Science.gov

Sample records for lactate dehydrogenase creatine

  1. Microcomputer Assisted Interpretative Reporting of Sequential Creatine Kinase (CK) and Lactate Dehydrogenase (LDH) Isoenzyme Determination

    PubMed Central

    Talamo, Thomas S.; Losos, Frank J.; Mercer, Donald W.

    1984-01-01

    We have developed a microcomputer based system for interpretative reporting of creatine kinase (CK) and lactate dehydrogenase (LDH) isoenzyme studies. Patient demographic data and test results (total CK, CK-MB, LD-1, and LD-2) are entered manually through the keyboard. The test results are compared with normal range values and an interpretative report is generated. This report consists of all pertinent demographic information with a graphic display of up to 12 previous CK and LDH isoenzyme determinations. Diagnostic interpretative statements are printed beneath the graphic display following analysis of previously entered test results. The combination of graphic data display and interpretations based on analysis of up to 12 previous specimens provides useful and accurate information to the cardiologist.

  2. Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase

    PubMed Central

    Kristjansson, Ragnar P.; Oddsson, Asmundur; Helgason, Hannes; Sveinbjornsson, Gardar; Arnadottir, Gudny A.; Jensson, Brynjar O.; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Bragi Walters, G.; Sulem, Gerald; Oskarsdottir, Arna; Benonisdottir, Stefania; Davidsson, Olafur B.; Masson, Gisli; Th Magnusson, Olafur; Holm, Hilma; Sigurdardottir, Olof; Jonsdottir, Ingileif; Eyjolfsson, Gudmundur I.; Olafsson, Isleifur; Gudbjartsson, Daniel F.; Thorsteinsdottir, Unnur; Sulem, Patrick; Stefansson, Kari

    2016-01-01

    Creatine kinase (CK) and lactate dehydrogenase (LDH) are widely used markers of tissue damage. To search for sequence variants influencing serum levels of CK and LDH, 28.3 million sequence variants identified through whole-genome sequencing of 2,636 Icelanders were imputed into 63,159 and 98,585 people with CK and LDH measurements, respectively. Here we describe 13 variants associating with serum CK and 16 with LDH levels, including four that associate with both. Among those, 15 are non-synonymous variants and 12 have a minor allele frequency below 5%. We report sequence variants in genes encoding the enzymes being measured (CKM and LDHA), as well as in genes linked to muscular (ANO5) and immune/inflammatory function (CD163/CD163L1, CSF1, CFH, HLA-DQB1, LILRB5, NINJ1 and STAB1). A number of the genes are linked to the mononuclear/phagocyte system and clearance of enzymes from the serum. This highlights the variety in the sources of normal diversity in serum levels of enzymes. PMID:26838040

  3. Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase.

    PubMed

    Kristjansson, Ragnar P; Oddsson, Asmundur; Helgason, Hannes; Sveinbjornsson, Gardar; Arnadottir, Gudny A; Jensson, Brynjar O; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Bragi Walters, G; Sulem, Gerald; Oskarsdottir, Arna; Benonisdottir, Stefania; Davidsson, Olafur B; Masson, Gisli; Th Magnusson, Olafur; Holm, Hilma; Sigurdardottir, Olof; Jonsdottir, Ingileif; Eyjolfsson, Gudmundur I; Olafsson, Isleifur; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Sulem, Patrick; Stefansson, Kari

    2016-01-01

    Creatine kinase (CK) and lactate dehydrogenase (LDH) are widely used markers of tissue damage. To search for sequence variants influencing serum levels of CK and LDH, 28.3 million sequence variants identified through whole-genome sequencing of 2,636 Icelanders were imputed into 63,159 and 98,585 people with CK and LDH measurements, respectively. Here we describe 13 variants associating with serum CK and 16 with LDH levels, including four that associate with both. Among those, 15 are non-synonymous variants and 12 have a minor allele frequency below 5%. We report sequence variants in genes encoding the enzymes being measured (CKM and LDHA), as well as in genes linked to muscular (ANO5) and immune/inflammatory function (CD163/CD163L1, CSF1, CFH, HLA-DQB1, LILRB5, NINJ1 and STAB1). A number of the genes are linked to the mononuclear/phagocyte system and clearance of enzymes from the serum. This highlights the variety in the sources of normal diversity in serum levels of enzymes. PMID:26838040

  4. Creatine kinase and lactate dehydrogenase isoenzymes in serum of patients suffering burns, blunt trauma, or myocardial infarction.

    PubMed

    Shahangian, S; Ash, K O; Wahlstrom, N O; Warden, G D; Saffle, J R; Taylor, A; Green, L S

    1984-08-01

    Medical records of 53 burn and trauma patients were reviewed to assess the possibility of myocardial damage. Except for electrophoretically detectable creatine kinase MB isoenzyme, none showed evidence of myocardial injury. Lactate dehydrogenase isoenzyme tests, electrocardiograms, myocardial pyrophosphate scans, clinical course, and results of (two) autopsies were all negative for myocardial necrosis or ischemia. Types of patient, number, mean peak value (U/L) for serum creatine kinase, and ranges of percentage MB isoenzyme were as follows. Burns from direct electrical contact: 28, 16 600, 0-29; electrical flash or other thermal burns: 10, 4340, 0-22; blunt trauma (mostly from automobile accidents): 15, 3430, 0-18; myocardial infarction: 57, 1520, 4-46. Evidently creatine kinase MB isoenzyme is nonspecific in burn and trauma patients and should not be the only test result used to assess myocardial involvement. PMID:6744581

  5. Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans)

    SciTech Connect

    Gozalo, Alfonso S.; Chavera, Alfonso; Montoya, Enrique J.; Takano, Juan; Weller, Richard E.

    2008-02-01

    The purpose of this study was to determine serum reference values for crea- tine kinase (CK), aspartate aminotransferase (AST), and lactate dehydroge- nase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Urine samples were also collected and semi-quantitative tests performed. There was no statistically significant difference between CK, AST, and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition, the CK/AST ratio revealed that 29% of the animals included in this study had values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries, and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman’s capsule, and peritubular space fibroplasia. These findings suggest that CK, AST, and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria, and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction.

  6. Lactate dehydrogenase-elevating virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  7. [Lactate Dehydrogenase M subunit deficiency].

    PubMed

    Sudo, Kayoko

    2002-06-01

    Lactate Dehydrogenase(LDH) M subunit deficiency was first discovered by urinary discoloration and discrepancy in laboratory data. The response to ischemic forearm work is characteristic(absence of an increased venous lactate concentration after ischemic work and a marked increase in venous pyruvate are found). The increase of pyruvate concentration is specific to LDH-M subunit deficiency. Glycolysis was markedly retarded in the patient's muscle in the glyceraldehyde 3-phosphate dehydrogenase(GAPDH) step, possibly due to the impaired reoxidation of NADH produced by GAPDH activity. Then the excessive NADH is reoxidized by alpha-glycerophosphate and glycerol. Therefore, ATP production is significantly impaired and muscle tissue is damaged. Molecular analysis revealed a detection of 20 base-pairs in exon 6 in LDH-M subunit deficiency. This mutation results in a frame-shift translation and premature termination. PMID:12166075

  8. Genetics Home Reference: Lactate dehydrogenase deficiency

    MedlinePLUS

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  9. Lactate dehydrogenase in Phycomyces blakesleeanus.

    PubMed Central

    Soler, J; De Arriaga, D; Busto, F; Cadenas, E

    1982-01-01

    1. An NAD-specific L(+)-lactate dehydrogenase (EC 1.1.1.27) from the mycelium of Phycomyces blakesleeanus N.R.R.L. 1555 (-) was purified approximately 700-fold. The enzyme has a molecular weight of 135,000-140,000. The purified enzyme gave a single, catalytically active, protein band after polyacrylamide-gel electrophoresis. It shows optimum activity between pH 6.7 and 7.5. 2. The Phycomyces blakesleeanus lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate, and its coenzyme, NADH, at pH 7.5, indicating the existence of multiple binding sites in the enzyme for these ligands. 3. At pH 6.0, the enzyme shows high substrate inhibition by pyruvate. 3-hydroxypyruvate and 2-oxovalerate exhibit an analogous effect, whereas glyoxylate does not, when tested as substrates at the same pH. 4. At pH 7.5, ATP, which inhibits the enzyme, acts competitively with NADH and pyruvate, whereas at pH 6.0 and low concentrations of ATP it behaves in a allosteric manner as inhibitor with respect to NADH, GTP, however, has no effect under the same experimental conditions. 5. Partially purified enzyme from sporangiophores behaves in entirely similar kinetic manner as the one exhibited by the enzyme from mycelium. PMID:7115293

  10. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate...

  11. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility. PMID:5917779

  12. Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate.

    PubMed Central

    Hino, T; Kuroda, S

    1993-01-01

    Activity of D-lactate dehydrogenase (D-LDH) was shown not only in cell extracts from Megasphaera elsdenii grown on DL-lactate, but also in cell extracts from glucose-grown cells, although glucose-grown cells contained approximately half as much D-LDH as DL-lactate-grown cells. This indicates that the D-LDH of M. elsdenii is a constitutive enzyme. However, lactate racemase (LR) activity was present in DL-lactate-grown cells, but was not detected in glucose-grown cells, suggesting that LR is induced by lactate. Acetate, propionate, and butyrate were produced similarly from both D- and L-lactate, indicating that LR can be induced by both D- and L-lactate. These results suggest that the primary reason for the inability of M. elsdenii to produce propionate from glucose is that cells fermenting glucose do not synthesize LR, which is induced by lactate. PMID:8439152

  13. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1440 Lactate dehydrogenase...

  14. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. PMID:25542170

  15. Serum lactate dehydrogenase activity in canine malignancies.

    PubMed

    Marconato, L; Crispino, G; Finotello, R; Mazzotti, S; Salerni, F; Zini, E

    2009-12-01

    Lactate dehydrogenase (LDH) is commonly used in human cancer patients for prognostic purposes. Aim of this study was to determine the magnitude of serum LDH elevation in dogs with cancer compared with healthy dogs and dogs with non-neoplastic disease, and to verify whether it may support the diagnosis of specific malignancies. About 128 healthy dogs, 211 diseased dogs and 188 cancer dogs were enrolled. Dogs with cancer had significantly higher LDH than diseased (P < 0.001) and healthy dogs (P < 0.001), but large overlap was found. Dogs with lymphoma showed significantly higher LDH compared with dogs with carcinoma (P < 0.001) or mast cell tumour (MCT; P < 0.05) but not compared with other malignancies. When considering lymphoma and MCT, LDH levels were not different between early and advanced clinical stages. Measuring LDH levels may not be useful as a screening tool for cancer detection. More studies are needed to define its role in specific tumours. PMID:19891694

  16. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems 862.1445 Lactate...

  17. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1445 Lactate...

  18. Creatine

    MedlinePLUS

    ... infants does not improve breathing problems while sleeping. Spinal cord injury. Early research shows that taking creatine by mouth ... by increasing lung function in people with a spinal cord injury. However, other research shows that creatine does not ...

  19. ISOZYME PROFILES OF LACTIC DEHYDROGENASE AND CREATINE PHOSPHOKINASE IN NEONATAL MOUSE HEARTS

    EPA Science Inventory

    Isozyme profiles of lactic dehydrogenase (LDH) and creatine phosphokinase (CPK) were determined in cardiac tissue of mice during postnatal development. LDH isozymes 1 and 5 showed a definite developmental change, achieving the adult values by 20 days of age, while the other three...

  20. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  1. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  2. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase

    SciTech Connect

    Mat-Jan, F.; Alam, K.Y.; Clark, D.P. )

    1989-01-01

    Mutants of Escherichia coli deficient in the fermentative NAD-linked lactate dehydrogenase (ldh) have been isolated. These mutants showed no growth defects under anaerobic conditions unless present together with a defect in pyruvate formate lyase (pfl). Double mutants (pfl ldh) were unable to grow anaerobically on glucose or other sugars even when supplemented with acetate, whereas pfl mutants can do so. The ldh mutation was found to map at 30.5 min on the E. coli chromosome. The ldh mutant FMJ39 showed no detectable lactate dehydrogenase activity and produced no lactic acid from glucose under anaerobic conditions as estimated by in vivo nuclear magnetic resonance measurements. We also found that in wild-type strains the fermentative lactate dehydrogenase was conjointly induced by anaerobic conditions and an acidic pH. Despite previous findings that phosphate concentrations affect the proportion of lactic acid produced during fermentation, we were unable to find any intrinsic effect of phosphate on lactate dehydrogenase activity, apart from the buffering effect of this ion.

  3. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  4. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  5. Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei.

    PubMed

    Viana, Rosa; Yebra, Mara Jess; Galn, Jos Luis; Monedero, Vicente; Prez-Martnez, Gaspar

    2005-01-01

    In lactic acid bacteria, conversion of pyruvic to lactic acid through the activity of lactate dehydrogenase (Ldh) constitutes the final step of the homofermentative pathway. Lactobacillus casei has two characterized genes encoding Ldh activities. The ldhL gene codes for an L-Ldh, which specifically catalyzes the formation of L-lactate, whereas the hicD gene codes for a D-hydroxyisocaproate dehydrogenase (HicDH), which catalyzes the conversion of pyruvate into D-lactate. In L. casei cells fermenting glucose, a mixture of L-/D-lactate with a 97:3% ratio was formed. Inactivation of hicD led to undetectable D-lactate levels after glucose fermentation, while L-lactate levels remained constant. Inactivation of ldhL did not abolish the production of L-lactate, but the lactate final concentration decreased about 25% compared to the wild type, suggesting the presence of at least a second L-Ldh. Moreover, part of the pyruvate flux was rerouted and half of the lactate produced was in the D-isomer form. ldhL inactivation in L. casei showed additional interesting effects. First, the glycolytic flux from pyruvate to lactate was redirected and other fermentation products, including acetate, acetoin, pyruvate, ethanol, diacetyl, mannitol and CO(2), were produced. Second, a lack of carbon catabolite repression of lactose metabolism and N-acetyl-glucosaminidase activity was observed. This second effect could be partly avoided by growing the cells under aeration, since NADH oxidases could account for NAD+ regeneration. PMID:15882939

  6. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    PubMed Central

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min-1 (mg protein)-1. By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  7. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  8. Catabolism of circulating enzymes: plasma clearance, endocytosis, and breakdown of lactate dehydrogenase-1 in rabbits

    SciTech Connect

    Smit, M.J.; Beekhuis, H.; Duursma, A.M.; Bouma, J.M.; Gruber, M.

    1988-12-01

    Lactate dehydrogenase-1, intravenously injected into rabbits, was cleared with first-order kinetics (half-life 27 min), until at least 80% of the injected activity had disappeared from plasma. Radioactivity from injected SVI-labeled enzyme disappeared at this same rate. Trichloroacetic-acid-soluble breakdown products started to appear in the circulation shortly after injection of the labeled enzyme. Body scans of the rabbits for 80 min after injection of T I-labeled enzyme revealed rapid accumulation of label in the liver, peaking 10-20 min after injection. Subsequently, activity in the liver declined and radioactivity (probably labeled breakdown products of low molecular mass) steadily accumulated in the bladder. Tissue fractionation of liver, 19 min after injection of labeled enzyme, indicated that the radioactivity was present both in endosomes and in lysosomes, suggesting uptake by endocytosis, followed by breakdown in the lysosomes. Measurements of radioactivity in liver and plasma suggest that the liver is responsible for the breakdown of at least 75% of the injected enzyme. Radioautography of tissue sections of liver and spleen showed accumulated radioactivity in sinusoidal liver cells and red pulpa, respectively. These results are very similar to those for lactate dehydrogenase-5, creatine kinase MM, and several other enzymes that we have previously studied in rats.

  9. NADP+-Preferring D-Lactate Dehydrogenase from Sporolactobacillus inulinus.

    PubMed

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Dong, Hui; Yu, Bo; Ma, Yanhe

    2015-09-01

    Hydroxy acid dehydrogenases, including l- and d-lactate dehydrogenases (L-LDH and D-LDH), are responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids and extensively used in a wide range of biotechnological applications. A common feature of LDHs is their high specificity for NAD(+) as a cofactor. An LDH that could effectively use NADPH as a coenzyme could be an alternative enzymatic system for regeneration of the oxidized, phosphorylated cofactor. In this study, a d-lactate dehydrogenase from a Sporolactobacillus inulinus strain was found to use both NADH and NADPH with high efficiencies and with a preference for NADPH as its coenzyme, which is different from the coenzyme utilization of all previously reported LDHs. The biochemical properties of the D-LDH enzyme were determined by X-ray crystal structural characterization and in vivo and in vitro enzymatic activity analyses. The residue Asn(174) was demonstrated to be critical for NADPH utilization. Characterization of the biochemical properties of this enzyme will contribute to understanding of the catalytic mechanism and provide referential information for shifting the coenzyme utilization specificity of 2-hydroxyacid dehydrogenases. PMID:26150461

  10. NADP+-Preferring d-Lactate Dehydrogenase from Sporolactobacillus inulinus

    PubMed Central

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Ma, Yanhe

    2015-01-01

    Hydroxy acid dehydrogenases, including l- and d-lactate dehydrogenases (L-LDH and D-LDH), are responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids and extensively used in a wide range of biotechnological applications. A common feature of LDHs is their high specificity for NAD+ as a cofactor. An LDH that could effectively use NADPH as a coenzyme could be an alternative enzymatic system for regeneration of the oxidized, phosphorylated cofactor. In this study, a d-lactate dehydrogenase from a Sporolactobacillus inulinus strain was found to use both NADH and NADPH with high efficiencies and with a preference for NADPH as its coenzyme, which is different from the coenzyme utilization of all previously reported LDHs. The biochemical properties of the D-LDH enzyme were determined by X-ray crystal structural characterization and in vivo and in vitro enzymatic activity analyses. The residue Asn174 was demonstrated to be critical for NADPH utilization. Characterization of the biochemical properties of this enzyme will contribute to understanding of the catalytic mechanism and provide referential information for shifting the coenzyme utilization specificity of 2-hydroxyacid dehydrogenases. PMID:26150461

  11. Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export

    PubMed Central

    Branduardi, Paola; Sauer, Michael; De Gioia, Luca; Zampella, Giuseppe; Valli, Minoska; Mattanovich, Diethard; Porro, Danilo

    2006-01-01

    Background Metabolic pathway manipulation for improving the properties and the productivity of microorganisms is becoming a well established concept. For the production of important metabolites, but also for a better understanding of the fundamentals of cell biology, detailed studies are required. In this work we analysed the lactate production from metabolic engineered Saccharomyces cerevisiae cells expressing a heterologous lactate dehydrogenase (LDH) gene. The LDH gene expression in a budding yeast cell introduces a novel and alternative pathway for the NAD+ regeneration, allowing a direct reduction of the intracellular pyruvate to lactate, leading to a simultaneous accumulation of lactate and ethanol. Results Four different S. cerevisiae strains were transformed with six different wild type and one mutagenised LDH genes, in combination or not with the over-expression of a lactate transporter. The resulting yield values (grams of lactate produced per grams of glucose consumed) varied from as low as 0,0008 to as high as 0.52 g g-1. In this respect, and to the best of our knowledge, higher redirections of the glycolysis flux have never been obtained before without any disruption and/or limitation of the competing biochemical pathways. Conclusion In the present work it is shown that the redirection of the pathway towards the lactate production can be strongly modulated by the genetic background of the host cell, by the source of the heterologous Ldh enzyme, by improving its biochemical properties as well as by modulating the export of lactate in the culture media. PMID:16441897

  12. Lactate dehydrogenase C and energy metabolism in mouse sperm.

    PubMed

    Odet, Fanny; Gabel, Scott A; Williams, Jason; London, Robert E; Goldberg, Erwin; Eddy, Edward M

    2011-09-01

    We demonstrated previously that disruption of the germ cell-specific lactate dehydrogenase C gene (Ldhc) led to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD(+) cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC. PMID:21565994

  13. Isotope effects on binding of NAD+ to lactate dehydrogenase

    SciTech Connect

    LaReau, R.D.; Wan, W.; Anderson, V.E.

    1989-04-18

    The isotope effect on binding (4-/sup 2/H)NAD+ and (4-/sup 3/H)NAD+ to lactate dehydrogenase has been shown to be 1.10 +/- 0.03 by whole molecule isotope ratio mass spectrometry and 1.085 +/- 0.01 by /sup 3/H//sup 14/C scintillation counting. These values demonstrate that specific interactions of the nicotinamide ring with the enzyme make the C-H bond at C-4 less stiff in the binary complex.

  14. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    NASA Astrophysics Data System (ADS)

    Meany, J. E.

    2007-09-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to enzyme "substrate" interactions: (i) which form of the substrate system serves as the preferential substrate and (ii) which form acts to inhibit the enzyme? Thus the relative concentrations of the forms of these substrate systems (keto, hydrated, enol) may provide a form of metabolic control. In this light, the present article considers the reduction of pyruvate by lactate dehydrogenase in the presence of NADH. This reaction is inhibited by relatively high concentrations of pyruvate and the physiological significance of this inhibition has been a subject of controversy for many years. Summarized in this article are data from the literature pertaining to the interactions of keto, hydrated, and enol pyruvate with lactate dehydrogenase. Biochemistry instructors and their students are invited to review such pertinent articles so that they also may evaluate the possibility that the "substrate" inhibition of the isoenzymes in the heart muscle may be, under certain conditions, relevant as a form of metabolic control.

  15. Ionizing radiation induces myofibroblast differentiation via lactate dehydrogenase.

    PubMed

    Judge, J L; Owens, K M; Pollock, S J; Woeller, C F; Thatcher, T H; Williams, J P; Phipps, R P; Sime, P J; Kottmann, R M

    2015-10-15

    Pulmonary fibrosis is a common and dose-limiting side-effect of ionizing radiation used to treat cancers of the thoracic region. Few effective therapies are available for this disease. Pulmonary fibrosis is characterized by an accumulation of myofibroblasts and excess deposition of extracellular matrix proteins. Although prior studies have reported that ionizing radiation induces fibroblast to myofibroblast differentiation and collagen production, the mechanism remains unclear. Transforming growth factor-? (TGF-?) is a key profibrotic cytokine that drives myofibroblast differentiation and extracellular matrix production. However, its activation and precise role in radiation-induced fibrosis are poorly understood. Recently, we reported that lactate activates latent TGF-? through a pH-dependent mechanism. Here, we wanted to test the hypothesis that ionizing radiation leads to excessive lactate production via expression of the enzyme lactate dehydrogenase-A (LDHA) to promote myofibroblast differentiation. We found that LDHA expression is increased in human and animal lung tissue exposed to ionizing radiation. We demonstrate that ionizing radiation induces LDHA, lactate production, and extracellular acidification in primary human lung fibroblasts in a dose-dependent manner. We also demonstrate that genetic and pharmacologic inhibition of LDHA protects against radiation-induced myofibroblast differentiation. Furthermore, LDHA inhibition protects from radiation-induced activation of TGF-?. We propose a profibrotic feed forward loop, in which radiation induces LDHA expression and lactate production, which can lead to further activation of TGF-? to drive the fibrotic process. These studies support the concept of LDHA as an important therapeutic target in radiation-induced pulmonary fibrosis. PMID:26254422

  16. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    PubMed

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. PMID:26126931

  17. POSTNATAL EFFECTS OF HEXACHLOROBENZENE (HCB) ON CARDIAC LACTIC DEHYDROGENASE (LDH) AND CREATINE KINASE (CK) ISOZYMES IN CD-1 MICE

    EPA Science Inventory

    Pregnant CD-1 mice were treated with hexachlorobenzene (HCB) by gavage at doses of 0, 1, 10 and 50 mg HCB/kg body weight on days 6-17 of gestation and studied on day 1 or 21 postpartum (pp). Hearts of the dams and pups were assayed for lactic dehydrogenase (LDH) and creatine kina...

  18. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes.

    PubMed

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C; Chahma, M'hamed; Appanna, Vasu D

    2014-11-01

    It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD(+)), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H2O2) in the culture medium. Under oxidative stress, the NAD(+) generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD(+) reveals an intricate link between metabolism and the processing of genetic information. PMID:25450376

  19. Hereditary deficiency of lactate dehydrogenase H-subunit.

    PubMed

    Wakabayashi, H; Tsuchiya, M; Yoshino, K; Kaku, K; Shigei, H

    1996-07-01

    We report herein the fifth family of hereditary deficiency of lactate dehydrogenase (LDH) H-subunit with an autosomal recessive inheritance including two cases of complete deficiency. Their LDH activities were low both in the serum and in the red blood cells (RBC). Electrophoretic analysis revealed that the patients with the complete deficiency had only the LDH5 isozyme. The complete deficiency was associated with marked elevation of fructose-1, 6-diphosphate (FDP) and dihydroxyacetonephosphate (DHAP) and a less marked rise in glyceraldehyde-3-phosphate (GA3P) among glycolytic intermediates in the RBC. Furthermore, hemolysis was observed in the present cases, but this finding was not included in the other reports. PMID:8842761

  20. Human Lactate Dehydrogenase A Inhibitors: A Molecular Dynamics Investigation

    PubMed Central

    Shi, Yun; Pinto, B. Mario

    2014-01-01

    Lactate dehydrogenase A (LDHA) is an important enzyme in fermentative glycolysis, generating most energy for cancer cells that rely on anaerobic respiration even under normal oxygen concentrations. This renders LDHA a promising molecular target for the treatment of various cancers. Several efforts have been made recently to develop LDHA inhibitors with nanomolar inhibition and cellular activity, some of which have been studied in complex with the enzyme by X-ray crystallography. In this work, we present a molecular dynamics (MD) study of the binding interactions of selected ligands with human LDHA. Conventional MD simulations demonstrate different binding dynamics of inhibitors with similar binding affinities, whereas steered MD simulations yield discrimination of selected LDHA inhibitors with qualitative correlation between the in silico unbinding difficulty and the experimental binding strength. Further, our results have been used to clarify ambiguities in the binding modes of two well-known LDHA inhibitors. PMID:24466056

  1. Placental enzyme polymorphism among Maharashtrians: alkaline phosphatase and lactate dehydrogenase.

    PubMed

    Mukherjee, B N; Das, S K; Malhotra, K C; Kate, S L; Mutalik, G S; Sainani, G S; Bhidya, S

    1978-09-01

    The distribution of placental alkaline phosphatase and lactate dehydrogenase types in 635 placentas from various endogamous groups of Maharashtra have been studied by starch gel electrophoresis. In the case of alkaline phosphatase, 6 common phenotypes and 6 rare phenotypes (F2I1, S1S2, S2S3, I1S2, F1S2, F1I2) are encountered. The highest frequency of Pls1 allele (0.7394) and lowest frequency of Pli1 allele (0.0246) have been found in the Nava-Budha. 6 cases of Cal-1 and 5 cases of Cal-2 types of LDH variants have been observed in the total samples, and Muslims possess the highest frequency of Cal-1 types (3.64%). Population groups are compared with respect to Pl alleles. PMID:727701

  2. Conformational heterogeneity within the Michaelis complex of lactate dehydrogenase.

    PubMed

    Deng, Hua; Vu, Dung V; Clinch, Keith; Desamero, Ruel; Dyer, R Brian; Callender, Robert

    2011-06-16

    A series of isotope edited IR measurements, both static as well as temperature jump relaxation spectroscopy, are performed on lactate dehydrogenase (LDH) to determine the ensemble of structures available to its Michaelis complex. There clearly has been a substantial reduction in the number of states available to the pyruvate substrate (as modeled by the substrate mimic, oxamate) and NADH when bound to protein compared to dissolved in solution, as determined by the bandwidths and positions of the critical C(2)?O band of the bound substrate mimic and the C(4)-H stretch of the NADH reduced nicotinamide group. Moreover, it is found that a strong ionic bond (characterized by a signature IR band discovered in this study) is formed between the carboxyl group of bound pyruvate with (presumably) Arg171, forming a strong "anchor" within the protein matrix. However, conformational heterogeneity within the Michaelis complex is found that has an impact on both catalytic efficiency and thermodynamics of the enzyme. PMID:21568287

  3. Separation of turkey lactate dehydrogenase isoenzymes using isoelectric focusing technique.

    PubMed

    Heinov, Dagmar; Kosteck, Zuzana; Csank, Tom

    2016-01-01

    Native polyacrylamide gel electrophoresis at pH 8.8 did not allow to separate lactate dehydrogenase (LDH) isoenzymes of turkey origin. Five electrophoretically distinguishable forms of the enzyme were detected in serum and tissues of turkey using IEF technique in a pH range of 3-9. Generally, three different groups were seen: (i) those having an anodic domination (heart, kidney, pancreas, and erythrocytes) with mainly LDH-1 fraction, (ii) those having a cathodic domination (breast muscle and serum) with prevalence of LDH-5, and (iii) those with a more uniform distribution (liver, spleen, lung, and brain). The specific enzyme activity was the highest in the breast muscle, followed by heart muscle, and brain. Low activities were detected in serum, kidney, and liver. PMID:26471476

  4. D- and L-lactate dehydrogenases during invertebrate evolution

    PubMed Central

    2008-01-01

    Background The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(-)-lactate and D(+)-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh. Results Our phylogenetic analyses of L-LDH in vertebrates are consistent with the general view that the main isozymes (LDH-A, LDH-B and LDH-C) evolved through a series of gene duplications after the vertebrates diverged from tunicates. We report several gene duplication events in the crustacean, Daphnia pulex, and the leech, Helobdella robusta. Several amino acid sequences with strong similarity to putative mammalian D-LDH and to yeast DLD1 with D-LDH activity were found in both vertebrates and invertebrates. Conclusion The presence of both L-Ldh and D-Ldh genes in several chordates and invertebrates suggests that the two enzymatic forms are not necessarily mutually exclusive. Although, the evolution of L-Ldh has been punctuated by multiple events of gene duplication in both vertebrates and invertebrates, a shared evolutionary history of this gene in the two groups is apparent. Moreover, the high degree of sequence similarity among D-LDH amino acid sequences suggests that they share a common evolutionary history. PMID:18828920

  5. Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles.

    PubMed

    Nesakumar, Noel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru

    2013-11-15

    An electrochemical biosensor was developed to determine lactate that plays an important role in clinical diagnosis, fermentation and food quality analysis. Abnormal concentration of lactate has been related to diseases such as hypoxia, acute heart disorders, lactic acidosis, muscle fatigue and meningitis. Also, lactate concentration in blood helps to evaluate the athletic performance in sports. The main aim of the work is to fabricate NADH/LDH/Nano-CeO2/GCE bio-electrode for sensing lactate in human blood samples. Toward this, CeO2 nanoparticles were synthesized by a hydroxide mediated approach using cerium nitrate hexahydrate (Ce(NO3)36H2O) and NaOH as precursors. X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM) studies were carried out to determine the structural and morphological characteristics of CeO2 nanoparticles. XRD pattern indicated the formation of highly crystalline CeO2 nanoparticles with face centered cubic structure. The FE-SEM studies revealed the formation of nanospherical particles of size 29.732.59 nm. The working electrode was fabricated by immobilizing nicotinamide adenine dinucleotide (NADH) and lactate dehydrogenase (LDH) on GCE surface with CeO2 nanoparticles as an interface. Electrochemical studies were carried out through cyclic voltammetry using a three electrode system with NADH/LDH/NanoCeO2/GCE as a working electrode, Ag/AgCl saturated with 0.1M KCl as a reference electrode and Pt wire as a counter electrode. From the amperometric study, the linearity was found to be in the range of 0.2-2 mM with the response time of less than 4s. PMID:24034216

  6. [Isozyme patterns of lactate dehydrogenase from tissues of mink and arctic fox during postnatal development].

    PubMed

    Tiutiunnik, N N; Kozhevnikova, L K; Unzhakov, A R; Meldo, Kh I

    2002-01-01

    Isozymes of lactate dehydrogenase extracted from heart, kidney, and liver of mink (Mustela vison Briss.) and Arctic fox (Alopex lagopus L.) during postnatal development were separated by agarose gel electrophoresis. Tissue-specific isozyme pattern of lactate dehydrogenase can be revealed at the age of one month, while the definitive pattern is formed at the age of four months. The isozyme patterns of lactate dehydrogenase in the studied tissues of mink and Arctic fox share the properties specific for animal species of various ecogenesis. PMID:12068724

  7. Lactate dehydrogenase A silencing in IDH mutant gliomas

    PubMed Central

    Chesnelong, Charles; Chaumeil, Myriam M.; Blough, Michael D.; Al-Najjar, Mohammad; Stechishin, Owen D.; Chan, Jennifer A.; Pieper, Russell O.; Ronen, Sabrina M.; Weiss, Samuel; Luchman, H. Artee; Cairncross, J. Gregory

    2014-01-01

    Background Mutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1? degradation and, by doing so, may have unexpected metabolic effects. Methods We used human glioma tissues and derived brain tumor stem cells (BTSCs) to study the expression of HIF1? target genes in IDH mutant (mt) and IDH wild-type (wt) tumors. Focusing thereafter on the major glycolytic enzyme, lactate dehydrogenase A (LDHA), we used standard molecular methods and pyrosequencing-based DNA methylation analysis to identify mechanisms by which LDHA expression was regulated in human gliomas. Results We found that HIF1?-responsive genes, including many essential for glycolysis (SLC2A1, PDK1, LDHA, SLC16A3), were underexpressed in IDHmt gliomas and/or derived BTSCs. We then demonstrated that LDHA was silenced in IDHmt derived BTSCs, including those that did not retain the mutant IDH1 allele (mIDHwt), matched BTSC xenografts, and parental glioma tissues. Silencing of LDHA was associated with increased methylation of the LDHA promoter, as was ectopic expression of mutant IDH1 in immortalized human astrocytes. Furthermore, in a search of The Cancer Genome Atlas, we found low expression and high methylation of LDHA in IDHmt glioblastomas. Conclusion To our knowledge, this is the first demonstration of downregulation of LDHA in cancer. Although unexpected findings, silencing of LDHA and downregulation of several other glycolysis essential genes raise the intriguing possibility that IDHmt gliomas have limited glycolytic capacity, which may contribute to their slow growth and better prognosis. PMID:24366912

  8. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation

    PubMed Central

    Parra-Bonilla, Glenda; Alvarez, Diego F.; Al-Mehdi, Abu-Bakr; Alexeyev, Mikhail

    2010-01-01

    Pulmonary microvascular endothelial cells possess both highly proliferative and angiogenic capacities, yet it is unclear how these cells sustain the metabolic requirements essential for such growth. Rapidly proliferating cells rely on aerobic glycolysis to sustain growth, which is characterized by glucose consumption, glucose fermentation to lactate, and lactic acidosis, all in the presence of sufficient oxygen concentrations. Lactate dehydrogenase A converts pyruvate to lactate necessary to sustain rapid flux through glycolysis. We therefore tested the hypothesis that pulmonary microvascular endothelial cells express lactate dehydrogenase A necessary to utilize aerobic glycolysis and support their growth. Pulmonary microvascular endothelial cell (PMVEC) growth curves were conducted over a 7-day period. PMVECs consumed glucose, converted glucose into lactate, and acidified the media. Restricting extracellular glucose abolished the lactic acidosis and reduced PMVEC growth, as did replacing glucose with galactose. In contrast, slow-growing pulmonary artery endothelial cells (PAECs) minimally consumed glucose and did not develop a lactic acidosis throughout the growth curve. Oxygen consumption was twofold higher in PAECs than in PMVECs, yet total cellular ATP concentrations were twofold higher in PMVECs. Glucose transporter 1, hexokinase-2, and lactate dehydrogenase A were all upregulated in PMVECs compared with their macrovascular counterparts. Inhibiting lactate dehydrogenase A activity and expression prevented lactic acidosis and reduced PMVEC growth. Thus PMVECs utilize aerobic glycolysis to sustain their rapid growth rates, which is dependent on lactate dehydrogenase A. PMID:20675437

  9. The D-Lactate Dehydrogenase from Sporolactobacillus inulinus Also Possessing Reversible Deamination Activity

    PubMed Central

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Dong, Hui; Yu, Bo

    2015-01-01

    Hydroxyacid dehydrogenases are responsible for the conversion of 2-keto acids to 2-hydroxyacids and have a wide range of biotechnological applications. In this study, a D-lactate dehydrogenase (D-LDH) from a Sporolactobacillus inulinus strain was experimentally verified to have both the D-LDH and glutamate dehydrogenase (GDH) activities (reversible deamination). The catalytic mechanism was demonstrated by identification of key residues from the crystal structure analysis and site-directed mutagenesis. The Arg234 and Gly79 residues of this enzyme play a significant role in both D-LDH and GDH activities. His295 and Phe298 in DLDH744 were identified to be key residues for lactate dehydrogenase (LDH) activity only whereas Tyr101 is a unique residue that is critical for GDH activity. Characterization of the biochemical properties contributes to understanding of the catalytic mechanism of this novel D-lactate dehydrogenase enzyme. PMID:26398356

  10. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    SciTech Connect

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D.

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  11. Acetate Utilization in Lactococcus lactis Deficient in Lactate Dehydrogenase: a Rescue Pathway for Maintaining Redox Balance

    PubMed Central

    Hols, Pascal; Ramos, Ana; Hugenholtz, Jeroen; Delcour, Jean; de Vos, Willem M.; Santos, Helena; Kleerebezem, Michiel

    1999-01-01

    Acetate was shown to improve glucose fermentation in Lactococcus lactis deficient in lactate dehydrogenase. 13C and 1H nuclear magnetic resonance studies using [2-13C]glucose and [2-13C]acetate as substrates demonstrated that acetate was exclusively converted to ethanol. This novel pathway provides an alternative route for NAD+ regeneration in the absence of lactate dehydrogenase. PMID:10464231

  12. Kinetic activation of yeast mitochondrial D-lactate dehydrogenase by carboxylic acids.

    PubMed

    Mourier, Arnaud; Vallortigara, Julie; Yoboue, Edgar D; Rigoulet, Michel; Devin, Anne

    2008-10-01

    Aerobically grown yeast cells express mitochondrial lactate dehydrogenases that localize to the mitochondrial inner membrane. The D-lactate dehydrogenase is a zinc-flavoprotein with high acceptor specificity for cytochrome c, that catalyzes the oxidation of D-lactate into pyruvate. In this paper, we show that mitochondrial respiratory rate in phosphorylating or non-phosphorylating conditions with D-lactate as substrate is stimulated by carboxylic acids. This stimulation does not affect the yield of oxidative phosphorylation. Furthermore, this stimulation lies at the level of the D-lactate dehydrogenase. It is non-competitive, hyperbolic and its dimension is directly related to the number of carboxylic groups on the activator. The physiological meaning of such a regulation is discussed. PMID:18640090

  13. Elevation of serum lactate dehydrogenase in patients with pectus excavatum

    PubMed Central

    2014-01-01

    Introduction Pectus excavatum is the most common congenital chest wall deformity and the depression of the anterior chest wall, which compresses the internal organs. The aim of the present study is to investigate the effects of pectus excavatum on blood laboratory findings. Material and Methods From March 2011 to December 2011, 71 patients with pectus excavatum who visited Seoul Saint Mary Hospital for Nuss procedure were reviewed and analyzed. The blood samples were routinely taken at the day before surgery and pectus bar removal was usually performed in 2 to 3years after Nuss procedure. To investigate the effects on blood laboratory findings, preoperative routine blood laboratory data and postoperative changes of abnormal laboratory data were analyzed. Results Only lactate dehydrogenase (LDH), one of 26 separate routine laboratory tests, was abnormal and significantly elevated than normal value (age <10, p?=?0.008; age ?10, p?

  14. Phylogenetic analysis of vertebrate lactate dehydrogenase (LDH) multigene families.

    PubMed

    Li, Yi-Ju; Tsoi, Stephen C-M; Mannen, Hideyuka; Shoei-lung Li, Steven

    2002-05-01

    In this paper we analyzed 49 lactate dehydrogenase (LDH) sequences, mostly from vertebrates. The amino acid sequence differences were found to be larger for a human-killifish pair than a human-lamprey pair. This indicates that some protein sequence convergence may occur and reduce the sequence differences in distantly related species. We also examined transitions and transversions separately for several species pairs and found that the transitions tend to be saturated in the distantly related species pair, while transversions are increasing. We conclude that transversions maintain a conservative rate through the evolutionary time. Kimura's two-parameter model for multiple-hit correction on transversions only was used to derive a distance measure and then construct a neighbor-joining (NJ) tree. Three findings were revealed from the NJ tree: (i) the branching order of the tree is consistent with the common branch pattern of major vertebrates; (ii) Ldh-A and Ldh-B genes were duplicated near the origin of vertebrates; and (iii) Ldh-C and Ldh-A in mammals were produced by an independent gene duplication in early mammalian history. Furthermore, a relative rate test showed that mammalian Ldh-C evolved more rapidly than mammalian Ldh-A. Under a two-rate model, this duplication event was calibrated to be approximately 247 million years ago (mya), dating back to the Triassic period. Other gene duplication events were also discovered in Xenopus, the first duplication occurring approximately 60-70 mya in both Ldh-A and Ldh-B, followed by another recent gene duplication event, approximately 20 mya, in Ldh-B. PMID:11965434

  15. Mechanism of Thermal Adaptation in the Lactate Dehydrogenases.

    PubMed

    Peng, Huo-Lei; Egawa, Tsuyoshi; Chang, Eric; Deng, Hua; Callender, Robert

    2015-12-10

    The mechanism of thermal adaptation of enzyme function at the molecular level is poorly understood but is thought to lie within the structure of the protein or its dynamics. Our previous work on pig heart lactate dehydrogenase (phLDH) has determined very high resolution structures of the active site, via isotope edited IR studies, and has characterized its dynamical nature, via laser-induced temperature jump (T-jump) relaxation spectroscopy on the Michaelis complex. These particular probes are quite powerful at getting at the interplay between structure and dynamics in adaptation. Hence, we extend these studies to the psychrophilic protein cgLDH (Champsocephalus gunnari; 0 C) and the extreme thermophile tmLDH (Thermotoga maritima LDH; 80 C) for comparison to the mesophile phLDH (38-39 C). Instead of the native substrate pyruvate, we utilize oxamate as a nonreactive substrate mimic for experimental reasons. Using isotope edited IR spectroscopy, we find small differences in the substate composition that arise from the detailed bonding patterns of oxamate within the active site of the three proteins; however, we find these differences insufficient to explain the mechanism of thermal adaptation. On the other hand, T-jump studies of reduced ?-nicotinamide adenine dinucleotide (NADH) emission reveal that the most important parameter affecting thermal adaptation appears to be enzyme control of the specific kinetics and dynamics of protein motions that lie along the catalytic pathway. The relaxation rate of the motions scale as cgLDH > phLDH > tmLDH in a way that faithfully matches kcat of the three isozymes. PMID:26556099

  16. Lactate dehydrogenase concentration in nasal wash fluid indicates severity of rhinovirus-induced wheezy bronchitis in preschool children.

    PubMed

    Cangiano, Giulia; Proietti, Elena; Kronig, Marie Noelle; Kieninger, Elisabeth; Sadeghi, Christine D; Gorgievski, Meri; Barbani, Maria Teresa; Midulla, Fabio; Tapparel, Caroline; Kaiser, Laurent; Alves, Marco P; Regamey, Nicolas

    2014-12-01

    The clinical course of rhinovirus (RV)-associated wheezing illnesses is difficult to predict. We measured lactate dehydrogenase concentrations, RV load, antiviral and proinflammatory cytokines in nasal washes obtained from 126 preschool children with RV wheezy bronchitis. lactate dehydrogenase values were inversely associated with subsequent need for oxygen therapy. lactate dehydrogenase may be a useful biomarker predicting disease severity in RV wheezy bronchitis. PMID:25389710

  17. Induction of Alcohol Dehydrogenase and Lactate Dehydrogenase in Hypoxically Induced Barley 1

    PubMed Central

    Good, Allen G.; Crosby, William L.

    1989-01-01

    In barley (Hordeum vulgare L.), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) are induced by anaerobiosis in both aleurone layers and roots. Under aerobic conditions, developing seeds of cv Himalaya accumulate ADH activity, which survives seed drying and rehydration. This activity consists almost entirely of the ADH1 homodimer. Activity of LDH also increases during seed development, but the level of activity in dry or rehydrated seeds is very low, indicating that this enzyme may not be involved in anaerobic glycolysis during the initial stages of germination. In contrast to ADH, the LDH isozymes present in developing seeds are similar to those found in uninduced and induced roots. Developmental expression of ADH and LDH was monitored from 0 to 24 days postgermination. Neither activity was induced to any extent in the germinating seeds; however, both enzymes were highly induced by anoxia in root tissue during development. Based on gel electrophoresis, this increase in activity results from the differential expression of different Adh and Ldh genes in root tissue. The changes in ADH and LDH activity levels were matched by changes in the amount of these particular proteins, indicating that the increase in activity results from de novo synthesis of these two proteins. The level of inducible LDH activity in an ADH1? mutant was not found to differ from cv Himalaya. We suggest that although the ADH? plants are more susceptible to flooding, they are not capable of responding to the lack of ADH1 activity by increasing the amount of LDH activity in root tissue. Images Figure 2 Figure 4 Figure 7 PMID:16666889

  18. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    PubMed Central

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality. One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37–51) and the specificity was 73% (95% CI 69–76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11–4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable and in nonsurgically treated patients. Plasma LDH constitutes a biomarker of poor outcome in patients with AAS. LDH is a rapid and universally available assay that could be used to improve risk stratification and to individualize treatment in patient groups where options are controversial. PMID:26871831

  19. NAD-Independent L-Lactate Dehydrogenase Is Required for L-Lactate Utilization in Pseudomonas stutzeri SDM

    PubMed Central

    Dou, Peipei; Ma, Cuiqing; Li, Lixiang; Kong, Jian; Xu, Ping

    2012-01-01

    Background Various Pseudomonas strains can use l-lactate as their sole carbon source for growth. However, the l-lactate-utilizing enzymes in Pseudomonas have never been identified and further studied. Methodology/Principal Findings An NAD-independent l-lactate dehydrogenase (l-iLDH) was purified from the membrane fraction of Pseudomonas stutzeri SDM. The enzyme catalyzes the oxidation of l-lactate to pyruvate by using FMN as cofactor. After cloning its encoding gene (lldD), l-iLDH was successfully expressed, purified from a recombinant Escherichia coli strain, and characterized. An lldD mutant of P. stutzeri SDM was constructed by gene knockout technology. This mutant was unable to grow on l-lactate, but retained the ability to grow on pyruvate. Conclusions/Significance It is proposed that l-iLDH plays an indispensable function in Pseudomonas l-lactate utilization by catalyzing the conversion of l-lactate into pyruvate. PMID:22574176

  20. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  1. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  2. INFLUENCE OF STEROID IMPLANTATION AND SUPPLEMENTATION ON PERFORMANCE AND LACTATE DEHYDROGENASE ACTIVITY IN STEERS GRAZING BERMUDAGRASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty-five steers (BW = 246 5.4 kg) were randomly allocated to one of three paddocks of bermudagrass [Cynodon dactylon (L.) Pers] to determine the effects of timing of steroid implantation and supplementation on average daily gain and lactate dehydrogenase (LDH) activity. Steers received either n...

  3. Influence of pH on the allosteric properties of lactate dehydrogenase activity of Phycomyces blakesleeanus.

    PubMed Central

    De Arriaga, D; Soler, J; Cadenas, E

    1982-01-01

    1. Lactate dehydrogenase from mycelium of Phycomyces blakesleeanus showed positive homotropic interactions with NADH at all pH values studied (pH 5.0-7.7). The calculated values for the first and last intrinsic association constants remained unaltered with pH, in contrast with the Hill coefficient value, which varied significantly, reaching its maximum values at pH 6.0 and 7.7. This suggests the hypothesis that pH regulates these homotropic effects by changes in the value of the intermediate intrinsic association constants. 2. From pH 7.2 to 7.7 lactate dehydrogenase exhibited, likewise, positive homotropic interactions with pyruvate. There were practically no changes in the first and last intrinsic association constants and in Hill coefficient values with pH. At pH values below 7.2 (pH 5.0-6.8) the enzyme showed high substrate inhibition, which was highly dependent on pH, NADH concentration and temperature. By way of substrate inhibition pH regulates, primarily, lactate dehydrogenase activity towards pyruvate, since the homotropic effects appear not to be dependent on pH. 3. Fructose 1,6-bisphosphate is a true allosteric effector of lactate dehydrogenase of Phycomyces blakesleeanus. it decreases positive co-operativity with NADH, and on the other hand pyruvate co-operativity turns into mixed co-operativity. In addition, the effector decreases the inhibitory effect caused by pyruvate. PMID:7115294

  4. LACTIC ACID PRODUCTION BY SACCHAROMYCES CEREVISIAE EXPRESSING A RHIZOPUS ORYZAE LACTATE DEHYDROGENASE GENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work demonstrates the first example of a fungal LDH expressed in yeast. A L(+)-lactate dehydrogenase gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adhl promoter and terminator, then placed in a 2 micron contai...

  5. Relationship of lactate dehydrogenase activity with body measeurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angus x Charolais cows (n = 87) and their Angus-sired, spring-born calves (n = 86) were utilized to examine relationships between lactate dehydrogenase (LDH) activity and body measurements of beef cows; and the relationship between maternal LDH activity in late gestation and subsequent calf birth we...

  6. Relationship of lactate dehydrogenase activity to body measurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were to examine 1) relationships between lactate dehydrogenase (LDH) activity and body measurements of grazing beef cows, and 2) the association between maternal LDH activity in late gestation and subsequent calf birth weight (BRW), hip height (HH) at weaning, and adjusted weaning weight ...

  7. Modification of Rhizopus lactate dehydrogenase for improved resistance to fructose 1,6-bisphosphate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus oryzae is frequently used for fermentative production of lactic acid. We determined that one of the key enzymes, lactate dehydrogenase (LDH), involved in synthesis of lactic acid by R. oryzae was significantly inhibited by fructose 1,6-bisphosphate (FBP) at physiological concentrations. Thi...

  8. Lactate Dehydrogenase A Expression Is Necessary to Sustain Rapid Angiogenesis of Pulmonary Microvascular Endothelium

    PubMed Central

    Parra-Bonilla, Glenda; Alvarez, Diego F.; Alexeyev, Mikhail; Vasauskas, Audrey; Stevens, Troy

    2013-01-01

    Angiogenesis is a fundamental property of endothelium, yet not all endothelial cells display equivalent angiogenic responses; pulmonary microvascular endothelial cells undergo rapid angiogenesis when compared to endothelial cells isolated from conduit vessels. At present it is not clear how pulmonary microvascular endothelial cells fulfill the bioenergetic demands that are necessary to sustain such rapid blood vessel formation. We have previously established that pulmonary microvascular endothelial cells utilize aerobic glycolysis to generate ATP during growth, a process that requires the expression of lactate dehydrogenase A to convert pyruvate to lactate. Here, we test the hypothesis that lactate dehydrogenase A is required for pulmonary microvascular endothelial cells to sustain rapid angiogenesis. To test this hypothesis, Tet-On and Tet-Off conditional expression systems were developed in pulmonary microvascular endothelial cells, where doxycycline is utilized to induce lactate dehydrogenase A shRNA expression. Expression of LDH-A shRNA induced a time-dependent decrease in LDH-A protein, which corresponded with a decrease in glucose consumption from the media, lactate production and cell growth; re-expression of LDH-A rescued each of these parameters. LDH-A silencing greatly reduced network formation on Matrigel in vitro, and decreased blood vessel formation in Matrigel in vivo. These findings demonstrate that LDH-A is critically important for sustaining the rapid angiogenesis of pulmonary microvascular endothelial cells. PMID:24086675

  9. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis☆

    PubMed Central

    Zhao, Rui; Zheng, Sui; Duan, Cuicui; Liu, Fei; Yang, Lijie; Huo, Guicheng

    2013-01-01

    Lactococcus lactis can undergo respiration when hemin is added to an aerobic culture. The most distinctive feature of lactococcal respiration is that lactate could be consumed in the stationary phase concomitantly with the rapid accumulation of diacetyl and acetoin. However, the enzyme responsible for lactate utilization in this process has not yet been identified. As genes for fermentative NAD-dependent l-lactate dehydrogenase (l-nLDH) and potential electron transport chain (ETC)-related NAD-independent l-LDH (l-iLDH) exist in L. lactis, the activities of these enzymes were measured in this study using crude cell extracts prepared from respiratory and fermentation cultures. Further studies were conducted with purified preparations of recombinant LDH homologous proteins. The results showed that l-iLDH activity was hardly detected in both crude cell extracts and purified l-iLDH homologous protein while l-nLDH activity was very significant. This suggested that l-iLDHs were inactive in lactate utilization. The results of kinetic analyses and the effects of activator, inhibitor, substrate and product concentrations on the reaction equilibrium showed that l-nLDH was much more prone to catalyze the pyruvate reduction reaction but could reverse its role provided that the concentrations of NADH and pyruvate were extremely low while NAD and lactate were abundant. Metabolite analysis in respiratory culture revealed that the cellular status in the stationary phase was beneficial for l-nLDH to catalyze lactate oxidation. The factors accounting for the respiration- and stationary phase-dependent lactate utilization in L. lactis are discussed here. PMID:24251099

  10. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C? of the Plateau Pika (Ochotona curzoniae).

    PubMed

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2016-01-01

    Testis-specific lactate dehydrogenase (LDH-C?) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C? in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000-5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C? in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A? (LDH-A?), Lactate Dehydrogenase B? (LDH-B?), and LDH-C? were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C? for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C? for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A? (Ki = 26.900 mmol/L), LDH-B? (Ki = 23.800 mmol/L), and LDH-C? (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A? and LDH-B? were stronger than LDH-C?. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C?. PMID:26751442

  11. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae)

    PubMed Central

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2016-01-01

    Testis-specific lactate dehydrogenase (LDH-C4) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4), Lactate Dehydrogenase B4 (LDH-B4), and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L), LDH-B4 (Ki = 23.800 mmol/L), and LDH-C4 (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4. PMID:26751442

  12. Changes in the ratio of lactate dehydrogenase isoenzymes 1 and 2 during the first day after acute myocardial infarction.

    PubMed

    Jablonsky, G; Leung, F Y; Henderson, A R

    1985-10-01

    It is known that the ratio of isoenzyme 1 to total lactate dehydrogenase (LD, EC 1.1.1.27) in serum is increased in all patients with acute myocardial infarction within 24 h of the infarct. We now show that the LD-1/LD-2 ratio for serum more promptly indicates acute myocardial infarction, being for most patients equivalent to measurement of creatine kinase (EC 2.7.3.2) isoenzyme 2 (CK-2, CK-MB) in serum. Of 128 patients with a confirmed diagnosis of myocardial infarction, 66 had normal values for all "cardiac" enzymes at the time of admission, but greater than 75% of them showed a parallel increase in values for CK-2 and the LD-1/LD-2 ratio. Of the 26 patients who had one or more abnormal values for cardiac enzymes on admission, 95% showed a parallel increase in CK-2 and the LD-1/LD-2 ratio, the median time for the beginning of these changes being 9 h from the onset of chest pain. The remaining 36 patients were excluded from the study because CK-2 decreased after admission or because the time of onset of chest pain was uncertain. PMID:4042327

  13. Control of Lactate Dehydrogenase, Lactate Glycolysis, and α-Amylase by O2 Deficit in Barley Aleurone Layers 1

    PubMed Central

    Hanson, Andrew D.; Jacobsen, John V.

    1984-01-01

    After 4 days in an atmosphere of N2, aleurone layers of barley (Hordeum vulgare L. cv Himalaya) remained viable as judged by their ability to produce near normal amounts of α-amylases when incubated with gibberellic acid (GA3) in air. However, layers did not produce α-amylase when GA3 was supplied under N2, apparently because α-amylase mRNA failed to accumulate. When an 8-hour pulse of [U-14C]glucose was supplied under N2 to freshly prepared aleurone layers, both [14C]lactate and [14C]ethanol accumulated; the [14C]lactate/[14C]ethanol ratio was about 0.3. Prior incubation of layers for 1 day under N2 changed this ratio to about 0.8, indicating an increase in the relative importance of the lactate branch of glycolysis. l(+)Lactate dehydrogenase (LDH) activity was low in freshly prepared aleurone layers and increased 10-fold during 2 days under N2, whereas alcohol dehydrogenase activity (ADH) was high initially and rose by 60%. The responses of LDH and ADH activities to O2 tension were dissimilar; when layers were incubated in various O2/N2 mixtures, LDH activity peaked at 2 to 5% O2 whereas ADH activity was highest at 0% O2. The LDH activity was resolved into several enzymically active bands by native polyacrylamide gel electrophoresis. We conclude that barley aleurone layers are highly adapted to O2 deficiency, that they possess an inducible LDH system as well as an ADH system, and we infer that the LDH and ADH systems are independently regulated. Images Fig. 2 Fig. 5 PMID:16663667

  14. Characterization of lactate dehydrogenase enzyme in seminal plasma of Japanese quail (Coturnix coturnix japonica).

    PubMed

    Singh, R P; Sastry, K V H; Pandey, N K; Shit, N; Agrawal, R; Singh, K B; Mohan, Jag; Saxena, V K; Moudgal, R P

    2011-02-01

    Lactate dehydrogenase enzyme present in quail seminal plasma has been characterized. Polyacrylamide gel electrophoresis and subsequently with LDH specific staining of seminal plasma revealed a single isozyme in quail semen. Studies on substrate inhibition, pH for optimum activity and inhibitor (urea) indicated the isozyme present in the quail semen has catalytic properties like LDH-1 viz. H-type. Furthermore, unlike other mammalian species, electrophoretic and kinetic investigations did not support the existence of semen specific LDH-X isozyme in quail semen. The effect of exogenous lactate and pyruvate on sperm metabolic activity was also studied. The addition of 1 mM lactate or pyruvate to quail semen increased sperm metabolic activity. Our results suggested that both pyruvate and lactate could be used by quail spermatozoa to maintain their basic functions. Since the H-type isozyme is important for conversion of lactate to pyruvate under anaerobic conditions it was postulated that exogenous lactate being converted into pyruvate via LDH present in semen may be used by sperm mitochondria to generate ATP. During conversion of lactate to pyruvate NADH is being generated that may be useful for maintaining sperm mitochondrial membrane potential. PMID:21074838

  15. [Repression and derepression of lactate dehydrogenase loci during mouse development].

    PubMed

    Kolombet, L V; Gapienko, E F

    1977-05-01

    The ultramicroelectrophoretic method was applied to the study of the lactic dehydrogenase (LDH) spectrum alterations during the developmental phases of mice: ovulated ova--zygote--blastocyte--embryo--oocyte--ovulated ova. Only H-subunits were found in the embryo cells before the 5th day of development. After this M-subunits appeared indicating derepression of LDH-A locus. On the 8th day of the embryonal development deres pression of the LDH-B locus was observed to disappear during the oogenesis, being the result of progressive repression of locus LDH-A. Dictiotena of meios prophase is characterised by active H-subunit synthesis and a gradual decrease of the M-subunit synthesis. During the whole dictiotena phase the LDH-spectrum of the follicular cells was of the M-type. PMID:884268

  16. Liquid-liquid extraction of lactate dehydrogenase from muscle using polymer-bound triazine dyes.

    PubMed

    Johansson, G; Joelsson, M

    1986-08-01

    An extract from porcine muscle containing soluble enzymes has been partitioned between the two liquid phases of an aqueous, biphasic system consisting of dextran, polyethylene glycol, and water. The influence of polymer-bound triazine dyes (Cibacron blue F3G-A and Procion yellow HE-3G) on the partition of lactate dehydrogenase and total protein was studied. The effects of pH and concentrations of polymers and buffer on this so-called affinity partitioning were also determined. The two-phase systems were used in extraction procedures for purification of lactate dehydrogenase to a specific activity of 456-494 U (7.6-8.4 mukat) per mg protein. The use of these systems for extraction of enzymes in technical scale is discussed. PMID:3752985

  17. NAD-Independent l-Lactate Dehydrogenase Required for l-Lactate Utilization in Pseudomonas stutzeri A1501

    PubMed Central

    Gao, Chao; Wang, Yujiao; Zhang, Yingxin; Lv, Min; Dou, Peipei; Xu, Ping

    2015-01-01

    ABSTRACT NAD-independent l-lactate dehydrogenases (l-iLDHs) play important roles in l-lactate utilization of different organisms. All of the previously reported l-iLDHs were flavoproteins that catalyze the oxidation of l-lactate by the flavin mononucleotide (FMN)-dependent mechanism. Based on comparative genomic analysis, a gene cluster with three genes (lldA, lldB, and lldC) encoding a novel type of l-iLDH was identified in Pseudomonas stutzeri A1501. When the gene cluster was expressed in Escherichia coli, distinctive l-iLDH activity was detected. The expressed l-iLDH was purified by ammonium sulfate precipitation, ion-exchange chromatography, and affinity chromatography. SDS-PAGE and successive matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis of the purified l-iLDH indicated that it is a complex of LldA, LldB, and LldC (encoded by lldA, lldB, and lldC, respectively). Purified l-iLDH (LldABC) is a dimer of three subunits (LldA, LldB, and LldC), and the ratio between LldA, LldB, and LldC is 1:1:1. Different from the FMN-containing l-iLDH, absorption spectra and elemental analysis suggested that LldABC might use the iron-sulfur cluster for the l-lactate oxidation. LldABC has narrow substrate specificity, and only l-lactate and dl-2-hydrobutyrate were rapidly oxidized. Mg2+ could activate l-iLDH activity effectively (6.6-fold). Steady-state kinetics indicated a ping-pong mechanism of LldABC for the l-lactate oxidation. Based on the gene knockout results, LldABC was confirmed to be required for the l-lactate metabolism of P. stutzeri A1501. LldABC is the first purified and characterized l-iLDH with different subunits that uses the iron-sulfur cluster as the cofactor. IMPORTANCE Providing new insights into the diversity of microbial lactate utilization could assist in the production of valuable chemicals and understanding microbial pathogenesis. An NAD-independent l-lactate dehydrogenase (l-iLDH) encoded by the gene cluster lldABC is indispensable for the l-lactate metabolism in Pseudomonas stutzeri A1501. This novel type of enzyme was purified and characterized in this study. Different from the well-characterized FMN-containing l-iLDH in other microbes, LldABC in P. stutzeri A1501 is a dimer of three subunits (LldA, LldB, and LldC) and uses the iron-sulfur cluster as a cofactor. PMID:25917905

  18. The determination of lactate dehydrogenase isoenzymes in normal human muscle and other tissues

    PubMed Central

    Emery, A. E. H.

    1967-01-01

    1. A technique has been developed, based on preferential inhibition by urea, for determining the amounts and proportions of the M and H sub-units of lactate dehydrogenase (referred to as LDH-M and LDH-H respectively) in human tissues, including muscle. 2. There was good agreement between the results obtained with urea inhibition and those obtained with starch-gel electrophoresis. 3. With increasing age there was a significant decrease in the total amount of lactate dehydrogenase and the amount of LDH-M in skeletal muscle. This could not be accounted for by the replacement of functioning muscle tissue by fibrous connective tissue. 4. The proportion of LDH-M was less in certain muscles (e.g. soleus and extra-ocular) than in other muscles (e.g. gastrocnemius and rectus abdominis). 5. The proportions of LDH-M and LDH-H did not differ significantly in different superficial limb muscles and were not significantly affected by either age or sex. 6. Specimens of muscle from 86 different individuals (all Europeans) have been subjected to electrophoresis, but no variants of lactate dehydrogenase isoenzymes have been found. PMID:5584002

  19. Effect of a Marathon Run on Serum Lipoproteins, Creatine Kinase, and Lactate Dehydrogenase in Recreational Runners

    ERIC Educational Resources Information Center

    Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A.

    2005-01-01

    The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride…

  20. Effect of a Marathon Run on Serum Lipoproteins, Creatine Kinase, and Lactate Dehydrogenase in Recreational Runners

    ERIC Educational Resources Information Center

    Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A.

    2005-01-01

    The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride

  1. Lactate Dehydrogenase Is the Key Enzyme for Pneumococcal Pyruvate Metabolism and Pneumococcal Survival in Blood

    PubMed Central

    Gaspar, Paula; Al-Bayati, Firas A. Y.; Andrew, Peter W.; Neves, Ana Rute

    2014-01-01

    Streptococcus pneumoniae is a fermentative microorganism and causes serious diseases in humans, including otitis media, bacteremia, meningitis, and pneumonia. However, the mechanisms enabling pneumococcal survival in the host and causing disease in different tissues are incompletely understood. The available evidence indicates a strong link between the central metabolism and pneumococcal virulence. To further our knowledge on pneumococcal virulence, we investigated the role of lactate dehydrogenase (LDH), which converts pyruvate to lactate and is an essential enzyme for redox balance, in the pneumococcal central metabolism and virulence using an isogenic ldh mutant. Loss of LDH led to a dramatic reduction of the growth rate, pinpointing the key role of this enzyme in fermentative metabolism. The pattern of end products was altered, and lactate production was totally blocked. The fermentation profile was confirmed by in vivo nuclear magnetic resonance (NMR) measurements of glucose metabolism in nongrowing cell suspensions of the ldh mutant. In this strain, a bottleneck in the fermentative steps is evident from the accumulation of pyruvate, revealing LDH as the most efficient enzyme in pyruvate conversion. An increase in ethanol production was also observed, indicating that in the absence of LDH the redox balance is maintained through alcohol dehydrogenase activity. We also found that the absence of LDH renders the pneumococci avirulent after intravenous infection and leads to a significant reduction in virulence in a model of pneumonia that develops after intranasal infection, likely due to a decrease in energy generation and virulence gene expression. PMID:25245810

  2. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Bubinski, Michal; Krokosz, Anita; Puchala, Mieczyslaw

    2012-07-01

    Proteins are major targets for oxidative damage due to their abundance in cells and high reactivity with free radicals. In the present study we examined the influence of oxygen on radiation-induced inactivation and structural changes of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). We chose these two enzymes because they occur at high concentrations and participate in the most important processes in organisms; furthermore, they show considerable similarity in their structure. Protein solutions were irradiated with X-rays in doses ranging from 0.1 to 0.7 kGy, in air and N2O. The much higher radiation inactivation of GAPDH as compared to LDH is correlated with substantially greater structural changes in this protein, mainly involving the loss of free thiol groups (-SH). Of lesser importance in the differentiation of the radiosensitivity of the studied enzymes are tryptophan residues. Molecular oxygen, present during irradiation, increased to a significantly greater extent the inactivation and structural changes of GAPDH than that of LDH. The results suggest that the greater effect of oxygen on GAPDH is due to the higher efficiency of the superoxide radical, the higher amount of hydroperoxides generated, and the higher degree of unfolding of this protein.

