  5. Modification of pig heart lactate dehydrogenase with methyl methanethiosulphonate to produce an enzyme with altered catalytic activity.

    PubMed Central

    Bloxham, D P; Wilton, D C

    1977-01-01

    Methyl methanethiosulphonate was used to produce a modification of the essential thiol group in lactate dehydrogenase which leaves the enzyme catalytically active. Methyl methanethiosulphonate produced a progressive inhibition of enzyme activity, with 2mM-pyruvate and 0.14mM-NADH as substrates, which ceased once the enzyme had lost 70-90% of its activity. In contrast, with 10mM-lactate and 0.4mM-NAD+ as substrates the enzyme was virtually completely inhibited. The observed inhibition was critically dependent on the chosen substrate concentration, since methanethiolation with methyl methanethiosulphonate resulted in a large decrease in affinity for pyruvate. At 0.14mM-NADH, methanethiolation increased the apparent KmPyr from from 40micronM for the control enzyme to 12mM for the modified enzyme. Steady-state kinetics showed that there was not a statistically significant change in either KmNADH or KsNADH. At saturating NADH and pyruvate concentrations, the Vmax. was virtually unaffected for the methanethiolated enzyme. However, a decrease in Vmax. was observed when the modified enzyme was incubated in dilute solution. The modification of lactate dehydrogenase by methyl methanethiosulphonate involved the active site, since inhibition was completely prevented by substrate-analogue pairs such as NADH and oxamate or NAD+ and oxalate. The formation of complexes between methanethiolated lactate dehydrogenase and substrates or substrate analogues can also be shown by re-activation experiments. The methanethiolated enzyme was re-activated in a time-dependent reaction by dithiothreitol and this was prevented by oxamate, by NADH and by NADH plus oxamate in increasing order of effectiveness. The results of this work are interpreted in terms of a role for the essential thiol group in the binding of substrates. PMID:15552

  6. Lactate dehydrogenase regulation of the metmyoglobin reducing system to improve color stability of bovine muscles through lactate enhancement 

    E-print Network

    Kim, Yuan Hwan

    2009-05-15

    concentration, TRA, and were the least oxidized over display. These results confirm the involvement of LDH in meat color stability through replenishment of NADH. Lactate enhancement promotes meat color stability by providing superior antioxidant capacity...

  7. The effects of season and temperature on D-lactate dehydrogenase, pyruvate kinase and arginine kinase in the foot of Helix pomatia L.

    PubMed

    Wieser, W; Wright, E

    1979-04-01

    The effects of pH, season, environmental and experimental temperatures on the activities and kinetic parameters of D-lactate dehydrogenase, pyruvate kinase and arginine kinase from the foot of the pulmonate snail Helix pomatia were analyzed. Both in phosphate and Tris buffers D-lactate dehydrogenase was the enzyme with the most acid maximum, arginine kinase that with the most alkaline, whilst pyruvate kinase occupied an intermediate position. Pyruvate kinase activity, measured at 20 degrees C, was positively correlated with the environmental temperature at the moment of collecting the animal, whereas neither arginine kinase nor D-lactate dehydrogenase showed such a relationship. A seasonal study based on approximately 100 specimens established that arginine kinase activity remained the same throughout the year. Pyruvate kinase activity was slightly lower, and D-lactate dehydrogenase activity significantly higher, in winter than in summer animals. Snails subjected in spring to a short warm-up period before enzyme extraction showed extreme variability and some extraordinarily high values of pyruvate kinase activity, suggesting that either season or elevated temperature may have an immediate effect on the activity of this enzyme. Individual variability of all three enzymes ranges from 300 to 400%. The activities of pyruvate kinase and D-lactate dehydrogenase are strongly correlated in summer, forming a "constant-proportion-group", whereas in winter, with D-lactate dehydrogenase activity increasing and pyruvate kinase activity decreasing these two enzymes become "uncoupled". The Km value of pyruvate kinase is independent of experimental temperature between 10 and 25 degrees C, whereas that of D-lactate dehydrogenase and arginine kinase increases about three-fold within this range. Thus the temperature relationship of a single enzymic reaction cannot be used as an arguemnt for or against the occurrence of temperature compensation of whole animal metabolism. The possibility of modulation of enzyme activity by environmental temperature is discussed. PMID:35457

  8. Interaction between chronic arsenic exposure via drinking water and plasma lactate dehydrogenase activity.

    PubMed

    Karim, Md Rezaul; Salam, Kazi Abdus; Hossain, Ekhtear; Islam, Khairul; Ali, Nurshad; Haque, Abedul; Saud, Zahangir Alam; Yeasmin, Tanzima; Hossain, Mostaque; Miyataka, Hideki; Himeno, Seiichiro; Hossain, Khaled

    2010-12-15

    Arsenic is a potent environmental pollutant that has caused one of the largest public health poisonings in the history of human civilization, affecting tens of millions of people worldwide especially in Bangladesh. Lactate dehydrogenase (LDH) in blood plays an important role in predicting cell or organ damage and as an important clue to the diagnosis of a variety of cancers. However, effect of chronic arsenic exposure on the LDH level in blood has not yet been documented. Since the chronic arsenic exposure is associated with organ damages and multi-site cancers, this research aimed at assaying the plasma level of LDH activity in the population who were exposed to arsenic chronically in Bangladesh. A total of 185 individuals living in arsenic-exposed areas and 121 individuals living in non-exposed area in Bangladesh were recruited as study subjects. Arsenic content in drinking water, hair and nails were estimated by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) and LDH activity was assayed by a spectrophotometer. Significant increase in LDH activity was observed with increasing concentrations of arsenic in water, hair and nails. Further, the study subjects were split into four groups based on the three ways of each exposure metrics (water, hair and nail arsenic concentrations) where the study subjects in the non-exposed area were used as a reference (lowest exposure) group. LDH activity was found to be increased in the higher exposure groups of water and hair arsenic concentrations. LDH activity was also increased at low to medium exposure groups of nail arsenic concentrations.Thus, the elevated plasma LDH activity might be helpful for the early prognosis of organ or tissue damage in the individuals who were exposed to arsenic chronically. PMID:21035168

  9. Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex

    PubMed Central

    2011-01-01

    Background Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh). Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. Results We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S) for Glutamic acid (F) at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Conclusions Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive. PMID:21767386

  10. Antimalarial Activity of Potential Inhibitors of Plasmodium falciparum Lactate Dehydrogenase Enzyme Selected by Docking Studies

    PubMed Central

    Penna-Coutinho, Julia; Cortopassi, Wilian Augusto; Oliveira, Aline Alves; França, Tanos Celmar Costa; Krettli, Antoniana Ursine

    2011-01-01

    The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH) has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH) all exhibit ?90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH) and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole) were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2). The IC50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM) and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use. PMID:21779323

  11. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates.

    PubMed

    Keluskar, Priyadarshan; Singh, Vineeta; Gupta, Purva; Ingle, Sanjay

    2014-08-01

    Control and eradication of malaria is hindered by the acquisition of drug resistance by Plasmodium species. This has necessitated a persistent search for novel drugs and more efficient targets. Plasmodium species specific lactate dehydrogenase is one of the potential therapeutic and diagnostic targets, because of its indispensable role in endoerythrocytic stage of the parasite. A target molecule that is highly conserved in the parasite population can be more effectively used in diagnostics and therapeutics, hence, in the present study polymorphism in PfLDH (Plasmodiumfalciparum specific LDH) and PvLDH (Plasmodiumvivax specific LDH) genes was analyzed using PCR-single strand confirmation polymorphism (PCR-SSCP) and sequencing. Forty-six P. falciparum and thirty-five P. vivax samples were screened from different states of India. Our findings have revealed presence of a single PfLDH genotype and six PvLDH genotypes among the studied samples. Interestingly, along with synonymous substitutions, nonsynonymous substitutions were reported to be present for the first time in the PvLDH genotypes. Further, through amino acid sequence alignment and homology modeling studies we observed that the catalytic residues were conserved in all PvLDH genotypes and the nonsynonymous substitutions have not altered the enzyme structure significantly. Evolutionary genetics studies have confirmed that PfLDH and PvLDH loci are under strong purifying selection. Phylogenetic analysis of the pLDH gene sequences revealed that P. falciparum compared to P. vivax, has recent origin. The study therefore supports PfLDH and PvLDH as suitable therapeutic and diagnostic targets as well as phylogenetic markers to understand the genealogy of malaria species. PMID:24953504

  12. Regulation of liver lactate dehydrogenase by reversible phosphorylation in response to anoxia in a freshwater turtle.

    PubMed

    Xiong, Zi Jian; Storey, Kenneth B

    2012-10-01

    Lactate dehydrogenase (LDH) is the terminal enzyme of anaerobic glycolysis and key to hypoxia/anoxia survival by most animals. In this study, the effects of anoxic submergence (20 h at 7°C in nitrogen-bubbled water) were assessed on LDH from liver of an anoxia-tolerant freshwater turtle, the red-eared slider (Trachemys scripta elegans). Liver LDH from aerobic and anoxic turtles was purified to homogeneity in two steps. The kinetic properties and thermal stability of purified LDH were analyzed, revealing significant differences between the two enzyme forms in V(max), K(m) pyruvate, and I(50) pyruvate as well as melting temperature determined by differential scanning fluorimetry. The phosphorylation state of aerobic and anoxic forms of LDH was visualized by ProQ Diamond phosphoprotein staining, the results indicating that the anoxic form had a higher phosphorylation state. Incubation studies that promoted protein kinase versus protein phosphatase actions showed that changes in the phosphorylation state of aerobic and anoxic forms mimicked the anoxia-responsive changes in K(m) pyruvate and I(50) pyruvate. The high phosphate form of liver LDH that occurs in anoxic turtles appears to be a less active form. Turtle liver LDH was also subject to another form of posttranslational modification, protein acetylation, with a 70% higher content of acetylated lysine residues on anoxic versus aerobic LDH. This is the first study to show that LDH function in an anoxia-tolerant animal can be differentially modified between aerobic and anoxic states via the mechanism of posttranslational modification. PMID:22735190

  13. Nicotine promotes Streptococcus mutans extracellular polysaccharide synthesis, cell aggregation and overall lactate dehydrogenase activity.

    PubMed

    Huang, R; Li, M; Gregory, R L

    2015-08-01

    Several epidemiology studies have reported a positive relationship between smoking and dental caries. Nicotine, an alkaloid component of tobacco, has been demonstrated to stimulate biofilm formation and metabolic activity of Streptococcus mutans, one of the most important pathogens of dental caries. The first aim of the present study was to explore the possible mechanisms leading to increased biofilm by nicotine treatment from three aspects, extracellular polysaccharides (EPS) synthesis, glucosyltransferase (Gtf) synthesis and glucan-binding protein (Gbp) synthesis at the mRNA and protein levels. The second aim was to investigate how nicotine affects S. mutans virulence, particular in lactate dehydrogenase (LDH) activity. Confocal laser scanning microscopy results demonstrated that both biofilm bacterial cell numbers and EPS were increased by nicotine. Gtf and GbpA protein expression of S. mutans planktonic cells were upregulated while GbpB protein expression of biofilm cells were downregulated by nicotine. The mRNA expression trends of those genes were mostly consistent with results on protein level but not statistically significant, and gtfD and gbpD of biofilm cells were inhibited. Nicotine was not directly involved in S. mutans LDH activity. However, since it increases the total number of bacterial cells in biofilm, the overall LDH activity of S. mutans biofilm is increased. In conclusion, nicotine stimulates S. mutans planktonic cell Gtf and Gbp expression. This leads to more planktonic cells attaching to the dental biofilm. Increased cell numbers within biofilm results in higher overall LDH activity. This contributes to caries development in smokers. PMID:25985036

  14. Regulation of the Activity of Lactate Dehydrogenases from Four Lactic Acid Bacteria*

    PubMed Central

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L.; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V.; Kreikemeyer, Bernd; Wade, Rebecca C.; Fiedler, Tomas

    2013-01-01

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ? Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ? Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs. PMID:23720742

  15. Construction of sperm-specific lactate dehydrogenase DNA vaccine and experimental study of its immunocontraceptive effect on mice

    Microsoft Academic Search

    Yong Chen; Duo Zhang; Na Xin; YongZhong Xiong; Ping Chen; Bo Li; XiangDong Tu; FengHua Lan

    2008-01-01

    Lactate dehydrogenase C4 (LDHC4) is a key enzyme for sperm metabolism. It is distributed specifically in testis and is highly\\u000a immunogenic. In this study, two DNA vaccines pVAX1-hLDHC and pVAX1-mLDHC were constructed by inserting coding sequences of\\u000a human and mice LDHC4 into the eukaryotic expression vector pVAX1. The production of LDHC4 specific antibodies was induced\\u000a in the sera of vaccinated

  16. Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer

    PubMed Central

    2014-01-01

    Background Hypermethylation of DNA is an epigenetic alteration commonly found in colorectal cancer (CRC) and can also be detected in blood samples of cancer patients. Methylation of the genes helicase-like transcription factor (HLTF) and hyperplastic polyposis 1 (HPP1) have been proposed as prognostic, and neurogenin 1 (NEUROG1) as diagnostic biomarker. However the underlying mechanisms leading to the release of these genes are unclear. This study aimed at examining the possible correlation of the presence of methylated genes NEUROG1, HLTF and HPP1 in serum with tissue breakdown as a possible mechanism using serum lactate dehydrogenase (LDH) as a surrogate marker. Additionally the prognostic impact of these markers was examined. Methods Pretherapeutic serum samples from 259 patients from all cancer stages were analyzed. Presence of hypermethylation of the genes HLTF, HPP1, and NEUROG1 was examined using methylation-specific quantitative PCR (MethyLight). LDH was determined using an UV kinetic test. Results Hypermethylation of HLTF and HPP1 was detected significantly more often in patients with elevated LDH levels (32% vs. 12% [p = 0.0005], and 68% vs. 11% [p < 0.0001], respectively). Also, higher LDH values correlated with a higher percentage of a fully methylated reference in a linear fashion (Spearman correlation coefficient 0.18 for HLTF [p = 0.004]; 0.49 [p < .0001] for HPP1). No correlation between methylation of NEUROG1 and LDH was found in this study. Concerning the clinical characteristics, high levels of LDH as well as methylation of HLTF and HPP1 were significantly associated with larger and more advanced stages of CRC. Accordingly, these three markers were correlated with significantly shorter survival in the overall population. Moreover, all three identified patients with a worse prognosis in the subgroup of stage IV patients. Conclusions We were able to provide evidence that methylation of HLTF and especially HPP1 detected in serum is strongly correlated with cell death in CRC using LDH as surrogate marker. Additionally, we found that prognostic information is given by both HLTF and HPP1 as well as LDH. In sum, determining the methylation of HLTF and HPP1 in serum might be useful in order to identify patients with more aggressive tumors. PMID:24708595

  17. Tyrosine Phosphorylation of Lactate Dehydrogenase A Is Important for NADH/NAD+ Redox Homeostasis in Cancer Cells ?

    PubMed Central

    Fan, Jun; Hitosugi, Taro; Chung, Tae-Wook; Xie, Jianxin; Ge, Qingyuan; Gu, Ting-Lei; Polakiewicz, Roberto D.; Chen, Georgia Z.; Boggon, Titus J.; Lonial, Sagar; Khuri, Fadlo R.; Kang, Sumin; Chen, Jing

    2011-01-01

    The Warburg effect describes an increase in aerobic glycolysis and enhanced lactate production in cancer cells. Lactate dehydrogenase A (LDH-A) regulates the last step of glycolysis that generates lactate and permits the regeneration of NAD+. LDH-A gene expression is believed to be upregulated by both HIF and Myc in cancer cells to achieve increased lactate production. However, how oncogenic signals activate LDH-A to regulate cancer cell metabolism remains unclear. We found that the oncogenic receptor tyrosine kinase FGFR1 directly phosphorylates LDH-A. Phosphorylation at Y10 and Y83 enhances LDH-A activity by enhancing the formation of active, tetrameric LDH-A and the binding of LDH-A substrate NADH, respectively. Moreover, Y10 phosphorylation of LDH-A is common in diverse human cancer cells, which correlates with activation of multiple oncogenic tyrosine kinases. Interestingly, cancer cells with stable knockdown of endogenous LDH-A and rescue expression of a catalytic hypomorph LDH-A mutant, Y10F, demonstrate increased respiration through mitochondrial complex I to sustain glycolysis by providing NAD+. However, such a compensatory increase in mitochondrial respiration in Y10F cells is insufficient to fully sustain glycolysis. Y10 rescue cells show decreased cell proliferation and ATP levels under hypoxia and reduced tumor growth in xenograft nude mice. Our findings suggest that tyrosine phosphorylation enhances LDH-A enzyme activity to promote the Warburg effect and tumor growth by regulating the NADH/NAD+ redox homeostasis, representing an acute molecular mechanism underlying the enhanced lactate production in cancer cells. PMID:21969607

  18. Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis

    Microsoft Academic Search

    M I Koukourakis; A Giatromanolaki; E Sivridis; G Bougioukas; V Didilis; K C Gatter; A L Harris

    2003-01-01

    Lactate dehydrogenase-5 (LDH-5) catalyses the reversible transformation of pyruvate to lactate, having a principal position in the anaerobic cellular metabolism. Induction of LDH-5 occurs during hypoxia and LDH-5 transcription is directly regulated by the hypoxia-inducible factor 1 (HIF1). Serum LDH levels have been correlated with poor prognosis and resistance to chemotherapy and radiotherapy in various neoplastic diseases. The expression, however,

  19. Production of optically pure l-phenyllactic acid by using engineered Escherichia coli coexpressing l-lactate dehydrogenase and formate dehydrogenase.

    PubMed

    Zheng, Zhaojuan; Zhao, Mingyue; Zang, Ying; Zhou, Ying; Ouyang, Jia

    2015-08-10

    l-Phenyllactic acid (l-PLA) is a novel antiseptic agent with broad and effective antimicrobial activity. In addition, l-PLA has been used for synthesis of poly(phenyllactic acid)s, which exhibits better mechanical properties than poly(lactic acid)s. However, the concentration and optical purity of l-PLA produced by native microbes was rather low. An NAD-dependent l-lactate dehydrogenase (l-nLDH) from Bacillus coagulans NL01 was confirmed to have a good ability to produce l-PLA from phenylpyruvic acid (PPA). In the present study, l-nLDH gene and formate dehydrogenase gene were heterologously coexpressed in Escherichia coli. Through two coupled reactions, 79.6mM l-PLA was produced from 82.8mM PPA in 40min and the enantiomeric excess value of l-PLA was high (>99%). Therefore, this process suggested a promising alternative for the production of chiral l-PLA. PMID:26008622

  20. Re-evaluation of the glycerol-3-phosphate dehydrogenase/L-lactate dehydrogenase enzyme system. Evidence against the direct transfer of NADH between active sites.

    PubMed

    Brooks, S P; Storey, K B

    1991-09-15

    An investigation of the direct transfer of metabolites from rabbit muscle L-lactate dehydrogenase (LDH, EC 1.1.1.27) to glycerol-3-phosphate dehydrogenase (GPDH, EC 1.1.1.8) revealed discrepancies between theoretical predictions and experimental results. Measurements of the GPDH reaction rate at a fixed NADH concentration and in the presence of increasing LDH concentrations gave experimental results similar to those previously obtained by Srivastava, Smolen, Betts, Fukushima, Spivey & Bernhard [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6464-6468]. However, a mathematical solution of the direct-transfer-mechanism equations as described by Srivastava et al. (1989) showed that the direct-transfer model did not adequately describe the experimental behaviour of the reaction rate at increasing LDH concentrations. In addition, experiments designed to measure the formation of an LDH4.NADH.GPDH2 complex, predicted by the direct-transfer model, indicated that no significant formation of tertiary complex occurred. An examination of other kinetic models, developed to describe the LDH/GPDH/NADH system better, revealed that the experimental results may be best explained by assuming that free NADH, and not E1.NADH, is the sole substrate for GPDH. These results suggest that direct transfer of NADH between rabbit muscle LDH and GPDH does not occur in vitro. PMID:1898374

  1. Suckling rat pups accumulate creatine primarily via de novo synthesis rather than from dam milk.

    PubMed

    Lamarre, Simon G; Edison, Erica E; Wijekoon, Enoka P; Brosnan, Margaret E; Brosnan, John T

    2010-09-01

    During lactation, there may be a higher need for creatine replacement due to the provision of creatine to the milk. Our objectives were to: 1) quantify the creatine concentration in rat milk; 2) determine the origin of milk creatine; 3) determine the activities of the enzymes of creatine synthesis in lactating rats and pups; and 4) quantify the origin of the creatine that accumulates in rat pups. The origin of milk creatine was determined in 4 dams following the administration of (14)C-creatine by measuring the isotopic enrichment of creatine in the milk and plasma. The activities of the 2 enzymes involved in creatine synthesis were compared in lactating and virgin females (n = 7). For all experiments, the litter size was standardized to 8 pups. The data indicated that the mammary gland extracts creatine from the circulation rather than synthesizing it. This was confirmed by our failure to find substantial activities of the enzymes of creatine synthesis in mammary glands. The provision of milk creatine requires an additional 35-55% of creatine above the daily requirement by lactating rat dams. However, there was no increased creatine synthesis by these dams; the additional creatine was largely provided by hyperphagia, because creatine is present in commercial rat diet. There was a substantial accumulation of creatine in the growing pups, but only approximately 12% was obtained from milk. The great bulk of creatine accretion was via de novo synthesis by the pups, which imposed a substantial metabolic burden on them. PMID:20660282

  2. Association of an oxygen-sensitive lactate dehydrogenase isoenzyme, LDk, with LD-6 in serum of critically ill patients.

    PubMed

    Onorato, V A; Manly, K F; Vladutiu, A O

    1984-10-01

    We measured a highly unusual, oxygen-sensitive lactate dehydrogenase, LDk, in the serum of six patients whose serum showed a band for LD-6 on routine agarose gel electrophoresis for LD isoenzymes. All these patients showed very high serum LDk activity, greatly exceeding the high values previously described in serum of patients with various malignant tumors. In two of the patients, LDk activity was low both before LD-6 was found in and after it disappeared from the serum, evidencing a correlation with LD-6. All of the six patients, five of whom died in the hospital, had severe hypotension. We suggest that hypoxia is responsible for the appearance of LD-6 in serum and that LD-6 is found in association with high LDk activity in serum of critically ill patients. PMID:6478590

  3. Isolation and characterization of two cDNA clones of anaerobically induced lactate dehydrogenase from barley roots

    SciTech Connect

    Hondred, D.; Hanson, A.D. (Michigan State Univ., East Lansing (USA))

    1990-05-01

    In barley roots during hypoxia, five lactate dehydrogenase (LDH) isozymes accumulate with a concomitant increase in enzyme activity ({approximately}20-fold). These isozymes are thought to be tetramers resulting from the random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH have been isolated from a {lambda}gt11 library using antiserum raised against barley LDH purified {approximately}3,000-fold and using nucleic acid probes synthesized by the polymerase chain reaction. Two cDNA clones were obtained (1,305 and 1,166 bp). The deduced amino acid sequences of the two barley LDHs are 96% identical to each other, and 50% and 40% identical to vertebrate and bacterial LDHs, respectively. Northern blots identified a single mRNA band ({approximately}1.5 kb) whose level rose 8-fold during hypoxia.

  4. Purification and Properties of a Fructose-1,6-Diphosphate-Activated Lactate Dehydrogenase from Streptococcus faecalis

    PubMed Central

    Wittenberger, Charles L.; Angelo, Noreen

    1970-01-01

    An l-(+)-lactate dehydrogenase was purified approximately 35-fold from crude extracts of Streptococcus faecalis. The purified enzyme had an absolute and specific requirement for fructose-1,6-diphosphate (FDP) for catalytic activity. The concentration of FDP required for 50% maximal activity was about 0.045 mm. The activator was bound to the enzyme more effectively at pH 5.8 than it was at a neutral or alkaline pH. Activation appeared to involve a conformational change in the enzyme which made the substrate and coenzyme sites more accessible to the respective reactants. Among the evidence supporting this hypothesis was the fact that FDP lowered significantly the apparent Km for both pyruvate and reduced nicotinamide adenine dinucleotide. Moreover, the enzyme, which was quite heat stable in the absence of any of the reactants, was rendered heat labile by FDP. PMID:4314543

  5. [Activity of lactate dehydrogenase in the brain cortex and hippocampus of Mongolian gerbils after global ischemia and reperfusion injuries].

    PubMed

    Shcherbak, N S; Galagudza, M M; Ovchinnikov, D A; Kuz'menkov, A N; Iukina, G Iu; Barantsevich, E R; Tomson, V V; Shliakhto, E V

    2012-02-01

    Cerebral ischemia results in severe derangements of energy metabolism in the nervous tissue including activation of glycolytic pathway. Activity of cytosolic lactate dehydrogenase (LDH) in the specific brain structures remains unclear. The recent study was aimed at investigation into the LDH activity in the cytoplasm of both hippocampal and cortical neurons in Mongolian gerbils (Meriones unguiculatus) at different durations of reperfusion after global ischemia. Analysis showed that the activity of LDH in pyramidal neurons of various hippocampal areas and neurons of II, III and V cortical layers after 7-minute forebrain ischemia depended on both localization of the neurons and duration ofreperfusion. In general, the changes in postischemic cytosolic LDH activity include significant decrease in the LDH activity 2 days after reperfusion with varying degree of recovery on day 7 of reperfusion. PMID:22650061

  6. Cationic Surfactant-Based Colorimetric Detection of Plasmodium Lactate Dehydrogenase, a Biomarker for Malaria, Using the Specific DNA Aptamer

    PubMed Central

    Lee, Seonghwan; Manjunatha, D H; Jeon, Weejeong; Ban, Changill

    2014-01-01

    A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH) and Plasmodium falciparum LDH (PfLDH) was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs) as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB). The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly with the naked eye and was monitored using UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The reaction conditions were optimized to obtain the maximum color intensity. PvLDH and PfLDH were discernible with a detection limit of 1.25 pM and 2.94 pM, respectively. The applicability of the proposed biosensor was also examined in commercially available human serum. PMID:24992632

  7. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    SciTech Connect

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from complex biomass substrates.

  8. Decreased Hematocrit-To-Viscosity Ratio and Increased Lactate Dehydrogenase Level in Patients with Sickle Cell

    E-print Network

    Paris-Sud XI, Université de

    with Sickle Cell Anemia and Recurrent Leg Ulcers Philippe Connes1,2,3* , Yann Lamarre1,2 , Marie-à-Pitre, Guadeloupe Abstract Leg ulcer is a disabling complication in patients with sickle cell anemia (SCA Dehydrogenase Level in Patients with Sickle Cell Anemia and Recurrent Leg Ulcers. PLoS ONE 8(11): e79680. doi:10

  9. Highly stereoselective biosynthesis of (R)-?-hydroxy carboxylic acids through rationally re-designed mutation of d-lactate dehydrogenase

    PubMed Central

    Zheng, Zhaojuan; Sheng, Binbin; Gao, Chao; Zhang, Haiwei; Qin, Tong; Ma, Cuiqing; Xu, Ping

    2013-01-01

    An NAD-dependent d-lactate dehydrogenase (d-nLDH) of Lactobacillus bulgaricus ATCC 11842 was rationally re-designed for asymmetric reduction of a homologous series of ?-keto carboxylic acids such as phenylpyruvic acid (PPA), ?-ketobutyric acid, ?-ketovaleric acid, ?-hydroxypyruvate. Compared with wild-type d-nLDH, the Y52L mutant d-nLDH showed elevated activities toward unnatural substrates especially with large substitutes at C-3. By the biocatalysis combined with a formate dehydrogenase for in situ generation of NADH, the corresponding (R)-?-hydroxy carboxylic acids could be produced at high yields and highly optical purities. Taking the production of chiral (R)-phenyllactic acid (PLA) from PPA for example, 50?mM PPA was completely reduced to (R)-PLA in 90?min with a high yield of 99.0% and a highly optical purity (>99.9% e.e.) by the coupling system. The results presented in this work suggest a promising alternative for the production of chiral ?-hydroxy carboxylic acids. PMID:24292439

  10. Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases

    PubMed Central

    2013-01-01

    Background Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding l-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expressed in a new host organism, the non-conventional yeast Candida sonorensis, with or without the competing ethanol fermentation pathway. Results Each LDH strain produced substantial amounts of lactate, but the properties of the heterologous LDH affected the distribution of carbon between lactate and by-products significantly, which was reflected in extra-and intracellular metabolite concentrations. Under neutralizing conditions C. sonorensis expressing L. helveticus LDH accumulated lactate up to 92 g/l at a yield of 0.94 g/g glucose, free of ethanol, in minimal medium containing 5 g/l dry cell weight. In rich medium with a final pH of 3.8, 49 g/l lactate was produced. The fermentation pathway was modified in some of the strains studied by deleting either one or both of the pyruvate decarboxylase encoding genes, PDC1 and PDC2. The deletion of both PDC genes together abolished ethanol production and did not result in significantly reduced growth characteristic to Saccharomyces cerevisiae deleted of PDC1 and PDC5. Conclusions We developed an organism without previous record of genetic engineering to produce L-lactic acid to a high concentration, introducing a novel host for the production of an industrially important metabolite, and opening the way for exploiting C. sonorensis in additional biotechnological applications. Comparison of metabolite production, growth, and enzyme activities in a representative set of transformed strains expressing different LDH genes in the presence and absence of a functional ethanol pathway, at neutral and low pH, generated a comprehensive picture of lactic acid production in this yeast. The findings are applicable in generation other lactic acid producing yeast, thus providing a significant contribution to the field of biotechnical production of lactic acid. PMID:23706009

  11. Mitochondrial Lactate Dehydrogenase Is Involved in Oxidative-Energy Metabolism in Human Astrocytoma

    E-print Network

    Appanna, Vasu

    in muscles [8]. The involvement of a lactate shuttle in peroxisomes confers this organelle with the ability to metabolize fatty acids. The presence of this enzyme was recently confirmed in liver peroxisomes [9 postulated that this monocarboxylic acid may be supporting oxidative respiration in the neurons. This may

  12. The Cost of Capturing Prey: Measuring Largemouth Bass Foraging Activity using Glycolytic Enzymes (Lactate Dehydrogenase)

    E-print Network

    The Cost of Capturing Prey: Measuring Largemouth Bass Foraging Activity using Glycolytic Enzymes THE COST OF CAPTURING PREY: MEASURING LARGEMOUTH BASS FORAGING ACTIVITY USING GLYCOLYTIC ENZYMES (LACTATE #12;11 The Cost of Capturing Prey: Measuring Largemouth Bass Foraging Activity using Glycolytic

  13. Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson's model.

    PubMed

    Cunha, Mauricio Peña; Martín-de-Saavedra, Maria D; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K; Tasca, Carla I; Farina, Marcelo; Rodrigues, Ana Lúcia S; López, Manuela G

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson's model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3? (GSK3?) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine(473)) and GSK3? (Serine(9)). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  14. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    PubMed Central

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3? (GSK3?) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3? (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  15. Efficient Production of L-Lactic Acid by Metabolically Engineered Saccharomyces cerevisiae with a Genome-Integrated L-Lactate Dehydrogenase Gene

    Microsoft Academic Search

    Nobuhiro Ishida; Satoshi Saitoh; Kenro Tokuhiro; Eiji Nagamori; Takashi Matsuyama; Katsuhiko Kitamoto; Haruo Takahashi

    2005-01-01

    We developed a metabolically engineered yeast which produces lactic acid efficiently. In this recombinant strain, the coding region for pyruvate decarboxylase 1 (PDC1) on chromosome XII is substituted for that of the L-lactate dehydrogenase gene (LDH) through homologous recombination. The expression of mRNA for the genome-integrated LDH is regulated under the control of the native PDC1 promoter, while PDC1 is

  16. Cu–Zn SUPEROXIDE DISMUTASE INHIBITS LACTATE DEHYDROGENASE RELEASE AND PROTECTS AGAINST CELL DEATH IN MURINE FIBROBLASTS PRETREATED WITH ULTRAVIOLET RADIATION

    Microsoft Academic Search

    Hirokazu Kimura; Hisanori Minakami; Kunio Otsuki; Akira Shoji

    2000-01-01

    The effects of adding Cu–Zn superoxide dismutase (Cu–Zn SOD) to culture medium of the murine fibroblast cell line, L-929, pretreated with UV-B (312nm, 480mJ\\/cm2) have been investigated. Cell injury was monitored by the release of lactate dehydrogenase (LDH) into the medium, and cell death by the trypan blue exclusion test. UV-B radiation induced cell death by apoptosis, as demonstrated by

  17. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of D-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-08-01

    The thermostable D-lactate dehydrogenase from Lactobacillus jensenii (LjD-LDH) is a key enzyme for the production of the D-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of lactic acid are used as biodegradable bioplastics. The LjD-LDH protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 28%(w/v) polyethylene glycol 400, 100?mM Tris-HCl pH 9, 200?mM magnesium sulfate at 295?K. X-ray diffraction data were collected to a maximum resolution of 2.1?Å. The crystal belonged to space group P3121, with unit-cell parameters a = b = 90.5, c = 157.8?Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.58?Å(3)?Da(-1), which corresponds to a solvent content of approximately 52.3%. The structure was solved by single-wavelength anomalous dispersion using a selenomethionine derivative. PMID:25084378

  18. Localization of pyruvate kinase isozymes in bovine kidney and comparison of these patterns with those of lactate dehydrogenases and aldolases.

    PubMed

    Cardenas, J M; Richards, T C; Gabourel, L

    1978-08-01

    Electrophoretic and immunofluorescence analysis were used to study the distribution of pyruvate kinase isozymes in the bovine kidney. Electrophoretic analysis demonstrated the presence of large amounts of K4 plus small amounts of K-M hybrids in cortical, medullary, and papillary sections cut from the kidney. Nearly all of the K-L hybrids seen in whole kidney extracts were found in cortical sections. Immunofluorescence of frozen sections revealed the presence of type L subunits in the tubules but the complete absence of this subunit type in flomeruli. Glomeruli do contain large quantities of pyruvate kinase isozymes, probably K4 and K-M hybrids, that cross-react with antibodies produced against type M pyruvate kinase. Type L-containing forms of pyruvate kinase and aldolase type B both appear to be found in cell types thought to be capable of catalyzing of gluconeogenesis, while type K pyruvate kinase and type A aldolase are found in predominantly glycolytic cell types of the kidney. Lactate dehydrogenase isozymic patterns appear to be less closely correlated with glycolytic versus gluconeogenic functions of the kidney but may be determined more directly by other metabolic functions. PMID:670304

  19. Lactate dehydrogenase inhibitors sensitize lymphoma cells to cisplatin without enhancing the drug effects on immortalized normal lymphocytes.

    PubMed

    Manerba, Marcella; Di Ianni, Lorenza; Fiume, Luigi; Roberti, Marinella; Recanatini, Maurizio; Di Stefano, Giuseppina

    2015-07-10

    Up-regulation of glycolysis, a well recognized hallmark of cancer cells, was also found to be predictive of poor chemotherapy response. This observation suggested the attempt of sensitizing cancer cells to conventional chemotherapeutic agents by inhibiting glucose metabolism. Lactate dehydrogenase (LDH) inhibition can be a way to hinder glycolysis of cancer cells without affecting the metabolism of normal tissues, which usually does not require this enzymatic activity. In this paper, we showed that two LDH inhibitors (oxamate and galloflavin) can increase the efficacy of cisplatin in cultured Burkitt's lymphoma (BL) cells and that this potentiating effect is not exerted in proliferating normal lymphocytes. This result was explained by the finding that in BL cells LDH inhibition induced reactive oxygen species (ROS) generation, which was not evidenced in proliferating normal lymphocytes. In BL cells treated with the association of cisplatin and LDH inhibitors, these ROS can be a further cause of DNA damage, to be added to that produced by cisplatin, leading to the failure of the response repair. At present LDH inhibitors suitable for clinical use are actively searched; our results can allow a better understanding of the potentiality of LDH as a possible target to develop innovative anticancer treatments. PMID:25930121

  20. The Adaptive Cline at LDH (Lactate Dehydrogenase) in Killifish Fundulus heteroclitus Remains Stationary After 40 Years of Warming Estuaries.

    PubMed

    Bell, Tina M; Strand, Allan E; Sotka, Erik E

    2014-03-11

    Since the 1970s, water temperatures along the Atlantic seaboard of the United States have risen by an average of 0.5 °C in summer months and 2.2 °C in winter months. In response, the distribution and abundance of several nearshore species have changed dramatically, but no study has attempted to document whether estuarine populations have evolved greater thermal tolerance. Here, we re-examine the classic latitudinal cline at lactate dehydrogenase (LDH) in the killifish Fundulus heteroclitus that was originally described by Dennis Powers and associates from samples collected between 1970 and 1972. Laboratory and field evidences indicated that northern and southern isozymes at muscle LDH are locally adapted to cold and warm temperatures, respectively. Despite the potential for evolutionary response at this adaptive locus, we detected no significant shift of the LDH cline from 20 to 30 F. heteroclitus collected at each of 13 locations between the early 1970s and 2010. We conclude that the microevolution of LDH-mediated thermal tolerance has not occurred, that shifts in alleles are too incremental to be distinguished from random processes, or that F. heteroclitus uses phenotypic and genetic mechanisms besides LDH to respond to warmer waters. PMID:24620002

  1. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme.

    PubMed

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24?h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  2. Loss of /sup 51/chromium, lactate dehydrogenase, and /sup 111/indium as indicators of endothelial cell injury

    SciTech Connect

    Chopra, J.; Joist, J.H.; Webster, R.O.

    1987-11-01

    Injury to endothelial cells appears to be an important initial event in the pathogenesis of many diseases such as acute lung injury, venous and arterial thromboembolism, and atherosclerosis. Different methods for detecting damage to cultured endothelial cells have been described. However, their relative sensitivity as markers of endothelial cell damage has not been adequately determined. We compared the loss of /sup 51/Chromium (/sup 51/Cr), the cytoplasmic enzyme lactate dehydrogenase (LDH), and /sup 111/Indium (/sup 111/In) from endothelial cells upon exposure to several injurious agents. Cultured bovine pulmonary artery endothelial cells in confluent monolayers were labeled with /sup 51/Cr or /sup 111/Inoxine and exposed to increasing concentrations of the nonionic detergent, Triton X-100 (0.2 to 1%), hydrogen peroxide (1 to 500 microM), or neutrophils stimulated with phorbol myristate acetate. With all forms of injury, loss of /sup 51/Cr occurred earlier and to a greater extent than LDH loss which in turn was greater than loss of /sup 111/In. Substantial loss of /sup 51/Cr was observed in the absence of appreciable ultrastructural damage to endothelial cell external membranes. The findings may reflect the relative ease with which small molecules such as adenine nucleotides (/sup 51/Cr-labeled) escape whereas larger molecules such as LDH and proteins binding /sup 111/In are retained intracellularly. Thus, /sup 51/Cr loss appears to be a more sensitive indicator of sublytic endothelial cell injury than either /sup 111/In or LDH release.

  3. Differences in Rat Tissue Lactate Dehydrogenase Activity Caused by Giberellic Acid and Homobrassinolide (Giberellik Asit ve Homobrassinolit Uygulamasi ile Siçan Doku Laktat Dehidrogenaz Aktivitesinde Gözlenen De?i?iklikler) Research Article (Ara?tirma Makalesi)

    Microsoft Academic Search

    Jeyaraman Vikramathithan; Gopalarau Gautami; Irissappan Ganesh; Kotteazeth Srikumar

    Objective: Lactate dehydrogenase enzyme, a tissue marker for cardiac disorders, reversibly forms pyruvate from lactate in all animal tissues. Low-dose effect of dietary plant hormones homobrassinolide and gibberellic acid on this enzyme ac- tivity was therefore investigated in normal rat tissues. Methods: Hormones were administered intradermally to male albino wistar rat groups (100-120 g) at 10, 50 and 250 µg,

  4. Purification and Properties of White Muscle Lactate Dehydrogenase from the Anoxia-Tolerant Turtle, the Red-Eared Slider, Trachemys scripta elegans.

    PubMed

    Dawson, Neal J; Bell, Ryan A V; Storey, Kenneth B

    2013-01-01

    Lactate dehydrogenase (LDH; E.C. 1.1.1.27) is a crucial enzyme involved in energy metabolism in muscle, facilitating the production of ATP via glycolysis during oxygen deprivation by recycling NAD(+). The present study investigated purified LDH from the muscle of 20?h anoxic and normoxic T. s. elegans, and LDH from anoxic muscle showed a significantly lower (47%) K m for L-lactate and a higher V max value than the normoxic form. Several lines of evidence indicated that LDH was converted to a low phosphate form under anoxia: (a) stimulation of endogenously present protein phosphatases decreased the K m of L-lactate of control LDH to anoxic levels, whereas (b) stimulation of kinases increased the K m of L-lactate of anoxic LDH to normoxic levels, and (c) dot blot analysis shows significantly less serine (78%) and threonine (58%) phosphorylation in anoxic muscle LDH as compared to normoxic LDH. The physiological consequence of anoxia-induced LDH dephosphorylation appears to be an increase in LDH activity to promote the reduction of pyruvate in muscle tissue, converting the glycolytic end product to lactate to maintain a prolonged glycolytic flux under energy-stressed anoxic conditions. PMID:23533717

  5. The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the l-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum?

    PubMed Central

    Engels, Verena; Lindner, Steffen N.; Wendisch, Volker F.

    2008-01-01

    The transcriptional regulator SugR from Corynebacterium glutamicum represses genes of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Growth experiments revealed that the overexpression of sugR not only perturbed the growth of C. glutamicum on the PTS sugars glucose, fructose, and sucrose but also led to a significant growth inhibition on ribose, which is not taken up via the PTS. Chromatin immunoprecipitation combined with DNA microarray analysis and gel retardation experiments were performed to identify further target genes of SugR. Gel retardation analysis confirmed that SugR bound to the promoter regions of genes of the glycolytic enzymes 6-phosphofructokinase (pfkA), fructose-1,6-bisphosphate aldolase (fba), enolase (eno), pyruvate kinase (pyk), and NAD-dependent l-lactate dehydrogenase (ldhA). The deletion of sugR resulted in increased mRNA levels of eno, pyk, and ldhA in acetate medium. Enzyme activity measurements revealed that SugR-mediated repression affects the activities of PfkA, Fba, and LdhA in vivo. As the deletion of sugR led to increased LdhA activity under aerobic and under oxygen deprivation conditions, l-lactate production by C. glutamicum was determined. The overexpression of sugR reduced l-lactate production by about 25%, and sugR deletion increased l-lactate formation under oxygen deprivation conditions by threefold. Thus, SugR functions as a global repressor of genes of the PTS, glycolysis, and fermentative l-lactate dehydrogenase in C. glutamicum. PMID:18849435

  6. Renal Cortical Lactate Dehydrogenase: A Useful, Accurate, Quantitative Marker of In Vivo Tubular Injury and Acute Renal Failure

    PubMed Central

    Zager, Richard A.; Johnson, Ali C. M.; Becker, Kirsten

    2013-01-01

    Studies of experimental acute kidney injury (AKI) are critically dependent on having precise methods for assessing the extent of tubular cell death. However, the most widely used techniques either provide indirect assessments (e.g., BUN, creatinine), suffer from the need for semi-quantitative grading (renal histology), or reflect the status of residual viable, not the number of lost, renal tubular cells (e.g., NGAL content). Lactate dehydrogenase (LDH) release is a highly reliable test for assessing degrees of in vitro cell death. However, its utility as an in vivo AKI marker has not been defined. Towards this end, CD-1 mice were subjected to graded renal ischemia (0, 15, 22, 30, 40, or 60 min) or to nephrotoxic (glycerol; maleate) AKI. Sham operated mice, or mice with AKI in the absence of acute tubular necrosis (ureteral obstruction; endotoxemia), served as negative controls. Renal cortical LDH or NGAL levels were assayed 2 or 24 hrs later. Ischemic, glycerol, and maleate-induced AKI were each associated with striking, steep, inverse correlations (r, ?0.89) between renal injury severity and renal LDH content. With severe AKI, >65% LDH declines were observed. Corresponding prompt plasma and urinary LDH increases were observed. These observations, coupled with the maintenance of normal cortical LDH mRNA levels, indicated the renal LDH efflux, not decreased LDH synthesis, caused the falling cortical LDH levels. Renal LDH content was well maintained with sham surgery, ureteral obstruction or endotoxemic AKI. In contrast to LDH, renal cortical NGAL levels did not correlate with AKI severity. In sum, the above results indicate that renal cortical LDH assay is a highly accurate quantitative technique for gauging the extent of experimental acute ischemic and toxic renal injury. That it avoids the limitations of more traditional AKI markers implies great potential utility in experimental studies that require precise quantitation of tubule cell death. PMID:23825563

  7. High levels of serum lactate dehydrogenase correlate with the severity and mortality of idiopathic pulmonary arterial hypertension

    PubMed Central

    HU, EN-CI; HE, JIAN-GUO; LIU, ZHI-HONG; NI, XIN-HAI; ZHENG, YA-GUO; GU, QING; ZHAO, ZHI-HUI; XIONG, CHANG-MING

    2015-01-01

    Liver dysfunction reflects the status of heart failure, and previous studies have demonstrated that serum lactate dehydrogenase (S-LDH) levels are increased in patients exhibiting heart failure and liver dysfunction. Right heart failure is a main characteristic of idiopathic pulmonary arterial hypertension (IPAH). The aim of the present study was to assess the prognostic significance of S-LDH levels in patients with IPAH. S-LDH levels were determined in 173 patients with IPAH, and these patients were subclassified into two groups according to a defined upper reference limit of S-LDH (250 IU/l). Right heart catheterization was performed in all patients. A total of 53 patients were found to have elevated S-LDH to ?250 IU/l. In a mean follow-up period of 31.2±17.9 months, 57 patients succumbed. In the group with lower S-LDH levels (S-LDH <250 IU/l), 16.7% of the patients succumbed, compared with 69.8% of patients in the group with higher S-LDH levels (S-LDH ?250 IU/l). The Kaplan-Meier survival curves demonstrated that patients with higher S-LDH levels had a significantly lower survival rate than did those with lower S-LDH levels (log-rank test, P<0.001). Cox proportional hazard analyses identified reduced body mass index, reduced cardiac index, elevated World Health Organization functional class, higher S-LDH and an absence of PAH-targeted therapy as significant predictors of adverse outcomes. In conclusion, elevated S-LDH is a risk factor for mortality in patients with IPAH.

  8. Elevation of serum lactate dehydrogenase at posterior reversible encephalopathy syndrome onset in chemotherapy-treated cancer patients.

    PubMed

    Fitzgerald, Ryan T; Wright, Steven M; Samant, Rohan S; Kumar, Manoj; Ramakrishnaiah, Raghu H; Van Hemert, Rudy; Brown, Aliza T; Angtuaco, Edgardo J

    2014-09-01

    The pathophysiology of posterior reversible encephalopathy syndrome (PRES) is incompletely understood; however, an underlying state of immune dysregulation and endothelial dysfunction has been proposed. We examined alterations of serum lactate dehydrogenase (LDH), a marker of endothelial dysfunction, relative to the development of PRES in patients receiving chemotherapy. A retrospective Institutional Review Board approved database of 88 PRES patients was examined. PRES diagnosis was confirmed by congruent clinical diagnosis and MRI. Clinical features at presentation were recorded. Serum LDH values were collected at three time points: prior to, at the time of, and following PRES diagnosis. Student's t-test was employed. LDH values were available during the course of treatment in 12 patients (nine women; mean age 57.8 years [range 33-75 years]). Chemotherapy-associated PRES patients were more likely to be normotensive (25%) versus the non-chemotherapy group (9%). LDH levels at the time of PRES diagnosis were higher than those before and after (p=0.0263), with a mean difference of 114.8 international units/L. Mean time intervals between LDH measurement prior to and following PRES diagnosis were 44.8 days and 51.4 days, respectively. Mean elapsed time between last chemotherapy administration and PRES onset was 11.1days. In conclusion, serum LDH, a marker of endothelial dysfunction, shows statistically significant elevation at the onset of PRES toxicity in cancer patients receiving chemotherapy. Our findings support a systemic process characterized by endothelial injury/dysfunction as a factor, if not the prime event, in the pathophysiology of PRES. PMID:24780237

  9. Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor initiating cells

    PubMed Central

    Xie, Han; Hanai, Jun-ichi; Ren, Jian-Guo; Kats, Lev; Burgess, Kerri; Bhargava, Parul; Signoretti, Sabina; Billiard, Julia; Duffy, Kevin J.; Grant, Aaron; Wang, Xiaoen; Lorkiewicz, Pawel K.; Schatzman, Sabrina; Bousamra, Michael; Lane, Andrew N.; Higashi, Richard M.; Fan, Teresa W.M.; Pandolfi, Pier Paolo; Sukhatme, Vikas P.; Seth, Pankaj

    2014-01-01

    Summary The lactate dehydrogenase-A (LDH-A) enzyme catalyzes the inter-conversion of pyruvate and lactate, is upregulated in human cancers and is associated with aggressive tumor outcomes. Here we use a novel inducible murine model and demonstrate that inactivation of LDH-A in mouse models of NSCLC driven by oncogenic K-RAS or EGFR leads to decreased tumorigenesis and disease regression in established tumors. We also show that abrogation of LDH-A results in reprogramming of pyruvate metabolism, with decreased lactic fermentation in vitro, in vivo, and ex vivo. This was accompanied by re-activation of mitochondrial function in vitro but not in vivo or ex vivo. Finally, using a specific small molecule LDH-A inhibitor, we demonstrated that LDH-A is essential for cancer initiating cell survival and proliferation. Thus, LDH-A can be a viable therapeutic target for NSCLC including cancer stem cell-dependent drug resistant tumors. PMID:24726384

  10. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides.

    PubMed

    Bagchi, D; Bagchi, M; Hassoun, E A; Stohs, S J

    1995-12-15

    Reactive oxygen species may be involved in the toxicity of various pesticides and we have, therefore, examined the in vivo effects of structurally dissimilar polyhalogenated cyclic hydrocarbons (PCH), such as endrin and chlordane, chlorinated acetamide herbicides (CAH), such as alachlor, and organophosphate pesticides (OPS), such as chlorpyrifos and fenthion, on the production of hepatic and brain lipid peroxidation and DNA-single strand breaks (SSB), two indices of oxidative stress and oxidative tissue damage. The selected pesticides were administered p.o. to female Sprague-Dawley rats in two 0.25 LD50 doses at 0 h and 21 h and killed at 24 h. In a parallel set of experiments, we have determined the in vitro effects of these pesticides on the DNA-SSB and enhanced lactate dehydrogenase leakage (LDH) from neuroactive PC-12 cells in culture. In vitro production of reactive oxygen species by these pesticides was also assessed by determining the enhanced chemiluminescence responses of hepatic and brain homogenates. Following treatment of rats with endrin, chlordane, alachlor, chlorpyrifos and fenthion, increases of 2.8-, 3.0-, 4.2-, 4.3- and 4.8-fold were observed in hepatic lipid peroxidation, respectively, while at these same doses, increases in lipid peroxidation of 2.4-, 2.1-, 3.6-, 4.6- and 5.3-fold, respectively, were observed in brain homogenates. Increases of 4.4-, 3.9-, 1.6-, 3.0- and 3.5-fold were observed in hepatic DNA-SSB following treatment of the rats with endrin, chlordane, alachlor, chlorpyrifos and fenthion, respectively, while at these same doses, increases of 1.9-, 1.7-, 2.2-, 1.4-, 1.4-fold, respectively, were observed in brain nuclear DNA-SSB. Following in vitro incubation of hepatic and brain tissues with 1 nmol/ml of each of the five pesticides, maximum increases in chemiluminescence occurred within 4-7 min of incubation and persisted for over 10 min. Increases of 3.0-, 2.7-, 3.6-, 4.9- and 4.4-fold were observed in chemiluminescence following in vitro incubation of the liver homogenates with endrin, chlordane, alachlor, chlorpyrifos and fenthion, respectively, while increases of 1.7-, 1.8-, 2.0-, 3.4- and 3.7-fold, respectively, were observed in the brain homogenates. Increases of 2.2-, 2.3-, 2.9-, 2.9- and 3.4-fold were observed in the chemiluminescence responses in the liver homogenates of the animals treated with endrin, chlordane, alachlor, chlorpyrifos and fenthion, respectively, while increases of 1.8-, 2.0-, 3.2-, 2.9- and 2.4-fold, respectively, were observed in the brain homogenates. Cultured neuroactive PC-12 cells were incubated with the pesticides and the release of the enzyme lactate dehydrogenase (LDH) into the media as an indicator of cellular damage and cytotoxicity was examined. Maximal release of LDH from cultured PC-12 cells was observed at 100 nM concentrations of the pesticides. Increases of 2.3-, 2.5-, 2.8-, 3.1 and 3.4-fold were observed in LDH leakage following incubation of the PC-12 cells with endrin, chlordane, alachlor, chlorpyrifos and fenthion, respectively. Following incubation of the cultured PC-12 cells with 100 nM concentrations of these same pesticides, increases in DNA-SSB of 2.5-, 2.2-, 2.1-, 2.4- and 2.5-fold, respectively, were observed. The results clearly demonstrate that these different classes of pesticides induce production of reactive oxygen species and oxidative tissue damage which may contribute to the toxic manifestations of these xenobiotics. Reactive oxygen species may serve as common mediators of programmed cell death (apoptosis) in response to many toxicants and pathological conditions. PMID:8560491

  11. The effects of pH and temperature on the kinetic properties of skeletal muscle lactate dehydrogenase from anuran amphibians

    Microsoft Academic Search

    P. Mendiola; J. De Costa

    1990-01-01

    Muscle LDH activities were measured in two anuran amphibians with different behaviour and ecology, Rana perezi and Bufo calamita. Both pyruvate reduction and lactate oxidation were measured at temperatures of 15, 20 and 30°C, and at pH 7.0, 7.4, and 8.0. Pyruvate and lactate muscle concentrations were determined in individuals at rest and after exercise. R. perezi muscle used anaerobic

  12. Mitochondrial Lactate Dehydrogenase Is Involved in Oxidative-Energy Metabolism in Human Astrocytoma Cells (CCF-STTG1)

    Microsoft Academic Search

    Joseph Lemire; Ryan J. Mailloux; Vasu D. Appanna; George Brooks

    2008-01-01

    Lactate has long been regarded as an end product of anaerobic energy production and its fate in cerebral metabolism has not been precisely delineated. In this report, we demonstrate, for the first time, the ability of a human astrocytic cell line (CCF-STTG1) to consume lactate and to generate ATP via oxidative phosphorylation. 13C-NMR and HPLC analyses aided in the identification

  13. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle.

    PubMed

    Chaga, G; Hopp, J; Nelson, P

    1999-02-01

    A rapid method for the purification of lactate dehydrogenase from whole chicken muscle extract in one chromatographic step is reported. The purification procedure can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent is used that can be utilized at linear flow rates higher than 5 cm/min. The final preparation of the enzyme was with purity higher than 95% as ascertained by SDS-PAGE. Three immobilized metal ions (Ni2+, Zn2+ and Co2+) were compared for their binding properties towards the purified enzyme. The binding site of the enzyme for immobilized intermediate metal ions was determined after cleavage with CNBr and binding studies of the derivative peptides on immobilized Co2+. A peptide located on the N-terminus of the enzyme, implicated in the binding, has great potential as a purification tag in fusion proteins. PMID:9889081

  14. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans

    PubMed Central

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian

    2014-01-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production—NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)—were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  15. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of L-lactate dehydrogenase and its H171C mutant from Bacillus subtilis

    SciTech Connect

    Zhang, Yanfeng; Gao, Xiaoli (MSU)

    2012-08-31

    L-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to L-lactate with the simultaneous oxidation of NADH to NAD{sup +}. In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD{sup +} and the crystal diffracted to 2.38 {angstrom} resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 {angstrom}. BsLDH-H171C was also crystallized as the apoenzyme and in complex with NAD{sup +}, and data sets were collected to 2.20 and 2.49 {angstrom} resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 {angstrom} and a = b = 133.43, c = 99.09 {angstrom}, respectively. Tetramers were observed in the asymmetric units of all three crystals.

  16. Stable Suppression of Lactate Dehydrogenase Activity during Anoxia in the Foot Muscle of Littorina littorea and the Potential Role of Acetylation as a Novel Posttranslational Regulatory Mechanism

    PubMed Central

    Shahriari, Ali; Dawson, Neal J.; Bell, Ryan A. V.; Storey, Kenneth B.

    2013-01-01

    The intertidal marine snail, Littorina littorea, has evolved to withstand extended bouts of oxygen deprivation brought about by changing tides or other potentially harmful environmental conditions. Survival is dependent on a strong suppression of its metabolic rate and a drastic reorganization of its cellular biochemistry in order to maintain energy balance under fixed fuel reserves. Lactate dehydrogenase (LDH) is a crucial enzyme of anaerobic metabolism as it is typically responsible for the regeneration of NAD+, which allows for the continued functioning of glycolysis in the absence of oxygen. This study compared the kinetic and structural characteristics of the D-lactate specific LDH (E.C. 1.1.1.28) from foot muscle of aerobic control versus 24?h anoxia-exposed L. littorea. Anoxic LDH displayed a near 50% decrease in Vmax (pyruvate-reducing direction) as compared to control LDH. These kinetic differences suggest that there may be a stable modification and regulation of LDH during anoxia, and indeed, subsequent dot-blot analyses identified anoxic LDH as being significantly less acetylated than the corresponding control enzyme. Therefore, acetylation may be the regulatory mechanism that is responsible for the suppression of LDH activity during anoxia, which could allow for the production of alternative glycolytic end products that in turn would increase the ATP yield under fixed fuel reserves. PMID:24233354

  17. Interdependence of coenzyme-induced conformational work and binding potential in yeast alcohol and porcine heart lactate dehydrogenases: a hydrogen-deuterium exchange study

    SciTech Connect

    De Weck, Z.; Pande, J.; Kaegi, J.H.R.

    1987-07-28

    Binding of NAD coenzymes to yeast alcohol dehydrogenase (YADH) and porcine heart lactate dehydrogenase (PHLDH) was studied by hydrogen-deuterium exchange with the infrared technique. Conformational changes in the enzymes specific to the coenzymes and their fragments were observed, and the pH dependence of the exchange reaction shows that it conforms to the EX-2 scheme. In both YADH and PHLDH the magnitude of the conformational change as measured by exchange retardation is considerably larger for the NAD/sup +/ than for NADH. Studies with coenzyme fragments like ADP-ribose, ADP, and AMP also highlight the lack of rigorous correlation between structural features such as charge and size and their influence on exchange behavior. Ternary complexes such as YADH-NAD/sup +/-pyrazole, PHLDH-NAD/sup +/-oxalate, and PHLDH-NADH-oxamate, which mimic the transition state, have a significantly more pronounced effect on exchange rates than the corresponding binary complexes. The outstanding feature of this study is the demonstration that in the binary enzyme-coenzyme complexes the more loosely bound NAD/sup +/ is more effective in retarding exchange than the more firmly bound NADH. These differences are attributed to the unequal structural constraints exerted by the two coenzymes upon the enzymes, which translate to unequal expenditure of transconformational work in the formation of the two complexes. The opposing variation in the free energy of binding and the transconformational work expended can be viewed as an unequal partitioning of the net free energy gain resulting from the protein-ligand interaction into a binding term and that required for conformational change.

  18. Complete inhibition of creatine kinase in isolated perfused rat hearts

    SciTech Connect

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts are able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.

  19. Decreased Hematocrit-To-Viscosity Ratio and Increased Lactate Dehydrogenase Level in Patients with Sickle Cell Anemia and Recurrent Leg Ulcers

    PubMed Central

    Connes, Philippe; Lamarre, Yann; Hardy-Dessources, Marie-Dominique; Lemonne, Nathalie; Waltz, Xavier; Mougenel, Danièle; Mukisi-Mukaza, Martin; Lalanne-Mistrih, Marie-Laure; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Romana, Marc

    2013-01-01

    Leg ulcer is a disabling complication in patients with sickle cell anemia (SCA) but the exact pathophysiological mechanisms are unknown. The aim of this study was to identify the hematological and hemorheological alterations associated with recurrent leg ulcers. Sixty-two SCA patients who never experienced leg ulcers (ULC-) and 13 SCA patients with a positive history of recurrent leg ulcers (ULC+) - but with no leg ulcers at the time of the study – were recruited. All patients were in steady state condition. Blood was sampled to perform hematological, biochemical (hemolytic markers) and hemorheological analyses (blood viscosity, red blood cell deformability and aggregation properties). The hematocrit-to-viscosity ratio (HVR), which reflects the red blood cell oxygen transport efficiency, was calculated for each subject. Patients from the ULC+ group were older than patients from the ULC- group. Anemia (red blood cell count, hematocrit and hemoglobin levels) was more pronounced in the ULC+ group. Lactate dehydrogenase level was higher in the ULC+ group than in the ULC- group. Neither blood viscosity, nor RBC aggregation properties differed between the two groups. HVR was lower and RBC deformability tended to be reduced in the ULC+ group. Our study confirmed increased hemolytic rate and anemia in SCA patients with leg ulcers recurrence. Furthermore, our data suggest that although systemic blood viscosity is not a major factor involved in the pathophysiology of this complication, decreased red blood cell oxygen transport efficiency (i.e., low hematocrit/viscosity ratio) may play a role. PMID:24223994

  20. The role of the spleen in a lactate dehydrogenase mutant mouse (Ldh-1c/Ldh-1c) with hemolytic anemia.

    PubMed

    Datta, T; Kremer, J P; Hültner, L; Dörmer, P

    1988-05-01

    The lactate dehydrogenase mouse mutant Ldh-1c/Ldh-1c is afflicted with a severe hemolytic anemia associated with extreme reticulocytosis (95%) and splenomegaly. Ninety-one percent of the total body colony-forming units--erythroid (CFU-E) have been quantified in the seven- to ten-times enlarged spleens of the mutant mice. Moreover, the splenic fraction of morphologically recognizable erythroid precursors was 134 times normal. From these data it was apparent that the spleen crucially contributes to the maintenance of steady state erythropoiesis in the mutants. On the other hand, an enhanced sequestration of red blood cells in the enlarged spleen may augment the anemia. Splenectomy experiments were performed with LDH mutant and wild type mice in order to investigate the role of the spleen in this particular hemolytic disease. Following splenectomy, the peripheral blood values and the frequency of femoral stem and progenitor cells were determined, and histological investigations were carried out. The life span of the splenectomized mutants was not shortened, in spite of a very low red blood cell count (25% of the untreated mutant value). Compared to the splenic loss only a moderate increase in bone marrow erythropoiesis was observed, such as a 250% increase of CFU-E. It is concluded that the reduction in red blood cell survival due to splenic sequestration in the mutants is of such a magnitude that it counterbalances a significant portion of splenic erythropoiesis. PMID:3360065

  1. Expression of the glycolytic enzymes enolase and lactate dehydrogenase during the early phase of Toxoplasma differentiation is regulated by an intron retention mechanism.

    PubMed

    Lunghi, Matteo; Galizi, Roberto; Magini, Alessandro; Carruthers, Vern B; Di Cristina, Manlio

    2015-06-01

    The intracellular parasite Toxoplasma gondii converts from a rapidly replicating tachyzoite form during acute infection to a quiescent encysted bradyzoite stage that persists inside long-lived cells during chronic infection. Bradyzoites adopt reduced metabolism and slow replication while waiting for an opportunity to recrudesce the infection within the host. Interconversion between these two developmental stages is characterized by expression of glycolytic isoenzymes that play key roles in parasite metabolism. The parasite genome encodes two isoforms of lactate dehydrogenase (LDH1 and LDH2) and enolase (ENO1 and ENO2) that are expressed in a stage-specific manner. Expression of different isoforms of these enzymes allows T. gondii to rapidly adapt to diverse metabolic requirements necessary for either a rapid replication of the tachyzoite stage or a quiescent lifestyle typical of the bradyzoites. Herein we identified unspliced forms of LDH and ENO transcripts produced during transition between these two parasite stages suggestive of an intron retention mechanism to promptly exchange glycolytic isoforms for rapid adaptation to environmental changes. We also identified key regulatory elements in the ENO transcription units, revealing cooperation between the ENO2 5'-untranslated region and the ENO2 intron, along with identifying a role for the ENO1 3'-untranslated region in stage-specific expression. PMID:25777509

  2. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.

    PubMed

    Zhang, Xiqing; Zhang, Shuli; Shi, Yan; Shen, Fadi; Wang, Haikuan

    2014-07-01

    Phenyl lactic acid (PLA) has been widely reported as a new natural antimicrobial compound. In this study, 120 Lactobacillus plantarum strains were demonstrated to produce PLA using high-performance liquid chromatography. Lactobacillus plantarum IMAU10124 was screened with a PLA yield of 0.229 g L(-1) . Compared with all previous reports, this is the highest PLA-producing lactic acid bacteria (LAB) when grown in MRS broth without any optimizing conditions. When 3.0 g L(-1) phenyl pyruvic acid (PPA) was added to the medium as substrate, PLA production reached 2.90 g L(-1) , with the highest 96.05% conversion rate. A lowest PLA-yielding L. plantarum IMAU40105 (0.043 g L(-1) ) was also screened. It was shown that the conversion from PPA to PLA by lactic dehydrogenase (LDH) is the key factor in the improvement of PLA production by LAB. Comparing the LDH gene of two strains, four amino acid mutation sites were found in this study in the LDH of L. plantarum IMAU10124. PMID:24861375

  3. Karnofsky Performance Status and Lactate Dehydrogenase Predict the Benefit of Palliative Whole-Brain Irradiation in Patients With Advanced Intra- and Extracranial Metastases From Malignant Melanoma

    SciTech Connect

    Partl, Richard, E-mail: richard.partl@medunigraz.at [Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz (Austria)] [Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz (Austria); Richtig, Erika [Department of Dermatology, Medical University of Graz, Graz (Austria)] [Department of Dermatology, Medical University of Graz, Graz (Austria); Avian, Alexander; Berghold, Andrea [Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz (Austria)] [Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz (Austria); Kapp, Karin S. [Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz (Austria)] [Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz (Austria)

    2013-03-01

    Purpose: To determine prognostic factors that allow the selection of melanoma patients with advanced intra- and extracerebral metastatic disease for palliative whole-brain radiation therapy (WBRT) or best supportive care. Methods and Materials: This was a retrospective study of 87 patients who underwent palliative WBRT between 1988 and 2009 for progressive or multiple cerebral metastases at presentation. Uni- and multivariate analysis took into account the following patient- and tumor-associated factors: gender and age, Karnofsky performance status (KPS), neurologic symptoms, serum lactate dehydrogenase (LDH) level, number of intracranial metastases, previous resection or stereotactic radiosurgery of brain metastases, number of extracranial metastasis sites, and local recurrences as well as regional lymph node metastases at the time of WBRT. Results: In univariate analysis, KPS, LDH, number of intracranial metastases, and neurologic symptoms had a significant influence on overall survival. In multivariate survival analysis, KPS and LDH remained as significant prognostic factors, with hazard ratios of 3.3 (95% confidence interval [CI] 1.6-6.5) and 2.8 (95% CI 1.6-4.9), respectively. Patients with KPS ?70 and LDH ?240 U/L had a median survival of 191 days; patients with KPS ?70 and LDH >240 U/L, 96 days; patients with KPS <70 and LDH ?240 U/L, 47 days; and patients with KPS <70 and LDH >240 U/L, only 34 days. Conclusions: Karnofsky performance status and serum LDH values indicate whether patients with advanced intra- and extracranial tumor manifestations are candidates for palliative WBRT or best supportive care.

  4. Detection of histidine rich protein & lactate dehydrogenase of Plasmodium falciparum in malaria patients by sandwich ELISA using in-house reagents

    PubMed Central

    Verma, Priyanka; Biswas, Sukla; Mohan, Teena; Ali, Shakir; Rao, D.N.

    2013-01-01

    Background & objectives: Despite major control efforts, malaria remains a major public health problem that still causes high mortality rate worldwide especially in Africa and Asia. Accurate and confirmatory diagnosis before treatment initiation is the only way to control the disease. The present study was undertaken to develop reagents using sandwich ELISA for simultaneous detection of PfHRP2 (Plasmodium falciparum histidine rich protein) and PfLDH (P. falciparum lactate dehydrogenase) antigens in the proven malaria cases. Methods: The antibodies were raised against two epitopes of PfHRP2 protein and three unique and unexplored epitopes of PfLDH protein. These antibodies were able to detect PfHRP2 and PfLDH antigens in culture supernatant and parasitized RBC lysate of P. falciparum, respectively up to 50 parasites/?l. The in-house reagents were tested in 200 P. falciparum positive patients residing in Baghpat district of Uttar Pradesh in northern India. Results: Microsphere (PLGA) with CpG ODN were used to generate high titre and high affinity antibodies against selected peptides of PfHRP-2 and pLDH antigen in mice and rabbit. The peptide specific peak titre varied from 12,800 - 102,400 with an affinity ranging 0.73 - 3.0 mM. The indigenously developed reagents are able to detect PfHRP2 and PfLDH antigens as low as 75 parasites/?l of blood with a very high sensitivity (96-100%) and specificity (100%). Interpretation & conclusions: The study highlight the identification of unique epitopes of PfHRP2 and PfLDH, and the generated antibodies against these antigens were used for quantitative estimation of these two antigens using sandwich ELISA. No corresreactivity with P. vivax infected patients was observed with the sera. PMID:24521645

  5. Molecular genetic characterization of the L-lactate dehydrogenase gene (ldhL) of Lactobacillus helveticus and biochemical characterization of the enzyme.

    PubMed Central

    Savijoki, K; Palva, A

    1997-01-01

    The Lactobacillus helveticus L-(+)-lactate dehydrogenase (L-LDH) gene (ldhL) was isolated from a lambda library. The nucleotide sequence of the ldhL gene was determined and shown to have the capacity to encode a protein of 323 amino acids (35.3 kDa). The deduced sequence of the 35-kDa protein revealed a relatively high degree of identity with other lactobacillar L-LDHs. The highest identity (80.2%) was observed with the Lactobacillus casei L-LDH. The sizes and 5' end analyses of ldhL transcripts showed that the ldhL gene is a monocistronic transcriptional unit. The expression of ldhL, studied as a function of growth, revealed a high expression level at the logarithmic phase of growth. The ldhL gene is preceded by two putative -10 regions, but no corresponding -35 regions could be identified. By primer extension analysis, the ldhL transcripts were confirmed to be derived from the -10 region closest to the initiation codon. However, upstream of these regions additional putative -10/-35 regions could be found. The L-LDH was overexpressed in Escherichia coli and purified to homogeneity by two chromatographic steps. The purified L-LDH was shown to be a nonaliosteric enzyme, and amino acid residues involved in allosteric regulation were not conserved in L. helveticus L-LDH. However, a slight enhancement of enzyme activity was observed in the presence of fructose 1,6-diphosphate, particularly at neutral pH. A detailed enzymatic characterization of L-LDH was performed. The optimal reaction velocity was at pH 5.0, where the kinetic parameters K(m), and Kcat for pyruvate were 0.25 mM and 643 S-1, respectively. PMID:9212432

  6. Effects of L-carnitine and Pentoxifylline on the Activity of Lactate Dehydrogenase C4 isozyme and Motility of Testicular Spermatozoa in Mice

    PubMed Central

    Aliabadi, Elham; Karimi, Fatemeh; Rasti, Mozhgan; Akmali, Masoumeh; Esmaeilpour, Tahereh

    2013-01-01

    Background Extracted sperm from the testis have poor motility. Moreover, their motility changes during their journey through epidydimis. Meanwhile, they face high concentration of L-carnitin. In addition, lactate dehydrogenase C4 (LDH-C4) gene disorders has been shown to cause impaired sperm motility, leading to infertility in male mice. The aim of this study was to evaluate sperm motility and LDH-C4 enzyme activity upon L-carnitine (LC) and Pentoxifylline (PTX) administrations in mice. Methods We extracted testicular sperm of 48 mice and divided them into three equal parts. One part was incubated with Ham's F10 medium (control), the other parts were treated with Ham's F10 containing LC and PTX with a final concentration of 1.76 mM, for 30 min at room temperature. Sperm motility was assessed according to the World Health Organization (WHO) criteria. Sperm LDH-C4 enzyme activity was measured by spectrophotometery method. Statistical analyses were performed using ANOVA and Fisher's LSD test, and a p-value less than 0.05 was considered as a statistically significant difference. Results Sperm motility increased after 30 min of incubation in LC- and PTX-treated group (p<0.001). LC and PTX administrations showed a significant increase in the LDHC4 enzyme activity of sperm compared to that of the controls after 30 min (P=0.04 and 0.01, respectively). Conclusion The effects of LC and PTX on motility of sperm can be explained by an increase in LDH-C4 enzyme activity that may influence male fertility status. We suggest that LC as a non-toxic antioxidant is more suitable for use in assisted reproductive technique protocols than PTX. PMID:23926565

  7. A lactate dehydrogenase ELISA-based assay for the in vitro determination of Plasmodium berghei sensitivity to anti-malarial drugs

    PubMed Central

    2012-01-01

    Background Plasmodium berghei rodent malaria is a well-known model for the investigation of anti-malarial drug efficacy in vivo. However, the availability of drug in vitro assays in P. berghei is reduced when compared with the spectrum of techniques existing for Plasmodium falciparum. New alternatives to the current manual or automated methods described for P. berghei are attractive. The present study reports a new ELISA drug in vitro assay for P. berghei using two monoclonal antibodies against the parasite lactate dehydrogenase (pLDH). Methods This procedure includes a short-in vitro culture, the purification of schizonts and the further generation of synchronized mice infections. Early stages of the parasite are then incubated against different concentrations of anti-malarial drugs using micro-plates. The novelty of this procedure in P. berghei relies on the quantification of the drug activity derived from the amount of pLDH estimated by an ELISA assay using two monoclonal antibodies: 14C1 and 19G7. The IC50s obtained through the ELISA assay were compared with those from the micro-test. Results The initial parameters of the synchronized samples used in the in vitro assays were a parasitaemia of 0.5% and haematocrit of 1%, with an incubation period of 22 hours at 36.5°C. pLDH detection using a 14C1 coating at 10 ?g/ml and 19G7 at 2.5 × 10-3 ?g/ml provided good readouts of optical densities with low background in negative controls and specific detection levels for all parasite stages. IC50s values derived from the ELISA assay for artesunate, chloroquine, amodiaquine and quinine were: 15, 7, 2, and 144 nM, respectively. When artesunate and chloroquine IC50s were evaluated using the micro-test similar values were obtained. Conclusion This ELISA-based in vitro drug assay is easy to implement, fast, and avoids the use radioisotopes or expensive equipment. The utility of this simple assay for screening anti-malarial drug activity against P. berghei in vitro is demonstrated. PMID:23126583

  8. Metastatic Melanoma: Lactate Dehydrogenase Levels and CT Imaging Findings of Tumor Devascularization Allow Accurate Prediction of Survival in Patients Treated with Bevacizumab1

    PubMed Central

    Gray, Mark R.; del Campo, Sara Martin; Zhang, Xu; Zhang, Haowei; Souza, Frederico F.; Carson, William E.; Smith, Andrew D.

    2014-01-01

    Purpose To predict survival in patients with metastatic melanoma by evaluating a combination of serum lactate dehydrogenase (LDH) level and initial computed tomographic (CT) findings of tumor devascularization after antiangiogenic therapy. Materials and Methods Consent was waived for this institutional review board–approved, retrospective, secondary analysis. Forty-four patients with metastatic melanoma received bevacizumab therapy in a randomized prospective phase II trial. Target lesions on the initial posttherapy CT images were evaluated by using Response Evaluation Criteria in Solid Tumors, the Choi criteria, and Morphology, Attenuation, Size, and Structure (MASS) criteria. Cox proportional hazards models were used to assess the association of baseline clinical variables including serum LDH and imaging findings with progression-free and overall survival. The receiver operating characteristic curve with area under the curve (AUC) was used to evaluate accuracy. Results In multivariate analysis, a high baseline serum LDH level was associated with decreased progression-free survival (hazard ratio = 1.29 for each increase of 100 IU/L; P = .002) and overall survival (hazard ratio = 1.44 for each increase of 100 IU/L; P = .001). Evaluation with MASS criteria of the first CT examination after therapy strongly predicted progression-free (P < .001) and overall (P < .001) survival. Baseline serum LDH level was moderately accurate for predicting progression-free survival at 9 months (AUC = 0.793) and overall survival at 18 months (AUC = 0.689). The combination of baseline serum LDH levels and evaluation with MASS criteria at the first CT examination after therapy had significantly higher accuracy for predicting progression-free survival at 9 months (AUC = 0.969) and overall survival at 18 months (AUC = 0.813) than did baseline serum LDH levels alone for prediction of progression-free survival (P = .020). Conclusion A combination of baseline serum LDH levels and evaluation with MASS criteria at the first CT examination after bevacizumab therapy had the highest accuracy for predicting survival in patients with metastatic melanoma. PMID:24072776

  9. Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus.

    PubMed

    Fields, Peter A; Houseman, Daniel E

    2004-12-01

    Enzyme function is strongly affected by temperature, and orthologs from species adapted to different thermal environments often show temperature compensation in kinetic properties. Antarctic notothenioid fishes live in a habitat of constant, extreme cold (-1.86 +/- 2 degrees C), and orthologs of the enzyme A4-lactate dehydrogenase (A4-LDH) in these species have adapted to this environment through higher catalytic rates, lower Arrhenius activation energies (Ea), and increases in the apparent Michaelis constant for the substrate pyruvate (Km(PYR)). Here, site-directed mutagenesis was used to determine which amino acid substitutions found in A4-LDH of the notothenioid Chaenocephalus aceratus, with respect to orthologs from warm-adapted teleosts, are responsible for these adaptive changes in enzyme function. Km(PYR) was measured in eight single and two double mutants, and Ea was tested in five single and two double mutants in the temperature range 0 degrees C-20 degrees C. Of the four mutants that had an effect on these parameters, two increased Ea but did not affect Km(PYR) (Gly224Ser, Ala310Pro), and two increased both Ea and Km(PYR) (Glu233Met, Gln317Val). The double mutants Glu233Met/Ala310Pro and Glu233Met/Gln317Val increased Km(PYR) and Ea to levels not significantly different from the A4-LDH of a warm temperate fish (Gillichthys mirabilis, habitat temperature 10 degrees C-35 degrees C). The four single mutants are associated with two alpha-helices that move during the catalytic cycle; those that affect Ea but not Km(PYR) are further from the active site than those that affect both parameters. These results provide evidence that (1) cold adaptation in A4-LDH involves changes in mobility of catalytically important molecular structures; (2) these changes may alter activation energy alone or activation energy and substrate affinity together; and (3) the extent to which these parameters are affected may depend on the location of the substitutions within the mobile alpha-helices, perhaps due to differences in proximity to the active site. PMID:15317880

  10. Development of an Optical Fiber Lactate Sensor

    Microsoft Academic Search

    Xiaojing Liu; Weihong Tan

    1999-01-01

    Lactate analysis is important in clinical diagnostics and the food industry. An ultrasensitive optical fiber lactate sensor with rapid response time and 50 wm size has been developed. Lactate dehydrogenase (LDH) has been directly immobilized onto an optical fiber probe surface through covalent binding mechanisms. The optical fiber surface is initially activated by silanization, which adds amine groups (-NH2) to

  11. In VivoLactate Editing with Simultaneous Detection of Choline, Creatine, NAA, and Lipid Singlets at 1.5 T Using PRESS Excitation with Applications to the Study of Brain and Head and Neck Tumors

    NASA Astrophysics Data System (ADS)

    Star-Lack, Josh; Spielman, Daniel; Adalsteinsson, Elfar; Kurhanewicz, John; Terris, David J.; Vigneron, Daniel B.

    1998-08-01

    Two T2-independentJ-difference lactate editing schemes for the PRESS magnetic resonance spectroscopy localization sequence are introduced. The techniques, which allow for simultaneous acquisition of the lactate doublet (1.3 ppm) and edited singlets upfield of and including choline (3.2 ppm), exploit the dependence of the in-phase intensity of the methyl doublet upon the time interval separating two inversion (BASING) pulses applied to its coupling partner after initial excitation. Editing method 1, which allows for echo times TE =n/J(n= 1, 2, 3, …), alters the BASING carrier frequency for each of two cycles so that, for one cycle, the quartet is inverted, whereas, for the other cycle, the quartet is unaffected. Method 2, which also provides water suppression, allows for editing for TE > 1/Jby alternating, between cycles, the time interval separating the inversion pulses. Experimental results were obtained at 1.5 T using a Shinnar Le-Roux-designed maximum phase inversion pulse with a filter transition bandwidth of 55 Hz. Spectra were acquired from phantoms andin vivofrom the human brain and neck. In a neck muscle study, the lipid suppression factor, achieved partly through the use of a novel phase regularization algorithm, was measured to be over 103. Spectra acquired from a primary brain and a metastatic neck tumor demonstrated the presence of lactate and choline signals consistent with abnormal spectral patterns. The advantages and limitations of the methods are analyzed theoretically and experimentally, and significance of the results is discussed.

  12. Creatine accumulation and exchange by HEK293 cells stably expressing high levels of a creatine transporter.

    PubMed

    Dodd, J R; Zheng, T; Christie, D L

    1999-10-18

    We have generated a stable HEK293 cell line expressing high levels of a creatine transporter (CREAT). This cell line (HEK293-CREAT) was used to study the properties of CREAT in terms of the accumulation and release of creatine. HEK293-CREAT cells accumulated high steady state levels of creatine under saturating creatine levels (approx. 25-fold higher intracellular creatine levels than seen in control cells). The accumulation of high levels of creatine affected [3H]creatine uptake by decreasing the Vmax for transport. High intracellular creatine levels were maintained in the absence of extracellular creatine. External creatine stimulated the release of stored creatine by an exchange mechanism dependent on extracellular Na+. These studies have shown that cellular creatine levels can be affected by the amount of creatine transporter in the membrane and exchange through the creatine transporter. These findings highlight the importance of the creatine transporter in the maintenance of intracellular creatine levels. PMID:10572933

  13. Creatine and the creatine transporter: a review.

    PubMed

    Snow, R J; Murphy, R M

    2001-08-01

    The cellular role of creatine (Cr) and Cr phosphate (CrP) has been studied extensively in neural, cardiac and skeletal muscle. Several studies have demonstrated that alterations in the cellular total Cr (Cr + CrP) concentration in these tissues can produce marked functional and/or structural change. The primary aim of this review was to critically evaluate the literature that has examined the regulation of cellular total Cr content. In particular, the review focuses on the regulation of the activity and gene expression of the Cr transporter (CreaT), which is primarily responsible for cellular Cr uptake. Two CreaT genes (CreaT1 and CreaT2) have been identified and their chromosomal location and DNA sequencing have been completed. From these data, putative structures of the CreaT proteins have been formulated. Transcription products of the CreaT2 gene are expressed exclusively in the testes, whereas CreaT1 transcripts are found in a variety of tissues. Recent research has measured the expression of the CreaT1 protein in several tissues including neural, cardiac and skeletal muscle. There is very little information available about the factors regulating CreaT gene expression. There is some evidence that suggests the intracellular Cr concentration may be involved in the regulatory process but there is much more to learn before this process is understood. The activity of the CreaT protein is controlled by many factors. These include substrate concentration, transmembrane Na+ gradients, cellular location, and various hormones. It is also likely that transporter activity is influenced by its phosphorylation state and by its interaction with other plasma membrane proteins. The extent of CreaT protein glycosylation may vary within cells, the functional significance of which remains unclear. PMID:11693194

  14. Dichloroacetate increases glucose use and decreases lactate in developing rat brain

    SciTech Connect

    Miller, A.L.; Hatch, J.P.; Prihoda, T.J. (Univ. of Texas Health Science Center, San Antonio (USA))

    1990-12-01

    Dichloroacetate (DCA) activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase. Neutralized DCA (100 mg/kg) or saline was intravenously administered to 20 to 25-day-old rats (50-75g). Fifteen minutes later a mixture of {sup 6-14}C glucose and {sup 3}H fluorodeoxyglucose (FDG) was administered intravenously and the animals were sacrificed by microwave irradiation (2450 MHz, 8.0 kW, 0.6-0.8 sec) after 2 or 5 min. Brain regional rates of glucose use and metabolite levels were determined. DCA-treated rats had increased rates of glucose use in all regions studied (cortex, thalamus, striatum, and brain stem), with an average increase of 41%. Lactate levels were lower in all regions, by an average of 35%. There were no significant changes in levels of ATP, creatine phosphate, or glycogen in any brain region. Blood levels of lactate did not differ significantly between the DCA- and the saline-treated groups. Blood glucose levels were higher in the DCA group. In rats sacrificed by freeze-blowing, DCA treatment caused lower brain levels of both lactate and pyruvate. These results cannot be explained by any systemic effect of DCA. Rather, it appears that in the immature rat, DCA treatment results in activation of brain PDH, increased metabolism of brain pyruvate and lactate, and a resulting increase in brain glycolytic rate.

  15. Analysis of Conformationally Restricted ?-Ketoglutarate Analogues as Substrates of Dehydrogenases and Aminotransferases

    Microsoft Academic Search

    Travis T. Denton; Charles M. Thompson; Arthur J. L. Cooper

    2001-01-01

    Five synthetic, conformationally restricted ?-ketoglutarate analogues were tested as substrates of a variety of dehydrogenases and aminotransferases. The compounds were found not to be detectable substrates of glutamate dehydrogenase, l-leucine dehydrogenase, l-phenylalanine dehydrogenase, lactate dehydrogenase, malate dehydrogenase, glutamine transaminase K, aspartate aminotransferase, alanine aminotransferase, and ?-ketoglutarate dehydrogenase complex. However, two thermostable aminotransferases were identified that catalyze transamination between several l-amino

  16. Effects of 28 Days of Beta-Alanine and Creatine Monohydrate Supplementation on Muscle Carnosine, Body Composition and Exercise Performance in Recreationally Active Females 

    E-print Network

    Kresta, Julie Yong

    2012-07-16

    Early research with beta-alanine (beta-ALA) supplementation has shown increases in muscle carnosine as well as improvements in body composition, exercise performance and blood lactate levels. Creatine monohydrate supplementation ...

  17. Regression of Dalton's lymphoma in vivo via decline in lactate dehydrogenase and induction of apoptosis by a ruthenium(II)-complex containing 4-carboxy N-ethylbenzamide as ligand.

    PubMed

    Koiri, Raj K; Trigun, Surendra K; Mishra, Lallan; Pandey, Kiran; Dixit, Deobrat; Dubey, Santosh K

    2009-12-01

    A novel ruthenium(II)-complex containing 4-carboxy N-ethylbenzamide (Ru(II)-CNEB) was found to interact with and inhibit M4-lactate dehydrogenase (M4-LDH), a tumor growth supportive enzyme, at the tissue level. The present article describes modulation of M4-LDH by this compound in a T-cell lymphoma (Dalton's Lymphoma: DL) vis a vis regression of the tumor in vivo. The compound showed a dose dependent cytotoxicity to DL cells in vitro. When a non toxic dose (10 mg/kg bw i.p.) of Ru(II)-CNEB was administered to DL bearing mice, it also produced a significant decline in DL cell viability in vivo. The DL cells from Ru(II)-CNEB treated DL mice showed a significant decline in the level of M4-LDH with a concomitant release of this protein in the cell free ascitic fluid. A significant increase of nuclear DNA fragmentation in DL cells from Ru(II)-CNEB treated DL mice also coincided with the release of mitochondrial cytochrome c in those DL cells. Importantly, neither blood based biochemical markers of liver damage nor the normal patterns of LDH isozymes in other tissues were affected due to the treatment of DL mice with the compound. These results were also comparable with the effects of cisplatin (an anticancer drug) observed simultaneously on DL mice. The findings suggest that Ru(II)-CNEB is able to regress Dalton's lymphoma in vivo via declining M4-LDH and inducing mitochondrial dysfunction-apoptosis pathway without producing any toxicity to the normal tissues. PMID:19043664

  18. Lactate dehydrogenase-elevating virus replication persists in liver, spleen, lymph node, and testis tissues and results in accumulation of viral RNA in germinal centers, concomitant with polyclonal activation of B cells.

    PubMed

    Anderson, G W; Rowland, R R; Palmer, G A; Even, C; Plagemann, P G

    1995-08-01

    Lactate dehydrogenase-elevating virus (LDV) replicates primarily and most likely solely in a subpopulation of macrophages in extraneuronal tissues. Infection of mice, regardless of age, with LDV leads to the rapid cytocidal replication of the virus in these cells, resulting in the release of large amounts of LDV into the circulation. The infection then progresses into life-long, asymptomatic, low-level viremic persistence, which is maintained by LDV replication in newly generated LDV-permissive cells which escapes all antiviral immune responses. In situ hybridization studies of tissue sections of adult FVB mice revealed that by 1 day postinfection (p.i.), LDV-infected cells were present in practically all tissues but were present in the highest numbers in the lymph nodes, spleen, and skin. In the central nervous system, LDV-infected cells were restricted to the leptomeninges. Most of the infected cells had disappeared at 3 days p.i., consistent with the cytocidal nature of the LDV infection, except for small numbers in lymph node, spleen, liver, and testis tissues. These tissues harbored infected cells until at least 90 days p.i. The results suggest that the generation of LDV-permissive cells during the persistent phase is restricted to these tissues. The continued presence of LDV-infected cells in testis tissue suggests the possibility of LDV release in semen and sexual transmission. Most striking was the accumulation of large amounts of LDV RNA in newly generated germinal centers of lymph nodes and the spleen. The LDV RNA was not associated with infected cells but was probably associated with virions or debris of infected, lysed cells. The appearance of LDV RNA in germinal centers in these mice coincided in time with the polyclonal activation of B cells, which leads to the accumulation of polyclonal immunoglobulin G2a and low-molecular-weight immune complexes in the circulation. PMID:7609091

  19. Free creatine available to the creatine phosphate energy shuttle in isolated rat atria

    SciTech Connect

    Savabi, F. (Univ. of Southern California School of Medicine, Los Angeles (USA))

    1988-10-01

    To measure the actual percentage of intracellular free creatine participating in the process of energy transport, the incorporation of (1-{sup 14}C)creatine into the free creatine and phosphocreatine (PCr) pools in spontaneously beating isolated rat atria, under various conditions, was examined. The atria were subjected to three consecutive periods, control, anoxia, and postanoxic recover, in medium containing tracers of (1-{sup 14}C)creatine. The tissue content and specific activity of creatine and PCr were determined at the end of each period. The higher specific activity found for tissue PCr (1.87 times) than creatine, independent of the percentage of total intracellular creatine that was present as free creatine, provides evidence for the existence of two separate pools of free creatine. Analysis of the data shows that in the normal oxygenated state {approx} 9% of the total intracellular creatine is actually free to participate in the process of energy transport (shuttle pool). About 36% of the total creatine is bound to unknown intracellular components and the rest exists as PCr. The creatine that was taken up and the creatine that was released from the breakdown of PCr have much greater access to the site of phosphorylation than the rest of the intracellular creatine. A sharp increase in the specific activity of residual PCr on prolongation of anoxic time was also observed. This provides evidence for a nonhomogeneous pool of PCr, for the most recently formed (radioactive) PCr appeared to be hydrolyzed last.

  20. Structure of mitochondrial creatine kinase

    Microsoft Academic Search

    Karin Fritz-Wolf; Thomas Schnyder; Theo Wallimann; Wolfgang Kabsch

    1996-01-01

    CREATINE kinase (CK; EC 2.7.3.2), an enzyme important for energy metabolism in cells of high and fluctuating energy requirements, catalyses the reversible transfer of a phosphoryl goup from phosphocreatine to ADP1-3. We have solved the structure of the octameric mitochondrial isoform, Mib-CK, which is located in the intermembrane compartment and along the cristae membranes. Mib-CK consumes ATP produced in the

  1. Infection of central nervous system cells by ecotropic murine leukemia virus in C58 and AKR mice and in in utero-infected CE/J mice predisposes mice to paralytic infection by lactate dehydrogenase-elevating virus.

    PubMed

    Anderson, G W; Palmer, G A; Rowland, R R; Even, C; Plagemann, P G

    1995-01-01

    Certain mouse strains, such as AKR and C58, which possess N-tropic, ecotropic murine leukemia virus (MuLV) proviruses and are homozygous at the Fv-1n locus are specifically susceptible to paralytic infection (age-dependent poliomyelitis [ADPM]) by lactate dehydrogenase-elevating virus (LDV). Our results provide an explanation for this genetic linkage and directly prove that ecotropic MuLV infection of spinal cord cells is responsible for rendering anterior horn neurons susceptible to cytocidal LDV infection, which is the cause of the paralytic disease. Northern (RNA) blot hybridization of total tissue RNA and in situ hybridization of tissue sections demonstrated that only mice harboring central nervous system (CNS) cells that expressed ecotropic MuLV were susceptible to ADPM. Our evidence indicates that the ecotropic MuLV RNA is transcribed in CNS cells from ecotropic MuLV proviruses that have been acquired by infection with exogenous ecotropic MuLV, probably during embryogenesis, the time when germ line proviruses in AKR and C58 mice first become activated. In young mice, MuLV RNA-containing cells were found exclusively in white-matter tracts and therefore were glial cells. An increase in the ADPM susceptibility of the mice with advancing age correlated with the presence of an increased number of ecotropic MuLV RNA-containing cells in the spinal cords which, in turn, correlated with an increase in the number of unmethylated proviruses in the DNA extracted from spinal cords. Studies with AKXD recombinant inbred strains showed that possession of a single replication-competent ecotropic MuLV provirus (emv-11) by Fv-1n/n mice was sufficient to result in ecotropic MuLV infection of CNS cells and ADPM susceptibility. In contrast, no ecotropic MuLV RNA-positive cells were present in the CNSs of mice carrying defective ecotropic MuLV proviruses (emv-3 or emv-13) or in which ecotropic MuLV replication was blocked by the Fv-1n/b or Fv-1b/b phenotype. Such mice were resistant to paralytic LDV infection. In utero infection of CE/J mice, which are devoid of any endogenous ecotropic MuLVs, with the infectious clone of emv-11 (AKR-623) resulted in the infection of CNS cells, and the mice became ADPM susceptible, whereas littermates that had not become infected with ecotropic MuLV remained ADPM resistant. PMID:7983723

  2. The influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man

    Microsoft Academic Search

    R. Birch; D. Noble; P. L. Greenhaff

    1994-01-01

    The effect of dietary creatine (Cr) supplementation on performance during 3, 30 s bouts maximal isokinetic cycling and on plasma ammonia and blood lactate accumulation during exercise was investigated. Placebo (P) ingestion had no effect on peak power output (PPO), mean power output (MPO) and total work output during each bout of exercise. Cr ingestion (4 × 5 g.day–1 for

  3. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or...

  4. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes...

  5. Evaluation of the stability of creatine in solution prepared from effervescent creatine formulations.

    PubMed

    Ganguly, Sudipta; Jayappa, Sheela; Dash, Alekha K

    2003-01-01

    The objectives of this study were to determine the cause of the crystallization in a large volume creatine supplement solution made from effervescent powders containing di-creatine citrate, and to characterize these crystals using thermal analyses and x-ray diffractometry. Creatine effervescent powders were dissolved in deionized water (pH 6.2) and stored both at room temperature (RT) (25 degrees C) and refrigerated condition (4 degrees C) over a period of 45 days. Creatine concentration was determined using high-performance liquid chromatography (HPLC). Intrinsic dissolution and saturated solubility of creatine, creatine monohydrate, and di-creatine citrate in water were determined and compared. Crystal growth was detected only in the refrigerated samples on the seventh day of storage. Differential Scanning Calorimetry (DSC) and x-ray diffraction (XRD) studies revealed that the crystals formed were of creatine monohydrate. Ninety percent creatine degradation was observed within 45 days for RT samples. However, at refrigerated condition this degradation was 80% within the same time period. The pH of the RT samples also increased from 3.6 to 4.5 during storage. No such increase was observed in the case of refrigerated samples. The intrinsic dissolution rate constants of the compounds decreased in the following order: di-creatine citrate > creatine > creatine monohydrate. In conclusion, di-creatine citrate used in effervescent formulation dissociates to creatine in aqueous solution and eventually crystallizes out as creatine monohydrate. Significant decrease in solubility and effect of pH contribute to this crystallization process. PMID:12916907

  6. Original article Serum creatine kinase activity as a selection

    E-print Network

    Paris-Sud XI, Université de

    Original article Serum creatine kinase activity as a selection criterion for stress susceptibility July 1991) Summary ― Estimation of serum creatine kinase isoenzyme activity was used sensitivity. creatine kinase isoenzymes / pig / standardized stress / halothane anaesthesia / ACTH / syn

  7. Malate dehydrogenase from the green gliding bacterium Chloroflexus aurantiacus is phylogenetically related to lactic dehydrogenases

    Microsoft Academic Search

    Bjørnar Synstad; Oddmund Emmerhoff; Reidun Sirevåg

    1996-01-01

    The gene encoding malate dehydrogenase (MDH) from Chloroflexus aurantiacus was cloned, sequenced, and analyzed. The mdh gene corresponded to a polypeptide of 309 amino acids with a molecular mass of 32,717 Da. The primary structure and the coenzyme-binding\\u000a domain showed a high degree of similarity to lactate dehydrogenase (LDH), whereas the conserved amino acids that participate\\u000a in substrate binding were

  8. RESEARCH Open Access Screening for primary creatine deficiencies in

    E-print Network

    Paris-Sud XI, Université de

    RESEARCH Open Access Screening for primary creatine deficiencies in French patients for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine: creatinine ratios were-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2

  9. Glycolysis and the significance of lactate in traumatic brain injury

    PubMed Central

    Carpenter, Keri L. H.; Jalloh, Ibrahim; Hutchinson, Peter J.