  3. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma

    PubMed Central

    Li, Juan; Tong, Jing; Hao, Hui; Yang, Jie; Liu, Zhikun; Wang, Yuxiang

    2016-01-01

    Reprogrammed glucose metabolism is an emerging hallmark of cancer cells, which show a unique metabolic phenotype known as the Warburg effect. Lactate dehydrogenase A (LDHA), a key enzyme in the glycolytic process, executes the final step by conversion of lactate into pyruvate. However, little is known about the roles of LDHA in human glioblastoma (GBM). In this study, we aimed to determine the effects of LDHA and elucidate related underlying mechanisms. Data derived from Oncomine database showed that LDHA is commonly upregulated in GBM tissues in comparison with corresponding normal controls. Silencing of LDHA expression resulted in reduced glycolysis, decreased cell growth, increased cell apoptosis, and attenuated invasive ability. In the presence of 2-deoxyglucose, a glycolysis inhibitor, the oncogenic activities of LDHA were completely blocked. These findings provide evidence of the cellular functions of LDHA in the progression of GBM and suggest that LDHA might act as a potential therapeutic target for GBM treatment. PMID:26694942

  4. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma.

    PubMed

    Li, Juan; Zhu, Shuchai; Tong, Jing; Hao, Hui; Yang, Jie; Liu, Zhikun; Wang, Yuxiang

    2016-01-20

    Reprogrammed glucose metabolism is an emerging hallmark of cancer cells, which show a unique metabolic phenotype known as the Warburg effect. Lactate dehydrogenase A (LDHA), a key enzyme in the glycolytic process, executes the final step by conversion of lactate into pyruvate. However, little is known about the roles of LDHA in human glioblastoma (GBM). In this study, we aimed to determine the effects of LDHA and elucidate related underlying mechanisms. Data derived from Oncomine database showed that LDHA is commonly upregulated in GBM tissues in comparison with corresponding normal controls. Silencing of LDHA expression resulted in reduced glycolysis, decreased cell growth, increased cell apoptosis, and attenuated invasive ability. In the presence of 2-deoxyglucose, a glycolysis inhibitor, the oncogenic activities of LDHA were completely blocked. These findings provide evidence of the cellular functions of LDHA in the progression of GBM and suggest that LDHA might act as a potential therapeutic target for GBM treatment. PMID:26694942

  5. Evaluation of the anti-tumor effects of lactate dehydrogenase inhibitor galloflavin in endometrial cancer cells.

    PubMed

    Han, Xiaoyun; Sheng, Xiugui; Jones, Hannah M; Jackson, Amanda L; Kilgore, Joshua; Stine, Jessica E; Schointuch, Monica N; Zhou, Chunxiao; Bae-Jump, Victoria L

    2015-01-01

    High rates of aerobic glycolysis represent a key mechanism by which endometrial cancer cells consume glucose as its primary energy source. The up-regulated glycolytic pathway is a common therapeutic target whose inhibition has implications for anti-tumor activity in cancer cells. The present study was aimed at evaluating the potential of a novel lactate dehydrogenase (LDH) inhibitor, Galloflavin, as a therapeutic agent for endometrial cancer. Our results revealed that Galloflavin effectively inhibited cell growth in endometrial cancer cell lines and primary cultures of human endometrial cancer through its involvement in multiple signaling pathways that regulate metabolism, cell cycle, apoptosis, cell stress and metastasis. PMID:25631326

  6. Molecular and Kinetic Characterization of Babesia microti Gray Strain Lactate Dehydrogenase as a Potential Drug Target

    PubMed Central

    Vudriko, Patrick; Masatani, Tatsunori; Cao, Shinuo; Terkawi, Mohamad Alla; Kamyingkird, Ketsarin; Mousa, Ahmed A; Adjou Moumouni, Paul F; Nishikawa, Yoshifumi; Xuan, Xuenan

    2014-01-01

    Babesia microti is an emerging zoonotic protozoan organism that causes “malaria-like” symptoms that can be fatal in immunocompromised people. Owing to lack of specific therapeutic regiment against the disease, we cloned and characterized B. microti lactate dehydrogenase (BmLDH) as a potential molecular drug receptor. The in vitro kinetic properties of BmLDH enzyme was evaluated using nicotinamide adenine dinucleotide (NAD+) as a co-factor and lactate as a substrate. Inhibitory assay was also done using gossypol as BmLDH inhibitor to determine the inhibitory concentration 50 (IC50). The result showed that the 0.99 kbp BmLDH gene codes for a barely soluble 36 kDa protein (332 amino acids) localized in both the cytoplasm and nucleus of the parasite. In vitro enzyme kinetic studies further revealed that BmLDH is an active enzyme with a high catalytic efficiency at optimal pH of 10.2. The Km values of NAD+ and lactate were 8.7 ± 0.57 mM and 99.9 ± 22.33 mM, respectively. The IC50 value for gossypol was 0.345 μM, while at 2.5 μM, gossypol caused 100% inhibition of BmLDH catalytic activity. These findings, therefore, provide initial evidence that BmLDH could be a potential drug target, although further in vivo studies are needed to validate the practical application of lactate dehydrogenase inhibitors against B. microti infection. PMID:25125971

  7. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Gu, Sol-A; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-07-01

    The thermostable d-lactate dehydrogenase from Lactobacillus jensenii (Ljd-LDH) is a key enzyme in the production of the d-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of d-lactic acid are used as biodegradable bioplastics. The crystal structures of Ljd-LDH and in complex with NAD(+) were determined at 2.13 and 2.60Å resolutions, respectively. The Ljd-LDH monomer consists of the N-terminal substrate-binding domain and the C-terminal NAD-binding domain. The Ljd-LDH forms a homodimeric structure, and the C-terminal NAD-binding domain mostly enables the dimerization of the enzyme. The NAD cofactor is bound to the GxGxxG NAD-binding motif located between the two domains. Structural comparisons of Ljd-LDH with other d-LDHs reveal that Ljd-LDH has unique amino acid residues at the linker region, which indicates that the open-close dynamics of Ljd-LDH might be different from that of other d-LDHs. Moreover, thermostability experiments showed that the T50(10) value of Ljd-LDH (54.5°C) was much higher than the commercially available d-lactate dehydrogenase (42.7°C). In addition, Ljd-LDH has at least a 7°C higher denaturation temperature compared to commercially available d-LDHs. PMID:24794195

  8. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  9. Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1).

    PubMed

    Lemire, Joseph; Mailloux, Ryan J; Appanna, Vasu D

    2008-01-01

    Lactate has long been regarded as an end product of anaerobic energy production and its fate in cerebral metabolism has not been precisely delineated. In this report, we demonstrate, for the first time, the ability of a human astrocytic cell line (CCF-STTG1) to consume lactate and to generate ATP via oxidative phosphorylation. (13)C-NMR and HPLC analyses aided in the identification of tricarboxylic acid (TCA) cyle metabolites and ATP in the astrocytic mitochondria incubated with lactate. Oxamate, an inhibitor of lactate dehydrogenase (LDH), abolished mitochondrial lactate consumption. Electrophoretic and fluorescence microscopic analyses helped localize LDH in the mitochondria. Taken together, this study implicates lactate as an important contributor to ATP metabolism in the brain, a finding that may significantly change our notion of how this important organ manipulates its energy budget. PMID:18253497

  10. Mitochondrial Lactate Dehydrogenase Is Involved in Oxidative-Energy Metabolism in Human Astrocytoma Cells (CCF-STTG1)

    PubMed Central

    Lemire, Joseph; Mailloux, Ryan J.; Appanna, Vasu D.

    2008-01-01

    Lactate has long been regarded as an end product of anaerobic energy production and its fate in cerebral metabolism has not been precisely delineated. In this report, we demonstrate, for the first time, the ability of a human astrocytic cell line (CCF-STTG1) to consume lactate and to generate ATP via oxidative phosphorylation. 13C-NMR and HPLC analyses aided in the identification of tricarboxylic acid (TCA) cyle metabolites and ATP in the astrocytic mitochondria incubated with lactate. Oxamate, an inhibitor of lactate dehydrogenase (LDH), abolished mitochondrial lactate consumption. Electrophoretic and fluorescence microscopic analyses helped localize LDH in the mitochondria. Taken together, this study implicates lactate as an important contributor to ATP metabolism in the brain, a finding that may significantly change our notion of how this important organ manipulates its energy budget. PMID:18253497

  11. Use of the sulphite adduct of nicotinamideadenine dinucleotide to study ionizations and the kinetics of lactate dehydrogenase and malate dehydrogenase

    PubMed Central

    Parker, David M.; Lodola, Alberto; Holbrook, J. John

    1978-01-01

    1. The formation of the non-enzymic adduct of NAD+ and sulphite was investigated. In agreement with others we conclude that the dianion of sulphite adds to NAD+. 2. The formation of ternary complexes of either lactate dehydrogenase or malate dehydrogenase with NAD+ and sulphite was investigated. The u.v. spectrum of the NADsulphite adduct was the same whether free or enzyme-bound at either pH6 or pH8. This suggests that the free and enzyme-bound adducts have a similar electronic structure. 3. The effect of pH on the concentration of NADsulphite bound to both enzymes was measured in a new titration apparatus. Unlike the non-enzymic adduct (where the stability change with pH simply reflects HSO3?=SO32?+H+), the enzyme-bound adduct showed a bell-shaped pHstability curve, which indicated that an enzyme side chain of pK=6.2 must be protonated for the complex to form. Since the adduct does not bind to the enzyme when histidine-195 of lactate dehydrogenase is ethoxycarbonylated we conclude that the protein group involved is histidine-195. 4. The pH-dependence of the formation of a ternary complex of lactate dehydrogenase, NAD+ and oxalate suggested that an enzyme group is protonated when this complex forms. 5. The rate at which NAD+ binds to lactate dehydrogenase and malate dehydrogenase was measured by trapping the enzyme-bound NAD+ by rapid reaction with sulphite. The rate of NAD+ dissociation from the enzymes was calculated from the bimolecular association kinetic constant and from the equilibrium binding constant and was in both cases much faster than the forward Vmax.. No kinetic evidence was found that suggested that there were interactions between protein subunits on binding NAD+. ImagesFig. 1.Fig. 3.Fig. 4. PMID:30452

  12. Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F.

    PubMed

    Ogata, M; Yagi, T

    1986-08-01

    Pyruvate dehydrogenase from Desulfovibrio vulgaris Miyazaki F was partially purified from the soluble fraction of the bacterial sonicate, and characterized. The enzyme catalyzes oxidative decarboxylation of pyruvate to produce acetyl-CoA, in contrast to statements in current review articles in which acetyl phosphate is indicated to be a direct decomposition product of pyruvate in sulfate-reducing bacteria. The established reaction stoichiometry is: pyruvate + CoA + FMN----acetyl-CoA + CO2 + FMNH2. The Km values are 2.9 mM for pyruvate, 32 microM for CoA and 6.7 mumol for FMN. Participation of thiamine diphosphate in the enzymic process was not proven. 2-Oxobutyrate, but not 2-oxoglutarate, can substitute for pyruvate. The three flavin compounds, FMN, FAD, and flavodoxin, as well as clostridial ferredoxin, serve as electron carriers for the enzyme. Thus the enzyme is a kind of pyruvate synthase [EC 1.2.7.1], but acts in the direction of pyruvate degradation in the growing cells. The rate of cytochrome C3 reduction is extremely low, but in the presence of flavodoxin as an electron mediator, the reduction rate of cytochrome C3 becomes faster than the reduction rate of flavodoxin alone. It seems that the physiological electron acceptor for this enzyme is flavodoxin, which might be complexed with cytochrome C3 to produce a very efficient electron transfer system in the cell. The soluble fraction of D. vulgaris cells has been proved to contain, in addition to the pyruvate dehydrogenase, lactate dehydrogenase (Ogata, M., Arihara, K., & Yagi, T. (1981) J. Biochem. 89, 1423-1431), phosphate acetyltransferase and acetate kinase, i.e., all the enzymes necessary to convert lactate to acetate, producing ATP by substrate level phosphorylation. PMID:3023304

  13. Structures of lactate dehydrogenase A (LDHA) in apo, ternary and inhibitor-bound forms.

    PubMed

    Kolappan, Subramaniapillai; Shen, David L; Mosi, Renee; Sun, Jianyu; McEachern, Ernest J; Vocadlo, David J; Craig, Lisa

    2015-02-01

    Lactate dehydrogenase (LDH) is an essential metabolic enzyme that catalyzes the interconversion of pyruvate and lactate using NADH/NAD(+) as a co-substrate. Many cancer cells exhibit a glycolytic phenotype known as the Warburg effect, in which elevated LDH levels enhance the conversion of glucose to lactate, making LDH an attractive therapeutic target for oncology. Two known inhibitors of the human muscle LDH isoform, LDHA, designated 1 and 2, were selected, and their IC50 values were determined to be 14.4 3.77 and 2.20 0.15?M, respectively. The X-ray crystal structures of LDHA in complex with each inhibitor were determined; both inhibitors bind to a site overlapping with the NADH-binding site. Further, an apo LDHA crystal structure solved in a new space group is reported, as well as a complex with both NADH and the substrate analogue oxalate bound in seven of the eight molecules and an oxalate only bound in the eighth molecule in the asymmetric unit. In this latter structure, a kanamycin molecule is located in the inhibitor-binding site, thereby blocking NADH binding. These structures provide insights into LDHA enzyme mechanism and inhibition and a framework for structure-assisted drug design that may contribute to new cancer therapies. PMID:25664730

  14. Novel control of lactate dehydrogenase from the freeze tolerant wood frog: role of posttranslational modifications.

    PubMed

    Abboud, Jean; Storey, Kenneth B

    2013-01-01

    Lactate dehydrogenase (LDH), the terminal enzyme of anaerobic glycolysis, plays a crucial role both in sustaining glycolytic ATP production under oxygen-limiting conditions and in facilitating the catabolism of accumulated lactate when stress conditions are relieved. In this study, the effects on LDH of in vivo freezing and dehydration stresses (both of which impose hypoxia/anoxia stress on tissues) were examined in skeletal muscle of the freeze-tolerant wood frog, Rana sylvatica. LDH from muscle of control, frozen and dehydrated wood frogs was purified to homogeneity in a two-step process. The kinetic properties and stability of purified LDH were analyzed, revealing no significant differences in V max, K m and I 50 values between control and frozen LDH. However, control and dehydrated LDH differed significantly in K m values for pyruvate, lactate, and NAD, I 50 urea, and in temperature, glucose, and urea effects on these parameters. The possibility that posttranslational modification of LDH was responsible for the stable differences in enzyme behavior between control and dehydrated states was assessed using ProQ diamond staining to detect phosphorylation and immunoblotting to detect acetylation, methylation, ubiquitination, SUMOylation and nitrosylation of the enzyme. LDH from muscle of dehydrated wood frogs showed significantly lower levels of acetylation, providing one of the first demonstrations of a potential role for protein acetylation in the stress-responsive control of a metabolic enzyme. PMID:23638346

  15. Novel control of lactate dehydrogenase from the freeze tolerant wood frog: role of posttranslational modifications

    PubMed Central

    Abboud, Jean

    2013-01-01

    Lactate dehydrogenase (LDH), the terminal enzyme of anaerobic glycolysis, plays a crucial role both in sustaining glycolytic ATP production under oxygen-limiting conditions and in facilitating the catabolism of accumulated lactate when stress conditions are relieved. In this study, the effects on LDH of in vivo freezing and dehydration stresses (both of which impose hypoxia/anoxia stress on tissues) were examined in skeletal muscle of the freeze-tolerant wood frog, Rana sylvatica. LDH from muscle of control, frozen and dehydrated wood frogs was purified to homogeneity in a two-step process. The kinetic properties and stability of purified LDH were analyzed, revealing no significant differences in Vmax, Km and I50 values between control and frozen LDH. However, control and dehydrated LDH differed significantly in Km values for pyruvate, lactate, and NAD, I50 urea, and in temperature, glucose, and urea effects on these parameters. The possibility that posttranslational modification of LDH was responsible for the stable differences in enzyme behavior between control and dehydrated states was assessed using ProQ diamond staining to detect phosphorylation and immunoblotting to detect acetylation, methylation, ubiquitination, SUMOylation and nitrosylation of the enzyme. LDH from muscle of dehydrated wood frogs showed significantly lower levels of acetylation, providing one of the first demonstrations of a potential role for protein acetylation in the stress-responsive control of a metabolic enzyme. PMID:23638346

  16. Glyceraldehyde-phosphate dehydrogenase (total and isoenzyme activity) in the early diagnosis of myocardial infarction.

    PubMed

    Griffiths, J; Shaw, S

    1977-02-01

    Enzyme "panels," in which creatine kinase and lactate dehydrogenase activities in serum are measured, are useful indicators of myocardial infarction. We examined a further enzyme, glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.12), by comparison with creatine kinase (EC 2.7.3.2), in the early diagnosis of such infarctions. Results indicate that this total dehydrogenase appears in the serum before total creatine kinase activity; however, the lack of cardio-specificity relating to the dehydrogenase isoenzyme fraction 2 in comparison to the creatine kinase MB band is a major disadvantage, as is its relatively poor in vitro stability. We conclude that measurement of this dehydrogenase does not allow a substantially earlier diagnosis of myocardial infarction. PMID:832386

  17. A detailed investigation of the properties of lactate dehydrogenase in which the 'Essential' cysteine-165 is modified by thioalkylation.

    PubMed Central

    Bloxham, D P; Sharma, R P; Wilton, D C

    1979-01-01

    The reaction of pig heart lactate dehydrogenase with methyl methanethiosulphonate resulted in the modification of one thiol group per protomer, and this was located at cysteine-165 in the enzyme sequence. On reduction, both the thiomethylation of cysteine-165 and any changes in kinetic properties of the enzyme were completely reversed. Cysteine-165 has been considered essential for catalytic activity; however, cysteine-165-thiomethylated dehydrogenase possessed full catalytic activity, although the affinity of the enzyme for carbonyl-or hydroxy-containing substrates was markedly decreased. The nicotinamide nucleotide-binding capacity was unaffected, as judged by the formation of fluorescent complexes with NADH. The enzyme-mediated activation of NAD+, as judged by sulphite addition, was unaffected in thiomethylated lactate dehydrogenase. However, the affinity of oxamate for the enzyme--NADH complex was decreased by 100-fold and it was calculated that this constituted a net increase of 10.4 kJ/mol in the activation energy for binding. Thiomethylated lactate dehydrogenase was able to form an abortive adduct between NAD+ and fluoropyruvate. However, the equilibrium constant for adduct formation between pyruvate and NAD+ was too low to demonstrate this complex at reasonable pyruvate concentrations. A conformational change in the protein structure on selective thiomethylation was revealed by the decreased thermostability of the modified enzyme. The alteration of lactate dehydrogenase catalytic properties on modification depended on the bulk of the reagent used, since thioethylation resulted in an increase in Km for pyruvate (13.5 +/- 3.5 mm) and an 85% decrease in maximum catalytic activity. The implications of all these findings for the catalytic mechanism of lactate dehydrogenase are discussed. PMID:36072

  18. Metabolic Control of Anaerobic Glycolysis (Overexpression of Lactate Dehydrogenase in Transgenic Tomato Roots Supports the Davies-Roberts Hypothesis and Points to a Critical Role for Lactate Secretion.

    PubMed Central

    Rivoal, J.; Hanson, A. D.

    1994-01-01

    Roots of all plants examined so far have the potential for both ethanol and lactate fermentation. A short burst of lactate fermentation usually occurs when plant tissues are transferred from normoxic to anoxic conditions. According to the Davies-Roberts hypothesis, the consequent pH drop both initiates ethanol fermentation and blocks further production of lactate by inhibiting lactate dehydrogenase (LDH). However, the role of LDH in this pH control mechanism is still a matter of debate. To perturb the control system in a defined way, a barley LDH cDNA under the control of the cauliflower mosaic virus 35S promoter was introduced into tomato (Lycopersicon esculentum Mill. cv VFMT) using Agrobacterium rhizogenes. The transgenic root clones expressed up to 50 times the LDH activity of controls. The fermentative metabolism of these clones was compared using roots grown previously in normoxic conditions or roots given a 3-d hypoxic pretreatment. During the transition from normoxia to anoxia, lactate accumulation was no faster and no more extensive in transgenic roots than in controls. Similarly, during prolonged anoxia the flux of 14C from [U-14C] glucose to lactate and ethanol was not modified by the expression of the transgene. However, in both transgenic and control roots, hypoxic pretreatment increased the flux to lactate and promoted lactate export to the medium. These results show that LDH has a very low flux control coefficient for lactate fermentation, consistent with the Davies-Roberts hypothesis. Moreover, they suggest that lactate secretion exerts major control over long-term lactate glycolysis in vivo. PMID:12232401

  19. Genistein inhibits activities of methylenetetrahydrofolate reductase and lactate dehydrogenase, enzymes which use NADH as a substrate.

    PubMed

    Grabowski, Micha?; Banecki, Bogdan; Kadzi?ski, Leszek; Jakbkiewicz-Banecka, Joanna; Ka?mierkiewicz, Rajmund; Gabig-Cimi?ska, Magdalena; W?grzyn, Grzegorz; W?grzyn, Alicja; Banecka-Majkutewicz, Zyta

    2015-09-25

    Genistein (5, 7-dihydroxy-3- (4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a natural isoflavone revealing many biological activities. Thus, it is considered as a therapeutic compound in as various disorders as cancer, infections and genetic diseases. Here, we demonstrate for the first time that genistein inhibits activities of bacterial methylenetetrahydrofolate reductase (MetF) and lactate dehydrogenase (LDH). Both enzymes use NADH as a substrate, and results of biochemical as well as molecular modeling studies with MetF suggest that genistein may interfere with binding of this dinucleotide to the enzyme. These results have implications for our understanding of biological functions of genistein and its effects on cellular metabolism. PMID:26253470

  20. Purification and Properties of Hypoxically Induced Lactate Dehydrogenase from Barley Roots 1

    PubMed Central

    Hoffman, Neil E.; Hanson, Andrew D.

    1986-01-01

    Using Affigel Blue and oxamate-agarose affinity chromatography, lactate dehydrogenase (LDH) was purified 2000-fold from hypoxically induced barley roots. Molecular weights of the native and sodium dodecyl sulfate-denatured LDH protein were 157 and 40 kilodaltons, respectively, indicating a tetramer. Purified barley LDH was very similar in size and kinetic properties to potato LDH. However, their amino acid compositions differed substantially and antibodies raised against barley LDH did not cross-react with potato LDH on immunoblots, implying that the barley and potato LDHs are not closely related proteins. In vivo [35S] methionine labeling and immunoprecipitation experiments indicated that hypoxia increased the rate of LDH protein synthesis, and immunoblot analysis showed that LDH protein levels rose during hypoxia. We conclude that increased enzyme synthesis plays a major part in the induction of LDH enzyme activity by low O2 levels in barley roots. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16665088

  1. A rapid beta-NADH-linked fluorescence assay for lactate dehydrogenase in cellular death.

    PubMed

    Moran, J H; Schnellmann, R G

    1996-09-01

    Lactate dehydrogenase (LDH) release in a common marker of cellular death. Traditionally, the fraction of LDH released has been measured using a NADH-linked UV-Vis spectrophotometric method. The limitation of this method is that samples are usually run serially and thus is time intensive. Therefore, we developed a NADH-linked LDH assay using a fluorescence plate reader that had a correlation of 0.95 with the traditional UV-Vis spectrophotometric method. Using rabbit renal proximal tubule suspensions at a concentration of 1 mg cellular protein/ml of media, the fluorescence assay can determine LDH release in 22 samples in 2 min using 12 microL of cellular homogenates and 150 microL of media. The parallel processing of samples and smaller volumes used in the fluorescence assay results in decreased analysis time and costs. PMID:8872918

  2. Analysis of lactate dehydrogenase activities and isoenzyme patterns in colorectal cancer tissues

    PubMed Central

    Zhao, Chun-Hua; Jiang, Chun-Ying; Zhang, Yu-Yi; Liu, Xian-Xi; Luo, Dao-Chun; Zhang, Xiao-Ting; Lin, Yu-Qin

    1997-01-01

    AIM: To investigate the relationship between lactate dehydrogenase (LDH) activity or LDH isoenzyme patterns and the pathogenesis of colorectal cancer. METHODS: Activities of tissue LDH and LDH isoenzyme patterns in 16 patients with colorectal cancer were assayed using spectrophotometric procedures and agarose gel electrophoresis, respectively. RESULTS: The total and specific activities of LDH were significantly higher in colorectal cancer tissues than those in adjacent noncancerous tissues (P < 0.001). The LDH isoenzyme pattern was also different from that in the control. The percentage of LDH5 doubled and the ratio of LDH4 + LDH5/LDH1 + LDH2 was 3.6 ± 1.4 in cancer tissue, significantly greater than in the control. CONCLUSIONS: The increased LDH activity in colorectal cancer tissues resulted mainly from the increased LDH5, suggesting that the alteration of LDH activity and isoenzyme patterns were related to the pathogenesis of colorectal cancer.

  3. Lactate Dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma

    PubMed Central

    2014-01-01

    Background Over 90% of cancer-related deaths in clear cell renal cell carcinoma (RCC) are caused by tumor relapse and metastasis. Thus, there is an urgent need for new molecular markers that can potentiate the efficacy of the current clinical-based models of prognosis assessment. The objective of this study is to evaluate the potential significance of lactate dehydrogenase A (LDHA), assessed by immunohistochemical staining, as a prognostic marker in clear cell renal cell carcinoma in relation to clinicopathological features and clinical outcome. Methods We assessed the expression of LDHA at the protein level, by immunohistochemistry, and correlated its expression with multiple clinicopathological features including tumor size, clinical stage, histological grade, disease-free and overall survival in 385 patients with primary clear cell renal cell carcinoma. We also correlated the LDHA expression with overall survival, at mRNA level, in an independent data set of 170 clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases. Cox proportional hazards models adjusted for the potential clinicopathological factors were used to test for associations between the LDHA expression and both disease-free survival and overall survival. Results There is statistically significant positive correlation between LDHA level of expression and tumor size, clinical stage and histological grade. Moreover, LDHA expression shows significantly inverse correlation with both disease-free survival and overall survival in patients with clear cell renal cell carcinoma. Our results are validated by examining LDHA expression, at the mRNA level, in the independent data set of clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases which also shows that higher lactate dehydrogenase A expression is associated with significantly shorter overall survival. Conclusion Our results indicate that LDHA up-regulation can be a predictor of poor prognosis in clear cell renal cell carcinoma. Thus, it represents a potential prognostic biomarker that can boost the accuracy of other prognostic models in patients with clear cell renal cell carcinoma. PMID:24885701

  4. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    PubMed

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. PMID:26201980

  5. Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence

    SciTech Connect

    Millan, J.L.; Driscoll, C.E.; LeVan, K.M.; Goldberg, E.

    1987-08-01

    The sequence and structure of human testis-specific L-lactate dehydrogenase (LDHC/sub 4/, LDHX; (L)-lactate:NAD/sup +/ oxidoreductase, EC 1.1.1.27) has been derived from analysis of a complementary DNA (cDNA) clone comprising the complete protein coding region of the enzyme. From the deduced amino acid sequence, human LDHC/sub 4/ is as different from rodent LDHC/sub 4/ (73% homology) as it is from human LDHA/sub 4/ (76% homology) and porcine LDHB/sub 4/ (68% homology). Subunit homologies are consistent with the conclusion that the LDHC gene arose by at least two independent duplication events. Furthermore, the lower degree of homology between mouse and human LDHC/sub 4/ and the appearance of this isozyme late in evolution suggests a higher rate of mutation in the mammalian LDHC genes than in the LDHA and -B genes. Comparison of exposed amino acid residues of discrete anti-genic determinants of mouse and human LDHC/sub 4/ reveals significant differences. Knowledge of the human LDHC/sub 4/ sequence will help design human-specific peptides useful in the development of a contraceptive vaccine.

  6. Free energy landscape of the Michaelis complex of lactate dehydrogenase: A network analysis of atomistic simulations

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoliang; Schwartz, Steven

    2015-03-01

    It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.

  7. Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death

    PubMed Central

    Daniele, Simona; Giacomelli, Chiara; Zappelli, Elisa; Granchi, Carlotta; Trincavelli, Maria Letizia; Minutolo, Filippo; Martini, Claudia

    2015-01-01

    Therapies that target the signal transduction and metabolic pathways of cancer stem cells (CSCs) are innovative strategies to effectively reduce the recurrence and significantly improve the outcome of glioblastoma multiforme (GBM). CSCs exhibit an increased rate of glycolysis, thus rendering them intrinsically more sensitive to prospective therapeutic strategies based on the inhibition of the glycolytic pathway. The enzyme lactate dehydrogenase-A (LDH-A), which catalyses the interconversion of pyruvate and lactate, is up-regulated in human cancers, including GBM. Although several papers have explored the benefits of targeting cancer metabolism in GBM, the effects of direct LDH-A inhibition in glial tumours have not yet been investigated, particularly in the stem cell subpopulation. Here, two representative LDH-A inhibitors (NHI-1 and NHI-2) were studied in GBM-derived CSCs and compared to differentiated tumour cells. LDH-A inhibition was particularly effective in CSCs isolated from different GBM cell lines, where the two compounds blocked CSC formation and elicited long-lasting effects by triggering both apoptosis and cellular differentiation. These data demonstrate that GBM, particularly the stem cell subpopulation, is sensitive to glycolytic inhibition and shed light on the therapeutic potential of LDH-A inhibitors in this tumour type. PMID:26494310

  8. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    PubMed

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH. PMID:26243834

  9. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization.

    PubMed

    Saengdee, Pawasuth; Chaisriratanakul, Woraphan; Bunjongpru, Win; Sripumkhai, Witsaroot; Srisuwan, Awirut; Jeamsaksiri, Wutthinan; Hruanun, Charndet; Poyai, Amporn; Promptmas, Chamras

    2015-05-15

    Three different types of surface, silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium oxynitride (TiON) were modified for lactate dehydrogenase (LDH) immobilization using (3-aminopropyl)triethoxysilane (APTES) to obtain an amino layer on each surface. The APTES modified surfaces can directly react with LDH via physical attachment. LDH can be chemically immobilized on those surfaces after incorporation with glutaraldehyde (GA) to obtain aldehyde layers of APTES-GA modified surfaces. The wetting properties, chemical bonding composition, and morphology of the modified surface were determined by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. In this experiment, the immobilized protein content and LDH activity on each modified surface was used as an indicator of surface modification achievement. The results revealed that both the APTES and APTES-GA treatments successfully link the LDH molecule to those surfaces while retaining its activity. All types of tested surfaces modified with APTES-GA gave better LDH immobilizing efficiency than APTES, especially the SiO2 surface. In addition, the SiO2 surface offered the highest LDH immobilization among tested surfaces, with both APTES and APTES-GA modification. However, TiON and Si3N4 surfaces could be used as alternative candidate materials in the preparation of ion-sensitive field-effect transistor (ISFET) based biosensors, including lactate sensors using immobilized LDH on the ISFET surface. PMID:25108848

  10. Lactate Dehydrogenase B Is Associated with the Response to Neoadjuvant Chemotherapy in Oral Squamous Cell Carcinoma

    PubMed Central

    Sun, Wenyi; Zhang, Xiaomin; Ding, Xu; Li, Huaiqi; Geng, Meiyu; Xie, Zuoquan; Wu, Heming; Huang, Min

    2015-01-01

    Oral squamous cell carcinoma (OSCC) comprises a subset of head and neck squamous cell carcinoma (HNSCC) with poor therapeutic outcomes and high glycolytic dependency. Neoadjuvant chemotherapy regimens of docetaxel, cisplatin and 5-fluorouracil (TPF) are currently accepted as standard regimens for HNSCC patients with a high risk of distant metastatic spread. However, the antitumor outcomes of TPF neoadjuvant chemotherapy in HNSCC remain controversial. This study investigated the role of lactate dehydrogenase B (LDHB), a key glycolytic enzyme catalyzing the inter-conversion between pyruvate and lactate, in determining chemotherapy response and prognosis in OSCC patients. We discovered that a high protein level of LDHB in OSCC patients was associated with a poor response to TPF regimen chemotherapy as well as poor overall survival and disease-free survival. Our in-depth study revealed that high LDHB expression conferred resistance to taxol but not 5-fluorouracil or cisplatin. LDHB deletion sensitized OSCC cell lines to taxol, whereas the introduction of LDHB decreased sensitivity to taxol treatment. Taxol induced a pronounced impact on LDHB-down-regulated OSCC cells in terms of apoptosis, G2/M phase cell cycle arrest and energy metabolism. In conclusion, our study highlighted the critical role of LDHB in OSCC and proposed that LDHB could be used as a biomarker for the stratification of patients for TPF neoadjuvant chemotherapy and the determination of prognosis in OSCC patients. PMID:25973606

  11. Lipopeptide adjuvants: generation of lactate dehydrogenase isoenzyme-specific antibodies for immunochemical diagnosis.

    PubMed

    Gampp, T M; Moser, I; Jobst, G; Urban, G; Ayoub, M; Pfannes, S D; Hoffmann, P; Bessler, W G; Mittenbhler, K

    2001-01-29

    Lactate dehydrogenase catalyzes the final step in glycolysis, the interconversion of pyruvate and lactate. The tetrameric enzyme is composed of one or two subunits (H and/or M) resulting in five isoenzyme forms: LDH-H4, -H3M1, -H2M2, -H1M3, and -M4. The relative distribution of the LDH isoenzymes is tissue dependent and a significant marker for the diagnosis of hepatoma of the liver, myocardial infarction, muscular dystrophy, and a wide variety of other acute and chronic diseases to be detected by alterations of the LDH isoenzyme pattern in serum. Immunochemical approaches to the routine determination of LDH depend on isoenzyme specific antibodies. Since the H- and M-subunits for human LDH are highly homologous, LDH isoenzyme specific antibodies for immunochemical monitoring are hard to generate. Here we present data on the generation and characterization of LDH isoenzyme-specific mono- and polyclonal antibodies in different species in the presence of lipopeptide adjuvants. Western-Blot and ELISA analysis showed that antisera and monoclonal antibodies recognize their homologous antigens with high specificity and are therefore suitable for immunochemical monitoring of the LDH isoenzymes H4 and M4. In addition, they can be used for the determination of LDH isoenzyme specific activity which is an essential prerequisite for online amperometric immunosensor monitoring. PMID:11313186

  12. Energy Landscape of the Michaelis Complex of Lactate Dehydrogenase: Relationship to Catalytic Mechanism

    PubMed Central

    2015-01-01

    Lactate dehydrogenase (LDH) catalyzes the interconversion between pyruvate and lactate with nicotinamide adenine dinucleotide (NAD) as a cofactor. Using isotope-edited difference Fourier transform infrared spectroscopy on the live reaction mixture (LDHNADHpyruvate ? LDHNAD+lactate) for the wild-type protein and a mutant with an impaired catalytic efficiency, a set of interconverting conformational substates within the pyruvate side of the Michaelis complex tied to chemical activity is revealed. The important structural features of these substates include (1) electronic orbital overlap between pyruvates C2=O bond and the nicotinamide ring of NADH, as shown from the observation of a delocalized vibrational mode involving motions from both moieties, and (2) a characteristic hydrogen bond distance between the pyruvate C2=O group and active site residues, as shown by the observation of at least four C2=O stretch bands indicating varying degrees of C2=O bond polarization. These structural features form a critical part of the expected reaction coordinate along the reaction path, and the ability to quantitatively determine them as well as the substate population ratios in the Michaelis complex provides a unique opportunity to probe the structureactivity relationship in LDH catalysis. The various substates have a strong variance in their propensity toward on enzyme chemistry. Our results suggest a physical mechanism for understanding the LDH-catalyzed chemistry in which the bulk of the rate enhancement can be viewed as arising from a stochastic search through an available phase space that, in the enzyme system, involves a restricted ensemble of more reactive conformational substates as compared to the same chemistry in solution. PMID:24576110

  13. Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions.

    PubMed

    Ramljak, Sanja; Schmitz, Matthias; Zafar, Saima; Wrede, Arne; Schenkel, Sara; Asif, Abdul R; Carimalo, Julie; Doeppner, Thorsten R; Schulz-Schaeffer, Walter J; Weise, Jens; Zerr, Inga

    2015-09-01

    Although a physiological function of the cellular prion protein (PrP(c)) is still not fully clarified, a PrP(c)-mediated neuroprotection against hypoxic/ischemic insult is intriguing. After ischemic stroke prion protein knockout mice (Prnp(0/0)) display significantly greater lesions as compared to wild-type (WT) mice. Earlier reports suggested an interaction between the glycolytic enzyme lactate dehydrogenase (LDH) and PrP(c). Since hypoxic environment enhances LDH expression levels and compels neurons to rely on lactate as an additional oxidative substrate for energy metabolism, we examined possible differences in LDH protein expression in WT and Prnp(0/0) knockout models under normoxic/hypoxic conditions in vitro and in vivo, as well as in a HEK293 cell line. While no differences are observed under normoxic conditions, LDH expression is markedly increased after 60-min and 90-min of hypoxia in WT vs. Prnp(0/0) primary cortical neurons with concurrent less hypoxia-induced damage in the former group. Likewise, cerebral ischemia significantly increases LDH levels in WT vs. Prnp(0/0) mice with accompanying smaller lesions in the WT group. HEK293 cells overexpressing PrP(c) show significantly higher LDH expression/activity following 90-min of hypoxia as compared to control cells. Moreover, a cytoplasmic co-localization of LDH and PrP(c) was recorded under both normoxic and hypoxic conditions. Interestingly, an expression of monocarboxylate transporter 1, responsible for cellular lactate uptake, increases with PrP(c)-overexpression under normoxic conditions. Our data suggest LDH as a direct PrP(c) interactor with possible physiological relevance under low oxygen conditions. PMID:26024859

  14. Cellular localization of D-lactate dehydrogenase and NADH oxidase from Archaeoglobus fulgidus

    PubMed Central

    Reddy Pagala, Vishwajeeth; Park, Joohye; Reed, David W.; Hartzell, Patricia L.

    2002-01-01

    Members of the genus Archaeoglobus are hyperthermophilic sulfate reducers with an optimal growth temperature of 83 C. Archaeoglobus fulgidus can utilize simple compounds including D-lactate, L-lactate and pyruvate as the sole substrate for carbon and electrons for dissimilatory sulfate reduction. Previously we showed that this organism makes a D-lactate dehydrogenase (Dld) that requires FAD and Zn2+ for activity. To determine the cellular location and topology of Dld and to identify proteins that interact with Dld, an antibody directed against Dld was prepared. Immunocytochemical studies using gold particle-coated secondary antibodies show that more than 85% of Dld is associated with the membrane. A truncated form of Dld was detected in immunoblots of whole cells treated with protease, showing that Dld is an integral membrane protein and that a significant portion of Dld, including part of the FAD-binding pocket, is outside the membrane facing the S-layer. The gene encoding Dld is part of an operon that includes noxA2, which encodes one of several NADH oxidases in A. fulgidus. Previous studies have shown that NoxA2 remains bound to Dld during purification. Thin sections of A. fulgidus probed simultaneously with antibodies against Dld and NoxA2 show that both proteins co-localized to the same sites in the membrane. Although these data show a tight interaction between NoxA2 and Dld, the role of NoxA2 in electron transport reactions is unknown. Rather, NoxA2 may protect proteins involved in electron transfer by reducing O2 to H2O2 or H2O. PMID:15803647

  15. Development of an enzymatic assay system of D-lactate using D-lactate dehydrogenase and a UV-LED fluorescent spectrometer.

    PubMed

    Chen, Chien-Ming; Chen, Shih-Ming; Chien, Po-Jen; Yu, Han-Yin

    2015-12-10

    In this study, we aimed to develop a new enzymatic assay system of d-lactate with good precision, accuracy, and sensitivity for the determination of D-lactate concentrations in rat serum. D-Lactate dehydrogenase (D-LDH) was utilized to catalyze D-lactate and NAD(+) to pyruvate and NADH, respectively. The generated NADH was excited by using a 340-nm UV-light-emitting diode (LED), and the fluorescence at 491 nm was detected to determine the concentration of D-lactate in rat serum. The optics, consisting of the sample cuvette, were set on three-dimensional stages to receive the most intensive fluorescence signal into the spectrometer. The optimal conditions of the D-LDH reaction were pH 8.5 and 25 C for 90 min. The results showed that the new D-lactate assay system had good linearity (R(2)=0.9964) in the calibration range from 5 to 150 ?M. Intra-day and inter-day accuracies were in the range of 103.96-109.09% and 102.84-104.59%, respectively, and the intra-day and inter-day precision was 4.28-6.82% and 4.04-12.40%, respectively. Finally, serum D-lactate concentrations determined by the proposed enzymatic assay system were compared with those obtained by a conventional HPLC method. The newly developed D-lactate assay system could detect 10-15 samples in 90 min, whereas the HPLC method could detect only one sample over the same time period. PMID:26265307

  16. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Fenglei Li

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition, evaporation rate can be controlled or adjusted in this method during the crystallization process to favor either nucleation or growing processes for optimizing crystallization process. The protein crystals gotten by this method were experimentally proven to possess high x-ray diffraction qualities. Finally, we crystallized human lactate dehydrogenase 1 (H4) complexed with NADH and determined its structure by x-ray crystallography. The structure of LDH/NADH displays a significantly different structural feature, compared with LDH/NADH/inhibitor ternary complex structure, that subunits in LDH/NADH complex show open conformation or two conformations on the active site while the subunits in LDH/NADH/inhibitor are all in close conformation. Multiple LDH/NADH crystals were obtained and used for x-ray diffraction experiments. Difference in subunit conformation was observed among the structures independently solved from multiple individual LDH/NADH crystals. Structural differences observed among crystals suggest the existence of multiple conformers in solution.

  17. Hypoxically inducible barley lactate dehydrogenase: cDNA cloning and molecular analysis

    SciTech Connect

    Hondred, D. ); Hanson, A.D. Univ. de Montreal, Quebec )

    1990-09-01

    In the roots of barley and other cereals, hypoxia induces a set of five isozymes of L-lactate dehydrogenase (LDH; (S)-lactate:NADH oxidoreductase, EC 1.1.1.27). Biochemical and genetic data indicate that the five LDH isozymes are tetramers that arise from random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH were isolated from a {lambda}gt11 cDNA library derived from hypoxically treated barley roots. The library was screened with antiserum raised against barley LDH purified {approx}3,000-fold by an improved three-step procedure. Immunopositive clones were rescreened with a cDNA probe synthesized by the polymerase chain reaction using primers modeled from the amino acid sequences of two tryptic LDH peptides. Two types of LDH clones were found. Nucleotide sequence analysis of one representative insert of each type (respectively, 1,305 and 1,166 base pairs) revealed open reading framed encoding 10 peptide fragments of LDH. The 1,305-base-pair insert included the entire coding region of a 356-residue LDH monomer. The nucleotide sequences of the two LDH cDNAs were 92% identical in the coding region, but highly divergent in the 3{prime} noncoding region, and thus probably correspond to the two postulated Ldh loci. The deduced amino acid sequences of the two barley LDHs were 96% identical to each other and very similar to those from vertebrate and bacterial LDHs. RNA blot hybridization showed a single mRNA band of 1.5 kilobases whose level rose about 8-fold in roots during hypoxic induction, as did the level of translatable LDH message.

  18. The drs tumor suppressor regulates glucose metabolism via lactate dehydrogenase-B.

    PubMed

    Tambe, Yukihiro; Hasebe, Masahiro; Kim, Chul Jang; Yamamoto, Akitsugu; Inoue, Hirokazu

    2016-01-01

    Previously, we showed that drs contributes to suppression of malignant tumor formation in drs-knockout (KO) mice. In this study, we demonstrate the regulation of glucose metabolism by drs using comparisons of drs-KO and wild-type (WT) mouse embryonic fibroblasts (MEFs). Extracellular acidification, lactate concentration, and glucose consumption in drs-KO cells were significantly greater than those in WT cells. Metabolomic analyses also confirmed enhanced glycolysis in drs-KO cells. Among glycolysis-regulating proteins, expression of lactate dehydrogenase (LDH)-B was upregulated at the post-transcriptional level in drs-KO cells and increased LDH-B expression, LDH activity, and acidification of culture medium in drs-KO cells were suppressed by retroviral rescue of drs, indicating that LDH-B plays a critical role for glycolysis regulation mediated by drs. In WT cells transformed by activated K-ras, expression of endogenous drs mRNA was markedly suppressed and LDH-B expression was increased. In human cancer cell lines with low drs expression, LDH-B expression was increased. Database analyses also showed the correlation between downregulation of drs and upregulation of LDH-B in human colorectal cancer and lung adenocarcinoma tissues. Furthermore, an LDH inhibitor suppressed anchorage-independent growth of human cancer cells and MEF cells transformed by activated K-ras. These results indicate that drs regulates glucose metabolism via LDH-B. Downregulating drs may contribute to the Warburg effect, which is closely associated with malignant progression of cancer cells. 2015 Wiley Periodicals, Inc. PMID:25620379

  19. Purification and determination of the binding site of lactate dehydrogenase from chicken breast muscle on immobilized ferric ions.

    PubMed

    Chaga, G; Andersson, L; Porath, J

    1992-12-25

    Lactate dehydrogenase from chicken breast muscle was purified to homogeneity in one step by immobilized metal ion affinity chromatography. The purified enzyme was used to localize the binding site to immobilized Fe(III) ions. After cyanogen bromide degradation and digestion with trypsin, small enzyme fragments capable of binding to immobilized Fe(III) ions were obtained. It is proposed that several histidyl groups are involved in the binding. PMID:1487526

  20. Identification of proteins interacting with lactate dehydrogenase in claw muscle of the porcelain crab Petrolisthes cinctipes

    PubMed Central

    Cayenne, Andrea P.; Gabert, Beverly; Stillman, Jonathon H.

    2011-01-01

    Biochemical adaptation of enzymes involves conservation of activity, stability and affinity across a wide range of intracellular and environmental conditions. Enzyme adaptation by alteration of primary structure is well known, but the roles of protein-protein interactions in enzyme adaptation are less well understood. Interspecific differences in thermal stability of lactate dehydrogenase (LDH) in porcelain crabs (genus Petrolisthes) are related to intrinsic differences among LDH molecules and by interactions with other stabilizing proteins. Here, we identified proteins that interact with LDH in porcelain crab claw muscle tissue using co-immunoprecipitation, and showed LDH exists in high molecular weight complexes using size exclusion chromatography and Western blot analyses. Co-immunoprecipitated proteins were separated using 2D SDS PAGE and analyzed by LC/ESI using peptide MS/MS. Peptide MS/MS ions were compared to an EST database for Petrolisthes cinctipes to identify proteins. Identified proteins included cytoskeletal elements, glycolytic enzymes, a phosphagen kinase, and the respiratory protein hemocyanin. Our results support the hypothesis that LDH interacts with glycolytic enzymes in a metabolon structured by cytoskeletal elements that may also include the enzyme for transfer of the adenylate charge in glycolytically produced ATP. Those interactions may play specific roles in biochemical adaptation of glycolytic enzymes. PMID:21968246

  1. Gene Expression Variation in Duplicate Lactate dehydrogenase Genes: Do Ecological Species Show Distinct Responses?

    PubMed Central

    Cristescu, Melania E.; Demiri, Bora; Altshuler, Ianina; Crease, Teresa J.

    2014-01-01

    Lactate dehydrogenase (LDH) has been shown to play an important role in adaptation of several aquatic species to different habitats. The genomes of Daphnia pulex, a pond species, and Daphnia pulicaria, a lake inhabitant, encode two L-LDH enzymes, LDHA and LDHB. We estimated relative levels of Ldh gene expression in these two closely related species and their hybrids in four environmental settings, each characterized by one of two temperatures (10C or 20C), and one of two concentrations of dissolved oxygen (DO; 6.57 mg/l or 23 mg/l). We found that levels of LdhA expression were 4 to 48 times higher than LdhB expression (p<0.005) in all three groups (the two parental species and hybrids). Moreover, levels of LdhB expression differed significantly (p<0.05) between D. pulex and D. pulicaria, but neither species differed from the hybrid. Consistently higher expression of LdhA relative to LdhB in both species and the hybrid suggests that the two isozymes could be performing different functions. No significant differences in levels of gene expression were observed among the four combinations of temperature and dissolved oxygen (p>0.1). Given that Daphnia dwell in environments characterized by fluctuating conditions with long periods of low dissolved oxygen concentration, we suggest that these species could employ regulated metabolic depression to survive in such environments. PMID:25080082

  2. Quick histochemical staining method for measuring lactate dehydrogenase C4 activity in human spermatozoa.

    PubMed

    Cui, Zhaolei; Chen, Liangyuan; Liu, Yaohua; Zeng, Zhangxin; Lan, Fenghua

    2015-04-01

    The enzyme activity of lactate dehydrogenase C4 (LDH-C4, due to tetrameric nature of C-subunit) has been proposed as an important parameter in evaluating sperm motility and semen quality. A novel histochemical staining method for detecting LDH-C4 activity in human spermatozoa is described in this report. The staining working solution comprises sodium 2-hydroxybutyrate (an affinity substrate of LDH-C4), nitrotetrazolium blue chloride (NBT), nicotinamide adenine dinucleotide (NAD) and naphthol blue. The positive products were purple black lumps concentrated in the neck segment of the spermatozoa and weakly in the middle piece. A normal reference range for the integral enzyme activity was constructed from 120 healthy males based upon the scoring criteria. The study further compared the staining method with the routine spectrophotometry technique in terms of the results of 96 cases with infertile status. Moreover, we found the down-regulated LDH-C4 expression was significantly correlated with the lowered enzyme activity (r=0.865, P=0.000). Our data suggest that the histochemical staining method hallmarks a relatively high accuracy and may be a better alternative for measuring LDH-C4 activity in human spermatozoa. PMID:25795631

  3. Immunomagnetic capture and colorimetric detection of malarial biomarker Plasmodium falciparum lactate dehydrogenase.

    PubMed

    Markwalter, Christine F; Davis, Keersten M; Wright, David W

    2016-01-15

    We report a sensitive, magnetic bead-based colorimetric assay for Plasmodium falciparum lactate dehydrogenase (PfLDH) in which the biomarker is extracted from parasitized whole blood and purified based on antigen binding to antibody-functionalized magnetic particles. Antigen-bound particles are washed, and PfLDH activity is measured on-bead using an optimized colorimetric enzyme reaction (limit of detection [LOD]=21.10.4 parasites/?l). Enhanced analytical sensitivity is achieved by removal of PfLDH from the sample matrix before detection and elimination of nonspecific reductases and species that interfere with the optimal detection wavelength for measuring assay development. The optimized assay represents a simple and effective diagnostic strategy for P.falciparum malaria with time-to-result of 45min and detection limits similar to those of commercial enzyme-linked immunosorbent assay (ELISA) kits, which can take 4-6h. This method could be expanded to detect all species of malaria by switching the capture antibody on the magnetic particles to a pan-specific Plasmodium LDH antibody. PMID:26475567

  4. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases

    PubMed Central

    Boucher, Jeffrey I; Jacobowitz, Joseph R; Beckett, Brian C; Classen, Scott; Theobald, Douglas L

    2014-01-01

    Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this ‘specificity residue’ to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function. DOI: http://dx.doi.org/10.7554/eLife.02304.001 PMID:24966208

  5. Lactate dehydrogenase as a biomarker for early renal damage in patients with sickle cell disease.

    PubMed

    Alzahri, Mohammad S; Mousa, Shaker A; Almomen, Abdulkareem M; Hasanato, Rana M; Polimeni, John M; Racz, Michael J

    2015-11-01

    Among many complications of sickle cell disease, renal failure is the main contributor to early mortality. It is present in up to 21% of patients with sickle cell disease. Although screening for microalbuminuria and proteinuria is the current acceptable practice to detect and follow renal damage in patients with sickle cell disease, there is a crucial need for other, more sensitive biomarkers. This becomes especially true knowing that those biomarkers start to appear only after more than 60% of the kidney function is lost. The primary purpose of this study is to determine whether lactate dehydrogenase (LDH) correlates with other, direct and indirect bio-markers of renal insufficiency in patients with sickle cell disease and, therefore, could be used as a biomarker for early renal damage in patients with sickle cell disease. Fifty-five patients with an established diagnosis of sickle cell disease were recruited to in the study. Blood samples were taken and 24-h urine collection samples were collected. Using Statcrunch, a data analysis tool available on the web, we studied the correlation between LDH and other biomarkers of kidney function as well as the distribution and relationship between the variables. Regression analysis showed a significant negative correlation between serum LDH and creatinine clearance, R (correlation coefficient) = -0.44, P = 0.0008. This correlation was more significant at younger age. This study shows that in sickle cell patients LDH correlates with creatinine clearance and, therefore, LDH could serve as a biomarker to predict renal insufficiency in those patients. PMID:26586054

  6. The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path

    NASA Astrophysics Data System (ADS)

    Masterson, Jean E.; Schwartz, Steven D.

    2014-10-01

    Enzymes are the most efficient chemical catalysts known, but the exact nature of chemical barrier crossing in enzymes is not fully understood. Application of transition state theory to enzymatic reactions indicates that the rates of all possible reaction paths, weighted by their relative probabilities, must be considered in order to achieve an accurate calculation of the overall rate. Previous studies in our group have shown a single mechanism for enzymatic barrier passage in human heart lactate dehydrogenase (LDH). To ensure that this result was not due to our methodology insufficiently sampling reactive phase space, we implement high-perturbation transition path sampling in both microcanonical and canonical regimes for the reaction catalyzed by human heart LDH. We find that, although multiple, distinct paths through reactive phase space are possible for this enzymatic reaction, one specific reaction path is dominant. Since the frequency of these paths in a canonical ensemble is inversely proportional to the free energy barriers separating them from other regions of phase space, we conclude that the rarer reaction paths are likely to have a negligible contribution. Furthermore, the non-dominate reaction paths correspond to altered reactive conformations and only occur after multiple steps of high perturbation, suggesting that these paths may be the result of non-biologically significant changes to the structure of the enzymatic active site.

  7. [C-reactive protein and lactate dehydrogenase as single prognostic factors of severity in acute pancreatitis].

    PubMed

    Zrni?, Irena Krznari?; Mili?, Sandra; Fisi?, Elizabeta; Radi?, Mladen; Stimac, Davor

    2007-01-01

    Ranson and Glasgow scores are routinely used for prediction of severity in acute pancreatitis. We undertook a prospective study to investigate the role of lactate dehydrogenase (LDH) and C-reactive protein (CRP) as potential single predictors of severity in acute pancreatitis. In our study we included 100 patients with diagnosis of acute pancreatitis admitted to our hospital during last two years. The inclusion criteria consisted of a combination of clinical features, a typical case history, elevation of serum pancreatic enzymes and diagnosis confirmed by imaging studies (ultrasound or computerised tomography). We used Ranson score for assesment of severity and compared it with single parameters as LDH and CRP on the first and the third day after admission. Cut off values for predicting local and systemic complications were > or =3 for Ranson score, 320 IU for LDH and 5 mg/L for CRP. Ranson score showed highest sensitivity in the prediction of local and systemic complication of acute pancreatitis. Specificity and diagnostic accuracy were highest for LDH on the first day (67.74; 57%). Diagnostic accuracy for Ranson score and CRP on the third day after admission was around 50%. We can conclude that LDH and CRP are available, simple and economical biochemical parameters that can help us predict complications of acute pancreatitis in the early phase of the disease. They showed similar diagnostic accuracy as the far more clinically used Ranson score. PMID:17489509

  8. Lactate Dehydrogenase Is an Important Prognostic Indicator for Hepatocellular Carcinoma after Partial Hepatectomy12

    PubMed Central

    Zhang, Jing-Ping; Wang, Hong-Bo; Lin, Yue-Hao; Xu, Jing; Wang, Jun; Wang, Kai; Liu, Wan-Li

    2015-01-01

    Preoperative serum lactate dehydrogenase (LDH) has been used as a prognostic indicator for patients with hepatocellular carcinoma (HCC) treated with sorafenib or undergoing transcatheter arterial chemoembolization, but its significance in predicting survival of HCC patients who received curative resection remains undefined. A total of 683 patients with histopathologically confirmed HCC were enrolled in this study. The prognostic significance of preoperative serum LDH was determined by Kaplan-Meier analysis and a Cox proportional hazards regression model. The association between the preoperative serum LDH and clinicopathological parameters was evaluated by the ?2 test or linear regression analysis when appropriate. Higher preoperative serum LDH level was associated with worse prognosis. In a multivariate Cox proportional hazards analysis, the preoperative serum LDH level could predict overall survival and recurrence independently. Higher preoperative serum LDH level is associated with the elevated serum alpha-fetoprotein, the presence of hepatitis B surface antigen, larger tumor size, the presence of macrovascular invasion, the advanced tumorlymph nodemetastasis stage, worse tumor differentiation, and Child-Pugh B. Preoperative serum LDH level was an inexpensive, simple, convenient, and routinely measured biomarker exhibiting a potential to select patients at high risk with poor clinical outcome for appropriate treatment strategies. PMID:26692531

  9. Glycoconjugates Influence Caspase Release and Minimize Production of Lactate Dehydrogenase upon Pathogen Exposure

    NASA Astrophysics Data System (ADS)

    Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Many pathogens stimulate cell death of immune cells while promoting survival of pathogens. Early cell death is characterized by the release of mediators, namely Caspases (Cas). Infections caused by pathogens can be eradicated if immune cells could resist cell death and kill pathogens upon exposure. In this research, we studied whether glycoconjugates (GCs) influence Cas release and cytotoxicity upon pathogen damage. GC1 and GC3 constituted samples studied principally. Bacterial spores were used as a pathogen model. GC effects were determined "prior to," "during," and "following" pathogen exposure throughout phagocytosis. Cytotoxic damage was assessed by measuring lactate dehydrogenase (LDH) production. Our data show that GC3 was more effective than GC1 during phagocytosis. GC3 controls Cas release under all three exposure conditions. Minimum production of LDH was noticed in the "following" exposure condition compared to the "prior to" and "during" exposure conditions for GC1 and GC3. The present study provided the selection method of GC ligands bearing anti-cytotoxic and anti-apoptotic properties.

  10. Establishment of permanent chimerism in a lactate dehydrogenase-deficient mouse mutant with hemolytic anemia

    SciTech Connect

    Datta, T.; Doermer, P.

    1987-12-01

    Pluripotent hemopoietic stem cell function was investigated in the homozygous muscle type lactate dehydrogenase (LDH-A) mutant mouse using bone marrow transplantation experiments. Hemopoietic tissues of LDH-A mutants showed a marked decreased in enzyme activity that was associated with severe hemolytic anemia. This condition proved to be transplantable into wild type mice (+/+) through total body irradiation (TBI) at a lethal dose of 8.0 Gy followed by engraftment of mutant bone marrow cells. Since the mutants are extremely radiosensitive (lethal dose50/30 4.4 Gy vs 7.3 Gy in +/+ mice), 8.0-Gy TBI followed by injection of even high numbers of normal bone marrow cells did not prevent death within 5-6 days. After a nonlethal dose of 4.0 Gy and grafting of normal bone marrow cells, a transient chimerism showing peripheral blood characteristics of the wild type was produced that returned to the mutant condition within 12 weeks. The transfusion of wild type red blood cells prior to and following 8.0-Gy TBI and reconstitution with wild type bone marrow cells prevented the early death of the mutants and permanent chimerism was achieved. The chimeras showed all hematological parameters of wild type mice, and radiosensitivity returned to normal. It is concluded that the mutant pluripotent stem cells are functionally comparable to normal stem cells, emphasizing the significance of this mouse model for studies of stem cell regulation.

  11. Low intensity microwave radiation as modulator of the L-lactate dehydrogenase activity.

    PubMed

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2011-07-01

    In this study, we investigated experimentally the possibility of modulating protein activity by low intensity microwaves by measuring alternations of L: -Lactate Dehydrogenase enzyme (LDH) activity. The LDH enzyme solutions were irradiated by microwaves of the selected frequencies and powers using the Transverse Electro-Magnetic (TEM) cell. The kinetics of the irradiated LDH was measured by continuous monitoring of nicotine adenine dinucleotide, reduced (NADH) absorbance at 340 nm. A comparative analysis of changes in the activity of the irradiated LDH enzyme versus the non-radiated enzyme was performed for the selected frequencies and powers. It was found that LDH activity can be selectively increased only by irradiation at the particular frequencies of 500 MHz [electric field: 0.02 V/m (1.2 × 10⁻⁶ W/m²)-2.1 V/m (1.2 × 10⁻² W/m²)] and 900 MHz [electric field: 0.021-0.21 V/m (1.2 × 10⁻⁴ W/m²)]. Based on results obtained it was concluded that LDH enzyme activity can be modulated by specific frequencies of low power microwave radiation. This finding can serve to support the hypothesis that low intensity microwaves can induce non-thermal effects in bio-molecules. PMID:21308416

  12. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor.

    PubMed

    Valvona, Cara J; Fillmore, Helen L; Nunn, Peter B; Pilkington, Geoffrey J

    2016-01-01

    There are over 120 types of brain tumor and approximately 45% of primary brain tumors are gliomas, of which glioblastoma multiforme (GBM) is the most common and aggressive with a median survival rate of 14 months. Despite progress in our knowledge, current therapies are unable to effectively combat primary brain tumors and patient survival remains poor. Tumor metabolism is important to consider in therapeutic approaches and is the focus of numerous research investigations. Lactate dehydrogenase A (LDHA) is a cytosolic enzyme, predominantly involved in anaerobic and aerobic glycolysis (the Warburg effect); however, it has multiple additional functions in non-neoplastic and neoplastic tissues, which are not commonly known or discussed. This review summarizes what is currently known about the function of LDHA and identifies areas that would benefit from further exploration. The current knowledge of the role of LDHA in the brain and its potential as a therapeutic target for brain tumors will also be highlighted. The Warburg effect appears to be universal in tumors, including primary brain tumors, and LDHA (because of its involvement with this process) has been identified as a potential therapeutic target. Currently, there are, however, no suitable LDHA inhibitors available for tumor therapies in the clinic. PMID:26269128

  13. Early diagnosis of radiodermatitis using lactate dehydrogenase isozymes in hairless mice (SKH1-hr)

    PubMed Central

    Kim, Won-Dong

    2012-01-01

    In this study, we evaluate a method for the early diagnosis of radiodermatitis for use in the prevention and therapy of this condition. Hairless mice (SKH1-hr) were used to study the early diagnosis of radiodermatitis. Lactate dehydrogenase (LDH, EC 1.1.1.27) isozymes were analyzed using native-polyacrylamide gel electrophoresis and western blotting of blood serum and tissues collected from SKH1-hr mice. Radiodermatitis developed 24 days after the first X-irradiation. Reduced spleen weight was observed after the last X-irradiation (P<0.05). Thereafter the weight increased until 24 days after the first irradiation, finally reaching levels comparable to those in the sham-irradiated control group. LDH activity was the highest in skeletal muscle and lowest in blood serum. LDH C4, A4, A3B, A2B2, AB3, and B4 isozymes were detected, in the mentioned order, from the cathode. This result was similar in other mouse strains. In the irradiated group, LDH A4 isozyme levels were reduced in the serum until inflammation occurred, whereas those of B4 isozyme were elevated. The subunits A and B followed a similar trend to that of LDH A4 and B4 isozyme, respectively. Importantly, antibodies against LDH B4 isozyme could prove useful in the early diagnosis of radiodermatitis. PMID:23326284

  14. Quantification of lactate-dehydrogenase and cell viability in postmortem human dental pulp.

    PubMed

    Caviedes-Bucheli, Javier; Avendao, Nuvia; Gutierrez, Rhina; Hernndez, Sandra; Moreno, Gloria Cristina; Romero, Mara Consuelo; Muoz, Hugo Roberto

    2006-03-01

    Understanding pulp repair and regeneration requires being familiar with this tissue's behavior under extreme conditions, such as postmortem state where an abrupt interruption of tissue blood supply occurs. The purpose of this study was to quantify cell viability and the amount of lactate-dehydrogenase (LDH) expressed in human pulp tissue 6, 12, and 24 hours postmortem to establish how long dental pulp remains viable after death. Pulp samples were obtained from 14 unidentified corpses of people who had received lethal injuries in car accidents or from gunshot wounds; they had at least three caries- and restoration-free incisors. Half of each sample was used for determining cell viability at three different time intervals. The rest of each sample was used for quantifying LDH expression at the same time intervals. Another 14 pulp samples were obtained from live patients' healthy premolars where extraction was indicated for orthodontic reasons to assess normal LDH value in pulp tissue. The results showed cell viability decreasing from 89 to 68 to 41% measured 6, 12, and 24 hours postmortem, respectively. LDH expression in healthy pulps was 246 U/mg pulp weight. Expression increased after death from 249 U/mg at 6 hours to 337 U/mg at 12 hours. LDH expression decreased to 131 U/mg 24 hours postmortem. These findings are valuable in understanding dental pulp survival capability under extreme conditions that may have important clinical significance in terms of repair and regeneration. PMID:16500222

  15. INACTIVATION OF LACTATE DEHYDROGENASE BY SEVERAL CHEMICALS: IMPLICATIONS FOR IN VITRO TOXICOLOGY STUDIES

    PubMed Central

    Kendig, Derek M.; Tarloff, Joan B.