    2015-01-01

    In traumatic brain injury (TBI) patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well-recognized, and are associated statistically with unfavorable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolized via glycolysis (Embden-Meyerhof-Parnas pathway) to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate's association with unfavorable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilization of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labeled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labeling in glutamine consistent with lactate utilization via the TCA cycle. This suggests that where neurons are too damaged to utilize the lactate produced from glucose by astrocytes, i.e., uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining the association between high lactate and poor outcome. Recently, an intravenous exogenous lactate supplementation study in TBI patients revealed evidence for a beneficial effect judged by surrogate endpoints. Here we review the current state of knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better clinical outcome. PMID:25904838

  10. Evaluation of the stability of creatine in solution prepared from effervescent creatine formulations

    Microsoft Academic Search

    Sudipta Ganguly; Sheela Jayappa; Alekha K. Dash

    2003-01-01

    The objectives of this study were to determine the cause of the crystallization in a large volume creatine supplement solution\\u000a made from effervescent powders containing di-creatine citrate, and to characterize these crystals using thermal analyses and\\u000a x-ray diffractometry. Creatine effervescent powders were dissolved in deionized water (pH 6.2) and stored both at room temperature\\u000a (RT) (25°C) and refrigerated condition (4°C)

  11. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    DOEpatents

    Miller, Matthew (Boston, MA); Suominen, Pirkko (Maple Grove, MN); Aristidou, Aristos (Highland Ranch, CO); Hause, Benjamin Matthew (Currie, MN); Van Hoek, Pim (Camarillo, CA); Dundon, Catherine Asleson (Minneapolis, MN)

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  12. Creatine and Cyclocreatine Attenuate MPTP Neurotoxicity

    Microsoft Academic Search

    Russell T. Matthews; Robert J. Ferrante; Peter Klivenyi; Lichuan Yang; Autumn M. Klein; Gerald Mueller; Rima Kaddurah-Daouk; M. Flint Beal

    1999-01-01

    Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces parkinsonism in experimental animals by a mechanism involving impaired energy production. MPTP is converted by monoamine oxidase B to 1-methyl-4-phenylpyridinium (MPP+), which blocks complex I of the electron transport chain. Oral supplementation with creatine or cyclocreatine, which are substrates for creatine kinase, may increase phosphocreatine (PCr) or cyclophosphocreatine (PCCr) and buffer against ATP depletion

  13. The primary pathway for lactate oxidation in Desulfovibrio vulgaris

    PubMed Central

    Vita, Nicolas; Valette, Odile; Brasseur, Gaël; Lignon, Sabrina; Denis, Yann; Ansaldi, Mireille; Dolla, Alain; Pieulle, Laetitia

    2015-01-01

    The ability to respire sulfate linked to lactate oxidation is a key metabolic signature of the Desulfovibrio genus. Lactate oxidation by these incomplete oxidizers generates reductants through lactate dehydrogenase (LDH) and pyruvate-ferredoxin oxidoreductase (PFOR), with the latter catalyzing pyruvate conversion into acetyl-CoA. Acetyl-CoA is the source of substrate-level phosphorylation through the production of ATP. Here, we show that these crucial steps are performed by enzymes encoded by a nonacistronic transcriptional unit named now as operon luo (for lactate utilization operon). Using a combination of genetic and biochemical techniques, we assigned a physiological role to the operon genes DVU3027-28 and DVU3032-33. The growth of mutant ?26-28 was highly disrupted on D-lactate, whereas the growth of mutant ?32-33 was slower on L-lactate, which could be related to a decrease in the activity of D-lactate or L-lactate oxidase in the corresponding mutants. The DVU3027-28 and DVU3032-33 genes thus encode functional D-LDH and L-LDH enzymes, respectively. Scanning of the genome for lactate utilization revealed several lactate permease and dehydrogenase homologs. However, transcriptional compensation was not observed in any of the mutants except for lactate permease. Although there is a high degree of redundancy for lactate oxidase, it is not functionally efficient in LDH mutants. This result could be related to the identification of several operon enzymes, including LDHs, in the PFOR activity bands, suggesting the occurrence of a lactate-oxidizing supermolecular structure that can optimize the performance of lactate utilization in Desulfovibrio species. PMID:26167158

  14. Physicochemical characterization of creatine N-methylguanidinium salts.

    PubMed

    Gufford, Brandon T; Sriraghavan, Kamaraj; Miller, Nicholas J; Miller, Donald W; Gu, Xiaochen; Vennerstrom, Jonathan L; Robinson, Dennis H

    2010-09-01

    Creatine is widely used as a dietary supplement for body builders to enhance athletic performance. As the monohydrate, its low solubility in water and high dose lead to water retention and gastrointestinal discomfort. Hence, alternative creatine derivatives with enhanced water solubility and potential therapeutic advantages have been synthesized. As a zwitterionic compound, creatine can form salts at the N-methyl guanidinium or carboxylic acid functional groups. In this study, we determined the aqueous solubilities and partition coefficients of six N-methyl guanidinium salts of creatine compared to those of creatine monohydrate; two of these were new salts, namely, creatine mesylate and creatine hydrogen maleate. The aqueous solubilities of the salts were significantly more than that of creatine monohydrate with the hydrochloride and mesylate being 38 and 30 times more soluble, respectively. The partition coefficients of the creatine salts were very low indicating their relatively high polarity. Permeabilities of creatine pyruvate, citrate, and hydrochloride in Caco-2 monolayers were compared to that of creatine monohydrate. Aside from the creatine citrate salt form that had reduced permeability, there were no significant differences in permeability characteristics in Caco-2 monolayers. Typical of an amphoteric compound, creatine is least soluble in the pH region near the isoelectric point. PMID:22432515

  15. [Dangerous fortune: creatine kinase and blood pressure].

    PubMed

    Brewster, Lizzy M; van Montfrans, Gert A

    2012-01-01

    The thrifty gene hypothesis describes characteristics of 'thrifty' genes that were historically advantageous for survival, but may have become detrimental in modern times. We propose that a high tissue activity of the enzyme creatine kinase is a striking example of such 'dangerous fortune'. High creatine kinase activity, which occurs with greater frequency in people of West African descent, facilitates burst activity of the skeletal muscle. Here, the available energy is maximally used in order to survive. However, in times of abundance with excessive salt intake or continuous stress, high creatine kinase activity may result in hypertension. This is caused by an increased contractility of the arterioles and enhanced salt retention, leading to enhanced pressor responses. The enzyme that once improved the chance of survival has thus become a risk factor for premature cardiovascular mortality. PMID:23249518

  16. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value?

    PubMed Central

    Allen, Patricia J.

    2012-01-01

    Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington’s Disease and Parkinson’s Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies. PMID:22465051

  17. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure...treatment of muscle diseases and endocrine disorders including...

  18. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure...treatment of muscle diseases and endocrine disorders including...

  19. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure...treatment of muscle diseases and endocrine disorders including...

  20. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure...treatment of muscle diseases and endocrine disorders including...

  1. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure...treatment of muscle diseases and endocrine disorders including...

  2. The regulation and expression of the creatine transporter: a brief review of creatine supplementation in humans and animals.

    PubMed

    Schoch, Ryan D; Willoughby, Darryn; Greenwood, Mike

    2006-01-01

    Creatine monohydrate has become one of the most popular ergogenic sport supplements used today. It is a nonessential dietary compound that is both endogenously synthesized and naturally ingested through diet. Creatine ingested through supplementation has been observed to be absorbed into the muscle exclusively by means of a creatine transporter, CreaT1. The major rationale of creatine supplementation is to maximize the increase within the intracellular pool of total creatine (creatine + phosphocreatine). There is much evidence indicating that creatine supplementation can improve athletic performance and cellular bioenergetics, although variability does exist. It is hypothesized that this variability is due to the process that controls both the influx and efflux of creatine across the cell membrane, and is likely due to a decrease in activity of the creatine transporter from various compounding factors. Furthermore, additional data suggests that an individual's initial biological profile may partially determine the efficacy of a creatine supplementation protocol. This brief review will examine both animal and human research in relation to the regulation and expression of the creatine transporter (CreaT). The current literature is very preliminary in regards to examining how creatine supplementation affects CreaT expression while concomitantly following a resistance training regimen. In conclusion, it is prudent that future research begin to examine CreaT expression due to creatine supplementation in humans in much the same way as in animal models. PMID:18500965

  3. Original article Compared kinetics of plasma creatine kinase activity

    E-print Network

    Boyer, Edmond

    Original article Compared kinetics of plasma creatine kinase activity in rabbits after intravenous 1993) Summary ― The purpose of this study was to compare the disposition parameters of creatine muscle damage. creatine kinase / kinetics / muscle damage / rabbit Résumé ― Cinétiques comparées

  4. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...serum. Measurements of creatine phosphokinase and its isoenzymes are used in the diagnosis and treatment of myocardial infarction and muscle diseases such as progressive, Duchenne-type muscular dystrophy. (b) Classification. Class...

  5. Solid-state properties of creatine monohydrate.

    PubMed

    Dash, Alekha K; Mo, Yoonsun; Pyne, Abira

    2002-03-01

    Creatine monohydrate (CM) is a nutritional supplement and an ergogenic aid for athletes. It appears to increase lean body mass, high-intensity power output and strength in healthy humans. The crystal structure of creatine monohydrate has previously been reported. However, little information is available on its solid-state properties. In this investigation, creatine monohydrate was subjected to Thermal Analyses, Karl-Fisccher Titrimetry (KFT), Scanning Electron Microscopy (SEM), and Variable Temperature X-ray Powder Diffractometry (VTXRD) to characterize its solid-state properties. The results of this study suggested that commercially available creatine monohydrate dehydrates at about 97-125 degrees C. A phase transition after dehydration was confirmed by X-ray diffraction studies. This dehydrated phase at a temperature above 230 degrees C undergoes intramolecular cyclization with a loss of an additional mole of water to form creatinine. Creatinine finally melts with decomposition at about 290 degrees C. VTXRD, confirmed that the above solid-state thermal transformation was kinetically driven, and occurred within a narrow temperature range. Mass Spectrometric (MS) studies further indicated a possible dimerization of creatinine formed during the solid-state transformation. PMID:11920756

  6. Comparison of Different Forms of Creatine on Creatine Availability, Retention, and Training Adaptations 

    E-print Network

    Jagim, Andrew Ryan

    2013-03-25

    ]. The vast majority of them (~70%) have shown creatine to have some sort of ergogenic value, whether it be improved strength, power, muscular endurance or improvements in training adaptations. The average improvement seen in performance typically ranges... in muscular endurance or weightlifting performance following a resistance training program was 26% for creatine and 12% for placebo groups. There are several other studies that support these findings. For example, Noonan et al. found a significant...

  7. Raised concentration of plasma creatine kinase BB isoenzyme in myelodysplasia.

    PubMed Central

    Crook, M; Williams, A; Sankaralingam, A; Tutt, P

    1994-01-01

    A 72 year old woman presented with a suspected myocardial infarction. An echocardiograph showed no acute changes but her plasma creatine kinase (CK) activity was increased at 343 U/l (< 175 normal range). The apparent creatine kinase-MB activity by a CK-M subunit immunoinhibition assay was 350 U/l. In view of the discrepancy between the total creatine kinase and CK-MB activity plasma creatine kinase electrophoresis studies were performed which showed not only a band of creatine kinase-MM but also a band of creatine kinase-BB, 53% of the total creatine kinase activity. No band of CK-MB was seen. It later transpired that the woman had myelodysplasia. It is suggested that premalignant and malignant haematological conditions should be considered in patients with an unexplained increase in plasma CK-BB. PMID:8063940

  8. Functional Aspects of Creatine Kinase in Brain

    Microsoft Academic Search

    Wolfram Hemmer; Theo Wallimann

    1993-01-01

    The distinct isoenzyme-specific localization of creatine kinase (CK) isoenzymes found recently in brain suggests an important function for CK in brain energetics and points to adaptation of the CK system to the special energy requirements of different neuronal and glial cell types. For example, the presence of brain-type B-CK in Bergmann glial cells and astrocytes is very likely related to

  9. Augmented cerebellar lactate in copper deficient rat pups originates from both blood and cerebellum

    PubMed Central

    Gybina, Anna A.; Prohaska, Joseph R.

    2010-01-01

    Copper (Cu) is essential for proper brain development, particularly the cerebellum, and functions as a cofactor for enzymes including mitochondrial cytochrome c oxidase (CCO). Cu deficiency severely limits CCO activity. Augmented lactate in brain of Cu deficient (Cu?) humans and cerebella of Cu? rats is though to originate from impaired mitochondria. However, brain lactate may also originate from elevated blood lactate. The hypothesis that cerebellar lactate originates from elevated blood lactate in Cu? rat pups was tested. Analysis of Cu? and Cu adequate (Cu+) rat pups (experiment I) revealed blood lactate was elevated in Cu? rat pups and cerebellar lactate levels were closely correlated to blood lactate concentration. A second rat experiment (experiment II) assessed Cu? cerebellar lactate without the confounding factor of elevated blood lactate. Blood lactate levels of Cu? rat pups in experiment II were equal to those of controls; however, Cu? cerebellar lactate was still elevated, suggesting mitochondrial impairment by Cu deficiency. Treatment of rat pups with dichloroacetate (DCA), an activator of mitochondrial pyruvate dehydrogenase complex (PDC), lowered Cu? cerebellar lactate to control levels suggesting PDC inhibition is a site of mitochondrial impairment in Cu? cerebella. Results suggest Cu? cerebellar lactate originates from blood and cerebellum. PMID:19319671

  10. Elevated plasma creatinine due to creatine ethyl ester use.

    PubMed

    Velema, M S; de Ronde, W

    2011-02-01

    Creatine is a nutritional supplement widely used in sport, physical fitness training and bodybuilding. It is claimed to enhance performance. We describe a case in which serum creatinine is elevated due to the use of creatine ethyl esther. One week after withdrawal, the plasma creatinine had normalised. There are two types of creatine products available: creatine ethyl esther (CEE) and creatine monohydrate (CM). Plasma creatinine is not elevated in all creatine-using subjects. CEE , but not CM, is converted into creatinine in the gastrointestinal tract. As a result the use of CEE may be associated with elevated plasma creatinine levels. Since plasma creatinine is a widely used marker for renal function, the use of CEE may lead to a false assumption of renal failure. PMID:21411845

  11. A Potential Role for Creatine in Drug Abuse?

    Microsoft Academic Search

    Kristen E. D’Anci; Patricia J. Allen; Robin B. Kanarek

    Supplemental creatine has been promoted for its positive health effects and is best known for its use by athletes to increase\\u000a muscle mass. In addition to its role in physical performance, creatine supplementation has protective effects on the brain\\u000a in models of neuronal damage and also alters mood state and cognitive performance. Creatine is found in high protein foods,\\u000a such

  12. Developmental decrease in rat small intestinal creatine uptake

    Microsoft Academic Search

    M. J. Peral; M. Gálvez; M. L. Soria; A. A. Ilundáin

    2005-01-01

    Phosphocreatine is an energy buffer and transducer in the heart, the brain and the skeletal muscle. Recently, we have demonstrated the presence of the Na+\\/Cl?\\/creatine transporter at the apical membrane of the small intestinal epithelium. Herein the ontogeny and segmental distribution of rat intestinal creatine transport activity are investigated. [14C]-Creatine uptake was measured in the jejunum and ileum of 16

  13. On the Importance of Exchangeable NH Protons in Creatine for the Magnetic Coupling of Creatine Methyl Protons in Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kruiskamp, M. J.; Nicolay, K.

    2001-03-01

    The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the creatine magnetization transfer effect were investigated in excised rat hindleg skeletal muscle that was equilibrated in either H 2O or D 2O solutions containing creatine. The efficiency of off-resonance magnetization transfer to the protons of mobile creatine in excised muscle was similar to that previously reported in intact muscle in vivo. Equilibrating the isolated muscle in D 2O solution had no effect on the magnetic coupling to the immobile protons. It is concluded that exchangeable protons play a negligible role in the magnetic coupling of creatine methyl protons in muscle.

  14. Analysis of Quaternary Structure of a [LDH-like] Malate Dehydrogenase of Plasmodium falciparum with Oligomeric Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-Malate dehydrogenase (PfMDH) from Plasmodium falciparum, the causative agent for the most severe form of malaria, has shown remarkable similarities to L-lactate dehydrogenase (PfLDH). PfMDH is more closely related to [LDH-like] MDHs characterized in archea and other prokaryotes. Initial sequence a...

  15. Structure and Function of Plasmodium falciparum malate dehydrogenase: Role of Critical Amino Acids in C-substrate Binding Procket

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our lab have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal g...

  16. Eastern grey kangaroo muscle creatine kinase.

    PubMed

    Grossman, G; O'Sullivan, W J

    1981-01-01

    Creatine kinase has been purified to homogeneity from skeletal muscle of the eastern grey kangaroo, Macropus giganteus. The procedure included ethanol fractionation followed by chromatography on DEAE-cellulose. The enzyme had a molecular weight of approximately 86 000 with two subunits of 43 500. Two sulfhydryl groups were determined for the intact molecule and a further four on unfolding. Under standardized conditions, the metal ion specificity was determined as MgADP- greater than MnADP- greater than CoADP-, CaADP-; and the substrate specificity as MgADP- greater than MgdADP- greater than MgGDP- greater than MgXDP. Initial velocity and product-inhibition studies of the reverse reaction were consistent with a rapid random equilibrium reaction as observed for the rabbit muscle enzyme. However, initial-velocity studies in the forward reaction were consistent with a rapid equilibrium-ordered mechanism with MgATP2- binding before creatine. Preliminary studies on the binding of manganese nucleotides to the enzyme have been carried out using pulsed nuclear magnetic resonance to measure relaxation times of water protons. PMID:7295209

  17. A potential role for creatine in drug abuse?

    PubMed

    D'Anci, Kristen E; Allen, Patricia J; Kanarek, Robin B

    2011-10-01

    Supplemental creatine has been promoted for its positive health effects and is best known for its use by athletes to increase muscle mass. In addition to its role in physical performance, creatine supplementation has protective effects on the brain in models of neuronal damage and also alters mood state and cognitive performance. Creatine is found in high protein foods, such as fish or meat, and is also produced endogenously from the biosynthesis of arginine, glycine, and methionine. Changes in brain creatine levels, as measured using magnetic resonance spectroscopy, are seen in individuals exposed to drugs of abuse and depressed individuals. These changes in brain creatine indicate that energy metabolism differs in these populations relative to healthy individuals. Recent work shows that creatine supplementation has the ability to function in a manner similar to antidepressant drugs and can offset negative consequences of stress. These observations are important in relation to addictive behaviors as addiction is influenced by psychological factors such as psychosocial stress and depression. The significance of altered brain levels of creatine in drug-exposed individuals and the role of creatine supplementation in models of drug abuse have yet to be explored and represent gaps in the current understanding of brain energetics and addiction. PMID:21399936

  18. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  19. Effect of creatine feeding on maximal exercise performance in vegetarians.

    PubMed

    Shomrat, A; Weinstein, Y; Katz, A

    2000-07-01

    The effect of creatine supplementation on exercise performance in vegetarians was examined. Creatine was ingested for 1 week by a group of vegetarians (VC) and meat-eaters (MC); a control group of meat-eaters was fed only glucose (MG). Exercise performance during three, 20-s maximal cycling tests (modified Wingate anaerobic test, WAnT) was determined before and after creatine supplementation. Blood samples were also drawn before and after exercise prior to and after supplementation. Basal plasma creatine (after an overnight fast) averaged (SE) 11 (2) microM in VC, and 24 (2) and 23 (7) microM in MG and MC, respectively (P < 0.05 for VC vs meat-eaters). These findings were expected, since most of the body's exogenous creatine source is meat. There was no significant difference in any other parameter between groups prior to supplementation. Creatine feedings significantly increased body mass (approximately 1 kg) and mean power output during the WAnTs (approximately 5%) to a similar extent in the VC and MC groups (P < 0.05-0.001). These parameters were not affected by supplementation in the MG group. Peak power output was also significantly increased by supplementation in MC (approximately 5%, P < 0.05), but not in VC. It is concluded that vegetarians and meat-eaters respond to creatine feedings with similar increases in mean power output during short-term, maximal exercise. PMID:10958375

  20. Creatine kinase inhibits ADP-induced platelet aggregation

    PubMed Central

    Horjus, D. L.; Nieuwland, R.; Boateng, K. B.; Schaap, M. C. L.; van Montfrans, G. A.; Clark, J. F.; Sturk, A.; Brewster, L. M.

    2014-01-01

    Bleeding risk with antiplatelet therapy is an increasing clinical challenge. However, the inter-individual variation in this risk is poorly understood. We assessed whether the level of plasma creatine kinase, the enzyme that utilizes ADP and phosphocreatine to rapidly regenerate ATP, may modulate bleeding risk through a dose-dependent inhibition of ADP-induced platelet activation. Exogenous creatine kinase (500 to 4000?IU/L, phosphocreatine 5?mM) added to human plasma induced a dose-dependent reduction to complete inhibition of ADP-induced platelet aggregation. Accordingly, endogenous plasma creatine kinase, studied in 9 healthy men (mean age 27.9?y, SE 3.3; creatine kinase 115 to 859?IU/L, median 358), was associated with reduced ADP-induced platelet aggregation (Spearman's rank correlation coefficient, ?0.6; p < 0.05). After exercise, at an endogenous creatine kinase level of 4664, ADP-induced platelet aggregation was undetectable, normalizing after rest, with a concomitant reduction of creatine kinase to normal values. Thus, creatine kinase reduces ADP-induced platelet activation. This may promote bleeding, in particular when patients use platelet P2Y12 ADP receptor inhibitors. PMID:25298190

  1. Strategic creatine supplementation and resistance training in healthy older adults.

    PubMed

    Candow, Darren G; Vogt, Emelie; Johannsmeyer, Sarah; Forbes, Scott C; Farthing, Jonathan P

    2015-07-01

    Creatine supplementation in close proximity to resistance training may be an important strategy for increasing muscle mass and strength; however, it is unknown whether creatine supplementation before or after resistance training is more effective for aging adults. Using a double-blind, repeated measures design, older adults (50-71 years) were randomized to 1 of 3 groups: creatine before (CR-B: n = 15; creatine (0.1 g/kg) immediately before resistance training and placebo (0.1 g/kg cornstarch maltodextrin) immediately after resistance training), creatine after (CR-A: n = 12; placebo immediately before resistance training and creatine immediately after resistance training), or placebo (PLA: n = 12; placebo immediately before and immediately after resistance training) for 32 weeks. Prior to and following the study, body composition (lean tissue, fat mass; dual-energy X-ray absorptiometry) and muscle strength (1-repetition maximum leg press and chest press) were assessed. There was an increase over time for lean tissue mass and muscle strength and a decrease in fat mass (p < 0.05). CR-A resulted in greater improvements in lean tissue mass (? 3.0 ± 1.9 kg) compared with PLA (? 0.5 ± 2.1 kg; p < 0.025). Creatine supplementation, independent of the timing of ingestion, increased muscle strength more than placebo (leg press: CR-B, ? 36.6 ± 26.6 kg; CR-A, ? 40.8 ± 38.4 kg; PLA, ? 5.6 ± 35.1 kg; chest press: CR-B, ? 15.2 ± 13.0 kg; CR-A, ? 15.7 ± 12.5 kg; PLA, ? 1.9 ± 14.7 kg; p < 0.025). Compared with resistance training alone, creatine supplementation improves muscle strength, with greater gains in lean tissue mass resulting from post-exercise creatine supplementation. PMID:25993883

  2. Identification of the Genes That Contribute to Lactate Utilization in Helicobacter pylori

    PubMed Central

    Iwatani, Shun; Nagashima, Hiroyuki; Reddy, Rita; Shiota, Seiji; Graham, David Y.; Yamaoka, Yoshio

    2014-01-01

    Helicobacter pylori are Gram-negative, spiral-shaped microaerophilic bacteria etiologically related to gastric cancer. Lactate utilization has been implicated although no corresponding genes have been identified in the H. pylori genome. Here, we report that gene products of hp0137–0139 (lldEFG), hp0140–0141 (lctP), and hp1222 (dld) contribute to D- and L-lactate utilization in H. pylori. The three-gene unit hp0137–0139 in H. pylori 26695 encodes L-lactate dehydrogenase (LDH) that catalyzes the conversion of lactate to pyruvate in an NAD-dependent manner. Isogenic mutants of these genes were unable to grow on L-lactate-dependent medium. The hp1222 gene product functions as an NAD-independent D-LDH and also contributes to the oxidation of L-lactate; the isogenic mutant of this gene failed to grow on D-lactate-dependent medium. The parallel genes hp0140–0141 encode two nearly identical lactate permeases (LctP) that promote uptake of both D- and L-lactate. Interestingly an alternate route must also exist for lactate transport as the knockout of genes did not completely prevent growth on D- or L-lactate. Gene expression levels of hp0137–0139 and hp1222 were not enhanced by lactate as the carbon source. Expression of hp0140–0141 was slightly suppressed in the presence of L-lactate but not D-lactate. This study identified the genes contributing to the lactate utilization and demonstrated the ability of H. pylori to utilize both D- and L-lactate. PMID:25078575

  3. A novel mode of lactate metabolism in strictly anaerobic bacteria.

    PubMed

    Weghoff, Marie Charlotte; Bertsch, Johannes; Müller, Volker

    2015-03-01

    Lactate is a common substrate for major groups of strictly anaerobic bacteria, but the biochemistry and bioenergetics of lactate oxidation is obscure. The high redox potential of the pyruvate/lactate pair of E0 '?=?-190?mV excludes direct NAD(+) reduction (E0 '?=?-320?mV). To identify the hitherto unknown electron acceptor, we have purified the lactate dehydrogenase (LDH) from the strictly anaerobic, acetogenic bacterium Acetobacterium woodii. The LDH forms a stable complex with an electron-transferring flavoprotein (Etf) that exhibited NAD(+) reduction only when reduced ferredoxin (Fd(2-) ) was present. Biochemical analyses revealed that the LDH/Etf complex of A.?woodii uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD(+) as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin (E0 '???-500?mV) to NAD(+) according to: lactate?+?Fd(2-) ?+?2 NAD(+) ???pyruvate?+?Fd?+?2 NADH. The reduced Fd(2-) is regenerated from NADH by a sequence of events that involves conversion of chemical (ATP) to electrochemical ( ? ? ˜ Na + ) and finally redox energy (Fd(2-) from NADH) via reversed electron transport catalysed by the Rnf complex. Inspection of genomes revealed that this metabolic scenario for lactate oxidation may also apply to many other anaerobes. PMID:24762045

  4. Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase

    PubMed Central

    1991-01-01

    In adult regenerating cardiomyocytes in culture, in contrast to fetal cells, mitochondrial creatine kinase (Mi-CK) was expressed. In the same cell, two populations of mitochondria, differing in shape, in distribution within the cell and in content of Mi-CK, could be distinguished. Immunofluorescence studies using antibodies against Mi- CK revealed a characteristic staining pattern for the two types of mitochondria: giant, mostly cylindrically shaped, and, as shown by confocal laser light microscopy, randomly distributed mitochondria exhibited a strong signal for Mi-CK, whereas small, "normal" mitochondria, localized in rows between myofibrils, gave a much weaker signal. Transmission EM of the giant mitochondria demonstrated paracrystalline inclusions located between cristae membranes. Immunogold labeling with anti-Mi-CK antibodies revealed a specific decoration of these inclusions for Mi-CK. Addition of 20 mM creatine, the substrate of Mi-CK, to the essentially creatine-free culture medium caused the disappearance of the giant cylindrically shaped mitochondria as well as of the paracrystalline inclusions, accompanied by an increase of the intracellular level of total creatine. Replacement of creatine in the medium by the creatine analogue and competitor beta- guanidinopropionic acid caused the reappearance of the enlarged mitochondria. It is believed that the accumulation of Mi-CK within the paracrystalline inclusions, similar to those observed in certain myopathies, represents a compensatory effect of the cardiomyocytes to cope with a metabolic stress situation caused by low intracellular total creatine levels. PMID:1849138

  5. Multichannel Simultaneous Determination of Activities of Lactate Dehydrogenase

    SciTech Connect

    Ma, L.

    2000-09-12

    It is very important to find the best conditions for some enzymes to do the best catalysis in current pharmaceutical industries. Based on the results above, we could say that this set-up could be widely used in finding the optimal condition for best enzyme activity of a certain enzyme. Instead of looking for the best condition for enzyme activity by doing many similar reactions repeatedly, we can complete this assignment with just one run if we could apply enough conditions.

  6. The Partial Purification and Characterization of Lactate Dehydrogenase.

    ERIC Educational Resources Information Center

    Wolf, Edward C.

    1988-01-01

    Offers several advantages over other possibilities as the enzyme of choice for a student's first exposure to a purification scheme. Uses equipment and materials normally found in biochemistry laboratories. Incorporates several important biochemical techniques including spectrophotometry, chromatography, centrifugation, and electrophoresis. (MVL)

  7. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    ERIC Educational Resources Information Center

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to…

  8. Characterization of the L-Lactate Dehydrogenase from Aggregatibacter actinomycetemcomitans

    Microsoft Academic Search

    Stacie A. Brown; Marvin Whiteley; Paul Cobine

    2009-01-01

    Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource

  9. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction, and tumors of the lung or kidneys. (b) Classification. Class II...

  10. Lactate dehydrogenase-elevating virus: an ideal persistent virus?

    Microsoft Academic Search

    Peter G. W. Plagemann; Raymond R. R. Rowland; Chen Even; Kay S. Faaberg

    1995-01-01

    LDV contradicts all commonly held views about mechanisms of virus persistence, namely that persistence is primarily associated with noncytopathic viruses, or the selection of immune escape variants or other mutants, or a decrease in expression of certain viral proteins by infected cells, or replication in “immune-privileged sites”, or a general suppression of the host immune system, etc. [1, 2, 5,

  11. Partial reconstruction of in vitro gluconeogenesis arising from mitochondrial l-lactate uptake/metabolism and oxaloacetate export via novel L-lactate translocators.

    PubMed Central

    De Bari, Lidia; Atlante, Anna; Valenti, Daniela; Passarella, Salvatore

    2004-01-01

    In the light of the occurrence of L-lactate dehydrogenase inside the mitochondrial matrix, we looked at whether isolated rat liver mitochondria can take up and metabolize L-lactate, and provide oxaloacetate outside mitochondria, thus contributing to a partial reconstruction of gluconeogenesis in vitro. We found that: (1) L-lactate (10 mM), added to mitochondria in the presence of a cocktail of glycolysis/gluconeogenesis enzymes and cofactors, can lead to synthesis of glyceraldehyde-3-phosphate at a rate of about 7 nmol/min per mg mitochondrial protein. (2) Three novel translocators exist to mediate L-lactate traffic across the inner mitochondrial membrane. An L-lactate/H+ symporter was identified by measuring fluorimetrically the rate of endogenous pyridine nucleotide reduction. Consistently, L-lactate oxidation was found to occur with P/O ratio=3 (where P/O ratio is the ratio of mol of ATP synthesized to mol of oxygen atoms reduced to water during oxidative phosphorylation) and with generation of membrane potential. Proton uptake, which occurred as a result of addition of L-lactate to RLM together with electron flow inhibitors, and mitochondrial swelling in ammonium L-lactate solutions were also monitored. L-Lactate/oxaloacetate and L-lactate/pyruvate anti-porters were identified by monitoring photometrically the appearance of L-lactate counter-anions outside mitochondria. These L-lactate translocators, which are distinct from the monocarboxylate carrier, were found to differ from each other in V(max) values and in inhibition and pH profiles, and proved to regulate mitochondrial L-lactate metabolism in vitro. The role of lactate/mitochondria interactions in gluconeogenesis is discussed. PMID:14960150

  12. Clinical Pharmacology of the Dietary Supplement Creatine Monohydrate

    Microsoft Academic Search

    ADAM M. PERSKY; GAYLE A. BRAZEAU

    Abstract ................ ................ ................ ................ ............... 162 I. Introduction,................ ................ ................ ................ ........... 162 II. Creatine synthesis,and,transport,................ ................ ................ ........ 162 A. Synthesis ................ ................ ................ ................ ........... 162 B. Transporters,................ ................ ................ ................ ........ 163 III. Mechanisms,of action ................ ................ ................ ................ ... 164 A. Energy,metabolism,................ ................ ................ ................ .. 164 B. Protein synthesis,................ ................ ................ ................ ... 165

  13. Lactate stress testing by bedside lactate determination.

    PubMed

    Finsterer, Josef

    2003-12-01

    Lactate determination for the lactate-stress-test (LST) by means of a bedside method has not been performed. Serum lactate was determined by means of the Ektachrome Clinical Chemistry Slide (LST1) and bedside by means of the Acutrend Lactate (LST2) once before, 3 times during, and once after a 15-min, constant 30-W workload on a bicycle in 20 controls, 21 disease controls, and 22 patients with mitochondriopathy (MCP). Lactate's upper reference limits at rest, 5, 10, 15 min after starting, and 15 min after finishing the exercise were 2.0, 1.9, 1.9, 1.8, and 1.5 mmol/L for the LST1 and 2.5, 2.9, 2.5, 2.7, and 2.0 mmol/L for the LST2. The LSTI (LST2) was abnormal in 17 (18) MCP patients, 7 (3) disease controls, and none (none) of the healthy subjects. The sensitivity of the LST1 (LST2) for MCP patients was 77% (82%). The specificity of the LST1 (LST2) was 67% (86%). Sensitivity and specificity of the LST2 are higher than that of the LST1. The LST2 can thus replace the LST1, since it is also easier to handle, quick, reliable, and cheaper. PMID:15128184

  14. Creatine kinase isozyme expression in prenatal rat heart

    Microsoft Academic Search

    Hildegard D. J. Hasselbaink; Wilhelmina Th. Labruyère; Antoon F. M. Moorman; Wouter H. Lamers

    1990-01-01

    The distribution pattern of creatine kinase (E.C 2.7.3.2) isozymes in prenatal rat heart and skeletal muscle was studied by immunohistochemistry. Between embryonic day (ED) 12–18, creatine kinase M (CK-M) is heterogeneously expressed in the heart: a pronounced staining of CK-M is first observed in the outflow tract and the trabeculae of the right ventricle (ED12-14), and subsequently in the venous

  15. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/?m 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  16. Creatine metabolism differs between mammals and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Borchel, Andreas; Verleih, Marieke; Rebl, Alexander; Kühn, Carsten; Goldammer, Tom

    2014-01-01

    Creatine plays an important role in the cell as an energy buffer. As the energy system is a basic element of the organism it may possibly contribute to differences between rainbow trout strains selected for the traits growth and robustness, respectively. The cDNA sequences of creatine-related genes encoding glycine amidinotransferase (GATM), guanidinoacetate N-methyltransferase (GAMT), creatine kinase muscle-type (CKM) and creatine transporter 1 (CT1, encoded by gene solute carrier family 6, member 8 (SLC6A8)) were characterized in rainbow trout. Transcripts of the respective genes were quantified in kidney, liver, brain and skeletal muscle in both trout strains that had been acclimated to different temperatures. Several differences between the compared trout strains were found as well as between temperatures indicating that the energy system may contribute to differences between both strains. In addition to that, the expression data showed clear differences between the creatine system in rainbow trout and mammals, as the spatial distribution of the enzyme-encoding gene expression was clearly different from the patterns described for mammals. In rainbow trout, creatine synthesis seems to take place to a big extent in the skeletal muscle. PMID:25279302

  17. Physiology of lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The breast changes in size, shape, and function during puberty, pregnancy, and lactation. The physiology of lactation is reviewed here. The breast is composed of fat and connective tissue that supports a tubuloalveolar structure. During development, anatomic changes involving new lobule formation an...

  18. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function

    Microsoft Academic Search

    R. Guzun; N. Timohhina; K. Tepp; M. Gonzalez-Granillo; I. Shevchuk; V. Chekulayev; A. V. Kuznetsov; T. Kaambre; V. A. Saks

    2011-01-01

    Physiological role of creatine (Cr) became first evident in the experiments of Belitzer and Tsybakova in 1939, who showed\\u000a that oxygen consumption in a well-washed skeletal muscle homogenate increases strongly in the presence of creatine and with\\u000a this results in phosphocreatine (PCr) production with PCr\\/O2 ratio of about 5–6. This was the beginning of quantitative analysis in bioenergetics. It was

  19. Analysis of conformationally restricted alpha-ketoglutarate analogues as substrates of dehydrogenases and aminotransferases.

    PubMed

    Denton, T T; Thompson, C M; Cooper, A J

    2001-11-15

    Five synthetic, conformationally restricted alpha-ketoglutarate analogues were tested as substrates of a variety of dehydrogenases and aminotransferases. The compounds were found not to be detectable substrates of glutamate dehydrogenase, L-leucine dehydrogenase, L-phenylalanine dehydrogenase, lactate dehydrogenase, malate dehydrogenase, glutamine transaminase K, aspartate aminotransferase, alanine aminotransferase, and alpha-ketoglutarate dehydrogenase complex. However, two thermostable aminotransferases were identified that catalyze transamination between several L-amino acids (e.g., phenylalanine, glutamate) and the alpha-ketoglutarate analogues of interest. Transamination between L-glutamate (or L-phenylalanine) and the alpha-ketoglutarate analogues was found to be 0.13 to 1.08 micromol/h/mg at 45 degrees C. The products resulting from transamination between L-phenylalanine and the alpha-ketoglutarate analogues were separated by reverse-phase HPLC, and the newly formed amino acid analogues were analyzed by LC-MS in an ion selective mode. In each case, the ions obtained were consistent with the expected product and a representative example is provided. The possibility existed that although the alpha-ketoglutarate analogues are not substrates of the dehydrogenases and most of the aminotransferases investigated, they might be good inhibitors. Weak inhibition of aminotransferases and glutamate dehydrogenase was found with some of the alpha-ketoglutarate analogues. The newly available thermostable aminotransferases may have general utility in the synthesis of bulky L-amino acids from the corresponding alpha-keto acids. PMID:11700982

  20. Creatine supplementation alters insulin secretion and glucose homeostasis in vivo.

    PubMed

    Rooney, Kieron; Bryson, Janet; Phuyal, Jenny; Denyer, Gareth; Caterson, Ian; Thompson, Campbell

    2002-04-01

    Dietary creatine supplementation has been used to improve skeletal muscle performance. However, dietary creatine manipulation also affects glucose homeostasis. The aim of this study was to investigate the effect of dietary creatine supplementation on insulin secretion, glucose tolerance, and quadriceps glycogen metabolism in chow-fed rats. Forty-eight rats in total were divided into 2 groups of 24 and were then subdivided into 6 groups of 8. Rats were fed a diet supplemented with 0% (CON) or 2% (CREAT) creatine for 2, 4, or 8 weeks. At these 3 time points an oral glucose tolerance test was performed. Two days later, rats were euthanized and the pancreas and quadriceps muscles were collected. The peak insulin response to a glucose challenge was significantly elevated after both 4 (CON 327 +/- 72 v CREAT 735 +/- 140 pmol/L, P =.01) and 8 (CON 248 +/- 48 v CREAT 588 +/- 136 pmol/L, P =.02) weeks. Fasting insulin levels were also increased by creatine supplementation for 8 weeks (CON 78 +/- 14 v CREAT 139 +/- 14 pmol/L, P =.01). Glucose tolerance was not affected until 8 weeks at which point the peak plasma glucose was elevated in the creatine supplemented group (CON 10.1 +/- 0.6 v CREAT 13.5 +/- 1.5 mmol/L, P =.05). A significant increase in pancreatic total creatine content was seen in supplemented animals at 2 (CON 1.2 +/- 0.1 v CREAT 2.7 +/- 0.1 micromol/g wet wt, P =.005), 4 (CON 1.5 +/- 0.2 v CREAT 2.7 +/- 0.3 micromol/g wet wt, P =.02) and 8 (CON 1.5 +/- 0.1 v CREAT 2.6 +/- 0.1 micromol/g wet wt, P =.005) weeks, whereas no change in quadriceps total creatine or glycogen content was observed at any individual time point. This study shows that prolonged creatine supplementation induces abnormalities in pancreatic insulin secretion and changes in glucose homeostasis. PMID:11912564

  1. Creatine kinase MB isoenzyme in dermatomyositis: a noncardiac source

    SciTech Connect

    Larca, L.J.; Coppola, J.T.; Honig, S.

    1981-03-01

    Three patients with polymyositis had elevated serum levels of creatine kinase MB isoenzyme. The presence of this isoenzyme is used extensively to diagnose myocardial infarction, but the isoenzyme is also found in sera of patients with primary muscular and neuromuscular disorders. Researchers studied cardiac function in two of our patients with electrocardiograms, technetium stannous pyrophosphate scanning, and technetium 99m-labeled erythrocyte gated blood pool imaging and in the third patient by postmortem examination. There was no evidence of myocardial involvement to account for the high serum levels of isoenzyme. Creatine kinase MB in the sera of patients with polymyositis does not necessarily indicate myocardial necrosis.

  2. No evidence of an intracellular lactate shuttle in rat skeletal muscle

    PubMed Central

    Sahlin, Kent; Fernström, Maria; Svensson, Michael; Tonkonogi, Michail

    2002-01-01

    The concerted view is that cytosolic pyruvate is transferred into mitochondria and after oxidative decarboxylation further metabolized in the tricarboxylic acid cycle. Recently this view has been challenged. Based on experimental evidence from rat skeletal muscle it has been concluded that mitochondria predominantly oxidize lactate in vivo and that this constitutes part of an ‘intracellular lactate shuttle’. This view appears to be gaining acceptance in the scientific community and due to its conceptual importance, confirmation by independent experiments is required. We have repeated the experiments in mitochondria isolated from rat soleus muscle. Contrary to the previously published findings we cannot find any mitochondrial respiration with lactate. Analysis of lactate dehydrogenase (LDH) by spectrophotometry demonstrated that the activity in the mitochondrial fraction was only 0.7 % of total activity. However, even when external LDH was added to mitochondria, there were no signs of respiration with lactate. In the presence of conditions where lactate is converted to pyruvate (external additions of both LDH and NAD+), mitochondrial oxygen consumption increased. Furthermore, we provide theoretical evidence that direct mitochondrial lactate oxidation is energetically unlikely. Based on the present data we conclude that direct mitochondrial lactate oxidation does not occur in skeletal muscle. The presence of an ‘intracellular lactate shuttle’ can therefore be questioned. PMID:12042360

  3. Production of panic-like symptoms by lactate is associated with increased neural firing and oxidation of brain redox in the rat hippocampus.

    PubMed

    Bergold, Peter J; Pinkhasova, Valariya; Syed, Maryam; Kao, Hsin-Yi; Jozwicka, Anna; Zhao, Ning; Coplan, Jeremy D; Dow-Edwards, Diana; Fenton, André A

    2009-04-10

    Lactate uses an unknown mechanism to induce panic attacks in people and panic-like symptoms in rodents. We tested whether intraperitoneal (IP) lactate injections act peripherally or centrally to induce panic-like symptoms in rats by examining whether IP lactate directly affects the CNS. In Long-Evans rats, IP lactate (2 mmol/kg) injection increased lactate levels in the plasma and the cerebrospinal fluid. IP lactate also induced tachycardia and behavioral freezing suggesting the production of panic-like behavior. To enter intermediate metabolism, lactate is oxidized by lactate dehydrogenase (LDH) to pyruvate with co-reduction of NAD(+) to NADH. Therefore, we measured the ratio of NADH/NAD(+) to test whether IP lactate altered lactate metabolism in the CNS. Lactate metabolism was studied in the hippocampus, a brain region believed to contribute to panic-like symptoms. IP lactate injection lowered the ratio of NADH/NAD(+) without altering the total amount of NADH and NAD(+) suggesting oxidation of hippocampal redox state. Lactate oxidized hippocampal redox since intrahippocampal injection of the LDH inhibitor, oxamate (50mM) prevented the oxidation of NADH/NAD(+) by IP lactate. In addition to oxidizing hippocampal redox, IP lactate rapidly increased the firing rate of hippocampal neurons. Similar IP pyruvate injections had no effect. Neural discharge also increased following intrahippocampal lactate injection suggesting that increased discharge was a direct action of lactate on the hippocampus. These studies show that oxidation of brain redox and increased hippocampal firing are direct actions of lactate on the CNS that may contribute to the production of lactate-induced panic. PMID:19429039

  4. Activity of select dehydrogenases with Sepharose-immobilized N(6)-carboxymethyl-NAD.

    PubMed

    Beauchamp, Justin; Vieille, Claire

    2015-03-01

    N(6)-carboxymethyl-NAD (N(6)-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N(6)-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N(6)-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N(6)-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N(6)-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N(6)-amine group on NAD. PMID:25611453

  5. Radioimmunoassay measurement of creatine kinase bb in the serum of schizophrenic patients

    SciTech Connect

    Lerner, M.H.; Friedhoff, A.J.

    1980-03-03

    Brain type creatine kinase (BB) isoenzyme was measured using a highly sensitive and specific radioimmunoassay procedure in two schizophrenic populations. The data would indicate that in the schizophrenic populations examined there is insufficient tissue disruption to cause abnormal build-up of brain creatine kinase levels. However the possibility of a rapid removal of creatine kinase BB from the circulation exists. The elevated creatine kinase reported in acute schizophrenics is most likely not of brain origin.

  6. Lactic dehydrogenase and cancer: an overview.

    PubMed

    Gallo, Monica; Sapio, Luigi; Spina, Annamaria; Naviglio, Daniele; Calogero, Armando; Naviglio, Silvio

    2015-01-01

    Despite the intense scientific efforts made, there are still many tumors that are difficult to treat and the percentage of patient survival in the long-term is still too low. Thus, new approaches to the treatment of cancer are needed. Cancer is a highly heterogeneous and complex disease, whose development requires a reorganization of cell metabolism. Most tumor cells downregulate mitochondrial oxidative phosphorylation and increase the rate of glucose consumption and lactate release, independently of oxygen availability (Warburg effect). This metabolic rewiring is largely believed to favour tumor growth and survival, although the underlying molecular mechanisms are not completely understood. Importantly, the correlation between the aerobic glycolysis and cancer is widely regarded as a useful biochemical basis for the development of novel anticancer strategies. Among the enzymes involved in glycolysis, lactate dehydrogenase (LDH) is emerging as a very attractive target for possible pharmacological approaches in cancer therapy. This review addresses the state of the art and the perspectives concerning LDH both as a useful diagnostic marker and a relevant molecular target in cancer therapy and management. PMID:25961554

  7. Absorption of creatine supplied as a drink, in meat or in solid form

    Microsoft Academic Search

    Roger C. Harris; Mary Nevill; D. Beorn Harris; Joanne L. Fallowfield; Gregory C. Bogdanis; John A. Wise

    2002-01-01

    We examined the plasma concentration curve obtained over 6 h after the ingestion of 2 g of creatine (Cr) (equivalent to 2.3 g Cr ·H 2 O) contained in meat or in solution in five non-users of creatine supplements. Peak plasma creatine concentration was lower after the ingestion of meat but was maintained close to this for a longer period.

  8. Luminometric Assays of ATP, Phosphocreatine, and Creatine for Estimation of Free ADP and Free AMP

    Microsoft Academic Search

    Peter Ronner; Edward Friel; Katharina Czerniawski; Stefanie Fränkle

    1999-01-01

    We present methods to measure ATP, phosphocreatine, and total creatine (the sum of creatine and phosphocreatine) in alkaline cell extracts. Knowledge of these parameters, together with the known equilibrium constants for the creatine kinase and adenylate kinase-catalyzed reactions, allows one to estimate the levels of free ADP and free AMP inside cells. The enzymatic assays for the above-mentioned metabolites all

  9. Four-Angle Saturation Transfer (FAST) Method for Measuring Creatine Kinase Reaction Rates In Vivo

    E-print Network

    Ouwerkerk, Ronald

    Four-Angle Saturation Transfer (FAST) Method for Measuring Creatine Kinase Reaction Rates In Vivo to the effects of exchange are evaluated for creatine kinase (CK) metab- olism modeled for skeletal and heart rates; creatine kinase; high-energy phosphate; energy metabolism Compromised energy metabolism

  10. The effects of a 16 mile run on Creatine Kinase levels 24, 48, and 72 hours

    E-print Network

    New Hampshire, University of

    The effects of a 16 mile run on Creatine Kinase levels 24, 48, and 72 hours post run. L. J. Palombo in their regular training program. This training run may cause muscle damage. Creatine Kinase (CK), an enzyme analysis of the Creatine Kinase values revealed that CK was significantly higher (p=0.0053) 24 and 48 hours

  11. Crystal structure of rabbit muscle creatine kinase J.K. Mohana RaoY

    E-print Network

    Crystal structure of rabbit muscle creatine kinase J.K. Mohana RaoY *, Grzegorz BujaczY , Alexander Abstract The crystal structure of rabbit muscle creatine kinase, solved at 2.35 Aî resolution by X of arginine residues. The putative binding site of creatine, which is occupied by a sulfate group

  12. Evaluation with the centrifugal fast analyzer of a chemical activation procedure for creatine kinase MB isoenzyme

    Microsoft Academic Search

    W. D. Bostick; J. E. Mrochek

    1977-01-01

    The differential activation method for the determination of the ''myocardial'' isoenzyme of creatine kinase (MB) is based on the computed difference in activity of serum aliquots activated by the combination of dithiothreitol and glutathione (skeletal plus myocardial creatine kinase) and by glutathione alone (skeletal creatine kinase). The unique ability of the Centrifugal Fast Analyzer to perform analyses in parallel is

  13. Implications of skeletal muscle creatine kinase to meat quality

    Microsoft Academic Search

    D. J. Daroit; A. Brandelli

    Creatine kinase (CK) is a key enzyme for the energetic metabolism of tissues with high and fl uctuating energy demands in vivo, as it is the case of the skeletal muscle tissue, which is the most important for the meat industry. This enzyme is generally utilized as an indicator of physical stress and\\/or muscle damage in animal production. However, CK

  14. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Ferrous lactate. 73.165 Section 73.165 Food...CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive ferrous lactate is the ferrous lactate defined in §...

  15. Simultaneous determination of creatine phosphate, creatine and 12 nucleotides in rat heart by LC-MS/MS.

    PubMed

    Wang, Jun-mei; Chu, Yang; Li, Wei; Wang, Xiang-yang; Guo, Jia-hua; Yan, Lu-lu; Ma, Xiao-hui; Ma, Ying-li; Yin, Qi-hui; Liu, Chang-xiao

    2014-05-01

    A simple, rapid and sensitive LC-MS/MS method was developed and validated for simultaneous determination of creatine phosphate (CP), creatine (Cr) and 12 nucleotides in rat heart. The analytes, ATP, ADP, AMP, GTP, GDP, GMP, CTP, CDP, CMP, UTP, UDP, UMP, CP, Cr, were extracted from heart tissue with pre-cooled (0°C) methanol/water (1:1, v/v) and separated on a Hypersil Gold AQ C18 column (150mm×4.6mm, 3?m) using an isocratic elution with a mobile phase consisting of 2mmol/L ammonium acetate in water (pH 10.0, adjusted with ammonia). The detection was performed by negative ion electrospray ionization in selective reaction monitoring mode (SRM). In the assay, all the analytes showed good linearity over the investigated concentration range (r>0.99). The accuracy was between 80.7% and 120.6% and the precision expressed in RSD was less than 15.6%. This method was successfully applied to measure the concentrations of the 12 nucleotides, creatine phosphate and creatine in rat heart for the first time. PMID:24705537

  16. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  17. Assignment of the creatine transporter gene (SLC6A8) to human chromosome Xq28 telomeric to G6PD

    SciTech Connect

    Gregor, P. [National Inst. on Drug Abuse, Baltimore, MD (United States)] [National Inst. on Drug Abuse, Baltimore, MD (United States); Nash, S.R.; Caron, M.G. [Duke Univ., Durham, NC (United States)] [and others] [Duke Univ., Durham, NC (United States); and others

    1995-01-01

    The creatine-phosphocreatine shuttle has important functions in the temporal and spatial maintenance of the energy supply to skeletal and cardiac muscle. Muscle cells do not synthesize creatine, but take it up via a specific sodium-dependent transporter - the creatine transporter. Thus, the creatine transporter has an important role in muscular physiology. Furthermore, inhibition of creatine transport in experimental animals causes muscle weakness. Recently, creatine transporter cDNAs have been isolated and characterized from rabbit and human. In this communication we report mapping of the creatine transporter gene to human chromosome Xq28. 12 refs., 1 fig.

  18. Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle.

    PubMed

    Guerrero-Ontiveros, M L; Wallimann, T

    1998-07-01

    Interest in creatine (Cr) as a nutritional supplement and ergogenic aid for athletes has surged over recent years. After cellular uptake, Cr is phosphorylated to phosphocreatine (PCr) by the creatine kinase (CK) reaction using ATP. At subcellular sites with high energy requirements, e.g. at the myofibrillar apparatus during muscle contraction, CK catalyzes the transphosphorylation of PCr to ADP to regenerate ATP, thus preventing a depletion of ATP levels. PCr is thus available as an immediate energy source, serving not only as an energy buffer but also as an energy transport vehicle. Ingestion of creatine increases intramuscular Cr, as well as PCr concentrations, and leads to exercise enhancement, especially in sprint performance. Additional benefits of Cr supplementation have also been noticed for high-intensity long-endurance tasks, e.g. shortening of recovery periods after physical exercise. The present article summarizes recent findings on the influence of Cr supplementation on energy metabolism, and introduces the Cr transporter protein (CreaT), responsible for uptake of Cr into cells, as one of the key-players for the multi-faceted regulation of cellular Cr homeostasis. Furthermore, it is suggested that patients with disturbances in Cr metabolism or with different neuro-muscular diseases may benefit from Cr supplementation as an adjuvant therapy to relieve or delay the onset of symptoms. Although it is still unclear how Cr biosynthesis and transport are regulated in health and disease, so far there are no reports of harmful side effects of Cr loading in humans. However, in this study, we report that chronic Cr supplementation in rats down-regulates in vivo the expression of the CreaT. In addition, we describe the presence of CreaT isoforms most likely generated by alternative splicing. PMID:9746337

  19. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate

    PubMed Central

    2012-01-01

    Background Creatine monohydrate (CrM) has been consistently reported to increase muscle creatine content and improve high-intensity exercise capacity. However, a number of different forms of creatine have been purported to be more efficacious than CrM. The purpose of this study was to determine if a buffered creatine monohydrate (KA) that has been purported to promote greater creatine retention and training adaptations with fewer side effects at lower doses is more efficacious than CrM supplementation in resistance-trained individuals. Methods In a double-blind manner, 36 resistance-trained participants (20.2?±?2?years, 181?±?7?cm, 82.1?±?12?kg, and 14.7?±?5% body fat) were randomly assigned to supplement their diet with CrM (Creapure® AlzChem AG, Trostberg, Germany) at normal loading (4 x 5?g/d for 7-days) and maintenance (5?g/d for 21-days) doses; KA (Kre-Alkalyn®, All American Pharmaceutical, Billings, MT, USA) at manufacturer’s recommended doses (KA-L, 1.5?g/d for 28-days); or, KA with equivalent loading (4 x 5?g/d for 7-days) and maintenance (5?g/d) doses of CrM (KA-H). Participants were asked to maintain their current training programs and record all workouts. Muscle biopsies from the vastus lateralis, fasting blood samples, body weight, DEXA determined body composition, and Wingate Anaerobic Capacity (WAC) tests were performed at 0, 7, and 28-days while 1RM strength tests were performed at 0 and 28-days. Data were analyzed by a repeated measures multivariate analysis of variance (MANOVA) and are presented as mean?±?SD changes from baseline after 7 and 28-days, respectively. Results Muscle free creatine content obtained in a subgroup of 25 participants increased in all groups over time (1.4?±?20.7 and 11.9?±?24.0?mmol/kg DW, p?=?0.03) after 7 and 28-days, respectively, with no significant differences among groups (KA-L ?7.9?±?22.3, 4.7?±?27.0; KA-H 1.0?±?12.8, 9.1?±?23.2; CrM 11.3?±?23.9, 22.3?±?21.0?mmol/kg DW, p?=?0.46). However, while no overall group differences were observed (p?=?0.14), pairwise comparison between the KA-L and CrM groups revealed that changes in muscle creatine content tended to be greater in the CrM group (KA-L ?1.1?±?4.3, CrM 11.2?±?4.3?mmol/kg DW, p?=?0.053 [mean?±?SEM]). Although some significant time effects were observed, no significant group x time interactions (p?>?0.05) were observed in changes in body mass, fat free mass, fat mass, percent body fat, or total body water; bench press and leg press 1RM strength; WAC mean power, peak power, or total work; serum blood lipids, markers of catabolism and bone status, and serum electrolyte status; or, whole blood makers of lymphocytes and red cells. Serum creatinine levels increased in all groups (p?creatine promoting greater increases in serum creatinine (p?=?0.03) but the increases observed (0.1 – 0.2?mg/dl) were well within normal values for active individuals (i.e., <1.28?±?0.2?mg/dl). Serum LDL was decreased to a greater degree following ingesting loading doses in the CrM group but returned to baseline during the maintenance phase. No side effects were reported. Conclusions Neither manufacturers recommended doses of KA (1.5?g/d) or KA with equivalent loading (20?g/d for 7-days) and maintenance doses (5?g/d for 21-days) of CrM promoted greater changes in muscle creatine content, body composition, strength, or anaerobic capacity than CrM (20?g/d for 7-days, 5?g/d for 21-days). There was no evidence that supplementing the diet w

  20. The changes of ?-glycerophosphate dehydrogenase isozymes in Solenopsis invicta queens during development and colony founding 

    E-print Network

    Dowler, Megan Gail

    1978-01-01

    on the frequency of the oscillatory contractions (Pringle 1965). The flight muacle of other insect orders behave like leg muscles, i. e. , their contractions are controlled directly from the nervous system. et-GPDH and LDH. --Insect muscles are among the most... dehydrogenase (LDH), resulting in a build up of lactate and an oxygen debt. Insect flight muscle oper- ates under high oxygen conditions and is low in LDH but high in at ? glycerophosphate dehydrogenase (4-GPDH). The LDH in insect leg muscle is usually...

  1. Non-invasive Monitoring of Lactate Dynamics in Human Forearm Muscle After Exhaustive Exercise by 1H-MRS at 7T

    PubMed Central

    Ren, Jimin; Sherry, A. Dean; Malloy, Craig R.

    2013-01-01

    Despite its importance in energy metabolism, lactate in human skeletal muscle has been difficult to detect by non-invasive 1H MRS mainly due to interference from large water and lipid signals. Long echo-time (TE) acquisitions at 7 Tesla effectively attenuates the water and lipid signals in forearm muscle allowing direct observation of both lactate resonances, the methine at 4.09 ppm and the methyl at 1.31 ppm. Using this approach, we are able to monitor lactate dynamics at a temporal resolution of 32 sec. While lactate was not detectable at rest, immediately after an acute period of exercise to fatigue the forearm muscle, lactate rose to a level comparable to that of creatine (~30 mmol/kg wet weight). In a typical 1H MR spectrum collected using a TE of 140 ms, the lactate methine and methyl resonances both appear as doublets with an unusually large splitting of ~20 Hz due to residual dipolar coupling. During muscle recovery following exercise, the lactate signals decay rapidly with a time constant of t½ = 2.0 ± 0.6 min (n = 12 subjects). This fast and simple lactate detection method may prove valuable for monitoring lactate metabolism in cancer and in sports medicine applications. PMID:23192863

  2. A case of late-onset riboflavin responsive multiple acyl-CoA dehydrogenase deficiency (MADD) with a novel mutation in ETFDH gene.

    PubMed

    Zhuo, Zhihong; Jin, Peina; Li, Fengyan; Li, Haiying; Chen, Xiaoxin; Wang, Huaili

    2015-06-15

    We report a novel mutation in the electron transfer flavoprotein dehydrogenase (EFTDH) gene in an adolescent Chinese patient with late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD) characterized by muscle weakness as early symptom. At the age of 9years, the patient experienced progressive muscle weakness. Blood creatine kinase level and aminotransferase were higher than normal. The muscle biopsy revealed lipid storage myopathy. Serum acylcarnitine and urine organic acid analyses were consistent with MADD. Genetic mutation analysis revealed a compound heterozygous mutation in EFTDH gene. The patients showed good response to riboflavin and l-carnitine treatment. PMID:25913573

  3. Creatine kinase in non-muscle tissues and cells

    Microsoft Academic Search

    Theo Wallimann; Wolfram Hemmer

    1994-01-01

    Over the past years, a concept for creatine kinase function, the ‘PCr-circuit’ model, has evolved. Based on this concept, multiple functions for the CK\\/PCr-system have been proposed, such as an energy buffering function, regulatory functions, as well as an energy transport function, mostly based on studies with muscle. While the temporal energy buffering and metabolic regulatory roles of CK are

  4. Effect of leonurine on the activity of creatine kinase

    Microsoft Academic Search

    Zhao Wang; Pei-lin Zhang; Yong Ju

    2004-01-01

    The effects of leonurine (1) on the activity of creatine kinase (CK) have been studied. The results show that leonurine inhibits enzyme activity in concentration- and time-dependent manners (at 0.75 and 1.51?mmol from 12 to 72?h). There are two mechanisms for the inhibition process. Compound 1 first acts as a non-competitive inhibitor and then as an irreversible inhibitor. Changes of

  5. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study

    SciTech Connect

    Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel [Metabolomique et Maladies Metaboliques, Institut National de la Sante et de la recherche Medicale, Unit 820, Faculte de Medecine R.T.H. Laennec, Universite de Lyon, 7-11 rue G. Paradin, 69372 Lyon Cedex 08 (France); Conjard-Duplany, Agnes, E-mail: agnes.duplany@recherche.univ-lyon1.f [Metabolomique et Maladies Metaboliques, Institut National de la Sante et de la recherche Medicale, Unit 820, Faculte de Medecine R.T.H. Laennec, Universite de Lyon, 7-11 rue G. Paradin, 69372 Lyon Cedex 08 (France)

    2010-01-01

    As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

  6. Improved radioimmunoassay for creatine kinase isoenzymes in plasma

    SciTech Connect

    Ritter, C.S.; Mumm, S.R.; Roberts, R.

    1981-11-01

    We describe convenient and relatively rapid procedures for purifying creatine kinase isoenzymes MM, BB, and MB, and their use in an improved radioimmunoassay for creatine kinase isoenzymes in plasma. The modifications include use of: (a) BB with a specific activity of 400 kU/G, which can be labeled with a specific radioactivity of 20 Ci/g; (b) albumin-free purified MB as inhibitor; (c) antiserum to MB creatine kinase; and (d) a second-antibody technique that necessitates only a 15-min incubation. The radioimmunoassay for MB has a sensitivity of 0.2 ..mu..g/L (80 mU/L) and a CV of <5%. Plasma MB average 22 (SD 12) ..mu..g/L in 200 normal subjects; 24 (SD 12) ..mu..g/L in 200 patients with chest pain without infarction; and 23 (SD 7) ..mu..g/L in 43 patients with renal disease, whether measured before or after dialysis. Peak values for plasma MB averaged 191 (SD 86) ..mu..g/L in 325 patients with documented myocardial infarction; BB was negligible. Extensive clinical experience indicates the radioimmunoassay to be suitably rapid, highly sensitive, and reliable as a diagnostic assay for MB on plasma.

  7. Creatine supplementation with specific view to exercise/sports performance: an update

    PubMed Central

    2012-01-01

    Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly). PMID:22817979

  8. Macro creatine kinase: determination and differentiation of two types by their activation energies

    SciTech Connect

    Stein, W.; Bohner, J.; Steinhart, R.; Eggstein, M.

    1982-01-01

    Determination of the MB isoenzyme of creatine kinase in patients with acute myocardial infarction may be disturbed by the presence of macro creatine kinase. The relative molecular mass of this form of creatine kinase in human serum is at least threefold that of the ordinary enzyme, and it is more thermostable. Here we describe our method for determination of macro creatine kinases and an easy-to-perform test for differentiating two forms of macro creatine kinase, based on their distinct activation energies. The activation energies of serum enzymes are mostly in the range of 40-65 kJ/mol of substrate. Unlike normal cytoplasmatic creatine kinases and IgG-linked CK-BB (macro creatine kinase type 1) a second form of macro creatine kinase (macro creatine kinase type 2) shows activation energies greater than 80 kJ/mol of substrate. The exact composition of macro creatine kinase type 2 is still unknown, but there is good reason to believe that it is of mitochondrial origin.

  9. A role for thioredoxin-interacting protein (Txnip) in cellular creatine homeostasis

    PubMed Central

    Ray, Tanmoy; Sahgal, Natasha; Sebag-Montefiore, Liam; Cross, Rebecca; Medway, Debra J.; Ostrowski, Philip J.; Neubauer, Stefan; Lygate, Craig A.

    2013-01-01

    Creatine is important for energy metabolism, yet excitable cells such as cardiomyocytes do not synthesize creatine and rely on uptake via a specific membrane creatine transporter (CrT; SLC6A8). This process is tightly controlled with downregulation of CrT upon continued exposure to high creatine via mechanisms that are poorly understood. Our aim was to identify candidate endogenous CrT inhibitors. In 3T3 cells overexpressing the CrT, creatine uptake plateaued at 3 h in response to 5 mM creatine but peaked 33% higher (P < 0.01) in the presence of cycloheximide, suggesting CrT regulation depends on new protein synthesis. Global gene expression analysis identified thioredoxin-interacting protein (Txnip) as the only significantly upregulated gene (by 46%) under these conditions (P = 0.036), subsequently verified independently at mRNA and protein levels. There was no change in Txnip expression with exposure to 5 mM taurine, confirming a specific response to creatine rather than osmotic stress. Small-interfering RNA against Txnip prevented Txnip upregulation in response to high creatine, maintained normal levels of creatine uptake, and prevented downregulation of CrT mRNA. These findings were relevant to the in vivo heart since creatine-deficient mice showed 39.71% lower levels of Txnip mRNA, whereas mice overexpressing the CrT had 57.6% higher Txnip mRNA levels and 28.7% higher protein expression compared with wild types (mean myocardial creatine concentration 124 and 74 nmol/mg protein, respectively). In conclusion, we have identified Txnip as a novel negative regulator of creatine levels in vitro and in vivo, responsible for mediating substrate feedback inhibition and a potential target for modulating creatine homeostasis. PMID:23715727

  10. A simple LC method with UV detection for the analysis of creatine and creatinine and its application to several creatine formulations.

    PubMed

    Dash, Alekha K; Sawhney, Angeli

    2002-07-31

    The objective of this study was to develop a simple and sensitive LC method for the determination of creatine and creatinine in various creatine supplement formulations. The chromatographic system comprised of a LC-600 pump, SCL-6B system controller, and SPD-6AV detector (Shimadzu, Japan). The mobile phase consisted of 0.045 M ammonium sulfate in water. The chromatographic separation was achieved at ambient temperature on a Betabasic C-18 column (250 x 4.6 mm, Keystone Sci.). The flow rate was maintained at 0.75 ml/min and effluents are monitored at 205 nm. 4-(2-Aminoethyl)benzene sulfonamide was used as an internal standard (IS). This method required less than 7 min of chromatographic time. The standard curves were linear over the concentration range of 1-100 microg/ml for creatine and 2-100 microg/ml for creatinine, respectively. The relative standard deviations (RSD) for the within-day and day-to-day precision for creatine were within 1.0-4.6 and 2.2-4.7%, respectively. The RSD for the accuracy of creatine assay was in the range of 2.4-4.7%. The RSD values for the within-day precision, day-to-day precision and accuracy for creatinine validation were 1.7-4.4, 2.3-5.4 and 2.4-4.8%, respectively. This method was used to determine: (i) the creatine concentration in various marketed products; (ii) saturated solubility of various creatine salts; and (iii) stability of creatine in aqueous solution. In conclusion, a simple and sensitive LC method with UV detection was developed for the simultaneous determination of creatine and creatinine in formulations. Di-creatine citrate salt showed a higher aqueous solubility (at 25 degrees C) as compared to creatine and creatine monohydrate. Some of the over-the-counter (OTC) products tested contained a very low level of creatine in contrast to their label claim. Substantial conversion of creatine into creatinine was noticed in liquid formulation. PMID:12093528

  11. Characterization of lactate utilization and its implication on the physiology of Haemophilus influenzae

    PubMed Central

    Lichtenegger, Sabine; Bina, Isabelle; Roier, Sandro; Bauernfeind, Stilla; Keidel, Kristina; Schild, Stefan; Anthony, Mark; Reidl, Joachim

    2014-01-01

    Haemophilus influenzae is a Gram-negative bacillus and a frequent commensal of the human nasopharynx. Earlier work demonstrated that in H. influenzae type b, l-lactate metabolism is associated with serum resistance and in vivo survival of the organism. To further gain insight into lactate utilization of the non-typeable (NTHi) isolate 2019 and laboratory prototype strain Rd KW20, deletion mutants of the l-lactate dehydrogenase (lctD) and permease (lctP) were generated and characterized. It is shown, that the apparent KM of l-lactate uptake is 20.1 ?M as determined for strain Rd KW20. Comparison of the COPD isolate NTHi 2019-R with the corresponding lctP knockout strain for survival in human serum revealed no lactate dependent serum resistance. In contrast, we observed a 4-fold attenuation of the mutant strain in a murine model of nasopharyngeal colonization. Characterization of lctP transcriptional control shows that the lactate utilization system in H. influenzae is not an inductor inducible system. Rather negative feedback regulation was observed in the presence of l-lactate and this is dependent on the ArcAB regulatory system. Additionally, for 2019 it was found that lactate may have signaling function leading to increased cell growth in late log phase under conditions where no l-lactate is metabolized. This effect seems to be ArcA independent and was not observed in strain Rd KW20. We conclude that l-lactate is an important carbon-source and may act as host specific signal substrate which fine tunes the globally acting ArcAB regulon and may additionally affect a yet unknown signaling system and thus may contribute to enhanced in vivo survival. PMID:24674911

  12. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation.

    PubMed

    Turner, Clare E; Byblow, Winston D; Gant, Nicholas

    2015-01-28

    Impairment or interruption of oxygen supply compromises brain function and plays a role in neurological and neurodegenerative conditions. Creatine is a naturally occurring compound involved in the buffering, transport, and regulation of cellular energy, with the potential to replenish cellular adenosine triphosphate without oxygen. Creatine is also neuroprotective in vitro against anoxic/hypoxic damage. Dietary creatine supplementation has been associated with improved symptoms in neurological disorders defined by impaired neural energy provision. Here we investigate, for the first time in humans, the utility of creatine as a dietary supplement to protect against energetic insult. The aim of this study was to assess the influence of oral creatine supplementation on the neurophysiological and neuropsychological function of healthy young adults during acute oxygen deprivation. Fifteen healthy adults were supplemented with creatine and placebo treatments for 7 d, which increased brain creatine on average by 9.2%. A hypoxic gas mixture (10% oxygen) was administered for 90 min, causing global oxygen deficit and impairing a range of neuropsychological processes. Hypoxia-induced decrements in cognitive performance, specifically attentional capacity, were restored when participants were creatine supplemented, and corticomotor excitability increased. A neuromodulatory effect of creatine via increased energy availability is presumed to be a contributing factor of the restoration, perhaps by supporting the maintenance of appropriate neuronal membrane potentials. Dietary creatine monohydrate supplementation augments neural creatine, increases corticomotor excitability, and prevents the decline in attention that occurs during severe oxygen deficit. This is the first demonstration of creatine's utility as a neuroprotective supplement when cellular energy provision is compromised. PMID:25632150

  13. In Vivo{sup 1}H Magnetic Resonance Spectroscopy of Lactate in Patients With Stage IV Head and Neck Squamous Cell Carcinoma

    SciTech Connect

    Le, Quynh-Thu [Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA (United States)], E-mail: qle@stanford.edu; Koong, Albert; Lieskovsky, Yee Yie [Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA (United States); Narasimhan, Balasubramanian [Department of Health Research and Policy, Division of Biostatistics, Stanford University Medical Center, Stanford, CA (United States); Graves, Edward [Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA (United States); Pinto, Harlan [Department of Medicine, Stanford University Medical Center, Stanford, CA (United States); Brown, J. Martin [Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA (United States); Spielman, Daniel [Department of Radiology, Stanford University Medical Center, Stanford, CA (United States)

    2008-07-15

    Purpose: To investigate in vivo{sup 1}H magnetic resonance spectroscopy imaging of lactate for assessing tumor hypoxia in head and neck cancers and to determine its utility in predicting the response and outcomes. Methods and Materials: Volume-localized lactate-edited {sup 1}H magnetic resonance spectroscopy at 1.5 T was performed in vivo on involved neck nodes and control subcutaneous tissues in 36 patients with Stage IV head and neck cancer. The signal intensities (SIs) of lactate, choline, and creatine and the choline/creatine ratio were measured. The tumor partial pressure of oxygen (pO{sub 2}) was obtained in the same lymph node before MRS. Patients were treated with either two cycles of induction chemotherapy (tirapazamine, cisplatin, 5-fluorouracil) followed by simultaneous chemoradiotherapy or the same regimen without tirapazamine. The lactate SI and the choline/creatine ratio correlated with the tumor pO{sub 2}, nodal response, and locoregional control. Results: The lactate SI was greater for the involved nodes (median, 0.25) than for the subcutaneous tissue (median, 0.04; p = 0.07). No significant correlation was found between the lactate SI and tumor pO{sub 2} (mean, 0.46 {+-} 0.10 for hypoxic nodes [pO{sub 2} {<=}10 mm Hg, n = 15] vs. 0.36 {+-} 0.07 for nonhypoxic nodes [pO{sub 2} >10 mm Hg, n = 21], p = 0.44). A significant correlation was found between the choline/creatine ratios and tumor pO{sub 2} (mean, 2.74 {+-} 0.34 for hypoxic nodes vs. 1.78 {+-} 0.31 for nonhypoxic nodes, p = 0.02). No correlation was found between the lactate SI and the complete nodal response (p = 0.52) or locoregional control rates. Conclusions: The lactate SI did not correlate with tumor pO{sub 2}, treatment response, or locoregional control. Additional research is needed to refine this technique.

  14. Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington's disease transgenic mice.

    PubMed

    Dedeoglu, Alpaslan; Kubilus, James K; Yang, Lichuan; Ferrante, Kimberly L; Hersch, Steven M; Beal, M Flint; Ferrante, Robert J

    2003-06-01

    While there have been enormous strides in the understanding of Huntington's disease (HD) pathogenesis, treatment to slow or prevent disease progression remains elusive. We previously reported that dietary creatine supplementation significantly improves the clinical and neuropathological phenotype in transgenic HD mice lines starting at weaning, before clinical symptoms appear. We now report that creatine administration started after onset of clinical symptoms significantly extends survival in the R6/2 transgenic mouse model of HD. Creatine treatment started at 6, 8, and 10 weeks of age, analogous to early, middle, and late stages of human HD, significantly extended survival at both the 6- and 8-week starting points. Significantly improved motor performance was present in both the 6- and 8-week treatment paradigms, while reduced body weight loss was only observed in creatine-supplemented R6/2 mice started at 6 weeks. Neuropathological sequelae of gross brain and neuronal atrophy and huntingtin aggregates were delayed in creatine-treated R6/2 mice started at 6 weeks. We show significantly reduced brain levels of both creatine and ATP in R6/2 mice, consistent with a bioenergetic defect. Oral creatine supplementation significantly increased brain concentrations of creatine and ATP to wild-type control levels, exerting a neuroprotective effect. These findings have important therapeutic implications, suggesting that creatine therapy initiated after diagnosis may provide significant clinical benefits to HD patients. PMID:12787055

  15. Age dependence of myosin heavy chain transitions induced by creatine depletion in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Baldwin, Kenneth M.

    1995-01-01

    This study was designed to test the hypothesis that myosin heavy chain (MHC) plasticity resulting from creatine depletion is an age-dependent process. At weaning (age 28 days), rat pups were placed on either standard rat chow (normal diet juvenile group) or the same chow supplemented with 1% wt/wt of the creatine analogue beta-guanidinopropionic acid (creatine depletion juvenile (CDJ) group). Two groups of adult rats (age approximately 8 wk) were placed on the same diet regimens (normal diet adult and creatine depletion adult (CDA) groups). After 40 days (CDJ and normal diet juvenile groups) and 60 days (CDA and normal diet adult groups), animals were killed and several skeletal muscles were removed for analysis of creatine content or MHC ditribution. In the CDJ group, creatine depletion (78%) was accompanied by significant shifts toward expression of slower MHC isoforms in two slow and three fast skeletal muscles. In contrast, creatine depletion in adult animals did not result in similar shifts toward slow MHC isoform expression in either muscle type. The results of this study indicate that there is a differential effect of creatine depletion on MHC tranitions that appears to be age dependent. These results strongly suggest that investigators contemplating experimental designs involving the use of the creatine analogue beta-guanidinopropionic acid should consider the age of the animals to be used.

  16. Reduced growth of Ehrlich ascites tumor cells in creatine depleted mice fed beta-guanidinopropionic acid.

    PubMed

    Ohira, Y; Ishine, S; Inoue, N; Yunoki, K

    1991-09-23

    The effect of implantation of Ehrlich ascites tumor (EAT) cells on creatine distribution was investigated. It was also studied how depletion of creatine by feeding creatine-analogue beta-guanidinopropionic acid (beta-GPA) affects the growth of EAT cells in mice. Enhanced mobilization of creatine from host tissues to EAT cells against a greater concentration gradient was observed. The creatine (but not creatinine) level in blood plasma was lowered to 22% of the normal value by beta-GPA feeding alone and assimilation of 14C-creatine into EAT cells was inhibited. The growth of EAT cells was significantly reduced and the duration of survival of mice after implantation of EAT cells was extended when the creatine concentration was decreased. A decrease in daily food consumption and the degree of muscle atrophy after implantation of EAT cells was less in beta-GPA than control groups. In the creatine-depleted mice, the rate of increase in total EAT cell number and the volume of abdominal ascites were approximately half of the control values, and more dead EAT cells were observed. These results suggest that supplementation of beta-GPA inhibits creatine transfer to EAT cells and reduces the growth of cancer cells. PMID:1911884

  17. Effects of creatine supplementation on oxidative stress profile of athletes

    PubMed Central

    2012-01-01

    Background Creatine (Cr) supplementation has been widely used among athletes and physically active individuals. Secondary to its performance-enhancing ability, an increase in oxidative stress may occur, thus prompting concern about its use. The purpose of this study is to investigate the effects of Cr monohydrate supplementation and resistance training on muscle strength and oxidative stress profile in healthy athletes. Methods A randomized, double-blind, placebo-controlled method was used to assess twenty-six male elite Brazilian handball players divided into 3 groups: Cr monohydrate supplemented group (GC, N = 9), placebo group (GP, N = 9), no treatment group (COT, N = 8) for 32 days. All subjects underwent a resistance training program. Blood samples were drawn on 0 and 32 days post Cr supplementation to analyze the oxidative stress markers, thiobarbituric acid reactive species (TBARS), total antioxidant status (TAS), and uric acid. Creatine phosphokinase, urea, and creatinine were also analyzed, as well. Fitness tests (1 repetition maximum - 1RM and muscle endurance) were performed on the bench press. Body weight and height, body fat percentage (by measuring skin folds) and upper muscular area were also evaluated. Statistical analysis was performed using ANOVA. Results Only GC group showed increase in 1RM (54 ± 9 vs. 63 ± 10 kg; p = 0.0356) and uric acid (4.6 ± 1.0 vs. 7.4 ± 1.6 mg/dl; p = 0.025), with a decrease in TAS (1.11 ± 0.34 vs. 0.60 ± 0.19 mmol/l; p = 0.001). No differences (pre- vs. post-training) in TBARS, creatine phosphokinase, urea, creatinine, body weight and height, body fat percentage, or upper muscular area were observed in any group. When compared to COT, GC group showed greater decrease in TAS (?0.51 ± 0.36 vs. -0.02 ± 0.50 mmol/l; p = 0.0268), higher increase in 1RM (8.30 ± 2.26 vs. 5.29 ± 2.36 kg; p = 0.0209) and uric acid (2.77 ± 1.70 vs. 1.00 ± 1.03 mg/dl; p = 0.0276). Conclusion We conclude that Cr monohydrate supplementation associated with a specific resistance program promoted a meaningful increase in muscle strength without inducing changes in body composition. The observed significant increase in uric acid and the decrease in TAS suggest that creatine supplementation, despite promoting acute effects on muscle strength improvement, might induce oxidative stress and decreases total antioxidant status of subjects. PMID:23259853

  18. Effect of leonurine on the activity of creatine kinase.

    PubMed

    Wang, Zhao; Zhang, Pei-Lin; Ju, Yong

    2004-12-01

    The effects of leonurine (1) on the activity of creatine kinase (CK) have been studied. The results show that leonurine inhibits enzyme activity in concentration- and time-dependent manners (at 0.75 and 1.51 mmol from 12 to 72 h). There are two mechanisms for the inhibition process. Compound 1 first acts as a non-competitive inhibitor and then as an irreversible inhibitor. Changes of CK were not found in 10% SDS-PAGE, but the amount of dimeric CK decreased in 10% non-SDS gel. The results suggest that 1 can inhibit CK activity by degrading its dimeric structure. PMID:15621588

  19. Regulation of glycolysis in the erythrocyte: role of the lactate/pyruvate and NAD/NADH ratios.

    PubMed

    Tilton, W M; Seaman, C; Carriero, D; Piomelli, S

    1991-08-01

    Mature erythrocytes, when removed from the circulation, exhibit severe disturbances of glycolytic flow, with accumulation not only of lactate, the ultimate product of glycolysis, but also of several upstream metabolic intermediates, primarily fructose-1,6-diphosphate, glyceraldehyde-3-phosphate, and dihydroxyacetone phosphate. This accumulation may be prevented (and also reverted) by allowing the diffusible end products lactate and pyruvate to leave the cell by equilibrating with a much larger extracellular compartment. The disturbance of erythrocyte glycolysis does not result from direct inhibition by lactate itself but from the interplay between the lactate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase (3-PGAD) reactions. The accumulation of intermediates reflects the increased lactate-to-pyruvate ratio; this leads to a secondary imbalance of the nicotinamide adenine dinucleotide-to-reduced nicotinamide adenine dinucleotide (NAD-to-NADH) ratio, which in turn slows down glycolysis at the 3-PGAD step, whose upstream metabolites then pile up. No accumulation, however, takes place if the lactate-to-pyruvate ratio is maintained constant in the extracellular compartment, regardless of concentrations. These studies demonstrate that orderly glycolysis in the erythrocyte is regulated by the NAD-to-NADH ratio and also provide a method that makes possible the in vitro study of erythrocyte glycolysis. PMID:1856577

  20. Citalopram in pregnancy and lactation

    Microsoft Academic Search

    Tuija Heikkinen; Ulla Ekblad; Pentti Kero; Satu Ekblad; Kari Laine

    2002-01-01

    Background: Although citalopram has gained wide acceptance in the treatment of depression and anxiety disorders, its use during pregnancy and lactation has been poorly characterized. The aim of this study was to examine the efficacy and safety of citalopram in relation to concentrations of citalopram and its metabolites during pregnancy and lactation.Methods: Eleven mothers taking citalopram and their infants were

  1. Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs

    PubMed Central

    McBreairty, Laura E.; Robinson, Jason L.; Furlong, Kayla R.; Brunton, Janet A.; Bertolo, Robert F.

    2015-01-01

    Creatine (Cr) is an important high-energy phosphate buffer in tissues with a high energy demand such as muscle and brain and is consequently a highly consumed nutritional supplement. Creatine is synthesized via the S-adenosylmethionine (SAM) dependent methylation of guanidinoacetate (GAA) which is not regulated by a feedback mechanism. The first objective of this study was to determine the effectiveness of GAA at increasing tissue Cr stores. Because SAM is required for other methylation reactions, we also wanted to determine whether an increased creatine synthesis would lead to a lower availability of methyl groups for other methylated products. Three month-old pigs (n = 18) were fed control, GAA- or Cr-supplemented diets twice daily. On day 18 or 19, anesthesia was induced 1–3 hours post feeding and a bolus of [methyl-3H]methionine was intravenously infused. After 30 minutes, the liver was analyzed for methyl-3H incorporation into protein, Cr, phosphatidylcholine (PC) and DNA. Although both Cr and GAA led to higher hepatic Cr concentration, only supplementation with GAA led to higher levels of muscle Cr (P < 0.05). Only GAA supplementation resulted in lower methyl-3H incorporation into PC and protein as well as lower hepatic SAM concentration compared to the controls, suggesting that Cr synthesis resulted in a limited methyl supply for PC and protein synthesis (P < 0.05). Although GAA is more effective than Cr at supporting muscle Cr accretion, further research should be conducted into the long term consequences of a limited methyl supply and its effects on protein and PC homeostasis. PMID:26110793

  2. Crystal Structure of Lactaldehyde Dehydrogenase from Escherichia coli and Inferences Regarding Substrate and Cofactor Specificity

    PubMed Central

    Di Costanzo, Luigi; Gomez, German A.; Christianson, David W.

    2007-01-01

    Aldehyde dehydrogenases catalyze the oxidation of aldehyde substrates to the corresponding carboxylic acids. Lactaldehyde dehydrogenase from E. coli (aldA gene product, P25553) is an NAD+-dependent enzyme implicated in the metabolism of L-fucose and L-rhamnose. During the heterologous expression and purification of taxadiene synthase from the Pacific yew, lactaldehyde dehydrogenase from E. coli was identified as a minor (? 5%) side product subsequent to its unexpected crystallization. Accordingly, we now report the serendipitous crystal structure determination of unliganded lactaldehyde dehydrogenase from E. coli determined by the technique of multiple isomorphous replacement using anomalous scattering at 2.2 Å... resolution. Additionally, we report the crystal structure of the ternary enzyme complex with products lactate and NADH at 2.1 Å... resolution, and the crystal structure of the enzyme complex with NADPH at 2.7 Å... resolution. The structure of the ternary complex reveals that the nicotinamide ring of the cofactor is disordered between two conformations: one with the ring positioned in the active site in the so-called “hydrolysis” conformation, and another with the ring extended out of the active site into the solvent region, designated the “out” conformation. This represents the first crystal structure of an aldehyde dehydrogenase-product complex. The active site pocket in which lactate binds is more constricted than that of medium-chain dehydrogenases such as the YdcW gene product of E. coli. The structure of the binary complex with NADPH reveals the first view of the structural basis of specificity for NADH: the negatively charged carboxylate group of E179 sterically and electrostatically destabilizes the binding of the 2?-phosphate group of NADPH, thereby accounting for the lack of enzyme activity with this cofactor. PMID:17173928

  3. A novel mouse model of creatine transporter deficiency

    PubMed Central

    Baroncelli, Laura; Alessandrì, Maria Grazia; Tola, Jonida; Putignano, Elena; Migliore, Martina; Amendola, Elena; Gross, Cornelius; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2014-01-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement  and behavioral disturbances, language and speech impairment ( OMIM #300352). CCDS1 is still an untreatable pathology that can be very invalidating for patients and caregivers. Only two murine models of CCDS1, one of which is an ubiquitous knockout mouse, are currently available to study the possible mechanisms underlying the pathologic phenotype of CCDS1 and to develop therapeutic strategies. Given the importance of validating phenotypes and efficacy of promising treatments in more than one mouse model we have generated a new murine model of CCDS1 obtained by ubiquitous deletion of 5-7 exons in the Slc6a8 gene. We showed a remarkable Cr depletion in the murine brain tissues and cognitive defects, thus resembling the key features of human CCDS1. These results confirm that CCDS1 can be well modeled in mice. This CrT ?/y murine model will provide a new tool for increasing the relevance of preclinical studies to the human disease. PMID:25485098

  4. Hydrogen Proton Magnetic Resonance Spectroscopy in Autism: Preliminary Evidence of Elevated Choline\\/Creatine Ratio

    Microsoft Academic Search

    Deborah K. Sokol; David W. Dunn; Mary Edwards-Brown; Judy Feinberg

    2002-01-01

    Hydrogen proton magnetic resonance spectroscopy is only beginning to be studied in autistic individuals. We report an association between hydrogen proton magnetic resonance spectroscopy choline\\/creatine ratios and severity of autism as measured by the Children's Autistic Rating Scale (Pearson r = .657, P = .04) in 10 autistic children. Hydrogen proton magnetic resonance spectroscopy choline\\/creatine ratio measures the concentration of

  5. Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis

    Microsoft Academic Search

    S. Stöckler-Ipsiroglu; B. Marescau; P. R. De Deyn; J. M. F. Trijbels; F. Hanefeld

    1997-01-01

    The first inborn error of creatine metabolism (guanidinoacetate methyltransferase [GAMT] deficiency) has recently been recognized in an infant with progressive extrapyramidal movement disorder. The diagnosis was established by creatine deficiency in the brain as detected by in vivo magnetic resonance spectroscopy and by defective GAMT activity and two mutant GAMT alleles in a liver biopsy. Here, we describe characteristic guanidino-compound

  6. Neuroprotective Effects of Creatine in a Transgenic Mouse Model of Huntington's Disease

    Microsoft Academic Search

    Robert J. Ferrante; Ole A. Andreassen; Bruce G. Jenkins; Alpaslan Dedeoglu; Stefan Kuemmerle; James K. Kubilus; Rima Kaddurah-Daouk; Steven M. Hersch; M. Flint Beal

    2000-01-01

    Huntington's disease (HD) is a progressive neurodegenerative illness for which there is no effective therapy. We examined whether creatine, which may exert neuroprotective effects by increasing phosphocreatine levels or by stabilizing the mito- chondrial permeability transition, has beneficial effects in a transgenic mouse model of HD (line 6\\/2). Dietary creatine sup- plementation significantly improved survival, slowed the devel- opment of

  7. Creatine kinase-myocardial band isoenzyme elevation after percutaneous coronary interventions using sirolimus-eluting stents.

    PubMed

    Stankovic, Goran; Chieffo, Alaide; Iakovou, Ioannis; Orlic, Dejan; Corvaja, Nicola; Sangiorgi, Giuseppe; Airoldi, Flavio; Colombo, Antonio

    2004-06-01

    We evaluated predictors of increased periprocedural creatine kinase-MB isoenzyme levels after implantation of sirolimus-eluting stents with an intent to fully cover the diseased segment. The total stent length per patient (predisposing factor) and elective use of glycoprotein IIb/IIIa (protective factor) were independent predictors of increased creatine kinase-MB isoenzyme levels. PMID:15165923

  8. A simple LC method with UV detection for the analysis of creatine and creatinine and its application to several creatine formulations

    Microsoft Academic Search

    Alekha K Dash; Angeli Sawhney

    2002-01-01

    The objective of this study was to develop a simple and sensitive LC method for the determination of creatine and creatinine in various creatine supplement formulations. The chromatographic system comprised of a LC-600 pump, SCL-6B system controller, and SPD-6AV detector (Shimadzu, Japan). The mobile phase consisted of 0.045 M ammonium sulfate in water. The chromatographic separation was achieved at ambient

  9. Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans

    Microsoft Academic Search

    Mark Tarnopolsky; Gianni Parise; Min-H Fu Surname; Andrea Brose; Andrew Prasad; Oliver Speer; Theo Wallimann

    2003-01-01

    Animal studies have shown that supra-physiological creatine monohydrate (Cr-mH) supplementation for 3 months reduced skeletal muscle creatine transporter (CRT) content. The doses of Cr-mH (1–2 g\\/kg\\/day) used in these studies were between 5 and 10 times those usually used in human studies, and it is unclear whether a down-regulation of CRT would occur in humans at the recommended doses of

  10. Focally Elevated Creatine Detected in Amyloid Precursor Protein (APP) Transgenic Mice and Alzheimer Disease Brain Tissue

    SciTech Connect

    Gallant,M.; Rak, M.; Szeghalmi, A.; Del Bigio, M.; Westaway, D.; Yang, J.; Julian, R.; Gough, K.

    2006-01-01

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine deposits were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.

  11. A review of creatine supplementation in age-related diseases: more than a supplement for athletes.

    PubMed

    Smith, Rachel N; Agharkar, Amruta S; Gonzales, Eric B

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. PMID:25664170

  12. Biophysical Journal Volume 73 November 1997 2667-2673 Mobility of Creatine Phosphokinase and f3-Enolase in Cultured

    E-print Network

    Biophysical Journal Volume 73 November 1997 2667-2673 Mobility of Creatine Phosphokinase and f3, Institut de Biologie Physico-Chimique, F75005 Paris ABSTRACT The diffusion of f3-enolase and creatine. A fraction of creatine phosphokinase is mobile in the sarcoplasm. Its diffusion coefficient in the cytosol, 4

  13. Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa

    PubMed Central

    Gao, Chao; Hu, Chunhui; Zheng, Zhaojuan; Jiang, Tianyi; Dou, Peipei; Zhang, Wen; Che, Bin; Wang, Yujiao; Lv, Min

    2012-01-01

    NAD-independent l-lactate dehydrogenase (l-iLDH) and NAD-independent d-lactate dehydrogenase (d-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an l-iLDH), and lldE (encoding a d-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses d-iLDH and l-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldRM, lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. l-Lactate and d-lactate interfered with the DNA-binding activity of LldR. Thus, l-iLDH and d-iLDH were expressed when the operon was induced in the presence of l-lactate or d-lactate. PMID:22408166

  14. The myocardial profile of the cytosolic isozymes of creatine kinase is apparently not related to cyanosis in congenital heart disease.

    PubMed Central

    Kessler-Icekson, G.; Birk, E.; Schlesinger, H.; Barhum, Y.; Ad, N.; Friedman, M.; Vidne, B. A.