    2007-01-01

    Lactate dehydrogenase (LDH) release is frequently used as an end-point for cytotoxicity studies. We have been unable to measure LDH release during studies using para-aminophenol (PAP) in LLC-PK1 cells. When LLC-PK1 cells were incubated with either PAP (010 mM) or menadione (01000 ?M), viability was markedly reduced when assessed by alamar Blue or total LDH activity but not by release of LDH into the incubation medium. In addition, we incubated cells with PAP or menadione and compared LDH activity using two different assays. Both assays confirmed our observation of decreased LDH activity in cell lysates without corresponding increases in LDH activity in incubation media. Using purified LDH and 10 mM PAP, we that PAP produced loss of LDH activity that was inversely proportional to the amount of LDH initially added. In additional experiments, we incubated 0.5 units of LDH for 1 h with varying concentrations of PAP, menadione, hydrogen peroxide (H2O2) or cisplatin. All four chemicals produced concentration-dependent decreases in LDH activity. In previous experiments, inclusion of antioxidants such as reduced glutathione (GSH) and ascorbate protected cells from PAP toxicity. GSH (1 mM) preserved LDH activity in the presence of toxicants while ascorbate (1 mM) only prevented LDH loss induced by PAP. These studies suggest that LDH that is released into the incubation medium is susceptible to degradation when reactive chemicals are present. PMID:17079110

  16. Muscular cholinesterase and lactate dehydrogenase activities in deep-sea fish from the NW Mediterranean.

    PubMed

    Koenig, Samuel; Sol, Montserrat

    2014-03-01

    Organisms inhabiting submarine canyons can be potentially exposed to higher inputs of anthropogenic chemicals than their counterparts from the adjacent areas. To find out to what extend this observation applies to a NW Mediterranean canyon (i.e. Blanes canyon) off the Catalan coast, four deep-sea fish species were collected from inside the canyon (BC) and the adjacent open slope (OS). The selected species were: Alepocephalus rostratus, Lepidion lepidion, Coelorinchus mediterraneus and Bathypterois mediterraneus. Prior to the choice of an adequate sentinel species, the natural variation of the selected parameters (biomarkers) in relation to factors such as size, sex, sampling depth and seasonality need to be characterised. In this study, the activities of cholinesterases (ChEs) and lactate dehydrogenase (LDH) enzymes were determined in the muscle of the four deep-sea fish. Of all ChEs, acetylcholinesterase (AChE) activity was dominant and selected for further monitoring. Overall, AChE activity exhibited a significant relationship with fish size whereas LDH activity was mostly dependent on the sex and gonadal development status, although in a species-dependent manner. The seasonal variability of LDH activity was more marked than for AChE activity, and inside-outside canyon (BC-OS) differences were not consistent in all contrasted fish species, and in fact they were more dependent on biological traits. Thus, they did not suggest a differential stress condition between sites inside and outside the canyon. PMID:24296242

  17. Alternative splicing of testis-specific lactate dehydrogenase C gene in mammals and pigeon.

    PubMed

    Huang, Lin; Lin, Yaqiu; Jin, Suyu; Liu, Wei; Xu, Yaou; Zheng, Yucai

    2012-04-01

    The objective of the present study was to confirm the widespread existence of alternative splicing of lactate dehydrogenase c (ldhc) gene in mammals. RT-PCR was employed to amplify cDNAs of ldhc from testes of mammals including pig, dog, rabbit, cat, rat, and mouse, as well as pigeon. Two to six kinds of splice variants of ldhc were observed in the seven species as a result of deletion of one or more exons or insertion of partial sequence of an intron in the mature mRNA. The deleted exons occur mostly in exons 5, 4, 6, and 3. The insertion of a partial sequence of introns, which resulted in an abnormal stop codon in the inserted intron sequence, was observed only in dog and rat. The deletion of exons also resulted in a reading frame shift and formation of a stop codon in some variants. No alternative splicing was observed for ldha and ldhb genes in testis of yak. Native polyacrylamide gel electrophoresis and Western blot analysis revealed no obvious LDH-C4 activity derived from expressed ldhc variants. Our results demonstrated the widespread and unique existence of alternative splicing of ldhc genes in mammals. PMID:22537060

  18. Regulation of the Activity of Lactate Dehydrogenases from Four Lactic Acid Bacteria*

    PubMed Central

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L.; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V.; Kreikemeyer, Bernd; Wade, Rebecca C.; Fiedler, Tomas

    2013-01-01

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ? Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ? Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs. PMID:23720742

  19. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    PubMed

    Penna-Coutinho, Julia; Cortopassi, Wilian Augusto; Oliveira, Aline Alves; Frana, Tanos Celmar Costa; Krettli, Antoniana Ursine

    2011-01-01

    The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH) has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH) all exhibit ?90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH) and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole) were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2). The IC(50) values for each drug in both tests were similar, were lowest for posaconazole (<5 M) and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use. PMID:21779323

  20. DNA Sequence Polymorphism of the Lactate Dehydrogenase Genefrom Iranian Plasmodium vivax and Plasmodium falciparum Isolates

    PubMed Central

    GETACHER FELEKE, Daniel; NATEGHPOUR, Mehdi; MOTEVALLI HAGHI, Afsaneh; HAJJARAN, Homa; FARIVAR, Leila; MOHEBALI, Mehdi; RAOOFIAN, Reza

    2015-01-01

    Background: Parasite lactate dehydrogenase (pLDH) is extensively employed as malaria rapid diagnostic tests (RDTs). Moreover, it is a well-known drug target candidate. However, the genetic diversity of this gene might influence performance of RDT kits and its drug target candidacy. This study aimed to determine polymorphism of pLDH gene from Iranian isolates of P. vivax and P. falciparum. Methods: Genomic DNA was extracted from whole blood of microscopically confirmed P. vivax and P. falciparum infected patients. pLDH gene of P. falciparum and P. vivax was amplified using conventional PCR from 43 symptomatic malaria patients from Sistan and Baluchistan Province, Southeast Iran from 2012 to 2013. Results: Sequence analysis of 15 P. vivax LDH showed fourteen had 100% identity with P. vivax Sal-1 and Belem strains. Two nucleotide substitutions were detected with only one resulted in amino acid change. Analysis of P. falciparum LDH sequences showed six of the seven sequences had 100% homology with P. falciparum 3D7 and Mzr-1. Moreover, PfLDH displayed three nucleotide changes that resulted in changing only one amino acid. PvLDH and PfLDH showed 75%76% nucleotide and 90.4%90.76% amino acid homology. Conclusion: pLDH gene from Iranian P. falciparum and P. vivax isolates displayed 98.8100% homology with 13 nucleotide substitutions. This indicated this gene was relatively conserved. Additional studies can be done weather this genetic variation can influence the performance of pLDH based RDTs or not.

  1. Nicotine promotes Streptococcus mutans extracellular polysaccharide synthesis, cell aggregation and overall lactate dehydrogenase activity.

    PubMed

    Huang, R; Li, M; Gregory, R L

    2015-08-01

    Several epidemiology studies have reported a positive relationship between smoking and dental caries. Nicotine, an alkaloid component of tobacco, has been demonstrated to stimulate biofilm formation and metabolic activity of Streptococcus mutans, one of the most important pathogens of dental caries. The first aim of the present study was to explore the possible mechanisms leading to increased biofilm by nicotine treatment from three aspects, extracellular polysaccharides (EPS) synthesis, glucosyltransferase (Gtf) synthesis and glucan-binding protein (Gbp) synthesis at the mRNA and protein levels. The second aim was to investigate how nicotine affects S. mutans virulence, particular in lactate dehydrogenase (LDH) activity. Confocal laser scanning microscopy results demonstrated that both biofilm bacterial cell numbers and EPS were increased by nicotine. Gtf and GbpA protein expression of S. mutans planktonic cells were upregulated while GbpB protein expression of biofilm cells were downregulated by nicotine. The mRNA expression trends of those genes were mostly consistent with results on protein level but not statistically significant, and gtfD and gbpD of biofilm cells were inhibited. Nicotine was not directly involved in S. mutans LDH activity. However, since it increases the total number of bacterial cells in biofilm, the overall LDH activity of S. mutans biofilm is increased. In conclusion, nicotine stimulates S. mutans planktonic cell Gtf and Gbp expression. This leads to more planktonic cells attaching to the dental biofilm. Increased cell numbers within biofilm results in higher overall LDH activity. This contributes to caries development in smokers. PMID:25985036

  2. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates.

    PubMed

    Keluskar, Priyadarshan; Singh, Vineeta; Gupta, Purva; Ingle, Sanjay

    2014-08-01

    Control and eradication of malaria is hindered by the acquisition of drug resistance by Plasmodium species. This has necessitated a persistent search for novel drugs and more efficient targets. Plasmodium species specific lactate dehydrogenase is one of the potential therapeutic and diagnostic targets, because of its indispensable role in endoerythrocytic stage of the parasite. A target molecule that is highly conserved in the parasite population can be more effectively used in diagnostics and therapeutics, hence, in the present study polymorphism in PfLDH (Plasmodiumfalciparum specific LDH) and PvLDH (Plasmodiumvivax specific LDH) genes was analyzed using PCR-single strand confirmation polymorphism (PCR-SSCP) and sequencing. Forty-six P. falciparum and thirty-five P. vivax samples were screened from different states of India. Our findings have revealed presence of a single PfLDH genotype and six PvLDH genotypes among the studied samples. Interestingly, along with synonymous substitutions, nonsynonymous substitutions were reported to be present for the first time in the PvLDH genotypes. Further, through amino acid sequence alignment and homology modeling studies we observed that the catalytic residues were conserved in all PvLDH genotypes and the nonsynonymous substitutions have not altered the enzyme structure significantly. Evolutionary genetics studies have confirmed that PfLDH and PvLDH loci are under strong purifying selection. Phylogenetic analysis of the pLDH gene sequences revealed that P. falciparum compared to P. vivax, has recent origin. The study therefore supports PfLDH and PvLDH as suitable therapeutic and diagnostic targets as well as phylogenetic markers to understand the genealogy of malaria species. PMID:24953504

  3. Pre-treatment serum lactate dehydrogenase and alkaline phosphatase as predictors of metastases in extremity osteosarcoma

    PubMed Central

    Marais, Leonard C.; Bertie, Julia; Rodseth, Reitze; Sartorius, Benn; Ferreira, Nando

    2015-01-01

    Background The prognosis of patients with metastatic osteosarcoma remains poor. However, the chance of survival can be improved by surgical resection of all metastases. In this study we investigate the value of serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in predicting the presence of metastatic disease at time of diagnosis. Methods Sixty-one patients with histologically confirmed conventional osteosarcoma of the extremity were included in the study. Only 19.7% of cases presented without evidence of systemic spread of the disease. Pre-treatment serum ALP and LDH were analysed in patients with and without skeletal or pulmonary metastases. Results Serum LDH and ALP levels were not significantly different in patients with or without pulmonary metastases (p=0.88 and p=0.47, respectively). The serum LDH and ALP levels did however differ significantly in patients with or without skeletal metastases (p<0.001 and p=0.02, respectively). The optimal breakpoint for serum LDH as a marker of skeletal metastases was 849 IU/L (AUC 0.839; Sensitivity=0.88; Specificity=0.73). LDH >454 IU/L equated to 100% sensitivity for detected bone metastases (positive diagnostic likelihood ratio (DLR)=1.32). With a cut-off of 76 IU/L a sensitivity of 100% was reached for serum ALP predicting the presence of skeletal metastases (positive DLR=1.1). In a multivariate analysis both LDH ?850 IU/L (odds ratio [OR]=9; 95% confidence interval (CI) 1.844.3) and ALP ?280 IU/L (OR=10.3; 95% CI 2.150.5) were predictive of skeletal metastases. LDH however lost its significance in a multivariate model which included pre-treatment tumour volume. Conclusion In cases of osteosarcoma with LDH >850 IU/L and/or ALP >280 IU/L it may be prudent to consider more sensitive staging investigations for detection of skeletal metastases. Further research is required to determine the value and the most sensitive cut-off points of serum ALP and LDH in the prediction of skeletal metastases. PMID:26587373

  4. Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): genetic, kinetic and thermodynamic aspects.

    PubMed

    Zakhartsev, Maxim; Johansen, Torild; Prtner, Hans O; Blust, Ronny

    2004-01-01

    The aim of this study was to determine the effects of seasonal temperature variation on the functional properties of lactate dehydrogenase (LDH) from white muscle and liver of Norwegian coastal cod (Gadus morhua) and the possible relevance of LDH allelic variability for thermal acclimation. Two groups of fishes were acclimated to 4 degrees C or 12 degrees C for one year. Polymorphism was observed in only one (Ldh-B) of the three Ldh loci expressed in cod liver and/or muscle. Isozyme expression remained unchanged regardless of acclimation temperature (T(A)). The products of locus Ldh-B comprise only 14-19% (depending on the tissue) of total LDH activities and, consequently, differences between phenotypes are negligible in terms of their effect on LDH total performance. No kinetic (, V(max)) or thermodynamic (E(a), DeltaG) differences were found among Ldh-B phenotypes. Clear kinetic differences were observed between LDH isoforms in the two tissues. However, the Arrhenius activation energy (E(a)) for pyruvate reduction was the same for both tissues (E(a)=47 kJ mol(-1)) at T(A)=12 degrees C. Factors T(A), tissue and phenotype did not reveal a significant effect on the Gibbs free energy change (DeltaG) of the reaction (55.5 kJ mol(-1)). However, at T(A)=4 degrees C, the E(a) was increased (E(a)=53-56 kJ mol(-1)) and the temperature dependence of the constant of substrate inhibition for pyruvate () decreased in both muscle and liver. In conclusion, the strategies of LDH adjustment to seasonal temperature variations in cod involve changes in LDH concentration (quantitative), adjustment of thermodynamic (E(a)) and kinetic () properties of the LDH (modulative) but not the expression of alternative isoforms (qualitative). We assume that the observed increase in E(a) and the decrease of temperature dependence of at low T(A) is the result of structural changes of the LDH molecule (temperature-driven protein folding). We propose a new mechanism of metabolic compensation of seasonal temperature variations - cold acclimation results in changes in the kinetic and thermodynamic properties of LDH in a way that favours aerobic metabolism through reduction of the competition of LDH for pyruvate in normoxic conditions. PMID:14638837

  5. The use of ternary complexes to study ionizations and isomerizations during catalysis by lactate dehydrogenase*

    PubMed Central

    Holbrook, J. John; Stinson, Robert A.

    1973-01-01

    1. The binding of oxamate to pig heart and pig muscle isoenzymes of lactate dehydrogenase in the presence of NADH was studied by fluorescence titration. The dissociation constant of oxamate from the heart enzyme complex is 3μm and from the muscle isoenzyme 25μm at pH5. These values quantitatively increase with pH as predicted if oxamate can bind only to the enzyme–NADH complex if a group with pK6.9 is protonated. There are four non-interacting oxamate-binding sites per tetramer. 2. o-Nitrophenylpyruvate is a poor substrate for both isoenzymes but has a reasonable affinity to the heart isoenzyme. Initially, it forms an enzyme–NADH–substrate complex, which can be detected either by protein-fluorescence quenching or by NADH-fluorescence quenching. The pH-dependence of the dissociation constant of nitrophenylpyruvate also shows that this ternary complex can only form if a group with pK6.8 is protonated. Taken with the results of chemical-modification experiments, these results allow the pK of 6.8 to be assigned to a system probably involving the imidazole side chain of histidine-195. Formation of a ternary complex from a binary one at pH8 is predicted to result in a proton being taken up from solution. 3. Isotope-effect studies with NADH and its deuterium analogue show that the rapidly formed ternary complex with o-nitrophenylpyruvate slowly isomerizes to give an active ternary complex, which then rapidly decomposes to NAD+. The isomerization is pH-independent, and it is suggested that histidine-195 is still protonated in the activated ternary complex, which is present before hydride transfer. 4. All four subunits of the enzyme are kinetically equivalent with respect to the oxidation of bound NADH by o-nitrophenylpyruvate. 5. A partial mechanism for the enzyme is described which emphasizes the isomerizations and ionizations involved in forming the reduced ternary complex at pH6 and 8. PMID:4352914

  6. The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli.

    PubMed

    Berros-Rivera, Susana J; San, Ka-Yiu; Bennett, George N

    2003-01-01

    In previous studies, we showed that cofactor manipulations can potentially be used as a tool in metabolic engineering. In this study, sugars similar to glucose, that can feed into glycolysis and pyruvate production, but with different oxidation states, were used as substrates. This provided a simple way of testing the effect of manipulating the NADH/NAD+ ratio or the availability of NADH on the metabolic patterns of Escherichia coli under anaerobic conditions and on the production of 1,2-propanediol (1,2-PD), which requires NADH for its synthesis. Production of 1,2-PD was achieved by overexpressing the two enzymes methylglyoxal synthase from Clostridium acetobutylicum and glycerol dehydrogenase from E. coli. In addition, the effect of eliminating a pathway competing for NADH by using a ldh(-) strain (without lactate dehydrogenase activity) on the production of 1,2-PD was investigated. The oxidation state of the carbon source significantly affected the yield of metabolites, such as ethanol, acetate and lactate. However, feeding a more reduced carbon source did not increase the yield of 1,2-PD. The production of 1,2-PD with glucose as the carbon source was improved by the incorporation of a ldh(-) mutation. The results of these experiments indicate that our current 1,2-PD production system is not limited by NADH, but rather by the pathways following the formation of methylglyoxal. PMID:12545384

  7. Tyrosine Phosphorylation of Lactate Dehydrogenase A Is Important for NADH/NAD+ Redox Homeostasis in Cancer Cells ?

    PubMed Central

    Fan, Jun; Hitosugi, Taro; Chung, Tae-Wook; Xie, Jianxin; Ge, Qingyuan; Gu, Ting-Lei; Polakiewicz, Roberto D.; Chen, Georgia Z.; Boggon, Titus J.; Lonial, Sagar; Khuri, Fadlo R.; Kang, Sumin; Chen, Jing

    2011-01-01

    The Warburg effect describes an increase in aerobic glycolysis and enhanced lactate production in cancer cells. Lactate dehydrogenase A (LDH-A) regulates the last step of glycolysis that generates lactate and permits the regeneration of NAD+. LDH-A gene expression is believed to be upregulated by both HIF and Myc in cancer cells to achieve increased lactate production. However, how oncogenic signals activate LDH-A to regulate cancer cell metabolism remains unclear. We found that the oncogenic receptor tyrosine kinase FGFR1 directly phosphorylates LDH-A. Phosphorylation at Y10 and Y83 enhances LDH-A activity by enhancing the formation of active, tetrameric LDH-A and the binding of LDH-A substrate NADH, respectively. Moreover, Y10 phosphorylation of LDH-A is common in diverse human cancer cells, which correlates with activation of multiple oncogenic tyrosine kinases. Interestingly, cancer cells with stable knockdown of endogenous LDH-A and rescue expression of a catalytic hypomorph LDH-A mutant, Y10F, demonstrate increased respiration through mitochondrial complex I to sustain glycolysis by providing NAD+. However, such a compensatory increase in mitochondrial respiration in Y10F cells is insufficient to fully sustain glycolysis. Y10 rescue cells show decreased cell proliferation and ATP levels under hypoxia and reduced tumor growth in xenograft nude mice. Our findings suggest that tyrosine phosphorylation enhances LDH-A enzyme activity to promote the Warburg effect and tumor growth by regulating the NADH/NAD+ redox homeostasis, representing an acute molecular mechanism underlying the enhanced lactate production in cancer cells. PMID:21969607

  8. Production of optically pure L-phenyllactic acid by using engineered Escherichia coli coexpressing L-lactate dehydrogenase and formate dehydrogenase.

    PubMed

    Zheng, Zhaojuan; Zhao, Mingyue; Zang, Ying; Zhou, Ying; Ouyang, Jia

    2015-08-10

    L-Phenyllactic acid (L-PLA) is a novel antiseptic agent with broad and effective antimicrobial activity. In addition, L-PLA has been used for synthesis of poly(phenyllactic acid)s, which exhibits better mechanical properties than poly(lactic acid)s. However, the concentration and optical purity of L-PLA produced by native microbes was rather low. An NAD-dependent L-lactate dehydrogenase (L-nLDH) from Bacillus coagulans NL01 was confirmed to have a good ability to produce L-PLA from phenylpyruvic acid (PPA). In the present study, l-nLDH gene and formate dehydrogenase gene were heterologously coexpressed in Escherichia coli. Through two coupled reactions, 79.6mM l-PLA was produced from 82.8mM PPA in 40min and the enantiomeric excess value of L-PLA was high (>99%). Therefore, this process suggested a promising alternative for the production of chiral l-PLA. PMID:26008622

  9. Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells.

    PubMed Central

    Alcazar, O; Tiedge, M; Lenzen, S

    2000-01-01

    The role of lactate dehydrogenase (LDH) in the generation of the metabolic signal for insulin secretion was studied after stable overexpression in INS-1 and RINm5F insulin-producing cells. INS-1 cells with a 25-fold overexpression of LDH-A, the highest level achieved, showed a 20-30% decrease in the glucose oxidation rate at glucose concentrations above 5 mM when compared with control cells, whereas values were unchanged at lower glucose concentrations. Lactate release increased in parallel with a decrease in the glucose oxidation rate. However, the INS-1 cell glucose-induced insulin secretory response, together with the rate of glucose utilization, were not significantly affected by LDH-A overexpression. Despite 3-fold overexpression of LDH-A in glucose-unresponsive RINm5F cells, there was no change in insulin secretion, glucose metabolism or lactate production in these cells. Exogenously added pyruvate and lactate potentiated glucose-stimulated insulin secretion in INS-1 cells, an effect that was abolished after LDH-A overexpression. Both compounds significantly decreased glucose oxidation rates in control cells. After overexpression of LDH-A in INS-1 cells, the effects of pyruvate and lactate on glucose oxidation were diminished. On the other hand, after LDH-A overexpression, both glycolytic metabolites decreased the glucose utilization rate at 5 mM glucose. The present data suggest that the level of LDH expression in insulin-secreting cells is critical for correct channelling of pyruvate towards mitochondrial metabolism. Interestingly, glucokinase-mediated glycolytic flux was decreased after LDH-A overexpression. Thus preferential channelling of glucose towards aerobic metabolism by glucokinase may be determined, at least in part, by the low level of constitutive expression of LDH-A in pancreatic beta-cells. In conclusion, the level of LDH expression in insulin-secreting cells is an important determinant of the physiological insulin-secretory capacity, and also determines how pyruvate and lactate affect insulin secretion. PMID:11085930

  10. Defect in signal transduction at the level of the plasma membrane accounts for inability of insulin to activate pyruvate dehydrogenase in white adipocytes of lactating rats.

    PubMed Central

    Kilgour, E; Vernon, R G

    1988-01-01

    1. The mechanism responsible for the failure of insulin to activate pyruvate dehydrogenase (PDH) in white adipose tissue in vivo during lactation was investigated. 2. Insulin failed to increase PDH in isolated adipocytes from lactating rats. 3. Insulin binding to plasma membranes from adipocytes was unchanged by lactation. 4. Incubation of plasma membranes plus permeabilized mitochondria from adipocytes in the presence of insulin resulted in activation of PDH when the plasma membranes were obtained from virgin rats, whereas no activation was observed when plasma membranes from lactating rats were used. 5. The results show that the failure of insulin to activate PDH in adipose tissue from lactating rats is due to a failure of the signal-transduction system in the plasma membrane at steps subsequent to insulin binding to the insulin receptor. PMID:2844153

  11. [Kinetic study of the mechanisms of eliminating substrate inhibition of lactate dehydrogenase by anions and pH].

    PubMed

    Saburova, E A; Iagodina, L O

    1990-10-01

    The dependence of lactate dehydrogenase inhibition at high pyruvate concentrations on pH and neutral salt anions was studied. It was shown that Cl- anions compete with the substrate within the ternary inhibitory complex, ENADpyr in equilibrium ENADCl-, as a result of which the pyruvate-induced inhibition is eliminated. The KD values for Cl- (50 mM) and I- (27 mM) were calculated from the substrate velocity curves at high concentrations of pyruvate. It was supposed that pyruvate inhibition elimination by OH- proceeds via the same kinetic mechanism. The pK value (7.1 +/- 0.1) calculated from this model corresponds to pKn of essential His-195. The additivity of OH- and Cl- function was demonstrated. PMID:2078626

  12. Cationic Surfactant-Based Colorimetric Detection of Plasmodium Lactate Dehydrogenase, a Biomarker for Malaria, Using the Specific DNA Aptamer

    PubMed Central

    Lee, Seonghwan; Manjunatha, D H; Jeon, Weejeong; Ban, Changill

    2014-01-01

    A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH) and Plasmodium falciparum LDH (PfLDH) was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs) as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB). The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly with the naked eye and was monitored using UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The reaction conditions were optimized to obtain the maximum color intensity. PvLDH and PfLDH were discernible with a detection limit of 1.25 pM and 2.94 pM, respectively. The applicability of the proposed biosensor was also examined in commercially available human serum. PMID:24992632

  13. Isolation and characterization of two cDNA clones of anaerobically induced lactate dehydrogenase from barley roots

    SciTech Connect

    Hondred, D.; Hanson, A.D. )

    1990-05-01

    In barley roots during hypoxia, five lactate dehydrogenase (LDH) isozymes accumulate with a concomitant increase in enzyme activity ({approximately}20-fold). These isozymes are thought to be tetramers resulting from the random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH have been isolated from a {lambda}gt11 library using antiserum raised against barley LDH purified {approximately}3,000-fold and using nucleic acid probes synthesized by the polymerase chain reaction. Two cDNA clones were obtained (1,305 and 1,166 bp). The deduced amino acid sequences of the two barley LDHs are 96% identical to each other, and 50% and 40% identical to vertebrate and bacterial LDHs, respectively. Northern blots identified a single mRNA band ({approximately}1.5 kb) whose level rose 8-fold during hypoxia.

  14. The Conformation of NAD+ Bound to Lactate Dehydrogenase Determined by Nuclear Magnetic Resonance with Suppression of Spin Diffusion

    NASA Astrophysics Data System (ADS)

    Vincent, Sebastien J. F.; Zwahlen, Catherine; Post, Carol Beth; Burgner, John W.; Bodenhausen, Geoffrey

    1997-04-01

    We have reinvestigated the conformation of NAD+ bound to dogfish lactate dehydrogenase (LDH) by using an NMR experiment that allows one to exploit nuclear Overhauser effects to determine internuclear distances between pairs of protons, without perturbation of spin-diffusion effects from other protons belonging either to the cofactor or to the binding pocket of the enzyme. The analysis indicates that the structure of bound NAD+ is in accord with the conformation determined in the solid state by x-ray diffraction for the adenosine moiety, but deviates significantly from that of the nicotinamide. The NMR data indicate conformational averaging about the glycosidic bond of the nicotinamide nucleotide. In view of the strict stereospecificity of catalysis by LDH and the conformational averaging of bound NAD+ that we infer from solution-state NMR, we suggest that LDH binds the cofactor in both syn and anti conformations, but that binding interactions in the syn conformation are not catalytically productive.

  15. Evaluation of determination of lactate dehydrogenase isoenzyme 1 by chemical inhibition with perchlorate or with 1,6-hexanediol.

    PubMed

    Paz, J M; Garcia, A; Gonzales, M; Trevio, M; Tutor, J C; Jaquet, M; Rodriguez-Segade, S

    1990-02-01

    We have evaluated the determination of lactate dehydrogenase (EC 1.1.1.27) isoenzyme 1 activity by chemical inhibition of the other isoenzymes with perchlorate and with 1,6-hexanediol. In the hexanediol method, we studied the effect of the duration of incubation with the inhibitor; a 5-min incubation yielded results closest to those of an immunochemical technique (Isomune-LD). The perchlorate method was the most precise, and the hexanediol method the least, although for none of the techniques did the coefficient of variation exceed the medically acceptable limit prescribed by the College of American Pathologists. Pairwise correlation among the immunoprecipitation, electrophoretic, and chemical inhibition methods was good (r greater than 0.991), although the differences between means were statistically significant (except for the comparison of the two chemical inhibition methods). Because of its ease, low cost, and precision, we recommend the perchlorate method for routine use. PMID:2154344

  16. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    SciTech Connect

    Li, Yongchao; Tschaplinski, Timothy J; Engle, Nancy L; Hamilton, Choo Yieng; Rodriguez, Jr., Miguel; Liao, James C; Schadt, Christopher Warren; Guss, Adam M; Yang, Yunfeng; Graham, David E

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from complex biomass substrates.

  17. Cloning, nucleotide sequence, expression, and chromosomal location of ldh, the gene encoding L-(+)-lactate dehydrogenase, from Lactococcus lactis.

    PubMed Central

    Llanos, R M; Hillier, A J; Davidson, B E

    1992-01-01

    A gene (designated ldh) that encodes fructose-1,6-bisphosphate-activated L-(+)-lactate dehydrogenase was cloned from Lactococcus lactis subsp. lactis. Plasmids containing ldh conferred fructose-1,6-bisphosphate-activated L-(+)-lactate dehydrogenase activity on Escherichia coli cells. This activity was conferred only when a promoter had been introduced into the plasmid to express the cloned ldh. The nucleotide sequence of ldh predicted a chain length of 324 amino acids and a subunit molecular weight of 34,910 for the enzyme, after removal of the N-terminal methionine residue. Northern analyses of L. lactis subsp. lactis RNA showed that a 4.1-kb transcript hybridized strongly with ldh and that 1.2- and 1.1-kb transcripts hybridized to much lesser extents. Promoter- and terminator-cloning studies in which we used the vectors pGKV210 and pGKV259 in L. lactis subsp. lactis revealed that the 5' flanking DNA of ldh is devoid of transcription initiation signals and that transcription entering the 3' flanking DNA from either direction is efficiently terminated. These data and the data from Northern analyses led to the conclusion that ldh is expressed as the 3' gene of the 4.1-kb transcript and suggested that posttranscriptional processing yielded the shorter transcripts. We determined that ldh is located on the L. lactis subsp. lactis chromosome between coordinates 1.619 and 1.669 of the previously reported physical map (D. L. Tulloch, L. R. Finch, A. J. Hillier, and B. E. Davidson, J. Bacteriol. 173:2768-2775, 1991). Images PMID:1400245

  18. Highly stereoselective biosynthesis of (R)-?-hydroxy carboxylic acids through rationally re-designed mutation of d-lactate dehydrogenase

    PubMed Central

    Zheng, Zhaojuan; Sheng, Binbin; Gao, Chao; Zhang, Haiwei; Qin, Tong; Ma, Cuiqing; Xu, Ping

    2013-01-01

    An NAD-dependent d-lactate dehydrogenase (d-nLDH) of Lactobacillus bulgaricus ATCC 11842 was rationally re-designed for asymmetric reduction of a homologous series of ?-keto carboxylic acids such as phenylpyruvic acid (PPA), ?-ketobutyric acid, ?-ketovaleric acid, ?-hydroxypyruvate. Compared with wild-type d-nLDH, the Y52L mutant d-nLDH showed elevated activities toward unnatural substrates especially with large substitutes at C-3. By the biocatalysis combined with a formate dehydrogenase for in situ generation of NADH, the corresponding (R)-?-hydroxy carboxylic acids could be produced at high yields and highly optical purities. Taking the production of chiral (R)-phenyllactic acid (PLA) from PPA for example, 50?mM PPA was completely reduced to (R)-PLA in 90?min with a high yield of 99.0% and a highly optical purity (>99.9% e.e.) by the coupling system. The results presented in this work suggest a promising alternative for the production of chiral ?-hydroxy carboxylic acids. PMID:24292439

  19. Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases

    PubMed Central

    2013-01-01

    Background Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding l-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expressed in a new host organism, the non-conventional yeast Candida sonorensis, with or without the competing ethanol fermentation pathway. Results Each LDH strain produced substantial amounts of lactate, but the properties of the heterologous LDH affected the distribution of carbon between lactate and by-products significantly, which was reflected in extra-and intracellular metabolite concentrations. Under neutralizing conditions C. sonorensis expressing L. helveticus LDH accumulated lactate up to 92 g/l at a yield of 0.94 g/g glucose, free of ethanol, in minimal medium containing 5 g/l dry cell weight. In rich medium with a final pH of 3.8, 49 g/l lactate was produced. The fermentation pathway was modified in some of the strains studied by deleting either one or both of the pyruvate decarboxylase encoding genes, PDC1 and PDC2. The deletion of both PDC genes together abolished ethanol production and did not result in significantly reduced growth characteristic to Saccharomyces cerevisiae deleted of PDC1 and PDC5. Conclusions We developed an organism without previous record of genetic engineering to produce L-lactic acid to a high concentration, introducing a novel host for the production of an industrially important metabolite, and opening the way for exploiting C. sonorensis in additional biotechnological applications. Comparison of metabolite production, growth, and enzyme activities in a representative set of transformed strains expressing different LDH genes in the presence and absence of a functional ethanol pathway, at neutral and low pH, generated a comprehensive picture of lactic acid production in this yeast. The findings are applicable in generation other lactic acid producing yeast, thus providing a significant contribution to the field of biotechnical production of lactic acid. PMID:23706009

  20. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer.

    PubMed

    Wang, Jian; Wang, Hui; Liu, Aifen; Fang, Changge; Hao, Jianguo; Wang, Zhenghui

    2015-08-14

    Reprogramming metabolism of tumor cells is a hallmark of cancer. Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumor cells. Previous studies has shown higher levels of LDHA is related with colorectal cancer (CRC), but its role in tumor maintenance and underlying molecular mechanisms has not been established. Here, we investigated miRNAs-induced changes in LDHA expression. We reported that colorectal cancer express higher levels of LDHA compared with adjacent normal tissue. Knockdown of LDHA resulted in decreased lactate and ATP production, and glucose uptake. Colorectal cancer cells with knockdown of LDHA had much slower growth rate than control cells. Furthermore, we found that miR-34a, miR-34c, miR-369-3p, miR-374a, and miR-4524a/b target LDHA and regulate glycolysis in cancer cells. There is a negative correlation between these miRNAs and LDHA expression in colorectal cancer tissues. More importantly, we identified a genetic loci newly associated with increased colorectal cancer progression, rs18407893 at 11p15.4 (in 3'-UTR of LDHA), which maps to the seed sequence recognized by miR-374a. Cancer cells overexpressed miR-374a has decreased levels of LDHA compared with miR-374a-MUT (rs18407893 at 11p15.4). Taken together, these novel findings provide more therapeutic approaches to the Warburg effect and therapeutic targets of cancer energy metabolism. PMID:26062441

  1. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer

    PubMed Central

    Liu, Aifen; Fang, Changge; Hao, Jianguo; Wang, Zhenghui

    2015-01-01

    Reprogramming metabolism of tumor cells is a hallmark of cancer. Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumor cells. Previous studies has shown higher levels of LDHA is related with colorectal cancer (CRC), but its role in tumor maintenance and underlying molecular mechanisms has not been established. Here, we investigated miRNAs-induced changes in LDHA expression. We reported that colorectal cancer express higher levels of LDHA compared with adjacent normal tissue. Knockdown of LDHA resulted in decreased lactate and ATP production, and glucose uptake. Colorectal cancer cells with knockdown of LDHA had much slower growth rate than control cells. Furthermore, we found that miR-34a, miR-34c, miR-369-3p, miR-374a, and miR-4524a/b target LDHA and regulate glycolysis in cancer cells. There is a negative correlation between these miRNAs and LDHA expression in colorectal cancer tissues. More importantly, we identified a genetic loci newly associated with increased colorectal cancer progression, rs18407893 at 11p15.4 (in 3?-UTR of LDHA), which maps to the seed sequence recognized by miR-374a. Cancer cells overexpressed miR-374a has decreased levels of LDHA compared with miR-374a-MUT (rs18407893 at 11p15.4). Taken together, these novel findings provide more therapeutic approaches to the Warburg effect and therapeutic targets of cancer energy metabolism. PMID:26062441

  2. Protein Conformational Landscapes and Catalysis. Influence of Active Site Conformations in the Reaction Catalyzed by L-Lactate Dehydrogenase

    PubMed Central

    Świderek, Katarzyna; Tuñón, Iñaki; Martí, Sergio; Moliner, Vicent

    2015-01-01

    In the last decade L-Lactate Dehydrogenase (LDH) has become an extremely useful marker in both clinical diagnosis and in monitoring the course of many human diseases. It has been assumed from the 80s that the full catalytic process of LDH starts with the binding of the cofactor and the substrate followed by the enclosure of the active site by a mobile loop of the protein before the reaction to take place. In this paper we show that the chemical step of the LDH catalyzed reaction can proceed within the open loop conformation, and the different reactivity of the different protein conformations would be in agreement with the broad range of rate constants measured in single molecule spectrometry studies. Starting from a recently solved X-ray diffraction structure that presented an open loop conformation in two of the four chains of the tetramer, QM/MM free energy surfaces have been obtained at different levels of theory. Depending on the level of theory used to describe the electronic structure, the free energy barrier for the transformation of pyruvate into lactate with the open conformation of the protein varies between 12.9 and 16.3 kcal/mol, after quantizing the vibrations and adding the contributions of recrossing and tunneling effects. These values are very close to the experimentally deduced one (14.2 kcal·mol−1) and ~2 kcal·mol−1 smaller than the ones obtained with the closed loop conformer. Calculation of primary KIEs and IR spectra in both protein conformations are also consistent with our hypothesis and in agreement with experimental data. Our calculations suggest that the closure of the active site is mainly required for the inverse process; the oxidation of lactate to pyruvate. According to this hypothesis H4 type LDH enzyme molecules, where it has been propose that lactate is transformed into pyruvate, should have a better ability to close the mobile loop than the M4 type LDH molecules. PMID:25705562

  3. Lactation

    PubMed Central

    1989-01-01

    Lactation is the most energy-efficient way to provide for the dietary needs of young mammals, their mother's milk being actively protective, immunomodulatory, and ideal for their needs. Intrauterine mammary gland development in the human female is already apparent by the end of the sixth week of gestation. During puberty and adolescence secretions of the anterior pituitary stimulate the maturation of the graafian follicles in the ovaries and stimulate the secretion of follicular estrogens, which stimulate development of the mammary ducts. Pregnancy has the most dramatic effect on the breast, but development of the glandular breast tissue and deposition of fat and connective tissue continue under the influence of cyclic sex-hormone stimulation. Many changes occur in the nipple and breast during pregnancy and at delivery as a prelude to lactation. Preparation of the breasts is so effective that lactation could commence even if pregnancy were discontinued at 16 weeks. Following birth, placental inhibition of milk synthesis is removed, and a woman's progesterone blood levels decline rapidly. The breasts fill with milk, which is a high-density, low-volume feed called colostrum until about 30 hours after birth. Because it is not the level of maternal hormones, but the efficiency of infant suckling and/or milk removal that governs the volume of milk produced in each breast, mothers who permit their infants to feed ad libitum commonly observe that they have large volumes of milk 24-48 hours after birth. The two maternal reflexes involved in lactation are the milk-production and milk-ejection reflex. A number of complementary reflexes are involved when the infant feeds: the rooting reflex (which programmes the infant to search for the nipple), the sucking reflex (rhythmic jaw action creating negative pressure and a peristaltic action of the tongue), and the swallowing reflex. The infant's instinctive actions need to be consolidated into learned behaviour in the postpartum period when the use of artificial teats and dummies (pacifiers) may condition the infant to different oral actions that are inappropriate for breast-feeding. Comparisons of breast milk and cow's milk fail to describe the many important differences between them, e.g., the structural and qualitative differences in proteins and fats, and the bioavailability of minerals. The protection against infection and allergies conferred on the infant, which is impossible to attain through any other feeding regimen, is one of breast milk's most outstanding qualities. The maximum birth-spacing effect of lactation is achieved when an infant is fully, or nearly fully, breast-fed and the mother consequently remains amenorrhoeic. PMID:20604468

  4. Creatine supplementation.

    PubMed

    Hall, Matthew; Trojian, Thomas H

    2013-01-01

    Creatine monohydrate is a dietary supplement that increases muscle performance in short-duration, high-intensity resistance exercises, which rely on the phosphocreatine shuttle for adenosine triphosphate. The effective dosing for creatine supplementation includes loading with 0.3 gkgd for 5 to 7 days, followed by maintenance dosing at 0.03 gkgd most commonly for 4 to 6 wk. However loading doses are not necessary to increase the intramuscular stores of creatine. Creatine monohydrate is the most studied; other forms such as creatine ethyl ester have not shown added benefits. Creatine is a relatively safe supplement with few adverse effects reported. The most common adverse effect is transient water retention in the early stages of supplementation. When combined with other supplements or taken at higher than recommended doses for several months, there have been cases of liver and renal complications with creatine. Further studies are needed to evaluate the remote and potential future adverse effects from prolonged creatine supplementation. PMID:23851411

  5. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    PubMed Central

    2012-01-01

    Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from cellobiose, cellulose and switchgrass. PMID:22214220

  6. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.

    PubMed Central

    Gupta, S; Clark, D P

    1989-01-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed in terms of redox balance. PMID:2661531

  7. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation

    SciTech Connect

    Gupta, S.; Clark, D.P. )

    1989-07-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed terms of redox balance.

  8. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of D-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-08-01

    The thermostable D-lactate dehydrogenase from Lactobacillus jensenii (LjD-LDH) is a key enzyme for the production of the D-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of lactic acid are used as biodegradable bioplastics. The LjD-LDH protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 28%(w/v) polyethylene glycol 400, 100 mM Tris-HCl pH 9, 200 mM magnesium sulfate at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.1 Å. The crystal belonged to space group P3121, with unit-cell parameters a = b = 90.5, c = 157.8 Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.58 Å(3) Da(-1), which corresponds to a solvent content of approximately 52.3%. The structure was solved by single-wavelength anomalous dispersion using a selenomethionine derivative. PMID:25084378

  9. Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus.

    PubMed Central

    Crawford, D L; Powers, D A

    1989-01-01

    At the extremes of its natural distribution, populations of the common killifish Fundulus heteroclitus experience a difference of more than 15 degrees C in mean annual temperature. These populations are virtually fixed for two different codominant alleles at the heart-type lactate dehydrogenase locus (Ldh-B) which code for allozymes with different and adaptive kinetic responses to temperature. Two populations near the extremes of the species range (i.e., Maine and Georgia) were further studied for thermal adaptation at this locus. In the absence of any kinetic differences one would predict that to maintain a constant reaction velocity, 2 to 3 times as much enzyme would be required for each 10 degrees C decrease in environmental temperature. Consistent with this adaptive strategy and in addition to the adaptive kinetic characteristics, the LDH-B4 enzyme (EC 1.1.1.27) concentration and its mRNA concentration were approximately twice as great in the northern population as in the southern population. Acclimation experiments allow us to conclude that these differences are due to a combination of fixed genetic traits (evolutionary adaptation) and plastic responses to temperature (physiological acclimation). Furthermore, our calculations show that the LDH-B4 reaction velocities are essentially equivalent for these two populations, even though they live in significantly different thermal environments. PMID:2594773

  10. Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics

    PubMed Central

    Zhu, Guan

    2015-01-01

    Abstract The apicomplexan, Cryptosporidium parvum, possesses a bacterial-type lactate dehydrogenase (CpLDH). This is considered to be an essential enzyme, as this parasite lacks the Krebs cycle and cytochrome-based respiration, and mainly–if not solely, relies on glycolysis to produce ATP. Here, we provide evidence that in extracellular parasites (e.g., sporozoites and merozoites), CpLDH is localized in the cytosol. However, it becomes associated with the parasitophorous vacuole membrane (PVM) during the intracellular developmental stages, suggesting involvement of the PVM in parasite energy metabolism. We characterized the biochemical features of CpLDH and observed that, at lower micromolar levels, the LDH inhibitors gossypol and FX11 could inhibit both CpLDH activity (Ki = 14.8 μM and 55.6 μM, respectively), as well as parasite growth in vitro (IC50 = 11.8 μM and 39.5 μM, respectively). These observations not only reveal a new function for the poorly understood PVM structure in hosting the intracellular development of C. parvum, but also suggest LDH as a potential target for developing therapeutics against this opportunistic pathogen, for which fully effective treatments are not yet available. PMID:26562790

  11. Prognostic implications of dynamic serum lactate dehydrogenase assessments in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy

    PubMed Central

    Zhou, Guan-Qun; Ren, Xian-Yue; Mao, Yan-Ping; Chen, Lei; Sun, Ying; Liu, Li-Zhi; Li, Li; Lin, Ai-Hua; Mai, Hai-Qiang; Ma, Jun

    2016-01-01

    The prognostic value of dynamic serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT) hasn’t been explored. We retrospectively analyzed 1,428 cases of NPC treated with IMRT with or without chemotherapy. Elevated pre- and/or post-treatment LDH levels were found to be associated with unfavorable overall survival (OS), disease-free survival (DFS) and distant metastasis-free survival (DMFS), but not with local relapse-free survival (LRFS). The dynamic variations in LDH levels were prognostic factors for OS, DFS and DMFS, but not for LRFS. Multivariate analysis revealed that the N category, T category, post-treatment serum LDH level and age were independent prognostic factors for OS. Our results demonstrated that dynamic variations in LDH levels were associated with risk of distant failure and death, which may shed light on the dynamics of the disease and the response to therapy. We consider that LDH measurements will be of great clinical importance in the management of NPC, especially, when considering “decision points” in treatment algorithms. Therefore, we strongly recommend that LDH levels should be determined before and after treatment in NPC patients and the results integrated into decisions regarding treatment strategies. PMID:26928265

  12. The value of lactate dehydrogenase serum levels as a prognostic and predictive factor for advanced pancreatic cancer patients receiving sorafenib

    PubMed Central

    Faloppi, Luca; Bianconi, Maristella; Giampieri, Riccardo; Sobrero, Alberto; Labianca, Roberto; Ferrari, Daris; Barni, Sandro; Aitini, Enrico; Zaniboni, Alberto; Boni, Corrado; Caprioni, Francesco; Mosconi, Stefania; Fanello, Silvia; Berardi, Rossana; Bittoni, Alessandro; Andrikou, Kalliopi; Cinquini, Michela; Torri, Valter; Scartozzi, Mario; Cascinu, Stefano

    2015-01-01

    Although lactate dehydrogenase (LDH) serum levels, indirect markers of angiogenesis, are associated with a worse outcome in several tumours, their prognostic value is not defined in pancreatic cancer. Moreover, high levels are associated even with a lack of efficacy of tyrosine kinase inhibitors, contributing to explain negative results in clinical trials. We assessed the role of LDH in advanced pancreatic cancer receiving sorafenib. Seventy-one of 114 patients included in the randomised phase II trial MAPS (chemotherapy plus or not sorafenib) and with available serum LDH levels, were included in this analysis. Patients were categorized according to serum LDH levels (LDH ≤vs.> upper normal rate). A significant difference was found in progression free survival (PFS) and in overall survival (OS) between patients with LDH values under or above the cut-off (PFS: 5.2 vs. 2.7 months, p = 0.0287; OS: 10.7 vs. 5.9 months, p = 0.0021). After stratification according to LDH serum levels and sorafenib treatment, patients with low LDH serum levels treated with sorafenib showed an advantage in PFS (p = 0.05) and OS (p = 0.0012). LDH appears to be a reliable parameter to assess the prognosis of advanced pancreatic cancer patients, and it may be a predictive parameter to select patients candidate to receive sorafenib. PMID:26397228

  13. Purification of a recombinant histidine-tagged lactate dehydrogenase from the malaria parasite, Plasmodium vivax, and characterization of its properties.

    PubMed

    Sundaram, Balamurugan; Varadarajan, Nandan Mysore; Subramani, Pradeep Annamalai; Ghosh, Susanta Kumar; Nagaraj, Viswanathan Arun

    2014-12-01

    Lactate dehydrogenase (LDH) of the malaria parasite, Plasmodium vivax (Pv), serves as a drug target and immunodiagnostic marker. The LDH cDNA generated from total RNA of a clinical isolate of the parasite was cloned into pRSETA plasmid. Recombinant his-tagged PvLDH was over-expressed in E. coli Rosetta2DE3pLysS and purified using Ni(2+)-NTA resin giving a yield of 25-30mg/litre bacterial culture. The recombinant protein was enzymatically active and its catalytic efficiency for pyruvate was 5.4נ10(8)min(-1)M(-1), 14.5 fold higher than a low yield preparation reported earlier to obtain PvLDH crystal structure. The enzyme activity was inhibited by gossypol and sodium oxamate. The recombinant PvLDH was reactive in lateral flow immunochromatographic assays detecting pan- and vivax-specific LDH. The soluble recombinant PvLDH purified using heterologous expression system can facilitate the generation of vivax LDH-specific monoclonals and the screening of chemical compound libraries for PvLDH inhibitors. PMID:25048245

  14. Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics.

    PubMed

    Zhang, Haili; Guo, Fengguang; Zhu, Guan

    2015-11-01

    The apicomplexan, Cryptosporidium parvum, possesses a bacterial-type lactate dehydrogenase (CpLDH). This is considered to be an essential enzyme, as this parasite lacks the Krebs cycle and cytochrome-based respiration, and mainly-if not solely, relies on glycolysis to produce ATP. Here, we provide evidence that in extracellular parasites (e.g., sporozoites and merozoites), CpLDH is localized in the cytosol. However, it becomes associated with the parasitophorous vacuole membrane (PVM) during the intracellular developmental stages, suggesting involvement of the PVM in parasite energy metabolism. We characterized the biochemical features of CpLDH and observed that, at lower micromolar levels, the LDH inhibitors gossypol and FX11 could inhibit both CpLDH activity (Ki = 14.8 μM and 55.6 μM, respectively), as well as parasite growth in vitro (IC50 = 11.8 μM and 39.5 μM, respectively). These observations not only reveal a new function for the poorly understood PVM structure in hosting the intracellular development of C. parvum, but also suggest LDH as a potential target for developing therapeutics against this opportunistic pathogen, for which fully effective treatments are not yet available. PMID:26562790

  15. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    PubMed Central

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  16. Prognostic implications of dynamic serum lactate dehydrogenase assessments in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy.

    PubMed

    Zhou, Guan-Qun; Ren, Xian-Yue; Mao, Yan-Ping; Chen, Lei; Sun, Ying; Liu, Li-Zhi; Li, Li; Lin, Ai-Hua; Mai, Hai-Qiang; Ma, Jun

    2016-01-01

    The prognostic value of dynamic serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT) hasn't been explored. We retrospectively analyzed 1,428 cases of NPC treated with IMRT with or without chemotherapy. Elevated pre- and/or post-treatment LDH levels were found to be associated with unfavorable overall survival (OS), disease-free survival (DFS) and distant metastasis-free survival (DMFS), but not with local relapse-free survival (LRFS). The dynamic variations in LDH levels were prognostic factors for OS, DFS and DMFS, but not for LRFS. Multivariate analysis revealed that the N category, T category, post-treatment serum LDH level and age were independent prognostic factors for OS. Our results demonstrated that dynamic variations in LDH levels were associated with risk of distant failure and death, which may shed light on the dynamics of the disease and the response to therapy. We consider that LDH measurements will be of great clinical importance in the management of NPC, especially, when considering "decision points" in treatment algorithms. Therefore, we strongly recommend that LDH levels should be determined before and after treatment in NPC patients and the results integrated into decisions regarding treatment strategies. PMID:26928265

  17. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  18. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues.

    PubMed

    Hara, Masakazu; Monna, Shuhei; Murata, Takae; Nakano, Taiyo; Amano, Shono; Nachbar, Markus; Wätzig, Hermann

    2016-04-01

    Dehydrin, which is one of the late embryogenesis abundant (LEA) proteins, is involved in the ability of plants to tolerate the lack of water. Although many reports have indicated that dehydrins bind heavy metals, the physiological role of this metal binding has not been well understood. Here, we report that the Arabidopsis KS-type dehydrin (AtHIRD11) recovered the lactate dehydrogenase (LDH) activity denatured by Cu(2+). The LDH activity was partially inhibited by 0.93μM Cu(2+) but totally inactivated by 9.3μM Cu(2+). AtHIRD11 recovered the activity of LDH treated with 9.3μM Cu(2+) in a dose-dependent manner. The recovery activity of AtHIRD11 was significantly higher than those of serum albumin and lysozyme. The conversion of His residues to Ala in AtHIRD11 resulted in the loss of the Cu(2+) binding of the protein as well as the disappearance of the conformational change induced by Cu(2+) that is observed by circular dichroism spectroscopy. The mutant protein showed lower recovery activity than the original AtHIRD11. These results indicate that AtHIRD11 can reactivate LDH inhibited by Cu(2+) via the His residues. This function may prevent physiological damage to plants due to heavy-metal stress. PMID:26940498

  19. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme.

    PubMed

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24?h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  20. Measurements of C-reactive protein in serum and lactate dehydrogenase in serum and synovial fluid of patients with osteoarthritis.

    PubMed

    Hurter, K; Spreng, D; Rytz, U; Schawalder, P; Ott-Knüsel, F; Schmökel, H

    2005-03-01

    Diagnosis of osteoarthritis (OA) is based upon the clinical orthopaedic examination and the radiographic assessment, both of which can be non-specific and insensitive in early joint disease. The aim of our study was to investigate if there is an increase in serum levels of C-reactive protein (CRP) in degenerative joint disease (DJD) and if CRP could be used to help diagnose OA. We also wished to investigate whether it was possible to distinguish a joint with clinically and radiographically confirmed OA from a healthy joint by comparing lactate dehydrogenase (LDH) levels within the synovial fluid and the serum. We have shown a difference in synovial LDH levels between diseased and healthy joints (P<0.0001). There was also a significant difference between LDH in arthritic synovial fluid and serum, with no correlation between the values. Despite the fact that the values of our clinical patients tended to be higher than the values of our control group (P=0.05) all measured values were within the normal limits of previous publications. From these data, we conclude that single measurements of serum CRP do not permit detection of OA in clinical patients and that serum LDH is not a reliable marker for osteoarthritis. LDH levels in the synovial fluid could be of diagnostic value for identifying osteoarthritis. PMID:15727922

  1. The effect of foetal bovine serum supplementation upon the lactate dehydrogenase cytotoxicity assay: Important considerations for in vitro toxicity analysis.

    PubMed

    Thomas, Martin G; Marwood, Roxanne M; Parsons, Anna E; Parsons, Richard B

    2015-12-25

    The lactate dehydrogenase (LDH) assay is a commonly-used tool for assessing toxicity in vitro. However, anecdotal reports suggest that foetal bovine serum (FBS) may contain LDH at concentrations significant enough to interfere with the assay and thus reduce its sensitivity. A series of experiments were performed to determine whether addition of FBS to culture medium significantly elevated culture media LDH content, and whether replacement of FBS with heat inactivated foetal bovine serum (HI-FBS) reduced LDH content and interfered with cell response to cytotoxic challenge. The addition of FBS at 5, 10 and 15% final concentrations increased culture medium LDH content in a dose-dependent manner. The substitution of HI-FBS for FBS reduced culture medium LDH content and increased the dynamic range of the assay. Cell viability of the SH-SY5Y human neuroblastoma and N27 rat mesencephalic neurone cell lines were significantly reduced as measured using the MTT reduction assay, whilst HI-FBS only affected toxicity response in a cell- and toxin-specific manner, although these effects were small. Hence, for cell lines with a high FBS requirement, the use of HI-FBS or alternative toxicity assays can be considered, or the use of alternative formulations, such as chemically-defined serum-free media, be adopted. PMID:26498060

  2. Lactate dehydrogenase as a marker of nasopharyngeal inflammatory injury during viral upper respiratory infection: implications for acute otitis media

    PubMed Central

    Ede, Linda C.; OBrien, James; Chonmaitree, Tasnee; Han, Yimei; Patel, Janak A.

    2013-01-01

    Background Acute otitis media (AOM) is a frequent complication of viral upper respiratory tract infection (URI). We hypothesized that severity of nasopharyngeal cellular injury during URI, as measured by lactate dehydrogenase (LDH) concentrations in nasopharyngeal secretions (NPS), is related to AOM complication. Methods LDH concentrations were determined in NPS samples (n=594) which were collected at the initial visit for URI from 183 children who were followed for development of AOM. A subset of NPS samples (n= 134) were analyzed for interleukin (IL)-1?, IL-6, and tumor necrosis factor (TNF) ? concentrations. Results AOM complication was independently predicted by LDH concentrations (median mU/ml with AOM = 2438 vs. without AOM = 1573, estimate=0.276; P=0.02). LDH effect on AOM development was highest during the first 4 days of URI. LDH concentrations were higher in URIs due to adenoviruses, bocaviruses, and rhinoviruses when compared to virus-negative samples (P <0.05). There was a positive correlation between concentrations of LDH and all cytokines (P< 0.001). Conclusion LDH concentrations in NPS are positively associated with AOM risk, suggesting that the severity of nasopharyngeal inflammatory injury during URI contributes to the development of AOM, and that reduction of inflammatory injury may reduce the risk for AOM. PMID:23202721

  3. Biochemical and in silico Characterization of Recombinant L-Lactate Dehydrogenase of Theileria annulata.

    PubMed

    Nural, Belma; Erdemir, Aysegul; Mutlu, Ozal; Yakarsonmez, Sinem; Danis, Ozkan; Topuzogullari, Murat; Turgut-Balik, Dilek

    2016-04-01

    Theileria annulata is a parasite that causes theileriosis in cattle. Reports about drug resistance made essential to develop new drug. LDH of Theileria schizonts is the vital enzyme for its anaerobic metabolism. TaLDH gene was first cloned into pGEM-T cloning vector with two introns in our previous study. Here we report cloning of TaLDH without introns into pLATE 31 vector in E. coli BL21(DE3). Protein was in an inactive form. Two mutations were fixed to express the active protein. Protein was purified by affinity chromatography and evaluated by SDS-PAGE and size exclusion chromatography. Optimum pH of enzyme was performed in pH 7.5, and enzyme was stabilized at 20-40 °C. Enzyme kinetics of recombinant TaLDH were found to be in the direction of pyruvate to lactate K m 0.1324 and K i 4.295 mM, k cat , 44.55/s and k cat /K m , 3.3693 × 10(5)/M/s. 3D structure of TaLDH was predicted, and possible drug binding sites were determined by homology modelling. PMID:26921192

  4. Identification of N-acylhydrazone derivatives as novel lactate dehydrogenase A inhibitors.

    PubMed

    Rupiani, Sebastiano; Buonfiglio, Rosa; Manerba, Marcella; Di Ianni, Lorenza; Vettraino, Marina; Giacomini, Elisa; Masetti, Matteo; Falchi, Federico; Di Stefano, Giuseppina; Roberti, Marinella; Recanatini, Maurizio

    2015-08-28

    Glycolysis is drastically increased in tumors and it is the main route to energy production with a minor use of oxidative phosphorylation. Among the key enzymes in the glycolytic process, LDH is emerging as one of the most interesting targets for the development of new inhibitors. In this context, in the present work, we carried out a virtual screening procedure followed by chemical modifications of the identified structures according to a "hit-to-lead" process. The effects of the new molecules were preliminary probed against purified human LDH-A. The compounds active at low micromolar level were additionally characterized for their activity on some cellular metabolic processes by using Raji human cell line. Within the series, 1 was considered the best candidate, and a more detailed characterization of its biological properties was performed. In Raji cells exposed to compound 1 we evidenced the occurrence of effects usually observed in cancer cells after LDH-A inhibition: reduced lactate production and NAD/NADH ratio, apoptosis. The flow cytometry analysis of treated cells also showed cell cycle changes compatible with effects exerted at the glycolytic level. Finally, in agreement with the data obtained with other inhibitors or by silencing LDH-A expression, compound 1 was found to increase Raji cells response to some commonly used chemotherapeutic agents. Taken together, all these finding are in support of the LDH-A inhibiting activity of compound 1. PMID:26114812

  5. Contact lens-induced edema in vitro--amelioration by lactate dehydrogenase inhibitors.

    PubMed

    Rohde, M D; Huff, J W

    1986-10-01

    Isolated rabbit corneas bathed in Krebs-bicarbonate Ringer solution were observed for thickness changes after a 90 minute equilibration period. Control corneas swelled an average of 0.5 micron/hr, and placement of a polymethylmechacrylate (PMMA) contact lens on the epithelial surface caused the corneas to swell 24.5 microns/hr, an effect similar to 0.5 mM epithelial cyanide exposure. The pronounced swelling induced by PMMA lens placement was much less however, in the epithelial presence of 3.2 mM sodium oxalate (3.22 microns/hr) or 3.2 mM sodium oxamate (5.38 microns/hr). An equiosmotic excess of 4.8 mM NaCl was least active (15.89 microns/hr). On normal isolated corneas (without contact lenses), the Ringer containing an excess of 4.8 mM NaCl significantly deswelled the corneas (-13.44 microns/hr), which contrasted with oxalate and oxamate containing Ringer solutions (1.17 and 1.33 micron/hr respectively). The present study supports the notion that contact lens-induced edema results from stromal lactate accumulation, and suggests a potential alternative to osmotic therapy for its amelioration. These LDH inhibitors, in the concentrations used, have no acute osmotic or toxic effect on normal corneas in vitro. PMID:3769523

  6. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work

    PubMed Central

    Kane, Daniel A.

    2014-01-01

    Lactate, the conjugate base of lactic acid occurring in aqueous biological fluids, has been derided as a dead-end waste product of anaerobic metabolism. Catalyzed by the near-equilibrium enzyme lactate dehydrogenase (LDH), the reduction of pyruvate to lactate is thought to serve to regenerate the NAD+ necessary for continued glycolytic flux. Reaction kinetics for LDH imply that lactate oxidation is rarely favored in the tissues of its own production. However, a substantial body of research directly contradicts any notion that LDH invariably operates unidirectionally in vivo. In the current Perspective, a model is forwarded in which the continuous formation and oxidation of lactate serves as a mitochondrial electron shuttle, whereby lactate generated in the cytosol of the cell is oxidized at the mitochondria of the same cell. From this perspective, an intracellular lactate shuttle operates much like the malate-aspartate shuttle (MAS); it is also proposed that the two shuttles are necessarily interconnected in a lactate-MAS. Among the requisite features of such a model, significant compartmentalization of LDH, much like the creatine kinase of the phosphocreatine shuttle, would facilitate net cellular lactate oxidation in a variety of cell types. PMID:25505376

  7. An atypical distribution of lactate dehydrogenase isoenzymes in the hooded seal (Cystophora cristata) brain may reflect a biochemical adaptation to diving.

    PubMed

    Hoff, Mariana Leivas Müller; Fabrizius, Andrej; Folkow, Lars P; Burmester, Thorsten

    2016-04-01

    The brains of some diving mammals can withstand periods of severe hypoxia without signs of deleterious effects. This may in part be due to an enhanced cerebral capacity for anaerobic energy production. Here, we have tested this hypothesis by comparing various parameters of the lactate dehydrogenase (LDH) in the brain of the hooded seal (Cystophora cristata) with those in the brains of the ferret (Mustela putorius furo) and mouse (Mus musculus). We found that mRNA and protein expression of lactate dehydrogenase a (LDHA) and lactate dehydrogenase b (LDHB), and also the LDH activity were significantly higher in the ferret brain than in brains of the hooded seal and the mouse (p < 0.0001). No conspicuous differences in the LDHA and LDHB sequences were observed. There was also no difference in the buffering capacities of the brains. Thus, an enhanced capacity for anaerobic energy production likely does not explain the higher hypoxia tolerance of the seal brain. However, the brain of the hooded seal had higher relative levels of LDHB isoenzymes (LDH1 and LDH2) compared to the non-diving mammals. Moreover, immunofluorescence studies showed more pronounced co-localization of LDHB and glial fibrillary acidic protein in the cortex of the hooded seal. Since LDHB isoenzymes primarily catalyze the conversion of lactate to pyruvate, this finding suggests that the contribution of astrocytes to the brain aerobic metabolism is higher in the hooded seal than in non-diving species. The cerebral tolerance of the hooded seal to hypoxia may therefore partly rely on different LDH isoenzymes distribution. PMID:26820264

  8. Hot spots in cold adaptation: Localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes

    PubMed Central

    Fields, Peter A.; Somero, George N.

    1998-01-01

    To elucidate mechanisms of enzymatic adaptation to extreme cold, we determined kinetic properties, thermal stabilities, and deduced amino acid sequences of lactate dehydrogenase A4 (A4-LDH) from nine Antarctic (?1.86 to 1C) and three South American (4 to 10C) notothenioid teleosts. Higher MichaelisMenten constants (Km) and catalytic rate constants (kcat) distinguish orthologs of Antarctic from those of South American species, but no relationship exists between adaptation temperature and the rate at which activity is lost because of heat denaturation. In all species, active site residues are conserved fully, and differences in kcat and Km are caused by substitutions elsewhere in the molecule. Within geographic groups, identical kinetic properties are generated by different substitutions. By combining our data with A4-LDH sequences for other vertebrates and information on roles played by localized conformational changes in setting kcat, we conclude that notothenioid A4-LDHs have adapted to cold temperatures by increases in flexibility in small areas of the molecule that affect the mobility of adjacent active-site structures. Using these findings, we propose a model that explains linked temperature-adaptive variation in Km and kcat. Changes in sequence that increase flexibility of regions of the enzyme involved in catalytic conformational changes may reduce energy (enthalpy) barriers to these rate-governing shifts in conformation and, thereby, increase kcat. However, at a common temperature of measurement, the higher configurational entropy of a cold-adapted enzyme may foster conformations that bind ligands poorly, leading to high Km values relative to warm-adapted orthologs. PMID:9736762

  9. Direct electrochemistry of lactate dehydrogenase immobilized on silica sol-gel modified gold electrode and its application.