    1999-01-01

    BACKGROUND: CKMB, the cardiac-specific heterodimer of cytosolic creatine-kinase (CK), is developmentally and physiologically regulated, tissue hypoxia being a proposed regulator. In patients with cyanotic heart disease the myocardium is perfused with partially saturated blood. We questioned whether the myocardium of cyanotic subjects contains higher proportions of CKMB. MATERIALS AND METHODS: CK activity, the distribution of cytosolic CK isozymes, activity of lactic dehydrogenase (LDH), and tissue protein content were determined in obstructive tissues removed at corrective surgery of patients with congenital heart defects. Cyanotic (n = 13) and acyanotic (n = 12) subjects were compared. RESULTS: In cyanotic and acyanotic patients, CK activity was 8.4 +/- 0.6 and 7.6 +/- 0.6 IU/mg protein and the proportion of CKMB was 21 +/- 1.4 and 22 +/- 2. 0% (mean +/- S.E.M), respectively. In the two groups of patients, the activity related to the B subunit corresponded to the steady-state level of the CKBmRNA. The tissue content of protein and the activities of CK and LDH were similar in cyanotic and acyanotic subjects and increased with the age. CONCLUSIONS: The lack of difference in CKMB distribution between the cyanotic and acyanotic patients may either indicate that hypooxygenation is not a regulator of CK isozyme expression, or may be attributed to the already high proportion of this isozyme in hypertrophied, obstructive tissues. Recruitment of additional CKMB, in the cyanotic hearts, may thus not be required. Images Fig. 3 PMID:10203576

  15. Light-induced phase responses in Gonyaulax are drastically altered by creatine.

    PubMed

    Roenneberg, T; Taylor, W

    1994-01-01

    The mammalian phosphagen creatine has been shown to shorten the circadian period (tau) of the bioluminescence rhythm in the marine alga Gonyaulax polyedra from 23 to 18 hr. The studies described here concern the interactive effects of creatine and light, mainly on the bioluminescence rhythm. We have found that the tau-shortening effect of creatine is greater in blue light, suggesting that it acts on a blue-sensitive light input pathway. In addition, creatine affects the phase response mechanism in Gonyaulax, which is also known to be mainly blue-sensitive. The responses to 4-hr light pulses are dramatically increased under the influence of creatine. The unusual phase response curve (PRC) of the Gonyaulax circadian system, which has no phase delays in the early night, is changed in the presence of creatine to a more typical type 0 PRC, with delays of up to 12 hr. Creatine also amplifies the cells' phototactic response, suggesting that the blue-sensitive light input pathway is shared by the phase-shifting mechanism of the bioluminescence oscillator and the mechanism responsible for phototaxis. PMID:7949302

  16. Creatine supplementation does not enhance submaximal aerobic training adaptations in healthy young men and women.

    PubMed

    Reardon, T F; Ruell, P A; Fiatarone Singh, M A; Thompson, C H; Rooney, K B

    2006-10-01

    The benefits of dietary creatine supplementation on muscle performance are generally related to an increase in muscle phosphocreatine content. However, creatine supplementation may benefit endurance sports through increased glycogen re-synthesis following exercise. This study investigated the effect of creatine supplementation on muscle glycogen content, submaximal exercise fuel utilisation and endurance performance following 4 weeks of endurance training. Thirteen healthy, physically active, non-vegetarian subjects volunteered to take part and completed the study. Subjects were supplemented with either creatine monohydrate (CREAT, n = 7) or placebo-maltodextrin (CON, n = 6). Submaximal fuel utilisation and endurance performance were assessed before and after a 4 week endurance training program. Muscle biopsies were also collected before and following training for assessment of muscle creatine and glycogen content. Training increased quadriceps glycogen content to the same degree (approximately 20%) in both groups (P = 0.04). There was a significant training effect on submaximal fuel utilisation and improved endurance performance. However, there was no significant treatment effect of creatine supplementation. Creatine supplementation does not effect metabolic adaptations to endurance training. PMID:16896727

  17. URINARY CREATINE AT REST AND AFTER REPEATED SPRINTS IN ATHLETES: A PILOT STUDY

    PubMed Central

    Nasrallah, F.; Feki, M.; Chamari, K.; Omar, S.; Alouane-Trabelsi, L.; Ben Mansour, A.; Kaabachi, N.

    2014-01-01

    Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatography mass spectrometry. Basal urinary creatine (UC) was significantly lower in sprinters than controls (34±30 vs. 74±3 µmol/mmol creatinine, p < 0.05). UC was inversely correlated with body mass (r = ?0.34, p < 0.01) and lean mass (r = ?0.30, p < 0.05), and positively correlated with fat mass (r = 0.32, p < 0.05). After acute exercise, urinary creatine significantly decreased in both athletes and controls. UC is low in sprinters at rest and further decreases after exercise, most likely due to a high uptake and use of creatine by muscles, as muscle mass and physical activity are supposed to be greater in athletes than untrained subjects. Further studies are needed to test the value of urinary creatine as a non-invasive marker of physical condition and as a parameter for managing Cr supplementation in athletes. PMID:24917689

  18. Bifunctional isocitrate–homoisocitrate dehydrogenase: A missing link in the evolution of ?-decarboxylating dehydrogenase

    Microsoft Academic Search

    Kentaro Miyazaki

    2005-01-01

    ?-Decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway

  19. Chronic Creatine Supplementation Alters Depression-like Behavior in Rodents in a Sex-Dependent Manner

    PubMed Central

    Allen, Patricia J; D'Anci, Kristen E; Kanarek, Robin B; Renshaw, Perry F

    2010-01-01

    Impairments in bioenergetic function, cellular resiliency, and structural plasticity are associated with the pathogenesis of mood disorders. Preliminary evidence suggests that creatine, an ergogenic compound known to promote cell survival and influence the production and usage of energy in the brain, can improve mood in treatment-resistant patients. This study examined the effects of chronic creatine supplementation using the forced swim test (FST), an animal model selectively sensitive to antidepressants with clinical efficacy in human beings. Thirty male (experiment 1) and 36 female (experiment 2) Sprague–Dawley rats were maintained on either chow alone or chow blended with either 2% w/w creatine monohydrate or 4% w/w creatine monohydrate for 5 weeks before the FST. Open field exploration and wire suspension tests were used to rule out general psychostimulant effects. Male rats maintained on 4% creatine displayed increased immobility in the FST as compared with controls with no differences by diet in the open field test, whereas female rats maintained on 4% creatine displayed decreased immobility in the FST and less anxiety in the open field test compared with controls. Open field and wire suspension tests confirmed that creatine supplementation did not produce differences in physical ability or motor function. The present findings suggest that creatine supplementation alters depression-like behavior in the FST in a sex-dependent manner in rodents, with female rats displaying an antidepressant-like response. Although the mechanisms of action are unclear, sex differences in creatine metabolism and the hormonal milieu are likely involved. PMID:19829292

  20. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    PubMed Central

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  1. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans.

    PubMed

    Clark, Richard V; Walker, Ann C; O'Connor-Semmes, Robin L; Leonard, Michael S; Miller, Ram R; Stimpson, Stephen A; Turner, Scott M; Ravussin, Eric; Cefalu, William T; Hellerstein, Marc K; Evans, William J

    2014-06-15

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19-30 yr, 70-84 yr), 15 postmenopausal women (51-62 yr, 70-84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  2. Development of an enzymatic chromatography strip with nicotinamide adenine dinucleotide-tetrazolium coupling reactions for quantitative l-lactate analysis.

    PubMed

    Kan, Shu-Chen; Chang, Wei-Feng; Lan, Min-Chi; Lin, Chia-Chi; Lai, Wei-Shiang; Shieh, Chwen-Jen; Hsiung, Kuang-Pin; Liu, Yung-Chuan

    2015-02-15

    In this study, a dry assay of l-lactate via the enzymatic chromatographic test (ECT) was developed. An l-lactate dehydrogenase plus a nicotinamide adenine dinucleotide (NADH) regeneration reaction were applied simultaneously. Various tetrazolium salts were screened to reveal visible color intensities capable of determining the lactate concentrations in the sample. The optimal analysis conditions were as follows. The diaphorase (0.5 ?l, 2(-6)U/?l) was immobilized in the test line of the ECT strip. Nitrotetrazolium blue chloride (5 ?l, 12 mM), l-lactate dehydrogenase (1 ?l, 0.25U/?l), and NAD(+) (2?l, 1.5×10(-5)M) were added into the mobile phase (100 ?l) composed of 0.1% (w/w) Tween 20 in 10mM phosphate buffer (pH 9.0), and the process was left to run for 10 min. This detection had a linear range of 0.039 to 5mM with a detection limit of 0.047 mM. This quantitative analysis process for l-lactate was easy to operate with good stability and was proper for the point-of-care testing applications. PMID:25454507

  3. Three-step preparation and purification of phosphorus-33-labeled creatine phosphate of high specific activity

    SciTech Connect

    Savabi, F.; Geiger, P.J.; Bessman, S.P.

    1984-03-01

    Rabbit heart mitochondria were used as a source of enzymes for the synthesis of phosphorus-labeled creatine phosphate. This method is based on the coupled reaction between mitochondrial oxidative phosphorylation and mitochondrial-bound creatine kinase. It is possible to convert more than 90% of the inorganic phosphate (P/sub i/) to creatine phosphate. The method used only small amounts of adenine nucleotides which led to a product with only slight nucleotide contamination. This could be removed by activated charcoal extraction. For further purification, a method for the removal of residual P/sub i/ is described. 20 references.

  4. The creatine kinase system in human skin: protective effects of creatine against oxidative and UV damage in vitro and in vivo.

    PubMed

    Lenz, Holger; Schmidt, Melanie; Welge, Vivienne; Schlattner, Uwe; Wallimann, Theo; Elsässer, Hans-Peter; Wittern, Klaus-Peter; Wenck, Horst; Stäb, Franz; Blatt, Thomas

    2005-02-01

    Cutaneous aging is characterized by a decline in cellular energy metabolism, which is mainly caused by detrimental changes in mitochondrial function. The processes involved seem to be predominantly mediated by free radicals known to be generated by exogenous noxes, e.g., solar ultraviolet (UV) radiation. Basically, skin cells try to compensate any loss of mitochondrial energetic capacity by extra-mitochondrial pathways such as glycolysis or the creatine kinase (CK) system. Recent studies reported the presence of cytosolic and mitochondrial isoenzymes of CK, as well as a creatine transporter in human skin. In this study, we analyzed the cutaneous CK system, focusing on those cellular stressors known to play an important role in the process of skin aging. According to our results, a stress-induced decline in mitochondrial energy supply in human epidermal cells correlated with a decrease in mitochondrial CK activity. In addition, we investigated the effects of creatine supplementation on human epidermal cells as a potential mechanism to reinforce the endogenous energy supply in skin. Exogenous creatine was taken up by keratinocytes and increased CK activity, mitochondrial function and protected against free oxygen radical stress. Finally, our new data clearly indicate that human skin cells that are energetically recharged with the naturally occurring energy precursor, creatine, are markedly protected against a variety of cellular stress conditions, like oxidative and UV damage in vitro and in vivo. This may have further implications in modulating processes, which are involved in premature skin aging and skin damage. PMID:15675966

  5. Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction.

    PubMed

    Gross, J J; Schwarz, F J; Eder, K; van Dorland, H A; Bruckmaier, R M

    2013-08-01

    During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n=25) or a restriction group (RES; 70% of energy requirements; n=25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and ?-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and ?-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor ?, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes. PMID:23746584

  6. The Occurrence of Glycolate Dehydrogenase and Glycolate Oxidase in Green Plants

    PubMed Central

    Frederick, Sue Ellen; Gruber, Peter J.; Tolbert, N. E.

    1973-01-01

    Homogenates of various lower land plants, aquatic angiosperms, and green algae were assayed for glycolate oxidase, a peroxisomal enzyme present in green leaves of higher plants, and for glycolate dehydrogenase, a functionally analogous enzyme characteristic of certain green algae. Green tissues of all lower land plants examined (including mosses, liverworts, ferns, and fern allies), as well as three freshwater aquatic angiosperms, contained an enzyme resembling glycolate oxidase, in that it oxidized l- but not d-lactate in addition to glycolate, and was insensitive to 2 mm cyanide. Many of the green algae (including Chlorella vulgaris, previously claimed to have glycolate oxidase) contained an enzyme resembling glycolate dehydrogenase, in that it oxidized d- but not l-lactate, and was inhibited by 2 mm cyanide. Other green algae had activity characteristic of glycolate oxidase and, accordingly, showed a substantial glycolate-dependent O2 uptake. It is pointed out that this distribution pattern of glycolate oxidase and glycolate dehydrogenase among the green plants may have phylogenetic significance. Activities of catalase, a marker enzyme for peroxisomes, were also determined and were generally lower in the algae than in the land plants or aquatic angiosperms. Among the algae, however, there were no consistent correlations between levels of catalase and the type of enzyme which oxidized glycolate. PMID:16658555

  7. Hypoxia stimulates lactate disposal in rainbow trout.

    PubMed

    Omlin, Teye; Weber, Jean-Michel

    2010-11-15

    Current understanding of lactate metabolism in fish is based almost entirely on the interpretation of concentration measurements that cannot be used to infer changes in flux. The goals of this investigation were: (1) to quantify baseline lactate fluxes in rainbow trout (Oncorhynchus mykiss) under normoxic conditions; (2) to establish how changes in rates of lactate appearance (R(a)) and disposal (R(d)) account for the increase in blood lactate elicited by hypoxia; and (3) to identify the tissues responsible for lactate production. R(a) and R(d) lactate of rainbow trout were measured in vivo by continuous infusion of [U-(14)C]lactate in trout exposed to 25% O(2) saturation or maintained in normoxia for 90 min. In normoxic fish, R(a) lactate decreased from 18.2 to 13.1 ?mol kg(-1) min(-1) and R(d) lactate from 19.0 to 12.8. R(a) and R(d) were always matched, thereby maintaining a steady baseline blood lactate concentration of ?0.8 mmol l(-1). By contrast, the hypoxic fish increased blood lactate to 8.9 mmol l(-1) and R(a) lactate from 18.4 to 36.5 ?mol kg(-1) min(-1). This stimulation of anaerobic glycolysis was unexpectedly accompanied by a 52% increase in R(d) lactate from 19.9 to 30.3 ?mol kg(-1) min(-1). White muscle was the main producer of lactate, which accumulated to 19.2 ?mol g(-1) in this tissue. This first study of non-steady-state lactate kinetics in fish shows that the increase in lactate disposal elicited by hypoxia plays a strategic role in reducing the lactate load on the circulation. Without this crucial response, blood lactate accumulation would double. PMID:21037059

  8. Functional Replacement of the Escherichia coliD-(-)Lactate Dehydrogenase Gene (ldhA) with the L-(+)Lactate Dehydrogenase Gene (ldhL) from Pediococcus acidilactici

    Microsoft Academic Search

    Shengde Zhou; K. T. Shanmugam; L. O. Ingram

    2003-01-01

    The microbial production of L-()-lactic acid is rapidly expanding to allow increased production of poly- lactic acid (PLA), a renewable, biodegradable plastic. The physical properties of PLA can be tailored for specific applications by controlling the ratio of L-() and D-() isomers. For most uses of PLA, the L-() isomer is more abundant. As an approach to reduce costs associated

  9. The effects of the recommended dose of creatine monohydrate on kidney function.

    PubMed

    Taner, Basturk; Aysim, Ozagari; Abdulkadir, Unsal

    2011-02-01

    We report a case of a heretofore healthy 18-year-old man who presented with a 2-day history of nausea, vomiting and stomach ache while taking creatine monohydrate for bodybuilding purposes. The patient had acute renal failure, and a renal biopsy was performed to determine the cause of increased creatinine and proteinuria. The biopsy showed acute tubular necrosis. In the literature, creatine monohydrate supplementation and acute tubular necrosis coexistence had not been reported previously. Twenty-five days after stopping the creatine supplements, the patient recovered fully. Even recommended doses of creatine monohydrate supplementation may cause kidney damage; therefore, anybody using this supplement should be warned about this possible side effect, and their renal functions should be monitored regularly. PMID:25984094

  10. Nutritional aspects of human lactation*

    PubMed Central

    Thomson, A. M.; Black, A. E.

    1975-01-01

    This paper reviews the literature on the incidence and duration of breast-feeding in various countries, the volume and composition of breast milk, the health and nutrition of breast-fed babies as judged by growth and morbidity, maternal nutritional requirements during lactation, and the effect of prolonged lactation on maternal health. It appears that lactation can be as well sustained by impoverished as by affluent mothers, and that even in communities where malnutrition is common the average growth of infants is satisfactory up to the age of about 3 months on a diet of breast milk alone. Breast milk appears to have specific anti-infective properties, but prolonged breast-feeding will not prevent infections among older infants reared in a poor environment. The authors believe that breast-feeding is the best form of nutrition for the young infant and deplore its decline in modern industrial societies. The recommendations of various FAO/WHO Expert Groups on nutritional intakes during lactation are summarized. The need for an increased daily energy intake of 4.2 MJ (1 000 kcal) is questioned, and an increase of 2.5 MJ (600 kcal) is suggested. Data on the effect of prolonged lactation on the health of the mother are scanty; body weight appears to be maintained even among poorly nourished mothers. The authors stress the need for well-planned and technically adequate studies of the material and psychological factors involved in breast feeding. PMID:816479

  11. Needle-type lactate biosensor.

    PubMed

    Yang, Q; Atanasov, P; Wilkins, E

    1999-02-01

    A needle-type lactate biosensor has been developed for continuous intravascular lactate monitoring. The sensor employs poly(1,3-phenylenediamine) as the inner layer on the platinum electrode in order to eliminate the interference from oxidizable physiological substances. Cross-linking with glutaraldehyde was used for enzyme immobilization. Dithiothreitol was used as the stabilizer of lactate oxidase. PVC (polyvinyl chloride) was chosen as the external diffusion control membrane. Sensor performance was evaluated in vitro and the sensor shows a sensitivity of 10-15 nA/mM, and a linear range from 1 mM to at least 15 mM lactate. Evaluation of the sensor response in blood plasma showed similar sensitivity and linear range as indicated by the calibration curves obtained in buffer solution. The sensor has a short response time of approximately 1 minute. The sensors were operated continuously for 7 days in phosphate buffer containing solution with a concentration at the physiological lactate level. No significant change in sensor sensitivity and its linear range has been observed. Sensors show a minimum change in its performance when stored in buffer at 4 degrees C for at least 9 months. PMID:10101841

  12. Effect of creatine supplementation on cardiac muscle of exercise-stressed rats

    Microsoft Academic Search

    J. M. McClung; G. Hand; J. Davis; J. Carson

    2003-01-01

    .   The role of creatine supplementation in altering the physiological parameters regulating cardiac muscle's functional capacity\\u000a through the initiation of cardiac hypertrophy and altered contractile protein expression has not been determined. The purpose\\u000a of this study was to determine the effect of creatine supplementation, with and without exercise stress, on physiological\\u000a parameters regulating functional capacity through alterations in rat cardiac

  13. Intracellular alterations of the creatine kinase isoforms in brains of schizophrenic patients

    Microsoft Academic Search

    Tatyana P. Klushnik; Alexander Ya. Spunde; Alexander G. Yakovlev; Zaza A. Khuchua; Valdur A. Saks; Marat E. Vartanyan

    1991-01-01

    Postmortem brain tissues of schizophrenic patients were found to contain 5–10 times less water-soluble creatine kinase (BB\\u000a CK) and 1.5–3 times less mitochondrial creatine kinase as compared to control. The major part of BB CK in schizophrenic brain\\u000a tissues, contrary to control, was found to be insoluble in water (particulate form of BB CK) and could be extracted from brain

  14. Effect of short-term creatine supplementation on renal responses in men

    Microsoft Academic Search

    J. R. Poortmans; H. Auquier; V. Renaut; A. Durussel; M. Saugy; G. R. Brisson

    1997-01-01

    There is an increasing utilisation of oral creatine (Cr) supplementation among athletes who hope to enhance their performance\\u000a but it is not known if this ingestion has any detrimental effect on the kidney. Five healthy men ingested either a placebo\\u000a or 20?g of creatine monohydrate per day for 5 consecutive days. Blood samples and urine collections were analysed for Cr

  15. Creatine Supplementation Enhances Muscular Performance During High-Intensity Resistance Exercise

    Microsoft Academic Search

    JEFF S. VOLEK; WILLIAM J. KRAEMER; JILL A. BUSH; MARK BOETES; THOMAS INCLEDON; KRISTINE L. CLARK; JAMES M. LYNCH

    1997-01-01

    Objective This study was undertaken to investigate the influence of oral supplementation with creatine monohydrate on muscular performance during repeated sets of high-intensity resistance exercise.Subjects\\/design Fourteen active men were randomly assigned in a double-blind fashion to either a creatine group (n=7) or a placebo group (n=7). Both groups performed a bench press exercise protocol (5 sets to failure using each

  16. The genomic organization of a human creatine transporter (CRTR) gene located in Xq28

    SciTech Connect

    Sandoval, N.; Bauer, D.; Brenner, V. [Institute fuer Molekulare Biotechnologie, Jena (Germany)] [and others] [Institute fuer Molekulare Biotechnologie, Jena (Germany); and others

    1996-07-15

    During the course of a large-scale sequencing project in Xq28, a human creatine transporter (CRTR) gene was discovered. The gene is located approximately 36 kb centromeric to ALD. The gene contains 13 exons and spans about 8.5 kb of genomic DNA. Since the creatine transporter has a prominent function in muscular physiology, it is a candidate gene for Barth syndrome and infantile cardiomyopathy mapped to Xq28. 19 refs., 1 fig., 1 tab.

  17. Creatine supplementation improves intracellular Ca 2+ handling and survival in mdx skeletal muscle cells

    Microsoft Academic Search

    S. M Pulido; A. C Passaquin; W. J Leijendekker; C Challet; T Wallimann; U. T Rüegg

    1998-01-01

    Dystrophic skeletal muscle cells from Duchenne muscular dystrophy (DMD) patients and mdx mice exhibit elevated cytosolic Ca2+ concentrations ([Ca2+]c). Pretreatment of mdx myotubes for 6–12 days with creatine (20 mM) decreased the elevation in [Ca2+]c induced by either high extracellular Ca2+ concentrations or hypo-osmotic stress to control levels. 45Ca2+ influx measurements suggest that creatine lowered [Ca2+]c by stimulating sarcoplasmic reticulum

  18. Effects of creatine supplementation on muscle power, endurance, and sprint performance

    Microsoft Academic Search

    MIKEL IZQUIERDO; JAVIER IBANEZ; JUAN J. GONZALEZ-BADILLO; ESTEBAN M. GOROSTIAGA

    IZQUIERDO, M., J. IBANEZ, J. J. GONZALEZ-BADILLO, and E. M. GOROSTIAGA. Effects of creatine supplementation on muscle power, endurance, and sprint performance. Med. Sci. Sports Exerc., Vol. 34, No. 2, pp. 332-343, 2002. Purpose: To determine the effects of creatine (Cr) supplementation (20 g·d1 during 5 d) on maximal strength, muscle power production during repetitive high-power-output exercise bouts (MRPB), repeated

  19. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance.

    PubMed

    Omlin, Teye; Langevin, Karolanne; Weber, Jean-Michel

    2014-10-15

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 ?mol·kg(-1)·min(-1). This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  20. Ozone inhalation in rats: effects on alkaline phosphatase and lactic dehydrogenase isoenzymes in lavage and plasma

    SciTech Connect

    Nachtman, J.P.; Moon, H.L.; Miles, R.C.

    1988-10-01

    Ozone is found in urban and rural atmospheres and is produced from a variety of natural and man-made sources. Animal studies conducted at typical ambient levels result in reproducible morphological, biochemical and functional effects. Ozone damages type I epithelial cells, induces proliferation of type II cells and produces inflammation of the terminal bronchiolar-alveolar duct region. Ozone increases lung oxygen utilization and increases glutathione metabolism. Ozone increases airway resistance. The authors measured lactic dehydrogenase (LD) isoenzymes to ascertain the tissue giving rise to the increased LD activity in lavage. They also assayed acid phosphatase, alkaline phosphatase, creatine kinase activities, and protein levels since these parameters were increased in rat lung lavage after particulate exposure. They determined white cell differential and red cell morphology parameters because previous investigators reported that ozone increased neutrophil/lymphocyte ratio.

  1. Clinical Value of Plasma Creatine Kinase and Uric Acid Levels during First Week of Life

    PubMed Central

    Wharton, B. A.; Bassi, Urmilla; Gough, G.; Williams, Angela

    1971-01-01

    Levels of creatine kinase and uric acid in cord blood were variable but similar to those in maternal blood. During the first 24 hours of life there was a rise in the concentration of both substances, particularly of creatine kinase, to reach levels well above those normally found in later childhood. Thereafter there was a steady fall to stable levels around the fifth day. The causes of these obvious changes in concentration are not known. Uric acid levels during the first 24 hours were higher after a longer labour. Creatine kinase levels were lower, and uric acid levels higher in low birthweight babies. The plasma creatine kinase originated from non-cardiac muscle. Plasma creatine kinase and uric acid levels may help in the early diagnosis of rare specific disorders such as muscular dystrophy and the Lesch-Nyhan syndrome, but do not help in the diagnosis of other neurological disorders at this time of life, and give no indication of the child's prognosis, despite their occasional help in adult patients. Even with the specific syndromes, however, interpretation must be guarded. It is not known whether the high creatine kinase levels associated with Duchenne muscular dystrophy would be lost in the upper limits of the normal range for the first few days of life or whether they would be higher still. In the Lesch-Nyhan syndrome uric acid levels are well above the normal range defined in this investigation. PMID:5104539

  2. Ubiquitous mitochondrial creatine kinase downregulated in oral squamous cell carcinoma

    PubMed Central

    Onda, T; Uzawa, K; Endo, Y; Bukawa, H; Yokoe, H; Shibahara, T; Tanzawa, H

    2006-01-01

    In this study, we performed two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of fly mass spectrometry to identify the protein(s) associated with the development of oral squamous cell carcinomas (OSCCs) by comparing patterns of OSCC-derived cell lines with normal oral keratinocytes (NOKs), and found that downregulation of ubiquitous mitochondrial creatine kinase (CKMT1) could be a good candidate. Decreased levels of CKMT1 mRNA and protein were detected in all OSCC-derived cell lines examined (n=9) when compared to those in primary normal oral keratinocytes. Although no sequence variation in the coding region of the CKMT1 gene with the exception of a nonsense mutation in exon 8 was identified in these cell lines, we found a frequent hypermethylation in the CpG island region. CKMT1 expression was restored by experimental demethylation. In addition, when we transfected CKMT1 into the cell lines, they showed an apoptotic phenotype but no invasiveness. In clinical samples, high frequencies of CKMT1 downregulation were detected by immunohistochemistry (19 of 52 (37%)) and quantitative real-time RT–PCR (21 of 50 (42%)). Furthermore, the CKMT1 expression status was significantly correlated with tumour differentiation (P<0.0001). These results suggest that the CKMT1 gene is frequently inactivated during oral carcinogenesis and that an epigenetic mechanism may regulate loss of expression, which may lead to block apoptosis. PMID:16479256

  3. Swim performance following creatine supplementation in Division III athletes.

    PubMed

    Selsby, Joshua T; Beckett, Keith D; Kern, Michael; Devor, Steven T

    2003-08-01

    Creatine (Cr) supplementation has yielded inconsistent results when applied to competitive swimming. To further define the role of Cr, we tested the hypothesis that a Cr supplementation group of Division III swimmers would demonstrate enhanced performance when compared with placebo. In order to test this hypothesis, 8 male and 7 female collegiate Division III swimmers were assigned in a random, double-blind manner into either a Cr supplementation group (0.3 g Cr.kg(-1) body mass) or a placebo group. Loading was maintained for 5 days followed by a 9-day period where Cr-supplemented subjects consumed 2.25 g Cr regardless of body weight. A 50- and 100-yd sprint was performed prior to and following the supplementation regimens. The Cr supplementation group decreased their finish times in both the 50- and 100-yd sprints. Support of the hypothesis suggests that Cr supplementation for swimming events is effective for singular effort sprints of 50 and 100 yd in Division III athletes. PMID:12930165

  4. Semi-quantitative RT-PCR analysis of fat metabolism genes in mammary tissue of lactating and non-lactating water buffalo (Bubalus bubalis).

    PubMed

    Yadav, Poonam; Mukesh, Manishi; Kataria, Ranjit Singh; Yadav, Anita; Mohanty, Ashok Kumar; Mishra, Bishnu Prasad

    2012-04-01

    Understanding the mechanism of milk fat synthesis and secretion is important for dairy industry, as the nature of the cream fraction influences the manufacturing properties and organoleptic qualities of milk and dairy products. So, there is a need to understand the mechanism of milk fat synthesis and to elucidate the key genes regulating milk fat synthesis by studying the expression of genes involved in milk fat synthesis. Present manuscript reports the expression of genes involved in milk fat synthesis and metabolism in buffalo mammary tissue. The expression of lipogenic genes was studied in lactating and non-lactating mammary tissue of water buffalo by semi-quantitative reverse transcription PCR expression analysis. The genes studied were acetyl-CoA carboxylase (ACACA), stearoyl-CoA desaturase (SCD), 3 hydroxybutyrate dehydrogenase (BDH), LIPIN, lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma (PPARG), and sterol regulatory element binding protein (SREBF). The expression of ACACA, BDH, LIPIN, PPARG, LPL, and SREBF was higher in lactating as compared to non-lactating buffalo whereas no difference was found in the expression of SCD between both the stages. PMID:21965031

  5. Targeting lactate metabolism for cancer therapeutics

    PubMed Central

    Doherty, Joanne R.; Cleveland, John L.

    2013-01-01

    Lactate, once considered a waste product of glycolysis, has emerged as a critical regulator of cancer development, maintenance, and metastasis. Indeed, tumor lactate levels correlate with increased metastasis, tumor recurrence, and poor outcome. Lactate mediates cancer cell intrinsic effects on metabolism and has additional non–tumor cell autonomous effects that drive tumorigenesis. Tumor cells can metabolize lactate as an energy source and shuttle lactate to neighboring cancer cells, adjacent stroma, and vascular endothelial cells, which induces metabolic reprogramming. Lactate also plays roles in promoting tumor inflammation and in functioning as a signaling molecule that stimulates tumor angiogenesis. Here we review the mechanisms of lactate production and transport and highlight emerging evidence indicating that targeting lactate metabolism is a promising approach for cancer therapeutics. PMID:23999443

  6. Targeting lactate metabolism for cancer therapeutics.

    PubMed

    Doherty, Joanne R; Cleveland, John L

    2013-09-01

    Lactate, once considered a waste product of glycolysis, has emerged as a critical regulator of cancer development, maintenance, and metastasis. Indeed, tumor lactate levels correlate with increased metastasis, tumor recurrence, and poor outcome. Lactate mediates cancer cell intrinsic effects on metabolism and has additional non-tumor cell autonomous effects that drive tumorigenesis. Tumor cells can metabolize lactate as an energy source and shuttle lactate to neighboring cancer cells, adjacent stroma, and vascular endothelial cells, which induces metabolic reprogramming. Lactate also plays roles in promoting tumor inflammation and in functioning as a signaling molecule that stimulates tumor angiogenesis. Here we review the mechanisms of lactate production and transport and highlight emerging evidence indicating that targeting lactate metabolism is a promising approach for cancer therapeutics. PMID:23999443

  7. A Successful Induction of Lactation in Surrogate Pregnancy with Metoclopramide and Review of Lactation Induction

    Microsoft Academic Search

    Marzieh Shiva; Mitra Frotan; Arezoo Arabipoor; Elahe Mirzaaga

    In surrogate pregnancies genetic parents have little opportunity for early bonding with their infants, either prenatally (in utero) or during the immediate postnatal period. Procedures commonly used to induce lactation include both pharmacologic and nonpharmacologic methods, often in combination. Studies reporting induced lactation are sparse, due to the rarity of augmented lactation. Here we report a case of lactation induction

  8. Cell-cell and intracellular lactate shuttles.

    PubMed

    Brooks, George A

    2009-12-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. 'Cell-cell' and 'intracellular lactate shuttle' concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell-cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other. PMID:19805739

  9. Polymorphisms of Human Aldehyde Dehydrogenases

    Microsoft Academic Search

    Vasilis Vasiliou; Aglaia Pappa

    2000-01-01

    Aldehyde dehydrogenases (ALDHs), a superfamily of NAD(P)+-dependent enzymes with similar primary structures, catalyze the oxidation of a wide spectrum of endogenous and exogenous aliphatic and aromatic aldehydes. Thus far, 16 ALDH genes with distinct chromosomal locations have been identified in the human genome. Polymorphism in ALDH2 is associated with altered acetaldehyde metabolism, decreased risk of alcoholism and increased risk of

  10. Genetically switched D-lactate production in Escherichia coli.

    PubMed

    Zhou, Li; Niu, Dan-Dan; Tian, Kang-Ming; Chen, Xian-Zhong; Prior, Bernard A; Shen, Wei; Shi, Gui-Yang; Singh, Suren; Wang, Zheng-Xiang

    2012-09-01

    During a fermentation process, the formation of the desired product during the cell growth phase competes with the biomass for substrates or inhibits cell growth directly, which results in a decrease in production efficiency. A genetic switch is required to precisely separate growth from production and to simplify the fermentation process. The ldhA promoter, which encodes the fermentative D-lactate dehydrogenase (LDH) in the lactate producer Escherichia coli CICIM B0013-070 (ack-pta pps pflB dld poxB adhE frdA), was replaced with the ? p(R) and p(L) promoters (as a genetic switch) using genomic recombination and the thermo-controllable strain B0013-070B (B0013-070, ldhAp::kan-cI(ts)857-p(R)-p(L)), which could produce two-fold higher LDH activity at 42°C than the B0013-070 strain, was created. When the genetic switch was turned off at 33°C, strain B0013-070B produced 10% more biomass aerobically than strain B0013-070 and produced only trace levels of lactate which could reduce the growth inhibition caused by oxygen insufficiency in large scale fermentation. However, 42°C is the most efficient temperature for switching on lactate production. The volumetric productivity of B0013-070B improved by 9% compared to that of strain B0013-070 when it was grown aerobically at 33°C with a short thermo-induction at 42°C and then switched to the production phase at 42°C. In a bioreactor experiment using scaled-up conditions that were optimized in a shake flask experiment, strain B0013-070B produced 122.8 g/l D-lactate with an increased oxygen-limited productivity of 0.89 g/g·h. The results revealed the effectiveness of using a genetic switch to regulate cell growth and the production of a metabolic compound. PMID:22683845

  11. Clonorchis sinensis: molecular cloning and functional expression of novel cytosolic malate dehydrogenase.

    PubMed

    Zheng, Nancai; Xu, Jin; Wu, Zhongdao; Chen, Jinzhong; Hu, Xuchu; Song, Linxia; Yang, Guang; Ji, Chaoneng; Chen, Shouyi; Gu, Shaohua; Ying, Kang; Yu, Xinbing

    2005-04-01

    The NAD-dependent cytosolic malate dehydrogenase (cMDH, EC 1.1.1.37) plays a pivotal role in the malate-aspartate shuttle pathway that operates in a metabolic coordination between cytosol and mitochondria, and thus is crucial for the survival and pathogenicity of the parasite. In the high throughput sequencing of the cDNA library constructed from the adult stage of Clonorchis sinensis, a cDNA clone containing 1152bp insert was identified to encode a putative peptide of 329 amino acids possessing more than 50% amino acid sequence identities with the cMDHs from other organisms such as fish, plant, and mammal. But low sequence similarities have been found between this cMDH and mitochondrial malate dehydrogenase as well as glyoxysomal malate dehydrogenase from other organisms. Northern blot analysis showed the size of the C. sinensis cMDH mRNA was 1.2 kb. The cMDH was expressed in Escherichia coli M15 as a His-tag fusion protein and purified by BD TALON metal affinity column. The recombinant cMDH showed high MDH activity of 241 U mg(-1), without lactate dehydrogenase and NADP(H) selectivity. It provides a model for the structure, function analysis, and drug screening on cMDH. PMID:15755419

  12. The effects of age on skeletal muscle and the phosphocreatine energy system: can creatine supplementation help older adults

    PubMed Central

    2009-01-01

    Creatine supplementation has been found to significantly increase muscle strength and hypertrophy in young adults (? 35 yr) particularly when consumed in conjunction with a resistance training regime. Literature examining the efficacy of creatine supplementation in older adults (55-82 yr) suggests creatine to promote muscle strength and hypertrophy to a greater extent than resistance training alone. The following is a review of literature reporting on the effects of creatine supplementation on intramuscular high energy phosphates, skeletal muscle morphology and quality of life in older adults. Results suggest creatine supplementation to be a safe, inexpensive and effective nutritional intervention, particularly when consumed in conjunction with a resistance training regime, for slowing the rate of muscle wasting that is associated with aging. Physicians should strongly consider advising older adults to supplement with creatine and to begin a resistance training regime in an effort to enhance skeletal muscle strength and hypertrophy, resulting in enhanced quality of life. PMID:20034396

  13. Creatine increases hippocampal Na(+),K(+)-ATPase activity via NMDA-calcineurin pathway.

    PubMed

    Rambo, Leonardo Magno; Ribeiro, Leandro Rodrigo; Schramm, Vanessa Grigoletto; Berch, Andriely Moreira; Stamm, Daniel Neis; Della-Pace, Iuri Domingues; Silva, Luiz Fernando Almeida; Furian, Ana Flávia; Oliveira, Mauro Schneider; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2012-09-01

    Achievements made over the past few years have demonstrated the important role of the creatine and phosphocreatine system in the buffering and transport of high-energy phosphates into the brain; however, the non-energetic processes elicited by this guanidine compound in the hippocampus are still poorly understood. In the present study we disclosed that the incubation of rat hippocampal slices with creatine (10mM) for 30 min increased Na(+),K(+)-ATPase activity. In addition, intrahippocampal injection of creatine (5 nmol/site) also increased the above-mentioned activity. The incubation of hippocampal slices with N-methyl-d-aspartate (NMDA; MK-801, 10 ?M) and NMDA Receptor 2B (NR2B; ifenprodil, 3 ?M) antagonists but not with the ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA)/kainate antagonist (DNQX, 10 ?M) and nitric oxide synthase inhibitor (NOS; l-NAME, 100 ?M), blunted the effect of creatine on Na(+),K(+)-ATPase activity. Furthermore, the calcineurin inhibitor (cyclosporine A, 200 nM) as well as the Protein Kinase C (PMA, 100 nM) and Protein Kinase A (8-Br-cAMP, 30 ?M) activators attenuated the creatine-induced increase of Na(+),K(+)-ATPase activity. In addition, the incubation of hippocampal slices with creatine (10mM) for 30 min increased calcineurin activity. The results presented here suggest that creatine increases Na(+),K(+)-ATPase activity via NMDA-calcineurin pathway, proposing an putative underlying non-energetic role of this guanidine compound. However, more studies are needed to assess the contribution of this putative alternative role in neurological diseases that present decreased Na(+),K(+)-ATPase activity. PMID:22742935

  14. Variations in the activity of several enzymes in the mammary glands of non-pregnant, pregnant and lactating rabbits

    PubMed Central

    Hartmann, P. E.; Jones, E. A.

    1970-01-01

    1. The enzymes phosphofructokinase (EC 2.7.1.11), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), phosphoglucomutase (EC 2.7.5.1), ATP–citrate lyase (EC 4.1.3.8), acetyl-CoA carboxylase (EC 6.4.1.2) and acetyl-CoA synthetase (EC 6.2.1.1) were assayed in rabbit mammary glands at various stages of the pregnancy–lactation cycle. 2. The activities of all enzymes were low during pregnancy and, with the exception of phosphofructokinase, in non-pregnant animals. Two- to ten-fold increases in enzyme activities occurred over the first 20 days of lactation. Although milk yield was considerably decreased, the enzyme activities remained elevated in late lactation (45 days after parturition). 3. These findings are discussed in relation to mammary-gland metabolism and compared with similar observations previously made on ruminants and other small mammals. PMID:4244890

  15. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    PubMed Central

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  16. Formaldehyde dehydrogenase preparations from Methylococcus capsulatus (Bath) comprise methanol dehydrogenase and methylene tetrahydromethanopterin dehydrogenase.

    PubMed

    Adeosun, Ekundayo K; Smith, Thomas J; Hoberg, Anne-Mette; Velarde, Giles; Ford, Robert; Dalton, Howard

    2004-03-01

    In methylotrophic bacteria, formaldehyde is an important but potentially toxic metabolic intermediate that can be assimilated into biomass or oxidized to yield energy. Previously reported was the purification of an NAD(P)(+)-dependent formaldehyde dehydrogenase (FDH) from the obligate methane-oxidizing methylotroph Methylococcus capsulatus (Bath), presumably important in formaldehyde oxidation, which required a heat-stable factor (known as the modifin) for FDH activity. Here, the major protein component of this FDH preparation was shown by biophysical techniques to comprise subunits of 64 and 8 kDa in an alpha(2)beta(2) arrangement. N-terminal sequencing of the subunits of FDH, together with enzymological characterization, showed that the alpha(2)beta(2) tetramer was a quinoprotein methanol dehydrogenase of the type found in other methylotrophs. The FDH preparations were shown to contain a highly active NAD(P)(+)-dependent methylene tetrahydromethanopterin dehydrogenase that was the probable source of the NAD(P)(+)-dependent formaldehyde oxidation activity. These results support previous findings that methylotrophs possess multiple pathways for formaldehyde dissimilation. PMID:14993320

  17. Novel model of neuronal bioenergetics: postsynaptic utilization of glucose but not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons

    PubMed Central

    Bak, Lasse K.; Obel, Linea F.; Walls, Anne B.; Schousboe, Arne; Faek, Sevan A.A.; Jajo, Farah S.; Waagepetersen, Helle S.

    2012-01-01

    We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malate–aspartate shuttle), which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based on the results, we propose a compartmentalized CiMASH (Ca2+-induced limitation of the MASH) model that includes intracellular compartmentation of glucose and lactate metabolism. We define pre- and post-synaptic compartments metabolizing glucose and glucose plus lactate respectively in which the latter displays a positive correlation between oxidative metabolism of glucose and Ca2+ signalling. PMID:22385215

  18. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions.

    PubMed

    Pinchuk, Grigoriy E; Geydebrekht, Oleg V; Hill, Eric A; Reed, Jennifer L; Konopka, Allan E; Beliaev, Alexander S; Fredrickson, Jim K

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force. PMID:21965410

  19. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of wide range of electron acceptors. Here, we quantitatively assessed lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor limited growth on lactate with O2; lactate with fumarate; and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the TCA cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under O2 limitation but was required for anaerobic growth likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  20. Effects of creatine supplementation on biomarkers of hepatic and renal function in young trained rats.

    PubMed

    Souza, William Marciel; Heck, Thiago Gomes; Wronski, Evanio Castor; Ulbrich, Anderson Zampier; Boff, Everton

    2013-11-01

    Creatine supplementation has been widely used by athletes and young physical exercise practioneers in order of increasing muscle mass and enhancing athletic performance, but their use/overuse may represent a health risk on hepatic and renal impaired function. In this study, we evaluated the effects of 40 days of oral creatine supplementation on hepatic and renal function biomarkers in a young animal model. Wistar rats (5 weeks old) were divided in five groups (n = 7): control (CONTR), oral creatine supplementation (CREAT), moderate exercise training (EXERC), moderate exercise training plus oral creatine supplementation (EXERC + CREAT) and pathological group (positive control for liver and kidney injury) by the administration of rifampicin (RIFAMPICIN). Exercise groups were submitted to 60 min/day of swimming exercise session with a 4% of body weight workload for six weeks. The EXERC + CREAT showed the higher body weight at the end of the training protocol. The CREAT and EXERC + CREAT group showed an increase in hepatic (Aspartate transaminase and gamma-glutamyl transpeptidase) and renal (urea and creatinine) biomarkers levels (p < 0.05). Our study showed that the oral creatine supplementation promoted hepatic and renal function challenge in young rats submitted to moderate exercise training. PMID:24024661

  1. Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR.

    PubMed

    Shojaiefard, Manzar; Christie, David L; Lang, Florian

    2006-03-24

    Cellular accumulation of creatine is accomplished by the Na(+), Cl(-), and creatine transporter CreaT (SLC6A8). The mammalian target of rapamycin (mTOR) is a kinase stimulating cellular nutrient uptake. The present experiments explored whether SLC6A8 is regulated by mTOR. In Xenopus oocytes expressing SLC6A8 but not in water injected oocytes, creatine-induced a current which was significantly enhanced by coexpression of mTOR. Kinetic analysis revealed that mTOR enhanced maximal current without significantly altering affinity. Preincubation of the oocytes for 32 h with rapamycin (50 nM) decreased the creatine-induced current and abrogated its stimulation by mTOR. The effect of mTOR on CreaT was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid-inducible kinase (K119N)SGK1 and mimicked by coexpression of wild type SGK1. In conclusion, mTOR stimulates the creatine transporter SLC6A8 through mechanisms at least partially shared by the serum and glucocorticoid-inducible kinase SGK1. PMID:16466692

  2. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase.

    PubMed

    Köpke, Michael; Gerth, Monica L; Maddock, Danielle J; Mueller, Alexander P; Liew, FungMin; Simpson, Séan D; Patrick, Wayne M

    2014-06-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 ?M h(-1) optical density unit(-1)), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  3. Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase

    PubMed Central

    Köpke, Michael; Gerth, Monica L.; Maddock, Danielle J.; Mueller, Alexander P.; Liew, FungMin

    2014-01-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 ?M h?1 optical density unit?1), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  4. Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP.

    PubMed

    Willquist, Karin; van Niel, Ed W J

    2010-05-01

    Caldicellulosiruptor saccharolyticus displays superior H(2) yields on a wide range of carbon sources provided that lactate formation is avoided. Nevertheless, a low lactate flux is initiated as the growth rate declined in the transition to the stationary phase, which coincides with a drastic decrease in the glucose consumption and acetate production fluxes. In addition, the decrease in growth rate was accompanied by a sudden increase and then decrease in NADH levels. The V'(MAX) of the lactate dehydrogenase (LDH) doubled when the cells entered the stationary phase. Kinetic analysis revealed that at the metabolic level LDH activity is regulated through (i) competitive inhibition by pyrophosphate (PPi, k(i)=1.7 mM) and NAD (k(i)=0.43 mM) and (ii) allosteric activation by FBP (300%), ATP (160%) and ADP (140%). From these data a MWC-based model was derived. Simulations with this model could explain the observed lactate shift by displaying how the sensitivity of LDH activity to NADH/NAD ratio varied with different PP(i) concentrations. Moreover, the activation of LDH by ATP indicates that C. saccharolyticus uses LDH as a means to adjusts its flux of ATP and NADH production. To our knowledge, this is the first time PPi is observed as an effector of LDH. PMID:20060925

  5. Mitochondrial lactate metabolism is involved in antioxidative defense in human astrocytoma cells.

    PubMed

    Lemire, Joseph; Auger, Christopher; Mailloux, Ryan; Appanna, Vasu D

    2014-04-01

    Although lactate has traditionally been known to be an end product of anaerobic metabolism, recent studies have revealed its disparate biological functions. Oxidative energy production and cell signaling are two important roles assigned to this monocarboxylic acid. Here we demonstrate that mitochondrial lactate metabolism to pyruvate mediated by lactate dehydrogenase (LDH) in a human astrocytic cell line is involved in antioxidative defense. The pooling of this ?-ketoacid helps to detoxify reactive oxygen species, with the concomitant formation of acetate. In-gel activity assays following blue native PAGE electrophoresis were utilized to demonstrate the increase in mitochondrial LDH activity coupled to the decrease in pyruvate dehydrogenase activity in the cells challenged by oxidative stress. The enhanced production of pyruvate with the concomitant formation of acetate in astrocytoma cells was monitored by high-performance liquid chromatography. The ability of pyruvate to fend off oxidative stress was visualized by fluorescence microscopy with the aid of the dye 2',7'-dichlorodihydrofluorescein diacetate. Immunoblotting helped confirm the presence of elevated levels of LDH in cells exposed to oxidative stress, and recovery experiments were performed with pyruvate to diminish the oxidative burden on the astrocytoma. The acetate, generated as a consequence of the antioxidative attribute of pyruvate, was subsequently channeled toward the production of lipids, a process facilitated by the upregulation in activity of acetyl-CoA synthetase and acetyl-CoA carboxylase, as demonstrated by in-gel activity assays. The mitochondrial lactate metabolism mediated by LDH appears to play an important role in antioxidative defence in this astrocytic system. PMID:24452607

  6. Origin of the genes for the isoforms of creatine kinase.

    PubMed

    Bertin, Matt; Pomponi, Shirley M; Kokuhuta, Chinatsu; Iwasaki, Nozomu; Suzuki, Tomohiko; Ellington, W Ross

    2007-05-01

    Creatine kinase (CK) is a member of a family of phosphoryl transfer enzymes called phosphagen (guanidino) kinases which play a central role in cellular energy homeostasis. There are three CK isoform gene groups, each coding for proteins targeted to different intracellular compartments--cytoplasmic (CytCK), mitochondrial (MtCK) and flagellar (FlgCK). The former two CKs are either dimeric or octameric while FlgCKs are contiguous trimers consisting of three fused, complete CK domains. Conventional wisdom supports the view that CKs evolved from a cytoplasmic, monomeric ancestral protein closely related to a phosphagen kinase homologue, arginine kinase (AK). Recently, it has been shown that a demosponge (Phylum Porifera) expresses a true MtCK and two dimeric, protoflagellar CKs (protoflgCK) with great similarity to FlgCKs. To further probe the early evolution of CK, we have obtained additional sequences for Mt- and protoflgCKs from two more demosponges and from three hexactinellid (glass) sponges as well as an MtCK sequence from a basal metazoan cnidarian. Phylogenetic analyses using Maximum Likelihood (ML) of these new CK sequences with other CKs and phosphagen kinases yielded a consensus tree containing an assemblage of MtCKs and a supercluster consisting of protoflg-, Flg- and CytCKs. The MtCKs appear basal in the tree topology consistent with prior results. Within the protoflg-, Flg- and CytCK supercluster, the protoflgCKs appear to be allied to the domains of the FlgCKs, although the support is not robust. PCR amplification of genomic DNA and sequencing of the genes for Mt- and protoflgCK from the demosponge Suberites fuscus showed that the sponge MtCK shares four-five common intron:exon boundaries with invertebrate, protochordate and vertebrate MtCKs supporting a common ancestry and the extreme conservation of intron:exon organization in MtCK genes. The protoflgCK gene organization was highly divergent in relation to other CK genes but shares a common intron:exon boundary with domain 2 of the gene for the FlgCK from the tunicate Ciona intestinalis, providing support for the linkage of the protoflgCKs with the FlgCKs. Our results show that the two, major CK gene lineages are present in arguably the oldest, extant metazoan group, the hexactinellid sponges, indicating that these two genes are ancient and confirming prior work that the MtCK gene is likely basal and ancestral. PMID:17329042

  7. NcoI and TaqI RFLPs for human M creatine kinase (CKM)

    SciTech Connect

    Perryman, M.B.; Hejtmancik, J.F.; Ashizawa, Tetsuo; Armstrong, R.; Lin, Sunchiang; Roberts, R.; Epstein, H.F. (Baylor College of Medicine, Houston, TX (USA))

    1988-09-12

    Probe pHMCKUT contains a 135 bp cDNA fragment inserted into pGEM 3. The probe corresponds to nucleotides 1,201 to 1,336 located in the 3{prime} untranslated region of human M creatine kinase. The probe is specific for human M creatine kinase and does not hybridize to human B cretine kinase sequences. NcoI identifies a two allele polymorphism of a band at either 2.5 kb or 3.6 kb. TaqI identifies a two allele polymorphism at either 3.8 kb or 4.5 kb. Human M creatine has been localized to chromosome 19q. Autosomal co-dominant inheritance was shown in six informative Caucasian families.

  8. Effects of training and creatine supplement on muscle strength and body mass.

    PubMed

    Francaux, M; Poortmans, J R

    1999-07-01

    The purpose of this study was to test the effect of creatine supplement on the size of the extra- and intracellular compartments and on the increase of isokinetic force during a strength training-program. Twenty-five healthy male subjects (age 22.0+/-2.9 years) participated in this experiment. Seven subjects formed the control-group. They did not complete any training and did not have any dietary supplement. The eighteen other subjects were randomly divided into a creatine- (n = 8) and a placebo-group (n = 10). They were submitted to a controlled strength-training program for 42 days followed by a detraining period of 21 days. Creatine and placebo were given over a period of 9 weeks. The size of the body water compartments was assessed by bioimpedance spectroscopy and the isokinetic force was determined during a single squat by means of an isokinetic dynamometer. These measurements were completed beforehand, at the end of the training period, and after the determining period. Both placebo- and creatine-group increased the isokinetic force by about 6% after the training period, showing that creatine ingestion does not induce a higher increase of the force measured during a single movement. No change in body mass was observed in the control- and placebo-groups during the entire experiment period while the body mass of the creatine-group was increased by 2 kg (P < 0.001). This change can be attributed partially to an increase (P = 0.039) in the body water content (+1.11), and more specifically, to an increase (P < 0.001) in the volume of the inter-cellular compartment (+0.61). Nevertheless, the relative volumes of the body water compartments remained constant and therefore the gain in body mass cannot be attributed to water retention, but probably to dry matter growth accompanied with a normal water volume. PMID:10408330

  9. Functions of the Membrane-Associated and Cytoplasmic Malate Dehydrogenases in the Citric Acid Cycle of Corynebacterium glutamicum

    PubMed Central

    Molenaar, Douwe; van der Rest, Michel E.; Drysch, André; Yücel, Raif

    2000-01-01

    Like many other bacteria, Corynebacterium glutamicum possesses two types of l-malate dehydrogenase, a membrane-associated malate:quinone oxidoreductase (MQO; EC 1.1.99.16) and a cytoplasmic malate dehydrogenase (MDH; EC 1.1.1.37) The regulation of MDH and of the three membrane-associated dehydrogenases MQO, succinate dehydrogenase (SDH), and NADH dehydrogenase was investigated. MQO, MDH, and SDH activities are regulated coordinately in response to the carbon and energy source for growth. Compared to growth on glucose, these activities are increased during growth on lactate, pyruvate, or acetate, substrates which require high citric acid cycle activity to sustain growth. The simultaneous presence of high activities of both malate dehydrogenases is puzzling. MQO is the most important malate dehydrogenase in the physiology of C. glutamicum. A mutant with a site-directed deletion in the mqo gene does not grow on minimal medium. Growth can be partially restored in this mutant by addition of the vitamin nicotinamide. In contrast, a double mutant lacking MQO and MDH does not grow even in the presence of nicotinamide. Apparently, MDH is able to take over the function of MQO in an mqo mutant, but this requires the presence of nicotinamide in the growth medium. It is shown that addition of nicotinamide leads to a higher intracellular pyridine nucleotide concentration, which probably enables MDH to catalyze malate oxidation. Purified MDH from C. glutamicum catalyzes oxaloacetate reduction much more readily than malate oxidation at physiological pH. In a reconstituted system with isolated membranes and purified MDH, MQO and MDH catalyze the cyclic conversion of malate and oxaloacetate, leading to a net oxidation of NADH. Evidence is presented that this cyclic reaction also takes place in vivo. As yet, no phenotype of an mdh deletion alone was observed, which leaves a physiological function for MDH in C. glutamicum obscure. PMID:11092846

  10. Beta-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase.

    PubMed

    Barnes, E M; Kaback, H R

    1970-08-01

    The transport of beta-galactosides by isolated membrane preparations from Escherichia coli strains containing a functional y gene is markedly stimulated by the conversion of D-lactate to pyruvate. The addition of D-lactate to these membrane preparations produces a 19-fold increase in the initial rate of uptake and a 10-fold stimulation of the steady-state level of intramembranal lactose or thiomethylgalactoside. Succinate, DL-alpha-hydroxybutyrate, and L-lactate partially replace D-lactate, but are much less effective; ATP and P-enolpyruvate, in addition to a number of other metabolites and cofactors, do not stimulate lactose transport by the vesicles. Lactose uptake by the membrane preparations in the presence of D-lactate requires oxygen, and is blocked by electron transport inhibitors and proton conductors; however, uptake is not significantly inhibited by high concentrations of arsenate or oligomycin. Furthermore, the P-enolpyruvate-P-transferase system is not involved in beta-galactoside transport by the E. coli membrane vesicles. The findings indicate that the beta-galactoside uptake system is coupled to the membrane-bound D-lactic dehydrogenase via an electron transport chain but does not involve oxidative phosphorylation. PMID:4394455

  11. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Substrate specificities and inhibition studies.

    PubMed

    MacKintosh, R W; Fewson, C A

    1988-10-15

    The apparent Km and maximum velocity values of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus were determined for a range of alcohols and aldehydes and the corresponding turnover numbers and specificity constants were calculated. Benzyl alcohol was the most effective alcohol substrate for benzyl alcohol dehydrogenase. Perillyl alcohol was the second most effective substrate, and was the only non-aromatic alcohol oxidized. The other substrates of benzyl alcohol dehydrogenase were all aromatic in nature, with para-substituted derivatives of benzyl alcohol being better substrates than other derivatives. Coniferyl alcohol and cinnamyl alcohol were also substrates. Benzaldehyde was much the most effective substrate for benzaldehyde dehydrogenase II. Benzaldehydes with a single small substituent group in the meta or para position were better substrates than any other benzaldehyde derivatives. Benzaldehyde dehydrogenase II could also oxidize the aliphatic aldehydes hexan-1-al and octan-1-al, although poorly. Benzaldehyde dehydrogenase II was substrate-inhibited by benzaldehyde when the assay concentration exceeded approx. 10 microM. Benzaldehyde dehydrogenase II, but not benzyl alcohol dehydrogenase, exhibited esterase activity with 4-nitrophenyl acetate as substrate. Both benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II were inhibited by the thiol-blocking reagents iodoacetate, iodoacetamide, 4-chloromercuribenzoate and N-ethylmaleimide. Benzyl alcohol or benzaldehyde respectively protected against these inhibitions. NAD+ also gave some protection. Neither benzyl alcohol dehydrogenase nor benzaldehyde dehydrogenase II was inhibited by the metal-ion-chelating agents EDTA, 2,2'-bipyridyl, pyrazole or 2-phenanthroline. Neither enzyme was inhibited by a range of plausible metabolic inhibitors such as mandelate, phenylglyoxylate, benzoate, succinate, acetyl-CoA, ATP or ADP. Benzaldehyde dehydrogenase II was sensitive to inhibition by several aromatic aldehydes; in particular, ortho-substituted benzaldehydes such as 2-bromo-, 2-chloro- and 2-fluoro-benzaldehydes were potent inhibitors of the enzyme. PMID:3060114

  12. Radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer

    SciTech Connect

    Quemeneur, E.; Eichenberger, D.; Goldschmidt, D.; Vial, C.; Beauregard, G.; Potier, M.

    1988-06-30

    Lyophilized suspensions of rabbit heart mitochondria have been irradiated with varying doses of gamma rays. Mitochondrial creatine kinase activity was inactivated exponentially with a radiation inactivation size of 352 or 377 kDa depending upon the initial medium. These values are in good agreement with the molecular mass previously deduced from by permeation experiments: 357 kDa. This is the first direct evidence showing that the native form of mitochondrial creatine kinase is associated to the inner membrane as an oligomer, very likely an octamer.

  13. Effects of creatine in a rat intestinal model of ischemia\\/reperfusion injury

    Microsoft Academic Search

    M. N. Orsenigo; C. Porta; C. Sironi; U. Laforenza; G. Meyer; M. Tosco

    Purpose  Creatine belongs to a buffering system of cellular ATP level and has been reported to display direct antioxidant activity.\\u000a Aim of this work was to investigate whether creatine treatment could ameliorate the antioxidant response of intestinal cells\\u000a and limit the oxidative injury induced by anoxia and subsequent reoxygenation.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Jejunal and ileal tracts of rat intestine were everted and incubated in

  14. Umbrella sampling of proton transfer in a creatine-water system

    NASA Astrophysics Data System (ADS)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra

    2014-04-01

    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  15. Raman spectroscopic approach to monitor the in vitro cyclization of creatine ? creatinine

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Sachin Kumar; Singh, Pushkar; Tarcea, Nicolae; Deckert, Volker; Popp, Jürgen; Singh, Ranjan K.

    2015-01-01

    The creatine ? creatinine cyclization, an important metabolic phenomenon has been initiated in vitro at acidic pH and studied through Raman spectroscopic and DFT approach. The equilibrium composition of neutral, zwitterionic and protonated microspecies of creatine has been monitored with time as the reaction proceeds. Time series Raman spectra show clear signature of creatinine formation at pH 3 after ?240 min at room temperature and reaction is faster at higher temperature. The spectra at pH 1 and pH 5 do not show such signature up to 270 min implying faster reaction rate at pH 3.

  16. Oligomeric state and membrane binding behaviour of creatine kinase isoenzymes: Implications for cellular function and mitochondrial structure

    Microsoft Academic Search

    Olaf Stachowiak; Uwe Schlattner; Max Dolder; Theo Wallimann

    1998-01-01

    The membrane binding properties of cytosolic and mitochondrial creatine kinase isoenzymes are reviewed in this article. Differences between both dimeric and octameric mitochondrial creatine kinase (Mi-CK) attached to membranes and the unbound form are elaborated with respect to possible biological function. The formation of crystalline mitochondrial inclusions under pathological conditions and its possible origin in the membrane attachment capabilities of

  17. Analysis of oxonic acid, uric acid, creatine, allantoin, xanthine and hypoxanthine in poultry litter by reverse phase HPLC

    Microsoft Academic Search

    M. A. Eiteman; R. M. Gordillo; M. L. Cabrera

    1994-01-01

    A separation method has been developed to extract organic compounds from poultry manure and litter and subsequently analyze these extracts using reverse phase high-pressure liquid chromatography. Specifically, the method may be used to quantify oxonic acid, allantoin, creatine, uric acid, xanthine and hypoxanthine in poultry manure samples. In a representative sample of fresh poultry manure, oxonic acid, allantoin, creatine, uric

  18. Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial

    Microsoft Academic Search

    Caroline Rae; Alison L. Digney; Sally R. McEwan; Timothy C. Bates

    2003-01-01

    Creatine supplementation is in widespread use to enhance sports- fitness performance, and has been tri- alled successfully in the treatment of neurological, neuromuscular and atherosclerotic disease. Creatine plays a pivotal role in brain energy homeostasis, being a temporal and spatial buffer for cytosolic and mitochondrial pools of the cellular energy currency, adenosine triphosphate and its regulator, adenosine diphosphate. In this

  19. Equivalent Early Sensitivities of Myoglobin, Creatine Kinase MB Mass, Creatine Kinase Isoform Ratios, and Cardiac Troponins I and T for Acute Myocardial Infarction

    Microsoft Academic Search

    Johannes Mair; Doris Morandell; Norbert Genser; Peter Lechleitner; Franz Dienstl

    1995-01-01

    Early sensitivities of creatine kinase (OK),CKMB(activity and mass), CKMM and CKMB isoform ratios, myoglobin, cardiac troponin I (cTnl),and cardiactroponinT (cml) werecomparedto find the mostsensitiveserum marker for acutemyocardial infarction(AMI)duringthefirst hours after onset of chest pain. In a prospectivestudy we investigated 37 consecutive patients with AMI who were admitted to the coronary care unit within 4 h afteronset of chest pain.Bloodsamplesweredrawnevery hourfor

  20. Lactation performance of mid-Lactation Dairy Cows Fed ruminally Degradable protein at Concentrations Lower

    E-print Network

    Bequette, Brian J.

    Lactation performance of mid-Lactation Dairy Cows Fed ruminally Degradable protein of diets containing lower proportions of ruminally de- gradable protein (RDP) but with a constant proportion of ruminally undegradable protein (RUP) alters feed intake, milk production and yield

  1. Field energetics of free-living, lactating and non-lactating echidnas ( Tachyglossus aculeatus)

    Microsoft Academic Search

    Jutta Schmid; Niels A. Andersen; John R. Speakman; Stewart C. Nicol

    2003-01-01

    We measured daily energy expenditure (DEE) and water turnover rates in lactating and non-lactating short beaked echidnas (Tachyglossus aculeatus) using the doubly labelled water technique during the lactation period in spring. Reproductively inactive echidnas were on average significantly heavier (median: 3354 g; range: 2929–3780 g; N=4) than lactating females (median: 2695 g; range: 2690–2715 g; N=3) during the equivalent time

  2. Reducing lactate secretion by ldhA Deletion in L-glutamate- producing strain Corynebacterium glutamicum GDK-9

    PubMed Central

    Zhang, Dalong; Guan, Dan; Liang, Jingbo; Guo, Chunqian; Xie, Xixian; Zhang, Chenglin; Xu, Qingyang; Chen, Ning

    2014-01-01

    L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9?ldhA. GDK-9?ldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of such by-products as ?-ketoglutarate, L-lactate and L-alanine. Since dissolved oxygen (DO) is one of main factors affecting L-lactate formation during L-glutamate fermentation, we investigated the effect of ldhA deletion from GDK-9 under different DO conditions. Under both oxygen-deficient and high oxygen conditions, L-glutamate production by GDK-9?ldhA was not higher than that of the GDK-9. However, under micro-aerobic conditions, GDK-9?ldhA exhibited 11.61% higher L-glutamate and 58.50% lower L-alanine production than GDK-9. Taken together, it is demonstrated that deletion of ldhA can enhance L-glutamate production and lower the unwanted by-products concentration, especially under micro-aerobic conditions. PMID:25763057

  3. Polymers Protect Lactate Dehydrogenase during Freeze-Drying by Inhibiting Dissociation in the Frozen State

    Microsoft Academic Search

    Thomas J. Anchordoquy; John F. Carpenter

    1996-01-01

    Enzymes subjected to freeze-thawing are known to be protected by polymers that are preferentially excluded from the hydrated surface of proteins [reviewed in Carpenteret al.(1994)ACS Symp. Ser.567, 134–147]. Preferentially excluded solutes are also known to stabilize quaternary structure, which enhances the thermostability of multimeric proteins in aqueous systems. Also, it has been suggested that retention of quaternary structure may play

  4. Inhibition of Rhizopus Lactate Dehydrogenase by Fructose 1,6-bisphosphate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of the filamentous fungus Rhizopus is of significant value because of the organism’s industrial importance, clinical detriment, and agricultural problems. Yet, research has yielded very few advances that allow site directed integration of DNA used for transformation. This is because plas...

  5. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  6. The expression of lactate dehydrogenase in Zea mays seedlings under hypoxic and anoxic conditions 

    E-print Network

    MacAlpine, David Michael

    1995-01-01

    (primary root axis, nodal root axis, primary root tip, and the nodal root tip) from seedlings of different ages. In the 'open system', in which the roots were sparged with N2 while shoots remained exposed to air, Ldh1 transcripts and enzymatic activity were...

  7. The expression of lactate dehydrogenase in Zea mays seedlings under hypoxic and anoxic conditions

    E-print Network

    MacAlpine, David Michael

    1995-01-01

    et al. , 1986). The transcript 'levels of LDH in hypoxically stressed barley were -8. 5 times greater than aerobic controls after two days (Hondred and Hanson, 1990). However, the overexpression of barley LDH in tomato roots revealed that although... of LDH (Rivoal and Hanson, 1994). These results suggest that while LDH may play a role in the survival of hypoxic environments its role in metabolism may be limited. Maize root tips normally sensitive to anoxia can be acclimated by a hypoxic pre...

  8. Lactate Dehydrogenase Undergoes a Substantial Structural Change to Bind its Substrate

    E-print Network

    Callender, Robert

    and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows capacity of 610 6 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea

  9. Creatine Kinases of Amphibians and Reptiles: Evolutionary and Systematic Aspects of Gene Author(s): Donald G. Buth, Robert W. Murphy, Michael M. Miyamoto, Carl S. Lieb

    E-print Network

    Murphy, Bob

    Creatine Kinases of Amphibians and Reptiles: Evolutionary and Systematic Aspects of Gene Expression. http://www.jstor.org #12;Copeia,1985(2),pp. 279-284 Creatine Kinases of Amphibians and Reptiles AND CARL S. LIEB The creatine kinases of amphibians and reptiles are evaluated in terms of their genetic

  10. Betaine aldehyde dehydrogenase in plants.

    PubMed

    Fitzgerald, T L; Waters, D L E; Henry, R J

    2009-03-01

    Plant betaine aldehyde dehydrogenases (BADHs) have been the target of substantial research, especially during the last 20 years. Initial characterisation of BADH as an enzyme involved in the production of glycine betaine (GB) has led to detailed studies of the role of BADH in the response of plants to abiotic stress in vivo, and the potential for transgenic expression of BADH to improve abiotic stress tolerance. These studies have, in turn, yielded significant information regarding BADH and GB function. Recent research has identified the potential for BADH as an antibiotic-free marker for selection of transgenic plants, and a major role for BADH in 2-acetyl-1-pyrroline-based fragrance associated with jasmine and basmati style aromatic rice varieties. PMID:19228319

  11. Losses of taurine, creatine, glycine and alanine from cod ( Gadus morhua L.) fillet during processing

    Microsoft Academic Search

    Rune Larsen; Svein Kristian Stormo; Bjørn Tore Dragnes; Edel O. Elvevoll

    2007-01-01

    Processing of fish generally leads to losses of water soluble compounds, and some of these may have beneficial health effects. The aim of this study was to determine the loss of taurine, creatine, free glycine and free alanine from cod during brining and cooking. Fillet pieces (n=80) were excised from 10 cods, and divided among 8 groups subjected to different

  12. Effects of creatine loading on electromyographic fatigue threshold during cycle ergometry in college-aged women

    E-print Network

    Smith, Abbie E.; Herda, Ashley A.; Herda, Trent J.; Ryan, Eric D.; Moon, Jordan R.; Cramer, Joel T.; Stout, Jeffrey R.

    2007-01-01

    The purpose of this study was to examine the effects of 5 days of Creatine (Cr) loading on the electromyographic fatigue threshold (EMGFT) in college-aged women. Fifteen healthy college-aged women (mean ± SD = 22.3 ± 1.7 ...

  13. Oxidative modification and aggregation of creatine kinase from aged mouse skeletal muscle

    PubMed Central

    Nuss, Jonathan E.; Amaning, James K.; Bailey, C. Eric; DeFord, James H.; Dimayuga, Vincent L.; Rabek, Jeffrey P.; Papaconstantinou, John

    2009-01-01

    Creatine kinase catalyzes the reversible transfer of the gamma phosphate from ATP to creatine forming the high energy compound creatine phosphate. Muscle creatine kinase (CKm) activity maintains energetic homeostasis as variations in energy requirements dictate that ATP be readily available. Recent studies suggest that CKm activity is altered during aging. Proteomic analyses have shown that CKm is 3-nitrotyrosine (3-NT) modified and carbonylated in aged rodent skeletal muscle. However, it remains unknown if these modifications affect its structure and activity. To address this we characterized oxidatively modified CKm from the quadriceps of young, middle-aged, and aged mice. Our data indicate that 3-NT modified and carbonylated CKm are found predominantly in aged muscle and that it exists in high molecular weight oligomers and insoluble protein aggregates. CKm from middle-aged and aged mouse quadriceps also exhibits structural instability that may account for its reduction in function. These structural and functional changes correlate with the differential protein modifications. Interestingly, the majority of the age-related changes in enzyme activity and protein stability occurred by middle age. Our studies indicate that the age-associated oxidative and nitrative modification of CKm results in a decrease in its activity and may cause structural changes that promote oligomerization and aggregation. PMID:20195383

  14. Defining the appropriate threshold of creatine kinase elevation after percutaneous coronary interventions

    Microsoft Academic Search

    Alaa E. Abdelmeguid; Stephen G. Ellis; Shelly K. Sapp; Patrick L. Whitlow; Eric J. Topol

    1996-01-01

    The threshold of creatine kinase elevation after coronary interventions has been set at levels ranging in different studies from 2 to >5 times the laboratory's upper limit of normal. This high variability is caused by the absence of any systematic evaluation of the prognostic implications of cardiac-enzyme elevation in this setting. This study was undertaken to evaluate the clinical, morphologic,

  15. Altered Ca 2+ Responses in Muscles with Combined Mitochondrial and Cytosolic Creatine Kinase Deficiencies

    Microsoft Academic Search

    Karen Steeghs; Ad Benders; Frank Oerlemans; Arnold de Haan; Arend Heerschap; Wim Ruitenbeek; Carolina Jost; Jan van Deursen; Benjamin Perryman; Dirk Pette; Marloes Brückwilder; Jolande Koudijs; Paul Jap; Jacques Veerkamp; Bé Wieringa

    1997-01-01

    We have blocked creatine kinase (CK)-mediated phosphocreatine (PCr) ? ATP transphosphorylation in skeletal muscle by combining targeted mutations in the genes encoding mitochondrial and cytosolic CK in mice. Contrary to expectation, the PCr level was only marginally affected, but the compound was rendered metabolically inert. Mutant muscles in vivo showed significantly impaired tetanic force output, increased relaxation times, altered mitochondrial

  16. Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage

    Microsoft Academic Search

    I. M. Skogseid; H. K. Nordby; P. Urdal; E. Paus; F. Lilleaas

    1992-01-01

    Summary The aim of this study was to examine whether an increase in the serum concentrations of the two brain enzymes creatine kinase BB (CK-BB) and neuron specific enolase (NSE) can be demonstrated in patiens with acute head injury and whether such an increase reflects release from damaged brain tissue. In 60 patients who had suffered minor to severe head

  17. Automated urinalysis technique determines concentration of creatine and creatinine by colorimetry

    NASA Technical Reports Server (NTRS)

    Rho, J. H.

    1967-01-01

    Continuous urinalysis technique is useful in the study of muscle wastage in primates. Creatinine concentration in urine is determined in an aliquot mixture by a color reaction. Creatine is determined in a second aliquot by converting it to creatinine and measuring the difference in color intensity between the two aliquots.

  18. Oxidative Modification of Creatine Kinase BB in Alzheimer’s Disease Brain

    Microsoft Academic Search

    Michael Aksenov; Marina Aksenova; D. Allan Butterfield; William R. Markesbery

    2002-01-01

    Creatine kinase (CK) BB, a member of the CK gene family, is a predominantly cytosolic CK isoform in the brain and plays a key role in regulation of the ATP level in neural cells. CK BB levels are reduced in brain regions affected by neurodegeneration in Alzheimer's disease (AD), Pick's disease, and Lewy body dementia, and this reduction is not

  19. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-30

    Shewanella oneidensis MR-1 is a facultative anaerobe growing by coupling organic matter oxidation to reduction of wide range of electron acceptors. Here we quantitatively assessed lactate and pyruvate metabolism of these bacteria under three distinct conditions: electron acceptor limited growth on lactate with O2 and fumarate, and pyruvate fermentation, which does not sustain growth but allows cells to survive for prolonged period. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of all ATP needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute much to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, and TCA cycle did not contribute significantly to substrate oxidation. Pyruvate dehydrogenase reaction was not involved in lactate metabolism under O2 limitation, however was important for anaerobic growth probably supplying reducing equivalents for biosynthesis. Unexpectedly, obtained results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination between substrate-level phosphorylation and a respiratory process, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). Based on involved enzymes localization we hypothesize that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  20. Effects of dietary supplementation with creatine monohydrate during the finishing period on growth performance, carcass traits, meat quality and muscle glycolytic potential of broilers subjected to transport stress.

    PubMed

    Zhang, L; Li, J L; Gao, T; Lin, M; Wang, X F; Zhu, X D; Gao, F; Zhou, G H

    2014-12-01

    A total of 320 male Arbor Acres broiler chickens (28 days old) were randomly allotted to one of the three experimental diets supplemented with 0 (160 birds), 600 (80 birds) or 1200 mg/kg (80 birds) creatine monohydrate (CMH) for 14 days. On the morning of 42 day, after an 8-h fast, the birds of CMH-free group were divided into two equal groups, and all birds of these four groups were transported according to the follow protocol: 0.75-h transport without CMH supplementation (as a lower stress control group), 3-h transport without CMH supplementation, 3-h transport with 600 or 1200 mg/kg CMH supplementation. Each treatment group was composed of 8 replicates with 10 birds each. The results showed that supplementation of CMH for 14 days before slaughter did not affect the overall growth performance and carcass traits of stressed broilers (P>0.05). A 3-h transport decreased plasma glucose concentration, elevated plasma corticosterone concentration, increased bird live weight loss, breakdown of muscle glycogen, as well as the accumulation of muscle lactate (P<0.05), which induced some detrimental changes to breast meat quality (lower ultimate pH and higher drip loss, P<0.05). Nevertheless, supplementation of 1200 mg/kg CMH reduced chicken weight loss, decreased the contents of lactate and glycolytic potential in pectoralis major of 3-h transported broilers (P<0.05), which is beneficial to maintain breast meat quality by reducing the drip loss (P<0.05). These findings suggest that the reduction of muscle glycolysis is probably the reason for maintainance of meat quality by supplementation of CMH in transported broilers. PMID:25075432

  1. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength

    PubMed Central

    2013-01-01

    Background Chronic supplementation with creatine monohydrate has been shown to promote increases in total intramuscular creatine, phosphocreatine, skeletal muscle mass, lean body mass and muscle fiber size. Furthermore, there is robust evidence that muscular strength and power will also increase after supplementing with creatine. However, it is not known if the timing of creatine supplementation will affect the adaptive response to exercise. Thus, the purpose of this investigation was to determine the difference between pre versus post exercise supplementation of creatine on measures of body composition and strength. Methods Nineteen healthy recreational male bodybuilders (mean ± SD; age: 23.1?±?2.9; height: 166.0?±?23.2 cm; weight: 80.18?±?10.43 kg) participated in this study. Subjects were randomly assigned to one of the following groups: PRE-SUPP or POST-SUPP workout supplementation of creatine (5 grams). The PRE-SUPP group consumed 5 grams of creatine immediately before exercise. On the other hand, the POST-SUPP group consumed 5 grams immediately after exercise. Subjects trained on average five days per week for four weeks. Subjects consumed the supplement on the two non-training days at their convenience. Subjects performed a periodized, split-routine, bodybuilding workout five days per week (Chest-shoulders-triceps; Back-biceps, Legs, etc.). Body composition (Bod Pod®) and 1-RM bench press (BP) were determined. Diet logs were collected and analyzed (one random day per week; four total days analyzed). Results 2x2 ANOVA results - There was a significant time effect for fat-free mass (FFM) (F?=?19.9; p?=?0.001) and BP (F?=?18.9; p?creatine post workout is possibly more beneficial in comparison to pre workout supplementation with regards to FFM, FM and 1-RM BP. The mean change in the PRE-SUPP and POST-SUPP groups for body weight (BW kg), FFM (kg), FM (kg) and 1-RM bench press (kg) were as follows, respectively: Mean ± SD; BW: 0.4?±?2.2 vs. 0.8?±?0.9; FFM: 0.9?±?1.8 vs. 2.0?±?1.2; FM: -0.1?±?2.0 vs. ?1.2?±?1.6; Bench Press 1-RM: 6.6?±?8.2 vs. 7.6?±?6.1. Qualitative inference represents the likelihood that the true value will have the observed magnitude. Furthermore, there were no differences in caloric or macronutrient intake between the groups. Conclusions Creatine supplementation plus resistance exercise increases fat-free mass and strength. Based on the magnitude inferences it appears that consuming creatine immediately post-workout is superior to pre-workout vis a vis body composition and strength. PMID:23919405

  2. Effects of combined creatine and sodium bicarbonate supplementation on repeated sprint performance in trained men.

    PubMed

    Barber, James J; McDermott, Ann Y; McGaughey, Karen J; Olmstead, Jennifer D; Hagobian, Todd A

    2013-01-01

    Creatine and sodium bicarbonate supplementation independently increase exercise performance, but it remains unclear whether combining these 2 supplements is more beneficial on exercise performance. The purpose of this study was to evaluate the impact of combining creatine monohydrate and sodium bicarbonate supplementation on exercise performance. Thirteen healthy, trained men (21.1 ± 0.6 years, 23.5 ± 0.5 kg·m(-2), 66.7 ± 5.7 ml·(kg·m)(-1) completed 3 conditions in a double-blinded, crossover fashion: (a) Placebo (Pl; 20 g maltodextrin + 0.5 g·kg(-1) maltodextrin), (b) Creatine (Cr; 20 g + 0.5 g·kg(-1) maltodextrin), and (c) Creatine plus sodium bicarbonate (Cr + Sb; 20 g + 0.5 g·kg(-1) sodium bicarbonate). Each condition consisted of supplementation for 2 days followed by a 3-week washout. Peak power, mean power, relative peak power, and bicarbonate concentrations were assessed during six 10-second repeated Wingate sprint tests on a cycle ergometer with a 60-second rest period between each sprint. Compared with Pl, relative peak power was significantly higher in Cr (4%) and Cr + Sb (7%). Relative peak power was significantly lower in sprints 4-6, compared with that in sprint 1, in both Pl and Cr. However, in Cr + Sb, sprint 6 was the only sprint significantly lower compared with sprint 1. Pre-Wingate bicarbonate concentrations were significantly higher in Cr + Sb (10%), compared with in Pl and Cr, and mean concentrations remained higher after sprint 6, although not significantly. Combining creatine and sodium bicarbonate supplementation increased peak and mean power and had the greatest attenuation of decline in relative peak power over the 6 repeated sprints. These data suggest that combining these 2 supplements may be advantageous for athletes participating in high-intensity, intermittent exercise. PMID:23254493

  3. Drosophila Alcohol Dehydrogenase Polymorphism and Carbon-13 Fluxes: Opportunities for Epistasis and Natural Selection

    PubMed Central

    Freriksen, A.; de-Ruiter, BLA.; Scharloo, W.; Heinstra, PWH.

    1994-01-01

    The influence of genetic variations in Drosophila alcohol dehydrogenase (ADH) on steady-state metabolic fluxes was studied by means of (13)C NMR spectroscopy. Four pathways were found to be operative during 8 hr of ethanol degradation in third instar larvae of Drosophila. Seven strains differed by 18-25% in the ratio between two major pathway fluxes, i.e., into glutamate-glutamine-proline vs. lactate-alanine-trehalose. In general, Adh genotypes with higher ADH activity exhibit a twofold difference in relative carbon flux from malate into lactate and alanine vs. ?,?-trehalose compared to low ADH activity genotypes. Trehalose was degraded by the pentose-phosphate shunt. The pentose-phosphate shunt and malic enzyme could supply NADPH necessary for lipid synthesis from ethanol. Lactate and/or proline synthesis may maintain the NADH/NAD(+) balance during ethanol degradation. After 24 hr the flux into trehalose is increased, while the flux into lipids declines in Adh(F) larvae. In Adh(S) larvae the flux into lipids remains high. This co-ordinated nature of metabolism and the genotype-dependent differences in metabolic fluxes may form the basis for various epistatic interactions and ultimately for variations in organismal fitness. PMID:7982561

  4. Not only students can express alcohol dehydrogenase: goldfish can too!

    NSDL National Science Digital Library

    Dr. Pierre Rioux (Universite du Quebec a Rimouski Dept de Biologie Chimie et des Sciences de la Sante)

    2010-10-01

    This article describes a novel approach to study the metabolic regulation of the respiratory system in vertebrates that suits physiology lessons for undergraduate students. It consists of an experimental demonstration of the goldfish's (Carassius auratus) adaptations to anoxia. The goldfish is one of the few vertebrates showing strong enzymatic plasticity for the expression of alcohol dehydrogenase (ADH), which allows it to survive long periods of severe anoxia. Therefore, we propose two simple laboratory exercises in which students are first asked to characterize the distribution of ADH isozymes in the goldfish by performing cellulose acetate electrophoresis. The second part of this laboratory lesson is the determination of liver glycogen. To further student comprehension, an interspecies comparative component is integrated, in which the same subjects are studied in an anoxia-sensitive species, the brook charr (Salvelinus fontinalis). ADH in goldfish is restricted to skeletal muscles, where it catalyzes alcoholic fermentation, permitting ethanol excretion through the gills and therefore preventing lactate acidosis caused by sustained glycolysis during anoxia. Electrophoresis also reveals the occurrence of a liver isozyme in the brook charr, which ADH catalyzes in the opposite pathway, allowing the usual ethanol degradation. As for the liver glycogen assay, it shows largely superior content in the goldfish liver compared with the brook charr, providing goldfish with a sustained energy supply during anoxia. The results of this laboratory exercise clearly demonstrate several physiological strategies developed by goldfish to cope with such a crucial environmental challenge as oxygen depletion.

  5. Lactation/Quiet Rooms Physical Specifications

    E-print Network

    Johnston, Daniel

    . Costs are built in to the cost of the new construction. L/QR in Existing Buildings Lactation/Quite Rooms in new buildings will utilize standard signage developed by Project Management and Construction ServicesLactation/Quiet Rooms Physical Specifications L/QR in New Construction New construction

  6. Predicting lactate threshold using ventilatory threshold.

    PubMed

    Plato, P A; McNulty, M; Crunk, S M; Tug Ergun, A

    2008-09-01

    Lactate threshold is an important reference point when setting training intensities for endurance athletes. Ventilatory threshold has been used as a noninvasive estimate of lactate threshold, but appears to underestimate training intensity for many athletes. This study evaluated whether data obtained during a noninvasive, maximal exercise test could be used to predict lactate threshold. Maximal oxygen consumption (55+/-2 ml O(2) x kg(-1) x min(-1)) and heart rate at the ventilatory threshold (V-slope method) were determined for 19 cyclists (10 men, 9 women, 35+/-2 years). Cyclists also performed a lactate threshold test, consisting of 8 min stages at power outputs below, at, and above the ventilatory threshold. Heart rate associated with the lactate threshold was determined using the Dmax method. The correlation coefficient between heart rates at the ventilatory and lactate thresholds was 0.67, indicating 45% shared variance. The best fitting model to predict heart rate at the lactate threshold included heart rate at the ventilatory threshold, gender, body weight, and an interaction between gender and body weight. Using this model, R(2) was 0.70. Thus, heart rate at the ventilatory threshold may be adjusted to more accurately predict a heart rate that corresponds to the lactate threshold for recreational cyclists. PMID:18214811

  7. Lactate: the ultimate cerebral oxidative energy substrate?

    Microsoft Academic Search

    Avital Schurr

    2006-01-01

    Research over the past two decades has renewed the interest in lactate, no longer as a useless end product of anaerobic glycolysis in brain (and other tissues), but as an oxidative substrate for energy metabolism. While this topic would be considered blasphemy only three decades ago, much recent evidence indicates that lactate does play a major role in aerobic energy

  8. Isocitrate Dehydrogenase Parameters of Enzyme Activity

    NSDL National Science Digital Library

    John H. Williamson (Davidson College; )

    1999-01-01

    One of four biology laboratories where students research the properties of a model enzyme, isocitrate dehydrogenase, by using scientifitic method, molecular biology enzyme assay techniques and data analysis using a computer graphing program.

  9. NMR studies on /sup 15/N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    SciTech Connect

    Kenyon, G.L.; Reddick, R.E.

    1986-05-01

    Recently, the authors have synthesized /sup 15/N-2-Cr, /sup 15/N-3-Crn, /sup 15/N-2-Crn, /sup 15/N-3-PCrn, /sup 15/N-3-PCr, and /sup 15/N-2-PCr. /sup 1/H, /sup 15/N, /sup 31/P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the /sup 31/P-/sup 15/N one-bond coupling constant in /sup 15/N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the /sup 14/N//sup 15/N positional isotope exchange of 3-/sup 15/N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity.

  10. In vitro effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial and neutrophil function.

    PubMed

    Topley, N; Kaur, D; Petersen, M M; Jörres, A; Williams, J D; Faict, D; Holmes, C J

    1996-02-01

    The inclusion of bicarbonate in the formulation of peritoneal dialysis solutions may avoid the in vitro impairment of certain cell functions seen with acidic lactate-based fluids. The supranormal physiological levels of HCO3- and PCO2 inherent in such formulations may, however, not be biocompatible. This study compared the in vitro biocompatibility of a pH 5.2 lactate-based formulation with formulations containing either 40 mM lactate at pH 7.4, 38 mM HCO3- at pH 6.8 (PCO2 at approximately 240 mm Hg) or 7.4 (PCO2 at approximately 60 mm Hg), and 25 mM HCO3- plus 15 mM lactate at pH 6.8 (PCO2 at approximately 160 mm Hg) or 7.4 (PCO2 at approximately 40 mm Hg). Significant release of lactate dehydrogenase or decreases in ATP content by human peritoneal mesothelial cells (HPMC) and human peripheral polymorphonuclear leukocytes (PMN) after a 30-min exposure to each test solution was only seen with the pH 5.2 lactate-based fluid. The ATP content of HPMC exposed to this fluid returned to control levels after 30 min of recovery in M199 control medium but showed a trend toward decreasing ATP content at 240 min. Similarly, interleukin (IL)-1 beta-induced IL-6 synthesis by HPMC was also only significantly reduced by the pH 5.2 lactate solution. PMN chemiluminescence was unaffected by 30-min exposure to all test solutions except for the pH 5.2 lactate formulation. Staphylococcus epidermidis phagocytosis was reduced to between 46 to 57% of control with all test solutions except the pH 5.2 lactate solution, which further suppressed the chemiluminescence response to 17% of control. These data suggest that short exposure to supranormal physiological levels of HCO3- and PCO2 does not impair HPMC or PMN viability and function. Furthermore, neutral pH lactate-containing solutions show equivalent biocompatibility to bicarbonate-based ones. PMID:8785390

  11. Treatment of mastitis during lactation

    PubMed Central

    2009-01-01

    Treatment of mastitis should be based on bacteriological diagnosis and take national and international guidelines on prudent use of antimicrobials into account. In acute mastitis, where bacteriological diagnosis is not available, treatment should be initiated based on herd data and personal experience. Rapid bacteriological diagnosis would facilitate the proper selection of the antimicrobial. Treating subclinical mastitis with antimicrobials during lactation is seldom economical, because of high treatment costs and generally poor efficacy. All mastitis treatment should be evidence-based, i.e., the efficacy of each product and treatment length should be demonstrated by scientific studies. Use of on-farm written protocols for mastitis treatment promotes a judicious use of antimicrobials and reduces the use of antimicrobials. PMID:22081939

  12. Etiology and therapeutic approach to elevated lactate

    PubMed Central

    Andersen, Lars W.; Mackenhauer, Julie; Roberts, Jonathan C.; Berg, Katherine M.; Cocchi, Michael N.; Donnino, Michael W.

    2014-01-01

    Lactate levels are commonly evaluated in acutely ill patients. Although most commonly used in the context of evaluating shock, lactate can be elevated for many reasons. While tissue hypoperfusion is probably the most common cause of elevation, many other etiologies or contributing factors exist. Clinicians need to be aware of the many potential causes of lactate elevation as the clinical and prognostic importance of an elevated lactate varies widely by disease state. Moreover, specific therapy may need to be tailored to the underlying cause of elevation. The current review is based on a comprehensive PubMed search and contains an overview of the pathophysiology of lactate elevation followed by an in-depth look at the varied etiologies, including medication-related causes. The strengths and weaknesses of lactate as a diagnostic/prognostic tool and its potential use as a clinical endpoint of resuscitation will be discussed. The review ends with some general recommendations on management of patients with elevated lactate. PMID:24079682

  13. Glyceraldehyde 3-Phosphate Dehydrogenases and Glyoxylate Reductase

    PubMed Central

    Cerff, R.

    1973-01-01

    The development of NADP- and NAD-dependent glyceraldehyde 3-phosphate dehydrogenase and NADH-specific glyoxylate reductase was followed in Sinapis alba cotyledons grown in the dark or under continuous red and far red light. All three enzyme activities are promoted by light, continuous far red light being more than twice as effective as continuous red light. The activities of the NADP-glyceraldehyde 3-phosphate dehydrogenase and glyoxylate reductase increase in the far red light from 36 to 96 hours. They remain constant until at least 120 hours after sowing and are respectively 11 and 6 times higher than the maximum dark activities. Contrary to this, the activity of the NAD-glyceraldehyde 3-phosphate dehydrogenase is scarcely more than doubled under continuous far red irradiation relative to its maximal dark level, and its time course curve is displaced along the time axis, with the activity increasing between 24 and 72 hours after sowing. The increase in activity of NADP-glyceraldehyde 3-phosphate dehydrogenase and glyoxylate reductase is inhibited by d-threo-chloramphenicol but not by the l-threo isomer at concentrations of 200 micrograms per milliliter or less, whereas the slight inhibitory effect of chloramphenicol on the NAD-glyceraldehyde 3-phosphate dehydrogenase is not stereospecific. The three enzyme activities are inhibited by cycloheximide. When Knop's solution is used as growth medium it strongly promotes NADP-glyceraldehyde 3-phosphate dehydrogenase activity in vivo and is twice as effective in the red light as in the far red light and dark. The activity of NAD-glyceraldehyde 3-phosphate dehydrogenase is only slightly and almost equally enhanced by Knop's solution in the dark, red, and far red light. These results are consistent with the following conclusions. [List: see text] PMID:16658301

  14. An Evaluation of the Possible Association of Malignant Hyperpyrexia with the Noonan Syndrome Using Serum Creatine Phosphokinase Levels

    ERIC Educational Resources Information Center

    Hunter, Alasdair; Pinsky, Leonard

    1975-01-01

    Examined for malignant hyperpyrexia (extremely high fever) were serum creatine phosphokinase (enzyme) levels of 27 children from 1-to 17-years-old with Noonan syndrome which is characterized by webbed neck, short stature and low set ears. (CL)

  15. Creatine Phosphokinase-MB (CPK-MB) and the Diagnosis of Myocardial Infarction

    PubMed Central

    Guzy, Peter M.

    1977-01-01

    Creatine phosphokinase-MB (CPK-MB) is the most sensitive and the most specific indicator available for the diagnosis of an acute myocardial infarction. With the exception of after-cardiac surgical procedures, the degree and the duration of CPK-MB elevation in serum approximates the extent of an acute myocardial infarction, although a variety of factors may affect the reliability of such an index. Differences in the fractionation and assay methods for the creatine phosphokinase isoenzymes have produced conflicting documentation as to the presence of CPK-MB in tissues other than myocardium and the release of CPK-MB under conditions other than an acute myocardial infarction. The embryological development of the CPK-MB isoenzymes, as well as the various conditions involving increased CPK-BB serum activity, also deserve attention. PMID:339548

  16. Efficiency of Energy Utilization by Lactating Alpine Goats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-six lactating Alpine does (50.5 ± 1.2 kg BW) were used to determine the effect of stage of lactation on energy utilization. Twelve does were assigned for measurement periods in early, mid-, and late lactation (28-35, 91-98, and 189 to 196 d of lactation). For six does of each group, after m...