    PubMed

    Di, Junwei; Cheng, Jiongjia; Xu, Quan; Zheng, Huie; Zhuang, Jingyue; Sun, Yongbo; Wang, Keyu; Mo, Xiangyin; Bi, Shuping

    2007-12-15

    The direct electrochemistry of lactate dehydrogenase (LDH) immobilized in silica sol-gel film on gold electrode was investigated, and an obvious cathodic peak at about -200 mV (versus SCE) was found for the first time. The LDH-modified electrode showed a surface controlled irreversible electrode process involving a one electron transfer reaction with the charge-transfer coefficient (alpha) of 0.79 and the apparent heterogeneous electron transfer rate constant (K(s)) of 3.2 s(-1). The activated voltammetric response and decreased charge-transfer resistance of Ru(NH(3))(6)(2+/3+) on the LDH-modified electrode provided further evidence. The surface morphologies of silica sol-gel and the LDH embedded in silica sol-gel film were characterized by SEM. A potential application of the LDH-modified electrode as a biosensor for determination of lactic acid was also investigated. The calibration range of lactic acid was from 2.0 x 10(-6) to 3.0 x 10(-5) mol L(-1) and the detection limit was 8.0 x 10(-7) mol L(-1) at a signal-to-noise ratio of 3. Finally, the effect of environmental pollutant resorcinol on the direct electrochemical behavior of LDH was studied. The experimental results of voltammetry indicated that the conformation of LDH molecule was altered by the interaction between LDH and resorcinol. The modified electrode can be applied as a biomarker to study the pollution effect in the environment. PMID:17869089

  10. Impact of Pre-Treatment Lactate Dehydrogenase Levels on Prognosis and Bevacizumab Efficacy in Patients with Metastatic Colorectal Cancer

    PubMed Central

    Passardi, Alessandro; Scarpi, Emanuela; Tamberi, Stefano; Cavanna, Luigi; Tassinari, Davide; Fontana, Annalisa; Pini, Sara; Bernardini, Ilaria; Accettura, Caterina; Ulivi, Paola; Frassineti, Giovanni Luca; Amadori, Dino

    2015-01-01

    Background To investigate the impact of pre-treatment lactate dehydrogenase (LDH) levels on the outcome of patients with metastatic colorectal cancer treated with first-line chemotherapy with or without the anti-VEGF monoclonal antibody, bevacizumab, in a phase III prospective multicentre randomized ITACa (Italian Trial in Advanced Colorectal Cancer) trial. Methods Three hundred and seventy patients enrolled onto the ITACa first-line trial were considered for this study, 176 receiving chemotherapy (either FOLFIRI or FOLFOX) plus bevacizumab and 194 receiving chemotherapy only. Pre-treatment LDH levels were evaluated to identify a potential correlation with progression-free survival (PFS), overall survival (OS) and objective response rate. Results Information on pre-treatment LDH levels was available for 344 patients. High LDH levels were predictive of a lower median PFS (8.1 months vs. 9.2 months, p< 0.0001) and median OS (16.1 months vs. 25.2 months, p< 0.0001) in the overall population. In the chemotherapy plus bevacizumab group, median PFS was 9.1 and 9.8 months in patients with high LDH and low LDH, respectively (p= 0.073), whereas in the chemotherapy-only arm it was 6.9 and 9.1 months, respectively (p < 0.0001). In patients with high LDH, the addition of bevacizumab to chemotherapy led to a reduction in the rate of progressive disease (16.4 vs. 30.5%, p= 0.081) and to a prolonged PFS (p= 0.028). Conclusion A high LDH value was confirmed as a marker of poor prognosis. Bevacizumab reduced the progressive disease rate and improved PFS in the high-LDH subgroup, making serum LDH a potentially effective an easily available and marker to select patients who benefit from bevacizumab. Trial Registration NCT01878422 ClinicalTrials.gov PMID:26244985

  11. Correlation between the Lactate Dehydrogenase Levels with Laboratory Variables in the Clinical Severity of Sickle Cell Anemia in Congolese Patients

    PubMed Central

    Mikobi, Tite Minga; Lukusa Tshilobo, Prosper; Aloni, Michel Ntetani; Mvumbi Lelo, Georges; Akilimali, Pierre Zalagile; Muyembe-Tamfum, Jean Jacques; Race, Valrie; Matthijs, Gert; Mbuyi Mwamba, Jean Marie

    2015-01-01

    Background Sickle cell anemia is an inflammatory disease and is characterized by chronic hemolysis. We sought to evaluate the association of lactate dehydrogenase levels with specific clinical phenotypes and laboratory variables in patients with sickle cell anemia. Methods The present cross-sectional study was conducted in Sickle Cell Centre of Yolo in Kinshasa, the Democratic Republic of Congo. Two hundred and eleven patients with Sickle Cell Anemia in steady state were recruited. Seventy-four participants with normal Hb (Hb-AA) were selected as a control group. Results The average rates of hemoglobin, hematocrit, and red blood cells tended to be significantly lower in subjects with Hb-SS (p<0.001). The average rates of white blood cells, platelets, reticulocytes and serum LDH were significantly higher in subjects with Hb-SS (p<0.001). The average rates of Hb, HbF, hematocrit and red blood cells of Hb-SS patients with asymptomatic clinical phenotype were significantly higher than those of the two other phenotypes. However, the average rates of white blood cells, platelets, reticulocytes, and LDH of Hb-SS patients with the severe clinical phenotype are higher than those of two other clinical phenotypes. Significant correlations were observed between Hb and white blood cell in severe clinical phenotype (r3 = -0.37 *) between Hb and red blood cells in the three phenotypes (r1 = 0.69 * r2 * = 0.69, r3 = 0.83 *), and finally between Hb and reticulocytes in the asymptomatic clinical phenotype and severe clinical phenotype (r1 = -0.50 * r3 = 0.45 *). A significant increase in LDH was observed in patients with leg ulcer, cholelithiasis and aseptic necrosis of the femoral head. Conclusion The increase in serum LDH is accompanied by changes in hematological parameters. In our midst, serum LDH may be considered as an indicator of the severity of the disease. PMID:25946088

  12. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome

    PubMed Central

    Mohammad, Goran Hamid; Olde Damink, S. W. M.; Malago, Massimo; Dhar, Dipok Kumar; Pereira, Stephen P.

    2016-01-01

    Pancreatic cancer has a 5-year survival rate of less than 4%. Despite advances in diagnostic technology, pancreatic cancer continues to be diagnosed at a late and incurable stage. Accurate biomarkers for early diagnosis and to predict treatment response are urgently needed. Since alteration of glucose metabolism is one of the hallmarks of cancer cells, we proposed that pyruvate kinase type M2 (M2PK) and lactate dehydrogenase A (LDHA) enzymes could represent novel diagnostic markers and potential therapeutic targets in pancreatic cancer. In 266 tissue sections from normal pancreas, pancreatic cystic neoplasms, pancreatic intraepithelial neoplasia (PanIN) and cancer, we evaluated the expression of PKM2, LDHA, Ki-67 and CD8+ by immunohistochemistry and correlated these markers with clinicopathological characteristics and patient survival. PKM2 and LDHA expression was also assessed by Western blot in 10 human pancreatic cancer cell lines. PKM2 expression increased progressively from cyst through PanIN to cancer, whereas LDHA was overexpressed throughout the carcinogenic process. All but one cell line showed high expression of both proteins. Patients with strong PKM2 and LDHA expression had significantly worse survival than those with weak PKM2 and/or LDHA expression (7.0 months vs. 27.9 months, respectively, p = 0.003, log rank test). The expression of both PKM2 and LDHA correlated directly with Ki-67 expression, and inversely with intratumoral CD8+ cell count. PKM2 was significantly overexpressed in poorly differentiated tumours and both PKM2 and LDHA were overexpressed in larger tumours. Multivariable analysis showed that combined expression of PKM2 and LDHA was an independent poor prognostic marker for survival. In conclusion, our results demonstrate a high expression pattern of two major glycolytic enzymes during pancreatic carcinogenesis, with increased expression in aggressive tumours and a significant adverse effect on survival. PMID:26989901

  13. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    SciTech Connect

    Liao, Ya-Tang; Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; Genomics Research Center, Academia Sinica, Taiwan ; Chen, Chien-Jen; Genomics Research Center, Academia Sinica, Taiwan ; Li, Wan-Fen; Hsu, Ling-I; Tsai, Li-Yu; Huang, Yeou-Lih; Sun, Chien-Wen; Chen, Wei J.; Wang, Shu-Li; Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan

    2012-08-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  14. Electron acquisition system constructed from an NAD-independent D-lactate dehydrogenase and cytochrome c2 in Rhodopseudomonas palustris No. 7.

    PubMed

    Horikiri, Shunsuke; Aizawa, Yoshiyuki; Kai, Taiki; Amachi, Seigo; Shinoyama, Hirofumi; Fujii, Takaaki

    2004-03-01

    The activities of NAD-independent D- and L-lactate dehydrogenases (D-LDH, L-LDH) were detected in Rhodopseudomonas palustris No. 7 grown photoanaerobically on lactate. One of these enzymes, D-LDH, was purified as an electrophoretically homogeneous protein (M(r), about 235,000; subunit M(r) about 57,000). The pI was 5.0. The optimum pH and temperature of the enzyme were pH 8.5 and 50 degrees C, respectively. The Km of the enzyme for D-lactate was 0.8 mM. The enzyme had narrow substrate specificity (D-lactate and DL-2-hydroxybutyrate). The enzymatic activity was competitively inhibited by oxalate (Ki, 0.12 mM). The enzyme contained a FAD cofactor. Cytochrome c(2) was purified from strain No. 7 as an electrophoretically homogeneous protein. Its pI was 9.4. Cytochrome c(2) was reduced by incubating with D-LDH and D-lactate. PMID:15056881

  15. Purification and Properties of White Muscle Lactate Dehydrogenase from the Anoxia-Tolerant Turtle, the Red-Eared Slider, Trachemys scripta elegans

    PubMed Central

    Dawson, Neal J.; Bell, Ryan A. V.; Storey, Kenneth B.

    2013-01-01

    Lactate dehydrogenase (LDH; E.C. 1.1.1.27) is a crucial enzyme involved in energy metabolism in muscle, facilitating the production of ATP via glycolysis during oxygen deprivation by recycling NAD+. The present study investigated purified LDH from the muscle of 20?h anoxic and normoxic T. s. elegans, and LDH from anoxic muscle showed a significantly lower (47%) Km for L-lactate and a higher Vmax value than the normoxic form. Several lines of evidence indicated that LDH was converted to a low phosphate form under anoxia: (a) stimulation of endogenously present protein phosphatases decreased the Km of L-lactate of control LDH to anoxic levels, whereas (b) stimulation of kinases increased the Km of L-lactate of anoxic LDH to normoxic levels, and (c) dot blot analysis shows significantly less serine (78%) and threonine (58%) phosphorylation in anoxic muscle LDH as compared to normoxic LDH. The physiological consequence of anoxia-induced LDH dephosphorylation appears to be an increase in LDH activity to promote the reduction of pyruvate in muscle tissue, converting the glycolytic end product to lactate to maintain a prolonged glycolytic flux under energy-stressed anoxic conditions. PMID:23533717

  16. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    PubMed Central

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  17. Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase.

    PubMed

    Kumar, Vinod; Sankaranarayanan, Mugesh; Durgapal, Meetu; Zhou, Shengfang; Ko, Yeounjoo; Ashok, Somasundar; Sarkar, Ritam; Park, Sunghoon

    2013-05-01

    In the present study, the lactate dehydrogenase-deficient (ldhA(-)) recombinant Klebsiella pneumoniae overexpressing an ALDH (KGSADH) was developed and the co-production of 3-HP and PDO from glycerol by this recombinant under resting cell conditions was examined. The new recombinant did not produce any appreciable lactate, which seriously inhibits the production of 3-HP and PDO. The final titers of 3-HP and PDO by the ldhA(-) recombinant strain at 60 h were 252.2 mM and 308.7 mM, respectively, which were improved by approximately 30% and 50%, respectively, compared to those by the counterpart recombinant strain, which was the wild type for ldhA. In addition, after deleting ldhA, the cumulative yield on glycerol and specific production rate of these two metabolites (3-HP and PDO) were enhanced by 41.4% and 52%, respectively. PMID:23228456

  18. Synthesis and application of a photoaffinity analog of nicotinamide adenosine dinucleotide: Identification of the active sites of glutamate and lactate dehydrogenases

    SciTech Connect

    Kim, H.

    1990-01-01

    A photoaffinity analog of NAD{sup +} has been synthesized by chemically coupling ({sup 32}P)2-azido-AMP and NMN{sup +} to produce ({sup 32}P)nicotinamide 2-azidoadenosine dinucleotide (2-azido-NAD{sup +}). The utility of 2-azido-NAD{sup +} as an effective active-site-directed photoprobe was demonstrated using bovine liver glutamate dehydrogenase and porcine muscle lactate dehydrogenase as model enzymes. In the absence of ultraviolet light 2-azido-NAD{sup +} is a substrate for these enzymes. The specificity of active site labeling was demonstrated by photoinhibition, saturation and competition experiments. The active sites of these enzymes were identified utilizing 2-azido-NAD{sup +}. The immobilized boronate column chromatography was used to isolate the photolabeled peptides. The results demonstrate that the photoaffinity analog of NAD{sup +} has potential application as a probe to characterize NAD{sup +}binding proteins and to identify the active sites of these proteins.

  19. Significance of the variation in isozymes of liver lactate dehydrogenase with thermal acclimation in goldfish--I. Thermostability and temperature dependency.

    PubMed

    Yamawaki, H; Tsukuda, H

    1979-01-01

    1. Total and isozyme properties as well as isozyme pattern were examined in liver lactate dehydrogenase (LDH) from goldfish acclimated to different temperatures. 2. LDH of warm-acclimated fish were thermostable and exhibited higher Q10 in low temperature range as compared with that of co ld-acclimated fish. 3. The relative activities of LDH-1, LDH-2 and LDH-3, which were more thermostable, increased and LDH-4 and LDH-5, which were more heat sensitive, decreased during warm acclimation. Q10 in the low temperature range for LDH-5 was lower than that for LDH-1. PMID:318439

  20. Lactate dehydrogenase test

    MedlinePLUS

    ... value range is 105 - 333 IU/L (international units per liter). Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your doctor about the ...

  1. Changes in milk yield, lactate dehydrogenase, milking frequency, and interquarter yield ratio persist for up to 8 weeks after antibiotic treatment of mastitis.

    PubMed

    Fogsgaard, K K; Lvendahl, P; Bennedsgaard, T W; stergaard, S

    2015-11-01

    Within the dairy industry, the appearance of milk and withdrawal time due to antibiotic residuals in the milk are used to determine recovery status after cases of treated mastitis. However, both milk production and dairy cow behavior have been shown to be affected after the normalization of milk appearance, indicating that animals may not have fully recovered. The aim of the present study was to describe the changes in milk yield, lactate dehydrogenase activity, milking frequency, and interquarter yield ratio (defined as the coefficient of variation between the active quarters) after cases of naturally occurring mastitis with special focus on the recovery period after antibiotic treatment. A second aim was to examine whether these changes were affected by the pathogens present at the time of mastitis diagnosis. This retrospective study was based on a cohort data set including 1,032 lactations from 795 dairy cows kept on 2 Danish farms and milked by an automatic milking system. A total of 174 treated mastitis cases were compared with nontreated control cows from 5 wk before treatment and until 8 wk after. Treated mastitis resulted in reduced milk yield, elevated lactate dehydrogenase activity, lower milking frequency, and elevated interquarter yield ratio. Within these measures, deviations from baseline levels and from the control cows were found as early as 1 to 3 wk before the antibiotic treatment and peaked around the days of treatment. In some cases, the mastitic cows returned to premastitis levels, whereas in others they remained affected throughout the rest of the observation period. To correctly estimate the effects of treated mastitis and the recovery status of cows, it is important to take the individual cow into account and not only compare with herd levels, as this might mask the true degree of the changes. The effects on each outcome variable depended on the involved pathogen and differences were found between primiparous cows and older animals. However, in general, the changes in milk production, lactate dehydrogenase activity, and interquarter yield ratio showed parallels, suggesting that the recovery period continued for weeks after antibiotic treatment. These results call for further investigation into management of mastitic dairy cows to optimize recovery, limit milk loss, and ensure animal welfare during the period after mastitis. PMID:26364092

  2. Interaction of the membrane-bound D-lactate dehydrogenase of Escherichia coli with phospholipid vesicles and reconstitution of activity using a spin-labeled fatty acid as an electron acceptor: A magnetic resonance and biochemical study

    SciTech Connect

    Truong, Hoaithu N.; Pratt, E.A.; Ho, Chien )

    1991-04-23

    The interaction with phospholipid vesicles of the membrane-bound respiratory enzyme D-lactate dehydrogenase of Escherichia coli has been studied. Proteolytic digestion studies show that D-lactate dehydrogenase is protected from trypsin digestion to a larger extent when it interacts with phosphatidylglycerol than with phosphatidylcholine vesicles. Wild-type D-lactate dehydrogenase and mutants in which an additional tryptophan is substituted in selected areas by site-specific oligonucleotide-directed mutagenesis have been labeled with 5-fluorotryptophan. {sup 19}F nuclear magnetic resonance studies of the interaction of these labeled enzymes with small unilamellar phospholipid vesicles show that Trp 243, 340, and 361 are exposed to the lipid phase, while Trp 384, 407, and 567 are accessible to the external aqueous phase. Reconstitution of enzymatic activity in phospholipid vesicles has been studied by adding enzyme and substrate to phospholipid vesicles containing a spin-labeled fatty acid as an electron acceptor. The reduction of the doxyl group of the spin-labeled fatty acid has been monitored indirectly by nuclear magnetic resonance and directly by electron paramagnetic resonance. These results indicate that an artificial electron-transfer system can be created by mixing D-lactate dehydrogenase and D-lactate together with phospholipid vesicles containing spin-labeled fatty acids.

  3. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.

    PubMed

    Jiang, Ting; Xu, Yanbing; Sun, Xiucheng; Zheng, Zhaojuan; Ouyang, Jia

    2014-03-01

    Bacillus coagulans is a homofermentative, acid-tolerant and thermophilic sporogenic lactic acid bacterium, which is capable of producing high yields of optically pure lactic acid. The l-(+)-lactate dehydrogenase (l-LDH) from B. coagulans is considered as an ideal biocatalyst for industrial production. In this study, the gene ldhL encoding a thermostable l-LDH was amplified from B. coagulans NL01 genomic DNA and successfully expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was partially purified and its enzymatic properties were characterized. Sequence analysis demonstrated that the l-LDH was a fructose 1,6-diphosphate-activated NAD-dependent lactate dehydrogenase (l-nLDH). Its molecular weight was approximately 34-36kDa. The Km and Vmax values of the purified l-nLDH for pyruvate were 1.910.28mM and 2613.576.43?mol(minmg)(-1), respectively. The biochemical properties of l-nLDH showed that the specific activity were up to 2323.29U/mg with optimum temperature of 55C and pH of 6.5 in the pyruvate reduction and 351.01U/mg with temperature of 55C and pH of 11.5 in the lactate oxidation. The enzyme also showed some activity in the absence of FDP, with a pH optimum of 4.0. Compared to other lactic acid bacterial l-nLDHs, the enzyme was found to be relatively stable at 50C. Ca(2+), Ba(2+), Mg(2+) and Mn(2+) ions had activated effects on the enzyme activity, and the enzyme was greatly inhibited by Ni(2+) ion. Besides these, l-nLDH showed the higher specificity towards pyruvate esters, such as methyl pyruvate and ethyl pyruvate. PMID:24412354

  4. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    PubMed Central

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, Franois; Guerin, Philippe J

    2009-01-01

    Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart Malaria pLDH (Pan), CareStart Malaria pLDH (Pan, Pf) and OptiMAL-IT)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart Malaria tests and seven days for OptiMAL-IT. Tests were heat stable up to 90 days except for OptiMAL-IT (Pf specific pLDH stable to day 20 at 35C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT performed best overall and would perform best in an area of high malaria prevalence among screened fever cases. However, heat stability was unacceptable and the number of steps to perform this test is a significant drawback in the field. A reliable, heat-stable, highly sensitive RDT, capable of diagnosing all Plasmodium species has yet to be identified. PMID:19860920

  5. Reanalysis of mGWAS results and in vitro validation show that lactate dehydrogenase interacts with branched-chain amino acid metabolism.

    PubMed

    Heemskerk, Mattijs M; van Harmelen, Vanessa Ja; van Dijk, Ko Willems; van Klinken, Jan Bert

    2016-01-01

    The assignment of causative genes to noncoding variants identified in genome-wide association studies (GWASs) is challenging. We show how combination of knowledge from gene and pathway databases and chromatin interaction data leads to reinterpretation of published quantitative trait loci for blood metabolites. We describe a previously unidentified link between the rs2403254 locus, which is associated with the ratio of 3-methyl-2-oxobutanoate and alpha-hydroxyisovalerate levels, and the distal LDHA gene. We confirmed that lactate dehydrogenase can catalyze the conversion between these metabolites in vitro, suggesting that it has a role in branched-chain amino acid metabolism. Examining datasets from the ENCODE project we found evidence that the locus and LDHA promoter physically interact, showing that LDHA expression is likely under control of distal regulatory elements. Importantly, this discovery demonstrates that bioinformatic workflows for data integration can have a vital role in the interpretation of GWAS results. PMID:26014429

  6. Significance of the variation in isozymes of liver lactate dehydrogenase with thermal acclimation in goldfish--II. Effect of pH.

    PubMed

    Yamawaki, H; Tsukuda, H

    1979-01-01

    1. Effect of pH on liver lactate dehydrogenase (LDH) and its isozymes was examined in the goldfish acclimated to different temperatures and some purification of the LDH was attempted. 2. The optimal pH and the Km value at 30 degrees C of the enzyme were independent of acclimation temperature. 3. the optimal pH of isozyme was more basic in the order of LDH-1, LDH-2, LDH-3, LDH-4 and LDH-5. Km values of isozymes at 30 degrees C were higher in the order of LDH-1, LDH-3 and LDH-5. 4. There was no change in the enzyme activity during thermal acclimation. PMID:45548

  7. Lactate dehydrogenase genes of caiman and Chinese soft-shelled turtle, with emphasis on the molecular phylogenetics and evolution of reptiles.

    PubMed

    Liao, C H; Ho, W Z; Huang, H W; Kuo, C H; Lee, S C; Li, S S

    2001-11-14

    L-Lactate dehydrogenase (LDH) cDNAs encoding for LDH-A(4) (muscle) and LDH-B(4) (heart) isozymes from caiman (Caiman crocodilus apaporiensis) belonging to the order Crocodilia and Chinese soft-shelled turtle (Pelodiscus sinensis) belonging to the order Chelonia were sequenced. The phylogenetic relationships of the newly determined cDNA and their deduced protein sequences, as well as the previously published sequences of vertebrate LDH isozymes, were analyzed by various phylogenetic tree construction methods. These results indicated that Chelonia is indeed more closely related to Crocodilia. The divergent times between caiman and alligator, turtle and soft-shelled turtle, and Chelonia and Crocodilia were estimated to be approximately 36, 100 and 177 million years, respectively. PMID:11722846

  8. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle.

    PubMed

    Chaga, G; Hopp, J; Nelson, P

    1999-02-01

    A rapid method for the purification of lactate dehydrogenase from whole chicken muscle extract in one chromatographic step is reported. The purification procedure can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent is used that can be utilized at linear flow rates higher than 5 cm/min. The final preparation of the enzyme was with purity higher than 95% as ascertained by SDS-PAGE. Three immobilized metal ions (Ni2+, Zn2+ and Co2+) were compared for their binding properties towards the purified enzyme. The binding site of the enzyme for immobilized intermediate metal ions was determined after cleavage with CNBr and binding studies of the derivative peptides on immobilized Co2+. A peptide located on the N-terminus of the enzyme, implicated in the binding, has great potential as a purification tag in fusion proteins. PMID:9889081

  9. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans

    PubMed Central

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian

    2014-01-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production—NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)—were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  10. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    PubMed

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  11. Effect of hyperoxia on the ultrastructural pathology of alveolar epithelium in relation to glutathione peroxidase, lactate dehydrogenase activities, and free radical production in rats, Rattus norvigicus.

    PubMed

    Bin-Jaliah, Ismaeel; Dallak, Mohammed; Haffor, Al-Said A

    2009-01-01

    Hyperoxia (HP) exposure inducts reactive oxygen species (ROS) in the lungs that may result in lung injury, including alveolar epithelial and endothelial cells. Lactate dehydrogenase (LDH) activity relates to glycolysis, whereas glutathione peroxidase (Gpx) activity relies on the pentose phosphate pathway (PPP). The purpose of this study was to examine early ROS-induced alveolar pathological changes in relation to the activity of glutathione peroxidase (GPx) and lactate dehydrogenase (LDH) activity. Twenty adult male rats, matched with age and body weight, were randomly assigned to two groups, control and experimental. The experimental group was exposed to hyperoxia for 24 h. Ultrastructure examination showed degenerated pneumocyte type I, containing swollen mitochondria associated with dilated rough endoplasmic reticulum, and was projecting into the alveolar lumen. Pneumocyte II showed mitochondria swelling and hyperplasia and was desquamated in structure, depleted in surfactant, and falling into the alveolar lumen. Pulmonary capillary showed distention without observed damage in the endothelial layer. Following HP, the average (+/-) free radical (FR) production increased significantly (p<.05) from the baseline control of 181.20+/-30.06 to 260.30+/-68.10 (Carr U) and average (+/-SD) GPx activity also increased significantly (p<.05) from the baseline control of 8178.30+/-2402.62 to 19,589.50+/-2392.44 (U/L), whereas average (+/-SD) LDH activity decreased significantly (p<.05) from baseline control of 194.11+/-75.52 to 42.68+/-11.41 (U/L), which demonstrated slowing down of glycolysis. Based on these results it can be concluded that exposure to high inspired oxygen inducted the buildup of mitochondria-driven ROS that was related to early injury in the alveolar epithelium without obvious endothelium injury. PMID:19479651

  12. Purification of the fructose 1,6-bisphosphate-dependent lactate dehydrogenase from Streptococcus uberis and an investigation of its existence in different forms.

    PubMed Central

    Williams, R A; Andrews, P

    1986-01-01

    The fructose 1,6-bisphosphate [Fru(1,6)P2]-dependent lactate dehydrogenase in cells of Streptococcus uberis N.C.D.O. 2039 was purified by a procedure that included chromatography on DEAE-cellulose and Blue Sepharose CL-6B in phosphate buffers. The enzyme appeared to interact with Blue Sepharose through NADH-binding sites. The homogeneous enzyme had catalytic properties that were generally similar to those of other Fru(1,6)P2-dependent lactate dehydrogenases, and it had no catalytic activity in the absence of Fru(1,6)P2. Its existence in different forms, depending on conditions, was investigated by ultracentrifugation, analytical gel filtration and activity measurements. It consisted of subunits with Mr 35,900 +/- 500 and, in the presence of adequate concentrations of Fru(1,6)P2, phosphate or NADH, it existed as a tetramer, whereas when these ligands were in lower concentrations or absent, the subunits were in a concentration-dependent association-dissociation equilibrium. Dissociation occurred slowly and inactivated the enzyme, and although added ligands reversed the dissociation, the lost activity was at best only partly restored. An exception occurred when dissociation was caused by a decrease in temperature, in which case the lost activity was fully restored at the original temperature. The tetramer also lost activity at certain ligand concentrations without dissociating. The results together indicated the presence on the enzyme of two classes of binding site for both Fru(1,6)P2 and NADH, and the likelihood that phosphate bound at the same sites as Fru(1,6)P2. Two different ligands together were much more effective at preventing inactivation and dissociation than was expected from their effectiveness when present separately. It was concluded that tetrameric forms of the enzyme rather than the enzyme in association-dissociation equilibrium were involved in the regulation of its activity in vivo. PMID:3790089

  13. [Leucine arylamidase, lactate dehydrogenase and alkaline phosphatase activity of the urine of normal subjects of infant age].

    PubMed

    Camerini, G; Castaldi, G; Menegatti, E

    1980-04-01

    Urinary activity of Leucine arylamidase, lactate dahydrogenase and Alkaline phosphatase in 14 healt subjects, ranging from 2 to 10 years are described. Some correlations between enzymatic activities, ratios enzymatic activities/creatininuria and enzymatic activities/dayly proteic clearance are investigated. PMID:7375016

  14. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of L-lactate dehydrogenase and its H171C mutant from Bacillus subtilis

    SciTech Connect

    Zhang, Yanfeng; Gao, Xiaoli

    2012-08-31

    L-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to L-lactate with the simultaneous oxidation of NADH to NAD{sup +}. In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD{sup +} and the crystal diffracted to 2.38 {angstrom} resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 {angstrom}. BsLDH-H171C was also crystallized as the apoenzyme and in complex with NAD{sup +}, and data sets were collected to 2.20 and 2.49 {angstrom} resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 {angstrom} and a = b = 133.43, c = 99.09 {angstrom}, respectively. Tetramers were observed in the asymmetric units of all three crystals.

  15. Stable Suppression of Lactate Dehydrogenase Activity during Anoxia in the Foot Muscle of Littorina littorea and the Potential Role of Acetylation as a Novel Posttranslational Regulatory Mechanism

    PubMed Central

    Shahriari, Ali; Dawson, Neal J.; Bell, Ryan A. V.; Storey, Kenneth B.

    2013-01-01

    The intertidal marine snail, Littorina littorea, has evolved to withstand extended bouts of oxygen deprivation brought about by changing tides or other potentially harmful environmental conditions. Survival is dependent on a strong suppression of its metabolic rate and a drastic reorganization of its cellular biochemistry in order to maintain energy balance under fixed fuel reserves. Lactate dehydrogenase (LDH) is a crucial enzyme of anaerobic metabolism as it is typically responsible for the regeneration of NAD+, which allows for the continued functioning of glycolysis in the absence of oxygen. This study compared the kinetic and structural characteristics of the D-lactate specific LDH (E.C. 1.1.1.28) from foot muscle of aerobic control versus 24 h anoxia-exposed L. littorea. Anoxic LDH displayed a near 50% decrease in Vmax (pyruvate-reducing direction) as compared to control LDH. These kinetic differences suggest that there may be a stable modification and regulation of LDH during anoxia, and indeed, subsequent dot-blot analyses identified anoxic LDH as being significantly less acetylated than the corresponding control enzyme. Therefore, acetylation may be the regulatory mechanism that is responsible for the suppression of LDH activity during anoxia, which could allow for the production of alternative glycolytic end products that in turn would increase the ATP yield under fixed fuel reserves. PMID:24233354

  16. The lactate dehydrogenase--reduced nicotinamide--adenine dinucleotide--pyruvate complex. Kinetics of pyruvate binding and quenching of coeznyme fluorescence.

    PubMed

    Südi, J

    1974-04-01

    The stopped-flow kinetic studies described in this and the following paper (Südi, 1974) demonstrate that a Haldane-type description of the reversible lactate dehydrogenase reaction presents an experimentally feasible task. Combined results of these two papers yield numerical values for the six rate constants defined by the following equilibrium scheme, where E represents lactate dehydrogenase: [Formula: see text] The experiments were carried out at pH8.4 at a relatively low temperature (6.3 degrees C) with the pig heart enzyme. Identification of the above two intermediates and determination of the corresponding rate constants actually involve four series of independent observations in these studies, since (a) the reaction can be followed in both directions, and (b) both the u.v. absorption and the fluorescence of the coenzymes are altered in the reaction, and it is shown that these two spectral changes do not occur simultaneously. Kinetic observations made in the reverse direction are reported in this paper. It is demonstrated that the fluorescence of NADH can no longer be observed in the ternary complex E(NADH) (Pyr). Even though the oxidation-reduction reaction rapidly follows the formation of this complex, the numerical values of k(-4) (8.33x10(5)m(-1).s(-1)) and k(+4) (222s(-1)) are easily obtained from a directly observed second-order reaction step in which fluorescent but not u.v.-absorbing material is disappearing. U.v.-absorption measurements do not clearly resolve the subsequent oxidation-reduction step from the dissociation of lactate. It is shown that this must be due partly to the instrumental dead time, and partly to a low transient concentration of E(NAD+) (Lac) in the two-step sequential reaction in which the detectable disappearance of u.v.-absorbing material takes place. It is estimated that about one-tenth of the total change in u.v. absorption is due to a ;burst reaction' in which E(NAD+) (Lac) is produced, and this estimation yields, from k(obs.)=120s(-1), k(-2)=1200s(-1). PMID:4377095

  17. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized 13C labeled pyruvate

    PubMed Central

    Xu, He N.; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim

    2016-01-01

    Background Clinically translatable hyperpolarized (HP) 13C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP 13C-pyruvate into the subject, which is converted to 13C labeled lactate by the enzyme. Parameters such as 13C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP 13C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP 13C-NMR data and investigate if they can be potential predictors of lung inflammation. Methods Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP 13C-pyruvate for injecting into the lungs. A 20 mm 1H/13C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the 13C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of 13C labeled pyruvate and lactate. Results The apparent forward rate constant kp=(3.67±3.31)×10−4 s−1, reverse rate constant kl=(4.95±2.90)×10−2 s−1, rate constant ratio kp/kl=(7.53±5.75)×10−3 for the control lungs; kp=(11.71±4.35)×10−4 s−1, kl=(9.89±3.89)×10−2 s−1, and kp/kl=(12.39±4.18)×10−3 for the inflamed lungs at the 7th day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly larger than those of the control cohort (P<0.001, P=0.001, and P=0.019, respectively). The rate constants of individual lungs correlated significantly with the histology scores of neutrophils and organizing pneumonia foci but not macrophages. Both kp and kp/kl positively correlated with lactate labeling signals. No correlation was found between kl and lactate labeling signals. Conclusions The results indicate bleomycin-induced lung inflammation significantly increased both the forward and reverse reaction rate constants of LDH and their ratio at day-7 after bleomycin treatment. PMID:26981456

  18. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant.

    PubMed

    Snchez, Ailen M; Bennett, George N; San, Ka-Yiu

    2005-01-01

    An adhE, ldhA double mutant Escherichia coli strain, SBS110MG, has been constructed to produce succinic acid in the presence of heterologous pyruvate carboxylase (PYC). The strategic design aims at diverting maximum quantities of NADH for succinate synthesis by inactivation of NADH competing pathways to increase succinate yield and productivity. Additionally an operational PFL enzyme allows formation of acetyl-CoA for biosynthesis and formate as a potential source of reducing equivalents. Furthermore, PYC diverts pyruvate toward OAA to favor succinate generation. SBS110MG harboring plasmid pHL413, which encodes the heterologous pyruvate carboxylase from Lactococcus lactis, produced 15.6 g/L (132 mM) of succinate from 18.7 g/L (104 mM) of glucose after 24 h of culture in an atmosphere of CO(2) yielding 1.3 mol of succinate per mole of glucose. This molar yield exceeded the maximum theoretical yield of succinate that can be achieved from glucose (1 mol/mol) under anaerobic conditions in terms of NADH balance. The current work further explores the importance of the presence of formate as a source of reducing equivalents in SBS110MG(pHL413). Inactivation of the native formate dehydrogenase pathway (FDH) in this strain significantly reduced succinate yield, suggesting that reducing power was lost in the form of formate. Additionally we investigated the effect of ptsG inactivation in SBS110MG(pHL413) to evaluate the possibility of a further increase in succinate yield. Elimination of the ptsG system increased the succinate yield to 1.4 mol/mol at the expense of a reduction in glucose consumption of 33%. In the presence of PYC and an efficient conversion of glucose to products, the ptsG mutation is not indispensable since PEP converted to pyruvate as a result of glucose phosphorylation by the glucose specific PTS permease EIICB(glu) can be rediverted toward OAA favoring succinate production. PMID:15801771

  19. Overexpression of Pyruvate Dehydrogenase Kinase 1 and Lactate Dehydrogenase A in Nerve Cells Confers Resistance to Amyloid ? and Other Toxins by Decreasing Mitochondrial Respiration and Reactive Oxygen Species Production*

    PubMed Central

    Newington, Jordan T.; Rappon, Tim; Albers, Shawn; Wong, Daisy Y.; Rylett, R. Jane; Cumming, Robert C.

    2012-01-01

    We previously demonstrated that nerve cell lines selected for resistance to amyloid ? (A?) peptide exhibit elevated aerobic glycolysis in part due to increased expression of pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA). Here, we show that overexpression of either PDK1 or LDHA in a rat CNS cell line (B12) confers resistance to A? and other neurotoxins. Treatment of A?-sensitive cells with various toxins resulted in mitochondrial hyperpolarization, immediately followed by rapid depolarization and cell death, events accompanied by increased production of cellular reactive oxygen species (ROS). In contrast, cells expressing either PDK1 or LDHA maintained a lower mitochondrial membrane potential and decreased ROS production with or without exposure to toxins. Additionally, PDK1- and LDHA-overexpressing cells exhibited decreased oxygen consumption but maintained levels of ATP under both normal culture conditions and following A? treatment. Interestingly, immunoblot analysis of wild type mouse primary cortical neurons treated with A? or cortical tissue extracts from 12-month-old APPswe/PS1dE9 transgenic mice showed decreased expression of LDHA and PDK1 when compared with controls. Additionally, post-mortem brain extracts from patients with Alzheimer disease exhibited a decrease in PDK1 expression compared with nondemented patients. Collectively, these findings indicate that key Warburg effect enzymes play a central role in mediating neuronal resistance to ?? or other neurotoxins by decreasing mitochondrial activity and subsequent ROS production. Maintenance of PDK1 or LDHA expression in certain regions of the brain may explain why some individuals tolerate high levels of A? deposition without developing Alzheimer disease. PMID:22948140

  20. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. PMID:25988244

  1. Lactate-Dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1

    PubMed Central

    2010-01-01

    Aims As one of the five Lactate dehydrogenase (LDH) isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival. Methods Primary lung cancers (n = 269) and non neoplastic lung tissue (n = 35) were tested for LDH5 expression by immunohistochemistry using a polyclonal LDH5 antibody (ab53010). The results of LDH5 expression were correlated to clinico-pathological data as well as to patient's survival. In addition, the results of the previously tested Transketolase like 1 protein (TKTL1) expression were correlated to LDH5 expression. Results 89.5% (n = 238) of NSCLC revealed LDH5 expression whereas LDH5 expression was not detected in non neoplastic lung tissues (n = 34) (p < 0.0001). LDH5 overexpression was associated with histological type (adenocarcinoma = 57%, squamous cell carcinoma = 45%, large cell carcinoma = 46%, p = 0.006). No significant correlation could be detected with regard to TNM-stage, grading or survival. A two sided correlation between the expression of TKTL1 and LDH5 could be shown (p = 0.002) within the overall cohort as well as for each grading and pN group. A significant correlation between LDH5 and TKTL1 within each histologic tumortype could not be revealed. Conclusions LDH5 is overexpressed in NSCLC and could hence serve as an additional marker for malignancy. Furthermore, LDH5 correlates positively with the prognostic marker TKTL1. Our results confirm a close link between the two metabolic enzymes and indicate an alteration in the glucose metabolism in the process of malignant transformation. PMID:20385008

  2. Insulin, CCAAT/Enhancer-Binding Proteins and Lactate Regulate the Human 11β-Hydroxysteroid Dehydrogenase Type 2 Gene Expression in Colon Cancer Cell Lines

    PubMed Central

    Alikhani-Koupaei, Rasoul; Ignatova, Irena D.; Guettinger, Andreas; Frey, Felix J.; Frey, Brigitte M.

    2014-01-01

    11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon. PMID:25133511

  3. Improved Production of Homo-d-Lactic Acid via Xylose Fermentation by Introduction of Xylose Assimilation Genes and Redirection of the Phosphoketolase Pathway to the Pentose Phosphate Pathway in l-Lactate Dehydrogenase Gene-Deficient Lactobacillus plantarum▿

    PubMed Central

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose. PMID:19820147

  4. Rationally re-designed mutation of NAD-independent l-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background NAD-independent l-lactate dehydrogenase (l-iLDH) from Pseudomonas stutzeri SDM can potentially be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather low activity towards aromatic 2-hydroxycarboxylic acids. Results Val-108 of l-iLDH was changed to Ala by rationally site-directed mutagenesis. The l-iLDH mutant exhibited much higher activity than wide-type l-iLDH towards l-mandelate, an aromatic 2-hydroxycarboxylic acid. Using the engineered Escherichia coli expressing the mutant l-iLDH as a biocatalyst, 40 g·L-1 of dl-mandelic acid was converted to 20.1 g·L-1 of d-mandelic acid (enantiomeric purity higher than 99.5%) and 19.3 g·L-1 of benzoylformic acid. Conclusions A new biocatalyst with high catalytic efficiency toward an unnatural substrate was constructed by rationally re-design mutagenesis. Two building block intermediates (optically pure d-mandelic acid and benzoylformic acid) were efficiently produced by the one-pot biotransformation system. PMID:23176608

  5. Incompatibility of silver nanoparticles with lactate dehydrogenase leakage assay for cellular viability test is attributed to protein binding and reactive oxygen species generation.

    PubMed

    Oh, Seok-Jeong; Kim, Hwa; Liu, Yingqiu; Han, Hyo-Kyung; Kwon, Kyenghee; Chang, Kyung-Hwa; Park, Kwangsik; Kim, Younghun; Shim, Kyuhwan; An, Seong Soo A; Lee, Moo-Yeol

    2014-03-21

    A growing number of studies report that conventional cytotoxicity assays are incompatible with certain nanoparticles (NPs) due to artifacts caused by the distinctive characteristics of NPs. Lactate dehydrogenase (LDH) leakage assays have inadequately detected cytotoxicity of silver nanoparticles (AgNPs), leading to research into the underlying mechanism. When ECV304 endothelial-like umbilical cells were treated with citrate-capped AgNPs (cAgNPs) or bare AgNPs (bAgNPs), the plasma membrane was disrupted, but the LDH leakage assay failed to detect cytotoxicity, indicating interference with the assay by AgNPs. Both cAgNPs and bAgNPs inactivated LDH directly when treated to cell lysate as expected. AgNPs adsorbed LDH and thus LDH, together with AgNPs, was removed from assay reactants during sample preparation, with a resultant underestimation of LDH leakage from cells. cAgNPs, but not bAgNPs, generated reactive oxygen species (ROS), which were successfully scavenged by N-acetylcysteine or ascorbic acid. LDH inhibition by cAgNPs could be restored partially by simultaneous treatment with those antioxidants, suggesting the contribution of ROS to LDH inactivation. Additionally, the composition of the protein corona surrounding AgNPs was identified employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In sum, the LDH leakage assay, a conventional cell viability test method, should be employed with caution when assessing cytotoxicity of AgNPs. PMID:24463055

  6. Baseline Serum Lactate Dehydrogenase Levels for Patients Treated With Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Predictor of Poor Prognosis and Subsequent Liver Metastasis

    SciTech Connect

    Zhou Guanqun; Tang Linglong; Mao Yanping; Chen Lei; Li Wenfei; Sun Ying; Liu Lizhi; Li Li; Lin Aihua; Ma Jun

    2012-03-01

    Purpose: To evaluate the prognostic value of baseline serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Cases of NPC (n = 465) that involved treatment with IMRT with or without chemotherapy were retrospectively analyzed. Results: The mean ({+-}SD) and median baseline serum LDH levels for this cohort were 172.77 {+-} 2.28 and 164.00 IU/L, respectively. Levels of LDH were significantly elevated in patients with locoregionally advanced disease (p = 0.016). Elevated LDH levels were identified as a prognostic factor for rates of overall survival (OS), disease-free survival (DFS), and distant metastasis-free survival (DMFS), with p values <0.001 in the univariate analysis and p < 0.001, p = 0.004, and p = 0.003, respectively, in the multivariate analysis. Correspondingly, the prognostic impact of patient LDH levels was found to be statistically significant for rates of OS, DFS, and DMFS (p = 0.028, 0.024, and 0.020, respectively). For patients who experienced subsequent liver failure after treatment, markedly higher pretreatment serum LDH levels were detected compared with patients experiencing distant metastasis events at other sites (p = 0.032). Conclusions: Elevated baseline LDH levels are associated with clinically advanced disease and are a poor prognosticator for OS, DFS, and DMFS for NPC patients. These results suggest that elevated serum levels of LDH should be considered when evaluating treatment options.

  7. Momordica charantia seed extract reduces pre-adipocyte viability, affects lactate dehydrogenase release, and lipid accumulation in 3T3-L1 cells.

    PubMed

    Popovich, David G; Lee, Yiyu; Li, Lu; Zhang, Wei

    2011-03-01

    A triterpenoid containing bitter melon (Momordica charantia) seed (BMS) extract was found to reduce cultured 3T3-L1 cell viability. The 50% lethal concentration values were determined to be 0.78??0.01?mg/mL at 24 hours, 0.69??0.01?mg/mL at 48 hours, and 0.56??0.02?mg/mL at 72 hours. 3T3-L1 cells were utilized as models of pre-adipocyte to adipocyte differentiation. BMS extract also caused a G(2)/M arrest in the cell cycle reducing cells by 23.9%, 37.7%, and 34.7% compared with the control after 72 hours of treatment at concentrations of 0.4, 0.5, and 0.6?mg/mL respectively. BMS extract did not increase the release of lactate dehydrogenase from 3T3-L1 cells, which was unexpected. Furthermore, BMS extract reduced lipid accumulation during differentiation from pre-adipocyte to adipocyte corresponding to reduction in overall triglyceride of 32.4% after 72 hours compared with untreated control cells. BMS is an underutilized agricultural commodity that may have potential for nutraceutical and functional food development. PMID:21332398

  8. Decreased Hematocrit-To-Viscosity Ratio and Increased Lactate Dehydrogenase Level in Patients with Sickle Cell Anemia and Recurrent Leg Ulcers

    PubMed Central

    Connes, Philippe; Lamarre, Yann; Hardy-Dessources, Marie-Dominique; Lemonne, Nathalie; Waltz, Xavier; Mougenel, Danièle; Mukisi-Mukaza, Martin; Lalanne-Mistrih, Marie-Laure; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Romana, Marc

    2013-01-01

    Leg ulcer is a disabling complication in patients with sickle cell anemia (SCA) but the exact pathophysiological mechanisms are unknown. The aim of this study was to identify the hematological and hemorheological alterations associated with recurrent leg ulcers. Sixty-two SCA patients who never experienced leg ulcers (ULC-) and 13 SCA patients with a positive history of recurrent leg ulcers (ULC+) - but with no leg ulcers at the time of the study – were recruited. All patients were in steady state condition. Blood was sampled to perform hematological, biochemical (hemolytic markers) and hemorheological analyses (blood viscosity, red blood cell deformability and aggregation properties). The hematocrit-to-viscosity ratio (HVR), which reflects the red blood cell oxygen transport efficiency, was calculated for each subject. Patients from the ULC+ group were older than patients from the ULC- group. Anemia (red blood cell count, hematocrit and hemoglobin levels) was more pronounced in the ULC+ group. Lactate dehydrogenase level was higher in the ULC+ group than in the ULC- group. Neither blood viscosity, nor RBC aggregation properties differed between the two groups. HVR was lower and RBC deformability tended to be reduced in the ULC+ group. Our study confirmed increased hemolytic rate and anemia in SCA patients with leg ulcers recurrence. Furthermore, our data suggest that although systemic blood viscosity is not a major factor involved in the pathophysiology of this complication, decreased red blood cell oxygen transport efficiency (i.e., low hematocrit/viscosity ratio) may play a role. PMID:24223994

  9. A Streamlined, Automated Protocol for the Production of Milligram Quantities of Untagged Recombinant Rat Lactate Dehydrogenase A Using KTAxpressTM.

    PubMed

    Nowicki, Matthew W; Blackburn, Elizabeth A; McNae, Iain W; Wear, Martin A

    2015-01-01

    We developed an efficient, automated 2-step purification protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A (rLDHA) from E. coli, using the KTAxpress chromatography system. Cation exchange followed by size exclusion results in average final purity in excess of 93% and yields ~ 14 milligrams per 50 ml of original cell culture in EnPresso B media, in under 8 hrs, including all primary sample processing and column equilibration steps. The protein is highly active and coherent biophysically and a viable alternative to the more problematic human homolog for structural and ligand-binding studies; an apo structure of untagged rLDHA was solved to a resolution 2.29 (PDB ID 5ES3). Our automated methodology uses generic commercially available pre-packed columns and simple buffers, and represents a robust standard method for the production of milligram amounts of untagged rLDHA, facilitating a novel fragment screening approach for new inhibitors. PMID:26717415

  10. Serum lactate dehydrogenase with a systemic inflammation score is useful for predicting response and survival in patients with newly diagnosed diffuse large B-cell lymphoma.

    PubMed

    Jung, Sung-Hoon; Yang, Deok-Hwan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-01-01

    We evaluated the relationship between serum lactate dehydrogenase (LDH) level with systemic inflammation score and survival in 213 patients with diffuse large B-cell lymphoma (DLBCL) receiving R-CHOP chemotherapy. The patients were classified into 3 groups based on LDH with the Glasgow Prognostic Score (L-GPS). A score of 2 was assigned to patients with elevated C-reactive protein, hypoalbuminemia and elevated LDH, a score of 1 to those with one or two abnormalities and a score of 0 to those with no abnormality. In multivariate analysis, independent poor prognostic factors for progression-free survival were L-GPS 2 [hazard ratio (HR) 5.415, p = 0.001], Eastern Cooperative Oncology Group performance status (ECOG PS) ?2 (HR 3.504, p = 0.001) and bulky lesion (HR 2.030, p = 0.039). Independent poor prognostic factors for overall survival were L-GPS 2 (HR 5.898, p = 0.001) and ECOG PS ?2 (HR 3.525, p = 0.001). The overall response rate for the R-CHOP chemotherapy decreased according to the L-GPS; it was 96.7% at L-GPS 0, 87% at L-GPS 1 and 75% at L-GPS 2 (p = 0.009). L-GPS based on systemic inflammatory indicators may be a useful clinical prognostic indicator for survival, and predicts the response for R-CHOP chemotherapy in patients with newly diagnosed DLBCL. PMID:24969101

  11. A Mutation Affecting the Lactate Dehydrogenase Locus Ldh-1 in the Mouse. II. Mechanism of the Ldh-a Deficiency Associated with Hemolytic Anemia

    PubMed Central

    Pretsch, W.; Merkle, S.; Favor, J.; Werner, T.

    1993-01-01

    A procarbazine hydrochloride-induced mutation at the Ldh-1 structural locus encoding the A subunit of lactate dehydrogenase (LDH) was used to study the molecular and metabolic basis of severe hemolytic anemia due to LDH-A deficiency in the mouse. The mutant allele designated Ldh-1(a-m1Neu) codes for an enzyme that as homotetramer differs from the wild-type enzyme by a marked instability, acidic shift of the pH profile, increased K(m) for pyruvate and altered inhibition by high concentrations of this substrate. Except for the latter, all these altered properties of the mutant protein contribute to the diminished LDH activity in heterozygous and homozygous mutant individuals. Impaired energy metabolism of erythrocytes indicated by a relatively low ATP concentration is suggested to result in cell death at the end of the reticulocyte stage leading to the expression of hemolytic anemia with extreme reticulocytosis and hyperbilirubinemia. Despite the severe anemia, affected homozygous mutants exhibit approximately normal body weight and do not show noticeable impairment of viability or fertility. To date no such condition is observed in man. This discrepancy is likely due to the fact that in human erythrocytes both LDH-A and LDH-B subunits are expressed such that homozygotes for a LDH-A or LDH-B deficiency would not result in a comparably extreme LDH activity deficiency. PMID:8224816

  12. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients.

    PubMed

    Crane, Courtney A; Austgen, Kathryn; Haberthur, Kristen; Hofmann, Carly; Moyes, Kara White; Avanesyan, Lia; Fong, Lawrence; Campbell, Michael J; Cooper, Stewart; Oakes, Scott A; Parsa, Andrew T; Lanier, Lewis L

    2014-09-01

    Myeloid cells are key regulators of the tumor microenvironment, governing local immune responses. Here we report that tumor-infiltrating myeloid cells and circulating monocytes in patients with glioblastoma multiforme (GBM) express ligands for activating the Natural killer group 2, member D (NKG2D) receptor, which cause down-regulation of NKG2D on natural killer (NK) cells. Tumor-infiltrating NK cells isolated from GBM patients fail to lyse NKG2D ligand-expressing tumor cells. We demonstrate that lactate dehydrogenase (LDH) isoform 5 secreted by glioblastoma cells induces NKG2D ligands on monocytes isolated from healthy individuals. Furthermore, sera from GBM patients contain elevated amounts of LDH, which correlate with expression of NKG2D ligands on their autologous circulating monocytes. NKG2D ligands also are present on circulating monocytes isolated from patients with breast, prostate, and hepatitis C virus-induced hepatocellular carcinomas. Together, these findings reveal a previously unidentified immune evasion strategy whereby tumors produce soluble factors that induce NKG2D ligands on myeloid cells, subverting antitumor immune responses. PMID:25136121

  13. Dynamics of a Lactate Dehydrogenase Polymorphism in the Wood Louse PORCELLIO SCABER Latr.: Evidence for Partial Assortative Mating and Heterosis in Natural Populations

    PubMed Central

    Sassaman, Clay

    1978-01-01

    Electrophoretic separation of lactate dehydrogenase (LDH) of Porcellio scaber from 14 natural populations in California, and one each in Oregon, Delaware and Massachusetts, indicates a biallelic polymorphism. Phenotypes are recovered from laboratory matings of virgin females in frequencies agreeing with simple Mendelian inheritance, and the frequency distributions of phenotypes in natural populations are typically in agreement with the appropriate Hardy-Weinberg distributions for these same populations. The same allele predominates in all natural populations examined. Temporal stability within populations suggests that the polymorphism is at, or near, equilibrium. The spatial distribution of allele frequencies, however, is apparently mosaic. Abrupt discontinuities in gene frequency over short distances (50 m to 1 km) suggest that interpopulation migration is insufficient to swamp local differences in gene frequency. Analysis of the transmission dynamics of the polymorphism in natural populations using mother-offspring genotype comparisons suggests that the allelic frequencies of transmitted male gametes are not independent of female genotype. Specifically, the observed mating scheme in natural populations appears to be partially assortative. Comparisons of progeny genotype distributions with yearling (or adult) genotype distributions from the same populations indicate a superior post-partum viability of heterozygous individuals relative to homozygotes. The distortion of progeny genotypic distributions created by assortment is thus apparently counteracted by subsequent heterosis. PMID:640378

  14. Engineered topographic determinants with alpha beta, beta alpha beta, and beta alpha beta alpha topologies show high affinity binding to native protein antigen (lactate dehydrogenase-C4).

    PubMed

    Kobs-Conrad, S; Lee, H; DiGeorge, A M; Kaumaya, P T

    1993-12-01

    The use of peptides has attracted much interest in the development of synthetic vaccines. Although our current understanding of peptide antigens as immunogens has been greatly advanced recently, there still remain many obstacles. The B cell response elicited by a peptide antigen is governed by a number of poorly understood events such as epitope structure, T cell dependency and major histocompatibility complex restriction, adjuvancy, route of immunization, and immunogen stability. In this paper, we extend our previous studies on the problem of the topographical nature of antigenic sites on native protein antigens, in terms of how much molecular mimicry must be maintained in an antigenic determinant for the induction of high affinity antibodies specific for native protein. We show here that an antigenic epitope from the model contraceptive vaccine candidate lactate dehydrogenase (LDH-C4) can be rationally engineered into a highly structured conformation that mimics the corresponding site in the native three-dimensional protein. Our strategy is based on the selection of an antigenic segment which exhibits certain secondary structural properties and by design principles is fixed in three dimensions by appropriate grafting onto a supersecondary structural motif such as alpha beta, beta alpha beta, or beta alpha beta alpha. The biophysical data are consistent with the proposed secondary structures, and antibodies raised to the various construct show high affinity for the native protein. These studies lend further credence to the conformational nature of peptide epitopes and provide a basis for the rational design of peptide vaccines. PMID:8244959

  15. A Streamlined, Automated Protocol for the Production of Milligram Quantities of Untagged Recombinant Rat Lactate Dehydrogenase A Using ÄKTAxpressTM

    PubMed Central

    Nowicki, Matthew W.; Blackburn, Elizabeth A.; McNae, Iain W.; Wear, Martin A.

    2015-01-01

    We developed an efficient, automated 2-step purification protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A (rLDHA) from E. coli, using the ÄKTAxpress™ chromatography system. Cation exchange followed by size exclusion results in average final purity in excess of 93% and yields ~ 14 milligrams per 50 ml of original cell culture in EnPresso B media, in under 8 hrs, including all primary sample processing and column equilibration steps. The protein is highly active and coherent biophysically and a viable alternative to the more problematic human homolog for structural and ligand-binding studies; an apo structure of untagged rLDHA was solved to a resolution 2.29 Å (PDB ID 5ES3). Our automated methodology uses generic commercially available pre-packed columns and simple buffers, and represents a robust standard method for the production of milligram amounts of untagged rLDHA, facilitating a novel fragment screening approach for new inhibitors. PMID:26717415

  16. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.

    PubMed

    Zhang, Xiqing; Zhang, Shuli; Shi, Yan; Shen, Fadi; Wang, Haikuan

    2014-07-01

    Phenyl lactic acid (PLA) has been widely reported as a new natural antimicrobial compound. In this study, 120 Lactobacillus plantarum strains were demonstrated to produce PLA using high-performance liquid chromatography. Lactobacillus plantarum IMAU10124 was screened with a PLA yield of 0.229 g L(-1) . Compared with all previous reports, this is the highest PLA-producing lactic acid bacteria (LAB) when grown in MRS broth without any optimizing conditions. When 3.0 g L(-1) phenyl pyruvic acid (PPA) was added to the medium as substrate, PLA production reached 2.90 g L(-1) , with the highest 96.05% conversion rate. A lowest PLA-yielding L. plantarum IMAU40105 (0.043 g L(-1) ) was also screened. It was shown that the conversion from PPA to PLA by lactic dehydrogenase (LDH) is the key factor in the improvement of PLA production by LAB. Comparing the LDH gene of two strains, four amino acid mutation sites were found in this study in the LDH of L. plantarum IMAU10124. PMID:24861375

  17. A reagentless amperometric electrode based on carbon paste, chemically modified with D-lactate dehydrogenase, NAD(+), and mediator containing polymer for D-lactic acid analysis. I. Construction, composition, and characterization.

    PubMed

    Shu, H C; Mattiasson, B; Persson, B; Nagy, G; Gorton, L; Sahni, S; Geng, L; Boguslavsky, L; Skotheim, T

    1995-05-01

    A reagentless carbon paste electrode was designed for D-lactic acid analysis in a flow injection system for the monitoring of the production of D-lactate in a batch fermentation. D-Lactate dehydrogenase, nicotinamide adenine dinucleotide (NAD(+)), a synthetic redox polymer containing covalently attached toluidine blue O as mediator, graphite powder, and paraffin oil were used for the construction of the modified carbon paste electrode. D-Lactate selectivity was indicated by insignificant responses from a variety of possible interfernces including L-lactate. The electrodes gave a linear response in the range between 0.05 and 5 mM D-lactate, with a detecting limit of 30 muM, allowing a sample throughput of 20 h(-1). Preliminary investigations were made by covering the electrode surface with electropolymerized membranes. Satisfactory stability was observed, indicated by a reproducibility of 3.3% relative standard deviation (RSD, n = 31), with a non-membrane-covered electrode for the analysis of D-lactate in fermentation broth. A long-term stability (230 broth samples) was proven, suggesting the electrodes to have a good potential for use in on-line monitoring of fermentation processes. (c) 1995 John Wiley & Sons, Inc. PMID:18623311

  18. Molecular Characterization of CcpA and Involvement of This Protein in Transcriptional Regulation of Lactate Dehydrogenase and Pyruvate Formate-Lyase in the Ruminal Bacterium Streptococcus bovis

    PubMed Central

    Asanuma, Narito; Yoshii, Takahiro; Hino, Tsuneo

    2004-01-01

    A ccpA gene that encodes global catabolite control protein A (CcpA) in Streptococcus bovis was identified and characterized, and the involvement of CcpA in transcriptional control of a gene (ldh) encoding lactate dehydrogenase (LDH) and a gene (pfl) encoding pyruvate formate-lyase (PFL) was examined. The ccpA gene was shown to be transcribed as a monocistronic operon. A catabolite-responsive element (cre) was found in the promoter region of ccpA, suggesting that ccpA transcription in S. bovis is autogenously regulated. CcpA required HPr that was phosphorylated at the serine residue at position 46 (HPr-[Ser-P]) for binding to the cre site, but glucose 6-phosphate, fructose 1,6-bisphosphate, and NADP had no effect on binding. Diauxic growth was observed when S. bovis was grown in a medium containing glucose and lactose, but it disappeared when ccpA was disrupted, which indicates that CcpA is involved in catabolite repression in S. bovis. The level of ccpA mRNA was higher when cells were grown on glucose than when they were grown on lactose, which was in line with the level of ldh mRNA. When cells were grown on glucose, the ldh mRNA level was lower but the pfl mRNA level was higher in a ccpA-disrupted mutant than in the parent strain, which suggests that ldh transcription is enhanced and pfl transcription is suppressed by CcpA. The ccpA-disrupted mutant produced less lactate and more formate than the parent, probably because the mutant had reduced LDH activity and elevated PFL activity. In the upper region of both ldh and pfl, a cre-like sequence was found, suggesting that the complex consisting of CcpA and HPr-[Ser-P] binds to the possible cre sites. Thus, CcpA appears to be involved in the global regulation of sugar utilization in S. bovis. PMID:15345406

  19. Testis-Specific Lactate Dehydrogenase (LDH-C4) in Skeletal Muscle Enhances a Pika’s Sprint-Running Capacity in Hypoxic Environment

    PubMed Central

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2015-01-01

    LDH-C4 is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, ldh-c was originally thought to be expressed only in testis and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia tolerant mammal living 3000–5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testis and sperm but also in somatic tissues of plateau pika. In this study, the effects of N-propyl oxamate and N-isopropyl oxamate on LDH isozyme kinetics were compared to screens for a selective inhibitor of LDH-C4. To reveal the role and physiological mechanism of LDH-C4 in skeletal muscle of plateau pika, we investigated the effect of N-isopropyl oxamate on the pika exercise tolerance as well as the physiological mechanism. Our results show that Ki of N-propyl oxamate and N-isopropyl oxamate for LDH-A4, LDH-B4, and LDH-C4 were 0.094 mmol/L and 0.462 mmol/L, 0.119 mmol/L and 0.248 mmol/L, and 0.015 mmol/L and 0.013 mmol/L, respectively. N-isopropyl oxamate is a powerful selective inhibitor of plateau pika LDH-C4. In our exercise tolerance experiment, groups treated with inhibitors had significantly lower swimming times than the uninhibited control group. The inhibition rates of LDH, LD, and ATP were 37.12%, 66.27%, and 32.42%, respectively. Our results suggested that ldh-c is expressed in the skeletal muscle of plateau pika, and at least 32.42% of ATP in the skeletal muscle is catalyzed by LDH-C4 by anaerobic glycolysis. This suggests that pika has reduced dependence on oxygen and enhanced adaptation to hypoxic environment due to increased anaerobic glycolysis by LDH-C4 in skeletal muscle. LDH-C4 in plateau pika plays the crucial role in anaerobic glycolysis and generates ATP rapidly since this is the role of LDH-A4 in most species on plain land, which provide evidence that the native humans and animals in Qinghai-Tibet plateau can adapt to the hypoxia environment. PMID:26262630

  20. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis).

    PubMed

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-03-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×10(5) cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology. PMID:25049573

  1. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase.

    PubMed

    Li, L; Shin, S-Y; Lee, K W; Han, N S

    2014-10-01

    Phenyllactic acid (PLA) is an antimicrobial compound naturally synthesized in various fermented foods and its D-form of PLA is known to be more active than the L-isomer. In this study, Leuconostoc mesenteroides ATCC 8293 cells, elaborating D-lactate dehydrogenase (D-ldh) were used to produce D-PLA from phenylpyruvic acid (PPA). When cultured in the presence of PPA (?50 mmol l(-1)), growing cells produced a maximum yield of 35 mmol l(-1) of D-PLA, and the yields were between 752 and 833%. Higher conversion yields were obtained at pH 60-70 when growing cells were used, while the optimum pH range was broader for resting cells. The time required for the complete conversion of PPA into PLA could be shortened to 3 h using resting cells. D-ldh, an enzyme encoded by the LEUM_1756 gene of Leuc. mesenteroides ATCC 8293, was found to be responsible for the conversion of PPA into PLA. The Km and kcat values of the enzyme for PPA were found to be 154 mmol l(-1) and 5645 s(-1), respectively. The conditions required for the efficient production of D-PLA were optimized for both growing and resting cells of Leuc. mesenteroides, with special emphasis on achieving high stereoselectivity and conversion yield. Significance and impact of the study: This is the first study on the production of D-phenyllactic acid, which is a natural antimicrobial compound, from phenylpyruvate using Leuconostoc mesenteroides cells. The strain, ATCC 8293, that was used in the study, possesses high stereoselectivity and delivers a high yield. Therefore, it might be a promising candidate for use in large-scale production facilities and in fermented foods. PMID:24888766

  2. Preventive effect of glycosaminoglycans from Amussium pleuronectus (Linne) on biomolecules, lactate dehydrogenase-isoenzyme and electrocardiographic patterns in isoproterenol-induced myocardial infarction in Wistar rats

    PubMed Central

    Saravanan, Ramachandran; Shanmugam, Annaian; Rajkumar, Devaraj

    2012-01-01

    Objectives: This study was aimed to assess the cardioprotective role of low molecular weight glycosaminoglycans (LMW-GAG) in isoproterenol (ISO)-induced myocardial infarction (MI) in male Wistar rats. Effect of LMW-GAG on biomolecules, lactate dehydrogenase (LDH)-isoenzyme, and electrocardiographic (ECG)-patterns was studied as evidence of cardioprotection. Materials and Methods: Male Wistar rats (140 10 g) were divided into four groups; untreated control (group I), LMW-GAG treated (300 ?g/day s. c. for 2 weeksgroup II), ISO (85 mg s.c. injected on 13th and 14th daysgroup III), and LMW-GAG plus ISO (300 ?g/day s. c. for 12 days followed by 85 mg/kg ISO on the end of 13th and 14th daysgroup IV). At the end of the experimental period, all animals were terminated. Results: Rats treated with LMW-GAG (300 ?g/kg) for 12 days showed significant increasing levels of triglyceride (TG) (both serum and heart tissue), low density lipoprotein (LDL), very low density lipoprotein (VLDL), total cholesterol, uric acid, creatinine, and glucose. However, it significantly decreased the levels of high density lipoprotein (HDL) (serum), plasma total protein, and albumin/globulin (A/G) ratio. ISO also adversely affected the LDH-isoenzymes and caused marked elevation in ST segment. Pretreatment with LMW-GAG (300 ?g/kg) daily for a period of 2 weeks prevented the ISO-treated changes. Conclusions: The results indicate that LMW-GAG exhibits a cardioprotective effect in ISO-induced MI in rats, by maintaining the biomolecules and LDH-isoenzymes. PMID:23112422

  3. Bioactivity-guided identification and cell signaling technology to delineate the lactate dehydrogenase A inhibition effects of Spatholobus suberectus on breast cancer.