  17. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test

    PubMed Central

    2012-01-01

    Background Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20?g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1?±?5.8?years old) immediately before and 5 and 60?min after the exhaustive Wingate test. Results Maximum anaerobic power was improved by acute creatine supplementation (10.5?%), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine. PMID:22691230

  18. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching

    Microsoft Academic Search

    Jeff S. Volek; Nicholas A. Ratamess; Martyn R. Rubin; Ana L. Gómez; Duncan N. French; Michael M. McGuigan; Timothy P. Scheett; Matthew J. Sharman; Keijo Häkkinen; William J. Kraemer

    2004-01-01

    To determine the effects of creatine supplementation during short-term resistance training overreaching on performance, body composition, and resting hormone concentrations, 17 men were randomly assigned to supplement with 0.3 g\\/kg per day of creatine monohydrate (CrM: n=9) or placebo (P: n=8) while performing resistance exercise (5 days\\/week for 4 weeks) followed by a 2-week taper phase. Maximal squat and bench press and

  19. Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: Diagnostic tools for a new inborn error of metabolism

    Microsoft Academic Search

    Andreas Schulze; Thomas Hess; Ron Wevers; Ertan Mayatepek; Peter Bachert; Bart Marescau; Michael V. Knopp; Peter P. De Deyn; Hans J. Bremer; Dietz Rating

    1997-01-01

    Hepatic guanidinoacetate methyltransferase deficiency induces a deficiency of creatine\\/phosphocreatine in muscle and brain and an accumulation of guanidinoacetic acid (GAA), the precursor of creatine. We describe a patient with this defect, a 4-year-old girl with a dystonic-dyskinetic syndrome in addition to developmental delay and therapy-resistant epilepsy. Several methods were used in the diagnosis of the disease: (1) the creatinine excretion

  20. Mitochondrial creatine kinase interaction with heterogeneous monolayers: Effect on lipid lateral organization

    Microsoft Academic Search

    Nathalie Vernoux; Ofelia Maniti; Olivier Marcillat; Christian Vial; Thierry Granjon

    2009-01-01

    Our study highlights the tight relationship between protein binding to monolayers and the phase-state of the phospholipids. Interaction of mitochondrial creatine kinase with phospholipidic membranes was analysed using a two-phase monolayer system containing anionic phospholipids under chain mismatch conditions. Monolayers were made up of mixtures of DMPC\\/DPPG or DPPC\\/DMPG containing 40% negatively charged phospholipids which is approximately the negative charge

  1. PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8.

    PubMed

    Strutz-Seebohm, Nathalie; Shojaiefard, Manzar; Christie, David; Tavare, Jeremy; Seebohm, Guiscard; Lang, Florian

    2007-01-01

    The Na(+),Cl(-),creatine transporter CreaT (SLC6A8) mediates concentrative cellular uptake of creatine into a wide variety of cells. Previous observations disclosed that SLC6A8 transport activity is enhanced by mammalian target of rapamycin (mTOR) at least partially through the serum and glucocorticoid inducible kinase isoforms SGK1 and SGK3. As SLC6A8 does not contain a putative SGK consensus motif, the mechanism linking SGK1 with SLC6A8 activity remained elusive. A candidate kinase is the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3), which has previously been shown to regulate the glucose transporter GLUT4. The present experiments explored the possibility that SLC6A8 is regulated by PIKfyve. In Xenopus oocytes expressing SLC6A8 but not in water injected oocytes creatine induced a current which was significantly enhanced by coexpression of PIKfyve. The effect of PIKfyve on SLC6A8 was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K127N)SGK1. The stimulating effect of PIKfyve was abrogated by replacement of the serine in the SGK consensus sequence by alanine ((S318A)PIKfyve). Moreover, coexpression of ( S318A)PIKfyve blunted the effect of SGK1 on SLC6A8 activity. The observations suggest that SGK1 regulates the creatine transporter SLC6A8 at least partially through phosphorylation and activation of PIKfyve and subsequent formation of PI(3,5)P(2). PMID:17982255

  2. Downregulation of the creatine transporter SLC6A8 by JAK2.

    PubMed

    Shojaiefard, Manzar; Hosseinzadeh, Zohreh; Bhavsar, Shefalee K; Lang, Florian

    2012-03-01

    Janus-activated kinase-2 (JAK2) participates in the regulation of the Na?-coupled glucose transporter SGLT1 and the Na?-coupled amino acid transporter SLC6A19. Concentrative cellular creatine uptake is similarly accomplished by Na?-coupled transport. The carrier involved is SLC6A8 (CreaT). The present study thus explored whether JAK2 regulates the activity of SLC6A8. To this end, cRNA encoding SLC6A8 was injected into Xenopus oocytes with or without cRNA encoding wild-type JAK2, constitutively active (V617F)JAK2 or inactive (K882E)JAK2. Electrogenic creatine transport was determined in those oocytes by dual-electrode voltage-clamp experiments. In oocytes injected with cRNA encoding SLC6A8 but not in oocytes injected with water or with cRNA encoding JAK2 alone, addition of 1 mM creatine to the extracellular bath generated an inward current (I (crea)). In SLC6A8 expressing oocytes I (crea) was significantly decreased by coexpression of JAK2 or (V617F)JAK2 but not by coexpression of (K882E)JAK2. According to kinetic analysis, coexpression of JAK2 decreased the maximal transport rate without significantly modifying the affinity of the carrier. In oocytes expressing SLC6A8 and (V617F)JAK2 I (crea) was gradually increased by the JAK2 inhibitor AG490 (40 ?M). In SLC6A8 and JAK2 coexpressing oocytes the decline of I (crea) following disruption of carrier insertion with brefeldin A (5 ?M) was similar in the absence and presence of JAK2. In conclusion, JAK2 is a novel regulator of the creatine transporter SLC6A8, which downregulates the carrier, presumably by interference with carrier protein insertion into the cell membrane. PMID:22407360

  3. Analyzing the Functional Properties of the Creatine Kinase System with Multiscale ‘Sloppy’ Modeling

    Microsoft Academic Search

    Hannes Hettling; Johannes HGM van Beek

    2011-01-01

    In this study the function of the two isoforms of creatine kinase (CK; EC 2.7.3.2) in myocardium is investigated. The ‘phosphocreatine shuttle’ hypothesis states that mitochondrial and cytosolic CK plays a pivotal role in the transport of high-energy phosphate (HEP) groups from mitochondria to myofibrils in contracting muscle. Temporal buffering of changes in ATP and ADP is another potential role

  4. Differential diagnosis of high serum creatine kinase levels in systemic lupus erythematosus

    Microsoft Academic Search

    Jutta G. Richter; Arnd Becker; Benedikt Ostendorf; Christof Specker; G. Stoll; E. Neuen-Jacob; Matthias Schneider

    2003-01-01

    We report the clinical and bioptic findings for a 57-year-old woman with severe chloroquine-induced myopathy. Since 1989, she had been suffering from systemic lupus erythematosus (SLE) with renal involvement and undergone periods of treatment with azathioprine and cyclophosphamide. Additional therapy with chloroquine (CQ) was started because of arthralgia. At the same time, slightly increased creatine kinase (CK) levels were noted.

  5. Production of native creatine kinase B in insect cells using a baculovirus expression vector

    Microsoft Academic Search

    Yvette J. M. Kok; Monique P. A. Geurds; Erik A. Sistermans; Magda Usmany; Just M. Vlak; Bé Wieringa

    1995-01-01

    A full-length human creatine kinase B (B-CK) cDNA was used to produce a recombinant baculovirus (AcDZ1-BCK). Sf9 cells infected with this recombinant expressed a homodimeric protein composed of 43 kDa subunits which, under optimal conditions, formed up to 30% of the total soluble cellular protein. Upon analysis by PAGE, zymogram assay and gel filtration chromatography the recombinant protein behaved like

  6. Comparison of troponin T versus creatine kinase-MB in suspected acute coronary syndromes

    Microsoft Academic Search

    Ellen S McErlean; Sue A Deluca; Frederick van Lente; Franklin Peacock; J. Sunil Rao; Craig A Balog; Steven E Nissen

    2000-01-01

    Limitations of creatine kinase-MB (CK-MB) have led to alternative biochemical markers, including troponin T (TnT), to detect myocardial necrosis. Limited data are available regarding the predictive value of this new marker in patients with chest pain of uncertain etiology. Therefore, we prospectively compared CK-MB and TnT in a broad population with suspected acute coronary syndromes, including those admitted to a

  7. Visualization of Discrete Microinfarction After Percutaneous Coronary Intervention Associated With Mild Creatine Kinase-MB Elevation

    Microsoft Academic Search

    Mark J. Ricciardi; Edwin Wu; Charles J. Davidson; Kelly M. Choi; Francis J. Klocke; Robert O. Bonow; Robert M. Judd; Raymond J. Kim

    2010-01-01

    Background—Mild elevations in creatine kinase-MB (CK-MB) are common after successful percutaneous coronary interventions and are associated with future adverse cardiac events. The mechanism for CK-MB release remains unclear. A new contrast-enhanced MRI technique allows direct visualization of myonecrosis. Methods and Results—Fourteen patients without prior infarction underwent cine and contrast-enhanced MRI after successful coronary stenting; 9 patients had procedure-related CK-MB elevation,

  8. Oxidative stress-mediated inhibition of brain creatine kinase activity by methylmercury

    Microsoft Academic Search

    Viviane Glaser; Guilhian Leipnitz; Marcos Raniel Straliotto; Jade Oliveira; Vanessa Valgas dos Santos; Clóvis Milton Duval Wannmacher; Andreza Fabro de Bem; João Batista Teixeira Rocha; Marcelo Farina; Alexandra Latini

    2010-01-01

    Methylmercury (MeHg), a potent neurotoxicant, easily passes through the blood–brain barrier and accumulates in brain causing severe irreversible damage. However, the underlying neurotoxic mechanisms elicited by MeHg are still not completed defined. In this study, we aimed to investigate the in vitro toxic effects elicited by crescent concentrations (0–1500?M) of MeHg on creatine kinase (CK) activity, thiol content (NPSH) and

  9. Liquid-chromatographic separation and on-line bioluminescence detection of creatine kinase isoenzymes

    Microsoft Academic Search

    W. D. Bostick; M. S. Denton; S. R. Dinsmore

    1980-01-01

    Isoenzymes of creatine kinase were separated by anion-exchange chromatography, with use of an elution gradient containing lithium acetate (0.1 to 0.6 mol\\/L). A stream splitter was used to divert a 5% side stream of column effluent, which was subsequently mixed with the reagents necessary for bioluminescence assay of the separated isoenzymes. The use of the stream splitter greatly decreased the

  10. Elevated Serum Creatine Kinase BB Levels in Patients with Small Cell Lung Cancer1

    Microsoft Academic Search

    Desmond N. Carney; Mark H. Zweig; Martin H. Cohen; Robert W. Makuch; Adi F. Gazdar

    1984-01-01

    Clinical tumor specimens and cultures of small cell lung cancer (SCLC) produce 10- to 100-fold higher quantities of the BB isoenzyme of creatine kinase (CK-BB) (EC 2.7.3.2) than did other types of lung cancer. Serum CK-BB levels were evaluated in 105 newly diagnosed, previously untreated patients with SCLC. All patients were thoroughly staged, including 42 patients with limited-stage and 63

  11. ?-Aminobutyric Acid Transporter 2 Mediates the Hepatic Uptake of Guanidinoacetate, the Creatine Biosynthetic Precursor, in Rats

    PubMed Central

    Tachikawa, Masanori; Ikeda, Saori; Fujinawa, Jun; Hirose, Shirou; Akanuma, Shin-ichi; Hosoya, Ken-ichi

    2012-01-01

    Guanidinoacetic acid (GAA) is the biosynthetic precursor of creatine which is involved in storage and transmission of phosphate-bound energy. Hepatocytes readily convert GAA to creatine, raising the possibility that the active uptake of GAA by hepatocytes is a regulatory factor. The purpose of this study is to investigate and identify the transporter responsible for GAA uptake by hepatocytes. The characteristics of [14C]GAA uptake by hepatocytes were elucidated using the in vivo liver uptake method, freshly isolated rat hepatocytes, an expression system of Xenopus laevis oocytes, gene knockdown, and an immunohistochemical technique. In vivo injection of [14C]GAA into the rat femoral vein and portal vein results in the rapid uptake of [14C]GAA by the liver. The uptake was markedly inhibited by ?-aminobutyric acid (GABA) and nipecotinic acid, an inhibitor of GABA transporters (GATs). The characteristics of Na+- and Cl?-dependent [14C]GAA uptake by freshly isolated rat hepatocytes were consistent with those of GAT2. The Km value of the GAA uptake (134 µM) was close to that of GAT2-mediated GAA transport (78.9 µM). GABA caused a marked inhibition with an IC50 value of 8.81 µM. The [14C]GAA uptake exhibited a significant reduction corresponding to the reduction in GAT2 protein expression. GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. This distribution pattern was consistent with that of the creatine biosynthetic enzyme, S-adenosylmethionine?guanidinoacetate N-methyltransferase. GAT2 makes a major contribution to the sinusoidal GAA uptake by periportal hepatocytes, thus regulating creatine biosynthesis in the liver. PMID:22384273

  12. Safety of dermatologic medications in pregnancy and lactation: Part II. Lactation.

    PubMed

    Butler, Daniel C; Heller, Misha M; Murase, Jenny E

    2014-03-01

    Dermatologists are frequently faced with questions from women who are breastfeeding about the safety of commonly prescribed topical and systemic medications during lactation. Safety data in lactation, particularly regarding medications that are unique to dermatology, are limited and can be difficult to locate. We have consolidated the available safety data in a single reference guide for clinicians. We review literature pertaining to the safety of common dermatologic therapies in lactation and offer recommendations based on the available evidence. PMID:24528912

  13. Interaction of creatine kinase with phosphorylating rabbit heart mitochondria and mitoplasts.

    PubMed

    Vial, C; Marcillat, O; Goldschmidt, D; Font, B; Eichenberger, D

    1986-12-01

    This paper demonstrates that the mitochondrial isoenzyme of creatine kinase (CKm) can be solubilized from rabbit heart mitochondria, the outer membrane of which has been removed or at least broken by a digitonin treatment or a short hypotonic exposure, but which has retained an important part of the capacity to phosphorylate ADP. Phosphate, ADP, or ATP, at concentrations which are used to study oxidative phosphorylation and creatine phosphate synthesis, solubilize CKm; the same is true with MgCl2 and KCl. The effect of adenine nucleotides does not seem to be due to their interaction with the adenine nucleotide translocase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that CKm is the main protein released in the described conditions; however, it does not amount to more than 1% of the total protein content of the mitoplasts. When the apparent Km for ATP of CKm was estimated by measuring creatine phosphate synthesis, the values obtained using water-treated mitochondria (0.21 mM) were slightly higher than those of intact mitochondria (0.12 mM) but the difference was not significant. In the former preparation 77% of CKm was in a soluble state. If we can extrapolate these results to intact mitochondria and suppose that in this case a fraction of CKm is also soluble in the intermembrane space, this does not support the theory of functional association between CKm and the adenine nucleotide translocase. PMID:3800385

  14. Is long term creatine and glutamine supplementation effective in enhancing physical performance of military police officers?

    PubMed

    da Silveira, Celismar Lázaro; de Souza, Thiago Siqueira Paiva; Batista, Gilmário Ricarte; de Araújo, Adenilson Targino; da Silva, Júlio César Gomes; de Sousa, Maria do Socorro Cirilo; Marta, Carlos; Garrido, Nuno Domingo

    2014-09-29

    The objective of this study was to analyze the effect of supplementation with creatine and glutamine on physical fitness of military police officers. Therefore, an experimental double blind study was developed, with the final sample composed by 32 men randomly distributed into three groups: a group supplemented with creatine (n=10), glutamine (n=10) and a placebo group (n=12) and evaluated in three distinct moments, in an interval of three months (T1, T2 and T3). The physical training had a weekly frequency of 5 sessions × 90 min, including strength exercises, local muscular resistance, flexibility and both aerobic and anaerobic capacity. After analyzing the effect of time, group and interaction (group × time) for measures that indicated the physical capabilities of the subjects, a significant effect of time for the entire variable was identified (p<0,05). However, these differences were not observed when the univaried intragroups and intergroups analysis was performed (p>0,05). In face of the results it was concluded that supplementation with creatine and glutamine showed no ergogenic effect on physical performance in military police officers. PMID:25713653

  15. Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy

    NASA Astrophysics Data System (ADS)

    Li, Chao; Tao, Fei; Ni, Jun; Wang, Yu; Yao, Feng; Xu, Ping

    2015-05-01

    It is increasingly attractive to engineer cyanobacteria for bulk production of chemicals from CO2. However, cofactor bias of cyanobacteria is different from bacteria that prefer NADH, which hampers cyanobacterial strain engineering. In this study, the key enzyme D-lactate dehydrogenase (LdhD) from Lactobacillus bulgaricus ATCC11842 was engineered to reverse its favored cofactor from NADH to NADPH. Then, the engineered enzyme was introduced into Synechococcus elongatus PCC7942 to construct an efficient light-driven system that produces D-lactic acid from CO2. Mutation of LdhD drove a fundamental shift in cofactor preference towards NADPH, and increased D-lactate productivity by over 3.6-fold. We further demonstrated that introduction of a lactic acid transporter and bubbling CO2-enriched air also enhanced D-lactate productivity. Using this combinational strategy, increased D-lactate concentration and productivity were achieved. The present strategy may also be used to engineer cyanobacteria for producing other useful chemicals.

  16. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  17. Inducing Lactation: Breastfeeding for Adoptive Moms

    MedlinePLUS

    ... Español Text Size Email Print Share Inducing Lactation: Breastfeeding for Adoptive Moms Article Body A growing number ... a breastfeeding relationship while further stimulating milk production. Nursing Supplement While there is no way to predict ...

  18. Activation of liver alcohol dehydrogenase by glycosylation.

    PubMed Central

    Tsai, C S; White, J H

    1983-01-01

    D-Fructose and D-glucose activate alcohol dehydrogenase from horse liver to oxidize ethanol. One mol of D-[U-14C]fructose or D-[U-14C]glucose is covalently incorporated per mol of the maximally activated enzyme. Amino acid and N-terminal analyses of the 14C-labelled glycopeptide isolated from a proteolytic digest of the [14C]glycosylated enzyme implicate lysine-315 as the site of the glycosylation. 13C-n.m.r.-spectroscopic studies indicate that D-[13C]glucose is covalently linked in N-glucosidic and Amadori-rearranged structures in the [13C]glucosylated alcohol dehydrogenase. Experimental results are consistent with the formation of the N-glycosylic linkage between glycose and lysine-315 of liver alcohol dehydrogenase in the initial step that results in an enhanced catalytic efficiency to oxidize ethanol. PMID:6342612

  19. NAD + -dependent Formate Dehydrogenase from Plants

    PubMed Central

    Alekseeva, A.A.; Savin, S.S.; Tishkov, V.I.

    2011-01-01

    NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) widely occurs in nature. FDH consists of two identical subunits and contains neither prosthetic groups nor metal ions. This type of FDH was found in different microorganisms (including pathogenic ones), such as bacteria, yeasts, fungi, and plants. As opposed to microbiological FDHs functioning in cytoplasm, plant FDHs localize in mitochondria. Formate dehydrogenase activity was first discovered as early as in 1921 in plant; however, until the past decade FDHs from plants had been considerably less studied than the enzymes from microorganisms. This review summarizes the recent results on studying the physiological role, properties, structure, and protein engineering of plant formate dehydrogenases. PMID:22649703

  20. The effects of Creatine Long-Term Supplementation on Muscle Morphology and Swimming Performance in Rats.

    PubMed

    Yildiz, Ahmet; Ozdemir, Ercan; Gulturk, Sefa; Erdal, Sena

    2009-01-01

    Creatine (Cr) has been shown to increase the total muscle mass. The purpose of this study was to investigate the effect of Cr supplementation on muscle morphology and swimming performance, using an animal model. Each rat was subjected to exercise 15-minute period daily for the 12 weeks. The rats were randomly divided into four groups: no Cr supplementation (CON), no Cr supplementation and incomplete food intake (lacking lysine and methionine in diet for rats) (INCO), Cr supplementation 1 g·kg(-1)·day(-1) (CREAT-I) and Cr supplementation 2 g·kg(-1)·day(-1) (CREAT-II). Three months later, all groups adult rats exercised in swimming pool chambers. Swimming time was recorded as minute for each rat. Following swimming performance period, the animals were killed by cervical dislocation and the gastrocnemius and diaphragm muscles were dissected. Serial slices of 5-7 ?m were allocated paraffin wax and histochemical staining procedure of cross-sections was carried out with heamatoxylin-eosin technics. All groups gained body weight at the end of 12 weeks but there was no statistical difference among them. Swimming time values were statistical difference between CREAT-II and CON group as well as between CREAT-I and CON group (p < 0.05). In the INCO group was determined increased connective tissue cell of the muscle sample. In contrast, in the CREAT-I and CREAT-II group, the basic histological changes were large-scale muscle fibers and hypertrophic muscle cells. These results suggest that long-term creatine supplementation increased the number of muscle fibers and enhanced endurance swimming performance in rats. Key pointsThere is no study about the effects of creatine long-term supplementation on muscle morphology and swimming performance in rats.Long-term creatine supplementation increase muscle hypertrophy (but not body weight) and enhance endurance swimming performance in rats.The quantitative analysis indicated that the number of muscle fibers per defined area increased in creatine supplementation groups. PMID:24149591

  1. Effect of Creatine Monohydrate on Clinical Progression in Patients With Parkinson Disease

    PubMed Central

    2015-01-01

    IMPORTANCE There are no treatments available to slow or prevent the progression of Parkinson disease, despite its global prevalence and significant health care burden. The National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson Disease program was established to promote discovery of potential therapies. OBJECTIVE To determine whether creatine monohydrate was more effective than placebo in slowing long-term clinical decline in participants with Parkinson disease. DESIGN, SETTING, AND PATIENTS The Long-term Study 1, a multicenter, double-blind, parallel-group, placebo-controlled, 1:1 randomized efficacy trial. Participants were recruited from 45 investigative sites in the United States and Canada and included 1741 men and women with early (within 5 years of diagnosis) and treated (receiving dopaminergic therapy) Parkinson disease. Participants were enrolled from March 2007 to May 2010 and followed up until September 2013. INTERVENTIONS Participants were randomized to placebo or creatine (10 g/d) monohydrate for a minimum of 5 years (maximum follow-up, 8 years). MAIN OUTCOMES AND MEASURES The primary outcome measure was a difference in clinical decline from baseline to 5-year follow-up, compared between the 2 treatment groups using a global statistical test. Clinical status was defined by 5 outcome measures: Modified Rankin Scale, Symbol Digit Modalities Test, PDQ-39 Summary Index, Schwab and England Activities of Daily Living scale, and ambulatory capacity. All outcomes were coded such that higher scores indicated worse outcomes and were analyzed by a global statistical test. Higher summed ranks (range, 5–4775) indicate worse outcomes. RESULTS The trial was terminated early for futility based on results of a planned interim analysis of participants enrolled at least 5 years prior to the date of the analysis (n = 955). The median follow-up time was 4 years. Of the 955 participants, the mean of the summed ranks for placebo was 2360 (95% CI, 2249–2470) and for creatine was 2414 (95% CI, 2304–2524). The global statistical test yielded t1865.8 = ?0.75 (2-sided P = .45). There were no detectable differences (P < .01 to partially adjust for multiple comparisons) in adverse and serious adverse events by body system. CONCLUSIONS AND RELEVANCE Among patients with early and treated Parkinson disease, treatment with creatine monohydrate for at least 5 years, compared with placebo did not improve clinical outcomes. These findings do not support the use of creatine monohydrate in patients with Parkinson disease. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00449865 PMID:25668262

  2. Lactation: historical patterns and potential for manipulation.

    PubMed

    Blackburn, D G

    1993-10-01

    The advent of biotechnology has made data on undomesticated mammals relevant to dairy science. Such data indicate the potential of lactation for modification, reveal genetic material available for use through bioengineering, help distinguish adaptive features from historical artifacts, and clarify limits on lactational diversity that date from early evolution. Evolutionary analysis indicates that a complex degree of lactation preceded divergence of the extant mammalian lineages during the Mesozoic Era. Although aspects of monotreme lactation appear to be ancestral for extant mammals, the marsupials and eutherians exhibit divergent specializations. Evidence is consistent with the idea that protolacteal glands evolved by combining features of skin gland populations into a new functional complex. Secretions of these ancestral glands may have had antimicrobial properties that protected the eggs or hatchlings and organic components that supplemented offspring nutrition. Following development of highly nutritious milks, evolution produced diversity in milk composition and function, milk output, length of lactation, mammary gland anatomy, and contributions of lactation to offspring nutrition. Certain marsupials are specialized in terms of functional independence and temporal plasticity of mammary tissues. Mammalian diversity indicates that artificial selection and physiological manipulation of domestic artiodactyls has only modestly exploited the potential of mammary glands as a nutritional source for humans. PMID:8227641

  3. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...dehydrogenase enzyme in serum. Increased levels of lactic dehydrogenase are found in a variety of conditions, including megaloblastic anemia (decrease in the number of mature red blood cells), myocardial infarction (heart disease), and some forms of...

  4. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...dehydrogenase enzyme in serum. Increased levels of lactic dehydrogenase are found in a variety of conditions, including megaloblastic anemia (decrease in the number of mature red blood cells), myocardial infarction (heart disease), and some forms of...

  5. Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation.

    PubMed

    Schäff, C; Börner, S; Hacke, S; Kautzsch, U; Sauerwein, H; Spachmann, S K; Schweigel-Röntgen, M; Hammon, H M; Kuhla, B

    2013-10-01

    The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d -17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1? and ? mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor ? (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the ?-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPAR? coactivator 1? decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The decline in muscle fatty acid oxidation within the first 4 wk of lactation accompanied with increased feed intake refer to greater supply of ruminally derived acetate, which as the preferred fuel of the muscle, saves long-chain fatty acids for milk fat production. PMID:23910553

  6. The metabolism and action of insulin and glucagon in lactating and non-lactating goats

    E-print Network

    Paris-Sud XI, Université de

    amounts of glucose were simultaneously infused. The blood was sampled frequently. Plasma insulin and their action on blood glucose in lactating and non-lactating goats. Material and methods. Nine Alpine goats 4.m.). Two separate experiments (I and II) were performed. In experimentI (6 goats), unlabelled porcine

  7. PRODUCTIVE LIFE INCLUDING ALL LACTATIONS AND LONGER LACTATIONS WITH DIMINISHING CREDITS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative measures of productive life (PL) were compared and life expectancy factors were updated to replace estimates from 1993. Alternatives were proposed with extra credits for lactations longer than 10 mo and beyond 84 mo of age, and for each calf produced so that an extremely long lactation w...

  8. Recent Advances in Lactate Estimation and Lactate Sensors for Diagnosis of Diseases

    Microsoft Academic Search

    Ashok Kumar

    Lactate is one of the principle products of anaerobic metabolism in living organism. Determination of lactate (lactic acid) is required in the diagnosis and medical management of various diseases such as tissue hypoxia, the individual causes include shock (hypovolemic, cardiogenic or endotoxic), systemic disorder (neoplastic diseases, liver or renal failure, diabetes mellitus), respiratory failure (asphyxia), severe congestive heart failure and

  9. Creatine Usage and Education of Track and Field Throwers at National Collegiate Athletic Association Division I Universities.

    PubMed

    Judge, Lawrence W; Petersen, Jeffrey C; Craig, Bruce W; Hoover, Donald L; Holtzclaw, Kara A; Leitzelar, Brianna N; Tyner, Rebecca M R; Blake, Amy S; Hindawi, Omar S; Bellar, David M

    2015-07-01

    Judge, LW, Petersen, JC, Craig, BW, Hoover, DL, Holtzclaw, KA, Leitzelar, BN, Tyner, RMR, Blake, AS, Hindawi, OS, and Bellar, DM. Creatine usage and education of track and field throwers at National Collegiate Athletic Association Division I universities. J Strength Cond Res 29(7): 2034-2040, 2015-The purpose of this study was to analyze the level of creatine use along with the perceived benefits and barriers of creatine use among collegiate athletes who participate in throwing events within the sport of track and field. A total of 258 throwers from National Collegiate Athletic Association Division I institutions completed an online survey regarding creatine. The results provided baseline levels of creatine use and allowed for the analysis of factors related to athletic conference affiliation. Results indicate that creatine use remains to be a common (32.7%) practice among throwers with significantly higher levels of use among Football Bowl Subdivision (FBS) conference athletes (44.6%) than Football Championship Subdivision (FCS) conference athletes (28.8%), ? = 5.505, p = 0.019. The most common reasons for using creatine included a desire to improve/increase: strength (83.3%), recovery time (69.0%), and performance (60.7%). The most common perceived obstacles included contamination/quality control (39.5%), cost (33.3%), inconvenience (16.7%), and cramping (14.3%). A desire for additional education and training was noted through an expression of interest (55.6%) with significantly higher levels of interest from FBS athletes (65.6%) than FCS athletes (52.2%), ? = 6.425, p = 0.039. However, the athletic departments provide nutritional supplement counseling at only 26.6% of the schools. Although the access to full-time nutritionist counsel was available at 57.3% of the schools, there was a significant difference (? = 9.096, p = 0.003) between FBS schools (73.7%) and FCS schools (51.7%). PMID:25559910

  10. Creatine Supplementation Associated or Not with Strength Training upon Emotional and Cognitive Measures in Older Women: A Randomized Double-Blind Study

    PubMed Central

    Alves, Christiano Robles Rodrigues; Merege Filho, Carlos Alberto Abujabra; Benatti, Fabiana Braga; Brucki, Sonia; Pereira, Rosa Maria R.; de Sá Pinto, Ana Lucia; Lima, Fernanda Rodrigues; Roschel, Hamilton; Gualano, Bruno

    2013-01-01

    Purpose To assess the effects of creatine supplementation, associated or not with strength training, upon emotional and cognitive measures in older woman. Methods This is a 24-week, parallel-group, double-blind, randomized, placebo-controlled trial. The individuals were randomly allocated into one of the following groups (n=14 each): 1) placebo, 2) creatine supplementation, 3) placebo associated with strength training or 4) creatine supplementation associated with strength training. According to their allocation, the participants were given creatine (4 x 5 g/d for 5 days followed by 5 g/d) or placebo (dextrose at the same dosage) and were strength trained or not. Cognitive function, assessed by a comprehensive battery of tests involving memory, selective attention, and inhibitory control, and emotional measures, assessed by the Geriatric Depression Scale, were evaluated at baseline, after 12 and 24 weeks of the intervention. Muscle strength and food intake were evaluated at baseline and after 24 weeks. Results After the 24-week intervention, both training groups (ingesting creatine supplementation and placebo) had significant reductions on the Geriatric Depression Scale scores when compared with the non-trained placebo group (p = 0.001 and p = 0.01, respectively) and the non-trained creatine group (p < 0.001 for both comparison). However, no significant differences were observed between the non-trained placebo and creatine (p = 0.60) groups, or between the trained placebo and creatine groups (p = 0.83). Both trained groups, irrespective of creatine supplementation, had better muscle strength performance than the non-trained groups. Neither strength training nor creatine supplementation altered any parameter of cognitive performance. Food intake remained unchanged. Conclusion Creatine supplementation did not promote any significant change in cognitive function and emotional parameters in apparently healthy older individuals. In addition, strength training per se improved emotional state and muscle strength, but not cognition, with no additive effects of creatine supplementation. Trial Registration Clinicaltrials.gov NCT01164020 PMID:24098469

  11. Aldehyde dehydrogenases and cell proliferation.

    PubMed

    Muzio, G; Maggiora, M; Paiuzzi, E; Oraldi, M; Canuto, R A

    2012-02-15

    Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of deviation in hepatoma and lung cancer cell lines, as is the case in chemically induced hepatoma in rats. High ALDH3A1 expression and activity have been correlated with cell proliferation, resistance against aldehydes derived from lipid peroxidation, and resistance against drug toxicity, such as oxazaphosphorines. Indeed, cells with a high ALDH3A1 content are more resistant to the cytostatic and cytotoxic effects of lipidic aldehydes than are those with a low content. A reduction in cell proliferation can be observed when the enzyme is directly inhibited by the administration of synthetic specific inhibitors, antisense oligonucleotides, or siRNA or indirectly inhibited by the induction of peroxisome proliferator-activated receptor ? (PPAR?) with polyunsaturated fatty acids or PPAR? transfection. Conversely, cell proliferation is stimulated by the activation of ALDH3A1, whether by inhibiting PPAR? with a specific antagonist, antisense oligonucleotides, siRNA, or a medical device (i.e., composite polypropylene prosthesis for hernia repair) used to induce cell proliferation. To date, the mechanisms underlying the effects of ALDHs on cell proliferation are not yet fully clear. A likely hypothesis is that the regulatory effect is mediated by the catabolism of some endogenous substrates deriving from normal cell metabolism, such as 4-hydroxynonenal, which have the capacity to either stimulate or inhibit the expression of genes involved in regulating proliferation. PMID:22206977

  12. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    PubMed

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption. PMID:24162728

  13. Aldehyde dehydrogenase gene superfamily: the 2002 update

    Microsoft Academic Search

    Nickolas A Sophos; Vasilis Vasiliou

    2003-01-01

    The aldehyde dehydrogenase (ALDH) superfamily represents a divergently related group of enzymes that metabolize a wide variety of endogenous and exogenous aldehydes. With the advent of megabase genome sequencing, the ALDH superfamily is continuously expanding on many fronts. The presence of ALDH encoding genes in the vast majority of archaeal, eubacterial and eukaryotic genomes supports the notion that these enzymes

  14. Aldehyde dehydrogenase gene superfamily: the 2000 update

    Microsoft Academic Search

    Nickolas A. Sophos; Aglaia Pappa; Thomas L. Ziegler; Vasilis Vasiliou

    2001-01-01

    Aldehyde dehydrogenase (ALDH) superfamily represents a group of NAD(P)+-dependent enzymes that catalyze the oxidation of a wide spectrum of endogenous and exogenous aldehydes. With the advent of megabase genome sequencing, the ALDH superfamily is expanding rapidly on many fronts. As expected, ALDH genes are found in virtually all genomes analyzed to date, indicating the importance of these enzymes in biological

  15. Pyruvate Dehydrogenase | High Resolution Electron Microscopy

    Cancer.gov

    This image shows the inner and outer shells of the large protein pyruvate dehydrogenase, which is important for a cell’s metabolism. This protein turns pyruvate, which comes from sugars like glucose, into a molecule called acetyl-coA. This transformation helps energize the cell.

  16. Rate equation for creatine kinase predicts the in vivo reaction velocity: /sup 31/P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat

    SciTech Connect

    Bittl, J.A.; DeLayre, J.; Ingwall, J.S.

    1987-09-22

    Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used /sup 31/P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate for V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.

  17. Study of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the American Buffalo (Bison bison)

    Microsoft Academic Search

    S. N. Naik; D. E. Anderson

    1970-01-01

    American buffalos have been studied for their hemoglobin and transferrin types, which show no detectable polymorphism (Braend and Stormont, 1963; Stormont, 1964). This report summarizes new data on erythrocytic glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) in this species. Blood samples were collected in ACD vacutainer tubes from 45 male and 41 female buffalos from the Wichita Mountains Wildlife

  18. Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity.

    PubMed

    Even, S; Garrigues, C; Loubiere, P; Lindley, N D; Cocaign-Bousquet, M

    1999-07-01

    Modification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity from Lactococcus lactis was undertaken during batch fermentation on lactose, by adding various concentrations of iodoacetate (IAA), a compound which specifically inhibits GAPDH at low concentrations, to the culture medium. As IAA concentration is increased, GAPDH activity diminishes, provoking a decrease of both the glycolytic flux and the specific growth rate. This control exerted at the level of GAPDH was due partially to IAA covalent fixation but also to the modified NADH/NAD+ ratio. The mechanism of inhibition by NADH/NAD+ was studied in detail with the purified enzyme and various kinetic parameters were determined. Moreover, when GAPDH activity became limiting, the triose phosphate pool increased resulting in the inhibition of pyruvate formate lyase activity, while the lactate dehydrogenase is activated by the high NADH/NAD+ ratio. Thus, modifying the GAPDH activity provokes a shift from mixed-acid to homolactic metabolism, confirming the important role of this enzyme in controlling both the flux through glycolysis and the orientation of pyruvate catabolism. PMID:10937934

  19. Short-chain acyl-coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients.

    PubMed Central

    Amendt, B A; Greene, C; Sweetman, L; Cloherty, J; Shih, V; Moon, A; Teel, L; Rhead, W J

    1987-01-01

    We describe two patients with short-chain acyl-coenzyme A (CoA) dehydrogenase (SCADH) deficiency. Neonate I excreted large amounts of ethylmalonate and methylsuccinate; ethylmalonate excretion increased after a medium-chain triglyceride load. Neonate II died postnatally and excreted ethylmalonate, butyrate, 3-hydroxybutyrate, adipate, and lactate. Both neonates' fibroblasts catabolized [1-14C]butyrate poorly (29-64% of control). Neonate I had moderately decreased [1-14C]octanoate catabolism (43-60% of control), while neonate II oxidized this substrate normally; both catabolized radiolabeled palmitate, succinate, and/or leucine normally. Cell sonicates from neonates I and II dehydrogenated [2,3-3H]butyryl-CoA poorly (41 and 53% of control) and [2,3-3H]octanoyl-CoA more effectively (59 and 95% of control). Mitochondrial acyl-CoA dehydrogenase (ADH) activities with butyryl- and octanoyl-CoAs were 37 and 56% of control in neonate I, and 47 and 81% of control in neonate II, respectively. Monospecific medium-chain ADH (MCADH) antisera inhibited MCADH activity towards both butyryl- and octanoyl-CoAs, revealing SCADH activities to be 1 and 11% of control for neonates I and II, respectively. Fibroblast SCADH and MCADH activities were normal in an adult female with muscular SCADH deficiency. PMID:3571488

  20. ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function

    PubMed Central

    2010-01-01

    Background The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9). Results We found that a variant of ASB9 that lacks the SOCS box (ASB9?SOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9?SOCS, induces ubiquitination of uMtCK. ASB9 and ASB9?SOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9?SOCS. Conclusions ASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9?SOCS may be a key factor in the growth of human cell lines and primary cells. PMID:20302626

  1. Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes

    PubMed Central

    1985-01-01

    Creatine kinase (CK, EC 2.7.3.2) has recently been identified as the intermediate isoelectric point species (pl 6.5-6.8) of the Mr 40,000- 43,000 nonreceptor, peripheral v-proteins in Torpedo marmorata acetylcholine receptor-rich membranes (Barrantes, F. J., G. Mieskes, and T. Wallimann, 1983, Proc. Natl. Acad. Sci. USA, 80: 5440-5444). In the present study, this finding is substantiated at the cellular and subcellular level of the T. marmorata electric organ by immunofluorescence and by protein A-gold labeling of either ultrathin cryosections of electrocytes or purified receptor-membrane vesicles that use subunit-specific anti-chicken creatine kinase antibodies. The muscle form of the kinase, on the one hand, is present throughout the entire T. marmorata electrocyte except in the nuclei. The brain form of the kinase, on the other hand, is predominantly located on the ventral, innervated face of the electrocyte, where it is closely associated with both surfaces of the postsynaptic membrane, and secondarily in the synaptic vesicles at the presynaptic terminal. Labeling of the noninnervated dorsal membrane is observed at the invaginated sac system. In the case of purified acetylcholine receptor-rich membranes, antibodies specific for chicken B-CK label only one face of the isolated vesicles. No immunoreaction is observed with anti-chicken M-CK antibodies. A discussion follows on the possible implications of these localizations of creatine kinase in connection with the function of the acetylcholine receptor at the postsynaptic membrane, the Na/K ATPase at the dorsal electrocyte membrane, and the ATP-dependent transmitter release at the nerve ending. PMID:3884630

  2. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients

    PubMed Central

    Patel, Kavi P.; O’Brien, Thomas W.; Subramony, Sankarasubramon H.; Shuster, Jonathan; Stacpoole, Peter W.

    2014-01-01

    Context Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. Objective We reviewed 371 cases of PDC deficiency, published between 1970 and 2010, that involved defects in subunits E1? and E1? and components E1, E2, E3 and the E3 binding protein of the complex. Data sources and extraction English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. Results Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. Conclusions Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio?20. PMID:22896851

  3. Effect of coenzyme Q10 supplementation on exercise-induced response of inflammatory indicators and blood lactate in male runners

    PubMed Central

    Armanfar, Mostafa; Jafari, Afshar; Dehghan, Gholam Reza; Abdizadeh, Leila

    2015-01-01

    Background: Heavy exercise cause muscle damage associated with production of inflammatory agents. The purpose of present study was to determine the effect of acute and 14-day Coenzyme Q10 supplementation on inflammatory, blood lactate and muscle damage in male middle-distance runners. Methods: Eighteen male middle-distance runners in a randomized and quasi experimental study were allocated into two equal groups: supplement group (n=9, Coenzyme Q10: 5mg/kg/day) and placebo group (n= 9, Dextrose: 5mg/kg/day). After acute (1day) and 14-day supplementation, all subjects were participated in a training like running (competitive 3000 meters). Blood samples were obtained in the four phases: one hour before and 18-24 hours after two running protocols. Lactate, serum interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), C-reactive protein (CRP) and creatine kinase (CK) were analyzed. Repeated ANOVA and Bonferuni as a post hoc tests were used to determine the changes in four stages. Differences between groups were determined by t-test. Results: The results showed that acute and short-term Coenzyme Q10 supplementation had not significant effect on basal parameters. The acute coenzyme Q10 supplementation attenuated only the exercise-induced increase in response of the plasma CRP. The short-term (14-day) coenzyme Q10 supplementation attenuated the exercise-induced increase in response of the lactate, serum interleukin- 6, tumor necrosis factor-alpha, and CRP in male middle-distance runners. However, the acute and short-term coenzyme Q10 supplementation had not any significant effect on the exerciseinduced increase response of total serum creatine kinase. Conclusion: Based on the present results, it can be concluded that the 14-day coenzyme Q10 supplementation (5mg.kg-1.day-1) is more effective than the acute supplementation to overcome the exercise-induced adverse responses in some oxidative, inflammatory and biochemical parameters. Therefore, short-term coenzyme Q10 supplementation is recommended to reduce exercise-induced adverse consequences.

  4. Successful sustained lactation following postpartum tubal ligation.

    PubMed

    Amatayakul, K; Wongsawasdi, L; Munglapruks, A; Imong, S M; Jackson, D A; Tansuhaj, A; Suwannarach, C; Chiowanich, P; Woolridge, M M; Drewett, R F

    1991-12-01

    This study was undertaken to see whether tubal ligation performed within days postpartum, and associated with a delay in the initiation of breastfeeding, exerts a disruptive influence on successfully establishing lactation among the rural population of northern Thailand. Lactational performance of 12 rural northern Thai mothers was not affected by the delay in reunion of mothers with their babies as a result of postpartum tubal sterilization procedure when compared with a group of 8 other healthy mothers and babies. The volume of breast milk transferred, frequency of breastfeeding and the total feeding time spent on the breast were similar on days 15, 45, 90, 180 and 360 postpartum. This finding suggests that the pattern of intense breastfeeding activity as practiced by this group of mothers has a stronger influence on prolonged and successful lactation than early contact in the immediate postpartum period. PMID:1776561

  5. TUBULAR SECRETION OF CREATINE, TRIMETHYLAMINE OXIDE, AND OTHER ORGANIC BASES BY THE AGLOMERULAR KIDNEY OF LOPHIUS AMERICANUS

    PubMed Central

    Forster, Roy P.; Berglund, Fredrik; Rennick, Barbara R.

    1958-01-01

    Creatine and trimethylamine oxide (TMAO) are the chief nitrogenous constituents of normal Lophius urine, and both of these organic bases characteristically have high urine/plasma concentration ratios. Competition studies involving various organic bases indicate that creatine and TMAO are excreted independently by separate transport mechanisms. TMAO excretion is inhibited competitively by tetraethylammonium ion (TEA) and by cyanine dye No. 863—compounds previously shown to be transferred actively by an organic base-secreting mechanism of general occurrence among vertebrates. TEA does not inhibit competitively the active tubular reabsorption of TMAO in Squalus with doses which markedly depress its tubular excretion in Lophius. Glycine, which inhibits creatine reabsorption in the dog, does not interfere competitively with its secretion in Lophius. PMID:13587915

  6. Application of isotopes to the study of lactate metabolism

    SciTech Connect

    Katz, J.

    1986-06-01

    The use of /sup 14/C as tracer to measure lactate turnover and oxidation and its role in gluconeogenesis are discussed. Lactate is formed as well as utilized in many cells, and most of it in the body is present within cells so that interpretation of /sup 14/C data from labelled lactate is more complex and more difficult than that of compounds present largely extracellularly, such as glucose. Apparent uptake of (/sup 14/C)lactate may occur in the absence of net lactate utilization, and /sup 14/CO/sub 2/ production does not provide a measure of true lactate oxidation. In vivo sites of tracer administration and sampling of blood are of critical significance for evaluation of lactate turnover, lactate space, its incorporation into glucose, and oxidation.

  7. The Creatine Transporter Gene Paralogous at 16p11.2 Is Expressed in Human Brain

    PubMed Central

    Bayou, Nadia; M’rad, Ridha; Belhaj, Ahlem; Daoud, Hussein; Zemni, Ramzi; Briault, Sylvain; Helayem, M. Béchir; Ben Jemaa, Lamia; Chaabouni, Habiba

    2008-01-01

    Autism is a complex neurodevelopmental disorder characterized by impairment of social interaction, language, communication, and stereotyped, repetitive behavior. Genetic predisposition to autism has been demonstrated in families and twin studies. About 5–10% of autism cases are associated with chromosomal abnormalities or monogenic disorders. The identification of genes involved in the origin of autism is expected to increase our understanding of the pathogenesis. We report on the clinical, cytogenetic, and molecular findings in a boy with autism carrying a de novo translocation t(7;16)(p22.1;p11.2). The chromosome 16 breakpoint disrupts the paralogous SLC6A8 gene also called SLC6A10 or CT2. Predicted translation of exons and RT-PCR analysis reveal specific expression of the creatine transporter paralogous in testis and brain. Several studies reported on the role of X-linked creatine transporter mutations in individuals with mental retardation, with or without autism. The existence of disruption in SLC6A8 paralogous gene associated with idiopathic autism suggests that this gene may be involved in the autistic phenotype in our patient. PMID:18509488

  8. Creatine transporter protein content, localization, and gene expression in rat skeletal muscle.

    PubMed

    Murphy, R; McConell, G; Cameron-Smith, D; Watt, K; Ackland, L; Walzel, B; Wallimann, T; Snow, R

    2001-03-01

    The present study examined the gene expression and cellular localization of the creatine transporter (CreaT) protein in rat skeletal muscle. Soleus (SOL) and red (RG) and white gastrocnemius (WG) muscles were analyzed for CreaT mRNA, CreaT protein, and total creatine (TCr) content. Cellular location of the CreaT protein was visualized with immunohistochemical analysis of muscle cross sections. TCr was higher (P < or = 0.05) in WG than in both RG and SOL, and was higher in RG than in SOL. Total CreaT protein content was greater (P < or = 0.05) in SOL and RG than in WG. Two bands (55 and 70 kDa) of the CreaT protein were found in all muscle types. Both the 55-kDa (CreaT-55) and the 70-kDa (CreaT-70) bands were present in greater (P < or = 0.05) amounts in SOL and RG than in WG. SOL and RG had a greater amount (P < or = 0.05) of CreaT-55 than CreaT-70. Immunohistochemical analysis revealed that the CreaT was mainly associated with the sarcolemmal membrane in all muscle types. CreaT mRNA expression per microgram of total RNA was similar across the three muscle types. These data indicate that rat SOL and RG have an enhanced potential to transport Cr compared with WG, despite a higher TCr in the latter. PMID:11171559

  9. Creatine synthesis and transport during rat embryogenesis: Spatiotemporal expression of AGAT, GAMT and CT1

    PubMed Central

    Braissant, Olivier; Henry, Hugues; Villard, Anne-Marie; Speer, Oliver; Wallimann, Theo; Bachmann, Claude

    2005-01-01

    Background Creatine (Cr) is synthesized by a two-step mechanism involving arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and is taken up by cells through a specific Cr transporter, CT1. Recently, genetic defects of this pathway have been described, that lead to Cr deficiency, neurological symptoms in early infancy and severe neurodevelopmental delay. To investigate the involvement of Cr synthesis and uptake pathways during embryonic development, we determined the spatiotemporal expression of AGAT, GAMT and CT1 during the rat embryogenesis, at the mRNA and protein level. Results We show that AGAT and GAMT are expressed in hepatic primordium as soon as 12.5 days, then progressively acquire their adult pattern of expression, with high levels of AGAT in kidney and pancreas, and high levels of GAMT in liver and pancreas. AGAT and CT1 are prominent in CNS, skeletal muscles and intestine, where they appear earlier than GAMT. High levels of CT1 are found in epithelia. Conclusion Our results suggest that de novo synthesis of Cr by AGAT and GAMT, as well as cellular Cr uptake by CT1, are essential during embryonic development. This work provides new clues on how creatine can be provided to developing tissues, and suggests that Cr deficiencies might induce irreversible damages already in utero, particularly on the nervous system. PMID:15918910

  10. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  11. pH-Dependent Stability of Creatine Ethyl Ester: Relevance to Oral Absorption

    PubMed Central

    Gufford, Brandon T.; Ezell, Edward L.; Robinson, Dennis H.; Miller, Donald W.; Miller, Nicholas J.; Gu, Xiaochen; Vennerstrom, Jonathan L.

    2015-01-01

    Creatine ethyl ester hydrochloride (CEE) was synthesized as a prodrug of creatine (CRT) to improve aqueous solubility, gastrointestinal permeability, and ultimately the pharmacodynamics of CRT. We used high-performance liquid chromatography (HPLC) and proton nuclear magnetic resonance (NMR) to characterize the pH-dependent stability of CEE in aqueous solution and compared the permeability of CEE to CRT and creatinine (CRN) across Caco-2 human epithelial cell monolayers and transdermal permeability across porcine skin. CEE was most stable in a strongly acidic condition (half-life = 570 hours at pH 1.0) where it undergoes ester hydrolysis to CRT and ethanol. At pH ? 1.0, CEE cyclizes to CRN with the logarithm of the first order rate constant increasing linearly with pH. Above pH 8.0 (half-life = 23 sec) the rate of degradation was too rapid to be determined. The rate of degradation of CEE in cell culture media and simulated intestinal fluid (SIF) was a function of pH and correlated well with the stability in aqueous buffered solutions. The permeability of CEE across Caco-2 monolayers and porcine skin was significantly greater than that of CRT or CRN. The stability of CEE in acidic media together with its improved permeability suggests that CEE has potential for improved oral absorption compared to CRT. PMID:23957855

  12. Creatine kinase radioimmunoassay and isoenzyme electrophoresis compared in the diagnosis of acute myocardial infarction

    SciTech Connect

    Homburger, H.A.; Jacob, G.L.