    PubMed

    Wang, Zhiyu; Wang, Dongmei; Han, Shouwei; Wang, Neng; Mo, Feizhi; Loo, Tjing Yung; Shen, Jiangang; Huang, Hui; Chen, Jianping

    2013-01-01

    Aerobic glycolysis is an important feature of cancer cells. In recent years, lactate dehydrogenase A (LDH-A) is emerging as a novel therapeutic target for cancer treatment. Seeking LDH-A inhibitors from natural resources has been paid much attention for drug discovery. Spatholobus suberectus (SS) is a common herbal medicine used in China for treating blood-stasis related diseases such as cancer. This study aims to explore the potential medicinal application of SS for LDH-A inhibition on breast cancer and to determine its bioactive compounds. We found that SS manifested apoptosis-inducing, cell cycle arresting and anti-LDH-A activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cell. Oral herbal extracts (1 g/kg/d) administration attenuated tumor growth and LDH-A expression in both breast cancer xenografts. Bioactivity-guided fractionation finally identified epigallocatechin as a key compound in SS inhibiting LDH-A activity. Further studies revealed that LDH-A plays a critical role in mediating the apoptosis-induction effects of epigallocatechin. The inhibited LDH-A activities by epigallocatechin is attributed to disassociation of Hsp90 from HIF-1? and subsequent accelerated HIF-1? proteasome degradation. In vivo study also demonstrated that epigallocatechin could significantly inhibit breast cancer growth, HIF-1?/LDH-A expression and trigger apoptosis without bringing toxic effects. The preclinical study thus suggests that the potential medicinal application of SS for inhibiting cancer LDH-A activity and the possibility to consider epigallocatechin as a lead compound to develop LDH-A inhibitors. Future studies of SS for chemoprevention or chemosensitization against breast cancer are thus warranted. PMID:23457597

  4. Long term intensive exercise training leads to a higher plasma malate/lactate dehydrogenase (M/L) ratio and increased level of lipid mobilization in horses.

    PubMed

    Li, Gebin; Lee, Peter; Mori, Nobuko; Yamamoto, Ichiro; Arai, Toshiro

    2012-06-01

    Continuous high intensity training may induce alterations to enzyme activities related to glucose and lipid metabolism in horses. In our study, five Thoroughbred race horses (3 male and 2 female, avg age=5 yrs old) were compared against five riding horses (1 male, 1 female, 3 gelding, avg age=13 yrs old) in terms of energy metabolism, by examining plasma malate (MDH) and lactate (LDH) dehydrogenase activities and M/L ratio. MDH is involved in NADH and ATP generation, whereas LDH can convert NADH back into NAD(+) for ATP generation. An increase in plasma M/L ratio can reflect heightened energy metabolism in the liver and skeletal muscle of horses adapted to continuous intensive exercise. Moreover, plasma lipid metabolism analytes (adiponectin, NEFA, total cholesterol (T-Cho), and triglycerides (TG)) can reflect changes to lipolysis rate, which can also indicate a change in energy metabolism. Overall, race horses demonstrated increased MDH and LDH activity in plasma (4x and 2x greater, respectively), in addition to a plasma M/L ratio twice as high as that of riding horses (2.0 vs 1.0). In addition, race horses also demonstrated significantly higher levels of plasma NEFA (50% greater), TG (2x greater), and T-Cho (20% greater) as compared to riding horses. Therefore, race horse muscles may have adapted to prolonged high intensity endurance exercise by gaining a higher oxidative capacity and an increased capacity for fat utilization as an energy source, resulting in heightened energy metabolism and increased rate of lipid mobilization. PMID:22297553

  5. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus.

    PubMed

    Carlson Scholz, Jodi A; Garg, Rohit; Compton, Susan R; Allore, Heather G; Zeiss, Caroline J; Uchio, Edward M

    2011-10-01

    The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology. PMID:22330347

  6. Karnofsky Performance Status and Lactate Dehydrogenase Predict the Benefit of Palliative Whole-Brain Irradiation in Patients With Advanced Intra- and Extracranial Metastases From Malignant Melanoma

    SciTech Connect

    Partl, Richard; Richtig, Erika; Avian, Alexander; Berghold, Andrea; Kapp, Karin S.

    2013-03-01

    Purpose: To determine prognostic factors that allow the selection of melanoma patients with advanced intra- and extracerebral metastatic disease for palliative whole-brain radiation therapy (WBRT) or best supportive care. Methods and Materials: This was a retrospective study of 87 patients who underwent palliative WBRT between 1988 and 2009 for progressive or multiple cerebral metastases at presentation. Uni- and multivariate analysis took into account the following patient- and tumor-associated factors: gender and age, Karnofsky performance status (KPS), neurologic symptoms, serum lactate dehydrogenase (LDH) level, number of intracranial metastases, previous resection or stereotactic radiosurgery of brain metastases, number of extracranial metastasis sites, and local recurrences as well as regional lymph node metastases at the time of WBRT. Results: In univariate analysis, KPS, LDH, number of intracranial metastases, and neurologic symptoms had a significant influence on overall survival. In multivariate survival analysis, KPS and LDH remained as significant prognostic factors, with hazard ratios of 3.3 (95% confidence interval [CI] 1.6-6.5) and 2.8 (95% CI 1.6-4.9), respectively. Patients with KPS ≥70 and LDH ≤240 U/L had a median survival of 191 days; patients with KPS ≥70 and LDH >240 U/L, 96 days; patients with KPS <70 and LDH ≤240 U/L, 47 days; and patients with KPS <70 and LDH >240 U/L, only 34 days. Conclusions: Karnofsky performance status and serum LDH values indicate whether patients with advanced intra- and extracranial tumor manifestations are candidates for palliative WBRT or best supportive care.

  7. Complete inhibition of creatine kinase in isolated perfused rat hearts

    SciTech Connect

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts are able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.

  8. Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-?-d-glucosaminidase for detecting dairy cows with intramammary infection.

    PubMed

    Nyman, A-K; Emanuelson, U; Waller, K Persson

    2016-02-01

    The main objective of this study was to investigate the diagnostic test performance of somatic cell count (SCC), lactate dehydrogenase (LDH), and N-acetyl-?-d-glucosaminidase (NAGase), analyzed in composite test milking samples, for detecting dairy cows with or without intramammary infection (IMI). A second objective was to investigate whether an adjustment of these udder health indicators according to their associations with different influential factors (i.e., parity, days in milk, and season) improved their test performance. Moreover, we wanted to investigate whether test performance of SCC improved if SCC results from previous adjacent test milkings were included in the model. Such test milking data were not available for LDH or NAGase. In this cross-sectional study, quarter milk samples for bacteriological examination were taken from almost 1,000 cows from 25 dairy herds during 3 consecutive days: the day before test milking, the day of test milking, and the day after test milking. From each cow, a composite test milking sample was analyzed for milk composition, SCC, LDH, and NAGase. Among the cows sampled, 485 were IMI negative and 256 were IMI positive in one or more udder quarters according to the definitions used. The remaining cows had inconclusive IMI status. To assess the test performance of SCC, LDH, and NAGase to identify IMI-negative and IMI-positive cows, univariable generalized estimating equation models were used with the udder health indicator of interest as outcome and IMI status as explanatory variable. From these models, receiver-operator characteristic curves were created and the area under cure (AUC) was calculated. From each model, a cut-off was chosen for calculations of the sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), and accuracy (ACC) for each udder health indicator. The AUC was similar for the adjusted SCC (0.84), nonadjusted SCC (0.83) and geometric mean SCC (0.80-0.81), but much lower for LDH (0.66) and NAGase (0.62). The highest Se, Sp, PPV, NPV, and ACC were obtained using SCC. Adjustment of the udder health indicators for influential factors (e.g., parity) did not improve the test performance markedly, whereas adding information about SCC from previous adjacent test milkings improved the test performance of SCC slightly. In conclusion, of the udder health indicators investigated, SCC had the best overall ability to correctly identify IMI-negative and IMI-positive dairy cows. PMID:26627859

  9. Age-dependent poliomyelitis of mice: expression of endogenous retrovirus correlates with cytocidal replication of lactate dehydrogenase-elevating virus in motor neurons.

    PubMed Central

    Contag, C H; Plagemann, P G

    1989-01-01

    The widespread presence of endogenous retroviruses in the genomes of animals and humans has suggested that these viruses may be involved in both normal and abnormal developmental processes. Previous studies have indicated the involvement of endogenous ecotropic murine leukemia virus (MuLV) in the development of age-dependent poliomyelitis caused by infection of old C58 or AKR mice by lactate dehydrogenase-elevating virus (LDV). The only genetic components which segregate with susceptibility to LDV-induced paralytic disease are multiple proviral copies of ecotropic MuLV and the permissive allele, at the Fv-1 locus, for N-tropic, ecotropic virus replication (Fv-1n/n). Using in situ hybridization and Northern (RNA) blot hybridization, we have correlated the expression of the endogenous MuLV, both temporally and spatially, with LDV infection of anterior horn motor neurons and the development of paralysis. Our data indicate that treatment of 6- to 7-month-old C58/M mice with cyclophosphamide, which renders these mice susceptible to LDV-induced paralytic disease, results in transient increases in ecotropic MuLV RNA levels in motor neurons throughout the spinal cord. Peripheral inoculation of C58/M mice with LDV, at the time of elevated MuLV RNA levels, results in a rapid spread of LDV to some spinal cord motor neurons. LDV infections then spread slowly but progressively throughout the spinal cord, involving an increasing number of motor neurons. LDV replication is cytocidal and results in neuron destruction and paralysis of the infected animals 2 to 3 weeks postinfection. The slow replication of LDV in the spinal cord contrasts sharply with the rapid replication of LDV in macrophages, the normal host cells for LDV, during the acute phase of infection. The data indicate that the interaction between the endogenous MuLV with the generally nonpathogenic murine togavirus LDV occurs at the level of the motor neuron. We discuss potential mechanisms for the novel dual-virus etiology of age-dependent poliomyelitis of mice. Images PMID:2550670

  10. Creatine deficiency syndromes.

    PubMed

    Schulze, Andreas

    2013-01-01

    The lack of creatine in the central nervous system causes a severe but treatable neurological disease. Three inherited defects, AGAT, GAMT, and CrT deficiency, compromising synthesis and transport of creatine have been discovered recently. Together these so-called creatine deficiency syndromes (CDS) might represent the most frequent metabolic disorders with a primarily neurological phenotype. Patients with CDS present with global developmental delays, mental retardation, speech impairment especially affecting active language, seizures, extrapyramidal movement disorder, and autism spectrum disorder. The two defects in the creatine synthesis, AGAT and GAMT, are autosomal recessive disorders. They can be diagnosed by analysis of the creatine, guanidinoacetate, and creatinine in body fluids. Treatment is available and, especially when introduced in infancy, has a good outcome. The defect of creatine transport, CrT, is an X-linked condition and perhaps the most frequent reasons for X-linked mental retardation. Diagnosis is made by an increased ratio of creatine to creatinine in urine, but successful treatment still needs to be explored. CDS are under-diagnosed because easy to miss in standard diagnostic workup. Because CDS represent a frequent cause of cognitive and neurological impairment that is treatable they warrant consideration in the workup for genetic mental retardation syndromes, for intractable seizure disorders, and for neurological diseases with a predominant lack of active speech. PMID:23622406

  11. Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity.

    PubMed

    Bassit, Reinaldo Abunasser; Pinheiro, Carlos Hermano da Justa; Vitzel, Kaio Fernando; Sproesser, Antnio Jos; Silveira, Leonardo R; Curi, Rui

    2010-03-01

    The protective effect of short-term creatine supplementation (CrS) upon markers of strenuous contractile activity-induced damage in human and rat skeletal muscles was investigated. Eight Ironman triathletes were randomized into the placebo (Pl; n = 4) and creatine-supplemented (CrS; n = 4) groups. Five days prior to the Ironman competition, the CrS group received creatine monohydrate (20 g day(-1)) plus maltodextrin (50 g) divided in two equal doses. The Pl group received maltodextrin (50 g day(-1)) only. The effect of CrS (5 g day(-1)/kg body weight for 5 days) was also evaluated in a protocol of strenuous contractile activity induced by electrical stimulation in rats. Blood samples were collected before and 36 and 60 h after the competition and were used to determine plasma activities of creatine kinase (CK), lactate dehydrogenase (LDH), aldolase (ALD), glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), and C-reactive protein (CRP) level. In rats, plasma activities of CK and LDH, muscle vascular permeability (MVP) using Evans blue dye, muscle force and fatigue were evaluated. Activities of CK, ALD, LDH, GOT, GTP, and levels of CRP were increased in the Pl group after the competition as compared to basal values. CrS decreased plasma activities of CK, LDH, and ALD, and prevented the rise of GOT and GPT plasma activities. In rats, CrS delayed the fatigue, preserved the force, and prevented the rise of LDH and CK plasma activities and MVP in the gastrocnemius muscle. CrS presented a protective effect on muscle injury induced by strenuous contractile activities. PMID:19956970

  12. Creatine supplementation and oxidative stress in rat liver

    PubMed Central

    2013-01-01

    Background The objective of this study was to determine the effects of creatine supplementation on liver biomarkers of oxidative stress in exercise-trained rats. Methods Forty 90-day-old adult male Wistar rats were assigned to four groups for the eight-week experiment. Control group (C) rats received a balanced control diet; creatine control group (CCr) rats received a balanced diet supplemented with 2% creatine; trained group (T) rats received a balanced diet and intense exercise training equivalent to the maximal lactate steady state phase; and supplemented-trained (TCr) rats were given a balanced diet supplemented with 2% creatine and subjected to intense exercise training equivalent to the maximal lactate steady state phase. At the end of the experimental period, concentrations of creatine, hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS) were measured as well as the enzyme activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-GPx) and catalase (CAT). Liver tissue levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and the GSH/GSSG ratio were also determined. Results Hepatic creatine levels were highest in the CCr and TCr groups with increased concentration of H2O2 observed in the T and TCr animal groups. SOD activity was decreased in the TCr group. GSH-GPx activity was increased in the T and TCr groups while CAT was elevated in the CCr and TCr groups. GSH, GGS and the GSH/GSSG ratio did not differ between all animal subsets. Conclusions Our results demonstrate that creatine supplementation acts in an additive manner to physical training to raise antioxidant enzymes in rat liver. However, because markers of liver oxidative stress were unchanged, this finding may also indicate that training-induced oxidative stress cannot be ameliorated by creatine supplementation. PMID:24325803

  13. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    PubMed

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (?adhE?ackA-pta?ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.50.5 g/L with yield of 0.460.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.44.5 g/L, 0.490.02 g/g, 1.200.05 g/Lh, and 27.21.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed. PMID:25895450

  14. Lactation Consultant

    MedlinePLUS

    ... lactation. Job description Lactation consultants educate women, families, health professionals, and the community about breast feeding and human lactation; facilitate the development of policies ...

  15. In VivoLactate Editing with Simultaneous Detection of Choline, Creatine, NAA, and Lipid Singlets at 1.5 T Using PRESS Excitation with Applications to the Study of Brain and Head and Neck Tumors

    NASA Astrophysics Data System (ADS)

    Star-Lack, Josh; Spielman, Daniel; Adalsteinsson, Elfar; Kurhanewicz, John; Terris, David J.; Vigneron, Daniel B.

    1998-08-01

    Two T2-independentJ-difference lactate editing schemes for the PRESS magnetic resonance spectroscopy localization sequence are introduced. The techniques, which allow for simultaneous acquisition of the lactate doublet (1.3 ppm) and edited singlets upfield of and including choline (3.2 ppm), exploit the dependence of the in-phase intensity of the methyl doublet upon the time interval separating two inversion (BASING) pulses applied to its coupling partner after initial excitation. Editing method 1, which allows for echo times TE =n/J(n= 1, 2, 3, ), alters the BASING carrier frequency for each of two cycles so that, for one cycle, the quartet is inverted, whereas, for the other cycle, the quartet is unaffected. Method 2, which also provides water suppression, allows for editing for TE > 1/Jby alternating, between cycles, the time interval separating the inversion pulses. Experimental results were obtained at 1.5 T using a Shinnar Le-Roux-designed maximum phase inversion pulse with a filter transition bandwidth of 55 Hz. Spectra were acquired from phantoms andin vivofrom the human brain and neck. In a neck muscle study, the lipid suppression factor, achieved partly through the use of a novel phase regularization algorithm, was measured to be over 103. Spectra acquired from a primary brain and a metastatic neck tumor demonstrated the presence of lactate and choline signals consistent with abnormal spectral patterns. The advantages and limitations of the methods are analyzed theoretically and experimentally, and significance of the results is discussed.

  16. Creatine and creatine deficiency syndromes: biochemical and clinical aspects.

    PubMed

    Nasrallah, Fahmi; Feki, Moncef; Kaabachi, Naziha

    2010-03-01

    Creatine deficiency syndromes, which have only recently been described, represent a group of inborn errors of creatine synthesis (L-arginine-glycine amidinotransferase deficiency and guanidinoacetate methyltransferase deficiency) and transport (creatine transporter deficiency). Patients with creatine deficiency syndromes present with mental retardation expressive speech and language delay, and epilepsy. Patients with guanidinoacetate methyltransferase deficiency or creatine transporter deficiency may exhibit autistic behavior. The common denominator of these disorders is the depletion of the brain creatine pool, as demonstrated by in vivo proton magnetic resonance spectroscopy. For diagnosis, laboratory investigations start with analysis of guanidinoacetate, creatine, and creatinine in plasma and urine. Based on these findings, enzyme assays or DNA mutation analysis may be performed. The creatine deficiency syndromes are underdiagnosed, so the possibility should be considered in all children affected by unexplained mental retardation, seizures, and speech delay. Guanidinoacetate methyltransferase deficiency and arginine-glycine amidinotransferase deficiency are treatable by oral creatine supplementation, but patients with creatine transporter deficiency do not respond to this type of treatment. PMID:20159424

  17. Dichloroacetate increases glucose use and decreases lactate in developing rat brain

    SciTech Connect

    Miller, A.L.; Hatch, J.P.; Prihoda, T.J. )

    1990-12-01

    Dichloroacetate (DCA) activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase. Neutralized DCA (100 mg/kg) or saline was intravenously administered to 20 to 25-day-old rats (50-75g). Fifteen minutes later a mixture of {sup 6-14}C glucose and {sup 3}H fluorodeoxyglucose (FDG) was administered intravenously and the animals were sacrificed by microwave irradiation (2450 MHz, 8.0 kW, 0.6-0.8 sec) after 2 or 5 min. Brain regional rates of glucose use and metabolite levels were determined. DCA-treated rats had increased rates of glucose use in all regions studied (cortex, thalamus, striatum, and brain stem), with an average increase of 41%. Lactate levels were lower in all regions, by an average of 35%. There were no significant changes in levels of ATP, creatine phosphate, or glycogen in any brain region. Blood levels of lactate did not differ significantly between the DCA- and the saline-treated groups. Blood glucose levels were higher in the DCA group. In rats sacrificed by freeze-blowing, DCA treatment caused lower brain levels of both lactate and pyruvate. These results cannot be explained by any systemic effect of DCA. Rather, it appears that in the immature rat, DCA treatment results in activation of brain PDH, increased metabolism of brain pyruvate and lactate, and a resulting increase in brain glycolytic rate.

  18. Creatine as an antioxidant.

    PubMed

    Sestili, Piero; Martinelli, C; Colombo, E; Barbieri, E; Potenza, L; Sartini, S; Fimognari, C

    2011-05-01

    Creatine monohydrate (Cr), the most diffuse supplement in the sports industry, is receiving greater attention because of its beneficial effects in a wide number of human degenerative diseases and conditions. These effects can be barely explained on the basis of the sole ergogenic role of the Cr/CrP system. Indeed, a wide number of research articles indicate that Cr is capable of exerting multiple, non-energy related, effects on diverse and relevant cellular targets. Among these effects, the antioxidant activity of Cr emerges as an additional mechanism which is likely to play a supportive role in the Cr-cytoprotection paradigm. PMID:21404063

  19. Indoleamine 2,3?dioxygenase downregulates T?cell receptor complex ??chain and c?Myc, and reduces proliferation, lactate dehydrogenase levels and mitochondrial glutaminase in human T?cells.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Antoniadi, Georgia; Tsogka, Konstantina; Sounidaki, Maria; Liakopoulos, Vassilios; Stefanidis, Ioannis

    2016-01-01

    Indoleamine 2,3?dioxygenase (IDO), through L?tryptophan depletion, activates general control non?derepressible (GCN)2 kinase and suppresses T?cell proliferation, in addition to suppressing aerobic glycolysis and glutaminolysis, which are required for these rapidly proliferating cells. A number of, however not all of these alterations, are partially mediated through IDO?induced p53upregulation. In two?way mixed lymphocyte reactions (MLRs), IDO reduced cellular proliferation. In MLR?derived T?cells, IDO induced the expression levels of p53and p21, however concurrently reduced the levels of ??chain, c?Myc, lactate dehydrogenaseA (LDH?A) and glutaminase (GLS)2. However, p53had no effect on the expression of the above proteins. These results were recapitulated in T?cells activated with anti?CD2, anti?CD3and anti?CD28by direct activation of the GCN2kinase with tryptophanol. In conclusion, IDO, through GCN2kinase activation, downregulates the levels of TCR?complex ??chain and c?Myc, resulting in the suppression of T?cell proliferation and a reduction in the levels of LDH?A and GLS2, which are key enzymes involved in aerobic glycolysis and glutaminolysis, respectively. PMID:26647830

  20. The Levels of Serum C-Reactive Protein, Beta 2 Microglobulin, Ferritin, Lactate Dehydrogenase and Some Specific Proteins in Patients with Non-Hodgkins Lymphoma Before and After Treatment

    PubMed Central

    Yildirim, Rahsan; Gundogdu, Mehmet; Erdem, Fuat; Kiki, lhami; Bilici, Mehmet

    2009-01-01

    Objective: The aim of this study was to measure serum C reactive protein, ?2 microglobulin, ferritin, lactate dehydrogenase, complement 3, complement 4, immunoglobulin A, immunoglobulin M, immunoglobulin G and transferrin levels in patients with Non-Hodgkin Lymphoma before and after treatment, and to determine whether any differences occur with treatment, investigate relationship between these parameters and systemic symptoms, and to determine whether they could be used as tumor markers. Materials and Methods: The parameters listed above were studied before and after treatment in sera of 27 patients with the diagnosis of Non-Hodgkin Lymphoma who admitted to our department. Of the patients, 10 (37%) were females and 17 (63%) were males. Mean age was 57.7 16.5 (1982) years. The subjects were newly diagnosed and treatment. Results: Post-treatment serum ferritin and CRP levels were found to be significantly decreased in patients with NHL compared to pre-treatment levels (p=0.009 and p=0.015, respectively). In addition, ferritin levels measured before treatment were significantly lower in subjects with B symptoms than those without B symptoms (p=0.02). IgA levels of patients with B symptom were significantly increased compared to those without B symptoms following treatment (p=0.03). Conclusions: We are in the opinion that serum ferritin and CRP parameters may be used as tumor markers and may be indicators in the efficacy evaluation of treatment in Non-Hodgkins Lymphoma. PMID:25610096

  1. Efficient Production of Optically Pure d-Lactic Acid from Raw Corn Starch by Using a Genetically Modified l-Lactate Dehydrogenase Gene-Deficient and α-Amylase-Secreting Lactobacillus plantarum Strain▿

    PubMed Central

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct d-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct d-lactic acid fermentation from raw starch. PMID:19011066

  2. Pharmacokinetics of the dietary supplement creatine.

    PubMed

    Persky, Adam M; Brazeau, Gayle A; Hochhaus, Gnther

    2003-01-01

    Creatine is a nonessential dietary component that, when supplemented in the diet, has shown physiological benefits in athletes, in animal-based models of disease and in patients with various muscle, neurological and neuromuscular disease. The clinical relevance of creatine supplementation is based primarily on its role in ATP generation, and cells may be able to better handle rapidly changing energy demands with supplementation. Although the pharmacological outcome measures of creatine have been investigated, the behaviour of creatine in the blood and muscle is still not fully understood. Creatine is most probably actively absorbed from the gastrointestinal tract in a similar way to amino acids and peptides. The distribution of creatine throughout the body is largely determined by the presence of creatine transporters. These transporters not only serve to distribute creatine but serve as a clearance mechanism because of creatine 'trapping' by skeletal muscle. Besides the pseudo-irreversible uptake by skeletal muscle, creatine clearance also depends on renal elimination and degradation to creatinine. Evidence suggests that creatine pharmacokinetics are nonlinear with respect to dose size and frequency. Skeletal muscle, the largest depot of creatine, has a finite capacity to store creatine. As such, when these stores are saturated, both volume of distribution and clearance can decrease, thus leading to complex pharmacokinetic situations. Additionally, other dietary components such as caffeine and carbohydrate can potentially affect pharmacokinetics by their influence on the creatine transporter. Disease and age may also affect the pharmacokinetics, but more information is needed. Overall, there are very limited pharmacokinetic data available for creatine, and further studies are needed to define absorption characteristics, clearance kinetics and the effect of multiple doses. Additionally, the relationship between plasma creatine and muscle creatine needs to be elucidated to optimise administration regimens. PMID:12793840

  3. Combining Parasite Lactate Dehydrogenase-Based and Histidine-Rich Protein 2-Based Rapid Tests To Improve Specificity for Diagnosis of Malaria Due to Plasmodium knowlesi and Other Plasmodium Species in Sabah, Malaysia

    PubMed Central

    William, Timothy; Barber, Bridget E.; Parameswaran, Uma; Bird, Elspeth; Piera, Kim; Aziz, Ammar; Dhanaraj, Prabakaran; Yeo, Tsin W.; Anstey, Nicholas M.

    2014-01-01

    Plasmodium knowlesi causes severe and fatal malaria in Malaysia. Microscopic misdiagnosis is common and may delay appropriate treatment. P. knowlesi can cross-react with species-specific parasite lactate dehydrogenase (pLDH) monoclonal antibodies used in rapid diagnostic tests (RDTs) to detect P. falciparum and P. vivax. At one tertiary-care hospital and two district hospitals in Sabah, we prospectively evaluated two combination RDTs for malaria diagnosis by using both a pan-Plasmodium-pLDH (pan-pLDH)/P. falciparum-specific-pLDH (Pf-pLDH) RDT (OptiMAL-IT) and a non-P. falciparum VOM-pLDH/Pf-HRP2 RDT (CareStart). Differential cross-reactivity among these combinations was hypothesized to differentiate P. knowlesi from other Plasmodium monoinfections. Among 323 patients with PCR-confirmed P. knowlesi (n = 193), P. falciparum (n = 93), and P. vivax (n = 37) monoinfections, the VOM-pLDH individual component had the highest sensitivity for nonsevere (35%; 95% confidence interval [CI], 27 to 43%) and severe (92%; CI, 81 to 100%) P. knowlesi malaria. CareStart demonstrated a P. knowlesi sensitivity of 42% (CI, 34 to 49%) and specificity of 74% (CI, 65 to 82%), a P. vivax sensitivity of 83% (CI, 66 to 93%) and specificity of 71% (CI, 65 to 76%), and a P. falciparum sensitivity of 97% (CI, 90 to 99%) and specificity of 99% (CI, 97 to 100%). OptiMAL-IT demonstrated a P. knowlesi sensitivity of 32% (CI, 25 to 39%) and specificity of 21% (CI, 15 to 29%), a P. vivax sensitivity of 60% (CI, 42 to 75%) and specificity of 97% (CI, 94 to 99%), and a P. falciparum sensitivity of 82% (CI, 72 to 89%) and specificity of 39% (CI, 33 to 46%). The combination of CareStart plus OptiMAL-IT for P. knowlesi using predefined criteria gave a sensitivity of 25% (CI, 19 to 32%) and specificity of 97% (CI, 92 to 99%). Combining two RDT combinations was highly specific for P. knowlesi malaria diagnosis; however, sensitivity was poor. The specificity of pLDH RDTs was decreased for P. vivax and P. falciparum because of P. knowlesi cross-reactivity and cautions against their use alone in areas where P. knowlesi malaria is endemic. Sensitive P. knowlesi-specific RDTs and/or alternative molecular diagnostic tools are needed in areas where P. knowlesi malaria is endemic. PMID:24696029

  4. Infection of central nervous system cells by ecotropic murine leukemia virus in C58 and AKR mice and in in utero-infected CE/J mice predisposes mice to paralytic infection by lactate dehydrogenase-elevating virus.

    PubMed

    Anderson, G W; Palmer, G A; Rowland, R R; Even, C; Plagemann, P G

    1995-01-01

    Certain mouse strains, such as AKR and C58, which possess N-tropic, ecotropic murine leukemia virus (MuLV) proviruses and are homozygous at the Fv-1n locus are specifically susceptible to paralytic infection (age-dependent poliomyelitis [ADPM]) by lactate dehydrogenase-elevating virus (LDV). Our results provide an explanation for this genetic linkage and directly prove that ecotropic MuLV infection of spinal cord cells is responsible for rendering anterior horn neurons susceptible to cytocidal LDV infection, which is the cause of the paralytic disease. Northern (RNA) blot hybridization of total tissue RNA and in situ hybridization of tissue sections demonstrated that only mice harboring central nervous system (CNS) cells that expressed ecotropic MuLV were susceptible to ADPM. Our evidence indicates that the ecotropic MuLV RNA is transcribed in CNS cells from ecotropic MuLV proviruses that have been acquired by infection with exogenous ecotropic MuLV, probably during embryogenesis, the time when germ line proviruses in AKR and C58 mice first become activated. In young mice, MuLV RNA-containing cells were found exclusively in white-matter tracts and therefore were glial cells. An increase in the ADPM susceptibility of the mice with advancing age correlated with the presence of an increased number of ecotropic MuLV RNA-containing cells in the spinal cords which, in turn, correlated with an increase in the number of unmethylated proviruses in the DNA extracted from spinal cords. Studies with AKXD recombinant inbred strains showed that possession of a single replication-competent ecotropic MuLV provirus (emv-11) by Fv-1n/n mice was sufficient to result in ecotropic MuLV infection of CNS cells and ADPM susceptibility. In contrast, no ecotropic MuLV RNA-positive cells were present in the CNSs of mice carrying defective ecotropic MuLV proviruses (emv-3 or emv-13) or in which ecotropic MuLV replication was blocked by the Fv-1n/b or Fv-1b/b phenotype. Such mice were resistant to paralytic LDV infection. In utero infection of CE/J mice, which are devoid of any endogenous ecotropic MuLVs, with the infectious clone of emv-11 (AKR-623) resulted in the infection of CNS cells, and the mice became ADPM susceptible, whereas littermates that had not become infected with ecotropic MuLV remained ADPM resistant. PMID:7983723

  5. Genetics Home Reference: Lactate dehydrogenase deficiency

    MedlinePLUS

    ... the body breaks down sugar to use as energy in cells, primarily muscle cells. There are two ... throughout the body and is important for creating energy for cells. There are five different forms of ...

  6. Creatine supplementation prevents the accumulation of fat in the livers of rats fed a high-fat diet.

    PubMed

    Deminice, Rafael; da Silva, Robin P; Lamarre, Simon G; Brown, Colin; Furey, George N; McCarter, Shannon A; Jordao, Alceu Afonso; Kelly, Karen B; King-Jones, Kirst; Jacobs, Ren L; Brosnan, Margaret E; Brosnan, John T

    2011-10-01

    The aim of the present study was to examine the effects of creatine supplementation on liver fat accumulation induced by a high-fat diet in rats. Rats were fed 1 of 3 different diets for 3 wk: a control liquid diet (C), a high-fat liquid diet (HF), or a high-fat liquid diet supplemented with creatine (HFC). The C and HF diets contained, respectively, 35 and 71% of energy derived from fat. Creatine supplementation involved the addition of 1% (wt:v) of creatine monohydrate to the liquid diet. The HF diet increased total liver fat concentration, liver TG, and liver TBARS and decreased the hepatic S-adenosylmethionine (SAM) concentration. Creatine supplementation normalized all of these perturbations. Creatine supplementation significantly decreased the renal activity of l-arginine:glycine amidinotransferase and plasma guanidinoacetate and prevented the decrease in hepatic SAM concentration in rats fed the HF diet. However, there was no change in either the phosphatidylcholine:phosphatidylethanolamine (PE) ratio or PE N-methyltransferase activity. The HF diet decreased mRNA for PPAR? as well as 2 of its targets, carnitine palmitoyltransferase and long-chain acylCoA dehydrogenase. Creatine supplementation normalized these mRNA levels. In conclusion, creatine supplementation prevented the fatty liver induced by feeding rats a HF diet, probably by normalization of the expression of key genes of ?-oxidation. PMID:21880953

  7. Yeast mitochondrial dehydrogenases are associated in a supramolecular complex.

    PubMed

    Grandier-Vazeille, X; Bathany, K; Chaignepain, S; Camougrand, N; Manon, S; Schmitter, J M

    2001-08-21

    Separation of yeast mitochondrial complexes by colorless native polyacrylamide gel electrophoresis led to the identification of a supramolecular structure exhibiting NADH-dehydrogenase activity. Components of this complex were identified by N-terminal Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. The complex was found to contain the five known intermembrane space-facing dehydrogenases, namely two external NADH-dehydrogenases Nde1p and Nde2p, glycerol-3-phosphate dehydrogenase Gut2p, D- and L-lactate-dehydrogenases Dld1p and Cyb2p, the matrix-facing NADH-dehydrogenase Ndi1p, two probable flavoproteins YOR356Wp and YPR004Cp, four tricarboxylic acids cycle enzymes (malate dehydrogenase Mdh1p, citrate synthase Cit1p, succinate dehydrogenase Sdh1p, and fumarate hydratase Fum1p), and the acetaldehyde dehydrogenase Ald4p. The association of these proteins is discussed in terms of NADH-channeling. PMID:11502169

  8. Clinical applications of creatine supplementation on paediatrics.

    PubMed

    Evangeliou, Athanasios; Vasilaki, Konstantina; Karagianni, Paraskevi; Nikolaidis, Nikolaos

    2009-11-01

    Creatine plays a central role in energy metabolism and is synthesized in the liver, kidney and pancreas. In healthy patients, it is transported via the blood stream to the muscles, heart and brain with high and fluctuating energy demands by the molecule creatine transporter. Creatine, although naturally synthesized in the human body, can be ingested in the form of supplements and is commonly used by athletes. The purpose of this review was to assess the clinical applications of creatine supplementation on paediatrics. Creatine metabolism disorders have so far been described at the level of two synthetic steps, guanidinoacetate N-methyltransferase (GAMT) and arginine: glycine amidinotransferase (AGAT), and at the level of the creatine transporter 1(CrT1). GAMT and AGAT deficiency respond positively to substitutive treatment with creatine monohydrate whereas in CrT1 defect, it is not able to replenish creatine in the brain with oral creatine supplementation. There are also data concerning the short and long-term therapeutic benefit of creatine supplementation in children and adults with gyrate atrophy (a result of the inborn error of metabolism with ornithine delta- aminotransferase activity), muscular dystrophy (facioscapulohumeral dystrophy, Becker dystrophy, Duchenne dystrophy and sarcoglycan deficient limb girdle muscular dystrophy), McArdle's disease, Huntington's disease and mitochondria-related diseases. Hypoxia and energy related brain pathologies (brain trauma, cerebral ischemia, prematurity) might benefit from Cr supplementation. This review covers also the basics of creatine metabolism and proposed mechanisms of action. PMID:19751179

  9. Free creatine available to the creatine phosphate energy shuttle in isolated rat atria

    SciTech Connect

    Savabi, F. )

    1988-10-01

    To measure the actual percentage of intracellular free creatine participating in the process of energy transport, the incorporation of (1-{sup 14}C)creatine into the free creatine and phosphocreatine (PCr) pools in spontaneously beating isolated rat atria, under various conditions, was examined. The atria were subjected to three consecutive periods, control, anoxia, and postanoxic recover, in medium containing tracers of (1-{sup 14}C)creatine. The tissue content and specific activity of creatine and PCr were determined at the end of each period. The higher specific activity found for tissue PCr (1.87 times) than creatine, independent of the percentage of total intracellular creatine that was present as free creatine, provides evidence for the existence of two separate pools of free creatine. Analysis of the data shows that in the normal oxygenated state {approx} 9% of the total intracellular creatine is actually free to participate in the process of energy transport (shuttle pool). About 36% of the total creatine is bound to unknown intracellular components and the rest exists as PCr. The creatine that was taken up and the creatine that was released from the breakdown of PCr have much greater access to the site of phosphorylation than the rest of the intracellular creatine. A sharp increase in the specific activity of residual PCr on prolongation of anoxic time was also observed. This provides evidence for a nonhomogeneous pool of PCr, for the most recently formed (radioactive) PCr appeared to be hydrolyzed last.

  10. Free creatine available to the creatine phosphate energy shuttle in isolated rat atria.

    PubMed Central

    Savabi, F

    1988-01-01

    To measure the actual percentage of intracellular free creatine participating in the process of energy transport, the incorporation of [1-14C]creatine into the "free" creatine and phosphocreatine (PCr) pools in spontaneously beating isolated rat atria, under various conditions, was examined. The atria were subjected to three consecutive periods, control, anoxia, and postanoxic recovery, in medium containing tracers of [1-14C]creatine. The tissue content and specific activity of creatine and PCr were determined at the end of each period. The higher specific activity found for tissue PCr (1.87 times) than creatine, independent of the percentage of total intracellular creatine that was present as free creatine, provides evidence for the existence of two separate pools of free creatine. Analysis of the data shows that in the normal oxygenated state approximately equal to 9% of the total intracellular creatine is actually free to participate in the process of energy transport (shuttle pool). About 36% of the total creatine is bound to unknown intracellular components and the rest exists as PCr. The creatine that was taken up and the creatine that was released from the breakdown of PCr have much greater access to the site of phosphorylation than the rest of the intracellular creatine. A sharp increase in the specific activity of residual PCr on prolongation of anoxic time was also observed. This provides evidence for a nonhomogeneous pool of PCr, for the most recently formed (radioactive) PCr appeared to be hydrolyzed last. PMID:3174649

  11. Augmentation of Creatine in the Heart.

    PubMed

    Zervou, Sevasti; Whittington, Hannah J; Russell, Angela J; Lygate, Craig A

    2016-01-01

    Creatine is a principle component of the creatine kinase (CK) phosphagen system common to all vertebrates. It is found in excitable cells, such as cardiomyocytes, where it plays an important role in the buffering and transport of chemical energy to ensure that supply meets the dynamic demands of the heart. Multiple components of the CK system, including intracellular creatine levels, are reduced in heart failure, while ischaemia and hypoxia represent acute crises of energy provision. Elevation of myocardial creatine levels has therefore been suggested as potentially beneficial, however, achieving this goal is not trivial. This mini-review outlines the evidence in support of creatine elevation and critically examines the pharmacological approaches that are currently available. In particular, dietary creatine-supplementation does not sufficiently elevate creatine levels in the heart due to subsequent down-regulation of the plasma membrane creatine transporter (CrT). Attempts to increase passive diffusion and bypass the CrT, e.g. via creatine esters, have yet to be tested in the heart. However, studies in mice with genetic overexpression of the CrT demonstrate proof-of-principle that elevated creatine protects the heart from ischaemia-reperfusion injury. This suggests activation of the CrT as a major unmet pharmacological target. However, translation of this finding to the clinic will require a greater understanding of CrT regulation in health and disease and the development of small molecule activators. PMID:26202199

  12. Augmentation of Creatine in the Heart

    PubMed Central

    Russell, Angela J.; Lygate, Craig A.

    2015-01-01

    Creatine is a principle component of the creatine kinase (CK) phosphagen system common to all vertebrates. It is found in excitable cells, such as cardiomyocytes, where it plays an important role in the buffering and transport of chemical energy to ensure that supply meets the dynamic demands of the heart. Multiple components of the CK system, including intracellular creatine levels, are reduced in heart failure, while ischaemia and hypoxia represent acute crises of energy provision. Elevation of myocardial creatine levels has therefore been suggested as potentially beneficial, however, achieving this goal is not trivial. This mini-review outlines the evidence in support of creatine elevation and critically examines the pharmacological approaches that are currently available. In particular, dietary creatine-supplementation does not sufficiently elevate creatine levels in the heart due to subsequent down-regulation of the plasma membrane creatine transporter (CrT). Attempts to increase passive diffusion and bypass the CrT, e.g. via creatine esters, have yet to be tested in the heart. However, studies in mice with genetic overexpression of the CrT demonstrate proof-of-principle that elevated creatine protects the heart from ischaemia-reperfusion injury. This suggests activation of the CrT as a major unmet pharmacological target. However, translation of this finding to the clinic will require a greater understanding of CrT regulation in health and disease and the development of small molecule activators. PMID:26202199

  13. The muscle-specific calmodulin-dependent protein kinase assembles with the glycolytic enzyme complex at the sarcoplasmic reticulum and modulates the activity of glyceraldehyde-3-phosphate dehydrogenase in a Ca2+/calmodulin-dependent manner.

    PubMed

    Singh, Puneet; Salih, Maysoon; Leddy, John J; Tuana, Balwant S

    2004-08-20

    The skeletal muscle specific Ca(2)+/calmodulin-dependent protein kinase (CaMKIIbeta(M)) is localized to the sarcoplasmic reticulum (SR) by an anchoring protein, alphaKAP, but its function remains to be defined. Protein interactions of CaMKIIbeta(M) indicated that it exists in complex with enzymes involved in glycolysis at the SR membrane. The kinase was found to complex with glycogen phosphorylase, glycogen debranching enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and creatine kinase in the SR membrane. CaMKIIbeta(M) was also found to assemble with aldolase A, GAPDH, enolase, lactate dehydrogenase, creatine kinase, pyruvate kinase, and phosphorylase b kinase from the cytosolic fraction. The interacting proteins were substrates of CaMKIIbeta(M), and their phosphorylation was enhanced in a Ca(2+)- and calmodulin (CaM)-dependent manner. The CaMKIIbeta(M) could directly phosphorylate GAPDH and markedly increase ( approximately 3.4-fold) its activity in a Ca(2+)/CaM-dependent manner. These data suggest that the muscle CaMKIIbeta(M) isoform may serve to assemble the glycogen-mobilizing and glycolytic enzymes at the SR membrane and specifically modulate the activity of GAPDH in response to calcium signaling. Thus, the activation of CaMKIIbeta(M) in response to calcium signaling would serve to modulate GAPDH and thereby ATP and NADH levels at the SR membrane, which in turn will regulate calcium transport processes. PMID:15199064

  14. Lactate Test

    MedlinePLUS

    ... evaluation of someone who is suspected of having sepsis . Typically, if the person's lactate level is above ... be initiated without delay. If a person with sepsis can be diagnosed and treated promptly, their chances ...

  15. Creatine as nutritional supplementation and medicinal product.

    PubMed

    Benzi, G; Ceci, A

    2001-03-01

    Because of assumed ergogenic effects, the creatine administration has become popular practice among subjects participating in different sports. Appropriate creatine monohydrate dosage may be considered a medicinal product since, in accordance with the Council Directive 65/65/EEC, any substance which may be administered with a view to restoring, correcting or modifying physiological functions in humans beings is considered a medicinal product. Thus, quality, efficacy and safety must characterise the substance. In addition, the European Court of Justice has held that a product which is recommended or described as having preventive or curative properties is a medicinal product even if it is generally considered as a foodstuff and even if it has no known therapeutic effect in the present state of scientific knowledge. In biochemical terms, creatine administration increases creatine and phosphocreatine muscle concentration, allowing for an accelerated rate of ATP synthesis. In thermodynamics terms, creatine stimulates the creatine-creatine kinase-phosphocreatine circuit, which is related to the mitochondrial function as a highly organised system for the control of the subcellular adenylate pool. In pharmacokinetics terms, creatine entry into skeletal muscle is initially dependent on the extracellular concentration, but the creatine transport is subsequently downregulated. In pharmacodynamics terms, the creatine enhances the possibility to maintain power output during brief periods of high-intensity exercises. In spite of uncontrolled daily dosage and long-term administration, no researches on creatine monohydrate safety in humans were set up by standardised protocols of clinical pharmacology and toxicology, as currently occurs in phases I and II for products for human use. More or less documented side effects induced by creatine monohydrate are weight gain; influence on insulin production; feedback inhibition of endogenous creatine synthesis; long-term damages on renal function. A major point that related to the quality of creatine monohydrate products is the amount of creatine ingested in relation to the amount of contaminants present. During the industrial production of creatine monohydrate from sarcosine and cyanamide, variable amounts of contaminants (dicyandiamide, dihydrotriazines, creatinine, ions) are generated and, thus, their tolerable concentrations (ppm) must be defined and made consumers known. Furthermore, because sarcosine could originate from bovine tissues, the risk of contamination with prion of bovine spongiform encephalopathy (BSE or mad-cow disease) can t be excluded. Thus, French authorities forbade the sale of products containing creatine. Creatine, as other nutritional factors, can be used either at supplementary or therapeutic levels as a function of the dose. Supplementary doses of nutritional factors usually are of the order of the daily turnover, while therapeutic ones are three or more times higher. In a subject of 70 kg with a total creatine pool of 120 g, the daily turnover is approximately of 2 g. Thus, in healthy subjects nourished with fat-rich, carbohydrate, protein-poor diet and participating in a daily recreational sport, the oral creatine monohydrate supplementation should be of the order of the daily turnover, i.e., less than 2.5-3 g per day, bringing the gastrointestinal absorption to account. In healthy athletes submitted daily to high-intensity strength or sprint training, the maximal oral creatine monohydrate supplementation should be of the order of two times the daily turnover, i.e., less than 5-6 g per day for less than two weeks, and the creatine monohydrate supplementation should be taken under appropriate medical supervision. The oral administration of more that 6 g per day of creatine monohydrate should be considered as a therapeutic intervention and should be prescribed by physicians only in the cases of suspected or proven deficiency, or in conditions of severe stress and/or injury. The incorporation of creatine into the medicinal product class is supported also by the use i

  16. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test...

  17. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test...

  18. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test...

  19. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test...

  20. Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations.

    PubMed

    Vanakoski, J; Kosunen, V; Meririnne, E; Seppälä, T

    1998-05-01

    The pharmacokinetics and effects of creatine and caffeine administration on anaerobic and aerobic performance of 7 trained athletes were studied in a randomized, placebo-controlled, double-blind crossover design. The treatments were: placebo (PLA), a single oral dose (7 mg x kg(-1)) of caffeine (CAF), repeated oral doses (3 x 100 mg x kg(-1) x day(-1)) of creatine for 3 days (CRE), or the combination of caffeine and creatine (CAF + CRE) before physical exercise. In one session CAF was administered without exercise. Drug administration was followed by 3 repetitive 1-minute exercise bouts on a bicycle ergometer at maximal speed (anaerobic exercise) starting 70 min after drug administration. Anaerobic exercise was followed by 45 min of cycling at constant pedalling speed and workload (aerobic exercise). CRE and CAF, alone or in combination, did not improve maximal pedalling speed (rpm), maintenance of maximal speed (rpm) or total work output (kJ) during the 1 -minute bouts, when compared with PLA. In addition, no statistically significant differences in heart rate or blood lactate were observed between the treatments either during anaerobic or aerobic exercise bouts. Creatine was rapidly and efficiently absorbed, as reflected by plasma concentrations. The mean +/-SEM value for creatine Cmax was 1.22+/-0.14 mmol x l(-1), tmax 92+/-7 min and plasma half-life (t1/2beta) 172+/-21 min. Caffeine pharmacokinetics were not affected by concomitant administration of creatine or by physical exercise. In conclusion, neither maximal performance and subsequent recovery nor aerobic performance were enhanced by oral creatine supplementation in the study. PMID:9629989

  1. Lactate metabolism in the fetal rabbit lung

    SciTech Connect

    Engle, M.J.; Brown, D.J.; Dooley, M.

    1986-05-01

    Lactate is frequently overlooked as a potential substrate for the fetal lung, even though it is present in the fetal circulation in concentrations as high as 8 mM. These high concentrations, coupled with the relatively low levels of glucose in the fetal blood, may indicate that lactate can substitute for glucose in pulmonary energy generation and phospholipid synthesis. A series of experiments was therefore undertaken in order to investigate the role of lactate in perinatal pulmonary development. Explants from 30 day gestation fetal rabbit lungs were incubated in Krebs-Ringer bicarbonate buffer supplemented with 3 mM (U-/sup 14/C)-glucose and varying levels of lactate. In the absence of medium lactate, fetal rabbit lung explants were capable of producing lactate at a rate of approximately 200 etamoles/mg protein/hour. The addition of lactate to the bathing medium immediately reduced net lactate production and above 4 mM, fetal rabbit lung explants became net utilizers of lactate. Media lactate concentrations of 2.5 mM, 5 mM and 10 mM also decreased glucose incorporation into total tissue disaturated phosphatidylcholine by approximately 20%, 35%, and 45%, respectively. Glucose incorporation into surfactant phosphatidylcholine was also reduced by approximately 50%, when lactate was present in the incubation medium at a concentration of 5 mM. Additional experiments also revealed that fetal lung lactate dehydrogenase activity was almost twice that found in the adult rabbit lung. These data indicate that lactate may be an important carbon source for the developing lung and could be a significant component in the manufacture of surfactant phosphatidylcholine during late gestation.

  2. Genetics Home Reference: X-linked creatine deficiency

    MedlinePLUS

    ... PubMed Recent literature OMIM Genetic disorder catalog Conditions > X-linked creatine deficiency On this page: Description Genetic ... names Glossary definitions Reviewed June 2015 What is X-linked creatine deficiency? X-linked creatine deficiency is ...

  3. Clinical effectiveness of the Du Pont aca measurement of creatine kinase MB in serum from patients in a coronary-care unit.

    PubMed

    Leroux, M L; Rabson, J; Desjardins, P R

    1984-09-01

    We evaluated the clinical effectiveness of measuring creatine kinase (CK; EC 2.7.3.2) isoenzyme MB and lactate dehydrogenase (LD; EC 1.1.1.27) isoenzymes in diagnosis of acute myocardial infarction. We used an agarose electrophoresis method to measure CK and LD isoenzymes and the Du Pont aca column method to measure CK-MB. Serial blood specimens were drawn from 100 patients consecutively admitted to our Coronary Care Unit. Because of the low diagnostic specificity for CK-MB measurements by both agarose electrophoresis and the discrete-analysis method, as compared with reported values, we re-evaluated our isoenzyme data by using Receiver Operating Characteristic curves. Such analysis of the data established optimal decision levels of greater than or equal to 25 U/L and greater than or equal to 18 U/L plus greater than or equal to 6% of total CK for serum CK-MB measured by the agarose electrophoresis and the aca methods, respectively, and an optimal decision level of greater than or equal to 0.92 for the ratio of LD 1/2 measured after agarose electrophoresis. At these decision levels we obtained a sensitivity of 100%, 100%, and 95% and a specificity of 94%, 92%, and 90% for CK-MB (agarose electrophoresis), CK-MB (aca), and the LD 1/2 ratio, respectively. PMID:6467570

  4. Glycolysis and the significance of lactate in traumatic brain injury

    PubMed Central

    Carpenter, Keri L. H.; Jalloh, Ibrahim; Hutchinson, Peter J.

    2015-01-01

    In traumatic brain injury (TBI) patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well-recognized, and are associated statistically with unfavorable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolized via glycolysis (Embden-Meyerhof-Parnas pathway) to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate's association with unfavorable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilization of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labeled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labeling in glutamine consistent with lactate utilization via the TCA cycle. This suggests that where neurons are too damaged to utilize the lactate produced from glucose by astrocytes, i.e., uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining the association between high lactate and poor outcome. Recently, an intravenous exogenous lactate supplementation study in TBI patients revealed evidence for a beneficial effect judged by surrogate endpoints. Here we review the current state of knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better clinical outcome. PMID:25904838

  5. Caffeine and creatine use in sport.

    TOXLINE Toxicology Bibliographic Information

    Tarnopolsky MA

    2010-01-01

    BACKGROUND/AIMS: Caffeine and creatine are 2 of the most widely available and used compounds in sport. Although the use of either is not considered a doping infraction, the evidence does suggest ergogenic potential in certain sports. The purpose of this paper is to review the pharmacology and potential mechanism(s) of action of caffeine and creatine as they pertain to possible use as an ergogenic aid in sport.METHODS: Previous review articles on caffeine and creatine use in sport were screened for relevant information and references, and studies for review and recent articles (2007 onwards) were obtained and reviewed using a PUBMED search with the terms 'caffeine AND exercise', 'creatine and creatine monohydrate AND exercise', and appropriate linked articles were evaluated.RESULTS: Caffeine taken before (3-6 mg/kg) or during (1-2 mg/kg) endurance exercise enhances performance, through central nervous system and direct muscle effects. Creatine monohydrate supplementation at higher (approx. 20 g/day 3-5 days) or lower (approx. 5 g/day 30 days) doses increases skeletal muscle total and phosphocreatine by 10-20%. Creatine supplementation appears to minimally but significantly enhance high-intensity sport performance and the mass and possibly strength gains made during resistance exercise training over the first few months.CONCLUSIONS: Although caffeine and creatine appear to be ergogenic aids, they do so in a sport-specific context and there is no rationale for their simultaneous use in sport. Higher doses of caffeine can be toxic and appear to be ergolytic. There is no rationale for creatine doses in excess of the recommendations, and some athletes can get stomach upset, especially at higher creatine doses.

  6. Creatine biosynthesis and transport in health and disease.

    PubMed

    Joncquel-Chevalier Curt, Marie; Voicu, Pia-Manuela; Fontaine, Monique; Dessein, Anne-Frdrique; Porchet, Nicole; Mention-Mulliez, Karine; Dobbelaere, Dries; Soto-Ares, Gustavo; Cheillan, David; Vamecq, Joseph

    2015-12-01

    Creatine is physiologically provided equally by diet and by endogenous synthesis from arginine and glycine with successive involvements of arginine glycine amidinotransferase [AGAT] and guanidinoacetate methyl transferase [GAMT]. A specific plasma membrane transporter, creatine transporter [CRTR] (SLC6A8), further enables cells to incorporate creatine and through uptake of its precursor, guanidinoacetate, also directly contributes to creatine biosynthesis. Breakthrough in the role of creatine has arisen from studies on creatine deficiency disorders. Primary creatine disorders are inherited as autosomal recessive (mutations affecting GATM [for glycine-amidinotransferase, mitochondrial]) and GAMT genes) or X-linked (SLC6A8 gene) traits. They have highlighted the role of creatine in brain functions altered in patients (global developmental delay, intellectual disability, behavioral disorders). Creatine modulates GABAergic and glutamatergic cerebral pathways, presynaptic CRTR (SLC6A8) ensuring re-uptake of synaptic creatine. Secondary creatine disorders, addressing other genes, have stressed the extraordinary imbrication of creatine metabolism with many other cellular pathways. This high dependence on multiple pathways supports creatine as a cellular sensor, to cell methylation and energy status. Creatine biosynthesis consumes 40% of methyl groups produced as S-adenosylmethionine, and creatine uptake is controlled by AMP activated protein kinase, a ubiquitous sensor of energy depletion. Today, creatine is considered as a potential sensor of cell methylation and energy status, a neurotransmitter influencing key (GABAergic and glutamatergic) CNS neurotransmission, therapeutic agent with anaplerotic properties (towards creatine kinases [creatine-creatine phosphate cycle] and creatine neurotransmission), energetic and antioxidant compound (benefits in degenerative diseases through protection against energy depletion and oxidant species) with osmolyte behavior (retention of water by muscle). This review encompasses all these aspects by providing an illustrated metabolic account for brain and body creatine in health and disease, an algorithm to diagnose metabolic and gene bases of primary and secondary creatine deficiencies, and a metabolic exploration by (1)H-MRS assessment of cerebral creatine levels and response to therapeutic measures. PMID:26542286

  7. Creatine as a therapeutic strategy for myopathies.

    PubMed

    Tarnopolsky, M A

    2011-05-01

    Myopathies are genetic or acquired disorders of skeletal muscle that lead to varying degrees of weakness, atrophy, and exercise intolerance. In theory, creatine supplementation could have a number of beneficial effects that could enhance function in myopathy patients, including muscle mass, strength and endurance enhancement, lower calcium levels, anti-oxidant effects, and reduced apoptosis. Patients with muscular dystrophy respond to several months of creatine monohydrate supplementation (~0.075-0.1g/kg/day) with greater strength (~9%) and fat-free mass (~0.63kg). Patients with myotonic dystrophy do not show as consistent an effect, possibly due to creatine transport issues. Creatine monohydrate supplementation shows modest benefits only at lower doses and possibly negative effects (cramping) at higher doses in McArdle's disease patients. Patients with MELAS syndrome show some evidence of benefit from creatine supplementation in exercise capacity, with the effects in patients with CPEO being less robust, again, possibly due to limited muscle creatine uptake. The evidence for side effects or negative impact upon serological metrics from creatine supplementation in all groups of myopathy patients is almost non-existent and pale in comparison to the very substantial and well-known side effects from our current chemotherapeutic interventions for some myopathies (i.e., corticosteroids). PMID:21399918

  8. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    DOEpatents

    Miller, Matthew; Suominen, Pirkko; Aristidou, Aristos; Hause, Benjamin Matthew; Van Hoek, Pim; Dundon, Catherine Asleson

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  9. Evaluation of NAD(P)-Dependent Dehydrogenase Activities in Neutrophilic Granulocytes by the Bioluminescent Method.

    PubMed

    Savchenko, A A

    2015-09-01

    Bioluminescent method for measurements of the neutrophilic NAD(P)-dependent dehydrogenases (lactate dehydrogenase, NAD-dependent malate dehydrogenase, NADP-dependent decarboxylating malate dehydrogenase, NAD-dependent isocitrate dehydrogenase, and glucose- 6-phosphate dehydrogenase) is developed. The sensitivity of the method allows minimization of the volume of biological material for measurements to 104 neutrophils per analysis. The method is tried in patients with diffuse purulent peritonitis. Low levels of NADPH synthesis enzymes and high levels of enzymes determining the substrate flow by the Krebs cycle found in these patients can lead to attenuation of functional activity of cells. PMID:26468025

  10. Creatine kinase isoenzymes in bovine tissue.

    PubMed

    Galitzer, S J; Oehme, F W

    1985-07-01

    Brain, heart, liver, kidney, spleen, lungs, rumen, abomasum, small intestine, skeletal muscle, and urinary bladder from healthy cattle were analyzed for creatine kinase isoenzymes as a possible aid in the diagnosis of myocardial disease. Creatine kinase was detected in all organs evaluated. In addition, 6 different fluorescing bands were detected by isoenzyme analysis. Large quantities of the same isoenzymes were in cardiac and skeletal muscle, but not in other organs. Creatine kinase isoenzyme analysis does not necessarily indicate cardiac damage, but may narrow the range of tissue damage possibilities to be included in the differential diagnosis. PMID:4026022

  11. The primary pathway for lactate oxidation in Desulfovibrio vulgaris.

    PubMed

    Vita, Nicolas; Valette, Odile; Brasseur, Gaël; Lignon, Sabrina; Denis, Yann; Ansaldi, Mireille; Dolla, Alain; Pieulle, Laetitia

    2015-01-01

    The ability to respire sulfate linked to lactate oxidation is a key metabolic signature of the Desulfovibrio genus. Lactate oxidation by these incomplete oxidizers generates reductants through lactate dehydrogenase (LDH) and pyruvate-ferredoxin oxidoreductase (PFOR), with the latter catalyzing pyruvate conversion into acetyl-CoA. Acetyl-CoA is the source of substrate-level phosphorylation through the production of ATP. Here, we show that these crucial steps are performed by enzymes encoded by a nonacistronic transcriptional unit named now as operon luo (for lactate utilization operon). Using a combination of genetic and biochemical techniques, we assigned a physiological role to the operon genes DVU3027-28 and DVU3032-33. The growth of mutant Δ26-28 was highly disrupted on D-lactate, whereas the growth of mutant Δ32-33 was slower on L-lactate, which could be related to a decrease in the activity of D-lactate or L-lactate oxidase in the corresponding mutants. The DVU3027-28 and DVU3032-33 genes thus encode functional D-LDH and L-LDH enzymes, respectively. Scanning of the genome for lactate utilization revealed several lactate permease and dehydrogenase homologs. However, transcriptional compensation was not observed in any of the mutants except for lactate permease. Although there is a high degree of redundancy for lactate oxidase, it is not functionally efficient in LDH mutants. This result could be related to the identification of several operon enzymes, including LDHs, in the PFOR activity bands, suggesting the occurrence of a lactate-oxidizing supermolecular structure that can optimize the performance of lactate utilization in Desulfovibrio species. PMID:26167158

  12. The primary pathway for lactate oxidation in Desulfovibrio vulgaris

    PubMed Central

    Vita, Nicolas; Valette, Odile; Brasseur, Gaël; Lignon, Sabrina; Denis, Yann; Ansaldi, Mireille; Dolla, Alain; Pieulle, Laetitia

    2015-01-01

    The ability to respire sulfate linked to lactate oxidation is a key metabolic signature of the Desulfovibrio genus. Lactate oxidation by these incomplete oxidizers generates reductants through lactate dehydrogenase (LDH) and pyruvate-ferredoxin oxidoreductase (PFOR), with the latter catalyzing pyruvate conversion into acetyl-CoA. Acetyl-CoA is the source of substrate-level phosphorylation through the production of ATP. Here, we show that these crucial steps are performed by enzymes encoded by a nonacistronic transcriptional unit named now as operon luo (for lactate utilization operon). Using a combination of genetic and biochemical techniques, we assigned a physiological role to the operon genes DVU3027-28 and DVU3032-33. The growth of mutant Δ26-28 was highly disrupted on D-lactate, whereas the growth of mutant Δ32-33 was slower on L-lactate, which could be related to a decrease in the activity of D-lactate or L-lactate oxidase in the corresponding mutants. The DVU3027-28 and DVU3032-33 genes thus encode functional D-LDH and L-LDH enzymes, respectively. Scanning of the genome for lactate utilization revealed several lactate permease and dehydrogenase homologs. However, transcriptional compensation was not observed in any of the mutants except for lactate permease. Although there is a high degree of redundancy for lactate oxidase, it is not functionally efficient in LDH mutants. This result could be related to the identification of several operon enzymes, including LDHs, in the PFOR activity bands, suggesting the occurrence of a lactate-oxidizing supermolecular structure that can optimize the performance of lactate utilization in Desulfovibrio species. PMID:26167158

  13. Comparison of new forms of creatine in raising plasma creatine levels

    PubMed Central

    Jger, Ralf; Harris, Roger C; Purpura, Martin; Francaux, Marc

    2007-01-01

    Background Previous research has shown that plasma creatine levels are influenced by extracellular concentrations of insulin and glucose as well as by the intracellular creatine concentration. However, the form of creatine administered does not appear to have any effect although specific data on this is lacking. This study examined whether the administration of three different forms of creatine had different effects on plasma creatine concentrations and pharmacokinetics. Methods Six healthy subjects (three female and three male subjects) participated in the study. Each subject was assigned to ingest a single dose of isomolar amounts of creatine (4.4 g) in the form of creatine monohydrate (CrM), tri-creatine citrate (CrC), or creatine pyruvate (CrPyr) using a balanced cross-over design. Plasma concentration curves, determined over eight hours after ingestion, were subject to pharmacokinetic analysis and primary derived data were analyzed by repeated measures ANOVA. Results Mean peak concentrations and area under the curve (AUC) were significantly higher with CrPyr (17 and 14%, respectively) in comparison to CrM and CrC. Mean peak concentration and AUC were not significantly different between CrM and CrC. Despite the higher peak concentration with CrPyr there was no difference between the estimated velocity constants of absorption (ka) or elimination (kel) between the three treatments. There was no effect of treatment with CrPyr on the plasma pyruvate concentration. Conclusion The findings suggest that different forms of creatine result in slightly altered kinetics of plasma creatine absorption following ingestion of isomolar (with respect to creatine) doses of CrM, CrC and CrPyr although differences in ka could not be detected due to the small number of blood samples taken during the absorption phase. Characteristically this resulted in higher plasma concentrations of creatine with CrPyr. Differences in bioavailability are thought to be unlikely since absorption of CrM is already close to 100%. The small differences in kinetics are unlikely to have any effect on muscle creatine elevation during periods of creatine loading. PMID:17997838

  14. Effect of manual lymph drainage on removal of blood lactate after submaximal exercise

    PubMed Central

    Bakar, Yesim; Coknaz, Hakk?; Karl?, mid; Semsek, nder; Ser?n, Erdinc; Pala, mer Osman

    2015-01-01

    [Purpose] It has been well-established that exercise-induced muscle damage occurs following intense exercise. Massage is commonly used to manage muscle damage resulting from exercise. However the effect of massage after exercise is still not clear. The purpose of this study was to examine the effect of manual lymph drainage on muscle damage and on the removal of blood lactate following submaximal exercise (SE), as part of a solution to the challenging problem in sports medicine of muscular recovery after exercise. [Subjects and Methods] Eighteen healthy male students, with moderate exercise training, were randomly assigned to either receive manual lymph drainage (MLD) or serve as controls. Both groups were subjected to a graded exercise test, performed on a treadmill ergometer, to determine each subjects individual anaerobic threshold (IAT). Seven days later, all subjects were made to run for 30 minutes on the same treadmill ergometer, at a running speed equivalent to the IAT. One group received MLD treatment, while the control subjects received no treatment. [Results] Following an increase immediately after exercise, lactic acid (LA) and lactate dehydrogenase (LDH) serum levels dropped rapidly and significantly at the end of MLD application and two hours after SE in the subjects receiving MLD. The course of creatine kinase (CK) and myoglobin levels was comparable, and with myoglobin showing a significant difference at 2?h after SE, and CK at 24?h after SE. [Conclusion] Manual lymph drainage after SE correlated with a more rapid fall in LA and of the muscular enzymes of LDH, CK and myoglobin, and may have resulted in an improvement in the regenerative processes elicted by structural damage to the muscle cells. PMID:26696704

  15. Effect of manual lymph drainage on removal of blood lactate after submaximal exercise.

    PubMed

    Bakar, Yesim; Coknaz, Hakk?; Karl?, mid; Semsek, nder; Ser?n, Erdinc; Pala, mer Osman

    2015-11-01

    [Purpose] It has been well-established that exercise-induced muscle damage occurs following intense exercise. Massage is commonly used to manage muscle damage resulting from exercise. However the effect of massage after exercise is still not clear. The purpose of this study was to examine the effect of manual lymph drainage on muscle damage and on the removal of blood lactate following submaximal exercise (SE), as part of a solution to the challenging problem in sports medicine of muscular recovery after exercise. [Subjects and Methods] Eighteen healthy male students, with moderate exercise training, were randomly assigned to either receive manual lymph drainage (MLD) or serve as controls. Both groups were subjected to a graded exercise test, performed on a treadmill ergometer, to determine each subject's individual anaerobic threshold (IAT). Seven days later, all subjects were made to run for 30 minutes on the same treadmill ergometer, at a running speed equivalent to the IAT. One group received MLD treatment, while the control subjects received no treatment. [Results] Following an increase immediately after exercise, lactic acid (LA) and lactate dehydrogenase (LDH) serum levels dropped rapidly and significantly at the end of MLD application and two hours after SE in the subjects receiving MLD. The course of creatine kinase (CK) and myoglobin levels was comparable, and with myoglobin showing a significant difference at 2?h after SE, and CK at 24?h after SE. [Conclusion] Manual lymph drainage after SE correlated with a more rapid fall in LA and of the muscular enzymes of LDH, CK and myoglobin, and may have resulted in an improvement in the regenerative processes elicted by structural damage to the muscle cells. PMID:26696704

  16. Effects of creatine supplementation on exercise performance.

    PubMed

    Demant, T W; Rhodes, E C

    1999-07-01

    While creatine has been known to man since 1835, when a French scientist reported finding this constitutent of meat, its presence in athletics as a performance enhancer is relatively new. Amid claims of increased power and strength, decreased performance time and increased muscle mass, creatine is being hailed as a true ergogenic aid. Creatinine is synthesised from the amino acids glycine, arginine and methionine in the kidneys, liver and pancreas, and is predominantly found in skeletal muscle, where it exists in 2 forms. Approximately 40% is in the free creatine form (Crfree), while the remaining 60% is in the phosphorylated form, creatine phosphate (CP). The daily turnover rate of approximately 2 g per day is equally met via exogenous intake and endogenous synthesis. Although creatine concentration (Cr) is greater in fast twitch muscle fibres, slow twitch fibres have a greater resynthesis capability due to their increased aerobic capacity. There appears to be no significant difference between males and females in Cr, and training does not appear to effect Cr. The 4 roles in which creatine is involved during performance are temporal energy buffering, spatial energy buffering, proton buffering and glycolysis regulation. Creatine supplementation of 20 g per day for at least 3 days has resulted in significant increases in total Cr for some individuals but not others, suggesting that there are 'responders' and 'nonresponders'. These increases in total concentration among responders is greatest in individuals who have the lowest initial total Cr, such as vegetarians. Increased concentrations of both Crfree and CP are believed to aid performance by providing more short term energy, as well as increase the rate of resynthesis during rest intervals. Creatine supplementation does not appear to aid endurance and incremental type exercises, and may even be detrimental. Studies investigating the effects of creatine supplementation on short term, high intensity exercises have reported equivocal results, with approximately equal numbers reporting significant and nonsignificant results. The only side effect associated with creatine supplementation appears to be a small increase in body mass, which is due to either water retention or increased protein synthesis. PMID:10461712

  17. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Creatine phosphokinase/creatine kinase or isoenzymes test system. 862.1215 Section 862.1215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  18. Studies on the safety of creatine supplementation.

    PubMed

    Kim, Hyo Jeong; Kim, Chang Keun; Carpentier, A; Poortmans, Jacques R

    2011-05-01

    Doubtful allegations of adverse effects of creatine supplementation have been released through the press media and through scientific publications. In the present review we have tried to separate the wheat from the chaff by looking for the experimental evidence of any such claims. Anecdotal reports from athletes have appeared on muscle cramp and gastrointestinal complaints during creatine supplementation, but the incidence of these is limited and not necessarily linked to creatine itself. Despite several unproved allegations, liver (enzymes, urea) and kidneys (glomerular filtration urea and albumin excretion rates) show no change in functionality in healthy subjects supplemented with creatine, even during several months, in both young and older populations. The potential effects (production of heterocyclic amines) of mutagenicity and carcinogenicity induced by creatine supplementation have been claimed by a French Sanitary Agency (AFSSA), which might put consumers at risk. Even if there is a slight increase (within the normal range) of urinary methylamine and formaldehyde excretion after a heavy load of creatine (20g/day) this is without effect on kidney function. The search for the excretion of heterocyclic amines remains a future task to definitively exclude the unproved allegation made by some national agencies. We advise that high-dose (>3-5g/day) creatine supplementation should not be used by individuals with pre-existing renal disease or those with a potential risk for renal dysfunction (diabetes, hypertension, reduced glomerular filtration rate). A pre-supplementation investigation of kidney function might be considered for reasons of safety, but in normal healthy subjects appears unnecessary. PMID:21399917

  19. Comprehensive review on lactate metabolism in human health.

    PubMed

    Adeva-Andany, M; Lpez-Ojn, M; Funcasta-Caldern, R; Ameneiros-Rodrguez, E; Donapetry-Garca, C; Vila-Altesor, M; Rodrguez-Seijas, J

    2014-07-01

    Metabolic pathways involved in lactate metabolism are important to understand the physiological response to exercise and the pathogenesis of prevalent diseases such as diabetes and cancer. Monocarboxylate transporters are being investigated as potential targets for diagnosis and therapy of these and other disorders. Glucose and alanine produce pyruvate which is reduced to lactate by lactate dehydrogenase in the cytoplasm without oxygen consumption. Lactate removal takes place via its oxidation to pyruvate by lactate dehydrogenase. Pyruvate may be either oxidized to carbon dioxide producing energy or transformed into glucose. Pyruvate oxidation requires oxygen supply and the cooperation of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. Congenital or acquired deficiency on gluconeogenesis or pyruvate oxidation, including tissue hypoxia, may induce lactate accumulation. Both obese individuals and patients with diabetes show elevated plasma lactate concentration compared to healthy subjects, but there is no conclusive evidence of hyperlactatemia causing insulin resistance. Available evidence suggests an association between defective mitochondrial oxidative capacity in the pancreatic ?-cells and diminished insulin secretion that may trigger the development of diabetes in patients already affected with insulin resistance. Several mutations in the mitochondrial DNA are associated with diabetes mellitus, although the pathogenesis remains unsettled. Mitochondrial DNA mutations have been detected in a number of human cancers. d-lactate is a lactate enantiomer normally formed during glycolysis. Excess d-lactate is generated in diabetes, particularly during diabetic ketoacidosis. d-lactic acidosis is typically associated with small bowel resection. PMID:24929216

  20. Physicochemical characterization of creatine N-methylguanidinium salts.

    PubMed

    Gufford, Brandon T; Sriraghavan, Kamaraj; Miller, Nicholas J; Miller, Donald W; Gu, Xiaochen; Vennerstrom, Jonathan L; Robinson, Dennis H

    2010-09-01

    Creatine is widely used as a dietary supplement for body builders to enhance athletic performance. As the monohydrate, its low solubility in water and high dose lead to water retention and gastrointestinal discomfort. Hence, alternative creatine derivatives with enhanced water solubility and potential therapeutic advantages have been synthesized. As a zwitterionic compound, creatine can form salts at the N-methyl guanidinium or carboxylic acid functional groups. In this study, we determined the aqueous solubilities and partition coefficients of six N-methyl guanidinium salts of creatine compared to those of creatine monohydrate; two of these were new salts, namely, creatine mesylate and creatine hydrogen maleate. The aqueous solubilities of the salts were significantly more than that of creatine monohydrate with the hydrochloride and mesylate being 38 and 30 times more soluble, respectively. The partition coefficients of the creatine salts were very low indicating their relatively high polarity. Permeabilities of creatine pyruvate, citrate, and hydrochloride in Caco-2 monolayers were compared to that of creatine monohydrate. Aside from the creatine citrate salt form that had reduced permeability, there were no significant differences in permeability characteristics in Caco-2 monolayers. Typical of an amphoteric compound, creatine is least soluble in the pH region near the isoelectric point. PMID:22432515

  1. [Whey protein and creatine as nutritional supplements].

    PubMed

    Sundell, Jan; Hulmi, Juha; Rossi, Jari

    2011-01-01

    Nutritional supplements are very popular especially among athletes although some studies show either controversial or even negative results. However, whey protein and creatine seem to have positive effects on muscle size, strength and athletic performance without major adverse effects and high costs. Most studies have shown that supplementation of whey protein can enhance muscle growth in response to resistance training. Some studies also suggest that whey may enhance recovery from heavy exercise and possibly decrease muscle damage and soreness. Creatine supplementation increases the intracellular pool of phosphocreatine in skeletal muscle. Phosphocreatine provides a reserve of energy to rapidly regenerate ATP, which is consumed as a result of muscle contraction. Creatine has been studied in hundreds of clinical trials and has shown benefits including increased muscle strength, power and size. PMID:21553504

  2. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value?

    PubMed Central

    Allen, Patricia J.

    2012-01-01

    Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington’s Disease and Parkinson’s Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies. PMID:22465051

  3. Inborn errors of creatine metabolism and epilepsy.

    PubMed

    Leuzzi, Vincenzo; Mastrangelo, Mario; Battini, Roberta; Cioni, Giovanni

    2013-02-01

    Creatine metabolism disorders include guanidinoacetate methyltransferase (GAMT) deficiency, arginine:glycine amidinotransferase (AGAT) deficiency, and the creatine transporter (CT1-encoded by SLC6A8 gene) deficiency. Epilepsy is one of the main symptoms in GAMT and CT1 deficiency, whereas the occurrence of febrile convulsions in infancy is a relatively common presenting symptom in all the three above-mentioned diseases. GAMT deficiency results in a severe early onset epileptic encephalopathy with development arrest, neurologic deterioration, drug-resistant seizures, movement disorders, mental disability, and autistic-like behavior. In this disorder, epilepsy and associated abnormalities on electroencephalography (EEG) are more responsive to substitutive treatment with creatine monohydrate than to conventional antiepileptic drugs. AGAT deficiency is mainly characterized by mental retardation and severe language disorder without epilepsy. In CT1 deficiency epilepsy is generally less severe than in GAMT deficiency. All creatine disorders can be investigated through measurement of creatine metabolites in body fluids, brain proton magnetic resonance spectroscopy ((1) H-MRS), and molecular genetic techniques. Blood guanidinoacetic acid (GAA) assessment and brain H-MRS examination should be part of diagnostic workup for all patients presenting with epileptic encephalopathy of unknown origin. In girls with learning and/or intellectual disabilities with or without epilepsy, SLC6A8 gene assessment should be part of the diagnostic procedures. The aims of this review are the following: (1) to describe the electroclinical features of epilepsy occurring in inborn errors of creatine metabolism; and (2) to delineate the metabolic alterations associated with GAMT, AGAT, and CT1 deficiency and the role of a substitutive therapeutic approach on their clinical and electroencephalographic epileptic patterns. PMID:23157605

  4. Effects of Combined Creatine Plus Fenugreek Extract vs. Creatine Plus Carbohydrate Supplementation on Resistance Training Adaptations

    PubMed Central

    Taylor, Lem; Poole, Chris; Pena, Earnest; Lewing, Morgan; Kreider, Richard; Foster, Cliffa; Wilborn, Colin

    2011-01-01

    The purpose of this study was to evaluate the effects of combined creatine and fenugreek extract supplementation on strength and body composition. Forty- seven resistance trained men were matched according to body weight to ingest either 70 g of a dextrose placebo (PL), 5 g creatine/70 g of dextrose (CRD) or 3.5 g creatine/900 mg fenugreek extract (CRF) and participate in a 4-d/wk periodized resistance-training program for 8-weeks. At 0, 4, and 8-weeks, subjects were tested on body composition, muscular strength and endurance, and anaerobic capacity. Statistical analyses utilized a separate 3X3 (condition [PL vs. CRD vs. CRF] x time [T1 vs. T2 vs. T3]) ANOVAs with repeated measures for all criterion variables (p ≤ 0.05). No group x time interaction effects or main effects (p > 0.05) were observed for any measures of body composition. CRF group showed significant increases in lean mass at T2 (p = 0.001) and T3 (p = 0.001). Bench press 1RM increased in PL group (p = 0.050) from T1-T3 and in CRD from T1-T2 (p = 0. 001) while remaining significant at T3 (p < 0.001). CRF group showed a significant increase in bench press 1RM from T1-T2 (p < 0.001), and also increased from T2-T3 (p = 0.032). Leg press 1RM significantly increased at all time points for PL, CRD, and CRF groups (p < 0.05). No additional between or within group changes were observed for any performance variables and serum clinical safety profiles (p > 0.05). In conclusion, creatine plus fenugreek extract supplementation had a significant impact on upper body strength and body composition as effectively as the combination of 5g of creatine with 70g of dextrose. Thus, the use of fenugreek with creatine supplementation may be an effective means for enhancing creatine uptake while eliminating the need for excessive amounts of simple carbohydrates. Key points Fenugreek plus creatine supplementation may be a new means of increasing creatine uptake. Creatine plus fenugreek seems to be just as effective as the classic creatine plus carbohydrate ingestion in terms of stimulating training adaptations. This is the first study to our knowledge that has combined fenugreek with creatine supplementation in conjunction with a resistance training program. PMID:24149869

  5. Whole body creatine and protein kinetics in healthy men and women: effects of creatine and amino acid supplementation.

    PubMed

    Kalhan, Satish C; Gruca, Lourdes; Marczewski, Susan; Bennett, Carole; Kummitha, China

    2016-03-01

    Creatine kinetics were measured in young healthy subjects, eight males and seven females, age 20-30 years, after an overnight fast on creatine-free diet. Whole body turnover of glycine and its appearance in creatine was quantified using [1-(13)C] glycine and the rate of protein turnover was quantified using L-ring [(2)H5] phenylalanine. The creatine pool size was estimated by the dilution of a bolus [C(2)H3] creatine. Studies were repeated following a five days supplement creatine 21 g.day(-1) and following supplement amino acids 14.3 g day(-1). Creatine caused a ten-fold increase in the plasma concentration of creatine and a 50 % decrease in the concentration of guanidinoacetic acid. Plasma amino acids profile showed a significant decrease in glycine, glutamine, and taurine and a significant increase in citrulline, valine, lysine, and cysteine. There was a significant decrease in the rate of appearance of glycine, suggesting a decrease in de-novo synthesis (p = 0.006). The fractional and absolute rate of synthesis of creatine was significantly decreased by supplemental creatine. Amino acid supplement had no impact on any of the parameters. This is the first detailed analysis of creatine kinetics and the effects of creatine supplement in healthy young men and women. These methods can be applied for the analysis of creatine kinetics in different physiological states. PMID:26480831

  6. Efficient Production of Pyruvate from DL-Lactate by the Lactate-Utilizing Strain Pseudomonas stutzeri SDM

    PubMed Central

    Gao, Chao; Qiu, Jianhua; Ma, Cuiqing; Xu, Ping

    2012-01-01

    Background The platform chemical lactate is currently produced mainly through the fermentation of sugars presented in biomass. Besides the synthesis of biodegradable polylactate, lactate is also viewed as a feedstock for the green chemistry of the future. Pyruvate, another important platform chemical, can be produced from lactate through biocatalysis. Methodology/Principal Findings It was established that whole cells of Pseudomonas stutzeri SDM catalyze lactate oxidation with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) through the inherent electron transfer chain. Unlike the lactate oxidation processes observed in previous reports, the mechanism underlying lactate oxidation described in the present study excluded the costliness of the cofactor regeneration step and production of the byproduct hydrogen peroxide. Conclusions/Significance Biocatalysis conditions were optimized by using the cheap dl-lactate as the substrate and whole cells of the lactate-utilizing P. stutzeri SDM as catalyst. Under optimal conditions, the biocatalytic process produced pyruvate at a high concentration (48.4 g l−1) and a high yield (98%). The bioconversion system provides a promising alternative for the green production of pyruvate. PMID:22792404

  7. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Creatine test system. 862.1210 Section 862.1210....1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure... and endocrine disorders including hyperthyroidism. (b) Classification. Class I (general controls)....

  8. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Creatine test system. 862.1210 Section 862.1210....1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure... and endocrine disorders including hyperthyroidism. (b) Classification. Class I (general controls)....

  9. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Creatine test system. 862.1210 Section 862.1210....1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure... and endocrine disorders including hyperthyroidism. (b) Classification. Class I (general controls)....

  10. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Creatine test system. 862.1210 Section 862.1210....1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure... and endocrine disorders including hyperthyroidism. (b) Classification. Class I (general controls)....

  11. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Creatine test system. 862.1210 Section 862.1210....1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure... and endocrine disorders including hyperthyroidism. (b) Classification. Class I (general controls)....

  12. Creatine and the Male Adolescent Athlete

    ERIC Educational Resources Information Center

    Schumaker, Shauna; Eyers, Christina; Cappaert, Thomas

    2012-01-01

    As the level of competition in youth sports increases, so does athletes' vulnerability to experimenting with performance-enhancing aids (PEAs) at alarmingly young ages. One of the more commonly used PEAs is a supplement called creatine, which has the ability to generate muscular energy, allowing athletes to train at higher intensities for longer…

  13. Creatine and the Male Adolescent Athlete

    ERIC Educational Resources Information Center

    Schumaker, Shauna; Eyers, Christina; Cappaert, Thomas

    2012-01-01

    As the level of competition in youth sports increases, so does athletes' vulnerability to experimenting with performance-enhancing aids (PEAs) at alarmingly young ages. One of the more commonly used PEAs is a supplement called creatine, which has the ability to generate muscular energy, allowing athletes to train at higher intensities for longer

  14. Effects of creatine monohydrate and polyethylene glycosylated creatine supplementation on muscular strength, endurance, and power output.

    PubMed

    Herda, Trent J; Beck, Travis W; Ryan, Eric D; Smith, Abbie E; Walter, Ashley A; Hartman, Michael J; Stout, Jeffrey R; Cramer, Joel T

    2009-05-01

    The purpose of this study was to examine the effects of a moderate dose of creatine monohydrate (CM) and two smaller doses of polyethylene glycosylated (PEG) creatine on muscular strength, endurance, and power output. Fifty-eight healthy men (mean +/- SD: age, 21 +/- 2 years; height, 176 +/- 6 cm; body mass [BM], 75 +/- 14 kg) volunteered and were randomly assigned to 1 of 4 groups: (a) placebo (PL; 3.6 g of microcrystalline cellulose; n = 15), (b) CM (5 g of creatine; n = 13), (c) small-dose PEG creatine (1.25 g of creatine: PEG1.25; n = 14), or (d) moderate-dose PEG creatine (2.50 g of creatine: PEG2.50; n = 16). Testing was conducted before (pre-) and after (post-) a 30-day supplementation period. Measurements included body mass, countermovement vertical jump (CVJ) height, power output during the Wingate test (peak power [PP] and mean power [MP]), 1 repetition maximum bench press (1RMBP), 1RM leg press (1RMLP) strength, and repetitions to failure at 80% of the 1RM for bench press (REPBP) and leg press (REPLP). BM and MP (W) increased (p creatine (1.25 and 2.50 g.d) improved muscle strength (1RMBP and 1RMLP) to the same extent as 5 g.d of CM, but did not alter BM, power output, or endurance. When compared to the PL group, neither CM nor PEG creatine supplementation improved peak power output (CVJ or PP), MP, or muscle endurance (REPBP or REPLP). Thus, PEG creatine may have ergogenic effects that are comparable to those of CM, but with a smaller dose of creatine. PMID:19387397

  15. Creatine supplementation improves the anaerobic performance of elite junior fin swimmers.

    PubMed

    Juhsz, Imre; Gyre, I; Csende, Zs; Rcz, L; Tihanyi, J

    2009-09-01

    The objective of this study was to determine whether creatine supplementation (CrS) could improve mechanical power output, and swimming performance in highly trained junior competitive fin swimmers. Sixteen male fin swimmers (age:15.9+/-1.6 years) were randomly and evenly assigned to either a creatine (CR, 4x5 g/day creatine monohydrate for 5 days) or placebo group (P, same dose of a dextrose-ascorbic acid placebo) in a double-blind research. Before and after CrS the average power output was determined by a Bosco-test and the swimming time was measured in two maximal 100 m fin swims. After five days of CrS the average power of one minute continuous rebound jumps increased by 20.2%. The lactate concentration was significantly less after 5 minutes restitution at the second measurement in both groups. The swimming time was significantly reduced in both first (pre: 50.69+/-1.41 s; post: 48.86+/-1.34 s) and second (pre: 50.39+/-1.38 s; post: 48.53+/-1.35 s) sessions of swimming in CR group, but remained almost unchanged in the P group.The results of this study indicate that five day Cr supplementation enhances the dynamic strength and may increase anaerobic metabolism in the lower extremity muscles, and improves performance in consecutive maximal swims in highly trained adolescent fin swimmers. PMID:19706374

  16. [High-efficiency L-lactate production from glycerol by metabolically engineered Escherichia coli].

    PubMed

    Tian, Kangming; Shi, Guiyang; Lu, Fuping; Singh, Suren; Wang, Zhengxiang

    2013-09-01

    High-efficient conversion of glycerol to L-lactate is beneficial for the development of both oil hydrolysis industry and biodegradable materials manufacturing industry. In order to construct an L-lactate producer, we first cloned a coding region of gene BcoaLDH encoding an L-lactate dehydrogenase from Bacillus coagulans CICIM B1821 and the promoter sequence (P(ldhA)) of the D-lactate dehydrogenase (LdhA) from Escherichia coli CICIM B0013. Then we assembled these two DNA fragments in vitro and yielded an expression cassette, P(ldhA)-BcoaLDH. Then, the cassette was chromosomally integrated into an ldhA mutant strain, Escherichia coli CICIM B0013-080C, by replacing lldD encoding an FMN-dependent L-lactate dehydrogenase. An L-lactate higher-producer strain, designated as E. coli B0013-090B, possessing genotype of lldD::P(ldhA)-BcoaLDH, deltaack-pta deltapps deltapflB deltadld deltapoxB deltaadhE deltafrdA and deltaldhA, was generated. Under the optimal condition, 132.4 g/L L-lactate was accumulated by B0013-090B with the lactate productivity of 4.90 g/Lh and the yield of 93.7% in 27 h from glycerol. The optical purity of L-lactate in broth is above 99.95%. PMID:24409690

  17. Utilization of d-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans

    PubMed Central

    Sheng, Binbin; Xu, Jing; Zhang, Yingxin; Jiang, Tianyi; Deng, Sisi; Kong, Jian; Ma, Cuiqing; Xu, Ping

    2015-01-01

    d-Lactate was identified as one of the few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, the strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with high activity toward d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity toward d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate-oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase. PMID:25862219

  18. Effect of creatine, creatinine, and creatine ethyl ester on TLR expression in macrophages

    PubMed Central

    Leland, Korey M.; McDonald, Thomas L.; Drescher, Kristen M.

    2011-01-01

    Despite the widespread availability and use of dietary supplements, minimal work has been performed to assess the potential dangers many of these supplements may have on the hosts well-being, in particular the hosts ability to respond to infection. One supplement extensively used by both adolescents and adults is creatine. Using Real-time PCR, we examined the impact of short-term exposure of a mouse macrophage cell line (RAW 264.7 cells) to two readily available forms of creatine used in supplements creatine monohydrate (CR) and creatine ethyl ester (CEE) as well as the end product of creatine metabolism, creatinine (CRN), on expression of toll-like receptor-2 (TLR-2), TLR-3, TLR-4, and TLR-7. CR down-regulated TLR-2, TLR-3, TLR-4 and TLR-7 mRNA levels in RAW cells. Similar results were observed following exposure of RAW cells to CRN. Conversely CEE appears to possess immunostimulatory properties and increases expression of TLR-2, TLR-3, TLR-4, and TLR-7 in RAW cells. These data are supported by immunostaining using antibodies specific for the individual TLRs before and after exposure of RAW cells to CR, CRN, or CEE. To extend these findings, we isolated murine splenocytes and exposed the cells to CR, CEE, or CRN for 24 hours and performed immunofluorescent staining for TLR-2, TLR-3, TLR-4 and TLR-7. The results obtained from this study with primary splenocytes were consistent with the studies using RAW cells. Together, these data suggest that creatine and creatine derivatives may impact the ability of immune cells to sense a wide array of viral and bacterial pathogens. Of great interest, CRN - largely considered to be a waste product of the argenine biosynthesis pathway may also have immunosuppressive properties similar to those of CR. PMID:21575742

  19. Effect of creatine, creatinine, and creatine ethyl ester on TLR expression in macrophages.

    PubMed

    Leland, Korey M; McDonald, Thomas L; Drescher, Kristen M

    2011-09-01

    Despite the widespread availability and use of dietary supplements, minimal work has been performed to assess the potential dangers many of these supplements may have on the host's well-being, in particular the host's ability to respond to infection. One supplement extensively used by both adolescents and adults is creatine. Using Real-time PCR, we examined the impact of short-term exposure of a mouse macrophage cell line (RAW 264.7 cells) to two readily available forms of creatine used in supplements--creatine monohydrate (CR) and creatine ethyl ester (CEE) as well as the end product of creatine metabolism, creatinine (CRN), on expression of toll-like receptor-2 (TLR-2), TLR-3, TLR-4, and TLR-7. CR down-regulated TLR-2, TLR-3, TLR-4 and TLR-7 mRNA levels in RAW cells. Similar results were observed following exposure of RAW cells to CRN. Conversely CEE appears to possess immunostimulatory properties and increases expression of TLR-2, TLR-3, TLR-4, and TLR-7 in RAW cells. These data are supported by immunostaining using antibodies specific for the individual TLRs before and after exposure of RAW cells to CR, CRN, or CEE. To extend these findings, we isolated murine splenocytes and exposed the cells to CR, CEE, or CRN for 24 hours and performed immunofluorescent staining for TLR-2, TLR-3, TLR-4 and TLR-7. The results obtained from this study with primary splenocytes were consistent with the studies using RAW cells. Together, these data suggest that creatine and creatine derivatives may impact the ability of immune cells to sense a wide array of viral and bacterial pathogens. Of great interest, CRN--largely considered to be a waste product of the argenine biosynthesis pathway may also have immunosuppressive properties similar to those of CR. PMID:21575742

  20. Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse.

    PubMed

    Dickinson, Hayley; Ireland, Zoe J; Larosa, Domenic A; O'Connell, Bree A; Ellery, Stacey; Snow, Rod; Walker, David W

    2013-09-01

    We have previously reported that maternal creatine supplementation protects the neonate from hypoxic injury. Here, we investigated whether maternal creatine supplementation altered expression of the creatine synthesis enzymes (arginine:glycine amidinotransferase [AGAT], guanidinoaceteate methyltransferase [GAMT]) and the creatine transporter (solute carrier family 6 [neurotransmitter transporter, creatine] member 8: SLC6A8) in the term offspring. Pregnant spiny mice were fed a 5% creatine monohydrate diet from midgestation (day 20) to term (39 days). Placentas and neonatal kidney, liver, heart, and brain collected at 24 hours of age underwent quantitative polymerase chain reaction and Western blot analysis. Maternal creatine had no effect on the expression of AGAT and GAMT in neonatal kidney and liver, but mRNA expression of AGAT in brain tissues was significantly decreased in both male and female neonates born to mothers who were fed the creatine diet. SLC6A8 expression was not affected by maternal dietary creatine loading in any tissues. Maternal dietary creatine supplementation from midgestation in the spiny mouse did not alter the capacity for creatine synthesis or transport. PMID:23427185

  1. A comparative proteomic analysis of Bacillus coagulans in response to lactate stress during the production of L-lactic acid.

    PubMed

    Wang, Xiuwen; Qin, Jiayang; Wang, Landong; Xu, Ping

    2014-12-01

    The growth rate and maximum biomass of Bacillus coagulans 2-6 were inhibited by lactate; inhibition by sodium lactate was stronger than by calcium lactate. The differences of protein expressions by B. coagulans 2-6 under the lactate stress were determined using two-dimensional electrophoresis coupled with mass spectrometric identification. Under the non-stress condition, calcium lactate stress and sodium lactate stress, the number of detected protein spots was 1,571117, 1,281231 and 904127, respectively. Four proteins with high expression under lactate stress were identified: lactate dehydrogenase, cysteine synthase A, aldo/keto reductase and ribosomal protein L7/L12. These proteins are thus potential targets for the reconstruction of B. coagulans to promote its resistance to lactate stress. PMID:25214213

  2. Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology.

    PubMed

    Stockler, Sylvia; Schutz, Peter W; Salomons, Gajja S

    2007-01-01

    Cerebral creatine deficiency syndromes (CCDSs) are a group of inborn errors of creatine metabolism comprising two autosomal recessive disorders that affect the biosynthesis of creatine--i.e. arginine:glycine amidinotransferase deficiency (AGAT; MIM 602360) and guanidinoacetate methyltransferase deficiency (GAMT; MIM 601240)--and an X-linked defect that affects the creatine transporter, SLC6A8 deficiency (SLC6A8; MIM 300036). The biochemical hallmarks of these disorders include cerebral creatine deficiency as detected in vivo by 1H magnetic resonance spectroscopy (MRS) of the brain, and specific disturbances in metabolites of creatine metabolism in body fluids. In urine and plasma, abnormal guanidinoacetic acid (GAA) levels are found in AGAT deficiency (reduced GAA) and in GAMT deficiency (increased GAA). In urine of males with SLC6A8 deficiency, an increased creatine/creatinine ratio is detected. The common clinical presentation in CCDS includes mental retardation, expressive speech and language delay, autistic like behaviour and epilepsy. Treatment of the creatine biosynthesis defects has yielded clinical improvement, while for creatine transporter deficiency, successful treatment strategies still need to be discovered. CCDSs may be responsible for a considerable fraction of children and adults affected with mental retardation of unknown etiology. Thus, screening for this group of disorders should be included in the differential diagnosis of this population. In this review, also the importance of CCDSs for the unravelling of the (patho)physiology of cerebral creatine metabolism is discussed. PMID:18652076

  3. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate.

    PubMed Central

    Veiga da Cunha, M; Foster, M A

    1992-01-01

    The simultaneous fermentation of glycerol and sugar by lactobacillus brevis B22 and Lactobacillus buchneri B190 increases both the growth rate and total growth. The reduction of glycerol to 1,3-propanediol by the lactobacilli was found to influence the metabolism of the sugar cofermented by channelling some of the intermediate metabolites (e.g., pyruvate) towards NADH-producing (rather than NADH-consuming) reactions. Ultimately, the absolute requirement for NADH to prevent the accumulation of 3-hydroxypropionaldehyde leads to a novel lactate-glycerol cofermentation. As a result, additional ATP can be made not only by (i) converting pyruvate to acetate via acetyl phosphate rather than to the ethanol usually found and (ii) oxidizing part of the intermediate pyruvate to acetate instead of the usual reduction to lactate but also by (iii) reoxidation of accumulated lactate to acetate via pyruvate. The conversion of lactate to pyruvate is probably catalyzed by NAD-independent lactate dehydrogenases that are found only in the cultures oxidizing lactate and producing 1,3-propanediol, suggesting a correlation between the expression of these enzymes and a raised intracellular NAD/NADH ratio. The enzymes metabolizing glycerol (glycerol dehydratase and 1,3-propanediol dehydrogenase) were expressed in concert without necessary induction by added glycerol, although their expression may also be influenced by the intracellular NAD/NADH ratio set by the different carbohydrates fermented. PMID:1732191

  4. Macro creatine kinase type 1: a cause of spuriously elevated serum creatine kinase associated with leukoencephalopathy in a child.

    PubMed

    Bodensteiner, John B

    2014-07-01

    Macro creatine kinase type 1 is a complex formed by the creatine kinase isoenzyme BB and monoclonal IgG and occurs in about 1% of patients studied. First identified as a cause of spurious elevation of the total serum creatine kinase in patients suspected of myocardial infarction, the test has been largely replaced by the measurement of troponin levels. We present a child with delayed milestones and persistently elevated total serum creatine kinase measurements (? 1000-4000 IU) normal electromyogram and brisk myotatic reflexes. Creatine kinase isoenzymes and brain imaging showed the presence of macro creatine kinase type 1 and extensive signal abnormality of the cerebral white matter. Macro creatine kinase type 1 has been associated with several conditions though it has not been described in association with leukoencephalopathy or in patients this young. Macro creatine kinase type 1 can be a cause of elevated total creatine kinase in patients without primary muscle disease. The significance of the relationship of the macro creatine kinase to the leukoencephalopathy in this patient is unknown. PMID:23625087

  5. Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake

    PubMed Central

    Nabuurs, C I; Choe, C U; Veltien, A; Kan, H E; van Loon, L J C; Rodenburg, R J T; Matschke, J; Wieringa, B; Kemp, G J; Isbrandt, D; Heerschap, A

    2013-01-01

    Creatine (Cr) plays an important role in muscle energy homeostasis by its participation in the ATPphosphocreatine phosphoryl exchange reaction mediated by creatine kinase. Given that the consequences of Cr depletion are incompletely understood, we assessed the morphological, metabolic and functional consequences of systemic depletion on skeletal muscle in a mouse model with deficiency of l-arginine:glycine amidinotransferase (AGAT?/?), which catalyses the first step of Cr biosynthesis. In vivo magnetic resonance spectroscopy showed a near-complete absence of Cr and phosphocreatine in resting hindlimb muscle of AGAT?/? mice. Compared with wild-type, the inorganic phosphate/?-ATP ratio was increased fourfold, while ATP levels were reduced by nearly half. Activities of proton-pumping respiratory chain enzymes were reduced, whereas F1F0-ATPase activity and overall mitochondrial content were increased. The Cr-deficient AGAT?/? mice had a reduced grip strength and suffered from severe muscle atrophy. Electron microscopy revealed increased amounts of intramyocellular lipid droplets and crystal formation within mitochondria of AGAT?/? muscle fibres. Ischaemia resulted in exacerbation of the decrease of pH and increased glycolytic ATP synthesis. Oral Cr administration led to rapid accumulation in skeletal muscle (faster than in brain) and reversed all the muscle abnormalities, revealing that the condition of the AGAT?/? mice can be switched between Cr deficient and normal simply by dietary manipulation. Systemic creatine depletion results in mitochondrial dysfunction and intracellular energy deficiency, as well as structural and physiological abnormalities. The consequences of AGAT deficiency are more pronounced than those of muscle-specific creatine kinase deficiency, which suggests a multifaceted involvement of creatine in muscle energy homeostasis in addition to its role in the phosphocreatinecreatine kinase system. PMID:23129796

  6. Assay of creatine kinase in microtiter plates using thio-NAD to allow monitoring at 405 nM.

    PubMed

    Florini, J R

    1989-11-01

    An assay system for creatine kinase using microtiter plates and a plate reader that records absorbancies at 405 nM has been devised. The system is an adaptation of well-established assays that couple creatine kinase with the reactions catalyzed by hexokinase and glucose-6-phosphate dehydrogenase (G6PDH), to give a measurable increase in reduced pyridine nucleotide quantitated by absorbance at 340 nM. Two features of this system are modified for reading at 405 nM: (i) The thioamido derivative of NAD is used because its reduced form exhibits a substantial increase in absorbance at 405 nM, the most commonly available wavelength on microplate readers; and (ii) glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is used because it can reduce either NAD or NADP (unlike most other G6PDH enzymes, which require NADP), thus making it unnecessary to use the more expensive thio-NADP. The rate of thio-NAD reduction is linear with enzyme concentration and time over a 20-fold range of concentrations of purified creatine kinase, and the assay also works well with myogenic cells allowed to grow and differentiate in the 96-well plate in which the assay is performed. This system offers considerable savings in cells, time, and material in studies of muscle cell differentiation, for which creatine kinase levels are frequently measured. It also provides a potential method for the convenient and economical measurement of activities of many other enzymes that can be coupled to reduction of thio-NAD. PMID:2610356

  7. Elevated plasma creatinine due to creatine ethyl ester use.

    PubMed

    Velema, M S; de Ronde, W

    2011-02-01

    Creatine is a nutritional supplement widely used in sport, physical fitness training and bodybuilding. It is claimed to enhance performance. We describe a case in which serum creatinine is elevated due to the use of creatine ethyl esther. One week after withdrawal, the plasma creatinine had normalised. There are two types of creatine products available: creatine ethyl esther (CEE) and creatine monohydrate (CM). Plasma creatinine is not elevated in all creatine-using subjects. CEE , but not CM, is converted into creatinine in the gastrointestinal tract. As a result the use of CEE may be associated with elevated plasma creatinine levels. Since plasma creatinine is a widely used marker for renal function, the use of CEE may lead to a false assumption of renal failure. PMID:21411845

  8. Analysis of lactation shapes in extended lactations.

    PubMed

    Steri, R; Dimauro, C; Canavesi, F; Nicolazzi, E L; Macciotta, N P P

    2012-10-01

    In order to describe the temporal evolution of milk yield (MY) and composition in extended lactations, 21 658 lactations of Italian Holstein cows were analyzed. Six empirical mathematical models currently used to fit 305 standard lactations (Wood, Wilmink, Legendre, Ali and Schaeffer, quadratic and cubic splines) and one function developed specifically for extended lactations (a modification of the Dijkstra model) were tested to identify a suitable function for describing patterns until 1000 days in milk (DIM). Comparison was performed on individual patterns and on average curves grouped according to parity (primiparous and multiparous) and lactation length (standard ?305 days, and extended from 600 to 1000 days). For average patterns, polynomial models showed better fitting performances when compared with the three or four parameters models. However, LEG and spline regression, showed poor prediction ability at the extremes of the lactation trajectory. The Ali and Schaeffer polynomial and Dijkstra function were effective in modelling average curves for MY and protein percentage, whereas a reduced fitting ability was observed for fat percentage and somatic cell score. When individual patterns were fitted, polynomial models outperformed nonlinear functions. No detectable differences were observed between standard and extended patterns in the initial phase of lactation, with similar values of peak production and time at peak. A considerable difference in persistency was observed between 200 and 305 DIM. Such a difference resulted in an estimated difference between standard and extended cycle of about 7 and 9 kg/day for daily yield at 305 DIM and of 463 and 677 kg of cumulated milk production at 305 DIM for the first- and second-parity groups, respectively. For first and later lactation animals, peak yield estimates were nearly 31 and 38 kg, respectively, and occurred at around 65 and 40 days. The asymptotic level of production was around 9 kg for multiparous cows, whereas the estimate was negative for first parity. PMID:22717349

  9. Structure and Function of Plasmodium falciparum malate dehydrogenase: Role of Critical Amino Acids in C-substrate Binding Procket

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our lab have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal g...

  10. Analysis of Quaternary Structure of a [LDH-like] Malate Dehydrogenase of Plasmodium falciparum with Oligomeric Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-Malate dehydrogenase (PfMDH) from Plasmodium falciparum, the causative agent for the most severe form of malaria, has shown remarkable similarities to L-lactate dehydrogenase (PfLDH). PfMDH is more closely related to [LDH-like] MDHs characterized in archea and other prokaryotes. Initial sequence a...

  11. Creatine Use and Exercise Heat Tolerance in Dehydrated Men

    PubMed Central

    Watson, Greig; Casa, Douglas J; Fiala, Kelly A; Hile, Amy; Roti, Melissa W; Healey, Julie C; Armstrong, Lawrence E; Maresh, Carl M

    2006-01-01

    Context: Creatine monohydrate (CrM) use is highly prevalent in team sports (eg, football, lacrosse, ice hockey) and by athletes at the high school, college, professional, and recreational levels. Concerns have been raised about whether creatine use is associated with increased cramping, muscle injury, heat intolerance, and risk of dehydration. Objective: To assess whether 1 week of CrM supplementation would compromise hydration status, alter thermoregulation, or increase the incidence of symptoms of heat illness in dehydrated men performing prolonged exercise in the heat. Design: Double-blind, randomized, crossover design. Setting: Human Performance Laboratory. Patients or Other Participants: Twelve active males, age = 22 1 year, height = 180 3 cm, mass = 78.8 1.2 kg, body fat = 9 1%, V?o2peak = 50.9 1 mlkg?1min?1. Intervention(s): Subjects consumed 21.6 gd?1 of CrM or placebo for 7 days, underwent 48 10 days of washout between treatments, and then crossed over to the alternate treatment in the creatine group. On day 7 of each treatment, subjects lost 2% body mass by exercising in 33.5C and then completed an 80-minute exercise heat-tolerance test (33.5C 0.5C, relative humidity = 41 12%). The test consisted of four 20-minute sequences of 4 minutes of rest, alternating a 3-minute walk and 1-minute high-intensity run 3 times, and walking for 4 minutes. Main Outcome Measures: Thermoregulatory, cardiorespiratory, metabolic, urinary, and perceptual responses. Results: On day 7, body mass had increased 0.88 kg. No interaction or treatment differences for placebo versus CrM during the exercise heat-tolerance test were noted in thermoregulatory (rectal temperature, 39.3 0.4C versus 39.4 0.4C) cardiorespiratory (V?o2, 21.4 2.7 versus 20.0 1.8 mlkg?1min?1; heart rate, 192 10 versus 192 11 beatsmin?1; mean arterial pressure, 90 9 versus 88 5 mm Hg), metabolic (lactate, 6.7 2.7 versus 7.0 3.0 mmolL?1), perceptual thirst (thirst, 7 1 versus 7 1; thermal sensation, 8 2 versus 8 1; rating of perceived exertion, 17 3 versus 17 2), plasma glucose (020 minutes of exercise heat-tolerance, 6.5 1.2 versus 6.8 0.8 mmolL?1), plasma (297 5 versus 300 4 mOsmkg?1) and urine (792 117 versus 651 134 mOsmkg?1), urine specific gravity (1.025 0.003 versus 1.030 0.005) and urine color (7 1 versus 6 1) measures were increased during CrM. Environmental Symptoms Questionnaire scores were similar between treatments. The levels of dehydration incurred during dehydration and the exercise heat-tolerance test were similar and led to similar cumulative body mass losses (?4.09 0.53 versus ?4.38 0.58% body mass). Conclusions: Short-term CrM supplementation did not increase the incidence of symptoms or compromise hydration status or thermoregulation in dehydrated, trained men exercising in the heat. PMID:16619091

  12. Clinical pharmacology of the dietary supplement creatine monohydrate.

    PubMed

    Persky, A M; Brazeau, G A

    2001-06-01

    Creatine is a dietary supplement purported to improve exercise performance and increase fat-free mass. Recent research on creatine has demonstrated positive therapeutic results in various clinical applications. The purpose of this review is to focus on the clinical pharmacology and therapeutic application of creatine supplementation. Creatine is a naturally occurring compound obtained in humans from endogenous production and consumption through the diet. When supplemented with exogenous creatine, intramuscular and cerebral stores of creatine and its phosphorylated form, phosphocreatine, become elevated. The increase of these stores can offer therapeutic benefits by preventing ATP depletion, stimulating protein synthesis or reducing protein degradation, and stabilizing biological membranes. Evidence from the exercise literature has shown athletes benefit from supplementation by increasing muscular force and power, reducing fatigue in repeated bout activities, and increasing muscle mass. These benefits have been applied to disease models of Huntington's, Parkinson's, Duchenne muscular dystrophy, and applied clinically in patients with gyrate atrophy, various neuromuscular disorders, McArdle's disease, and congestive heart failure. This review covers the basics of creatine synthesis and transport, proposed mechanisms of action, pharmacokinetics of exogenous creatine administration, creatine use in disease models, side effects associated with use, and issues on product quality. PMID:11356982

  13. On the Importance of Exchangeable NH Protons in Creatine for the Magnetic Coupling of Creatine Methyl Protons in Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kruiskamp, M. J.; Nicolay, K.

    2001-03-01

    The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the creatine magnetization transfer effect were investigated in excised rat hindleg skeletal muscle that was equilibrated in either H2O or D2O solutions containing creatine. The efficiency of off-resonance magnetization transfer to the protons of mobile creatine in excised muscle was similar to that previously reported in intact muscle in vivo. Equilibrating the isolated muscle in D2O solution had no effect on the magnetic coupling to the immobile protons. It is concluded that exchangeable protons play a negligible role in the magnetic coupling of creatine methyl protons in muscle.

  14. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction, and tumors of the lung or kidneys. (b) Classification. Class II (special controls). The device...

  15. Multichannel Simultaneous Determination of Activities of Lactate Dehydrogenase

    SciTech Connect

    Ma, L.

    2000-09-12

    It is very important to find the best conditions for some enzymes to do the best catalysis in current pharmaceutical industries. Based on the results above, we could say that this set-up could be widely used in finding the optimal condition for best enzyme activity of a certain enzyme. Instead of looking for the best condition for enzyme activity by doing many similar reactions repeatedly, we can complete this assignment with just one run if we could apply enough conditions.

  16. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    ERIC Educational Resources Information Center

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to

  17. [Autoimmune hemolytic anemia with normal serum lactate dehydrogenase level].

    PubMed

    Mizuno, Hideaki; Hangaishi, Akira; Saika, Makoto; Morioka, Takehiko; Ando, Yayoi; Kida, Michiko; Usuki, Kensuke

    2015-11-01

    We herein report two cases of AIHA (autoimmune hemolytic anemia), a 25-year-old woman and a 77-year-old man, who presented with normal serum LDH values. Though in these two cases, low hemoglobin and haptoglobin, high total bilirubin and positive direct Coombs' test results led to the diagnosis of AIHA, both patients had normal LDH levels (218 and 187 IU/l). Both cases were successfully treated with prednisone. In the diagnosis of AIHA, elevated LDH is usually used as a marker of hemolysis. However, medical records of 24 AIHA patients collected in our institute from January 2001 to August 2012 revealed LDH levels to have been normal in 25% of these cases. This report indicates the importance of obtaining complete information about the blood testing of patients and taking these data into account when considering the diagnosis of AIHA. PMID:26666722

  18. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    ERIC Educational Resources Information Center

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to…

  19. The Partial Purification and Characterization of Lactate Dehydrogenase.

    ERIC Educational Resources Information Center

    Wolf, Edward C.

    1988-01-01

    Offers several advantages over other possibilities as the enzyme of choice for a student's first exposure to a purification scheme. Uses equipment and materials normally found in biochemistry laboratories. Incorporates several important biochemical techniques including spectrophotometry, chromatography, centrifugation, and electrophoresis. (MVL)

  20. RNA silencing of lactate dehydrogenase gene in Rhizopus oryzae

    PubMed Central

    Gheinani, Ali Hashemi; Jahromi, Neda Haghayegh; Feuk-Lagerstedt, Elisabeth; Taherzadeh, Mohammad J

    2011-01-01

    Rhizopus oryzae is a filamentous fungus, belonging to the order Mucorales. It can ferment a wide range of carbohydrates hydrolyzed from lignocellulosic materials and even cellobiose to produce ethanol. However, R. oryzae also produces lactic acid as a major metabolite, which reduces the yield of ethanol. In this study, we show that significant reduction of lactic acid production could be achieved by short (25nt) synthetic siRNAs targeting the ldhA gene. The average yield of lactic acid production by R. oryzae during the batch fermentation process, where glucose had been used as a sole carbon source, diminished from 0.07gm/gm in wild type to 0.01gm/gm in silenced samples. In contrast, the average yield of ethanol production increased from 0.39gm/gm in wild type to 0.45gm/gm in silenced samples. These results show 85.7% (gm/gm) reduction in lactic acid production as compared with the wild type R. oryzae, while an increase of 15.4% (gm/gm) in ethanol yield. PMID:21769297

  1. Serum creatine kinase in marathon runners.

    PubMed

    Haibach, H; Hosler, M W

    1985-01-15

    Serum creatine phosphokinase (CK) and CK-MB activity were determined in 21 trained runners participating in a marathon race (42.2 km). Enzyme activities immediately after the race increased two to three times compared with activities before the race. The greatest increases were found in the slowest runners, suggesting greater skeletal muscular trauma in the least trained or fit. As these are likely to include the older athletes who are also more likely to suffer acute myocardial injury during strenuous exercise, our findings assume special import in the interpretation of increased CK and CK-MB serum activities of older athletes. PMID:3967735

  2. Membrane filtration affinity purification (MFAP) of dehydrogenases using cibacron blue.

    PubMed

    Ling, T G; Mattiasson, B

    1989-12-01

    The method for purification of biomolecules by a combination of affinity interactions and membrane filtration for separation of unwanted material has been found to be of interest for large-scale work. This study examines the suitability of silica nanoparticles as carriers in the process. Alcohol dehydrogenase and lactate dehydrogenases were chosen as target molecules to be purified. The binding capacity was found to be comparative to what is obtained for high-performance liquid chromatography (HPLC) packing material. Both binding and desorption of the enzymes were found to be effective. The limiting factor of the process was the filtration flow rate. PMID:18588072

  3. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  4. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate

  5. Metabolic control analysis of L-lactate synthesis pathway in Rhizopus oryzae As 3.2686.

    PubMed

    Ke, Wei; Chang, Shu; Chen, Xiaoju; Luo, Shuizhong; Jiang, Shaotong; Yang, Peizhou; Wu, Xuefeng; Zheng, Zhi

    2015-11-01

    The relationship between the metabolic flux and the activities of the pyruvate branching enzymes of Rhizopus oryzae As 3.2686 during L-lactate fermentation was investigated using the perturbation method of aeration. The control coefficients for five enzymes, pyruvate dehydrogenase (PDH), pyruvate carboxylase (PC), pyruvate decarboxylase (PDC), lactate dehydrogenase (LDH), and alcohol dehydrogenase (ADH), were calculated. Our results indicated significant correlations between PDH and PC, PDC and LDH, PDC and ADH, LDH and ADH, and PDC and PC. It also appeared that PDH, PC, and LDH strongly controlled the L-lactate flux; PDH and ADH strongly controlled the ethanol flux; while PDH and PC strongly controlled the acetyl coenzyme A flux and the oxaloacetate flux. Further, the flux control coefficient curves indicated that the control of the system gradually transferred from PDC to PC during the steady state. Therefore, PC was the key rate-limiting enzyme that controls the flux distribution. PMID:26288952

  6. Creatine Supplementation and Swim Performance: A Brief Review

    PubMed Central

    Hopwood, Melissa J.; Graham, Kenneth; Rooney, Kieron B.

    2006-01-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key Points Creatine supplementation does not improve single sprint swimming performance. Creatine supplementation does improve repeated interval swim set performance. Creatine supplementation does improve power development in swimmers when measured on a swim bench ergometer. As a result of the high energy demands of the butterfly and breaststroke competitive swimming styles, potentially, the benefits associated with creatine supplementation and swimming performance could be greater when swimming butterfly or breaststroke, compared to the commonly examined freestyle swimming stroke. PMID:24198677

  7. Water recycling in lactation.

    PubMed

    Baverstock, P; Green, B

    1975-02-21

    During lactation, female rodents, dingoes, and kangaroos consume urine and feces excreted by the young. Studies with tritiated water as a tracer for native water showed that roughly one-third of the water secreted as milk was returned to the mother. The results are cogent to studies of water balance of lactation and to current methods used for estimating milk production. PMID:1167701

  8. Physiology of lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The breast changes in size, shape, and function during puberty, pregnancy, and lactation. The physiology of lactation is reviewed here. The breast is composed of fat and connective tissue that supports a tubuloalveolar structure. During development, anatomic changes involving new lobule formation an...

  9. Hematological and biochemical findings in pregnant, postfoaling, and lactating jennies.

    PubMed

    Bonelli, F; Rota, A; Corazza, M; Serio, D; Sgorbini, M

    2016-04-15

    The aims of this study were to (1) verify if significant changes occur in hematological and biochemical parameters in jennies during the last 2 months of pregnancy and the first 2 months of lactation, and (2) determine any differences with mares. Hematological and biochemical parameters were evaluated in jennies every 15 days during late pregnancy, parturition, and early lactation. The Kolmogorov-Smirnov test, analysis of variance for repeated measurements and Tukey's multiple comparison test as post hoc were applied. The significance level was set at P < 0.05. Statistical analysis showed differences related to time for Red Blood Cells (RBC) count and Hematocrit (HCT), White Blood Cells (WBC) count, platelet count (PLT), total proteins, blood urea, triglycerides and total cholesterol concentrations, aspartate aminotransferase, gamma-glutamyltransferase, creatine-phosphokinase activities, sodium (Na) and potassium (K). RBC and HCT were higher in late pregnancy than at foaling and during lactation. The relative anemia might be due to increased water ingestion because of fluid losses. The WBC count was higher at foaling than during late pregnancy and lactation. This could be related to the release of cortisol and catecholamine during delivery. The PLT trend showed lower values from delivery to the first 2 months of lactation compared to late gestation. Blood urea increased near parturition, and then remained constant during delivery and lactation, which might be due to the high energy demand at the beginning of lactation. Triglycerides and total cholesterol showed a decrease from delivery through the lactation period. Thus, jennies seem to have a similar metabolism of fats to ponies and draft horse mares, characterized by a greater fat content and mobilization than light breed horses. Aspartate aminotransferase activity decreased at parturition and early lactation, probably because of a predominance of anabolic over catabolic processes during pregnancy. Gamma-glutamyltransferase activity was lower at delivery and during lactation than at late gestation. This could be due to a physiological load on the liver in the perinatal period. Gamma-glutamyltransferase activity was always higher than in mares, but within the normal range for adult donkeys. Creatine-phosphokinase decreased near delivery, then was constant from parturition through the first 2 months of lactation. Na decreased during lactation, probably due to an increased renal retention mediated by aldosterone release during pregnancy. K showed the same trend as Na, and concentrations are in line with the species. The higher K during pregnancy may be due to reabsorption by the gut. Total proteins decreased more during the postpartum period and lactation than in the gestational period. In conclusion, our results showed significant changes in hematological and biochemical parameters in jennies during the last 2 months of pregnancy and the first 2 months of lactation and these changes are only partially comparable to mares. PMID:26792379

  10. Lactate Racemization as a Rescue Pathway for Supplying d-Lactate to the Cell Wall Biosynthesis Machinery in Lactobacillus plantarum

    PubMed Central

    Goffin, Philippe; Deghorain, Marie; Mainardi, Jean-Luc; Tytgat, Isabelle; Champomier-Vergs, Marie-Christine; Kleerebezem, Michiel; Hols, Pascal

    2005-01-01

    Lactobacillus plantarum is a lactic acid bacterium that produces d- and l-lactate using stereospecific NAD-dependent lactate dehydrogenases (LdhD and LdhL, respectively). However, reduction of glycolytic pyruvate by LdhD is not the only pathway for d-lactate production since a mutant defective in this activity still produces both lactate isomers (T. Ferain, J. N. Hobbs, Jr., J. Richardson, N. Bernard, D. Garmyn, P. Hols, N. E. Allen, and J. Delcour, J. Bacteriol. 178:5431-5437, 1996). Production of d-lactate in this species has been shown to be connected to cell wall biosynthesis through its incorporation as the last residue of the muramoyl-pentadepsipeptide peptidoglycan precursor. This particular feature leads to natural resistance to high concentrations of vancomycin. In the present study, we show that L. plantarum possesses two pathways for d-lactate production: the LdhD enzyme and a lactate racemase, whose expression requires l-lactate. We report the cloning of a six-gene operon, which is involved in lactate racemization activity and is positively regulated by l-lactate. Deletion of this operon in an L. plantarum strain that is devoid of LdhD activity leads to the exclusive production of l-lactate. As a consequence, peptidoglycan biosynthesis is affected, and growth of this mutant is d-lactate dependent. We also show that the growth defect can be partially restored by expression of the d-alanyl-d-alanine-forming Ddl ligase from Lactococcus lactis, or by supplementation with various d-2-hydroxy acids but not d-2-amino acids, leading to variable vancomycin resistance levels. This suggests that L. plantarum is unable to efficiently synthesize peptidoglycan precursors ending in d-alanine and that the cell wall biosynthesis machinery in this species is specifically dedicated to the production of peptidoglycan precursors ending in d-lactate. In this context, the lactate racemase could thus provide the bacterium with a rescue pathway for d-lactate production upon inactivation or inhibition of the LdhD enzyme. PMID:16166538

  11. Aerobically-Derived Lactate Stimulates Revascularization and Tissue Repair via Redox Mechanisms

    PubMed Central

    HUNT, THOMAS K; ASLAM, RUMMANA S.; BECKERT, STEFAN; WAGNER, SILVIA; GHANI, Q. PERVEEN; HUSSAIN, M. ZAMIRUL; ROY, SASHWATI; SEN, CHANDAN K.

    2008-01-01

    Hypoxia serves as a physiological cue to drive angiogenic response via HIF-dependent mechanisms. Interestingly, minor elevation of lactate levels in the tissue produces the same effect under aerobic conditions. Aerobic glycolysis contributes to lactate accumulation in the presence of oxygen especially under inflammatory conditions. We have previously postulated that aerobic lactate accumulation, already known to stimulate collagen deposition, will also stimulate angiogenesis. If substantiated, this concept would advance understanding of wound healing and aerobic angiogenesis because lactate accumulation has many aerobic sources. In this study, Matrigel plugs containing a powdered, hydrolysable lactate polymer were implanted into the subcutaneous space of mice. Lactate monomer concentrations in the implant were consistent with wound levels for over 11 days. They induced little inflammation but considerable VEGF production and were highly angiogenic as opposed to controls. Arterial hypoxia abrogated angiogenesis. Furthermore, inhibition of lactate dehydrogenase using oxamate also prevented the angiogenic effects of lactate. Lactate monomer, at concentrations found in cutaneous wounds, stabilized HIF-1? and increased VEGF levels in aerobically cultured human endothelial cells. Accumulated lactate, therefore, appears to convey the impression of metabolic need for vascularization even in well-oxygenated and pH-neutral conditions. Lactate and oxygen both stimulate angiogenesis and matrix deposition. PMID:17567242

  12. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  13. Can creatine supplementation form carcinogenic heterocyclic amines in humans?

    PubMed

    Pereira, Renato Tavares dos Santos; Drr, Felipe Augusto; Pinto, Ernani; Solis, Marina Yazigi; Artioli, Guilherme Giannini; Fernandes, Alan Lins; Murai, Igor Hisashi; Dantas, Wagner Silva; Seguro, Antnio Carlos; Santinho, Mirela Aparecida Rodrigues; Roschel, Hamilton; Carpentier, Alain; Poortmans, Jacques Remi; Gualano, Bruno

    2015-09-01

    There is a long-standing concern that creatine supplementation could be associated with cancer, possibly by facilitating the formation of carcinogenic heterocyclic amines (HCAs). This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, does not cause a significant increase in HCA formation. HCAs detection was unrelated to creatine supplementation. Diet was likely to be the main factor responsible for HCAs formation after either placebo (n = 6) or creatine supplementation (n = 3). These results directly challenge the recently suggested biological plausibility for the association between creatine use and risk of testicular germ cell cancer. Creatine supplementation has been associated with increased cancer risk. In fact, there is evidence indicating that creatine and/or creatinine are important precursors of carcinogenic heterocyclic amines (HCAs). The present study aimed to investigate the acute and chronic effects of low- and high-dose creatine supplementation on the production of HCAs in healthy humans (i.e. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 2-amino-(1,6-dimethylfuro[3,2-e]imidazo[4,5-b])pyridine (IFP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)). This was a non-counterbalanced single-blind crossover study divided into two phases, in which low- and high-dose creatine protocols were tested. After acute (1 day) and chronic supplementation (30 days), the HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx were assessed through a newly developed HPLC-MS/MS method. Dietary HCA intake and blood and urinary creatinine were also evaluated. Out of 576 assessments performed (from 149 urine samples), only nine (3 from creatine and 6 from placebo) showed quantifiable levels of HCAs (8-MeIQx: n = 3; 4,8-DiMeIQx: n = 2; PhIP: n = 4). Individual analyses revealed that diet rather than creatine supplementation was the main responsible factor for HCA formation in these cases. This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, did not cause increases in the carcinogenic HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx in healthy subjects. These findings challenge the long-existing notion that creatine supplementation could potentially increase the risk of cancer by stimulating the formation of these mutagens. PMID:26148133

  14. Evidences of Basal Lactate Production in the Main White Adipose Tissue Sites of Rats. Effects of Sex and a Cafeteria Diet

    PubMed Central

    Arriarn, Sofa; Agnelli, Silvia; Sabater, David; Remesar, Xavier; Fernndez-Lpez, Jos Antonio; Alemany, Mari

    2015-01-01

    Female and male adult Wistar rats were fed standard chow or a simplified cafeteria diet for one month. Then, the rats were killed and the white adipose tissue (WAT) in four sites: perigonadal, retroperitoneal, mesenteric and subcutaneous (inguinal) were sampled and frozen. The complete WAT weight in each site was measured. Gene expression analysis of key lipid and glucose metabolism enzymes were analyzed, as well as tissue and plasma lactate and the activity of lactate dehydrogenase. Lactate gradients between WAT and plasma were estimated. The influence of sex and diet (and indirectly WAT mass) on lactate levels and their relationships with lactate dehydrogenase activity and gene expressions were also measured. A main conclusion is the high production of lactate by WAT, practically irrespective of site, diet or sex. Lactate production is a direct correlate of lactate dehydrogenase activity in the tissue. Furthermore, lactate dehydrogenase activity is again directly correlated with the expression of the genes Ldha and Ldhb for this enzyme. In sum, the ability to produce lactate by WAT is not directly dependent of WAT metabolic state. We postulate that, in WAT, a main function of the lactate dehydrogenase path may be that of converting excess available glucose to 3C fragments, as a way to limit tissue self-utilization as substrate, to help control glycaemia and/or providing short chain substrates for use as energy source elsewhere. More information must be gathered before a conclusive role of WAT in the control of glycaemia, and the full existence of a renewed glucose-lactate-fatty acid cycle is definitely established. PMID:25741703

  15. The isoelectric focusing of creatine kinase variants: II. The heterogeneity of creatine kinase in human serum with normal and elevated catalytic concentrations.

    PubMed

    SiragEldin, E; Gercken, G; Harm, K

    1986-11-01

    An effective and reliable method for the quantitative estimation of creatine kinase-MB, creatine kinase-MM variants and mitochondrial forms of creatine kinase in serum is presented. The high resolving power of isoelectric focusing allows the use of tetrazolium salts and meldola blue for the quantitative measurement without interfering non-specific reduction. The addition of thiol compounds to the agarose medium increases the sensitivity of the method, due to the inhibition of sulfhydryl group oxidation, and prevents enzyme degradation, which is a possible cause of an artificial heterogeneity. Depending upon the type of muscle and the degree of cell damage, we found 3-4 creatine kinase-MM sub-bands in sera with activities below 80 U/l. At elevated creatine kinase activities 3-11 creatine kinase-MM sub-bands were found. The appearance of creatine kinase-MB in serum indicates that damage has occurred to certain organs, especially the cardiac muscle. An organ with moderate or massive cell damage could release, in addition to the sarcoplasmatic creatine kinase variants, other forms with more alkaline isoelectric points (mitochondrial creatine kinase). The presence of such bands in serum of patients correlates with poor prognosis. Besides the separation of creatine kinase-MM sub-bands, creatine kinase-MB, creatine kinase-BB and of macroforms 1 and 2, the advantage of this method is the detection of mitochondrial creatine kinase forms, which in cellulose acetate electrophoresis migrate with creatine kinase-MM. PMID:3806013

  16. Creatine kinase inhibits ADP-induced platelet aggregation

    PubMed Central

    Horjus, D. L.; Nieuwland, R.; Boateng, K. B.; Schaap, M. C. L.; van Montfrans, G. A.; Clark, J. F.; Sturk, A.; Brewster, L. M.

    2014-01-01

    Bleeding risk with antiplatelet therapy is an increasing clinical challenge. However, the inter-individual variation in this risk is poorly understood. We assessed whether the level of plasma creatine kinase, the enzyme that utilizes ADP and phosphocreatine to rapidly regenerate ATP, may modulate bleeding risk through a dose-dependent inhibition of ADP-induced platelet activation. Exogenous creatine kinase (500 to 4000?IU/L, phosphocreatine 5?mM) added to human plasma induced a dose-dependent reduction to complete inhibition of ADP-induced platelet aggregation. Accordingly, endogenous plasma creatine kinase, studied in 9 healthy men (mean age 27.9?y, SE 3.3; creatine kinase 115 to 859?IU/L, median 358), was associated with reduced ADP-induced platelet aggregation (Spearman's rank correlation coefficient, ?0.6; p < 0.05). After exercise, at an endogenous creatine kinase level of 4664, ADP-induced platelet aggregation was undetectable, normalizing after rest, with a concomitant reduction of creatine kinase to normal values. Thus, creatine kinase reduces ADP-induced platelet activation. This may promote bleeding, in particular when patients use platelet P2Y12 ADP receptor inhibitors. PMID:25298190

  17. Creatine and the Liver: Metabolism and Possible Interactions.

    PubMed

    Barcelos, R P; Stefanello, S T; Mauriz, J L; Gonzalez-Gallego, J; Soares, F A A

    2016-01-01

    The process of creatine synthesis occurs in two steps, catalyzed by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT), which take place mainly in kidney and liver, respectively. This molecule plays an important energy/pH buffer function in tissues, and to guarantee the maintenance of its total body pool, the lost creatine must be replaced from diet or de novo synthesis. Creatine administration is known to decrease the consumption of Sadenosyl methionine and also reduce the homocysteine production in liver, diminishing fat accumulation and resulting in beneficial effects in fatty liver and non-alcoholic liver disease. Different studies have shown that creatine supplementation could supply brain energy, presenting neuroprotective effects against the encephalopathy induced by hyperammonemia in acute liver failure. Creatine is also taken by many athletes for its ergogenic properties. However, little is known about the adverse effects of creatine supplementation, which are barely described in the literature, with reports of mainly hypothetical effects arising from a small number of scientific publications. Antioxidant effects have been found in several studies, although one of the theories regarding the potential for toxicity from creatine supplementation is that it can increase oxidative stress and potentially form carcinogenic compounds. PMID:26202197

  18. Cerebral creatine deficiencies: a group of treatable intellectual developmental disorders.

    PubMed

    Stockler-Ipsiroglu, Sylvia; van Karnebeek, Clara D M

    2014-07-01

    Currently there are 91 treatable inborn errors of metabolism that cause intellectual developmental disorders. Cerebral creatine deficiencies (CDD) comprise three of these: arginine: glycine amidinotransferase [AGAT], guanidinoacetate methyltransferase [GAMT], and X-linked creatine transporter deficiency [SLC6A8]. Intellectual developmental disorder and cerebral creatine deficiency are the hallmarks of CDD. Additional clinical features include prominent speech delay, autism, epilepsy, extrapyramidal movement disorders, and signal changes in the globus pallidus. Patients with GAMT deficiency exhibit the most severe clinical spectrum. Myopathy is a distinct feature in AGAT deficiency. Guanidinoacetate (GAA) is the immediate product in the creatine biosynthetic pathway. Low GAA concentrations in urine, plasma, and cerebrospinal fluid are characteristic diagnostic markers for AGAT deficiency, while high GAA concentrations are characteristic markers for GAMT deficiency. An elevated ratio of urinary creatine /creatinine excretion serves as a diagnostic marker in males with SLC6A8 deficiency. Treatment strategies include oral supplementation of high-dose creatine-monohydrate for all three CDD. Guanidinoacetate-reducing strategies (high-dose ornithine, arginine-restricted diet) are additionally employed in GAMT deficiency. Supplementation of substrates for intracerebral creatine synthesis (arginine, glycine) has been used additionally to treat SLC6A8 deficiency. Early recognition and treatment improves outcomes. Normal outcomes in neonatally ascertained siblings from index families with AGAT and GAMT deficiency suggest a potential benefit of newborn screening for these disorders. PMID:25192512

  19. Strategic creatine supplementation and resistance training in healthy older adults.

    PubMed

    Candow, Darren G; Vogt, Emelie; Johannsmeyer, Sarah; Forbes, Scott C; Farthing, Jonathan P

    2015-07-01

    Creatine supplementation in close proximity to resistance training may be an important strategy for increasing muscle mass and strength; however, it is unknown whether creatine supplementation before or after resistance training is more effective for aging adults. Using a double-blind, repeated measures design, older adults (50-71 years) were randomized to 1 of 3 groups: creatine before (CR-B: n = 15; creatine (0.1 g/kg) immediately before resistance training and placebo (0.1 g/kg cornstarch maltodextrin) immediately after resistance training), creatine after (CR-A: n = 12; placebo immediately before resistance training and creatine immediately after resistance training), or placebo (PLA: n = 12; placebo immediately before and immediately after resistance training) for 32 weeks. Prior to and following the study, body composition (lean tissue, fat mass; dual-energy X-ray absorptiometry) and muscle strength (1-repetition maximum leg press and chest press) were assessed. There was an increase over time for lean tissue mass and muscle strength and a decrease in fat mass (p < 0.05). CR-A resulted in greater improvements in lean tissue mass (? 3.0 1.9 kg) compared with PLA (? 0.5 2.1 kg; p < 0.025). Creatine supplementation, independent of the timing of ingestion, increased muscle strength more than placebo (leg press: CR-B, ? 36.6 26.6 kg; CR-A, ? 40.8 38.4 kg; PLA, ? 5.6 35.1 kg; chest press: CR-B, ? 15.2 13.0 kg; CR-A, ? 15.7 12.5 kg; PLA, ? 1.9 14.7 kg; p < 0.025). Compared with resistance training alone, creatine supplementation improves muscle strength, with greater gains in lean tissue mass resulting from post-exercise creatine supplementation. PMID:25993883

  20. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/?m 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  1. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    PubMed Central

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  2. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    PubMed

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  3. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGESBeta

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  4. Temperature dependent Raman and DFT study of creatine.

    PubMed

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Ranjan K

    2015-11-01

    Temperature dependent Raman spectra of creatine powder have been recorded in the temperature range 420-100K at regular intervals and different clusters of creatine have been optimized using density functional theory (DFT) in order to determine the effect of temperature on the hydrogen bonded network in the crystal structure of creatine. Vibrational assignments of all the 48 normal modes of the zwitterionic form of creatine have been done in terms of potential energy distribution obtained from DFT calculations. Precise analysis gives information about thermal motion and intermolecular interactions with respect to temperature in the crystal lattice. Formation of higher hydrogen bonded aggregates on cooling can be visualized from the spectra through clear signature of phase transition between 200K and 180K. PMID:26010702

  5. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle.

    PubMed

    Park, Jae Mo; Josan, Sonal; Mayer, Dirk; Hurd, Ralph E; Chung, Youngran; Bendahan, David; Spielman, Daniel M; Jue, Thomas

    2015-10-01

    The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-(13)C]lactate and [2-(13)C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3s temporal resolution, (13)C DNP NMR detects both [1-(13)C]lactate and [2-(13)C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-(13)C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products. PMID:26347554

  6. Creatine kinase isoforms in ischemic heart disease.

    PubMed

    Wu, A H

    1989-01-01

    The MM and MB isoenzymes of creatine kinase exist in serum as a collection of at least three major MM and two major MB isoforms. Each of these are derived from single tissue MM and MB isoforms, which are converted to these other forms by carboxypeptidase N after their release from necrotic skeletal and myocardial tissue. Measurement of the MM isoforms in ischemic heart disease is useful for early diagnosis of acute myocardial infarction and for the noninvasive determination of coronary artery reperfusion for infarction patients receiving thrombolytic therapy. Because MM is also released in acute skeletal-muscle disease, MB isoform measurements may have the highest clinical sensitivity. These determinations are important for providing objective information to cardiologists who need to make critical decisions concerning the management of these patients. I review the procedures for treating patients with myocardial infarction, the potential role of CK isoforms, and the methods currently available for isoform analysis, including high-resolution electrophoresis, isoelectric and chromatofocusing, and liquid chromatography. Rapid and highly sensitive methods are needed for implementation of CK-MM and MB isoforms for prospective emergency determinations for patients with acute myocardial infarction. PMID:2642764

  7. GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast l-Lactate Cytochrome c Oxidoreductase, Supports l-Lactate Oxidation in Roots of Arabidopsis.

    PubMed

    Engqvist, Martin K M; Schmitz, Jessica; Gertzmann, Anke; Florian, Alexandra; Jaspert, Nils; Arif, Muhammad; Balazadeh, Salma; Mueller-Roeber, Bernd; Fernie, Alisdair R; Maurino, Veronica G

    2015-10-01

    In roots of Arabidopsis (Arabidopsis thaliana), l-lactate is generated by the reduction of pyruvate via l-lactate dehydrogenase, but this enzyme does not efficiently catalyze the reverse reaction. Here, we identify the Arabidopsis glycolate oxidase (GOX) paralogs GOX1, GOX2, and GOX3 as putative l-lactate-metabolizing enzymes based on their homology to CYB2, the l-lactate cytochrome c oxidoreductase from the yeast Saccharomyces cerevisiae. We found that GOX3 uses l-lactate with a similar efficiency to glycolate; in contrast, the photorespiratory isoforms GOX1 and GOX2, which share similar enzymatic properties, use glycolate with much higher efficiencies than l-lactate. The key factor making GOX3 more efficient with l-lactate than GOX1 and GOX2 is a 5- to 10-fold lower Km for the substrate. Consequently, only GOX3 can efficiently metabolize l-lactate at low intracellular concentrations. Isotope tracer experiments as well as substrate toxicity tests using GOX3 loss-of-function and overexpressor plants indicate that l-lactate is metabolized in vivo by GOX3. Moreover, GOX3 rescues the lethal growth phenotype of a yeast strain lacking CYB2, which cannot grow on l-lactate as a sole carbon source. GOX3 is predominantly present in roots and mature to aging leaves but is largely absent from young photosynthetic leaves, indicating that it plays a role predominantly in heterotrophic rather than autotrophic tissues, at least under standard growth conditions. In roots of plants grown under normoxic conditions, loss of function of GOX3 induces metabolic rearrangements that mirror wild-type responses under hypoxia. Thus, we identified GOX3 as the enzyme that metabolizes l-lactate to pyruvate in vivo and hypothesize that it may ensure the sustainment of low levels of l-lactate after its formation under normoxia. PMID:26246447

  8. Reference values of blood parameters in beef cattle of different ages and stages of lactation.

    PubMed Central

    Doornenbal, H; Tong, A K; Murray, N L

    1988-01-01

    Reference (normal) values for 12 blood serum components were determined for 48 Shorthorn cows (2-10 years old) and their 48 calves, 357 crossbred cows (12-14 years old), 36 feedlot bulls and 36 feedlot steers. In addition, hemoglobin, hematocrit, triiodothyronine, thyroxine and cortisol levels were determined for the crossbred cows, and feedlot bulls and steers. Reference values were tabulated according to sex, age and stage of lactation. Serum concentrations of urea, total protein and bilirubin, and serum activity of aspartate aminotransferase and lactate dehydrogenase increased with age (P less than 0.05), while calcium, phosphorus and alkaline phosphatase decreased with age (P less than 0.05) from birth to the age of ten years. The Shorthorn cows had the highest levels of glucose at parturition (P less than 0.05) with decreasing levels during lactation. Creatinine concentration decreased during lactation and increased during postweaning. Both lactate dehydrogenase and aspartate aminotransferase levels increased (P less than 0.05) during lactation. Urea and uric acid were present at higher concentrations in lactating than nonlactating cows (P less than 0.05). The values reported, based on a wide age range and large number of cattle, could serve as clinical guides and a basis for further research. PMID:3349406

  9. Creatine administration prevents Na+,K+-ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats.

    PubMed

    Ribeiro, César Augusto João; Leipnitz, Guilhian; Amaral, Alexandre Umpierrez; de Bortoli, Giorgia; Seminotti, Bianca; Wajner, Moacir

    2009-03-25

    Isovaleric acidemia (IVAcidemia) is an inborn error of metabolism due to deficiency of isovaleryl-CoA dehydrogenase activity, leading to predominant accumulation of isovaleric acid (IVA). Patients affected by IVAcidemia suffer from acute episodes of encephalopathy, whose underlying mechanisms are poorly known. In the present study we investigated whether an intracerebroventricular injection of IVA could compromise energy metabolism in cerebral cortex of young rats. IVA administration significantly inhibited (14)CO(2) production from acetate (22%) and citrate synthase activity (20%) in cerebral cortex homogenates prepared 24 h after injection. However, no alterations of these parameters were observed 2 h after injection. In contrast, no significant differences were found in the activities of succinate dehydrogenase, isocitrate dehydrogenase, electron transfer chain complexes or creatine kinase in rats sacrificed 2 or 24 h after IVA administration. Moreover, IVA injection significantly inhibited Na(+),K(+)-ATPase activity (25%) in cerebral cortex of rats 2 or 24 h after IVA administration, while pre-treatment of rats with creatine completely prevented the inhibitory effects of IVA on Na(+),K(+)-ATPase. In conclusion, in vivo administration of IVA inhibits the citric acid cycle probably through the enzyme citrate synthase, as well as Na(+),K(+)-ATPase, a crucial enzyme responsible for maintaining the basal potential membrane necessary for a normal neurotransmission. It is presumed that inhibition of these activities may be involved in the pathophysiology of the neurological dysfunction of isovaleric academic patients. The present findings are of particular interest because treatment with creatine supplementation may represent a potential novel adjuvant therapeutic strategy in IVAcidemia. PMID:19210957

  10. Lactate does not activate NF-κB in oxidative tumor cells

    PubMed Central

    Van Hée, Vincent F.; Pérez-Escuredo, Jhudit; Cacace, Andrea; Copetti, Tamara; Sonveaux, Pierre

    2015-01-01

    The lactate anion is currently emerging as an oncometabolite. Lactate, produced and exported by glycolytic and glutaminolytic cells in tumors, can be recycled as an oxidative fuel by oxidative tumors cells. Independently of hypoxia, it can also activate transcription factor hypoxia-inducible factor-1 (HIF-1) in tumor and endothelial cells, promoting angiogenesis. These protumoral activities of lactate depend on lactate uptake, a process primarily facilitated by the inward, passive lactate-proton symporter monocarboxylate transporter 1 (MCT1); the conversion of lactate and NAD+ to pyruvate, NADH and H+ by lactate dehydrogenase-1 (LDH-1); and a competition between pyruvate and α-ketoglutarate that inhibits prolylhydroxylases (PHDs). Endothelial cells do not primarily use lactate as an oxidative fuel but, rather, as a signaling agent. In addition to HIF-1, lactate can indeed activate transcription factor nuclear factor-κB (NF-κB) in these cells, through a mechanism not only depending on PHD inhibition but also on NADH alimenting NAD(P)H oxidases to generate reactive oxygen species (ROS). While NF-κB activity in endothelial cells promotes angiogenesis, NF-κB activation in tumor cells is known to stimulate tumor progression by conferring resistance to apoptosis, stemness, pro-angiogenic and metastatic capabilities. In this study, we therefore tested whether exogenous lactate could activate NF-κB in oxidative tumor cells equipped for lactate signaling. We report that, precisely because they are oxidative, HeLa and SiHa human tumor cells do not activate NF-κB in response to lactate. Indeed, while lactate-derived pyruvate is well-known to inhibit PHDs in these cells, we found that NADH aliments oxidative phosphorylation (OXPHOS) in mitochondria rather than NAD(P)H oxidases in the cytosol. These data were confirmed using oxidative human Cal27 and MCF7 tumor cells. This new information positions the malate-aspartate shuttle as a key player in the oxidative metabolism of lactate: similar to glycolysis that aliments OXPHOS with pyruvate produced by pyruvate kinase and NADH produced by glyceraldehyde-3-phosphate dehydrogenase (GAPDH), oxidative lactate metabolism aliments OXPHOS in oxidative tumor cells with pyruvate and NADH produced by LDH1. PMID:26528183

  11. Properties of Alanine Dehydrogenase and Aspartase from Propionibacterium freudenreichii subsp. shermanii

    PubMed Central

    Crow, Vaughan L.

    1987-01-01

    During lactate fermentation by Propionibacterium freudenreichii subsp. shermanii ATCC 9614, the only amino acid metabolized was aspartate. After lactate exhaustion, alanine was one of the two amino acids to be metabolized. For every 3 mol of alanine metabolized, 2 mol of propionate, 1 mol each of acetate and CO2, and 3 mol of ammonia were formed. The specific activity of alanine dehydrogenase was 0.08 U/mg of protein during lactate fermentation, and it increased to 0.9 U/mg of protein after lactate exhaustion. Alanine dehydrogenase and aspartase, key enzymes in the metabolism of alanine and aspartate, respectively, were partially purified, and some of their properties were studied. Alanine dehydrogenase had a pH optimum of 9.2 to 9.6 and high Km values for both NAD+ (1 to 4 mM) and alanine (7 to 20 mM). Activity was inhibited by low concentrations of pyruvate and NADH. The pH optimum of aspartase decreased from ∼7.5 to ∼6.4 when the MgCl2 and aspartate concentrations were decreased. Plots of aspartate concentration versus activity showed either hyperbolic or sigmoidal kinetics (interaction coefficient, up to a value of 3.1), depending on pH and MgCl2 concentration. MgCl2 was either an activator or an inhibitor, depending on pH and its concentration. Aspartase activity was inhibited by low concentrations of fumarate. The properties of alanine dehydrogenase and aspartase are consistent with the finding that aspartate is metabolized during lactate fermentation, while alanine is only fermented after lactate exhaustion and then at a slow rate. PMID:16347414

  12. Modeling Extended Lactations of Holsteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modeling extended lactations for the US Holsteins is useful as a majority (>55%) of the cows in the present population produce lactations longer than 305 d. In this study nine empirical and mechanistic models were compared on their suitability for modeling 305-d and 999-d lactations of US Holsteins...

  13. Macro-creatine kinase: a neglected cause of elevated creatine kinase.

    PubMed

    Aljuani, F; Tournadre, A; Cecchetti, S; Soubrier, M; Dubost, J J

    2015-04-01

    Macro-creatine kinase (macro-CK) is a neglected cause of raised CK. Over a 10-year period, we observed five cases. Three patients had macro-CK type 1. One patient with fibromyalgia underwent several explorations to find a muscular pathology; another, who had elevated CK-MB (muscle-brain fraction) activity, was referred to a cardiologist, and statin therapy was erroneously discontinued in two patients. Two patients had macro-CK type 2: a man with a neuroendocrine carcinoma and a woman with rheumatoid arthritis. Diagnosis of type 1 obviates the need to carry out pointless and expensive investigations seeking a neuromuscular or cardiac pathology, and also, the unwarranted discontinuation of statin therapy. Type 2 must prompt investigations for a neoplasm. PMID:25827514

  14. The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise

    PubMed Central

    Jger, Ralf; Metzger, Jan; Lautmann, Karin; Shushakov, Vladimir; Purpura, Martin; Geiss, Kurt-Reiner; Maassen, Norbert

    2008-01-01

    Background A double-blind, placebo-controlled, randomized study was performed to evaluate the effect of oral creatine pyruvate (Cr-Pyr) and creatine citrate (Cr-Cit) supplementation on exercise performance in healthy young athletes. Methods Performance during intermittent handgrip exercise of maximal intensity was evaluated before (pretest) and after (posttest) 28 days of Cr-Pyr (5 g/d, n = 16), Cr-Cit (5 g/d, n = 16) or placebo (pla, 5 g/d, n = 17) intake. Subjects performed ten 15-sec exercise intervals, each followed by 45 sec rest periods. Results Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) significantly increased mean power over all intervals. Cr-Cit increased force during the first and second interval (p < 0.01) compared to placebo. The effect of Cr-Cit on force decreased over time and the improvement was not significant at the sixth and ninth interval, whereas Cr-Pyr significantly increased force during all intervals (p < 0.001). Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) resulted in an increase in contraction velocity, whereas only Cr-Pyr intake significantly (p < 0.01) increased relaxation velocity. Oxygen consumption measured during rest periods significantly increased with Cr-Pyr (p < 0.05), whereas Cr-Cit and placebo intake did not result in significant improvements. Conclusion It is concluded that four weeks of Cr-Pyr and Cr-Cit intake significantly improves performance during intermittent handgrip exercise of maximal intensity and that Cr-Pyr might benefit endurance, due to enhanced activity of the aerobic metabolism. PMID:18269769

  15. Creatine kinase MB isoenzyme in dermatomyositis: a noncardiac source

    SciTech Connect

    Larca, L.J.; Coppola, J.T.; Honig, S.

    1981-03-01

    Three patients with polymyositis had elevated serum levels of creatine kinase MB isoenzyme. The presence of this isoenzyme is used extensively to diagnose myocardial infarction, but the isoenzyme is also found in sera of patients with primary muscular and neuromuscular disorders. Researchers studied cardiac function in two of our patients with electrocardiograms, technetium stannous pyrophosphate scanning, and technetium 99m-labeled erythrocyte gated blood pool imaging and in the third patient by postmortem examination. There was no evidence of myocardial involvement to account for the high serum levels of isoenzyme. Creatine kinase MB in the sera of patients with polymyositis does not necessarily indicate myocardial necrosis.

  16. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat.

    PubMed

    Kazak, Lawrence; Chouchani, Edward T; Jedrychowski, Mark P; Erickson, Brian K; Shinoda, Kosaku; Cohen, Paul; Vetrivelan, Ramalingam; Lu, Gina Z; Laznik-Bogoslavski, Dina; Hasenfuss, Sebastian C; Kajimura, Shingo; Gygi, Steve P; Spiegelman, Bruce M

    2015-10-22

    Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respirationin beige-fat mitochondria when ADP is limiting. In murine beige fat, cold exposure stimulates mitochondrial creatine kinase activity and induces coordinated expression of genes associated with creatine metabolism. Pharmacological reduction of creatine levels decreases whole-body energy expenditure after administration of a ?3-agonist and reduces beige and brown adipose metabolic rate. Genes of creatinemetabolism are compensatorily induced when UCP1-dependent thermogenesis is ablated, and creatine reduction in Ucp1-deficient mice reduces core body temperature. These findings link a futile cycle of creatine metabolism to adipose tissue energy expenditure and thermal homeostasis. PAPERCLIP. PMID:26496606

  17. Cryobaroenzymic studies as a tool for investigating activated complexes: creatine kinase.ADP.Mg.nitrate.creatine as a model.

    PubMed

    Balny, C; Travers, F; Barman, T; Douzou, P

    1985-11-01

    By combining cryoenzymology with baroenzymology (a technique we term "cryobaroenzymology") one can obtain "stop-action" pictures of the intermediates in an enzyme reaction pathway and then observe their structural and energetic features ("motion features"). We illustrate the potential of this approach by considering the formation of a transient state analogue complex of creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2): enzyme.ADP.nitrate.creatine, where nitrate mimics the transferable gamma-phosphate of ATP. Formation of the analogue complex is accompanied by a conformational change that manifests itself by tryptophan perturbation and thus allows kinetic studies by the stopped-flow method. We studied the formation of the analogue complex under cryoenzymic conditions as a function of pressure and solvent composition. This allowed a detailed description of the structural and energetic features of the activation process of an elementary step in an enzyme pathway. PMID:3865173

  18. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate

    PubMed Central

    2012-01-01

    Background Creatine monohydrate (CrM) has been consistently reported to increase muscle creatine content and improve high-intensity exercise capacity. However, a number of different forms of creatine have been purported to be more efficacious than CrM. The purpose of this study was to determine if a buffered creatine monohydrate (KA) that has been purported to promote greater creatine retention and training adaptations with fewer side effects at lower doses is more efficacious than CrM supplementation in resistance-trained individuals. Methods In a double-blind manner, 36 resistance-trained participants (20.2 ± 2 years, 181 ± 7 cm, 82.1 ± 12 kg, and 14.7 ± 5% body fat) were randomly assigned to supplement their diet with CrM (Creapure® AlzChem AG, Trostberg, Germany) at normal loading (4 x 5 g/d for 7-days) and maintenance (5 g/d for 21-days) doses; KA (Kre-Alkalyn®, All American Pharmaceutical, Billings, MT, USA) at manufacturer’s recommended doses (KA-L, 1.5 g/d for 28-days); or, KA with equivalent loading (4 x 5 g/d for 7-days) and maintenance (5 g/d) doses of CrM (KA-H). Participants were asked to maintain their current training programs and record all workouts. Muscle biopsies from the vastus lateralis, fasting blood samples, body weight, DEXA determined body composition, and Wingate Anaerobic Capacity (WAC) tests were performed at 0, 7, and 28-days while 1RM strength tests were performed at 0 and 28-days. Data were analyzed by a repeated measures multivariate analysis of variance (MANOVA) and are presented as mean ± SD changes from baseline after 7 and 28-days, respectively. Results Muscle free creatine content obtained in a subgroup of 25 participants increased in all groups over time (1.4 ± 20.7 and 11.9 ± 24.0 mmol/kg DW, p = 0.03) after 7 and 28-days, respectively, with no significant differences among groups (KA-L −7.9 ± 22.3, 4.7 ± 27.0; KA-H 1.0 ± 12.8, 9.1 ± 23.2; CrM 11.3 ± 23.9, 22.3 ± 21.0 mmol/kg DW, p = 0.46). However, while no overall group differences were observed (p = 0.14), pairwise comparison between the KA-L and CrM groups revealed that changes in muscle creatine content tended to be greater in the CrM group (KA-L −1.1 ± 4.3, CrM 11.2 ± 4.3 mmol/kg DW, p = 0.053 [mean ± SEM]). Although some significant time effects were observed, no significant group x time interactions (p > 0.05) were observed in changes in body mass, fat free mass, fat mass, percent body fat, or total body water; bench press and leg press 1RM strength; WAC mean power, peak power, or total work; serum blood lipids, markers of catabolism and bone status, and serum electrolyte status; or, whole blood makers of lymphocytes and red cells. Serum creatinine levels increased in all groups (p < 0.001) with higher doses of creatine promoting greater increases in serum creatinine (p = 0.03) but the increases observed (0.1 – 0.2 mg/dl) were well within normal values for active individuals (i.e., <1.28 ± 0.2 mg/dl). Serum LDL was decreased to a greater degree following ingesting loading doses in the CrM group but returned to baseline during the maintenance phase. No side effects were reported. Conclusions Neither manufacturers recommended doses of KA (1.5 g/d) or KA with equivalent loading (20 g/d for 7-days) and maintenance doses (5 g/d for 21-days) of CrM promoted greater changes in muscle creatine content, body composition, strength, or anaerobic capacity than CrM (20 g/d for 7-days, 5 g/d for 21-days). There was no evidence that supplementing the diet with a buffered form of creatine resulted in fewer side effects than CrM. These findings do not support claims that consuming a buffered form of creatine is a more efficacious and/or safer form of creatine to consume than creatine monohydrate. PMID:22971354

  19. Human placental 15-hydroxyprostaglandin dehydrogenase.

    PubMed

    Jarabak, J

    1972-03-01

    Normal, term, human placentas are a rich source of a 15-hydroxyprostaglandin dehydrogenase. The enzyme is extremely labile, and partial purification could be achieved only after stabilization with glycerol. The instability of the enzyme and its K(m) for NAD are indications that it is different from the 15-hydroxyprostaglandin dehydrogenase isolated from swine lung. Human placental tissue should provide a very useful source from which large amounts of highly purified 15-hydroxyprostaglandin dehydrogenase may be obtained. PMID:4501572

  20. Human Placental 15-Hydroxyprostaglandin Dehydrogenase

    PubMed Central

    Jarabak, Joseph

    1972-01-01

    Normal, term, human placentas are a rich source of a 15-hydroxyprostaglandin dehydrogenase. The enzyme is extremely labile, and partial purification could be achieved only after stabilization with glycerol. The instability of the enzyme and its Km for NAD are indications that it is different from the 15-hydroxyprostaglandin dehydrogenase isolated from swine lung. Human placental tissue should provide a very useful source from which large amounts of highly purified 15-hydroxyprostaglandin dehydrogenase may be obtained. PMID:4501572

  1. Postpartum Exercise and Lactation.

    PubMed

    Bane, Susan M

    2015-12-01

    Many women who are breastfeeding also want to participate in exercise, but have concerns about the safety of their newborn. The following chapter reviews issues related to postpartum exercise and lactation. The goals of the chapter are to help clinicians understand the benefits of exercise, examine the impact of postpartum exercise on breastfeeding, and provide practical recommendations for exercise during the postpartum period in women who are breastfeeding. PMID:26398298

  2. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  3. Radioimmunoassay measurement of creatine kinase bb in the serum of schizophrenic patients

    SciTech Connect

    Lerner, M.H.; Friedhoff, A.J.

    1980-03-03

    Brain type creatine kinase (BB) isoenzyme was measured using a highly sensitive and specific radioimmunoassay procedure in two schizophrenic populations. The data would indicate that in the schizophrenic populations examined there is insufficient tissue disruption to cause abnormal build-up of brain creatine kinase levels. However the possibility of a rapid removal of creatine kinase BB from the circulation exists. The elevated creatine kinase reported in acute schizophrenics is most likely not of brain origin.

  4. Docosahexaenoic acid and lactation.

    PubMed

    Jensen, Craig L; Lapillonne, Alexandre

    2009-01-01

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina and brain and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews data addressing the impact of different DHA intakes by lactating women on infant and maternal outcomes to determine if available data are sufficient to estimate optimal breast milk DHA content and estimate dietary reference intakes (DRIs) for DHA by breast-feeding mothers. Results of published observational studies and interventional trials assessing the impact of maternal DHA intake (or breast milk DHA content) on infant visual function, neurodevelopment, and immunologic status were reviewed. Studies related to the potential impact of DHA intake on depression or cognitive function of lactating women also were reviewed. Although only a limited number of studies are available in the current medical literature, and study results have not been consistent, better infant neurodevelopment and/or visual function have been reported with higher vs. lower levels of breast milk DHA. The effect of DHA intake on the incidence or severity of depression in lactating women is not clear. Increasing breast milk DHA content above that typically found in the US, by increasing maternal DHA intake, may confer neurodevelopmental benefits to the recipient breast-fed infant. However, current data are insufficient to permit determination of specific DRIs during this period. PMID:19632101

  5. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  6. A phase I, pharmacokinetic, dosage escalation study of creatine monohydrate in subjects with amyotrophic lateral sclerosis.

    PubMed

    Atassi, Nazem; Ratai, Eva-Maria; Greenblatt, David J; Pulley, Darlene; Zhao, Yanli; Bombardier, Jeffery; Wallace, Stuart; Eckenrode, Joanna; Cudkowicz, Merit; Dibernardo, Allitia

    2010-12-01

    Creatine monohydrate (creatine) has potential neuroprotective properties and is a commonly used supplement in amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Minimum therapeutic and maximum tolerated dosages of creatine are not yet known, nor is it known what systemic plasma concentrations result from specific dosage regimens. The objectives of this study were to establish steady-state plasma pharmacokinetics of creatine at several dosages, and to evaluate the effects of creatine on brain metabolites using proton magnetic resonance spectroscopy ((1)H-MRS). Six participants with ALS received creatine at three weekly escalating oral dosages (5, 10, and 15 g b.i.d.). Plasma creatine levels and MR spectra were obtained at baseline and with each dosage increase. Mean pre-dose steady-state creatine plasma concentrations were 20.3, 39.3, and 61.5 ug/ml at 5, 10, and 15 g b.i.d., respectively. Creatine spectra increased by 8% (p = 0.06) and glutamate + glutamine signals decreased by 17% (p = 0.039) at higher dosages. There were no safety concerns at any of the dosages. In conclusion, creatine plasma concentrations increased in a dose-dependent manner. Creatine appears to cross the blood-brain barrier, and oral administration of 15 g b.i.d. is associated with increased in vivo brain creatine concentrations and decreased glutamate concentrations. PMID:20698808

  7. Creatine Loading, Resistance Exercise Performance, and Muscle Mechanics.

    ERIC Educational Resources Information Center

    Stevenson, Scott W.; Dudley, Gary A.

    2001-01-01

    Examined whether creatine (CR) monohydrate loading would alter resistance exercise performance, isometric strength, or in vivo contractile properties of the quadriceps femoris muscle compared with placebo loading in resistance-trained athletes. Overall, CR loading did not provide an ergogenic benefit for the unilateral dynamic knee extension

  8. Hair bundles are specialized for ATP delivery via creatine kinase.

    PubMed

    Shin, Jung-Bum; Streijger, Femke; Beynon, Andy; Peters, Theo; Gadzala, Laura; McMillen, Debra; Bystrom, Cory; Van der Zee, Catharina E E M; Wallimann, Theo; Gillespie, Peter G

    2007-02-01

    When stimulated strongly, a hair cell's mechanically sensitive hair bundle may consume ATP too rapidly for replenishment by diffusion. To provide a broad view of the bundle's protein complement, including those proteins participating in energy metabolism, we used shotgun mass spectrometry methods to identify proteins of purified chicken vestibular bundles. In addition to cytoskeletal proteins, proteins involved in Ca(2+) regulation, and stress-response proteins, many of the most abundant bundle proteins that were identified by mass spectrometry were involved in ATP synthesis. After beta-actin, the cytosolic brain isoform of creatine kinase was the next most abundant bundle protein; at approximately 0.5 mM, creatine kinase is capable of maintaining high ATP levels despite 1 mM/s ATP consumption by the plasma-membrane Ca(2+)-ATPase. Consistent with this critical role in hair bundle function, the creatine kinase circuit is essential for high-sensitivity hearing as demonstrated by hearing loss in creatine kinase knockout mice. PMID:17270734

  9. Creatine Loading, Resistance Exercise Performance, and Muscle Mechanics.

    ERIC Educational Resources Information Center

    Stevenson, Scott W.; Dudley, Gary A.

    2001-01-01

    Examined whether creatine (CR) monohydrate loading would alter resistance exercise performance, isometric strength, or in vivo contractile properties of the quadriceps femoris muscle compared with placebo loading in resistance-trained athletes. Overall, CR loading did not provide an ergogenic benefit for the unilateral dynamic knee extension…

  10. Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis

    PubMed Central

    Doherty, Joanne R.; Yang, Chunying; Scott, Kristen E. N.; Cameron, Michael D.; Fallahi, Mohammad; Li, Weimin; Hall, Mark A.; Amelio, Antonio L.; Mishra, Jitendra K.; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J.; Lu, Yunqi; Dang, Chi. V.; Kumar, K. Ganesh; Butler, Andrew A.; Bannister, Thomas D.; Hooper, Andrea T.; Unsal-Kacmaz, Keziban; Roush, William R.; Cleveland, John L.

    2014-01-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1, and that elevated MCT1 levels are manifest in premalignant and neoplastic E?-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, and reductions in glucose transport, and in levels of ATP, NADPH and glutathione. Reductions in glutathione then lead to increases in hydrogen peroxide, mitochondrial damage and, ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  11. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis.

    PubMed

    Doherty, Joanne R; Yang, Chunying; Scott, Kristen E N; Cameron, Michael D; Fallahi, Mohammad; Li, Weimin; Hall, Mark A; Amelio, Antonio L; Mishra, Jitendra K; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J; Lu, Yunqi; Dang, Chi V; Kumar, K Ganesh; Butler, Andrew A; Bannister, Thomas D; Hooper, Andrea T; Unsal-Kacmaz, Keziban; Roush, William R; Cleveland, John L

    2014-02-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here, we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1 and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, reductions in glucose transport, and in levels of ATP, NADPH, and ultimately, glutathione (GSH). Reductions in GSH then lead to increases in hydrogen peroxide, mitochondrial damage, and ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  12. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels

    PubMed Central

    Spillane, Mike; Schoch, Ryan; Cooke, Matt; Harvey, Travis; Greenwood, Mike; Kreider, Richard; Willoughby, Darryn S

    2009-01-01

    Numerous creatine formulations have been developed primarily to maximize creatine absorption. Creatine ethyl ester is alleged to increase creatine bio-availability. This study examined how a seven-week supplementation regimen combined with resistance training affected body composition, muscle mass, muscle strength and power, serum and muscle creatine levels, and serum creatinine levels in 30 non-resistance-trained males. In a double-blind manner, participants were randomly assigned to a maltodextrose placebo (PLA), creatine monohydrate (CRT), or creatine ethyl ester (CEE) group. The supplements were orally ingested at a dose of 0.30 g/kg fat-free body mass (approximately 20 g/day) for five days followed by ingestion at 0.075 g/kg fat free mass (approximately 5 g/day) for 42 days. Results showed significantly higher serum creatine concentrations in PLA (p = 0.007) and CRT (p = 0.005) compared to CEE. Serum creatinine was greater in CEE compared to the PLA (p = 0.001) and CRT (p = 0.001) and increased at days 6, 27, and 48. Total muscle creatine content was significantly higher in CRT (p = 0.026) and CEE (p = 0.041) compared to PLA, with no differences between CRT and CEE. Significant changes over time were observed for body composition, body water, muscle strength and power variables, but no significant differences were observed between groups. In conclusion, when compared to creatine monohydrate, creatine ethyl ester was not as effective at increasing serum and muscle creatine levels or in improving body composition, muscle mass, strength, and power. Therefore, the improvements in these variables can most likely be attributed to the training protocol itself, rather than the supplementation regimen. PMID:19228401

  13. Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas

    SciTech Connect

    Odom, J.M.; Peck, H.D. Jr.

    1981-07-01

    Various dehydrogenases, reductases, and electron transfer proteins involved in respiratory sulfate reduction by Desulfovibrio gigas have been localized with respect to the periplasmic space, membrane, and cytoplasm. This species was grown on a lactate-sulfate medium, and the distribution of enzyme activities and concentrations of electron transfer components were determined in intact cells, cell fractions prepared with a French press, and lysozyme spheroplasts. A significant fraction of formate dehydrogenase was demonstrated to be localized in the periplasmic space in addition to hydrogenase and some c-type cytochrome. Cytochrome b, menaquinone, fumarate reductase, and nitrite reductase were largely localized on the cytoplasmic membrane. Fumarate reductase was situated on the inner aspect on the membrane, and the nitrite reductase appeared to be transmembraneous. Adenylylsulfate reductase, bisulfite reductase (desulfoviridin), pyruvate dehydrogenase, and succinate dehydrogenase activities were localized in the cytoplasm. Significant amounts of hydrogenase and c-type cytochromes were also detected in the cytoplasm. Growth of D. gigas on a formate-sulfate medium containing acetate resulted in a 10-fold increase in membrane-bound formate dehydrogenase and a doubling of c-type cytochromes. Growth on fumarate with formate resulted in an additional increase in b-type cytochrome compared with lactate-sulfate-grown cells.

  14. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study

    SciTech Connect

    Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel; Conjard-Duplany, Agnes

    2010-01-01

    As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

  15. Non-invasive Monitoring of Lactate Dynamics in Human Forearm Muscle After Exhaustive Exercise by 1H-MRS at 7T

    PubMed Central

    Ren, Jimin; Sherry, A. Dean; Malloy, Craig R.

    2013-01-01

    Despite its importance in energy metabolism, lactate in human skeletal muscle has been difficult to detect by non-invasive 1H MRS mainly due to interference from large water and lipid signals. Long echo-time (TE) acquisitions at 7 Tesla effectively attenuates the water and lipid signals in forearm muscle allowing direct observation of both lactate resonances, the methine at 4.09 ppm and the methyl at 1.31 ppm. Using this approach, we are able to monitor lactate dynamics at a temporal resolution of 32 sec. While lactate was not detectable at rest, immediately after an acute period of exercise to fatigue the forearm muscle, lactate rose to a level comparable to that of creatine (~30 mmol/kg wet weight). In a typical 1H MR spectrum collected using a TE of 140 ms, the lactate methine and methyl resonances both appear as doublets with an unusually large splitting of ~20 Hz due to residual dipolar coupling. During muscle recovery following exercise, the lactate signals decay rapidly with a time constant of t½ = 2.0 ± 0.6 min (n = 12 subjects). This fast and simple lactate detection method may prove valuable for monitoring lactate metabolism in cancer and in sports medicine applications. PMID:23192863

  16. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury

    PubMed Central

    Stevens, Patrick R.; Gawryluk, Jeremy W.; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D.

    2015-01-01

    HIV-1 infected individuals are living longer but experiencing a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells leads to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat1-72-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND. PMID:25613139

  17. The role of tetrahydrofolate dehydrogenase in the hepatic supply of tetrahydrobiopterin in rats.

    PubMed Central

    Stone, K J

    1976-01-01

    The reduction of 7,8-dihydrobiopterin to 5,6,7,8-tetrahydrobiopterin by rat liver tetrahydrofolate dehydrogenase (5,6,7,8-tetrahydrofolate-NADP+ oxidoreductase, EC 1.5.1.3) is competitively inhibited by trimethoprim lactate (apparent Ki 0.285 muM). An apparent Michaelis constant of 43 muM for dihydrobiopterin was obtained, which is 430 times higher than the reported Km for dihydrofolate with this enzyme. The reduction of dihydrobiopterin is thus more susceptible to inhibition by trimethoprim lactate than is the reduction of dihydrofolate. However, intraperitoneal administration of trimethoprim had no significant effect on the hepatic supply of tetrahydrobiopterin in rats. PMID:962851

  18. A case of late-onset riboflavin responsive multiple acyl-CoA dehydrogenase deficiency (MADD) with a novel mutation in ETFDH gene.

    PubMed

    Zhuo, Zhihong; Jin, Peina; Li, Fengyan; Li, Haiying; Chen, Xiaoxin; Wang, Huaili

    2015-01-01

    We report a novel mutation in the electron transfer flavoprotein dehydrogenase (EFTDH) gene in an adolescent Chinese patient with late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD) characterized by muscle weakness as early symptom. At the age of 9 years, the patient experienced progressive muscle weakness. Blood creatine kinase level and aminotransferase were higher than normal. The muscle biopsy revealed lipid storage myopathy. Serum acylcarnitine and urine organic acid analyses were consistent with MADD. Genetic mutation analysis revealed a compound heterozygous mutation in EFTDH gene. The patients showed good response to riboflavin and l-carnitine treatment. PMID:25913573

  19. Assignment of the creatine transporter gene (SLC6A8) to human chromosome Xq28 telomeric to G6PD

    SciTech Connect

    Gregor, P.; Nash, S.R.; Caron, M.G.

    1995-01-01

    The creatine-phosphocreatine shuttle has important functions in the temporal and spatial maintenance of the energy supply to skeletal and cardiac muscle. Muscle cells do not synthesize creatine, but take it up via a specific sodium-dependent transporter - the creatine transporter. Thus, the creatine transporter has an important role in muscular physiology. Furthermore, inhibition of creatine transport in experimental animals causes muscle weakness. Recently, creatine transporter cDNAs have been isolated and characterized from rabbit and human. In this communication we report mapping of the creatine transporter gene to human chromosome Xq28. 12 refs., 1 fig.

  20. Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle.

    PubMed

    Guerrero-Ontiveros, M L; Wallimann, T

    1998-07-01

    Interest in creatine (Cr) as a nutritional supplement and ergogenic aid for athletes has surged over recent years. After cellular uptake, Cr is phosphorylated to phosphocreatine (PCr) by the creatine kinase (CK) reaction using ATP. At subcellular sites with high energy requirements, e.g. at the myofibrillar apparatus during muscle contraction, CK catalyzes the transphosphorylation of PCr to ADP to regenerate ATP, thus preventing a depletion of ATP levels. PCr is thus available as an immediate energy source, serving not only as an energy buffer but also as an energy transport vehicle. Ingestion of creatine increases intramuscular Cr, as well as PCr concentrations, and leads to exercise enhancement, especially in sprint performance. Additional benefits of Cr supplementation have also been noticed for high-intensity long-endurance tasks, e.g. shortening of recovery periods after physical exercise. The present article summarizes recent findings on the influence of Cr supplementation on energy metabolism, and introduces the Cr transporter protein (CreaT), responsible for uptake of Cr into cells, as one of the key-players for the multi-faceted regulation of cellular Cr homeostasis. Furthermore, it is suggested that patients with disturbances in Cr metabolism or with different neuro-muscular diseases may benefit from Cr supplementation as an adjuvant therapy to relieve or delay the onset of symptoms. Although it is still unclear how Cr biosynthesis and transport are regulated in health and disease, so far there are no reports of harmful side effects of Cr loading in humans. However, in this study, we report that chronic Cr supplementation in rats down-regulates in vivo the expression of the CreaT. In addition, we describe the presence of CreaT isoforms most likely generated by alternative splicing. PMID:9746337

  1. MODELING EXTENDED LACTATIONS IN HOLSTEINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop an equation for predicting average yield of cows still in milk from 1 to 999 days. Test day yields (kg/d) of 903,529 lactations of 305,202 Holstein cows calved between 1997 and 2003 were used. Average daily yield (Y) for each 30-d interval of lactation wa...

  2. Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes.

    PubMed

    Clark, Joseph F; Cecil, Kim M

    2015-03-01

    Primary care pediatricians and a variety of specialist physicians strive to define an accurate diagnosis for children presenting with impairment of expressive speech and delay in achieving developmental milestones. Within the past two decades, a group of disorders featuring this presentation have been identified as cerebral creatine deficiency syndromes (CCDS). Patients with these disorders were initially discerned using proton magnetic resonance spectroscopy of the brain within a magnetic resonance imaging (MRI) examination. The objective of this review is to provide the clinician with an overview of the current information available on identifying and treating these conditions. We explain the salient features of creatine metabolism, synthesis, and transport required for normal development. We propose diagnostic approaches for confirming a CCDS diagnosis. Finally, we describe treatment approaches for managing patients with these conditions. PMID:25521922

  3. Estimation of skeletal muscle mass from body creatine content

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.

  4. Improved radioimmunoassay for creatine kinase isoenzymes in plasma

    SciTech Connect

    Ritter, C.S.; Mumm, S.R.; Roberts, R.

    1981-11-01

    We describe convenient and relatively rapid procedures for purifying creatine kinase isoenzymes MM, BB, and MB, and their use in an improved radioimmunoassay for creatine kinase isoenzymes in plasma. The modifications include use of: (a) BB with a specific activity of 400 kU/G, which can be labeled with a specific radioactivity of 20 Ci/g; (b) albumin-free purified MB as inhibitor; (c) antiserum to MB creatine kinase; and (d) a second-antibody technique that necessitates only a 15-min incubation. The radioimmunoassay for MB has a sensitivity of 0.2 ..mu..g/L (80 mU/L) and a CV of <5%. Plasma MB average 22 (SD 12) ..mu..g/L in 200 normal subjects; 24 (SD 12) ..mu..g/L in 200 patients with chest pain without infarction; and 23 (SD 7) ..mu..g/L in 43 patients with renal disease, whether measured before or after dialysis. Peak values for plasma MB averaged 191 (SD 86) ..mu..g/L in 325 patients with documented myocardial infarction; BB was negligible. Extensive clinical experience indicates the radioimmunoassay to be suitably rapid, highly sensitive, and reliable as a diagnostic assay for MB on plasma.

  5. The bloodless lactate profile.

    PubMed

    Foster, C; Crowe, M P; Holum, D; Sandvig, S; Schrager, M; Snyder, A C; Zajakowski, S

    1995-06-01

    The blood lactate profile (HLa-P) is an accepted method of evaluating athletes and providing a basis for the prescription of training intensity. For both logistic and public health reasons HLa-P is less than optimal. In this study we evaluate the relative velocity or the %HR-max, obtained during a training session, as alternatives to HLa-P. Competitive speed skaters (N = 20) performed HLa-P consisting of 5.2000 m/400 m at incremental velocities ranging from very slow to maximal (time = 3.0-5.0 min). Blood lactate measured during a 60-s interval following each repetition was used to construct HLa-P and to predict the velocity associated with steady state (HLa = 4.0-6.5 mmol.l-1). Relative velocity was calculated relative to the velocity of the maximal trial. A plot of relative velocity and %HRmax vs HLa demonstrated that HLa = 4.0-6.5 mmol.l-1 occurred at a relative velocity of 78-88% (R2 = 0.807) and at 84-92 %HRmax (R2 = 0.748). In a separate training session the relative velocity and %HRmax models were cross validated by having the subjects skate 9.2000 m/400 m at constant velocity. HLa changes during the training session defined the presence/absence of steady state (delta HLa < 1.0 mM from trial 3 to 9). Comparing the velocity during the training session vs the velocity predicted from HLa-P, relative velocity model and %HRmax model allowed a test of the accuracy of bloodless means of defining steady state. HLa-P correctly predicted 81% of training session HLa responses, the relative velocity model correctly predicted 78%, and the %HRmax model correctly predicted 68%.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7658957

  6. Macro creatine kinase: determination and differentiation of two types by their activation energies

    SciTech Connect

    Stein, W.; Bohner, J.; Steinhart, R.; Eggstein, M.

    1982-01-01

    Determination of the MB isoenzyme of creatine kinase in patients with acute myocardial infarction may be disturbed by the presence of macro creatine kinase. The relative molecular mass of this form of creatine kinase in human serum is at least threefold that of the ordinary enzyme, and it is more thermostable. Here we describe our method for determination of macro creatine kinases and an easy-to-perform test for differentiating two forms of macro creatine kinase, based on their distinct activation energies. The activation energies of serum enzymes are mostly in the range of 40-65 kJ/mol of substrate. Unlike normal cytoplasmatic creatine kinases and IgG-linked CK-BB (macro creatine kinase type 1) a second form of macro creatine kinase (macro creatine kinase type 2) shows activation energies greater than 80 kJ/mol of substrate. The exact composition of macro creatine kinase type 2 is still unknown, but there is good reason to believe that it is of mitochondrial origin.

  7. Creatine supplementation with specific view to exercise/sports performance: an update

    PubMed Central

    2012-01-01

    Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly). PMID:22817979

  8. Creatine supplementation with specific view to exercise/sports performance: an update.

    PubMed

    Cooper, Robert; Naclerio, Fernando; Allgrove, Judith; Jimenez, Alfonso

    2012-01-01

    Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly). PMID:22817979

  9. Human, rat and chicken small intestinal Na+-Cl?-creatine transporter: functional, molecular characterization and localization

    PubMed Central

    Peral, M J; Garca-Delgado, M; Calonge, M L; Durn, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundin, A A

    2002-01-01

    In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl?-dependent, with a probable stoichiometry of 2 Na+: 1 Cl?: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 ?m. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, ?-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl?-dependent, apical creatine uptake. PMID:12433955

  10. The polysome as a terminal for the creatine phosphate energy shuttle.

    PubMed

    Savabi, F; Carpenter, C L; Mohan, C; Bessman, S P

    1988-12-01

    The role of the creatine phosphate shuttle in the energetics of muscle protein synthesis in isolated polysomes, from rat hindlimb muscle, was studied. Triton X-100-treated polysomes, following their centrifugation through a 1 M sucrose gradient, contained 38 mU/mg RNA of bound creatine kinase. In the presence of pH 5 enzyme (obtained from rat liver), 0.5 mM ATP, and 1 microM GTP, amino acid (leucine) incorporation by polysomes in the presence of 8 mM creatine phosphate was twice that in the presence of an exogenous ATP regenerating system of 10 mM phospho(enol)pyruvate and 10 U/ml pyruvate kinase. Since added creatine kinase had no effect on incorporation supported by creatine phosphate it is clear that endogenous creatine kinase allows sufficient regeneration of ATP. These data also suggest that nucleoside diphosphokinase must have been associated with the polysome for phosphate was transferred to GTP from [33P]creatine phosphate, and the specific activities of ATP and GTP increased at equal rates, reaching the specific activity of creatine phosphate at 8 min. We conclude that skeletal muscle polysomes have bound creatine kinase activity and they act as terminals for the creatine phosphate energy shuttle. Creatine phosphate regenerates GTP, probably through an intermediate reaction catalyzed by nucleoside diphosphokinase. This provided an added support for the hypothesis of compartmentation of enzymes and substrates and that the transport form of energy between the mitochondria and energy utilizing sites in muscle is creatine phosphate rather than ATP, which extends the general role of the creatine phosphate energy shuttle. PMID:2852949

  11. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals previously uncharacterized machinery for lactate utilization

    SciTech Connect

    Pinchuk, Grigoriy E.; Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Osterman, Andrei L.; Dervyn, Etienne; Geydebrekht, Oleg V.; Reed, Samantha B.; Romine, Margaret F.; Collart, Frank R.; Scott, J.; Fredrickson, Jim K.; Beliaev, Alex S.

    2009-02-24

    The ability to utilize lactate as a sole source of carbon and energy is one of the key metabolic signatures of Shewanellae, a diverse group of dissimilatory metal reducing bacteria commonly found in aquatic and sedimentary environments. Nonetheless, homology searches failed to recognize orthologs of previously described bacterial D- or L-lactate oxidizing enzymes (Escherichia coli genes dld and lldD) in any of the 13 analyzed genomes of Shewanella spp. Using comparative genomic techniques, we identified a conserved chromosomal gene cluster in Shewanella oneidensis MR-1 (locus tag: SO1522-SO1518) containing lactate permease and candidate genes for both D- and L-lactate dehydrogenase enzymes. The predicted D-LDH gene (dldD, SO1521) is a distant homolog of FAD-dependent lactate dehydrogenase from yeast, whereas the predicted L-LDH is encoded by three genes with previously unknown functions (lldEGF, SO1520-19-18). Through a combination of genetic and biochemical techniques, we experimentally confirmed the predicted physiological role of these novel genes in S. oneidensis MR-1 and carried out successful functional validation studies in Escherichia coli and Bacillus subtilis. We conclusively showed that dldD and lldEFG encode fully functional D-and L-LDH enzymes, which catalyze the oxidation of the respective lactate stereoisomers to pyruvate. Notably, the S. oneidensis MR-1 LldEFG enzyme is the first described example of a multi-subunit lactate oxidase. Comparative analysis of >400 bacterial species revealed the presence of LldEFG and Dld in a broad range of diverse species accentuating the potential importance of these previously unknown proteins in microbial metabolism.

  12. In Vivo{sup 1}H Magnetic Resonance Spectroscopy of Lactate in Patients With Stage IV Head and Neck Squamous Cell Carcinoma

    SciTech Connect

    Le, Quynh-Thu Koong, Albert; Lieskovsky, Yee Yie; Narasimhan, Balasubramanian; Graves, Edward; Pinto, Harlan; Brown, J. Martin; Spielman, Daniel

    2008-07-15

    Purpose: To investigate in vivo{sup 1}H magnetic resonance spectroscopy imaging of lactate for assessing tumor hypoxia in head and neck cancers and to determine its utility in predicting the response and outcomes. Methods and Materials: Volume-localized lactate-edited {sup 1}H magnetic resonance spectroscopy at 1.5 T was performed in vivo on involved neck nodes and control subcutaneous tissues in 36 patients with Stage IV head and neck cancer. The signal intensities (SIs) of lactate, choline, and creatine and the choline/creatine ratio were measured. The tumor partial pressure of oxygen (pO{sub 2}) was obtained in the same lymph node before MRS. Patients were treated with either two cycles of induction chemotherapy (tirapazamine, cisplatin, 5-fluorouracil) followed by simultaneous chemoradiotherapy or the same regimen without tirapazamine. The lactate SI and the choline/creatine ratio correlated with the tumor pO{sub 2}, nodal response, and locoregional control. Results: The lactate SI was greater for the involved nodes (median, 0.25) than for the subcutaneous tissue (median, 0.04; p = 0.07). No significant correlation was found between the lactate SI and tumor pO{sub 2} (mean, 0.46 {+-} 0.10 for hypoxic nodes [pO{sub 2} {<=}10 mm Hg, n = 15] vs. 0.36 {+-} 0.07 for nonhypoxic nodes [pO{sub 2} >10 mm Hg, n = 21], p = 0.44). A significant correlation was found between the choline/creatine ratios and tumor pO{sub 2} (mean, 2.74 {+-} 0.34 for hypoxic nodes vs. 1.78 {+-} 0.31 for nonhypoxic nodes, p = 0.02). No correlation was found between the lactate SI and the complete nodal response (p = 0.52) or locoregional control rates. Conclusions: The lactate SI did not correlate with tumor pO{sub 2}, treatment response, or locoregional control. Additional research is needed to refine this technique.

  13. Molybdenum center of xanthine dehydrogenase

    SciTech Connect

    Wahl, R.C.

    1983-01-01

    Cyanolysis of native, oxidized xanthine dehydrogenase is known to inactivate the enzyme by removing a unique sulfur as thiocyanate. Chemical, genetic, and spectroscopic evidence indicates that this sulfur is a terminal ligand of Mo and is present in native xanthine dehydrogenase, but not in cyanolyzed xanthine dehydrogenase or native sulfite oxidase. A procedure for rapid, reproducible, and quantitative reconstitution of desulfo Mo hydroxylases with sulfide was developed. The cyanolyzable sulfur of xanthine dehydrogenase was specifically radiolabeled with /sup 35/sulfide using this procedure. Various chemical properties of the cyanolyzable sulfur could be determined with the radiolabelled enzyme. The data support the conclusion that the cyanolyzable sulfur is a terminal sulfur ligand of the Mo atoms, and is not part of an organic moiety. Application of the resulfuration procedure to crude extracts of Drosophila melanogaster ma-1 flies, which are pleiotropically deficient in xanthine dehydrogenase and aldehyde oxidase, led to the emergence of these enzyme activities. Evidence for the identity of in vitro reconstituted xanthine dehydrogenase from ma-1 mutants with wild type enzyme is presented. A system for efficient reconstitution of the apo-subunits of the molybdoenzyme nitrate reductase from the Neurospora crassa mutant nit-1 with molybdenum cofactor from denatured purified molybdoenzymes in the absence of exogenous molybdate was developed.

  14. High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells.

    PubMed Central

    Wallimann, T; Wegmann, G; Moser, H; Huber, R; Eppenberger, H M

    1986-01-01

    Two isoforms of creatine kinase (CK; ATP:creatine N-phosphotransferase, E.C. 2.7.3.2), brain type (BB-CK) and mitochondrial type (MiMi-CK), but not the muscle types (MM- or hybrid MB-CK), were identified by cellulose polyacetate electrophoresis and immunoblots in retina from adult chickens. Indirect immunofluorescence labeling of cryosections of retinas revealed high concentrations of BB-CK in both rod and cone photoreceptor cells. Most of the fluorescence staining with anti-B-CK antibodies was found within the myoid and the ellipsoid portions of inner segments and the peripheral region of the outer segments. Significant staining with anti-B-CK antibodies was also found in horizontal cells and in the optical nerve fibers, with additional stratified staining in the inner plexiform layer. MiMi-CK was solely demonstrated in the ellipsoid portion of the photoreceptor cells. The presence of high concentrations of compartmentalized CK isoenzymes within photoreceptor cells (approximately equal to 30 enzyme units/mg) as well as the relatively high concentration of total creatine in these cells (approximately equal to 10-15 mM) indicates an important physiological function for CK and phosphocreatine in the energy transduction of vision. Images PMID:3520556

  15. Lactate and lactate clearance in acute cardiac care patients

    PubMed Central

    Lazzeri, Chiara; Picariello, Claudio; Dini, Carlotta Sorini; Gensini, Gian Franco; Valente, Serafina

    2012-01-01

    Hyperlactataemia is commonly used as a diagnostic and prognostic tool in intensive care settings. Recent studies documented that serial lactate measurements over time (or lactate clearance), may be clinically more reliable than lactate absolute value for risk stratification in different pathological conditions. While the negative prognostic role of hyperlactataemia in several critical ill diseases (such as sepsis and trauma) is well established, data in patients with acute cardiac conditions (i.e. acute coronary syndromes) are scarce and controversial. The present paper provides an overview of the current available evidence on the clinical role of lactic acid levels and lactate clearance in acute cardiac settings (acute coronary syndromes, cardiogenic shock, cardiac surgery), focusing on its prognostic role. PMID:24062898

  16. Lactate is always the end product of glycolysis

    PubMed Central

    Rogatzki, Matthew J.; Ferguson, Brian S.; Goodwin, Matthew L.; Gladden, L. Bruce

    2015-01-01

    Through much of the history of metabolism, lactate (La?) has been considered merely a dead-end waste product during periods of dysoxia. Congruently, the end product of glycolysis has been viewed dichotomously: pyruvate in the presence of adequate oxygenation, La? in the absence of adequate oxygenation. In contrast, given the near-equilibrium nature of the lactate dehydrogenase (LDH) reaction and that LDH has a much higher activity than the putative regulatory enzymes of the glycolytic and oxidative pathways, we contend that La? is always the end product of glycolysis. Cellular La? accumulation, as opposed to flux, is dependent on (1) the rate of glycolysis, (2) oxidative enzyme activity, (3) cellular O2 level, and (4) the net rate of La? transport into (influx) or out of (efflux) the cell. For intracellular metabolism, we reintroduce the Cytosol-to-Mitochondria Lactate Shuttle. Our proposition, analogous to the phosphocreatine shuttle, purports that pyruvate, NAD+, NADH, and La? are held uniformly near equilibrium throughout the cell cytosol due to the high activity of LDH. La? is always the end product of glycolysis and represents the primary diffusing species capable of spatially linking glycolysis to oxidative phosphorylation. PMID:25774123

  17. Serum creatine kinase level is a poor predictor of muscle function after injury.

    PubMed

    Fridn, J; Lieber, R L

    2001-04-01

    Serum creatine kinase and dorsiflexion torque levels were measured in New Zealand White rabbits 1, 2, 7, 14, or 28 days after a single bout of eccentric exercise (n=26). No significant correlation was observed between creatine kinase activity and torque across time periods (P>0.15) and the regression relationship described only about 8% of the experimental variability. These data demonstrate that there exists a poor correlation between serum creatine kinase levels and skeletal muscle function after eccentric exercise. PMID:11252462

  18. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation.

    PubMed

    Turner, Clare E; Byblow, Winston D; Gant, Nicholas

    2015-01-28

    Impairment or interruption of oxygen supply compromises brain function and plays a role in neurological and neurodegenerative conditions. Creatine is a naturally occurring compound involved in the buffering, transport, and regulation of cellular energy, with the potential to replenish cellular adenosine triphosphate without oxygen. Creatine is also neuroprotective in vitro against anoxic/hypoxic damage. Dietary creatine supplementation has been associated with improved symptoms in neurological disorders defined by impaired neural energy provision. Here we investigate, for the first time in humans, the utility of creatine as a dietary supplement to protect against energetic insult. The aim of this study was to assess the influence of oral creatine supplementation on the neurophysiological and neuropsychological function of healthy young adults during acute oxygen deprivation. Fifteen healthy adults were supplemented with creatine and placebo treatments for 7 d, which increased brain creatine on average by 9.2%. A hypoxic gas mixture (10% oxygen) was administered for 90 min, causing global oxygen deficit and impairing a range of neuropsychological processes. Hypoxia-induced decrements in cognitive performance, specifically attentional capacity, were restored when participants were creatine supplemented, and corticomotor excitability increased. A neuromodulatory effect of creatine via increased energy availability is presumed to be a contributing factor of the restoration, perhaps by supporting the maintenance of appropriate neuronal membrane potentials. Dietary creatine monohydrate supplementation augments neural creatine, increases corticomotor excitability, and prevents the decline in attention that occurs during severe oxygen deficit. This is the first demonstration of creatine's utility as a neuroprotective supplement when cellular energy provision is compromised. PMID:25632150

  19. The effects of creatine supplementation on selected factors of tennis specific training

    PubMed Central

    Pluim, B M; Ferrauti, A; Broekhof, F; Deutekom, M; Gotzmann, A; Kuipers, H; Weber, K

    2006-01-01

    Background Creatine supplementation is popular among tennis players but it is not clear whether it actually enhances tennis performance. Objectives To examine the effects of creatine supplementation on tennis specific performance indices. Methods In a randomised, double blind design, 36 competitive male tennis players (24 creatine, mean (SD) age, 22.5 (4.9) years; 12 placebo, 22.8 (4.8) years) were tested at baseline, after six days of creatine loading, and after a maintenance phase of four weeks (14 creatine, 10 placebo). Serving velocity (10 serves), forehand and backhand velocity (three series of 58 strokes), arm and leg strength (bench press and leg press), and intermittent running speed (three series of five 20 metre sprints) were measured. Results Compared with placebo, neither six days nor five weeks of creatine supplementation had a significant effect on serving velocity (creatine: +2?km/h; placebo: +2?km/h, p?=?0.90); forehand velocity (creatine: +4?km/h; placebo: +4?km/h, p?=?0.80), or backhand velocity (creatine: +3?km/h; placebo: +1?km/h, p?=?0.38). There was also no significant effect of creatine supplementation on repetitive sprint power after 5, 10, and 20 metres, (creatine 20 m: ?0.03?m/s; placebo 20 m: +0.01?m/s, p?=?0.18), or in the strength of the upper and lower extremities. Conclusions Creatine supplementation is not effective in improving selected factors of tennis specific performance and should not be recommended to tennis players. PMID:16720886

  20. Role of creatine supplementation in exercise-induced muscle damage: A mini review

    PubMed Central

    Kim, Jooyoung; Lee, Joohyung; Kim, Seungho; Yoon, Daeyoung; Kim, Jieun; Sung, Dong Jun

    2015-01-01

    Muscle damage is induced by both high-intensity resistance and endurance exercise. Creatine is a widely used dietary supplement to improve exercise performance by reducing exercise-induced muscle damage. Many researchers have suggested that taking creatine reduces muscle damage by decreasing the inflammatory response and oxidative stress, regulating calcium homeostasis, and activating satellite cells. However, the underlying mechanisms of creatine and muscle damage have not been clarified. Therefore, this review discusses the regulatory effects of creatine on muscle damage by compiling the information collected from basic science and sports science research. PMID:26535213

  1. Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle.

    PubMed

    Birkedal, R; Gesser, H

    2003-08-01

    The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case. PMID:12856133

  2. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring.

    PubMed

    Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R

    2016-01-15

    Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans. PMID:26592720

  3. Creatine Protects against Excitoxicity in an In Vitro Model of Neurodegeneration

    PubMed Central

    Genius, Just; Geiger, Johanna; Bender, Andreas; Mller, Hans-Jrgen; Klopstock, Thomas; Rujescu, Dan

    2012-01-01

    Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity. PMID:22347384

  4. Role of creatine supplementation in exercise-induced muscle damage: A mini review.

    PubMed

    Kim, Jooyoung; Lee, Joohyung; Kim, Seungho; Yoon, Daeyoung; Kim, Jieun; Sung, Dong Jun

    2015-10-01

    Muscle damage is induced by both high-intensity resistance and endurance exercise. Creatine is a widely used dietary supplement to improve exercise performance by reducing exercise-induced muscle damage. Many researchers have suggested that taking creatine reduces muscle damage by decreasing the inflammatory response and oxidative stress, regulating calcium homeostasis, and activating satellite cells. However, the underlying mechanisms of creatine and muscle damage have not been clarified. Therefore, this review discusses the regulatory effects of creatine on muscle damage by compiling the information collected from basic science and sports science research. PMID:26535213

  5. Age dependence of myosin heavy chain transitions induced by creatine depletion in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Baldwin, Kenneth M.

    1995-01-01

    This study was designed to test the hypothesis that myosin heavy chain (MHC) plasticity resulting from creatine depletion is an age-dependent process. At weaning (age 28 days), rat pups were placed on either standard rat chow (normal diet juvenile group) or the same chow supplemented with 1% wt/wt of the creatine analogue beta-guanidinopropionic acid (creatine depletion juvenile (CDJ) group). Two groups of adult rats (age approximately 8 wk) were placed on the same diet regimens (normal diet adult and creatine depletion adult (CDA) groups). After 40 days (CDJ and normal diet juvenile groups) and 60 days (CDA and normal diet adult groups), animals were killed and several skeletal muscles were removed for analysis of creatine content or MHC ditribution. In the CDJ group, creatine depletion (78%) was accompanied by significant shifts toward expression of slower MHC isoforms in two slow and three fast skeletal muscles. In contrast, creatine depletion in adult animals did not result in similar shifts toward slow MHC isoform expression in either muscle type. The results of this study indicate that there is a differential effect of creatine depletion on MHC tranitions that appears to be age dependent. These results strongly suggest that investigators contemplating experimental designs involving the use of the creatine analogue beta-guanidinopropionic acid should consider the age of the animals to be used.

  6. Creatine supplementation reduces oxidative stress biomarkers after acute exercise in rats.

    PubMed

    Deminice, Rafael; Jordao, Alceu Afonso

    2012-08-01

    The objective of this study was to evaluate the effect of creatine supplementation on muscle and plasma markers of oxidative stress after acute aerobic exercise. A total of 64 Wistar rats were divided into two groups: control group (n = 32) and creatine-supplemented group (n = 32). Creatine supplementation consisted of the addition of 2% creatine monohydrate to the diet. After 28 days, the rats performed an acute moderate aerobic exercise bout (1-h swimming with 4% of total body weight load). The animals were killed before (pre) and at 0, 2 and 6 h (n = 8) after acute exercise. As expected, plasma and total muscle creatine concentrations were significantly higher (P < 0.05) in the creatine-supplemented group compared to control. Acute exercise increased plasma thiobarbituric acid reactive species (TBARS) and total lipid hydroperoxide. The same was observed in the soleus and gastrocnemius muscles. Creatine supplementation decreased these markers in plasma (TBARS: pre 6%, 0 h 25%, 2 h 27% and 6 h 20%; plasma total lipid hydroperoxide: pre 38%, 0 h 24%, 2 h 12% and 6 h 20%, % decrease). Also, acute exercise decreased the GSH/GSSG ratio in soleus muscle, which was prevented by creatine supplementation (soleus: pre 8%, 0 h 29%, 2 h 30% and 6 h 44%, % prevention). The results show that creatine supplementation inhibits increased oxidative stress markers in plasma and muscle induced by acute exercise. PMID:22009139

  7. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.

    PubMed

    Wang, Zei Wen; Saini, Mukesh; Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng

    2015-11-01

    Crude glycerol resulting from biodiesel production is an abundant and renewable resource. However, the impurities in crude glycerol usually make microbial fermentation problematic. This issue was addressed by systematic engineering of Escherichia coli for the production of d-lactate from crude glycerol. First, mgsA and the synthetic pathways of undesired products were eliminated in E. coli, rendering the strain capable of homofermentative production of optically pure d-lactate. To direct carbon flux toward d-lactate, the resulting strain was endowed with an enhanced expression of glpD-glpK in the glycerol catabolism and of a heterologous gene encoding d-lactate dehydrogenase. Moreover, the strain was evolved to improve its utilization of cruder glycerol and subsequently equipped with the FocA channel to export intracellular d-lactate. Finally, the fed-batch fermentation with two-phase culturing was carried out with a bioreactor. As a result, the engineered strain enabled production of 105 g/L d-lactate (99.9% optical purity) from 121 g/L crude glycerol at 40 h. The result indicates the feasibility of our approach to engineering E. coli for the crude glycerol-based fermentation. PMID:26477354

  8. Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release.

    PubMed

    Zhang, Xiaomeng; Ding, Shushu; Cao, Sumei; Zhu, Anwei; Shi, Guoyue

    2016-06-15

    Selective and sensitive detection of extracellular lactate is of fundamental significance for studying the metabolic alterations in tumor progression. Here we report the rational design and synthesis of a quantum-dot-hydrogel-based fluorescent probe for biosensing and bioimaging the extracellular lactate. By surface engineering the destabilized quantum dot sol with Nile Blue, the destabilized Nile-Blue-functionalized quantum dot sol cannot only self-assemble forming quantum dot hydrogel but also monitor lactate in the presence of nicotinamide adenine dinucleotide cofactor and lactate dehydrogenase through fluorescence resonance energy transfer. Notably, the surface engineered quantum dot hydrogel show high selectivity toward lactate over common metal ions, amino acids and other small molecules that widely coexist in biological system. Moreover, the destabilized Nile-Blue-functionalized quantum dots can encapsulate isolated cancer cells when self-assembled into a hydrogel and thus specifically detect and image the extracellular lactate metabolism. By virtue of these properties, the functionalized quantum dot hydrogel was further successfully applied to monitor the effect of metabolic agents. PMID:26852200

  9. Urinary creatine and methylamine excretion following 4 x 5 g x day(-1) or 20 x 1 g x day(-1) of creatine monohydrate for 5 days.

    PubMed

    Sale, Craig; Harris, Roger C; Florance, James; Kumps, Alain; Sanvura, Robertine; Poortmans, Jacques R

    2009-05-01

    In this study, we examined the effect of two creatine monohydrate supplementation regimes on 24-h urinary creatine and methylamine excretion. Nine male participants completed two trials, separated by 6 weeks. Participants ingested 4 x 5 g x day(-1) creatine monohydrate for 5 days in one trial and 20 x 1 g x day(-1) for 5 days in the other. We collected 24-h urine samples on 2 baseline days (days 1-2), during 5 days of supplementation (days 3-7), and for 2 days post-supplementation (days 8-9). Urine was assayed for creatine using high-performance liquid chromatography and methylamine using gas chromatography. Less creatine was excreted following the 20 x 1 g x day(-1) regime (49.25 +/- 10.53 g) than the 4 x 5 g x day(-1) regime (62.32 +/- 9.36 g) (mean +/- s; P < 0.05). Mean total excretion of methylamine (n = 6) over days 3-7 was 8.61 +/- 7.58 mg and 24.81 +/- 25.76 mg on the 20 x 1 g x day(-1) and 4 x 5 g x day(-1) regimes, respectively (P < 0.05). The lower excretion of creatine using 20 x 1 g x day(-1) doses suggests a greater retention in the body and most probably in the muscle. Lower and more frequent doses of creatine monohydrate appear to further attenuate formation of methylamine. PMID:19437189

  10. Effects of creatine supplementation on oxidative stress profile of athletes

    PubMed Central

    2012-01-01

    Background Creatine (Cr) supplementation has been widely used among athletes and physically active individuals. Secondary to its performance-enhancing ability, an increase in oxidative stress may occur, thus prompting concern about its use. The purpose of this study is to investigate the effects of Cr monohydrate supplementation and resistance training on muscle strength and oxidative stress profile in healthy athletes. Methods A randomized, double-blind, placebo-controlled method was used to assess twenty-six male elite Brazilian handball players divided into 3 groups: Cr monohydrate supplemented group (GC, N = 9), placebo group (GP, N = 9), no treatment group (COT, N = 8) for 32 days. All subjects underwent a resistance training program. Blood samples were drawn on 0 and 32 days post Cr supplementation to analyze the oxidative stress markers, thiobarbituric acid reactive species (TBARS), total antioxidant status (TAS), and uric acid. Creatine phosphokinase, urea, and creatinine were also analyzed, as well. Fitness tests (1 repetition maximum - 1RM and muscle endurance) were performed on the bench press. Body weight and height, body fat percentage (by measuring skin folds) and upper muscular area were also evaluated. Statistical analysis was performed using ANOVA. Results Only GC group showed increase in 1RM (54 9 vs. 63 10 kg; p = 0.0356) and uric acid (4.6 1.0 vs. 7.4 1.6 mg/dl; p = 0.025), with a decrease in TAS (1.11 0.34 vs. 0.60 0.19 mmol/l; p = 0.001). No differences (pre- vs. post-training) in TBARS, creatine phosphokinase, urea, creatinine, body weight and height, body fat percentage, or upper muscular area were observed in any group. When compared to COT, GC group showed greater decrease in TAS (?0.51 0.36 vs. -0.02 0.50 mmol/l; p = 0.0268), higher increase in 1RM (8.30 2.26 vs. 5.29 2.36 kg; p = 0.0209) and uric acid (2.77 1.70 vs. 1.00 1.03 mg/dl; p = 0.0276). Conclusion We conclude that Cr monohydrate supplementation associated with a specific resistance program promoted a meaningful increase in muscle strength without inducing changes in body composition. The observed significant increase in uric acid and the decrease in TAS suggest that creatine supplementation, despite promoting acute effects on muscle strength improvement, might induce oxidative stress and decreases total antioxidant status of subjects. PMID:23259853

  11. Myocardial Creatine Levels Do Not Influence Response to Acute Oxidative Stress in Isolated Perfused Heart

    PubMed Central

    Aksentijevi?, Dunja; Zervou, Sevasti; Faller, Kiterie M. E.; McAndrew, Debra J.; Schneider, Jurgen E.; Neubauer, Stefan; Lygate, Craig A.

    2014-01-01

    Background Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury. Objectives To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS) exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare worse. Methods and Results CrT-OE mice were pre-selected for creatine levels 20100% above wild-type using in vivo 1HMRS. Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min equilibration, hearts were perfused with either H2O2 0.5 M (30 min), or the anti-neoplastic drug doxorubicin 15 M (100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKC? expression were quantified in perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wild-type controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to protect hearts from doxorubicin-induced dysfunction. Conclusions Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart, arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity. PMID:25272153

  12. Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs

    PubMed Central

    McBreairty, Laura E.; Robinson, Jason L.; Furlong, Kayla R.; Brunton, Janet A.; Bertolo, Robert F.

    2015-01-01

    Creatine (Cr) is an important high-energy phosphate buffer in tissues with a high energy demand such as muscle and brain and is consequently a highly consumed nutritional supplement. Creatine is synthesized via the S-adenosylmethionine (SAM) dependent methylation of guanidinoacetate (GAA) which is not regulated by a feedback mechanism. The first objective of this study was to determine the effectiveness of GAA at increasing tissue Cr stores. Because SAM is required for other methylation reactions, we also wanted to determine whether an increased creatine synthesis would lead to a lower availability of methyl groups for other methylated products. Three month-old pigs (n = 18) were fed control, GAA- or Cr-supplemented diets twice daily. On day 18 or 19, anesthesia was induced 1–3 hours post feeding and a bolus of [methyl-3H]methionine was intravenously infused. After 30 minutes, the liver was analyzed for methyl-3H incorporation into protein, Cr, phosphatidylcholine (PC) and DNA. Although both Cr and GAA led to higher hepatic Cr concentration, only supplementation with GAA led to higher levels of muscle Cr (P < 0.05). Only GAA supplementation resulted in lower methyl-3H incorporation into PC and protein as well as lower hepatic SAM concentration compared to the controls, suggesting that Cr synthesis resulted in a limited methyl supply for PC and protein synthesis (P < 0.05). Although GAA is more effective than Cr at supporting muscle Cr accretion, further research should be conducted into the long term consequences of a limited methyl supply and its effects on protein and PC homeostasis. PMID:26110793

  13. Fermentation and alternative respiration compensate for NADH dehydrogenase deficiency in a prokaryotic model of DJ-1-associated Parkinsonism.

    PubMed

    Messaoudi, Nadia; Gautier, Valérie; Dairou, Julien; Mihoub, Mouhad; Lelandais, Gaëlle; Bouloc, Philippe; Landoulsi, Ahmed; Richarme, Gilbert

    2015-11-01

    YajL is the closest prokaryotic homologue of Parkinson's disease-associated DJ-1, a protein of undefined function involved in the oxidative stress response. We reported recently that YajL and DJ-1 protect cells against oxidative stress-induced protein aggregation by acting as covalent chaperones for the thiol proteome, including the NuoG subunit of NADH dehydrogenase 1, and that NADH dehydrogenase 1 activity is negligible in the yajL mutant. We report here that this mutant compensates for low NADH dehydrogenase activity by utilizing NADH-independent alternative dehydrogenases, including pyruvate oxidase PoxB and d-amino acid dehydrogenase DadA, and mixed acid aerobic fermentations characterized by acetate, lactate, succinate and ethanol excretion. The yajL mutant has a low adenylate energy charge favouring glycolytic flux, and a high NADH/NAD ratio favouring fermentations over pyruvate dehydrogenase and the Krebs cycle. DNA array analysis showed upregulation of genes involved in glycolytic and pentose phosphate pathways and alternative respiratory pathways. Moreover, the yajL mutant preferentially catabolized pyruvate-forming amino acids over Krebs cycle-related amino acids, and thus the yajL mutant utilizes pyruvate-centred respiro-fermentative metabolism to compensate for the NADH dehydrogenase 1 defect and constitutes an interesting model for studying eukaryotic respiratory complex I deficiencies, especially those associated with Alzheimer's and Parkinson's diseases. PMID:26377309

  14. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function.

    PubMed

    Guzun, R; Timohhina, N; Tepp, K; Gonzalez-Granillo, M; Shevchuk, I; Chekulayev, V; Kuznetsov, A V; Kaambre, T; Saks, V A

    2011-05-01

    Physiological role of creatine (Cr) became first evident in the experiments of Belitzer and Tsybakova in 1939, who showed that oxygen consumption in a well-washed skeletal muscle homogenate increases strongly in the presence of creatine and with this results in phosphocreatine (PCr) production with PCr/O(2) ratio of about 5-6. This was the beginning of quantitative analysis in bioenergetics. It was also observed in many physiological experiments that the contractile force changes in parallel with the alteration in the PCr content. On the other hand, it was shown that when heart function is governed by Frank-Starling law, work performance and oxygen consumption rate increase in parallel without any changes in PCr and ATP tissue contents (metabolic homeostasis). Studies of cellular mechanisms of all these important phenomena helped in shaping new approach to bioenergetics, Molecular System Bioenergetics, a part of Systems Biology. This approach takes into consideration intracellular interactions that lead to novel mechanisms of regulation of energy fluxes. In particular, interactions between mitochondria and cytoskeleton resulting in selective restriction of permeability of outer mitochondrial membrane anion channel (VDAC) for adenine nucleotides and thus their recycling in mitochondria coupled to effective synthesis of PCr by mitochondrial creatine kinase, MtCK. Therefore, Cr concentration and the PCr/Cr ratio became important kinetic parameters in the regulation of respiration and energy fluxes in muscle cells. Decrease in the intracellular contents of Cr and PCr results in a hypodynamic state of muscle and muscle pathology. Many experimental studies have revealed that PCr may play two important roles in the regulation of muscle energetics: first by maintaining local ATP pools via compartmentalized creatine kinase reactions, and secondly by stabilizing cellular membranes due to electrostatic interactions with phospholipids. The second mechanism decreases the production of lysophosphoglycerides in hypoxic heart, protects the cardiac cells sarcolemma against ischemic damage, decreases the frequency of arrhythmias and increases the post-ischemic recovery of contractile function. PCr is used as a pharmacological product Neoton in cardiac surgery as one of the components of cardioplegic solutions for protection of the heart against intraoperational injury and injected intravenously in acute myocardial ischemic conditions for improving the hemodynamic response and clinical conditions of patients with heart failure. PMID:21390528

  15. Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa

    PubMed Central

    Gao, Chao; Hu, Chunhui; Zheng, Zhaojuan; Jiang, Tianyi; Dou, Peipei; Zhang, Wen; Che, Bin; Wang, Yujiao; Lv, Min

    2012-01-01

    NAD-independent l-lactate dehydrogenase (l-iLDH) and NAD-independent d-lactate dehydrogenase (d-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an l-iLDH), and lldE (encoding a d-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses d-iLDH and l-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldRM, lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. l-Lactate and d-lactate interfered with the DNA-binding activity of LldR. Thus, l-iLDH and d-iLDH were expressed when the operon was induced in the presence of l-lactate or d-lactate. PMID:22408166

  16. Cadmium chloride inhibits lactate gluconeogenesis in isolated human renal proximal tubules: a cellular metabolomic approach with 13C-NMR.

    PubMed

    Faiz, Hassan; Conjard-Duplany, Agnès; Boghossian, Michelle; Martin, Guy; Baverel, Gabriel; Ferrier, Bernard

    2011-09-01

    As part of a study on cadmium nephrotoxicity, we studied the effect of cadmium chloride (CdCl2) in isolated human renal proximal tubules metabolizing the physiological substrate lactate. Dose-effect experiments showed that 10-500 μM CdCl2 reduced lactate removal, glucose production and the cellular levels of ATP, coenzyme A, acetyl-coenzyme A and of reduced glutathione in a dose-dependent manner. After incubation with 5 mM L: -[1-(13)C]-, or L: -[2-(13)C]-, or L: -[3-(13)C] lactate or 5 mM L: -lactate plus 25 mM NaH(13)CO3 as substrates, substrate utilization and product formation were measured by both enzymatic and carbon 13 NMR methods. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism previously validated showed that 100 μM CdCl2 caused an inhibition of flux through lactate dehydrogenase and alanine aminotransferase and through the entire gluconeogenic pathway; fluxes were diminished by 19% (lactate dehydrogenase), 28% (alanine aminotransferase), 28% (pyruvate carboxylase), 42% (phosphoenolpyruvate carboxykinase), and 52% (glucose-6-phosphatase). Such effects occurred without altering the oxidation of the lactate carbons or fluxes through enzymes of the tricarboxylic acid cycle despite a large fall of the cellular ATP level, a marker of the energy status and of the viability of the renal cells. These results that were observed at clinically relevant tissue concentrations of cadmium provide a biochemical basis for a better understanding of the cellular mechanism of cadmium-induced renal proximal tubulopathy in humans chronically exposed to cadmium. PMID:21153630

  17. Towards an effective biosensor for monitoring AD leachate: a knockout E. coli mutant that cannot catabolise lactate.

    PubMed

    Sweeney, Joseph; Murphy, Cormac D; McDonnell, Kevin

    2015-12-01

    Development of a biosensor for the convenient measurement of acetate and propionate concentrations in a two-phase anaerobic digestor (AD) requires a bacterium that will be unresponsive to the other organic acids present in the leachate, of which lactate is the most abundant. Successive gene knockouts of E.coli W3110 D-lactate dehydrogenase (dld), L-lactate dehydrogenase (lldD), glycolate oxidase (glcD) and a suspected L-lactate dehdrogenase (ykgF) were performed. The resulting quadruple mutant (IMD Wldgy) was incapable of growth on D- and L-lactate, whereas the wild type grew readily on these substrates. Furthermore, the O2 consumption rates of acetate-grown IMD Wldgy cell suspensions supplied with either acetate (0.1mM) or a synthetic leachate including acetate (0.1mM) and DL-lactate (1mM) were identical (2.79 and 2.70mgl(-1)min(-1), respectively). This was in marked contrast to similar experiments with the wild type which gave initial O2 consumption rates of 2.00, 2.36 and 2.97mgl(-1)min(-1) when cell suspensions were supplied with acetate (0.1mM), acetate (0.1mM) plus D-lactate (1mM) or acetate (0.1mM) plus L-lactate (1mM), respectively. The knockout strain provides a platform for the design of a biosensor that can accessibly monitor acetate and propionate concentrations in AD leachate via O2-uptake measurements. PMID:26272093

  18. The therapeutic role of creatine in Huntington's disease.

    PubMed

    Ryu, Hoon; Rosas, H Diana; Hersch, Steven M; Ferrante, Robert J

    2005-11-01

    Huntington's disease (HD) is an autosomal dominant and fatal neurological disorder characterized by a clinical triad of progressive choreiform movements, psychiatric symptoms, and cognitive decline. HD is caused by an expanded trinucleotide CAG repeat in the gene coding for the protein huntingtin. No proven treatment to prevent the onset or to delay the progression of HD currently exists. While a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear, it has been hypothesized that interactions of the mutant huntingtin protein or its fragments may result in a number of interrelated pathogenic mechanisms triggering a cascade of molecular events that lead to the untimely neuronal death observed in HD. One putative pathological mechanism reported to play a prominent role in the pathogenesis of HD is mitochondrial dysfunction and the subsequent reduction of cellular energy. Indeed, if mitochondrial impairment and reduced energy stores play roles in the neuronal loss in HD, then a therapeutic strategy that buffers intracellular energy levels may ameliorate the neurodegenerative process. Sustained ATP levels may have both direct and indirect importance in ameliorating the severity of many of the pathogenic mechanisms associated with HD. Creatine, a guanidino compound produced endogenously and acquired exogenously through diet, is a critical component in maintaining much needed cellular energy. As such, creatine is one of a number of ergogens that may provide a relatively safe and immediately available therapeutic strategy to HD patients that may be the cornerstone of a combined treatment necessary to delay the relentless progression of HD. PMID:16055197

  19. A novel mouse model of creatine transporter deficiency

    PubMed Central

    Baroncelli, Laura; Alessandrì, Maria Grazia; Tola, Jonida; Putignano, Elena; Migliore, Martina; Amendola, Elena; Gross, Cornelius; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2014-01-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement  and behavioral disturbances, language and speech impairment ( OMIM #300352). CCDS1 is still an untreatable pathology that can be very invalidating for patients and caregivers. Only two murine models of CCDS1, one of which is an ubiquitous knockout mouse, are currently available to study the possible mechanisms underlying the pathologic phenotype of CCDS1 and to develop therapeutic strategies. Given the importance of validating phenotypes and efficacy of promising treatments in more than one mouse model we have generated a new murine model of CCDS1 obtained by ubiquitous deletion of 5-7 exons in the Slc6a8 gene. We showed a remarkable Cr depletion in the murine brain tissues and cognitive defects, thus resembling the key features of human CCDS1. These results confirm that CCDS1 can be well modeled in mice. This CrT −/y murine model will provide a new tool for increasing the relevance of preclinical studies to the human disease. PMID:25485098

  20. Genetics Home Reference: Pyruvate dehydrogenase deficiency

    MedlinePLUS

    ... the most common cause of pyruvate dehydrogenase deficiency, accounting for approximately 80 percent of cases. These mutations ... Where can I find information about diagnosis or management of pyruvate dehydrogenase deficiency? These resources address the ...

  1. Measurement of interstitial lactate during hypoxia-induced dilatation in isolated pressurised porcine coronary arteries.

    PubMed

    Frbert, Ole; Mikkelsen, Erich O; Bagger, Jens P; Gravholt, Claus H

    2002-02-15

    Lactate is formed in the coronary arterial wall and in the myocardium as a consequence of ischaemia and infarction. We combined direct measurement of coronary artery diameter and interstitial arterial wall lactate concentration ex vivo in order to ascertain the possible role of lactate in hypoxia-induced vasodilatation. The wall of porcine coronary arteries, precontracted during an intraluminal pressure of 40 mmHg by addition of prostaglandin F2alpha, was cannulated using a microdialysis catheter, and exposed to hypoxia for 60 min, followed by 45 min of reoxygenation. The exchange fraction of [14C]lactate over the microdialysis membrane increased from 0.38 +/- 0.04 to 0.52 +/- 0.05 (P < 0.001) during the study period. Coronary artery diameter increased by 15.5 +/- 2.0 % (n = 20) during hypoxia (P < 0.001, compared to normoxic controls) and interstitial lactate concentration rose from 1.07 +/- 0.21 to 2.50 +/- 0.40 mmol x l(-1) during hypoxia (P < 0.01) and was unchanged in controls. The increase in coronary artery diameter correlated with the increase in interstitial lactate concentration in the period between 30 and 60 min of hypoxia (r = 0.62; P = 0.02). Dichloroacetate (10(-5) M), an agent that reduces lactate generation by activating pyruvate dehydrogenase, abolished hypoxia-induced lactate production, but caused a further increase in coronary arterial diameter (30.2 +/- 4.4 %, n = 9; P < 0.001 vs. hypoxia and no dichloroacetate). Under control conditions, the addition of L-lactate (10(-3)-10(-2) M) increased dose-dependently coronary arterial diameter by 22.0 +/- 4.2 % (n = 5) and interstitial lactate concentration from 0.52 +/- 0.04 to 5.70 +/- 0.66 mmol x l(-1) (P < 0.001). There was a correlation between the increase in coronary artery diameter and interstitial lactate concentration (r = 0.60; P = 0.02). The present observations represent the first direct measurements of metabolites by microdialysis in a blood vessel wall. The lactate concentration may affect, but is not essential for, hypoxia-induced vasodilatation in porcine coronary arteries. PMID:11850519

  2. Creatine reduces hepatic TG accumulation in hepatocytes by stimulating fatty acid oxidation.

    PubMed

    da Silva, Robin P; Kelly, Karen B; Leonard, Kelly-Ann; Jacobs, Ren L

    2014-11-01

    Non-alcoholic fatty liver disease encompasses a wide spectrum of liver damage including steatosis, non-alcoholic steatohepatitis, fibrosis and cirrhosis. We have previously reported that creatine supplementation prevents hepatic steatosis and lipid peroxidation in rats fed a high-fat diet. In this study, we employed oleate-treated McArdle RH-7777 rat hepatoma cells to investigate the role of creatine in regulating hepatic lipid metabolism. Creatine, but not structural analogs, reduced cellular TG accumulation in a dose-dependent manner. Incubating cells with the pan-lipase inhibitor diethyl p-nitrophenylphosphate (E600) did not diminish the effect of creatine, demonstrating that the TG reduction brought about by creatine does not depend on lipolysis. Radiolabeled tracer experiments indicate that creatine increases fatty acid oxidation and TG secretion. In line with increased fatty acid oxidation, mRNA analysis revealed that creatine-treated cells had increased expression of PPAR? and several of its transcriptional targets. Taken together, this study provides direct evidence that creatine reduces lipid accumulation in hepatocytes by the stimulation of fatty acid oxidation and TG secretion. PMID:25205520

  3. Nutritional aspects of human lactation*

    PubMed Central

    Thomson, A. M.; Black, A. E.

    1975-01-01

    This paper reviews the literature on the incidence and duration of breast-feeding in various countries, the volume and composition of breast milk, the health and nutrition of breast-fed babies as judged by growth and morbidity, maternal nutritional requirements during lactation, and the effect of prolonged lactation on maternal health. It appears that lactation can be as well sustained by impoverished as by affluent mothers, and that even in communities where malnutrition is common the average growth of infants is satisfactory up to the age of about 3 months on a diet of breast milk alone. Breast milk appears to have specific anti-infective properties, but prolonged breast-feeding will not prevent infections among older infants reared in a poor environment. The authors believe that breast-feeding is the best form of nutrition for the young infant and deplore its decline in modern industrial societies. The recommendations of various FAO/WHO Expert Groups on nutritional intakes during lactation are summarized. The need for an increased daily energy intake of 4.2 MJ (1 000 kcal) is questioned, and an increase of 2.5 MJ (600 kcal) is suggested. Data on the effect of prolonged lactation on the health of the mother are scanty; body weight appears to be maintained even among poorly nourished mothers. The authors stress the need for well-planned and technically adequate studies of the material and psychological factors involved in breast feeding. PMID:816479

  4. Focally Elevated Creatine Detected in Amyloid Precursor Protein (APP) Transgenic Mice and Alzheimer Disease Brain Tissue

    SciTech Connect

    Gallant,M.; Rak, M.; Szeghalmi, A.; Del Bigio, M.; Westaway, D.; Yang, J.; Julian, R.; Gough, K.

    2006-01-01

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine deposits were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.

  5. Stimulation of creatine kinase BB activity by 1 alpha,25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol in rat tissues.

    PubMed Central

    Smjen, D; Weisman, Y; Binderman, I; Kaye, A M

    1984-01-01

    Vitamin D metabolites stimulate creatine kinase BB activity in organs of vitamin D-deficient rats. In epiphyses of long bones, creatine kinase BB activity increases 2.6-fold 24 h after injection of 24R,25-dihydroxycholecalciferol but not of 1 alpha,25-dihydroxycholecalciferol. Contrariwise, 1 alpha,25-dihydroxycholecalciferol, but not 24R,25-dihydroxycholecalciferol, increases creatine kinase BB activity in diaphyses and in kidney. Neither metabolite affects creatine kinase activity in duodenal mucosa. PMID:6611153

  6. Antipsychotics in pregnancy and lactation

    PubMed Central

    Babu, Girish N.; Desai, Geetha; Chandra, Prabha S.

    2015-01-01

    Research on psychotropic medications during pregnancy and lactation is limited as often involves complex ethical issues. Information on safety of psychotropic drugs during these critical phases is either inconclusive or undetermined. Many women with severe mental illness have unplanned pregnancies and require antipsychotic medication during pregnancy and lactation. Multiple issues have to be considered while choosing safe treatments for pregnant and lactating women and the best approach is to individualize the treatment. Medication should be guided primarily by its safety data and by the psychiatric history of the patient. Important issues to be kept in mind include pre-pregnancy counseling for all women, including planning pregnancies; folate supplementation, discussion with patient and family regarding options, and active liaison with obstetricians, ultrasonologists and pediatricians. Whenever possible, non-pharmacological approaches should be used in addition. PMID:26330648

  7. Antipsychotics in pregnancy and lactation.

    PubMed

    Babu, Girish N; Desai, Geetha; Chandra, Prabha S

    2015-07-01

    Research on psychotropic medications during pregnancy and lactation is limited as often involves complex ethical issues. Information on safety of psychotropic drugs during these critical phases is either inconclusive or undetermined. Many women with severe mental illness have unplanned pregnancies and require antipsychotic medication during pregnancy and lactation. Multiple issues have to be considered while choosing safe treatments for pregnant and lactating women and the best approach is to individualize the treatment. Medication should be guided primarily by its safety data and by the psychiatric history of the patient. Important issues to be kept in mind include pre-pregnancy counseling for all women, including planning pregnancies; folate supplementation, discussion with patient and family regarding options, and active liaison with obstetricians, ultrasonologists and pediatricians. Whenever possible, non-pharmacological approaches should be used in addition. PMID:26330648

  8. A review of creatine supplementation in age-related diseases: more than a supplement for athletes

    PubMed Central

    Smith, Rachel N.; Agharkar, Amruta S.; Gonzales, Eric B.

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplements usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinsons disease, Huntingtons disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimers disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. PMID:25664170

  9. Exposure to pressure stimulus enhances succinate dehydrogenase activity in L6 myoblasts.

    PubMed

    Morita, Noriteru; Iizuka, Kenji; Okita, Koichi; Oikawa, Takashi; Yonezawa, Kazuya; Nagai, Tatsuya; Tokumitsu, Yukiko; Murakami, Takeshi; Kitabatake, Akira; Kawaguchi, Hideaki

    2004-12-01

    Contraction of skeletal muscle generates pressure stimuli to intramuscular tissues. However, the effects of pressure stimuli, other than those created by electricity or nerve impulse, on physiological and biochemical responses in skeletal muscles are unknown. The purpose of this study is to examine the effects of a pure pressure stimulus on metabolic responses in a skeletal muscle cell line. Atmospheric pressure was applied to L6 myoblasts using an original apparatus. Succinate dehydrogenase (SDH) activity was evaluated by colorimetric assay using tetrazolium monosodium salt. The amounts of 2-deoxy-[(3)H]glucose uptake and lactate release were measured. SDH activity was 2.6- to 2.9-fold higher in pressurized L6 cells than in nonpressurized L6 cells (P < 0.01), and 2-deoxy-[(3)H]glucose uptake was 2.2-fold higher (P < 0.001). In addition, the amount of released lactate decreased from 6.8 to 3.7 mumol/dish when pressure was applied (P < 0.001). In contrast, the intracellular lactate contents of the pressurized cells were higher than those of nonpressurized cells (P < 0.01). However, the total amount of released lactate and intracellular lactate was lower in the pressurized cells than in nonpressurized cells. These findings demonstrate that a pure pressure stimulus enhances aerobic metabolism in L6 skeletal muscle cells and raise the possibility that elevated intramuscular pressure during muscle activity may be an important factor in stimulating oxidative metabolic responses in skeletal muscles. PMID:15292033

  10. Reduction of d-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene.

    PubMed

    Jin, Qing; Li, Ling; Moon, Jin Seok; Cho, Seung Kee; Kim, Yu Jin; Lee, Soo Jin; Han, Nam Soo

    2016-05-01

    The d-form of lactate, which causes metabolic stress upon excessive dietary intake, is mainly produced by Leuconostoc sp., the predominant species in sauerkraut. To shift the metabolic flux of d-lactate from pyruvate to l-lactate, we expressed the l-lactate dehydrogenase (ldhL) gene in Leuconostoc mesenteroides ATCC 8293. The ldhL gene from Lactobacillus plantarum was introduced into L. mesenteroides using the shuttle vectors pLeuCM and pLeuCM42. To elevate the expression level of ldhL in L. mesenteroides, the nucleotides for pyruvate kinase promoter were fused to ldhL and cloned into above vectors to construct pLC18pkL and pLC42pkL. As results, introduction of pLC42pkL in L. mesenteroides significantly improved both l-LDH activity and l-lactate productivity during fermentation, decreasing the d-/l-lactate ratio. When used as a starter culture for sauerkraut fermentation, recombinant L. mesenteroides harboring pLC42pkL increased l-lactate concentration and decreased d-lactate concentration compared to the wild type strain. We newly developed a recombinant L. mesenteroides which has high l-lactate dehydrogenase activity and applied this strain to minimize the harmful effect of d-lactate during the sauerkraut fermentation. To the best of our knowledge, we demonstrate for the first time the effective use of recombinant Leuconostoc sp. for quality improvement of fermented foods. PMID:26472127

  11. Regulation of intracellular creatine in erythrocytes and myoblasts: influence of uraemia and inhibition of Na,K-ATPase.

    PubMed

    Bennett, S E; Bevington, A; Walls, J

    1994-06-01

    The regulation of intracellular creatine concentration in mammalian cells is poorly understood, but is thought to depend upon active sodium-linked uptake of creatine from extracellular fluid. In normal human erythrocytes, creatine influx into washed cells was inhibited by 40 per cent in the absence of extracellular sodium. In washed cells from uraemic patients, sodium-independent creatine influx was normal, whereas the sodium-dependent component of creatine influx was 3.3 times higher than normal, possibly reflecting the reduced mean age of uraemic erythrocytes. In spite of this, the intracellular creatine concentration was no higher than normal in uraemic erythrocytes, implying that some factor in uraemic plasma in vivo inhibits sodium-dependent creatine influx. Both in normal and uraemic erythrocytes, the creatine concentration was 10 times that in plasma, and the concentration in the cells showed no detectable dependence on that in plasma, suggesting that the intracellular creatine concentration is controlled by an active saturable process. Active sodium-dependent accumulation of creatine was also demonstrated in L6 rat myoblasts and was inhibited when transport was measured in the presence of 10(-4) M ouabain or digoxin, implying that uptake was driven by the transmembrane sodium gradient. However, when creatine influx was measured immediately after ouabain or digoxin had been washed away, it was higher than in control cells, suggesting that Na,K-ATPase and/or sodium-linked creatine transport are up-regulated when treated with inhibitors of Na,K-ATPase. PMID:8044895

  12. L-lactate utilization by dairy goats

    SciTech Connect

    Rodriguez, N.R.

    1984-01-01

    Three Toggenberg goats were used to investigate utilization of L-lactate as substrate for lipogenesis and gluconeogenesis. Objectives were: (1) to determine the extent lactate could be used for body and milk fat synthesis; (2) to estimate contribution of lactate to glucose synthesis; (3) to assess differences in these measurements during early lactation, mid-lactation and the dry period; and (4) to observe differences in labeling of glycerol and free fatty acid (FFA) fractions in body and milk fat 7 days post-infusion of isotopes. Goats were fed in metabolism crates a 70% concentrate ration in hourly increments to meet individual requirements. After a pulse dose, U-/sup 14/C-lactate (34 uCi/hr) and 6-/sup 3/H-Glucose (100 uCi/hr) was infused via jugular cannula for 8 hours. Blood an milk were sampled hourly beginning 3 and 3.5 hours, respectively, after the pulse dose. Body fat was biopsied after the infusion (Day 0) and one week post-infusion (Day 7). Plasma glucose and lactate concentrations were greater in early 70.4 and 7.7 mg/dl, respectively) compared to mid-lactation (50.8 and 5.9 gm/dl). Mid-lactation and dry period values were similar. Glucose turnover differed for early and mid-lactation and the dry period (141, 86, and 70 mmol/hr, respectively). Percentage of glucose derived from lactate tended to decrease through lactation into the dry period (28% vs 10%). Plasma lactate turnover was greater during lactation as opposed to the dry period (124 and 35 mmol/hr). During early lactation a greater proportion of lactate was incorporated into glucose than during either mid-lactation or the dry period.

  13. Purification and localization of brain-type creatine kinase in sodium chloride transporting epithelia of the spiny dogfish, Squalus acanthias.

    PubMed

    Friedman, D L; Roberts, R

    1992-02-25

    The targeting of creatine kinase isoenzymes to specific sites within muscle cells provides a system for the regeneration of ATP in situ from ADP and creatine phosphate. We have recently reported the colocalization of brain-type (B) creatine kinase and the nonsarcomeric mitochondrial creatine kinase isoenzymes in the thick ascending limb of the loop of Henle in the rat kidney, suggesting that creatine kinase may regenerate ATP for sodium transport (Friedman, D.L., and Perryman, M.B. (1991) J. Biol. Chem. 266, 22404-22410). In order to test the hypothesis regarding the association of B creatine kinase with sodium transport, we examined the creatine kinase enzymes in the rectal (salt-secreting) gland of the dogfish shark which contains high levels of the Na+/K(+)-ATPase. The creatine kinase isoform composition was determined by non-denaturing electrophoresis, immunoblotting, protein purification, and amino acid sequence analysis. The results demonstrate both B creatine kinase and mitochondrial creatine kinase proteins are present in the rectal gland, an isoform composition which is the same as in the mammalian kidney. By using a combination of chromatographic techniques, shark B creatine kinase was purified to homogeneity and partial sequence data was obtained from two cyanogen bromide peptide fragments. One of these fragments contains the active site and is identical at all sequenced residues with the corresponding region from the echinoderm sperm flagellar creatine kinase, and is 96% homologous with both chicken and rat B creatine kinase subunits. The other fragment corresponds to a region near the N-terminal of mammalian creatine kinases and is 89% homologous with B creatine kinase from chicken. The localization of these isoforms was examined by immunocytochemistry using subunit specific antisera. Mitochondrial creatine kinase and B creatine kinase immunoreactivity are detected in all tubules, and is restricted to the basal region of the cells, which is the site of the Na+/K(+)-ATPase. The conservation of creatine kinase isoform expression in excretory tissue, and the localization of creatine kinase immunoreactivity in the basal region of the tubule cells, demonstrate that subcellular compartmentation of B creatine kinase may underly the functional coupling of creatine kinase activity with sodium transport. PMID:1310991

  14. Inducing Lactation: Breastfeeding for Adoptive Moms

    MedlinePLUS

    ... Español Text Size Email Print Share Inducing Lactation: Breastfeeding for Adoptive Moms Page Content Article Body A growing number of adoptive mothers are interested in breastfeeding their babies through induced lactation. Prescription Medications No ...

  15. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  16. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  17. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  18. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron... to 155, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part...

  19. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid.... (1996), pp. 154 to 155, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1...

  20. Is determination of creatine kinase-2 after electrophoretic separation accurate?

    PubMed

    Henderson, A R; Stark, J A; McQueen, M J; Patten, R L; Krishnan, S; Wood, D E; Webb, S

    1994-02-01

    Since 1991, the Ontario Laboratory Proficiency Testing Program has assessed the analytical performance of creatine kinase (CK; EC 2.7.3.2) isoenzyme-2, using fresh human serum supplemented with purified human CK isoenzymes. In Ontario, the 142 laboratories licensed to analyze CK-2 use a variety of methods: electrophoresis-based, immunoinhibition, and mass assays. During a 1992 survey, duplicate CK-2 samples with different total CK activities showed poorer precision when analyzed after electrophoretic separation than by any other method. A 1993 survey designed to validate these observations conclusively showed that electrophoresis-based assays are subject to a bias proportional to the total CK activity. These survey results were confirmed by studies with selected patients' specimens. We therefore conclude that electrophoresis-based assays may not warrant their reputation as the gold standard for CK isoenzyme measurement. PMID:8313590

  1. Creatine kinase MB isoenzyme in the evaluation of myocardial infarction.

    PubMed

    Navin, T R; Hager, W D

    1979-03-01

    The measurement of serum CK-MB isoenzyme is a very sensitive and specific indication of myocardial injury since only myocardium has substantial amounts of CK-MB. Serum CK-MB levels are most helpful clinically when the total creatine kinase is nonspecifically elevated, as with intramuscular injections, cardiac catheterization, stroke, noncardiac surgery and electric cardioversion. Elevations of serum CK-MB occurring in Duchenne's muscular dystrophy and other neuromuscular disorders may be due to the presence of abnormal regenerative skeletal muscle fibers, which are known to contain large amounts of CK-MB isoenzyme. These examples emphasize that under normal, nonregenerative conditions, elevations of serum CK-MB are rare in the absence of myocardial injury. PMID:389571

  2. Functional differences between dimeric and octameric mitochondrial creatine kinase.

    PubMed Central

    Kaldis, P; Wallimann, T

    1995-01-01

    Mitochondrial creatine kinase (Mi-CK) consists of octameric and dimeric molecules that are interconvertible. In the present study, the kinetic properties of purified chicken heart Mi-CK (Mib-CK) dimers and octamers were investigated separately under highly controlled conditions. Gel-permeation chromatography was performed before and after kinetic measurements in order to clearly define the proportions of octamers and dimers. 'Dimeric' Mi-CK solutions consisted of > or = 90% dimers throughout the experiment whereas 'octameric' Mi-CK solutions consisted in the beginning of 90% octamers, but upon measuring with the highest concentrations of creatine (Cr) and ATP approximately one-third of the octamers dissociated into dimers. These proper controls enabled us to pinpoint the observed kinetic differences between dimers and octamers solely to the oligomeric state of Mib-CK. Both dimeric and octameric Mi-CK displayed synergism in substrate binding (Kd values are higher than Km values), meaning that binding of the first substrate facilities subsequent binding of the second substrate. Most interestingly, Km(Cr) and Kd(Cr) values are both 2-3 times higher for octameric than for dimeric Mi-CK. Thus, at low Cr concentrations, the dimer is kinetically favoured for the forward direction of the reaction (phosphorylcreatine synthesis) compared with the octamer. The possible physiological significance of the lower Kd(Cr) value of dimeric versus octameric Mib-CK, as well as the apparent negative cooperativity of ATP binding at higher [Cr], are discussed within the context of a possible functional role for dimeric Mib-CK in vivo. PMID:7772050

  3. Clinical use of creatine in neuromuscular and neurometabolic disorders.

    PubMed

    Tarnopolsky, Mark A

    2007-01-01

    Many of the neuromuscular (e.g., muscular dystrophy) and neurometabolic (e.g., mitochondrial cytopathies) disorders share similar final common pathways of cellular dysfunction that may be favorably influenced by creatine monohydrate (CrM) supplementation. Studies using the mdx model of Duchenne muscular dystrophy have found evidence of enhanced mitochondrial function, reduced intra-cellular calcium and improved performance with CrM supplementation. Clinical trials in patients with Duchenne and Becker's muscular dystrophy have shown improved function, fat-free mass, and some evidence of improved bone health with CrM supplementation. In contrast, the improvements in function in myotonic dystrophy and inherited neuropathies (e.g., Charcot-Marie-Tooth) have not been significant. Some studies in patients with mitochondrial cytopathies have shown improved muscle endurance and body composition, yet other studies did not find significant improvements in patients with mitochondrial cytopathy. Lower-dose CrM supplementation in patients with McArdle's disease (myophosphorylase deficiency) improved exercise capacity, yet higher doses actually showed some indication of worsened function. Based upon known cellular pathologies, there are potential benefits from CrM supplementation in patients with steroid myopathy, inflammatory myopathy, myoadenylate deaminase deficiency, and fatty acid oxidation defects. Larger randomized control trials (RCT) using homogeneous patient groups and objective and clinically relevant outcome variables are needed to determine whether creatine supplementation will be of therapeutic benefit to patients with neuromuscular or neurometabolic disorders. Given the relatively low prevalence of some of the neuromuscular and neurometabolic disorders, it will be necessary to use surrogate markers of potential clinical efficacy including markers of oxidative stress, cellular energy charge, and gene expression patterns. PMID:18652078

  4. Cellcell and intracellular lactate shuttles

    PubMed Central

    Brooks, George A

    2009-01-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. Cellcell and intracellular lactate shuttle concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cellcell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other. PMID:19805739

  5. The Occurrence of Glycolate Dehydrogenase and Glycolate Oxidase in Green Plants

    PubMed Central

    Frederick, Sue Ellen; Gruber, Peter J.; Tolbert, N. E.

    1973-01-01

    Homogenates of various lower land plants, aquatic angiosperms, and green algae were assayed for glycolate oxidase, a peroxisomal enzyme present in green leaves of higher plants, and for glycolate dehydrogenase, a functionally analogous enzyme characteristic of certain green algae. Green tissues of all lower land plants examined (including mosses, liverworts, ferns, and fern allies), as well as three freshwater aquatic angiosperms, contained an enzyme resembling glycolate oxidase, in that it oxidized l- but not d-lactate in addition to glycolate, and was insensitive to 2 mm cyanide. Many of the green algae (including Chlorella vulgaris, previously claimed to have glycolate oxidase) contained an enzyme resembling glycolate dehydrogenase, in that it oxidized d- but not l-lactate, and was inhibited by 2 mm cyanide. Other green algae had activity characteristic of glycolate oxidase and, accordingly, showed a substantial glycolate-dependent O2 uptake. It is pointed out that this distribution pattern of glycolate oxidase and glycolate dehydrogenase among the green plants may have phylogenetic significance. Activities of catalase, a marker enzyme for peroxisomes, were also determined and were generally lower in the algae than in the land plants or aquatic angiosperms. Among the algae, however, there were no consistent correlations between levels of catalase and the type of enzyme which oxidized glycolate. PMID:16658555

  6. Imaging Pregnant and Lactating Patients.

    PubMed

    Tirada, Nikki; Dreizin, David; Khati, Nadia J; Akin, Esma A; Zeman, Robert K

    2015-10-01

    As use of imaging in the evaluation of pregnant and lactating patients continues to increase, misperceptions of radiation and safety risks have proliferated, which has led to often unwarranted concerns among patients and clinicians. When radiologic examinations are appropriately used, the benefits derived from the information gained usually outweigh the risks. This review describes appropriateness and safety issues, estimated doses for imaging examinations that use iodizing radiation (ie, radiography, computed tomography, nuclear scintigraphy, and fluoroscopically guided interventional radiology), radiation risks to the mother and conceptus during various stages of pregnancy, and use of iodinated or gadolinium-based contrast agents and radiotracers in pregnant and lactating women. Maternal radiation risk must be weighed with the potential consequences of missing a life-threatening diagnosis such as pulmonary embolus. Fetal risks (ie, spontaneous abortion, teratogenesis, or carcinogenesis) vary with gestational age and imaging modality and should be considered in the context of the potential benefit of medically necessary diagnostic imaging. When feasible and medically indicated, modalities that do not use ionizing radiation (eg, magnetic resonance imaging) are preferred in pregnant and lactating patients. Radiologists should strive to minimize risks of radiation to the mother and fetus, counsel patients effectively, and promote a realistic understanding of risks related to imaging during pregnancy and lactation. PMID:26466183

  7. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  8. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  9. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  10. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  11. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  12. The origin and evolution of lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of mammary glands are the defining morphological feature of mammals, and a successful lactation is crucial to mammalian reproductive strategies. Among mammalian species, the nature of lactation and the composition of milk vary greatly. The evolution of lactation and its diversity amon...

  13. A Pilot Clinical Trial of Creatine and Minocycline in Early Parkinson Disease: 18-Month Results

    PubMed Central

    2015-01-01

    Objective To report an 18-month follow-up on creatine and minocycline futility study, the Neuroprotective Exploratory Trials in Parkinson Disease, Futility Study 1 (NET-PD FS-1). Background The NET-PD FS-1 futility study on creatine and minocycline found neither agent futile in slowing down the progression of disability in Parkinson disease (PD) at 12 months using the prespecified futility threshold. An additional 6 months of follow-up aimed to assess safety and potential interactions of the study interventions with anti-parkinsonian therapy. Methods Additional 6 months of follow-up in randomized, blinded phase II trial of creatine (dosage, 10 g/d) and minocycline (dosage, 200 mg/d) in subjects with early PD. Results By 18 months, symptomatic treatment of PD symptoms was required in 61% of creatine, 62% of minocycline, and 60% of placebo-treated subjects. Study treatment was prematurely discontinued in 9%, 23%, and 6% of subjects in the creatine, minocycline, and placebo arms, respectively. Creatine and minocycline did not seem to adversely influence the response to symptomatic therapy nor increase adverse events. Conclusions Data from this small, 18-month phase II trial of creatine and minocycline do not demonstrate safety concerns that would preclude a large, phase III efficacy trial, although the decreased tolerability of minocycline is a concern. PMID:18520981

  14. Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress.

    PubMed

    Alfieri, Roberta R; Bonelli, Mara A; Cavazzoni, Andrea; Brigotti, Maurizio; Fumarola, Claudia; Sestili, Piero; Mozzoni, Paola; De Palma, Giuseppe; Mutti, Antonio; Carnicelli, Domenica; Vacondio, Federica; Silva, Claudia; Borghetti, Angelo F; Wheeler, Kenneth P; Petronini, Pier Giorgio

    2006-10-15

    Exposure of C2C12 muscle cells to hypertonic stress induced an increase in cell content of creatine transporter mRNA and of creatine transport activity, which peaked after about 24 h incubation at 0.45 osmol (kg H(2)O)(-1). This induction of transport activity was prevented by addition of either cycloheximide, to inhibit protein synthesis, or of actinomycin D, to inhibit RNA synthesis. Creatine uptake by these cells is largely Na(+) dependent and kinetic analysis revealed that its increase under hypertonic conditions resulted from an increase in V(max) of the Na(+)-dependent component, with no significant change in the K(m) value of about 75 mumol l(-1). Quantitative real-time PCR revealed a more than threefold increase in the expression of creatine transporter mRNA in cells exposed to hypertonicity. Creatine supplementation significantly enhanced survival of C2C12 cells incubated under hypertonic conditions and its effect was similar to that obtained with the well known compatible osmolytes, betaine, taurine and myo-inositol. This effect seemed not to be linked to the energy status of the C2C12 cells because hypertonic incubation caused a decrease in their ATP content, with or without the addition of creatine at 20 mmol l(-1) to the medium. This induction of creatine transport activity by hypertonicity is not confined to muscle cells: a similar induction was shown in porcine endothelial cells. PMID:16873409

  15. Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress

    PubMed Central

    Alfieri, Roberta R; Bonelli, Mara A; Cavazzoni, Andrea; Brigotti, Maurizio; Fumarola, Claudia; Sestili, Piero; Mozzoni, Paola; De Palma, Giuseppe; Mutti, Antonio; Carnicelli, Domenica; Vacondio, Federica; Silva, Claudia; Borghetti, Angelo F; Wheeler, Kenneth P; Petronini, Pier Giorgio

    2006-01-01

    Exposure of C2C12 muscle cells to hypertonic stress induced an increase in cell content of creatine transporter mRNA and of creatine transport activity, which peaked after about 24 h incubation at 0.45 osmol (kg H2O)?1. This induction of transport activity was prevented by addition of either cycloheximide, to inhibit protein synthesis, or of actinomycin D, to inhibit RNA synthesis. Creatine uptake by these cells is largely Na+ dependent and kinetic analysis revealed that its increase under hypertonic conditions resulted from an increase in Vmax of the Na+-dependent component, with no significant change in the Km value of about 75 ?mol l?1. Quantitative real-time PCR revealed a more than threefold increase in the expression of creatine transporter mRNA in cells exposed to hypertonicity. Creatine supplementation significantly enhanced survival of C2C12 cells incubated under hypertonic conditions and its effect was similar to that obtained with the well known compatible osmolytes, betaine, taurine and myo-inositol. This effect seemed not to be linked to the energy status of the C2C12 cells because hypertonic incubation caused a decrease in their ATP content, with or without the addition of creatine at 20 mmol l?1 to the medium. This induction of creatine transport activity by hypertonicity is not confined to muscle cells: a similar induction was shown in porcine endothelial cells. PMID:16873409

  16. Neurochemical correlates of differential neuroprotection by long-term dietary creatine supplementation.

    PubMed

    Pea-Altamira, Emiliano; Crochemore, Christophe; Virgili, Marco; Contestabile, Antonio

    2005-10-01

    Dietary supplementation with creatine has proven to be beneficial in models of acute and chronic neurodegeneration. We report here data on the neurochemical correlates of differential protection of long-term creatine supplementation in two models of excitotoxicity in rats, as well as in the mouse model for ALS (G93A mice). In rats, the fall in cholinergic and GABAergic markers due to the excitotoxic death of intrinsic neurons caused by intrastriatal infusion of the neurotoxin, ibotenic acid, was significantly prevented by long-term dietary supplementation with creatine. On the contrary, creatine was unable to recover a cholinergic marker in the cortex of rats subjected to the excitotoxic death of the cholinergic basal forebrain neurons. In G93A mice, long-term creatine supplementation marginally but significantly increased mean lifespan, as previously observed by others, and reverted the cholinergic deficit present in some forebrain areas at an intermediate stage of the disease. In both rats and mice, creatine supplementation increased the activity of the GABAergic enzyme, glutamate decarboxylase, in the striatum but not in other brain regions. The present data point at alterations of neurochemical parameters marking specific neuronal populations, as a useful way to evaluate neuroprotective effects of long-term creatine supplementation in animal models of neurodegeneration. PMID:16140286

  17. The Effects of Creatine Supplementation on Explosive Performance and Optimal Individual Postactivation Potentiation Time.

    PubMed

    Wang, Chia-Chi; Yang, Ming-Ta; Lu, Kang-Hao; Chan, Kuei-Hui

    2016-01-01

    Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP) is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM) strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05). The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05). There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance. PMID:26959056

  18. Creatine Metabolism and Safety Profiles after Six-Week Oral Guanidinoacetic Acid Administration in Healthy Humans

    PubMed Central

    Ostojic, Sergej M.; Niess, Barbara; Stojanovic, Marko; Obrenovic, Milos

    2013-01-01

    Objectives; Guanidinoacetic acid (GAA) is a natural precursor of creatine, yet the potential use of GAA as a nutritional additive for restoring creatine availability in humans has been limited by unclear efficacy and safety after exogenous GAA administration. The present study evaluated the effects of orally administered GAA on serum and urinary GAA, creatine and creatinine concentration, and on the occurrence of adverse events in healthy humans. Methods and Results; Twenty-four healthy volunteers were randomized in a double-blind design to receive either GAA (2.4 grams daily) or placebo (PLA) by oral administration for 6 weeks. Clinical trial registration: www.clinicaltrials.gov, identification number NCT01133899. Serum creatine and creatinine increased significantly from before to after administration in GAA-supplemented participants (P < 0.05). The proportion of participants who reported minor side effects was 58.3% in the GAA group and 45.5% in the placebo group (P = 0.68). A few participants experienced serum creatine levels above 70 µmol/L. Conclusion; Exogenous GAA is metabolized to creatine, resulting in a significant increase of fasting serum creatine after intervention. GAA had an acceptable side-effects profile with a low incidence of biochemical abnormalities. PMID:23329885

  19. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine.

    PubMed

    Jger, Ralf; Purpura, Martin; Shao, Andrew; Inoue, Toshitada; Kreider, Richard B

    2011-05-01

    Creatine has become one of the most popular dietary supplements in the sports nutrition market. The form of creatine that has been most extensively studied and commonly used in dietary supplements is creatine monohydrate (CM). Studies have consistently indicated that CM supplementation increases muscle creatine and phosphocreatine concentrations by approximately 15-40%, enhances anaerobic exercise capacity, and increases training volume leading to greater gains in strength, power, and muscle mass. A number of potential therapeutic benefits have also been suggested in various clinical populations. Studies have indicated that CM is not degraded during normal digestion and that nearly 99% of orally ingested CM is either taken up by muscle or excreted in urine. Further, no medically significant side effects have been reported in literature. Nevertheless, supplement manufacturers have continually introduced newer forms of creatine into the marketplace. These newer forms have been purported to have better physical and chemical properties, bioavailability, efficacy, and/or safety profiles than CM. However, there is little to no evidence that any of the newer forms of creatine are more effective and/or safer than CM whether ingested alone and/or in combination with other nutrients. In addition, whereas the safety, efficacy, and regulatory status of CM is clearly defined in almost all global markets; the safety, efficacy, and regulatory status of other forms of creatine present in today's marketplace as a dietary or food supplement is less clear. PMID:21424716

  20. Miniaturized flexible amperometric lactate probe.

    PubMed

    Wang, D L; Heller, A

    1993-04-15

    A flexible lactate electrode was made of 400 +/- 100 7-micron-diameter carbon fibers, epoxy embedded in a 0.3-mm-diameter polyimide tubing. The electrode was modified by precipitating on it the relatively insoluble complex formed between 1100 kDa partially N-ethylamine quaternized poly[(vinylpyridine)-Os(bipyridine)2Cl]Cl (POs-EA) and lactate oxidase. The steady-state lactate electrooxidation current, at 2 mM lactate concentration and at 22 degrees C, was 400 nA. The 50 +/- 10 microAc cm-2 current density and the 20 mA cm-2 M-1 sensitivity decreased only by 5% when the partial pressure of oxygen was increased from 0.0 to 0.2 atm. The electrode retains its sensitivity after dry storage at 4 degrees C for 4 months in air but loses half of its sensitivity in 7 h at 37 degrees C through polymer desorption when operated at 0.4 V (SCE). To eliminate interference by species that are electrooxidized at 0.4 V (SCE), the lactate-sensing probe was (a) electrically insulated with an epoxy made of poly(vinylimidazole) cross-linked with ethylene glycol diglycidyl ether and (b) coated with an immobilized horseradish peroxidase (HRP)/glucose oxidase (GOX) film. The latter film was formed by coimmobilizing the two enzymes through periodate oxidation of their oligosaccharides to aldehydes and forming Schiff bases between the polyaldehydes and the enzymes' lysyl amines. In the presence of 1 mM glucose and in air, the interfering electrooxidation of 0.1 mM ascorbate was reduced by a factor of 20. This reduction results from formation of hydrogen peroxide in the glucose-catalyzed reaction and H2O2 oxidation of the ascorbate in a reaction catalyzed by HRP. PMID:8494172

  1. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism.

    PubMed

    da Silva, Sofia M; Voordouw, Johanna; Leito, Cristina; Martins, Mnica; Voordouw, Gerrit; Pereira, Ins A C

    2013-08-01

    The genome of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough encodes three formate dehydrogenases (FDHs), two of which are soluble periplasmic enzymes (FdhAB and FdhABC3) and one that is periplasmic but membrane-associated (FdhM). FdhAB and FdhABC3 were recently shown to be the main enzymes present during growth with lactate, formate or hydrogen. To address the role of these two enzymes, ?fdhAB and ?fdhABC3, mutants were generated and studied. Different phenotypes were observed in the presence of either molybdenum or tungsten, since both enzymes were important for growth on formate in the presence of Mo, whereas in the presence of W only FdhAB played a role. Both ?fdhAB and ?fdhABC3 mutants displayed defects in growth with lactate and sulfate providing the first direct evidence for the involvement of formate cycling under these conditions. In support of this mechanism, incubation of concentrated cell suspensions of the mutant strains with lactate and limiting sulfate also gave elevated formate concentrations, as compared to the wild-type strain. In contrast, both mutants grew similarly to the wild-type with H2 and sulfate. In the absence of sulfate, the wild-type D. vulgaris cells produced formate when supplied with H2 and CO2, which resulted from CO2 reduction by the periplasmic FDHs. The conversion of H2 and CO2 to formate allows the reversible storage of reducing power in a much more soluble molecule. Furthermore, we propose this may be an expression of the ability of some sulfate-reducing bacteria to grow by hydrogen oxidation, in syntrophy with organisms that consume formate, but are less efficient in H2 utilization. PMID:23728629

  2. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    PubMed Central

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (1930 yr, 7084 yr), 15 postmenopausal women (5162 yr, 7084 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  3. Creatine and Its Potential Therapeutic Value for Targeting Cellular Energy Impairment in Neurodegenerative Diseases

    PubMed Central

    Adhihetty, Peter J.

    2010-01-01

    Substantial evidence indicates bioenergetic dysfunction and mitochondrial impairment contribute either directly and/or indirectly to the pathogenesis of numerous neurodegenerative disorders. Treatment paradigms aimed at ameliorating this cellular energy deficit and/or improving mitochondrial function in these neurodegenerative disorders may prove to be useful as a therapeutic intervention. Creatine is a molecule that is produced both endogenously, and acquired exogenously through diet, and is an extremely important molecule that participates in buffering intracellular energy stores. Once creatine is transported into cells, creatine kinase catalyzes the reversible transphosphorylation of creatine via ATP to enhance the phosphocreatine energy pool. Creatine kinase enzymes are located at strategic intracellular sites to couple areas of high energy expenditure to the efficient regeneration of ATP. Thus, the creatinekinase/phosphocreatine system plays an integral role in energy buffering and overall cellular bioenergetics. Originally, exogenous creatine supplementation was widely used only as an ergogenic aid to increase the phosphocreatine pool within muscle to bolster athletic performance. However, the potential therapeutic value of creatine supplementation has recently been investigated with respect to various neurodegenerative disorders that have been associated with bioenergetic deficits as playing a role in disease etiology and/or progression which include; Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis (ALS), and Huntington’s disease. This review discusses the contribution of mitochondria and bioenergetics to the progression of these neurodegenerative diseases and investigates the potential neuroprotective value of creatine supplementation in each of these neurological diseases. In summary, current literature suggests that exogenous creatine supplementation is most efficacious as a treatment paradigm in Huntington’s and Parkinson’s disease but appears to be less effective for ALS and Alzheimer’s disease. PMID:19005780

  4. Chronic creatine supplementation alters depression-like behavior in rodents in a sex-dependent manner.

    PubMed

    Allen, Patricia J; D'Anci, Kristen E; Kanarek, Robin B; Renshaw, Perry F

    2010-01-01

    Impairments in bioenergetic function, cellular resiliency, and structural plasticity are associated with the pathogenesis of mood disorders. Preliminary evidence suggests that creatine, an ergogenic compound known to promote cell survival and influence the production and usage of energy in the brain, can improve mood in treatment-resistant patients. This study examined the effects of chronic creatine supplementation using the forced swim test (FST), an animal model selectively sensitive to antidepressants with clinical efficacy in human beings. Thirty male (experiment 1) and 36 female (experiment 2) Sprague-Dawley rats were maintained on either chow alone or chow blended with either 2% w/w creatine monohydrate or 4% w/w creatine monohydrate for 5 weeks before the FST. Open field exploration and wire suspension tests were used to rule out general psychostimulant effects. Male rats maintained on 4% creatine displayed increased immobility in the FST as compared with controls with no differences by diet in the open field test, whereas female rats maintained on 4% creatine displayed decreased immobility in the FST and less anxiety in the open field test compared with controls. Open field and wire suspension tests confirmed that creatine supplementation did not produce differences in physical ability or motor function. The present findings suggest that creatine supplementation alters depression-like behavior in the FST in a sex-dependent manner in rodents, with female rats displaying an antidepressant-like response. Although the mechanisms of action are unclear, sex differences in creatine metabolism and the hormonal milieu are likely involved. PMID:19829292

  5. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations.

    PubMed

    Kerksick, Chad M; Wilborn, Colin D; Campbell, William I; Harvey, Travis M; Marcello, Brandon M; Roberts, Mike D; Parker, Adam G; Byars, Allyn G; Greenwood, Lori D; Almada, Anthony L; Kreider, Richard B; Greenwood, Mike

    2009-12-01

    Coingestion of D-pinitol with creatine (CR) has been reported to enhance creatine uptake. The purpose of this study was to evaluate whether adding D-pinitol to CR affects training adaptations, body composition, whole-body creatine retention, and/or blood safety markers when compared to CR ingestion alone after 4 weeks of resistance training. Twenty-four resistance trained males were randomly assigned in a double-blind manner to creatine + pinitol (CRP) or creatine monohydrate (CR) prior to beginning a supervised 4-week resistance training program. Subjects ingested a typical loading phase (i.e., 20 g/d-1 for 5 days) before ingesting 5 g/d-1 the remaining 23 days. Performance measures were assessed at baseline (T0), week 1 (T1), and week 4 (T2) and included 1 repetition maximum (1RM) bench press (BP), 1RM leg press (LP), isokinetic knee extension, and a 30-second Wingate anaerobic capacity test. Fasting blood and body composition using dual-energy x-ray absorptiometry (DEXA) were determined at T1 and T3. Data were analyzed by repeated measures analysis of variance (ANOVA). Creatine retention increased (p < 0.001) in both groups as a result of supplementation but was not different between groups (p > 0.05). Significant improvements in upper- and lower-body strength and body composition occurred in both groups. However, significantly greater increases in lean mass and fat-free mass occurred in the CR group when compared to CRP (p <0.05). Adding D-pinitol to creatine monohydrate does not appear to facilitate further physiological adaptations while resistance training. Creatine monohydrate supplementation helps to improve strength and body composition while resistance training. Data from this study assist in determining the potential role the addition of D-pinitol to creatine may aid in facilitating training adaptations to exercise. PMID:19858753

  6. Separation of mitochondrial creatine kinase (MiMi-CK) from cytosolic creatine kinase isoenzymes by Cibachrome-Blue affinity chromatography.

    PubMed

    Wallimann, T; Zurbriggen, B; Eppenberger, H M

    1985-01-01

    The mitochondrial isoenzyme of creatine kinase (MiMi-CK) was separated by affinity chromatography on Cibachrome-Blue-Sepharose (Sepharose-Blue, Pharmacia). While th