    1980-07-01

    We compared, in 116 patients, the relative usefulness of results of tests for creatine kinase B-isoenzymes, as measured by radioimmunoassay, and the MB isoenzyme, as measured by electrophoresis, in diagnosis of acute myocardial infarction. The radioimmunoassay was specific for isoenzymes of creatine kinase containing the B subunit. All patients with acute transmural infarcts had positive test results by both techniques, but concentrations of B-isoenzymes were more frequently above normal than were MB bands in the case of patients with acute subendocardial infarcts and in the case of all patients with acute myocardial infarcts from whom sera were collected more than 24 h after onset of chest pain. Concentrations of B-isoenzymes also were increased, even when MB bands were not electrophoretically detectable in specimens from several patients without documented acute myocardial infarcts. These abnormal results presumably were caused by increased concentrations of the BB isoenzyme in serum. Accordingly, an increased concentration of B-isoenzymes had less diagnostic specificity and predictive value for acute myocardial infarction than did a detectable MB band. Results of isoenzyme electrophoresis were more reliable for establishing this diagnosis, but the results of radioimmunoassay were more reliable for excluding it in patients with chest pain as the primary symptom.

  13. Effect of Exercise on the Creatine Resonances in 1H MR Spectra of Human Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Jung, B.; Slotboom, J.; Felblinger, J.; Boesch, C.

    1999-04-01

    1H MR spectra of human muscles were recorded before, during, and after fatiguing exercise. In contrast to expectations, it was found that the spectral contributions of creatine/phosphocreatine (Cr/PCr) were subject to change as a function of exercise. In particular, the dipolar-coupled methylene protons of Cr/PCr were found to be reduced in intensity in proportion to the co-registered PCr levels. Recovery after exercise and behavior under ischemic conditions provide further evidence to suggest that the contributions of the CH2protons of Cr/PCr to1H MR spectra of human musclein vivoreflect PCr rather than Cr levels. Variation of experimental parameters showed that this effect is not due to a trivial change in relaxation times. At present it can only be speculated about why the Cr resonances have reduced NMR visibility. If temporary binding to macromolecules should be involved, the free Cr concentration-important for equilibrium calculations of the creatine kinase reaction-might be different from what was previously assumed.

  14. Creatine kinase B is necessary to limit myoblast fusion during myogenesis.

    PubMed

    Simionescu-Bankston, Adriana; Pichavant, Christophe; Canner, James P; Apponi, Luciano H; Wang, Yanru; Steeds, Craig; Olthoff, John T; Belanto, Joseph J; Ervasti, James M; Pavlath, Grace K

    2015-06-01

    Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of ?-skeletal actin and ?-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis. PMID:25810257

  15. Original article Insulin and/or dexamethasone regulation of lactate

    E-print Network

    Paris-Sud XI, Université de

    Original article Insulin and/or dexamethasone regulation of lactate production and its relationship and cow adipose tissue (AT) explants. The effects of insulin (2 mU/mL) and/or dexamethasone (DEX, 100 n, the lactate production was two times greater in sheep than in cow AT. Insulin increased lactate production

  16. Glycolysis and the significance of lactate in traumatic brain injury.

    E-print Network

    Carpenter, Keri L. H.; Jalloh, Ibrahim; Hutchinson, Peter J.

    2015-04-08

    of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct...

  17. Glycolysis and the significance of lactate in traumatic brain injury

    E-print Network

    Carpenter, Keri L. H.; Jalloh, Ibrahim; Hutchinson, Peter J.

    2015-04-08

    of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct...

  18. Alcohol Dehydrogenase Genes & Proteins In Grapevine

    Microsoft Academic Search

    C. Tesniere; P. Abbal

    Alcohol dehydrogenase (ADH; alcohol: NAD oxidoreductase; EC 1.1.1.1) is a dimeric-zinc enzyme which catalyses the inter-conversion\\u000a of acetaldehyde to ethanol, using NAD\\/NADH as a cofactor. This is the terminal step of glycolysis, leading to fermentative\\u000a metabolism in anaerobic conditions. In this context, the evolution of this enzyme’s activity, and gene expression have been\\u000a widely investigated in response to anaerobiosis in

  19. Domain Structure of Rat 10-Formyltetrahydrofolate Dehydrogenase

    Microsoft Academic Search

    Sergey A. Krupenko; Conrad Wagner; Robert J. Cook

    We expressed the NH2-terminal domain of the mul- tidomain, multifunctional enzyme, 10-formyltetrahydro- folate dehydrogenase (FDH), using a baculovirus ex- pression system in insect cells. Expression of the 203- amino acid NH2-terminal domain (residues 1-203), which is 24 -30% identical to a group of glycinamide ribonucleotide transformylases (EC 2.1.2.2), resulted in the appearance of insoluble recombinant protein appar- ently due to

  20. Active site of human liver aldehyde dehydrogenase

    Microsoft Academic Search

    Darryl P. Abriola; Robert Fields; Stanley Stein; Alexander D. MacKerell; Regina Pietruszko

    1987-01-01

    Bromoacetophenone (2-bromo-1-phenylethanone) functions as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) and has been found specifically to label a unique tryptic peptide in the enzyme. Amino-terminal sequence analysis of the labeled peptide after purification by two different procedures revealed the following sequence: Val-Thr-Leu-Glu-Leu-Gly-Gly-Lys. Radioactivity was found to be associated with the glutamate residue, which was identified as Glu-268

  1. Sorbitol-6-phosphate dehydrogenase from loquat fruit.

    PubMed

    Hirai, M

    1979-04-01

    Sorbitol-6-phosphate dehydrogenase was found in flesh tissue of mature fruit of the loquat (Eriobotrya japonica Lindl. var. Tanaka). The enzyme was purified about 30-fold from the crude extract of the fruit, and was demonstrated to catalyze sorbitol-6-phosphate + NADP right harpoon over left harpoon glucose-6-phosphate + NADPH. The optimal pH values for sorbitol 6-phosphate oxidation and glucose 6-phosphate reduction were 9.8 and 9.1, respectively. PMID:16660798

  2. BLOOD CHEMISTRY, CYTOLOGY, AND BODY CONDITION IN ADULT NORTHERN GOSHAWKS (ACCIPITER GENTILIS)

    Microsoft Academic Search

    A. HANAUSKA-BROWN; ALFRED M. DUFTY

    A bird's physiological state contributes to its reproductive success and survival, yet few base- line physiological data have been published for wild raptors. Mean levels of protein, cholesterol, calcium, uric acid, aspartate aminotransferase, lactate dehydrogenase, and creatine kinase were measured in 29 Northern Goshawks (Accipiter gentilis) during 1998-99. None of these substances were significantly dif- ferent between males (N =

  3. Avaliação de constituintes séricos em eqüinos e muares submetidos à prova de resistência de 76km, no Pantanal do Mato Grosso, Brasil

    Microsoft Academic Search

    Cássio Ricardo Ribeiro; Edivaldo Aparecido Nunes Martins; José Antônio Silva Ribas; Ademir Germinaro

    2004-01-01

    The alterations in serum concentrations of sodium, potassium, ionized calcium, urea, creatinine, glucose, creatine kinase (CK), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were studied in fifteen equines and five mules, participating in a 76km, 2-day long endurance competition, in the Pantanal of Mato Grosso State - Brazil. The blood samples were collected in the first day, before the beginning

  4. Protective role of curcumin against isoproterenol induced myocardial infarction in rats

    Microsoft Academic Search

    Chandrasekar Nirmala; Rengarajulu Puvanakrishnan

    1996-01-01

    The effect of curcumin on the biochemical changes induced by isoproterenol (ISO) administration in rats was examined. ISO (300 mg Kg-1 administered subcutaneously twice at an interval of 24 h) caused a decrease in body weight and an increase in heart weight, water content as well as in the levels of serum marker enzymes viz creatine kinase (CK), lactate dehydrogenase

  5. Leonurine improves ischemia-induced myocardial injury through antioxidative activity

    Microsoft Academic Search

    X. H. Liu; L. L. Pan; P. F. Chen; Y. Z. Zhu

    2010-01-01

    The present study was designed to investigate the protective effects of 4-guanidino-n-butyl syringate (leonurine), a compound in Herba Leonuri (HL) on ischemic rat heart to determine the protective mechanisms associated with ischemic rat hearts. Rat heart ischemia was induced by ligation of the left coronary artery. Creatine kinase (CK) and lactate dehydrogenase (LDH) in plasma and superoxide dismutase (SOD) activity

  6. Neuropathology in Succinic Semialdehyde Dehydrogenase Deficiency

    PubMed Central

    Knerr, Ina; Gibson, K. Michael; Murdoch, Geoffrey; Salomons, Gajja S.; Jakobs, Cornelis; Combs, Susan; Pearl, Phillip L.

    2010-01-01

    Reported here is the novel finding of neuropathology in a patient with succinic semialdehyde dehydrogenase deficiency, an inherited disorder of ?-aminobutyric acid metabolism characterized by intellectual deficiency, hypotonia, and epilepsy, with 4-hydroxybutyric aciduria and abnormalities of the globus pallidus on neuroimaging. A 19-year-old woman of European origin with a neurodevelopmental disorder and epilepsy died unexpectedly in 1998. A postmortem examination was performed, with a final diagnosis of sudden unexpected death in epilepsy patients. Eight years later, her sister with a neurodevelopmental disorder presented at 13 years of age with seizures and was diagnosed with succinic semialdehyde dehydrogenase deficiency. In the decedent, succinic semialdehyde dehydrogenase deficiency was established at the molecular level, 10 years after her death, using genomic DNA from brain tissue specimens. The neuropathologic findings revealed striking discoloration of the globi pallidi, leptomeningeal congestion, and a scar in the frontal cortex. After detection of the pathogenic homozygous mutation c.1226G>A, p.Gly409Asp in the living sister, it was confirmed in the decedent. An underlying metabolic disease may be an additional risk factor for sudden unexpected death in epilepsy patients. PMID:20304328

  7. Relationships within the aldehyde dehydrogenase extended family.

    PubMed Central

    Perozich, J.; Nicholas, H.; Wang, B. C.; Lindahl, R.; Hempel, J.

    1999-01-01

    One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project. PMID:10210192

  8. Analysis of Lactation Defects in Transgenic Mice

    Microsoft Academic Search

    Carol A. Palmer; Margaret C. Neville; Steven M. Anderson; James L. McManaman

    2006-01-01

    Although lactation is the only physiological function of the mammary gland, little is known about the molecular events required for secretory activation and milk production. Genetically altered mice have been used extensively to study mammary gland development during puberty and pregnancy, as well as mammary tumorigenesis. A number of approaches have been used to produce genetic modifications in mammary glands

  9. Microbial production of lactate-containing polyesters

    PubMed Central

    Yang, Jung Eun; Choi, So Young; Shin, Jae Ho; Park, Si Jae; Lee, Sang Yup

    2013-01-01

    Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed. PMID:23718266

  10. HEXONEOGENESIS IN THE HUMAN BREAST DURING LACTATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactose is the major osmotic agent in milk. Therefore, lactose synthesis indirectly regulates milk volume. The aim of this study was to determine the source of glucose and galactose in lactose. Six healthy lactating women were studied twice, during a 24 h fast and during ingestion of a mixed macr...

  11. The effect of inspiratory muscle training upon maximum lactate steady-state and blood lactate concentration

    Microsoft Academic Search

    Alison K. McConnell; Graham R. Sharpe

    2005-01-01

    Several studies have reported that improvements in endurance performance following respiratory muscle training (RMT) are associated with a decrease in blood lactate concentration ([Lac]B). The present study examined whether pressure threshold inspiratory muscle training (IMT) elicits an increase in the cycling power output corresponding to the maximum lactate steady state (MLSS). Using a double-blind, placebo-controlled design, 12 healthy, non-endurance-trained male

  12. Endocrine profiles of cows undergoing extended lactation in relation to the control of lactation persistency

    Microsoft Academic Search

    A Sorensen; C. H Knight

    2002-01-01

    We conducted an experiment in dairy cows investigating the effects of calving season, milking frequency and nutrition on lactation persistency. Cows calved in the Spring (n=12) or Winter (n=12). Commencing in lactation week 9 one udder-half of each cow was milked thrice-daily and half of each calving group received additional concentrate at a fixed rate of 3kg per day above

  13. Effects of training on lactate kinetics parameters and their influence on short high-intensity exercise performance.

    PubMed

    Messonnier, L; Freund, H; Denis, C; Féasson, L; Lacour, J-R

    2006-01-01

    The purpose of the present study was to relate the training-induced alterations in lactate kinetics parameters to the concomitant changes in time to exhaustion (T(lim)) at a work rate corresponding to maximal oxygen uptake (Pa(peak)). Eight subjects performed before and after training i) an incremental exercise up to exhaustion to determine Pa(peak), ii) a 5-min 90 % Pa(peak) exercise followed by a 90-min passive recovery to determine an individual blood lactate recovery curve fitted to the bi-exponential time function: La(t) = La(0) + A1(1 - e -gamma1 x t) + A2(1 - e -gamma2 x t), and iii) a time to exhaustion at Pa peak to determine T lim. A biopsy of the vastus lateralis muscle was made before and after training. The training programme consisted in pedalling on a cycle ergometer 2 h a day, 6 days a week, for 4 weeks. Training-induced increases (p < 0.05) in Pa(peak), muscle capillary density, citrate synthase activity, gamma2 that denotes the lactate removal ability (from 0.0547 +/- 0.0038 to 0.0822 +/- 0.0071 min (-1)) and T(lim) (from 299 +/- 23 to 486 +/- 63 s), decreases (p < 0.05) in activities of lactate dehydrogenase (LDH) and muscle type of LDH, the phosphofructokinase/citrate synthase activities ratio and the estimated net amount of lactate released (NALR) during exercise recovery (from 66.5 +/- 8.6 to 47.2 +/- 11.1 mmol) were also observed. The improvement of T (lim) with training was related to the increase in gamma2 (r = 0.74, p = 0.0367) and to the decrease in NALR (r = 0.77, p = 0.0250). These results suggest that the post-training greater ability to remove lactate from the organism and reduced muscle lactate accumulation during exercise account for the concomitant improvement of the time to exhaustion during high-intensity exercise performed at the same relative work rate. PMID:16388444

  14. Exposure to Mother's Pregnancy and Lactation in Infancy is Associated with Sexual Attraction to Pregnancy and Lactation

    E-print Network

    Exposure to Mother's Pregnancy and Lactation in Infancy is Associated with Sexual Attraction to Pregnancy and Lactation in Adulthoodjsm_2065 140..147 Magnus Enquist, PhD,* Hanna Aronsson, B.Sc.,* Stefano that pregnancy or lactation may become sexually attractive in adulthood following an exposure to pregnant

  15. Properties of glucoside 3-dehydrogenase and its potential applications

    Microsoft Academic Search

    Li-Qun Jin; Yu-Guo Zheng

    Glucoside 3-dehydrogenase, one of the glucose redoxidases, is perhaps known for the vital role it plays in converting a series of sugars to their corresponding 3-ketoglucosides. Glucoside 3- dehydrogenase has attracted considerable attention in recent years due to broad substrate specificity and excellent regioselectivity. Glucoside 3-dehydrogenase is a FAD-enzyme, which is capable of oxidizing glucosides and galactosides to their corresponding

  16. Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms

    PubMed Central

    2012-01-01

    A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C?>?T and c.289C?>?T] and 1 splicing [c.391?+?15G?>?T] mutations for the GAMT gene and, 2 missense [c.1208C?>?A and c.926C?>?A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G?>?A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability. PMID:23234264

  17. Lactation modifies stress-induced immune changes in laboratory rats.

    PubMed

    Jaedicke, Katrin M; Fuhrmann, Marco D; Stefanski, Volker

    2009-07-01

    Lactation and stressor exposure both influence the activity of the immune system, but the interaction of both factors on the immune defense is poorly understood. The aim was therefore to investigate in lactating Long-Evans rats the effect of social stress on aspects of cellular immunity in the blood and mesenteric lymph nodes (MLN). Acute social stress (2h) was induced in lactating and non-lactating female intruders using a confrontation model that yielded into social defeat and increased plasma corticosterone concentrations. Stress as well as lactation had marked effects on the immune system. Acute social stress caused granulocytosis, reduced lymphocyte proliferation, and cytokine production in the blood, but had no significant effects in MLN. In the blood of lactating rats, increased numbers of granulocytes and enhanced phagocytosis, but decreased B cell numbers and reduced IL-2 production was observed. However, in MLN both lymphocyte proliferation and monocyte numbers were increased in lactating rats. The effect of stress on the immune measures was often similar in lactating and non-lactating females, but a few important differences were evident: Only non-lactating animals showed an increase in blood granulocyte numbers and a decrease in IL-2 production in response to stressor exposure. Thus, during lactation, a neuroendocrine status may exist which impedes stress-induced modulations at least of some immune parameters. PMID:19232537

  18. Role and regulation of 11?-hydroxysteroid dehydrogenase in lung inflammation 

    E-print Network

    Yang, Fu

    2010-01-01

    Glucocorticoids are steroid hormones that have potent anti-inflammatory actions. Endogenous glucocorticoid action is modulated by 11?-hydroxysteroid dehydrogenase (11?-HSD) which catalyses the interconversion of ...

  19. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system....

  20. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1670 Sorbitol dehydrogenase test system. (a)...

  1. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system....

  2. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1420 Isocitric dehydrogenase test system. (a)...

  3. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1500 Malic dehydrogenase test system. (a)...

  4. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1670 Sorbitol dehydrogenase test system. (a)...

  5. Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3.

    PubMed

    Shojaiefard, Manzar; Christie, David L; Lang, Florian

    2005-09-01

    Creatine binds phosphate thus serving energy storage. Cellular creatine uptake is accomplished by the Na+,Cl-, creatine transporter CreaT (SLC6A8). The present study explored the regulation of SLC6A8 by the serum and glucocorticoid inducible kinase SGK1, a kinase upregulated during ischemia. In Xenopus oocytes expressing SLC6A8 but not in water injected oocytes creatine induced a current which was significantly enhanced by coexpression of wild type SGK1 and constitutively active (S422D)SGK1, but not inactive (K127N)SGK1. Kinetic analysis revealed that (S422D)SGK1 enhanced maximal current without significantly altering affinity. The effect of SGK1 was mimicked by the constitutively active isoform (S419D)SGK3 but not by inactive (K119N)SGK3, wild type isoform SGK2 or constitutively active related kinase (T308D,S473D)PKB. In conclusion, the kinases SGK1 and SGK3 increase SLC6A8 activity by increasing the maximal transport rate of the carrier. Deranged SGK1 and/or SGK3 dependent regulation of SLC6A8 may affect energy storage particularly in skeletal muscle, heart, and neurons. PMID:16036218

  6. PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70-KILODALTON HEAT SHOCK PROTEIN HSPA2

    EPA Science Inventory

    THE PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70 kDa HEAT SHOCK PROTEIN HSPA2 * Gabor Huszar1, Kathryn Stone2, David Dix3 and Lynne Vigue1 1The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, 2 W.M. Keck Foundatio...

  7. Creatine reduces oxidative stress markers but does not protect against seizure susceptibility after severe traumatic brain injury.

    PubMed

    Saraiva, André Luis Lopes; Ferreira, Ana Paula Oliveira; Silva, Luiz Fernando Almeida; Hoffmann, Maurício Scopel; Dutra, Fabrício Diniz; Furian, Ana Flavia; Oliveira, Mauro Schneider; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2012-02-10

    Achievements made over the last years have highlighted the important role of creatine in health and disease. However, its effects on hyperexcitable circuit and oxidative damage induced by traumatic brain injury (TBI) are not well understood. In the present study we revealed that severe TBI elicited by fluid percussion brain injury induced oxidative damage characterized by protein carbonylation, thiobarbituric acid reactive species (TBARS) increase and Na(+),K(+)-ATPase activity inhibition 4 and 8 days after neuronal injury. Statistical analysis showed that after TBI creatine supplementation (300 mg/kg, p.o.) decreased the levels of protein carbonyl and TBARS but did not protect against TBI-induced Na(+),K(+)-ATPase activity inhibition. Electroencephalography (EEG) analysis revealed that the injection of a subconvulsant dose of PTZ (35 mg/kg, i.p.), 4 but not 8 days after neuronal injury, decreased latency for the first clonic seizures and increased the time of spent generalized tonic-clonic seizures compared with the sham group. In addition, creatine supplementation had no effect on convulsive parameters induced by a subconvulsant dose of PTZ. Current experiments provide evidence that lipid and protein oxidation represents a separate pathway in the early post-traumatic seizures susceptibility. Furthermore, the lack of consistent anticonvulsant effect exerted by creatine in this early phase suggests that its apparent antioxidant effect does not protect against excitatory input generation induced by TBI. PMID:22051612

  8. CONCENTRATION OF CREATINE KINASE AND ASPARTATE AMINOTRANSFERASE IN THE BLOOD OF WILD MALLARDS FOLLOWING CAPTURE BY THREE METHODS FOR BANDING

    Microsoft Academic Search

    T. Bollinger; G. Wobeser; R. G. Clark; D. J. Nieman; J. R. Smith

    The concentration of the enzymes creatine kinase (CK) and aspartate aminotransf erase (AST), that are released from damaged muscle, was measured in the blood of wild adult male mallards (Anas platyrhynchos) captured for banding in decoy and bait traps and by rocket net. The concentration of CK and to a lesser extent AST was elevated markedly in ducks captured by

  9. Increased dietary protein attenuates C-reactive protein and creatine kinase responses to exercise-induced energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined if dietary protein (P) modulates responses of C-reactive protein (CRP) and creatine kinase (CK), biomarkers of inflammation and muscle damage, during exercise-induced energy deficit (DEF). Thirteen healthy men (22 +/- 1 y, VO2peak 60 +/- 2 ml.kg-1.min-1) balanced energy expenditure (EE...

  10. Effect of creatine supplementation during the last week of gestation on birth intervals, stillbirth, and preweaning mortality in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that creatine supplementation would reduce birth intervals, stillbirth rate, and preweaning survival in pigs because of its reported improvement of athletic performance in humans. In Exp. 1, gilts (n = 42) and first parity sows (n = 75) were mated at estrus. Beginning on d 110 of ges...

  11. Influence of cell heterogeneity on skeletal muscle lactate kinetics

    SciTech Connect

    Pagliassotti, M.J.; Donovan, C.M. (Univ. of Southern California, Los Angeles (USA))

    1990-04-01

    Lactate and (14C)lactate kinetics were studied in three rabbit skeletal muscle preparations with distinct fiber type profiles, glycolytic (99.1 +/- 0.2% type IIb fibers), oxidative (97.5 +/- 0.6% type I fibers), and mixed (type I, IIa, and IIb fibers). Single-pass perfusions were carried out for 2 h in the presence of lactate (1 mM), glucose (5 mM), (6-3H)glucose, and (U-14C)lactate. All preparations displayed net lactate release, (14C)lactate removal, and 14CO2 release. Net lactate release was greatest in the glycolytic preparation, 9.7 +/- 0.5 mumol.100 g-1.min-1, and least in the oxidative preparation, 3.7 +/- 0.2 mumol.100 g-1.min-1. (14C)lactate arteriovenous difference was greatest in the mixed preparation, 1,688 +/- 58 (disintegrations/min)/ml (dpm/ml), and least in the glycolytic preparation, 505 +/- 10.3 dpm/ml. Steady-state incorporation of (14C)lactate was observed in CO2, amino acids, and pyruvate. Tissue lactate specific activity (LSA) in all preparations was significantly lower than arterial LSA, but not significantly different from venous LSA. Estimates of lactate removal based on venous LSA were not significantly different from net glycolytic flux. In conclusion, (1) under basal, resting conditions net lactate release and (14C)lactate removal are properties of all fiber types, and (2) tracer estimates of lactate turnover in skeletal muscle reflect net glycolytic flux through pyruvate.

  12. Lactate Kinetics during Multiple Set Resistance Exercise

    PubMed Central

    Wirtz, Nicolas; Wahl, Patrick; Kleinöder, Heinz; Mester, Joachim

    2014-01-01

    Intensive exercise like strength training increases blood lactate concentration [La]. [La] is commonly used to define the metabolic stress of an exercise and depends on the lactate production, transportation, metabolism, and elimination. This investigation compared multiple set training of different volumes to show the influence of exercise volume on [La]. Ten male subjects performed 3 sets of resistance exercises within 4 separate sessions: Arm Curl with 1 or 2 arms (AC1 or AC2), and Leg Extension with 1 or 2 legs (LE1 or LE2). Each set was performed at a standard velocity and at a previously determined 10RM load. Blood lactate samples were taken immediately before and after each set (pre1, post1, pre2, post2, pre3, post3). Maximum [La] was significantly higher after LE2 (6.8 ± 1.6mmol·L-1) and significantly lower after AC1 (2.8 ± 0.7mmol·L-1) in comparison with the other exercise protocols. There was no difference between AC2 (4.3 ± 1.1mmol·L-1) and LE1 (4.4 ± 1.1mmol·L-1). Surprisingly, [La] decreased during the 3rd set (for AC exercise), and during both the 2nd and 3rd sets (for LE exercise) and increased only during the recovery phases. In contrast to our expectations, blood [La] decreased during the 2nd and 3rd exercise sets and further increased only during recovery phases. However, from the increases observed following the first set, we know that lactate was produced and transported to the blood during our exercise protocol. We speculate that lactate is taken up and metabolized by distal muscle fibres or organs. In addition, as the decreases occurred within a short period of time, blood volume shifts and/or the muscle-to-blood gradient may account for the rapid decreases in [La]. Key Points Blood lactate concentration [La] decreases during the 2nd and 3rd set of a resistance exercise program of the leg extensor muscles. [La] decreases during the 3rd set of a resistance exercise program of the arm flexor muscles. A significant increase of [La] only appears during the first set, during rest periods and after the last set. The decline of [La] during sets becomes larger over the course of exercise. PMID:24570608

  13. Serum enzyme changes after intramuscular bleeding in patients with haemophilia and Christmas disease

    PubMed Central

    Forbes, Charles D.; King, John; Prentice, Colin R. M.; McNicol, George P.

    1972-01-01

    Serum creatine kinase, lactate dehydrogenase, aspartate and alanine transaminases, and aldolase were determined in 41 hospital inpatients with haemophilia or Christmas disease and no significant differences from the normal ranges were found.3 Levels of these enzymes in a further 10 such patients who had sustained muscle haematomata were determined: in all of these there was a consistent rise in the level of creatine kinase, the peak occurring between 36 and 96 hours. In bleeding disorders a rise in serum creatine kinase levels may be useful as a diagnostic test for intramuscular haemorrhage. PMID:4655856

  14. Comprehensive Profiling of Amino Acid Response Uncovers Unique Methionine-Deprived Response Dependent on Intact Creatine Biosynthesis

    PubMed Central

    Tang, Xiaohu; Keenan, Melissa M.; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J. Will; Freedland, Stephen J.; Murphy, Susan K.; Chi, Jen-Tsan

    2015-01-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine/glycine-dependent creatine biosynthesis. PMID:25849282

  15. Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity

    PubMed Central

    Gupta, Ashish; Rohlfsen, Cory; Leppo, Michelle K.; Chacko, Vadappuram P.; Wang, Yibin; Steenbergen, Charles; Weiss, Robert G.

    2013-01-01

    Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5mg/kg) administration using in vivo31P MRS and 1H MRI. In control animals, in vivo cardiac energetics were reduced at 7 weeks of DOX protocol and this was followed by a mild but significant reduction in left ventricular ejection fraction (EF) at 8 weeks of DOX, as compared to baseline. At baseline, CK-M overexpression (CK-M-OE) increased rates of ATP synthesis through cardiac CK (CK flux) but did not affect contractile function. Following DOX however, CK-M-OE hearts had better preservation of creatine phosphate and higher CK flux and higher EF as compared to control DOX hearts. Survival after DOX administration was significantly better in CK-M-OE than in control animals (p<0.02). Thus CK-M-OE attenuates the early decline in myocardial high-energy phosphates and contractile function caused by chronic DOX administration and increases survival. These findings suggest that CK impairment plays an energetic and functional role in this DOX-cardiotoxicity model and suggests that metabolic strategies, particularly those targeting CK, offer an appealing new strategy for limiting DOX-associated cardiotoxicity. PMID:24098344

  16. Acute creatine administration improves mitochondrial membrane potential and protects against pentylenetetrazol-induced seizures.

    PubMed

    Rambo, Leonardo Magno; Ribeiro, Leandro Rodrigo; Della-Pace, Iuri Domingues; Stamm, Daniel Neis; da Rosa Gerbatin, Rogério; Prigol, Marina; Pinton, Simone; Nogueira, Cristina Wayne; Furian, Ana Flávia; Oliveira, Mauro Schneider; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2013-03-01

    A growing body of evidence indicates that creatine (Cr) exerts beneficial effects on a variety of pathologies where energy metabolism and oxidative stress play an etiological role. However, the benefits of Cr treatment for epileptics are still shrouded in controversy. In the present study, we found that acute Cr treatment (300 mg/kg, p.o.) prevented the increase in electroencephalographic wave amplitude typically elicited by PTZ (30, 45 or 60 mg/kg, i.p.). Cr treatment also increased the latency periods of first myoclonic jerks, lengthened the latency periods of the generalized tonic-clonic seizures and reduced the time spent in the generalized tonic-clonic seizures induced by PTZ (60 mg/kg). Administration of PTZ (all doses) decreased Na(+), K(+)-ATPase activity as well as adenosine triphosphate (ATP) and adenosine diphosphate levels in the cerebral cortex, but Cr treatment prevented these effects. Cr administration also prevented increases in xanthine oxidase activity, adenosine monophosphate levels, adenosine levels, inosine levels and uric acid levels that normally occur after PTZ treatment (60 mg/kg, i.p.). We also showed that Cr treatment increased the total Cr (Cr + PCr) content, creatine kinase activity and the mitochondrial membrane potential (??) in the cerebral cortex. In addition, Cr prevented PTZ-induced mitochondrial dysfunction characterized by decreasing ??, increasing thiobarbituric acid-reactive substance levels and increasing protein carbonylation. These experimental findings reinforce the idea that mitochondrial dysfunction plays a critical role in models of epileptic seizures and suggest that buffering brain energy levels through Cr treatment may be a promising therapeutic approach for the treatment of this neurological disease. PMID:23064877

  17. Dermatoses of the breast in lactation.

    PubMed

    Barrett, Meagan E; Heller, Misha M; Fullerton Stone, Honor; Murase, Jenny E

    2013-01-01

    Dermatoses of the breast during lactation can be difficult to diagnose because of their overlapping clinical appearances. It is important to properly diagnose and treat nipple dermatitis since it can be a significant source of pain when nursing. Poorly controlled nipple pain in nursing mothers is one of the primary reasons for breastfeeding to be discontinued earlier than is recommended. Therefore, it is relevant for practicing dermatologists to be aware of certain facts in a patient's history, specific physical exam findings, and the most appropriate laboratory tests used to diagnose these conditions. In addition, the therapeutic approach should be effective and safe for the mother and infant. This review article provides dermatologists with a detailed discussion on the clinical features and management of various breast dermatoses seen in lactation, including atopic dermatitis, irritant contact dermatitis, allergic contact dermatitis, psoriasis, bacterial infections, yeast infections and herpes simplex virus infections. PMID:23914890

  18. Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28

    SciTech Connect

    Iyer, G.S.; Funanage, V.L.; Proujansky, R. [Alfred I. duPont Institute, Wilmington, DE (United States)] [and others] [Alfred I. duPont Institute, Wilmington, DE (United States); and others

    1996-05-15

    Creatine and creatine phosphate act as a buffer system for the regeneration of ATP in tissues with fluctuating energy demands. Following reports of the cloning of a creatine transporter in rat, rabbit, and human, we cloned and sequenced a creatine transporter from a human intestinal cDNA library. PCR amplification of genomic DNAs from somatic cell hybrid panels localized two creatine transporter (CT) genes: CT1 to Xq26-q28 and CT2 to 16p11.2. Refinement of CT1 to Xq28 was confirmed by FISH. Identification of CT2 sequences in YACs and cosmid contigs that had been ordered on human chromosome 16 enabled its assignment to the proximal end of 16p11.2. Sequencing of the CT2 gene identified sequence differences between CT1 and CT2 transcripts that were utilized to determine that CT2 is expressed in testis only. CT2 is the most proximally identified gene on chromosome 16p to date. The existence of an autosomal, testis-specific form of the human creatine transporter gene suggests that creatine transporter activity is critical for normal function of spermatazoa following meiosis. 17 refs., 2 figs., 2 tabs.

  19. Supplemental energy infusions in the lactating ruminant 

    E-print Network

    Kenison, Dale Christopher

    1983-01-01

    of that of propionate. If amino acids are to be spared from oxidation to CO and conversion to 2 glucose, further studies concerned with the extent of conversion and the effects of administration of other gluconeogenic substrates must be undertaken. The sparing.... According to Bergman (l973) these precursors are, in order of significance: propionate, amino acids, lactate and glycerol. Propionate It is genera11y agreed that propionate is the single most important glucose precursor. Propionate is the only volatile...

  20. Lactate Produced by Glycogenolysis in Astrocytes Regulates Memory Processing

    PubMed Central

    Newman, Lori A.; Korol, Donna L.; Gold, Paul E.

    2011-01-01

    When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions. PMID:22180782

  1. Purification of Xanthine Dehydrogenase and Sulfite Oxidase from Chicken Liver

    Microsoft Academic Search

    Kapila Ratnam; Michael S. Brody; Russ Hille

    1996-01-01

    Xanthine dehydrogenase and sulfite oxidase from chicken liver are oxomolybdenum enzymes which catalyze the oxidation of xanthine to uric acid and sulfite to sulfate, respectively. Independent purification protocols have been previously described for both enzymes. Here we describe a procedure by which xanthine dehydrogenase and sulfite oxidase are purified simultaneously from the same batch of fresh chicken liver. Also, unlike

  2. Activator Protein Accelerates Dihydropyrimidine Dehydrogenase Gene Transcription in Cancer Cells

    Microsoft Academic Search

    Kei Ukon; Keiji Tanimoto; Tatsushi Shimokuni; Takuya Noguchi; Hiroaki Tsujimoto; Masakazu Fukushima; Tetsuya Toge; Masahiko Nishiyama

    Dihydropyrimidine dehydrogenase is the most extensively investigated predictive marker for individual response to 5- fluorouracil. Clinical responses to the anticancer agent, along with various reports, have clearly shown that dihydropyrimi- dine dehydrogenase activity is closely correlated to its mRNA levels, but the regulatory mechanisms of its expression have remained unclear. We attempted to clarify the mechanisms and found that activator

  3. HISTIDINE MUTAGENESIS OF ARABIDOPSIS THALIANA PYRUVATE DEHYDROGENASE KINASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyruvate dehydrogenase kinase (PDK) is the primary regulator of flux through the mitochondrial pyruvate dehydrogenase complex (PDC). Analysis of the primary amino acid sequences of PDK from various sources reveals that these enzymes include the five domains characteristic of prokaryotic two-compone...

  4. Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol

    Microsoft Academic Search

    T. McMorris; R. C. Harris; J. Swain; J. Corbett; K. Collard; R. J. Dyson; L. Dye; C. Hodgson; N. Draper

    2006-01-01

    Rationale  Sleep deprivation has a negative effect on cognitive and psychomotor performance and mood state, partially due to decreases\\u000a in creatine levels in the brain. Therefore, creatine supplementation should lessen the negative effects of sleep deprivation.\\u000a \\u000a \\u000a \\u000a Objectives  The objective of this study was to examine the effect of creatine supplementation and sleep deprivation, with mild exercise,\\u000a on cognitive and psychomotor performance, mood

  5. Phosphoglycerate Dehydrogenase from Soybean Nodules 1

    PubMed Central

    Boland, Michael J.; Schubert, Karel R.

    1983-01-01

    Phosphoglycerate dehydrogenase (EC 1.1.1.95), an enzyme believed to be involved in the synthesis of serine, an intermediate in ureide biosynthesis, has been purified about 200-fold from nodules of soybean (Glycine max L. Merr. cv Amsoy 71). The reaction was reversible and exhibited a strong pH dependence with optima of 9.4 and 6.1 for the forward and reverse reactions. The Km values for the forward reaction were 0.25 millimolar for NAD+ and 0.29 millimolar for d-3-phosphoglycerate at pH 9.4, while those for the reverse reaction were 12 ?m for NADH and 0.15 millimolar for 3-phosphohydroxypyruvate at pH 7.5. NADPH functioned as an alternate reductant with a Km of 0.15 millimolar. Product inhibition for the reverse reaction was competitive for NAD+ with respect to NADH and noncompetitive for phosphoglycerate with respect to phosphohydroxypyruvate. Phosphoglycerate dehydrogenase activity was dependent on inorganic ions and was not inhibited by serine. PMID:16662883

  6. Transcriptional Regulation of Pyruvate Dehydrogenase Kinase

    PubMed Central

    Jeong, Ji Yun; Jeoung, Nam Ho; Park, Keun-Gyu

    2012-01-01

    The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes. PMID:23130316

  7. Portable lactate analyzer for measuring lactate in cerebrospinal fluid (CSF) and plasma – method-comparison evaluations

    PubMed Central

    de Almeida, Sérgio Monteiro; Marquie-Beck, Jennifer; Bhatt, Archana; Letendre, Scott; McCutchan, Allen; Ellis, Ron

    2014-01-01

    Increased plasma lactate levels can indicate the presence of metabolic disorders in HIV infected individuals. Objective To determine whether a portable analyzer is valid for measuring cerebrospinal fluid (CSF) and plasma lactate levels in HIV infected individuals. Method CSF and plasma were collected from 178 subjects. Samples tested by the Accutrend® portable analyzer were compared to those tested by a reference device (SYNCHRON LX® 20). Results The portable analyzer had in plasma sensitivity of 0.95 and specificity 0.87. For CSF the specificity was 0.95; the sensitivity 0.33; the negative predictive value was 95% and the positive predictive value 33%. Conclusions These findings support the validity of the portable analyzer in measuring lactate concentrations in CSF that fall within the normal range. The relatively poor positive predictive value indicates that a result above the reference range may represent a “false positive test”, and should be confirmed by the reference device before concluding abnormality. PMID:25054981

  8. Hormonal and Behavioral Responses to Stress in Lactating and Non-lactating Female Common Marmosets (Callithrix jacchus)

    PubMed Central

    Saltzman, Wendy; Abbott, David H.

    2011-01-01

    In several mammalian species, hypothalamic-pituitary-adrenal (HPA) and behavioral responses to stressors are down-regulated in lactating females, possibly preventing stress-induced disruptions of maternal care. Experimental elevations of HPA axis hormones have been found to inhibit maternal behavior in lactating common marmoset monkeys (Callithrix jacchus), raising the question of whether lactating female marmosets also have blunted endogenous responses to stress. Therefore, we compared HPA and behavioral responses to standardized stressors in reproductively experienced female common marmosets that were undergoing ovulatory cycles and that either were (N=7) or were not lactating (N=8). Each marmoset underwent (1) a restraint stressor during the early follicular phase of the ovarian cycle (approximately 5 weeks postpartum for lactating females) and (2) exposure to a simulated hawk predator during the early to mid-luteal phase (approximately 7 weeks postpartum for lactating females). Lactating females were tested in the presence of one of their infants. Blood samples were collected before, during, and immediately after each test for determination of plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations. Both stressors caused significant elevations in plasma ACTH and cortisol levels, and significant decreases in cortisol:ACTH ratios; however, lactating and non-lactating females showed no significant differences in their endocrine or behavioral responses to either stressor, or in baseline ACTH or cortisol levels. These findings suggest that in contrast to several other mammalian species, lactating female marmosets maintain full behavioral and HPA responsiveness to stress, at least in the presence of their infants. PMID:21600906

  9. Clinical applications of L-lactate oxidase-based biosensor

    NASA Astrophysics Data System (ADS)

    Xing, Keli; Liu, Yanfan; Wang, Lei; Han, Qiao; Yin, Lizhi

    2001-09-01

    A L-lactate oxidase (LOD)-based biosensor is developed for the determination of L-lactate in blood samples. The L- lactate oxidase membrane is prepared by covalently linking LOD into a nylon set, followed by attaching the membrane onto a flow injection type of oxygen electrode. The response of the biosensor is based on the limited diffusion of L- lactate on the L-lactate oxidase membrane. No performance difference have been found between the LOD-based biosensor and regular enzyme optical determination methods for blood sample testing. It is suggested that the LOD-based biosensor may serve as an alternative for the detection of L-lactate in blood.

  10. Distinct but parallel evolutionary patterns between alcohol and aldehyde dehydrogenases: addition of fish\\/human betaine aldehyde dehydrogenase divergence

    Microsoft Academic Search

    L. Hjelmqvist; A. Norin; M. El-Ahmad; W. Griffiths; H. Jörnvall

    2003-01-01

    Alcohol dehydrogenases (ADHs) of the MDR type (medium-chain dehydrogenases\\/reductases) have diverged into two evolutionary groups in eukaryotes: a set of 'constant' enzymes (class III) Throughout, ADH classes are given here with Roman numerals, and ALDH classes with Arabic numerals, in part to avoid confusion between the two enzyme types, and in part because of previous traditions [cf. refs 1–]. typical

  11. Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation.

    PubMed

    Jeoung, Nam Ho; Wu, Pengfei; Joshi, Mandar A; Jaskiewicz, Jerzy; Bock, Cheryl B; Depaoli-Roach, Anna A; Harris, Robert A

    2006-08-01

    The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis. PMID:16606348

  12. Weight Loss during Prolonged Lactation in Rural Bangladeshi Mothers

    Microsoft Academic Search

    Nihar Ranjan Sarkar; Richard Taylor

    To determine the duration of lactation which is associated with weight loss in rural Bangladeshi moth- ers and also to determine the relationship with consumption patterns of principal food items, a cross- sectional study was carried out among 791 lactating rural Bangladeshi mothers aged 18-40 years. Results were compared with 333 non-pregnant and non-lactating mothers of a similar age group.

  13. Lactate transport and receptor actions in cerebral malaria

    PubMed Central

    Mariga, Shelton T.; Kolko, Miriam; Gjedde, Albert; Bergersen, Linda H.

    2014-01-01

    Cerebral malaria (CM), caused by Plasmodium falciparum infection, is a prevalent neurological disorder in the tropics. Most of the patients are children, typically with intractable seizures and high mortality. Current treatment is unsatisfactory. Understanding the pathogenesis of CM is required in order to identify therapeutic targets. Here, we argue that cerebral energy metabolic defects are probable etiological factors in CM pathogenesis, because malaria parasites consume large amounts of glucose metabolized mostly to lactate. Monocarboxylate transporters (MCTs) mediate facilitated transfer, which serves to equalize lactate concentrations across cell membranes in the direction of the concentration gradient. The equalizing action of MCTs is the basis for lactate’s role as a volume transmitter of metabolic signals in the brain. Lactate binds to the lactate receptor GPR81, recently discovered on brain cells and cerebral blood vessels, causing inhibition of adenylyl cyclase. High levels of lactate delivered by the parasite at the vascular endothelium may damage the blood–brain barrier, disrupt lactate homeostasis in the brain, and imply MCTs and the lactate receptor as novel therapeutic targets in CM. PMID:24904266

  14. Native and Modified Lactate Dehydrogenase Expression in a Fumaric Acid Producing isolate Rhizopus oryzae 99-880

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus oryzae is a filamentous fungus that is of broad importance to the industrial, agricultural, and medical community. R. oryzae can be subdivided into two groups based on genetic and phenotypic differences. Type-I isolates accumulate primarily lactic acid when grown in the presence of a ferm...

  15. Trimethylamine N-Oxide Counteracts Urea Effects on Rabbit Muscle Lactate Dehydrogenase Function: A Test of the Counteraction Hypothesis

    Microsoft Academic Search

    Ilia Baskakov; Aijun Wang; D. W. Bolen

    1998-01-01

    Trimethylamine-N-oxide (TMAO) in the cells of sharks and rays is believed to counteract the deleterious effects of the high intracellular concentrations of urea in these animals. It has been hypothesized that TMAO has the generic ability to counteract the effects of urea on protein structure and function, regardless of whether that protein actually evolved in the presence of these two

  16. Kinetic Analysis of the Amino Terminal End of Active Site Loop of Lactate Deyhdrogenase from Plasmodium Vivax

    PubMed Central

    Mutlu, Özal; Bal?k, Dilek Turgut

    2012-01-01

    Objective: In this study, kinetic analysis was performed to understand the functional importance of the amino terminal of the active site of previously mutated Plasmodium vivax Lactate Dehydrogenase enzyme by mimicking Toxoplasma gondii I, II, Eimeria acervulina and Eimeria tenella LDH’s. Material and Methods: Mutant LDH genes were amplified by PCR and 6xHistag was added to the C-terminal of the enzymes. Then LDH enzymes are overproduced as recombinant in E. coli cells, purified by Ni-NTA agarose matrix and kinetic properties were analysed. Results: Observing increase of Km values of mutant enzymes showed that mutations in this place caused decreasing affinity of enzyme for its substrate. However kcat values were about the same throughout all mutant proteins. Conclusion: Sensitivity of the studied region emphasizes the significance of this site for drug design studies for both Plasmodium and some other Apicomplexans. PMID:25207035

  17. Relationship between season, lactation number and incidence of clinical mastitis in different stages of lactation in a Holstein dairy farm

    PubMed Central

    Moosavi, Maede; Mirzaei, Abdolah; Ghavami, Mohsen; Tamadon, Amin

    2014-01-01

    The aim of the present study was to compare the occurrence and duration of clinical mastitis in different seasons, stages of lactation period and parities in a Holstein dairy farm in Iran. A retrospective epidemiological survey from April 2005 to March 2008 was conducted on 884 clinical mastitis cases of 7437 lactations. Data of each case including calendar-date of mastitis onset, days in milk (DIM) of mastitis onset (early: 0-74 DIM; middle: 75-150 DIM, and late ? 150 DIM), duration of mastitis, and parity (1, 2, and ? 3) were recorded. Based on date of mastitis onset, cases were classified into stages of lactation. Moreover, beginning of mastitis was seasonally categorized. Duration of clinical mastitis after treatment in early lactation was less than late lactation in the first-parity cows (p = 0.005). In early lactation period, the first-parity cows suffered clinical mastitis in days earlier than two other parity groups (p < 0.001). Moreover, in late lactation period, the first-parity cows had clinical mastitis in days later than cows in the third and more parities (p = 0.002). Occurrence of clinical mastitis in summer increased in late lactation period but in winter increased in early lactation period (p = 0.001). In addition, occurrence time of clinical mastitis in summer were in days later than in spring (p = 0.02) and winter (p = 0.03) in early lactation period. In conclusion, occurrence of mastitis in winter and spring during early lactation and in summer during late lactation period were more prevalent especially in lower parities. PMID:25568687

  18. How the use of creatine supplements can elevate serum creatinine in the absence of underlying kidney pathology.

    PubMed

    Williamson, Lydia; New, David

    2014-01-01

    Serum creatinine is a widely used marker in the assessment of renal function. Elevated creatinine levels suggest kidney dysfunction, prompting the need for further investigation. This report describes a case in which the consumption of the bodybuilding supplement creatine ethyl ester resulted in raised serum creatinine in the absence of true underlying kidney pathology. The abnormalities reversed after discontinuation of the supplement. A case of pseudo renal failure was recognised and kidney function was concluded to be normal. This report aims to address the mechanisms by which the ingestion of creatine ethyl ester can mimic the blood results expected in advanced renal failure, and confronts the problems faced when relying on serum creatinine as a diagnostic tool. PMID:25239988

  19. Creatine kinase isoenzymes specificities: histidine 65 in human CK-BB, a role in protein stability, not in catalysis.

    PubMed

    Mourad-Terzian, T; Steghens, J P; Min, K L; Collombel, C; Bozon, D

    2000-06-01

    Creatine kinases (CK) play a prominent role in cell energy distribution through an energy shuttle between mitochondria and other organelles. Human brain CK was cloned and overexpressed in COS-7 cells. We then deleted His-65 and/or Pro-66 situated near the center of a flexible loop as shown by X-ray crystallography on mitochondrial and cytosolic CK. The DeltaH65 mutant had nearly the same affinity for its substrates as wild isoenzyme, but its stability was very low. Unlike DeltaH65, DeltaH65P66 had a eightfold decreased affinity for creatine phosphate and was unable to dephosphorylate cyclocreatine phosphate. Our results demonstrate that, despite an overall similar shape of the proteins, this loop accounts for some subtle differences in isoenzyme functions. PMID:10854850

  20. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    SciTech Connect

    Brindle, K.; Braddock, P.; Fulton, S. (Univ. of Oxford (England))

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts.