Science.gov

Sample records for lactate dehydrogenase reaction

  1. The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path

    NASA Astrophysics Data System (ADS)

    Masterson, Jean E.; Schwartz, Steven D.

    2014-10-01

    Enzymes are the most efficient chemical catalysts known, but the exact nature of chemical barrier crossing in enzymes is not fully understood. Application of transition state theory to enzymatic reactions indicates that the rates of all possible reaction paths, weighted by their relative probabilities, must be considered in order to achieve an accurate calculation of the overall rate. Previous studies in our group have shown a single mechanism for enzymatic barrier passage in human heart lactate dehydrogenase (LDH). To ensure that this result was not due to our methodology insufficiently sampling reactive phase space, we implement high-perturbation transition path sampling in both microcanonical and canonical regimes for the reaction catalyzed by human heart LDH. We find that, although multiple, distinct paths through reactive phase space are possible for this enzymatic reaction, one specific reaction path is dominant. Since the frequency of these paths in a canonical ensemble is inversely proportional to the free energy barriers separating them from other regions of phase space, we conclude that the rarer reaction paths are likely to have a negligible contribution. Furthermore, the non-dominate reaction paths correspond to altered reactive conformations and only occur after multiple steps of high perturbation, suggesting that these paths may be the result of non-biologically significant changes to the structure of the enzymatic active site.

  2. Lactate dehydrogenase-elevating virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  3. [Lactate Dehydrogenase M subunit deficiency].

    PubMed

    Sudo, Kayoko

    2002-06-01

    Lactate Dehydrogenase(LDH) M subunit deficiency was first discovered by urinary discoloration and discrepancy in laboratory data. The response to ischemic forearm work is characteristic(absence of an increased venous lactate concentration after ischemic work and a marked increase in venous pyruvate are found). The increase of pyruvate concentration is specific to LDH-M subunit deficiency. Glycolysis was markedly retarded in the patient's muscle in the glyceraldehyde 3-phosphate dehydrogenase(GAPDH) step, possibly due to the impaired reoxidation of NADH produced by GAPDH activity. Then the excessive NADH is reoxidized by alpha-glycerophosphate and glycerol. Therefore, ATP production is significantly impaired and muscle tissue is damaged. Molecular analysis revealed a detection of 20 base-pairs in exon 6 in LDH-M subunit deficiency. This mutation results in a frame-shift translation and premature termination. PMID:12166075

  4. Genetics Home Reference: Lactate dehydrogenase deficiency

    MedlinePLUS

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  5. Protein Conformational Landscapes and Catalysis. Influence of Active Site Conformations in the Reaction Catalyzed by L-Lactate Dehydrogenase

    PubMed Central

    Świderek, Katarzyna; Tuñón, Iñaki; Martí, Sergio; Moliner, Vicent

    2015-01-01

    In the last decade L-Lactate Dehydrogenase (LDH) has become an extremely useful marker in both clinical diagnosis and in monitoring the course of many human diseases. It has been assumed from the 80s that the full catalytic process of LDH starts with the binding of the cofactor and the substrate followed by the enclosure of the active site by a mobile loop of the protein before the reaction to take place. In this paper we show that the chemical step of the LDH catalyzed reaction can proceed within the open loop conformation, and the different reactivity of the different protein conformations would be in agreement with the broad range of rate constants measured in single molecule spectrometry studies. Starting from a recently solved X-ray diffraction structure that presented an open loop conformation in two of the four chains of the tetramer, QM/MM free energy surfaces have been obtained at different levels of theory. Depending on the level of theory used to describe the electronic structure, the free energy barrier for the transformation of pyruvate into lactate with the open conformation of the protein varies between 12.9 and 16.3 kcal/mol, after quantizing the vibrations and adding the contributions of recrossing and tunneling effects. These values are very close to the experimentally deduced one (14.2 kcal·mol−1) and ~2 kcal·mol−1 smaller than the ones obtained with the closed loop conformer. Calculation of primary KIEs and IR spectra in both protein conformations are also consistent with our hypothesis and in agreement with experimental data. Our calculations suggest that the closure of the active site is mainly required for the inverse process; the oxidation of lactate to pyruvate. According to this hypothesis H4 type LDH enzyme molecules, where it has been propose that lactate is transformed into pyruvate, should have a better ability to close the mobile loop than the M4 type LDH molecules. PMID:25705562

  6. Lactate dehydrogenase in Phycomyces blakesleeanus.

    PubMed Central

    Soler, J; De Arriaga, D; Busto, F; Cadenas, E

    1982-01-01

    1. An NAD-specific L(+)-lactate dehydrogenase (EC 1.1.1.27) from the mycelium of Phycomyces blakesleeanus N.R.R.L. 1555 (-) was purified approximately 700-fold. The enzyme has a molecular weight of 135,000-140,000. The purified enzyme gave a single, catalytically active, protein band after polyacrylamide-gel electrophoresis. It shows optimum activity between pH 6.7 and 7.5. 2. The Phycomyces blakesleeanus lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate, and its coenzyme, NADH, at pH 7.5, indicating the existence of multiple binding sites in the enzyme for these ligands. 3. At pH 6.0, the enzyme shows high substrate inhibition by pyruvate. 3-hydroxypyruvate and 2-oxovalerate exhibit an analogous effect, whereas glyoxylate does not, when tested as substrates at the same pH. 4. At pH 7.5, ATP, which inhibits the enzyme, acts competitively with NADH and pyruvate, whereas at pH 6.0 and low concentrations of ATP it behaves in a allosteric manner as inhibitor with respect to NADH, GTP, however, has no effect under the same experimental conditions. 5. Partially purified enzyme from sporangiophores behaves in entirely similar kinetic manner as the one exhibited by the enzyme from mycelium. PMID:7115293

  7. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate...

  8. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility. PMID:5917779

  9. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized 13C labeled pyruvate

    PubMed Central

    Xu, He N.; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim

    2016-01-01

    Background Clinically translatable hyperpolarized (HP) 13C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP 13C-pyruvate into the subject, which is converted to 13C labeled lactate by the enzyme. Parameters such as 13C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP 13C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP 13C-NMR data and investigate if they can be potential predictors of lung inflammation. Methods Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP 13C-pyruvate for injecting into the lungs. A 20 mm 1H/13C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the 13C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of 13C labeled pyruvate and lactate. Results The apparent forward rate constant kp=(3.67±3.31)×10−4 s−1, reverse rate constant kl=(4.95±2.90)×10−2 s−1, rate constant ratio kp/kl=(7.53±5.75)×10−3 for the control lungs; kp=(11.71±4.35)×10−4 s−1, kl=(9.89±3.89)×10−2 s−1, and kp/kl=(12.39±4.18)×10−3 for the inflamed lungs at the 7th day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly larger than those of the control cohort (P<0.001, P=0.001, and P=0.019, respectively). The rate constants of individual lungs correlated significantly with the histology scores of neutrophils and organizing pneumonia foci but not macrophages. Both kp and kp/kl positively correlated with lactate labeling signals. No correlation was found between kl and lactate labeling signals. Conclusions The results indicate bleomycin-induced lung inflammation significantly increased both the forward and reverse reaction rate constants of LDH and their ratio at day-7 after bleomycin treatment. PMID:26981456

  10. Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate.

    PubMed Central

    Hino, T; Kuroda, S

    1993-01-01

    Activity of D-lactate dehydrogenase (D-LDH) was shown not only in cell extracts from Megasphaera elsdenii grown on DL-lactate, but also in cell extracts from glucose-grown cells, although glucose-grown cells contained approximately half as much D-LDH as DL-lactate-grown cells. This indicates that the D-LDH of M. elsdenii is a constitutive enzyme. However, lactate racemase (LR) activity was present in DL-lactate-grown cells, but was not detected in glucose-grown cells, suggesting that LR is induced by lactate. Acetate, propionate, and butyrate were produced similarly from both D- and L-lactate, indicating that LR can be induced by both D- and L-lactate. These results suggest that the primary reason for the inability of M. elsdenii to produce propionate from glucose is that cells fermenting glucose do not synthesize LR, which is induced by lactate. PMID:8439152

  11. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1440 Lactate dehydrogenase...

  12. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. PMID:25542170

  13. Serum lactate dehydrogenase activity in canine malignancies.

    PubMed

    Marconato, L; Crispino, G; Finotello, R; Mazzotti, S; Salerni, F; Zini, E

    2009-12-01

    Lactate dehydrogenase (LDH) is commonly used in human cancer patients for prognostic purposes. Aim of this study was to determine the magnitude of serum LDH elevation in dogs with cancer compared with healthy dogs and dogs with non-neoplastic disease, and to verify whether it may support the diagnosis of specific malignancies. About 128 healthy dogs, 211 diseased dogs and 188 cancer dogs were enrolled. Dogs with cancer had significantly higher LDH than diseased (P < 0.001) and healthy dogs (P < 0.001), but large overlap was found. Dogs with lymphoma showed significantly higher LDH compared with dogs with carcinoma (P < 0.001) or mast cell tumour (MCT; P < 0.05) but not compared with other malignancies. When considering lymphoma and MCT, LDH levels were not different between early and advanced clinical stages. Measuring LDH levels may not be useful as a screening tool for cancer detection. More studies are needed to define its role in specific tumours. PMID:19891694

  14. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    NASA Astrophysics Data System (ADS)

    Meany, J. E.

    2007-09-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to enzyme "substrate" interactions: (i) which form of the substrate system serves as the preferential substrate and (ii) which form acts to inhibit the enzyme? Thus the relative concentrations of the forms of these substrate systems (keto, hydrated, enol) may provide a form of metabolic control. In this light, the present article considers the reduction of pyruvate by lactate dehydrogenase in the presence of NADH. This reaction is inhibited by relatively high concentrations of pyruvate and the physiological significance of this inhibition has been a subject of controversy for many years. Summarized in this article are data from the literature pertaining to the interactions of keto, hydrated, and enol pyruvate with lactate dehydrogenase. Biochemistry instructors and their students are invited to review such pertinent articles so that they also may evaluate the possibility that the "substrate" inhibition of the isoenzymes in the heart muscle may be, under certain conditions, relevant as a form of metabolic control.

  15. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems 862.1445 Lactate...

  16. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1445 Lactate...

  17. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  18. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  19. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase

    SciTech Connect

    Mat-Jan, F.; Alam, K.Y.; Clark, D.P. )

    1989-01-01

    Mutants of Escherichia coli deficient in the fermentative NAD-linked lactate dehydrogenase (ldh) have been isolated. These mutants showed no growth defects under anaerobic conditions unless present together with a defect in pyruvate formate lyase (pfl). Double mutants (pfl ldh) were unable to grow anaerobically on glucose or other sugars even when supplemented with acetate, whereas pfl mutants can do so. The ldh mutation was found to map at 30.5 min on the E. coli chromosome. The ldh mutant FMJ39 showed no detectable lactate dehydrogenase activity and produced no lactic acid from glucose under anaerobic conditions as estimated by in vivo nuclear magnetic resonance measurements. We also found that in wild-type strains the fermentative lactate dehydrogenase was conjointly induced by anaerobic conditions and an acidic pH. Despite previous findings that phosphate concentrations affect the proportion of lactic acid produced during fermentation, we were unable to find any intrinsic effect of phosphate on lactate dehydrogenase activity, apart from the buffering effect of this ion.

  20. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  1. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  2. Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei.

    PubMed

    Viana, Rosa; Yebra, Mara Jess; Galn, Jos Luis; Monedero, Vicente; Prez-Martnez, Gaspar

    2005-01-01

    In lactic acid bacteria, conversion of pyruvic to lactic acid through the activity of lactate dehydrogenase (Ldh) constitutes the final step of the homofermentative pathway. Lactobacillus casei has two characterized genes encoding Ldh activities. The ldhL gene codes for an L-Ldh, which specifically catalyzes the formation of L-lactate, whereas the hicD gene codes for a D-hydroxyisocaproate dehydrogenase (HicDH), which catalyzes the conversion of pyruvate into D-lactate. In L. casei cells fermenting glucose, a mixture of L-/D-lactate with a 97:3% ratio was formed. Inactivation of hicD led to undetectable D-lactate levels after glucose fermentation, while L-lactate levels remained constant. Inactivation of ldhL did not abolish the production of L-lactate, but the lactate final concentration decreased about 25% compared to the wild type, suggesting the presence of at least a second L-Ldh. Moreover, part of the pyruvate flux was rerouted and half of the lactate produced was in the D-isomer form. ldhL inactivation in L. casei showed additional interesting effects. First, the glycolytic flux from pyruvate to lactate was redirected and other fermentation products, including acetate, acetoin, pyruvate, ethanol, diacetyl, mannitol and CO(2), were produced. Second, a lack of carbon catabolite repression of lactose metabolism and N-acetyl-glucosaminidase activity was observed. This second effect could be partly avoided by growing the cells under aeration, since NADH oxidases could account for NAD+ regeneration. PMID:15882939

  3. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    PubMed Central

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min-1 (mg protein)-1. By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  4. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  5. NADP+-Preferring D-Lactate Dehydrogenase from Sporolactobacillus inulinus.

    PubMed

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Dong, Hui; Yu, Bo; Ma, Yanhe

    2015-09-01

    Hydroxy acid dehydrogenases, including l- and d-lactate dehydrogenases (L-LDH and D-LDH), are responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids and extensively used in a wide range of biotechnological applications. A common feature of LDHs is their high specificity for NAD(+) as a cofactor. An LDH that could effectively use NADPH as a coenzyme could be an alternative enzymatic system for regeneration of the oxidized, phosphorylated cofactor. In this study, a d-lactate dehydrogenase from a Sporolactobacillus inulinus strain was found to use both NADH and NADPH with high efficiencies and with a preference for NADPH as its coenzyme, which is different from the coenzyme utilization of all previously reported LDHs. The biochemical properties of the D-LDH enzyme were determined by X-ray crystal structural characterization and in vivo and in vitro enzymatic activity analyses. The residue Asn(174) was demonstrated to be critical for NADPH utilization. Characterization of the biochemical properties of this enzyme will contribute to understanding of the catalytic mechanism and provide referential information for shifting the coenzyme utilization specificity of 2-hydroxyacid dehydrogenases. PMID:26150461

  6. NADP+-Preferring d-Lactate Dehydrogenase from Sporolactobacillus inulinus

    PubMed Central

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Ma, Yanhe

    2015-01-01

    Hydroxy acid dehydrogenases, including l- and d-lactate dehydrogenases (L-LDH and D-LDH), are responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids and extensively used in a wide range of biotechnological applications. A common feature of LDHs is their high specificity for NAD+ as a cofactor. An LDH that could effectively use NADPH as a coenzyme could be an alternative enzymatic system for regeneration of the oxidized, phosphorylated cofactor. In this study, a d-lactate dehydrogenase from a Sporolactobacillus inulinus strain was found to use both NADH and NADPH with high efficiencies and with a preference for NADPH as its coenzyme, which is different from the coenzyme utilization of all previously reported LDHs. The biochemical properties of the D-LDH enzyme were determined by X-ray crystal structural characterization and in vivo and in vitro enzymatic activity analyses. The residue Asn174 was demonstrated to be critical for NADPH utilization. Characterization of the biochemical properties of this enzyme will contribute to understanding of the catalytic mechanism and provide referential information for shifting the coenzyme utilization specificity of 2-hydroxyacid dehydrogenases. PMID:26150461

  7. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis☆

    PubMed Central

    Zhao, Rui; Zheng, Sui; Duan, Cuicui; Liu, Fei; Yang, Lijie; Huo, Guicheng

    2013-01-01

    Lactococcus lactis can undergo respiration when hemin is added to an aerobic culture. The most distinctive feature of lactococcal respiration is that lactate could be consumed in the stationary phase concomitantly with the rapid accumulation of diacetyl and acetoin. However, the enzyme responsible for lactate utilization in this process has not yet been identified. As genes for fermentative NAD-dependent l-lactate dehydrogenase (l-nLDH) and potential electron transport chain (ETC)-related NAD-independent l-LDH (l-iLDH) exist in L. lactis, the activities of these enzymes were measured in this study using crude cell extracts prepared from respiratory and fermentation cultures. Further studies were conducted with purified preparations of recombinant LDH homologous proteins. The results showed that l-iLDH activity was hardly detected in both crude cell extracts and purified l-iLDH homologous protein while l-nLDH activity was very significant. This suggested that l-iLDHs were inactive in lactate utilization. The results of kinetic analyses and the effects of activator, inhibitor, substrate and product concentrations on the reaction equilibrium showed that l-nLDH was much more prone to catalyze the pyruvate reduction reaction but could reverse its role provided that the concentrations of NADH and pyruvate were extremely low while NAD and lactate were abundant. Metabolite analysis in respiratory culture revealed that the cellular status in the stationary phase was beneficial for l-nLDH to catalyze lactate oxidation. The factors accounting for the respiration- and stationary phase-dependent lactate utilization in L. lactis are discussed here. PMID:24251099

  8. Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export

    PubMed Central

    Branduardi, Paola; Sauer, Michael; De Gioia, Luca; Zampella, Giuseppe; Valli, Minoska; Mattanovich, Diethard; Porro, Danilo

    2006-01-01

    Background Metabolic pathway manipulation for improving the properties and the productivity of microorganisms is becoming a well established concept. For the production of important metabolites, but also for a better understanding of the fundamentals of cell biology, detailed studies are required. In this work we analysed the lactate production from metabolic engineered Saccharomyces cerevisiae cells expressing a heterologous lactate dehydrogenase (LDH) gene. The LDH gene expression in a budding yeast cell introduces a novel and alternative pathway for the NAD+ regeneration, allowing a direct reduction of the intracellular pyruvate to lactate, leading to a simultaneous accumulation of lactate and ethanol. Results Four different S. cerevisiae strains were transformed with six different wild type and one mutagenised LDH genes, in combination or not with the over-expression of a lactate transporter. The resulting yield values (grams of lactate produced per grams of glucose consumed) varied from as low as 0,0008 to as high as 0.52 g g-1. In this respect, and to the best of our knowledge, higher redirections of the glycolysis flux have never been obtained before without any disruption and/or limitation of the competing biochemical pathways. Conclusion In the present work it is shown that the redirection of the pathway towards the lactate production can be strongly modulated by the genetic background of the host cell, by the source of the heterologous Ldh enzyme, by improving its biochemical properties as well as by modulating the export of lactate in the culture media. PMID:16441897

  9. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C? of the Plateau Pika (Ochotona curzoniae).

    PubMed

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2016-01-01

    Testis-specific lactate dehydrogenase (LDH-C?) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C? in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000-5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C? in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A? (LDH-A?), Lactate Dehydrogenase B? (LDH-B?), and LDH-C? were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C? for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C? for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A? (Ki = 26.900 mmol/L), LDH-B? (Ki = 23.800 mmol/L), and LDH-C? (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A? and LDH-B? were stronger than LDH-C?. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C?. PMID:26751442

  10. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae)

    PubMed Central

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2016-01-01

    Testis-specific lactate dehydrogenase (LDH-C4) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4), Lactate Dehydrogenase B4 (LDH-B4), and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L), LDH-B4 (Ki = 23.800 mmol/L), and LDH-C4 (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4. PMID:26751442

  11. Lactate dehydrogenase C and energy metabolism in mouse sperm.

    PubMed

    Odet, Fanny; Gabel, Scott A; Williams, Jason; London, Robert E; Goldberg, Erwin; Eddy, Edward M

    2011-09-01

    We demonstrated previously that disruption of the germ cell-specific lactate dehydrogenase C gene (Ldhc) led to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD(+) cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC. PMID:21565994

  12. Isotope effects on binding of NAD+ to lactate dehydrogenase

    SciTech Connect

    LaReau, R.D.; Wan, W.; Anderson, V.E.

    1989-04-18

    The isotope effect on binding (4-/sup 2/H)NAD+ and (4-/sup 3/H)NAD+ to lactate dehydrogenase has been shown to be 1.10 +/- 0.03 by whole molecule isotope ratio mass spectrometry and 1.085 +/- 0.01 by /sup 3/H//sup 14/C scintillation counting. These values demonstrate that specific interactions of the nicotinamide ring with the enzyme make the C-H bond at C-4 less stiff in the binary complex.

  13. Ionizing radiation induces myofibroblast differentiation via lactate dehydrogenase.

    PubMed

    Judge, J L; Owens, K M; Pollock, S J; Woeller, C F; Thatcher, T H; Williams, J P; Phipps, R P; Sime, P J; Kottmann, R M

    2015-10-15

    Pulmonary fibrosis is a common and dose-limiting side-effect of ionizing radiation used to treat cancers of the thoracic region. Few effective therapies are available for this disease. Pulmonary fibrosis is characterized by an accumulation of myofibroblasts and excess deposition of extracellular matrix proteins. Although prior studies have reported that ionizing radiation induces fibroblast to myofibroblast differentiation and collagen production, the mechanism remains unclear. Transforming growth factor-? (TGF-?) is a key profibrotic cytokine that drives myofibroblast differentiation and extracellular matrix production. However, its activation and precise role in radiation-induced fibrosis are poorly understood. Recently, we reported that lactate activates latent TGF-? through a pH-dependent mechanism. Here, we wanted to test the hypothesis that ionizing radiation leads to excessive lactate production via expression of the enzyme lactate dehydrogenase-A (LDHA) to promote myofibroblast differentiation. We found that LDHA expression is increased in human and animal lung tissue exposed to ionizing radiation. We demonstrate that ionizing radiation induces LDHA, lactate production, and extracellular acidification in primary human lung fibroblasts in a dose-dependent manner. We also demonstrate that genetic and pharmacologic inhibition of LDHA protects against radiation-induced myofibroblast differentiation. Furthermore, LDHA inhibition protects from radiation-induced activation of TGF-?. We propose a profibrotic feed forward loop, in which radiation induces LDHA expression and lactate production, which can lead to further activation of TGF-? to drive the fibrotic process. These studies support the concept of LDHA as an important therapeutic target in radiation-induced pulmonary fibrosis. PMID:26254422

  14. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    PubMed

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. PMID:26126931

  15. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes.

    PubMed

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C; Chahma, M'hamed; Appanna, Vasu D

    2014-11-01

    It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD(+)), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H2O2) in the culture medium. Under oxidative stress, the NAD(+) generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD(+) reveals an intricate link between metabolism and the processing of genetic information. PMID:25450376

  16. Hereditary deficiency of lactate dehydrogenase H-subunit.

    PubMed

    Wakabayashi, H; Tsuchiya, M; Yoshino, K; Kaku, K; Shigei, H

    1996-07-01

    We report herein the fifth family of hereditary deficiency of lactate dehydrogenase (LDH) H-subunit with an autosomal recessive inheritance including two cases of complete deficiency. Their LDH activities were low both in the serum and in the red blood cells (RBC). Electrophoretic analysis revealed that the patients with the complete deficiency had only the LDH5 isozyme. The complete deficiency was associated with marked elevation of fructose-1, 6-diphosphate (FDP) and dihydroxyacetonephosphate (DHAP) and a less marked rise in glyceraldehyde-3-phosphate (GA3P) among glycolytic intermediates in the RBC. Furthermore, hemolysis was observed in the present cases, but this finding was not included in the other reports. PMID:8842761

  17. Human Lactate Dehydrogenase A Inhibitors: A Molecular Dynamics Investigation

    PubMed Central

    Shi, Yun; Pinto, B. Mario

    2014-01-01

    Lactate dehydrogenase A (LDHA) is an important enzyme in fermentative glycolysis, generating most energy for cancer cells that rely on anaerobic respiration even under normal oxygen concentrations. This renders LDHA a promising molecular target for the treatment of various cancers. Several efforts have been made recently to develop LDHA inhibitors with nanomolar inhibition and cellular activity, some of which have been studied in complex with the enzyme by X-ray crystallography. In this work, we present a molecular dynamics (MD) study of the binding interactions of selected ligands with human LDHA. Conventional MD simulations demonstrate different binding dynamics of inhibitors with similar binding affinities, whereas steered MD simulations yield discrimination of selected LDHA inhibitors with qualitative correlation between the in silico unbinding difficulty and the experimental binding strength. Further, our results have been used to clarify ambiguities in the binding modes of two well-known LDHA inhibitors. PMID:24466056

  18. Placental enzyme polymorphism among Maharashtrians: alkaline phosphatase and lactate dehydrogenase.

    PubMed

    Mukherjee, B N; Das, S K; Malhotra, K C; Kate, S L; Mutalik, G S; Sainani, G S; Bhidya, S

    1978-09-01

    The distribution of placental alkaline phosphatase and lactate dehydrogenase types in 635 placentas from various endogamous groups of Maharashtra have been studied by starch gel electrophoresis. In the case of alkaline phosphatase, 6 common phenotypes and 6 rare phenotypes (F2I1, S1S2, S2S3, I1S2, F1S2, F1I2) are encountered. The highest frequency of Pls1 allele (0.7394) and lowest frequency of Pli1 allele (0.0246) have been found in the Nava-Budha. 6 cases of Cal-1 and 5 cases of Cal-2 types of LDH variants have been observed in the total samples, and Muslims possess the highest frequency of Cal-1 types (3.64%). Population groups are compared with respect to Pl alleles. PMID:727701

  19. Conformational heterogeneity within the Michaelis complex of lactate dehydrogenase.

    PubMed

    Deng, Hua; Vu, Dung V; Clinch, Keith; Desamero, Ruel; Dyer, R Brian; Callender, Robert

    2011-06-16

    A series of isotope edited IR measurements, both static as well as temperature jump relaxation spectroscopy, are performed on lactate dehydrogenase (LDH) to determine the ensemble of structures available to its Michaelis complex. There clearly has been a substantial reduction in the number of states available to the pyruvate substrate (as modeled by the substrate mimic, oxamate) and NADH when bound to protein compared to dissolved in solution, as determined by the bandwidths and positions of the critical C(2)?O band of the bound substrate mimic and the C(4)-H stretch of the NADH reduced nicotinamide group. Moreover, it is found that a strong ionic bond (characterized by a signature IR band discovered in this study) is formed between the carboxyl group of bound pyruvate with (presumably) Arg171, forming a strong "anchor" within the protein matrix. However, conformational heterogeneity within the Michaelis complex is found that has an impact on both catalytic efficiency and thermodynamics of the enzyme. PMID:21568287

  20. Separation of turkey lactate dehydrogenase isoenzymes using isoelectric focusing technique.

    PubMed

    Heinov, Dagmar; Kosteck, Zuzana; Csank, Tom

    2016-01-01

    Native polyacrylamide gel electrophoresis at pH 8.8 did not allow to separate lactate dehydrogenase (LDH) isoenzymes of turkey origin. Five electrophoretically distinguishable forms of the enzyme were detected in serum and tissues of turkey using IEF technique in a pH range of 3-9. Generally, three different groups were seen: (i) those having an anodic domination (heart, kidney, pancreas, and erythrocytes) with mainly LDH-1 fraction, (ii) those having a cathodic domination (breast muscle and serum) with prevalence of LDH-5, and (iii) those with a more uniform distribution (liver, spleen, lung, and brain). The specific enzyme activity was the highest in the breast muscle, followed by heart muscle, and brain. Low activities were detected in serum, kidney, and liver. PMID:26471476

  1. D- and L-lactate dehydrogenases during invertebrate evolution

    PubMed Central

    2008-01-01

    Background The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(-)-lactate and D(+)-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh. Results Our phylogenetic analyses of L-LDH in vertebrates are consistent with the general view that the main isozymes (LDH-A, LDH-B and LDH-C) evolved through a series of gene duplications after the vertebrates diverged from tunicates. We report several gene duplication events in the crustacean, Daphnia pulex, and the leech, Helobdella robusta. Several amino acid sequences with strong similarity to putative mammalian D-LDH and to yeast DLD1 with D-LDH activity were found in both vertebrates and invertebrates. Conclusion The presence of both L-Ldh and D-Ldh genes in several chordates and invertebrates suggests that the two enzymatic forms are not necessarily mutually exclusive. Although, the evolution of L-Ldh has been punctuated by multiple events of gene duplication in both vertebrates and invertebrates, a shared evolutionary history of this gene in the two groups is apparent. Moreover, the high degree of sequence similarity among D-LDH amino acid sequences suggests that they share a common evolutionary history. PMID:18828920

  2. Use of the sulphite adduct of nicotinamideadenine dinucleotide to study ionizations and the kinetics of lactate dehydrogenase and malate dehydrogenase

    PubMed Central

    Parker, David M.; Lodola, Alberto; Holbrook, J. John

    1978-01-01

    1. The formation of the non-enzymic adduct of NAD+ and sulphite was investigated. In agreement with others we conclude that the dianion of sulphite adds to NAD+. 2. The formation of ternary complexes of either lactate dehydrogenase or malate dehydrogenase with NAD+ and sulphite was investigated. The u.v. spectrum of the NADsulphite adduct was the same whether free or enzyme-bound at either pH6 or pH8. This suggests that the free and enzyme-bound adducts have a similar electronic structure. 3. The effect of pH on the concentration of NADsulphite bound to both enzymes was measured in a new titration apparatus. Unlike the non-enzymic adduct (where the stability change with pH simply reflects HSO3?=SO32?+H+), the enzyme-bound adduct showed a bell-shaped pHstability curve, which indicated that an enzyme side chain of pK=6.2 must be protonated for the complex to form. Since the adduct does not bind to the enzyme when histidine-195 of lactate dehydrogenase is ethoxycarbonylated we conclude that the protein group involved is histidine-195. 4. The pH-dependence of the formation of a ternary complex of lactate dehydrogenase, NAD+ and oxalate suggested that an enzyme group is protonated when this complex forms. 5. The rate at which NAD+ binds to lactate dehydrogenase and malate dehydrogenase was measured by trapping the enzyme-bound NAD+ by rapid reaction with sulphite. The rate of NAD+ dissociation from the enzymes was calculated from the bimolecular association kinetic constant and from the equilibrium binding constant and was in both cases much faster than the forward Vmax.. No kinetic evidence was found that suggested that there were interactions between protein subunits on binding NAD+. ImagesFig. 1.Fig. 3.Fig. 4. PMID:30452

  3. Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles.

    PubMed

    Nesakumar, Noel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru

    2013-11-15

    An electrochemical biosensor was developed to determine lactate that plays an important role in clinical diagnosis, fermentation and food quality analysis. Abnormal concentration of lactate has been related to diseases such as hypoxia, acute heart disorders, lactic acidosis, muscle fatigue and meningitis. Also, lactate concentration in blood helps to evaluate the athletic performance in sports. The main aim of the work is to fabricate NADH/LDH/Nano-CeO2/GCE bio-electrode for sensing lactate in human blood samples. Toward this, CeO2 nanoparticles were synthesized by a hydroxide mediated approach using cerium nitrate hexahydrate (Ce(NO3)36H2O) and NaOH as precursors. X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM) studies were carried out to determine the structural and morphological characteristics of CeO2 nanoparticles. XRD pattern indicated the formation of highly crystalline CeO2 nanoparticles with face centered cubic structure. The FE-SEM studies revealed the formation of nanospherical particles of size 29.732.59 nm. The working electrode was fabricated by immobilizing nicotinamide adenine dinucleotide (NADH) and lactate dehydrogenase (LDH) on GCE surface with CeO2 nanoparticles as an interface. Electrochemical studies were carried out through cyclic voltammetry using a three electrode system with NADH/LDH/NanoCeO2/GCE as a working electrode, Ag/AgCl saturated with 0.1M KCl as a reference electrode and Pt wire as a counter electrode. From the amperometric study, the linearity was found to be in the range of 0.2-2 mM with the response time of less than 4s. PMID:24034216

  4. [Isozyme patterns of lactate dehydrogenase from tissues of mink and arctic fox during postnatal development].

    PubMed

    Tiutiunnik, N N; Kozhevnikova, L K; Unzhakov, A R; Meldo, Kh I

    2002-01-01

    Isozymes of lactate dehydrogenase extracted from heart, kidney, and liver of mink (Mustela vison Briss.) and Arctic fox (Alopex lagopus L.) during postnatal development were separated by agarose gel electrophoresis. Tissue-specific isozyme pattern of lactate dehydrogenase can be revealed at the age of one month, while the definitive pattern is formed at the age of four months. The isozyme patterns of lactate dehydrogenase in the studied tissues of mink and Arctic fox share the properties specific for animal species of various ecogenesis. PMID:12068724

  5. A detailed investigation of the properties of lactate dehydrogenase in which the 'Essential' cysteine-165 is modified by thioalkylation.

    PubMed Central

    Bloxham, D P; Sharma, R P; Wilton, D C

    1979-01-01

    The reaction of pig heart lactate dehydrogenase with methyl methanethiosulphonate resulted in the modification of one thiol group per protomer, and this was located at cysteine-165 in the enzyme sequence. On reduction, both the thiomethylation of cysteine-165 and any changes in kinetic properties of the enzyme were completely reversed. Cysteine-165 has been considered essential for catalytic activity; however, cysteine-165-thiomethylated dehydrogenase possessed full catalytic activity, although the affinity of the enzyme for carbonyl-or hydroxy-containing substrates was markedly decreased. The nicotinamide nucleotide-binding capacity was unaffected, as judged by the formation of fluorescent complexes with NADH. The enzyme-mediated activation of NAD+, as judged by sulphite addition, was unaffected in thiomethylated lactate dehydrogenase. However, the affinity of oxamate for the enzyme--NADH complex was decreased by 100-fold and it was calculated that this constituted a net increase of 10.4 kJ/mol in the activation energy for binding. Thiomethylated lactate dehydrogenase was able to form an abortive adduct between NAD+ and fluoropyruvate. However, the equilibrium constant for adduct formation between pyruvate and NAD+ was too low to demonstrate this complex at reasonable pyruvate concentrations. A conformational change in the protein structure on selective thiomethylation was revealed by the decreased thermostability of the modified enzyme. The alteration of lactate dehydrogenase catalytic properties on modification depended on the bulk of the reagent used, since thioethylation resulted in an increase in Km for pyruvate (13.5 +/- 3.5 mm) and an 85% decrease in maximum catalytic activity. The implications of all these findings for the catalytic mechanism of lactate dehydrogenase are discussed. PMID:36072

  6. Lactate dehydrogenase A silencing in IDH mutant gliomas

    PubMed Central

    Chesnelong, Charles; Chaumeil, Myriam M.; Blough, Michael D.; Al-Najjar, Mohammad; Stechishin, Owen D.; Chan, Jennifer A.; Pieper, Russell O.; Ronen, Sabrina M.; Weiss, Samuel; Luchman, H. Artee; Cairncross, J. Gregory

    2014-01-01

    Background Mutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1? degradation and, by doing so, may have unexpected metabolic effects. Methods We used human glioma tissues and derived brain tumor stem cells (BTSCs) to study the expression of HIF1? target genes in IDH mutant (mt) and IDH wild-type (wt) tumors. Focusing thereafter on the major glycolytic enzyme, lactate dehydrogenase A (LDHA), we used standard molecular methods and pyrosequencing-based DNA methylation analysis to identify mechanisms by which LDHA expression was regulated in human gliomas. Results We found that HIF1?-responsive genes, including many essential for glycolysis (SLC2A1, PDK1, LDHA, SLC16A3), were underexpressed in IDHmt gliomas and/or derived BTSCs. We then demonstrated that LDHA was silenced in IDHmt derived BTSCs, including those that did not retain the mutant IDH1 allele (mIDHwt), matched BTSC xenografts, and parental glioma tissues. Silencing of LDHA was associated with increased methylation of the LDHA promoter, as was ectopic expression of mutant IDH1 in immortalized human astrocytes. Furthermore, in a search of The Cancer Genome Atlas, we found low expression and high methylation of LDHA in IDHmt glioblastomas. Conclusion To our knowledge, this is the first demonstration of downregulation of LDHA in cancer. Although unexpected findings, silencing of LDHA and downregulation of several other glycolysis essential genes raise the intriguing possibility that IDHmt gliomas have limited glycolytic capacity, which may contribute to their slow growth and better prognosis. PMID:24366912

  7. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation

    PubMed Central

    Parra-Bonilla, Glenda; Alvarez, Diego F.; Al-Mehdi, Abu-Bakr; Alexeyev, Mikhail

    2010-01-01

    Pulmonary microvascular endothelial cells possess both highly proliferative and angiogenic capacities, yet it is unclear how these cells sustain the metabolic requirements essential for such growth. Rapidly proliferating cells rely on aerobic glycolysis to sustain growth, which is characterized by glucose consumption, glucose fermentation to lactate, and lactic acidosis, all in the presence of sufficient oxygen concentrations. Lactate dehydrogenase A converts pyruvate to lactate necessary to sustain rapid flux through glycolysis. We therefore tested the hypothesis that pulmonary microvascular endothelial cells express lactate dehydrogenase A necessary to utilize aerobic glycolysis and support their growth. Pulmonary microvascular endothelial cell (PMVEC) growth curves were conducted over a 7-day period. PMVECs consumed glucose, converted glucose into lactate, and acidified the media. Restricting extracellular glucose abolished the lactic acidosis and reduced PMVEC growth, as did replacing glucose with galactose. In contrast, slow-growing pulmonary artery endothelial cells (PAECs) minimally consumed glucose and did not develop a lactic acidosis throughout the growth curve. Oxygen consumption was twofold higher in PAECs than in PMVECs, yet total cellular ATP concentrations were twofold higher in PMVECs. Glucose transporter 1, hexokinase-2, and lactate dehydrogenase A were all upregulated in PMVECs compared with their macrovascular counterparts. Inhibiting lactate dehydrogenase A activity and expression prevented lactic acidosis and reduced PMVEC growth. Thus PMVECs utilize aerobic glycolysis to sustain their rapid growth rates, which is dependent on lactate dehydrogenase A. PMID:20675437

  8. The D-Lactate Dehydrogenase from Sporolactobacillus inulinus Also Possessing Reversible Deamination Activity

    PubMed Central

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Dong, Hui; Yu, Bo

    2015-01-01

    Hydroxyacid dehydrogenases are responsible for the conversion of 2-keto acids to 2-hydroxyacids and have a wide range of biotechnological applications. In this study, a D-lactate dehydrogenase (D-LDH) from a Sporolactobacillus inulinus strain was experimentally verified to have both the D-LDH and glutamate dehydrogenase (GDH) activities (reversible deamination). The catalytic mechanism was demonstrated by identification of key residues from the crystal structure analysis and site-directed mutagenesis. The Arg234 and Gly79 residues of this enzyme play a significant role in both D-LDH and GDH activities. His295 and Phe298 in DLDH744 were identified to be key residues for lactate dehydrogenase (LDH) activity only whereas Tyr101 is a unique residue that is critical for GDH activity. Characterization of the biochemical properties contributes to understanding of the catalytic mechanism of this novel D-lactate dehydrogenase enzyme. PMID:26398356

  9. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    SciTech Connect

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D.

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  10. Acetate Utilization in Lactococcus lactis Deficient in Lactate Dehydrogenase: a Rescue Pathway for Maintaining Redox Balance

    PubMed Central

    Hols, Pascal; Ramos, Ana; Hugenholtz, Jeroen; Delcour, Jean; de Vos, Willem M.; Santos, Helena; Kleerebezem, Michiel

    1999-01-01

    Acetate was shown to improve glucose fermentation in Lactococcus lactis deficient in lactate dehydrogenase. 13C and 1H nuclear magnetic resonance studies using [2-13C]glucose and [2-13C]acetate as substrates demonstrated that acetate was exclusively converted to ethanol. This novel pathway provides an alternative route for NAD+ regeneration in the absence of lactate dehydrogenase. PMID:10464231

  11. Kinetic activation of yeast mitochondrial D-lactate dehydrogenase by carboxylic acids.

    PubMed

    Mourier, Arnaud; Vallortigara, Julie; Yoboue, Edgar D; Rigoulet, Michel; Devin, Anne

    2008-10-01

    Aerobically grown yeast cells express mitochondrial lactate dehydrogenases that localize to the mitochondrial inner membrane. The D-lactate dehydrogenase is a zinc-flavoprotein with high acceptor specificity for cytochrome c, that catalyzes the oxidation of D-lactate into pyruvate. In this paper, we show that mitochondrial respiratory rate in phosphorylating or non-phosphorylating conditions with D-lactate as substrate is stimulated by carboxylic acids. This stimulation does not affect the yield of oxidative phosphorylation. Furthermore, this stimulation lies at the level of the D-lactate dehydrogenase. It is non-competitive, hyperbolic and its dimension is directly related to the number of carboxylic groups on the activator. The physiological meaning of such a regulation is discussed. PMID:18640090

  12. Elevation of serum lactate dehydrogenase in patients with pectus excavatum

    PubMed Central

    2014-01-01

    Introduction Pectus excavatum is the most common congenital chest wall deformity and the depression of the anterior chest wall, which compresses the internal organs. The aim of the present study is to investigate the effects of pectus excavatum on blood laboratory findings. Material and Methods From March 2011 to December 2011, 71 patients with pectus excavatum who visited Seoul Saint Mary Hospital for Nuss procedure were reviewed and analyzed. The blood samples were routinely taken at the day before surgery and pectus bar removal was usually performed in 2 to 3years after Nuss procedure. To investigate the effects on blood laboratory findings, preoperative routine blood laboratory data and postoperative changes of abnormal laboratory data were analyzed. Results Only lactate dehydrogenase (LDH), one of 26 separate routine laboratory tests, was abnormal and significantly elevated than normal value (age <10, p?=?0.008; age ?10, p?

  13. Phylogenetic analysis of vertebrate lactate dehydrogenase (LDH) multigene families.

    PubMed

    Li, Yi-Ju; Tsoi, Stephen C-M; Mannen, Hideyuka; Shoei-lung Li, Steven

    2002-05-01

    In this paper we analyzed 49 lactate dehydrogenase (LDH) sequences, mostly from vertebrates. The amino acid sequence differences were found to be larger for a human-killifish pair than a human-lamprey pair. This indicates that some protein sequence convergence may occur and reduce the sequence differences in distantly related species. We also examined transitions and transversions separately for several species pairs and found that the transitions tend to be saturated in the distantly related species pair, while transversions are increasing. We conclude that transversions maintain a conservative rate through the evolutionary time. Kimura's two-parameter model for multiple-hit correction on transversions only was used to derive a distance measure and then construct a neighbor-joining (NJ) tree. Three findings were revealed from the NJ tree: (i) the branching order of the tree is consistent with the common branch pattern of major vertebrates; (ii) Ldh-A and Ldh-B genes were duplicated near the origin of vertebrates; and (iii) Ldh-C and Ldh-A in mammals were produced by an independent gene duplication in early mammalian history. Furthermore, a relative rate test showed that mammalian Ldh-C evolved more rapidly than mammalian Ldh-A. Under a two-rate model, this duplication event was calibrated to be approximately 247 million years ago (mya), dating back to the Triassic period. Other gene duplication events were also discovered in Xenopus, the first duplication occurring approximately 60-70 mya in both Ldh-A and Ldh-B, followed by another recent gene duplication event, approximately 20 mya, in Ldh-B. PMID:11965434

  14. Mechanism of Thermal Adaptation in the Lactate Dehydrogenases.

    PubMed

    Peng, Huo-Lei; Egawa, Tsuyoshi; Chang, Eric; Deng, Hua; Callender, Robert

    2015-12-10

    The mechanism of thermal adaptation of enzyme function at the molecular level is poorly understood but is thought to lie within the structure of the protein or its dynamics. Our previous work on pig heart lactate dehydrogenase (phLDH) has determined very high resolution structures of the active site, via isotope edited IR studies, and has characterized its dynamical nature, via laser-induced temperature jump (T-jump) relaxation spectroscopy on the Michaelis complex. These particular probes are quite powerful at getting at the interplay between structure and dynamics in adaptation. Hence, we extend these studies to the psychrophilic protein cgLDH (Champsocephalus gunnari; 0 C) and the extreme thermophile tmLDH (Thermotoga maritima LDH; 80 C) for comparison to the mesophile phLDH (38-39 C). Instead of the native substrate pyruvate, we utilize oxamate as a nonreactive substrate mimic for experimental reasons. Using isotope edited IR spectroscopy, we find small differences in the substate composition that arise from the detailed bonding patterns of oxamate within the active site of the three proteins; however, we find these differences insufficient to explain the mechanism of thermal adaptation. On the other hand, T-jump studies of reduced ?-nicotinamide adenine dinucleotide (NADH) emission reveal that the most important parameter affecting thermal adaptation appears to be enzyme control of the specific kinetics and dynamics of protein motions that lie along the catalytic pathway. The relaxation rate of the motions scale as cgLDH > phLDH > tmLDH in a way that faithfully matches kcat of the three isozymes. PMID:26556099

  15. Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F.

    PubMed

    Ogata, M; Yagi, T

    1986-08-01

    Pyruvate dehydrogenase from Desulfovibrio vulgaris Miyazaki F was partially purified from the soluble fraction of the bacterial sonicate, and characterized. The enzyme catalyzes oxidative decarboxylation of pyruvate to produce acetyl-CoA, in contrast to statements in current review articles in which acetyl phosphate is indicated to be a direct decomposition product of pyruvate in sulfate-reducing bacteria. The established reaction stoichiometry is: pyruvate + CoA + FMN----acetyl-CoA + CO2 + FMNH2. The Km values are 2.9 mM for pyruvate, 32 microM for CoA and 6.7 mumol for FMN. Participation of thiamine diphosphate in the enzymic process was not proven. 2-Oxobutyrate, but not 2-oxoglutarate, can substitute for pyruvate. The three flavin compounds, FMN, FAD, and flavodoxin, as well as clostridial ferredoxin, serve as electron carriers for the enzyme. Thus the enzyme is a kind of pyruvate synthase [EC 1.2.7.1], but acts in the direction of pyruvate degradation in the growing cells. The rate of cytochrome C3 reduction is extremely low, but in the presence of flavodoxin as an electron mediator, the reduction rate of cytochrome C3 becomes faster than the reduction rate of flavodoxin alone. It seems that the physiological electron acceptor for this enzyme is flavodoxin, which might be complexed with cytochrome C3 to produce a very efficient electron transfer system in the cell. The soluble fraction of D. vulgaris cells has been proved to contain, in addition to the pyruvate dehydrogenase, lactate dehydrogenase (Ogata, M., Arihara, K., & Yagi, T. (1981) J. Biochem. 89, 1423-1431), phosphate acetyltransferase and acetate kinase, i.e., all the enzymes necessary to convert lactate to acetate, producing ATP by substrate level phosphorylation. PMID:3023304

  16. Lactate dehydrogenase concentration in nasal wash fluid indicates severity of rhinovirus-induced wheezy bronchitis in preschool children.

    PubMed

    Cangiano, Giulia; Proietti, Elena; Kronig, Marie Noelle; Kieninger, Elisabeth; Sadeghi, Christine D; Gorgievski, Meri; Barbani, Maria Teresa; Midulla, Fabio; Tapparel, Caroline; Kaiser, Laurent; Alves, Marco P; Regamey, Nicolas

    2014-12-01

    The clinical course of rhinovirus (RV)-associated wheezing illnesses is difficult to predict. We measured lactate dehydrogenase concentrations, RV load, antiviral and proinflammatory cytokines in nasal washes obtained from 126 preschool children with RV wheezy bronchitis. lactate dehydrogenase values were inversely associated with subsequent need for oxygen therapy. lactate dehydrogenase may be a useful biomarker predicting disease severity in RV wheezy bronchitis. PMID:25389710

  17. Induction of Alcohol Dehydrogenase and Lactate Dehydrogenase in Hypoxically Induced Barley 1

    PubMed Central

    Good, Allen G.; Crosby, William L.

    1989-01-01

    In barley (Hordeum vulgare L.), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) are induced by anaerobiosis in both aleurone layers and roots. Under aerobic conditions, developing seeds of cv Himalaya accumulate ADH activity, which survives seed drying and rehydration. This activity consists almost entirely of the ADH1 homodimer. Activity of LDH also increases during seed development, but the level of activity in dry or rehydrated seeds is very low, indicating that this enzyme may not be involved in anaerobic glycolysis during the initial stages of germination. In contrast to ADH, the LDH isozymes present in developing seeds are similar to those found in uninduced and induced roots. Developmental expression of ADH and LDH was monitored from 0 to 24 days postgermination. Neither activity was induced to any extent in the germinating seeds; however, both enzymes were highly induced by anoxia in root tissue during development. Based on gel electrophoresis, this increase in activity results from the differential expression of different Adh and Ldh genes in root tissue. The changes in ADH and LDH activity levels were matched by changes in the amount of these particular proteins, indicating that the increase in activity results from de novo synthesis of these two proteins. The level of inducible LDH activity in an ADH1? mutant was not found to differ from cv Himalaya. We suggest that although the ADH? plants are more susceptible to flooding, they are not capable of responding to the lack of ADH1 activity by increasing the amount of LDH activity in root tissue. Images Figure 2 Figure 4 Figure 7 PMID:16666889

  18. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    PubMed Central

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality. One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37–51) and the specificity was 73% (95% CI 69–76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11–4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable and in nonsurgically treated patients. Plasma LDH constitutes a biomarker of poor outcome in patients with AAS. LDH is a rapid and universally available assay that could be used to improve risk stratification and to individualize treatment in patient groups where options are controversial. PMID:26871831

  19. Energy Landscape of the Michaelis Complex of Lactate Dehydrogenase: Relationship to Catalytic Mechanism

    PubMed Central

    2015-01-01

    Lactate dehydrogenase (LDH) catalyzes the interconversion between pyruvate and lactate with nicotinamide adenine dinucleotide (NAD) as a cofactor. Using isotope-edited difference Fourier transform infrared spectroscopy on the live reaction mixture (LDHNADHpyruvate ? LDHNAD+lactate) for the wild-type protein and a mutant with an impaired catalytic efficiency, a set of interconverting conformational substates within the pyruvate side of the Michaelis complex tied to chemical activity is revealed. The important structural features of these substates include (1) electronic orbital overlap between pyruvates C2=O bond and the nicotinamide ring of NADH, as shown from the observation of a delocalized vibrational mode involving motions from both moieties, and (2) a characteristic hydrogen bond distance between the pyruvate C2=O group and active site residues, as shown by the observation of at least four C2=O stretch bands indicating varying degrees of C2=O bond polarization. These structural features form a critical part of the expected reaction coordinate along the reaction path, and the ability to quantitatively determine them as well as the substate population ratios in the Michaelis complex provides a unique opportunity to probe the structureactivity relationship in LDH catalysis. The various substates have a strong variance in their propensity toward on enzyme chemistry. Our results suggest a physical mechanism for understanding the LDH-catalyzed chemistry in which the bulk of the rate enhancement can be viewed as arising from a stochastic search through an available phase space that, in the enzyme system, involves a restricted ensemble of more reactive conformational substates as compared to the same chemistry in solution. PMID:24576110

  20. Development of an enzymatic assay system of D-lactate using D-lactate dehydrogenase and a UV-LED fluorescent spectrometer.

    PubMed

    Chen, Chien-Ming; Chen, Shih-Ming; Chien, Po-Jen; Yu, Han-Yin

    2015-12-10

    In this study, we aimed to develop a new enzymatic assay system of d-lactate with good precision, accuracy, and sensitivity for the determination of D-lactate concentrations in rat serum. D-Lactate dehydrogenase (D-LDH) was utilized to catalyze D-lactate and NAD(+) to pyruvate and NADH, respectively. The generated NADH was excited by using a 340-nm UV-light-emitting diode (LED), and the fluorescence at 491 nm was detected to determine the concentration of D-lactate in rat serum. The optics, consisting of the sample cuvette, were set on three-dimensional stages to receive the most intensive fluorescence signal into the spectrometer. The optimal conditions of the D-LDH reaction were pH 8.5 and 25 C for 90 min. The results showed that the new D-lactate assay system had good linearity (R(2)=0.9964) in the calibration range from 5 to 150 ?M. Intra-day and inter-day accuracies were in the range of 103.96-109.09% and 102.84-104.59%, respectively, and the intra-day and inter-day precision was 4.28-6.82% and 4.04-12.40%, respectively. Finally, serum D-lactate concentrations determined by the proposed enzymatic assay system were compared with those obtained by a conventional HPLC method. The newly developed D-lactate assay system could detect 10-15 samples in 90 min, whereas the HPLC method could detect only one sample over the same time period. PMID:26265307

  1. NAD-Independent L-Lactate Dehydrogenase Is Required for L-Lactate Utilization in Pseudomonas stutzeri SDM

    PubMed Central

    Dou, Peipei; Ma, Cuiqing; Li, Lixiang; Kong, Jian; Xu, Ping

    2012-01-01

    Background Various Pseudomonas strains can use l-lactate as their sole carbon source for growth. However, the l-lactate-utilizing enzymes in Pseudomonas have never been identified and further studied. Methodology/Principal Findings An NAD-independent l-lactate dehydrogenase (l-iLDH) was purified from the membrane fraction of Pseudomonas stutzeri SDM. The enzyme catalyzes the oxidation of l-lactate to pyruvate by using FMN as cofactor. After cloning its encoding gene (lldD), l-iLDH was successfully expressed, purified from a recombinant Escherichia coli strain, and characterized. An lldD mutant of P. stutzeri SDM was constructed by gene knockout technology. This mutant was unable to grow on l-lactate, but retained the ability to grow on pyruvate. Conclusions/Significance It is proposed that l-iLDH plays an indispensable function in Pseudomonas l-lactate utilization by catalyzing the conversion of l-lactate into pyruvate. PMID:22574176

  2. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  3. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  4. Free energy landscape of the Michaelis complex of lactate dehydrogenase: A network analysis of atomistic simulations

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoliang; Schwartz, Steven

    2015-03-01

    It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.

  5. Cellular localization of D-lactate dehydrogenase and NADH oxidase from Archaeoglobus fulgidus

    PubMed Central

    Reddy Pagala, Vishwajeeth; Park, Joohye; Reed, David W.; Hartzell, Patricia L.

    2002-01-01

    Members of the genus Archaeoglobus are hyperthermophilic sulfate reducers with an optimal growth temperature of 83 C. Archaeoglobus fulgidus can utilize simple compounds including D-lactate, L-lactate and pyruvate as the sole substrate for carbon and electrons for dissimilatory sulfate reduction. Previously we showed that this organism makes a D-lactate dehydrogenase (Dld) that requires FAD and Zn2+ for activity. To determine the cellular location and topology of Dld and to identify proteins that interact with Dld, an antibody directed against Dld was prepared. Immunocytochemical studies using gold particle-coated secondary antibodies show that more than 85% of Dld is associated with the membrane. A truncated form of Dld was detected in immunoblots of whole cells treated with protease, showing that Dld is an integral membrane protein and that a significant portion of Dld, including part of the FAD-binding pocket, is outside the membrane facing the S-layer. The gene encoding Dld is part of an operon that includes noxA2, which encodes one of several NADH oxidases in A. fulgidus. Previous studies have shown that NoxA2 remains bound to Dld during purification. Thin sections of A. fulgidus probed simultaneously with antibodies against Dld and NoxA2 show that both proteins co-localized to the same sites in the membrane. Although these data show a tight interaction between NoxA2 and Dld, the role of NoxA2 in electron transport reactions is unknown. Rather, NoxA2 may protect proteins involved in electron transfer by reducing O2 to H2O2 or H2O. PMID:15803647

  6. INFLUENCE OF STEROID IMPLANTATION AND SUPPLEMENTATION ON PERFORMANCE AND LACTATE DEHYDROGENASE ACTIVITY IN STEERS GRAZING BERMUDAGRASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty-five steers (BW = 246 5.4 kg) were randomly allocated to one of three paddocks of bermudagrass [Cynodon dactylon (L.) Pers] to determine the effects of timing of steroid implantation and supplementation on average daily gain and lactate dehydrogenase (LDH) activity. Steers received either n...

  7. Influence of pH on the allosteric properties of lactate dehydrogenase activity of Phycomyces blakesleeanus.

    PubMed Central

    De Arriaga, D; Soler, J; Cadenas, E

    1982-01-01

    1. Lactate dehydrogenase from mycelium of Phycomyces blakesleeanus showed positive homotropic interactions with NADH at all pH values studied (pH 5.0-7.7). The calculated values for the first and last intrinsic association constants remained unaltered with pH, in contrast with the Hill coefficient value, which varied significantly, reaching its maximum values at pH 6.0 and 7.7. This suggests the hypothesis that pH regulates these homotropic effects by changes in the value of the intermediate intrinsic association constants. 2. From pH 7.2 to 7.7 lactate dehydrogenase exhibited, likewise, positive homotropic interactions with pyruvate. There were practically no changes in the first and last intrinsic association constants and in Hill coefficient values with pH. At pH values below 7.2 (pH 5.0-6.8) the enzyme showed high substrate inhibition, which was highly dependent on pH, NADH concentration and temperature. By way of substrate inhibition pH regulates, primarily, lactate dehydrogenase activity towards pyruvate, since the homotropic effects appear not to be dependent on pH. 3. Fructose 1,6-bisphosphate is a true allosteric effector of lactate dehydrogenase of Phycomyces blakesleeanus. it decreases positive co-operativity with NADH, and on the other hand pyruvate co-operativity turns into mixed co-operativity. In addition, the effector decreases the inhibitory effect caused by pyruvate. PMID:7115294

  8. LACTIC ACID PRODUCTION BY SACCHAROMYCES CEREVISIAE EXPRESSING A RHIZOPUS ORYZAE LACTATE DEHYDROGENASE GENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work demonstrates the first example of a fungal LDH expressed in yeast. A L(+)-lactate dehydrogenase gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adhl promoter and terminator, then placed in a 2 micron contai...

  9. Relationship of lactate dehydrogenase activity with body measeurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angus x Charolais cows (n = 87) and their Angus-sired, spring-born calves (n = 86) were utilized to examine relationships between lactate dehydrogenase (LDH) activity and body measurements of beef cows; and the relationship between maternal LDH activity in late gestation and subsequent calf birth we...

  10. Relationship of lactate dehydrogenase activity to body measurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were to examine 1) relationships between lactate dehydrogenase (LDH) activity and body measurements of grazing beef cows, and 2) the association between maternal LDH activity in late gestation and subsequent calf birth weight (BRW), hip height (HH) at weaning, and adjusted weaning weight ...

  11. Modification of Rhizopus lactate dehydrogenase for improved resistance to fructose 1,6-bisphosphate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus oryzae is frequently used for fermentative production of lactic acid. We determined that one of the key enzymes, lactate dehydrogenase (LDH), involved in synthesis of lactic acid by R. oryzae was significantly inhibited by fructose 1,6-bisphosphate (FBP) at physiological concentrations. Thi...

  12. Lactate Dehydrogenase A Expression Is Necessary to Sustain Rapid Angiogenesis of Pulmonary Microvascular Endothelium

    PubMed Central

    Parra-Bonilla, Glenda; Alvarez, Diego F.; Alexeyev, Mikhail; Vasauskas, Audrey; Stevens, Troy

    2013-01-01

    Angiogenesis is a fundamental property of endothelium, yet not all endothelial cells display equivalent angiogenic responses; pulmonary microvascular endothelial cells undergo rapid angiogenesis when compared to endothelial cells isolated from conduit vessels. At present it is not clear how pulmonary microvascular endothelial cells fulfill the bioenergetic demands that are necessary to sustain such rapid blood vessel formation. We have previously established that pulmonary microvascular endothelial cells utilize aerobic glycolysis to generate ATP during growth, a process that requires the expression of lactate dehydrogenase A to convert pyruvate to lactate. Here, we test the hypothesis that lactate dehydrogenase A is required for pulmonary microvascular endothelial cells to sustain rapid angiogenesis. To test this hypothesis, Tet-On and Tet-Off conditional expression systems were developed in pulmonary microvascular endothelial cells, where doxycycline is utilized to induce lactate dehydrogenase A shRNA expression. Expression of LDH-A shRNA induced a time-dependent decrease in LDH-A protein, which corresponded with a decrease in glucose consumption from the media, lactate production and cell growth; re-expression of LDH-A rescued each of these parameters. LDH-A silencing greatly reduced network formation on Matrigel in vitro, and decreased blood vessel formation in Matrigel in vivo. These findings demonstrate that LDH-A is critically important for sustaining the rapid angiogenesis of pulmonary microvascular endothelial cells. PMID:24086675

  13. Hypoxically inducible barley lactate dehydrogenase: cDNA cloning and molecular analysis

    SciTech Connect

    Hondred, D. ); Hanson, A.D. Univ. de Montreal, Quebec )

    1990-09-01

    In the roots of barley and other cereals, hypoxia induces a set of five isozymes of L-lactate dehydrogenase (LDH; (S)-lactate:NADH oxidoreductase, EC 1.1.1.27). Biochemical and genetic data indicate that the five LDH isozymes are tetramers that arise from random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH were isolated from a {lambda}gt11 cDNA library derived from hypoxically treated barley roots. The library was screened with antiserum raised against barley LDH purified {approx}3,000-fold by an improved three-step procedure. Immunopositive clones were rescreened with a cDNA probe synthesized by the polymerase chain reaction using primers modeled from the amino acid sequences of two tryptic LDH peptides. Two types of LDH clones were found. Nucleotide sequence analysis of one representative insert of each type (respectively, 1,305 and 1,166 base pairs) revealed open reading framed encoding 10 peptide fragments of LDH. The 1,305-base-pair insert included the entire coding region of a 356-residue LDH monomer. The nucleotide sequences of the two LDH cDNAs were 92% identical in the coding region, but highly divergent in the 3{prime} noncoding region, and thus probably correspond to the two postulated Ldh loci. The deduced amino acid sequences of the two barley LDHs were 96% identical to each other and very similar to those from vertebrate and bacterial LDHs. RNA blot hybridization showed a single mRNA band of 1.5 kilobases whose level rose about 8-fold in roots during hypoxic induction, as did the level of translatable LDH message.

  14. Control of Lactate Dehydrogenase, Lactate Glycolysis, and α-Amylase by O2 Deficit in Barley Aleurone Layers 1

    PubMed Central

    Hanson, Andrew D.; Jacobsen, John V.

    1984-01-01

    After 4 days in an atmosphere of N2, aleurone layers of barley (Hordeum vulgare L. cv Himalaya) remained viable as judged by their ability to produce near normal amounts of α-amylases when incubated with gibberellic acid (GA3) in air. However, layers did not produce α-amylase when GA3 was supplied under N2, apparently because α-amylase mRNA failed to accumulate. When an 8-hour pulse of [U-14C]glucose was supplied under N2 to freshly prepared aleurone layers, both [14C]lactate and [14C]ethanol accumulated; the [14C]lactate/[14C]ethanol ratio was about 0.3. Prior incubation of layers for 1 day under N2 changed this ratio to about 0.8, indicating an increase in the relative importance of the lactate branch of glycolysis. l(+)Lactate dehydrogenase (LDH) activity was low in freshly prepared aleurone layers and increased 10-fold during 2 days under N2, whereas alcohol dehydrogenase activity (ADH) was high initially and rose by 60%. The responses of LDH and ADH activities to O2 tension were dissimilar; when layers were incubated in various O2/N2 mixtures, LDH activity peaked at 2 to 5% O2 whereas ADH activity was highest at 0% O2. The LDH activity was resolved into several enzymically active bands by native polyacrylamide gel electrophoresis. We conclude that barley aleurone layers are highly adapted to O2 deficiency, that they possess an inducible LDH system as well as an ADH system, and we infer that the LDH and ADH systems are independently regulated. Images Fig. 2 Fig. 5 PMID:16663667

  15. Characterization of lactate dehydrogenase enzyme in seminal plasma of Japanese quail (Coturnix coturnix japonica).

    PubMed

    Singh, R P; Sastry, K V H; Pandey, N K; Shit, N; Agrawal, R; Singh, K B; Mohan, Jag; Saxena, V K; Moudgal, R P

    2011-02-01

    Lactate dehydrogenase enzyme present in quail seminal plasma has been characterized. Polyacrylamide gel electrophoresis and subsequently with LDH specific staining of seminal plasma revealed a single isozyme in quail semen. Studies on substrate inhibition, pH for optimum activity and inhibitor (urea) indicated the isozyme present in the quail semen has catalytic properties like LDH-1 viz. H-type. Furthermore, unlike other mammalian species, electrophoretic and kinetic investigations did not support the existence of semen specific LDH-X isozyme in quail semen. The effect of exogenous lactate and pyruvate on sperm metabolic activity was also studied. The addition of 1 mM lactate or pyruvate to quail semen increased sperm metabolic activity. Our results suggested that both pyruvate and lactate could be used by quail spermatozoa to maintain their basic functions. Since the H-type isozyme is important for conversion of lactate to pyruvate under anaerobic conditions it was postulated that exogenous lactate being converted into pyruvate via LDH present in semen may be used by sperm mitochondria to generate ATP. During conversion of lactate to pyruvate NADH is being generated that may be useful for maintaining sperm mitochondrial membrane potential. PMID:21074838

  16. [Repression and derepression of lactate dehydrogenase loci during mouse development].

    PubMed

    Kolombet, L V; Gapienko, E F

    1977-05-01

    The ultramicroelectrophoretic method was applied to the study of the lactic dehydrogenase (LDH) spectrum alterations during the developmental phases of mice: ovulated ova--zygote--blastocyte--embryo--oocyte--ovulated ova. Only H-subunits were found in the embryo cells before the 5th day of development. After this M-subunits appeared indicating derepression of LDH-A locus. On the 8th day of the embryonal development deres pression of the LDH-B locus was observed to disappear during the oogenesis, being the result of progressive repression of locus LDH-A. Dictiotena of meios prophase is characterised by active H-subunit synthesis and a gradual decrease of the M-subunit synthesis. During the whole dictiotena phase the LDH-spectrum of the follicular cells was of the M-type. PMID:884268

  17. Immunomagnetic capture and colorimetric detection of malarial biomarker Plasmodium falciparum lactate dehydrogenase.

    PubMed

    Markwalter, Christine F; Davis, Keersten M; Wright, David W

    2016-01-15

    We report a sensitive, magnetic bead-based colorimetric assay for Plasmodium falciparum lactate dehydrogenase (PfLDH) in which the biomarker is extracted from parasitized whole blood and purified based on antigen binding to antibody-functionalized magnetic particles. Antigen-bound particles are washed, and PfLDH activity is measured on-bead using an optimized colorimetric enzyme reaction (limit of detection [LOD]=21.10.4 parasites/?l). Enhanced analytical sensitivity is achieved by removal of PfLDH from the sample matrix before detection and elimination of nonspecific reductases and species that interfere with the optimal detection wavelength for measuring assay development. The optimized assay represents a simple and effective diagnostic strategy for P.falciparum malaria with time-to-result of 45min and detection limits similar to those of commercial enzyme-linked immunosorbent assay (ELISA) kits, which can take 4-6h. This method could be expanded to detect all species of malaria by switching the capture antibody on the magnetic particles to a pan-specific Plasmodium LDH antibody. PMID:26475567

  18. Liquid-liquid extraction of lactate dehydrogenase from muscle using polymer-bound triazine dyes.

    PubMed

    Johansson, G; Joelsson, M

    1986-08-01

    An extract from porcine muscle containing soluble enzymes has been partitioned between the two liquid phases of an aqueous, biphasic system consisting of dextran, polyethylene glycol, and water. The influence of polymer-bound triazine dyes (Cibacron blue F3G-A and Procion yellow HE-3G) on the partition of lactate dehydrogenase and total protein was studied. The effects of pH and concentrations of polymers and buffer on this so-called affinity partitioning were also determined. The two-phase systems were used in extraction procedures for purification of lactate dehydrogenase to a specific activity of 456-494 U (7.6-8.4 mukat) per mg protein. The use of these systems for extraction of enzymes in technical scale is discussed. PMID:3752985

  19. NAD-Independent l-Lactate Dehydrogenase Required for l-Lactate Utilization in Pseudomonas stutzeri A1501

    PubMed Central

    Gao, Chao; Wang, Yujiao; Zhang, Yingxin; Lv, Min; Dou, Peipei; Xu, Ping

    2015-01-01

    ABSTRACT NAD-independent l-lactate dehydrogenases (l-iLDHs) play important roles in l-lactate utilization of different organisms. All of the previously reported l-iLDHs were flavoproteins that catalyze the oxidation of l-lactate by the flavin mononucleotide (FMN)-dependent mechanism. Based on comparative genomic analysis, a gene cluster with three genes (lldA, lldB, and lldC) encoding a novel type of l-iLDH was identified in Pseudomonas stutzeri A1501. When the gene cluster was expressed in Escherichia coli, distinctive l-iLDH activity was detected. The expressed l-iLDH was purified by ammonium sulfate precipitation, ion-exchange chromatography, and affinity chromatography. SDS-PAGE and successive matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis of the purified l-iLDH indicated that it is a complex of LldA, LldB, and LldC (encoded by lldA, lldB, and lldC, respectively). Purified l-iLDH (LldABC) is a dimer of three subunits (LldA, LldB, and LldC), and the ratio between LldA, LldB, and LldC is 1:1:1. Different from the FMN-containing l-iLDH, absorption spectra and elemental analysis suggested that LldABC might use the iron-sulfur cluster for the l-lactate oxidation. LldABC has narrow substrate specificity, and only l-lactate and dl-2-hydrobutyrate were rapidly oxidized. Mg2+ could activate l-iLDH activity effectively (6.6-fold). Steady-state kinetics indicated a ping-pong mechanism of LldABC for the l-lactate oxidation. Based on the gene knockout results, LldABC was confirmed to be required for the l-lactate metabolism of P. stutzeri A1501. LldABC is the first purified and characterized l-iLDH with different subunits that uses the iron-sulfur cluster as the cofactor. IMPORTANCE Providing new insights into the diversity of microbial lactate utilization could assist in the production of valuable chemicals and understanding microbial pathogenesis. An NAD-independent l-lactate dehydrogenase (l-iLDH) encoded by the gene cluster lldABC is indispensable for the l-lactate metabolism in Pseudomonas stutzeri A1501. This novel type of enzyme was purified and characterized in this study. Different from the well-characterized FMN-containing l-iLDH in other microbes, LldABC in P. stutzeri A1501 is a dimer of three subunits (LldA, LldB, and LldC) and uses the iron-sulfur cluster as a cofactor. PMID:25917905

  20. The determination of lactate dehydrogenase isoenzymes in normal human muscle and other tissues

    PubMed Central

    Emery, A. E. H.

    1967-01-01

    1. A technique has been developed, based on preferential inhibition by urea, for determining the amounts and proportions of the M and H sub-units of lactate dehydrogenase (referred to as LDH-M and LDH-H respectively) in human tissues, including muscle. 2. There was good agreement between the results obtained with urea inhibition and those obtained with starch-gel electrophoresis. 3. With increasing age there was a significant decrease in the total amount of lactate dehydrogenase and the amount of LDH-M in skeletal muscle. This could not be accounted for by the replacement of functioning muscle tissue by fibrous connective tissue. 4. The proportion of LDH-M was less in certain muscles (e.g. soleus and extra-ocular) than in other muscles (e.g. gastrocnemius and rectus abdominis). 5. The proportions of LDH-M and LDH-H did not differ significantly in different superficial limb muscles and were not significantly affected by either age or sex. 6. Specimens of muscle from 86 different individuals (all Europeans) have been subjected to electrophoresis, but no variants of lactate dehydrogenase isoenzymes have been found. PMID:5584002

  1. Multichannel Simultaneous Determination of Activities of Lactate Dehydrogenase

    SciTech Connect

    Ma, L.

    2000-09-12

    It is very important to find the best conditions for some enzymes to do the best catalysis in current pharmaceutical industries. Based on the results above, we could say that this set-up could be widely used in finding the optimal condition for best enzyme activity of a certain enzyme. Instead of looking for the best condition for enzyme activity by doing many similar reactions repeatedly, we can complete this assignment with just one run if we could apply enough conditions.

  2. Lactate Dehydrogenase Is the Key Enzyme for Pneumococcal Pyruvate Metabolism and Pneumococcal Survival in Blood

    PubMed Central

    Gaspar, Paula; Al-Bayati, Firas A. Y.; Andrew, Peter W.; Neves, Ana Rute

    2014-01-01

    Streptococcus pneumoniae is a fermentative microorganism and causes serious diseases in humans, including otitis media, bacteremia, meningitis, and pneumonia. However, the mechanisms enabling pneumococcal survival in the host and causing disease in different tissues are incompletely understood. The available evidence indicates a strong link between the central metabolism and pneumococcal virulence. To further our knowledge on pneumococcal virulence, we investigated the role of lactate dehydrogenase (LDH), which converts pyruvate to lactate and is an essential enzyme for redox balance, in the pneumococcal central metabolism and virulence using an isogenic ldh mutant. Loss of LDH led to a dramatic reduction of the growth rate, pinpointing the key role of this enzyme in fermentative metabolism. The pattern of end products was altered, and lactate production was totally blocked. The fermentation profile was confirmed by in vivo nuclear magnetic resonance (NMR) measurements of glucose metabolism in nongrowing cell suspensions of the ldh mutant. In this strain, a bottleneck in the fermentative steps is evident from the accumulation of pyruvate, revealing LDH as the most efficient enzyme in pyruvate conversion. An increase in ethanol production was also observed, indicating that in the absence of LDH the redox balance is maintained through alcohol dehydrogenase activity. We also found that the absence of LDH renders the pneumococci avirulent after intravenous infection and leads to a significant reduction in virulence in a model of pneumonia that develops after intranasal infection, likely due to a decrease in energy generation and virulence gene expression. PMID:25245810

  3. Production of optically pure L-phenyllactic acid by using engineered Escherichia coli coexpressing L-lactate dehydrogenase and formate dehydrogenase.

    PubMed

    Zheng, Zhaojuan; Zhao, Mingyue; Zang, Ying; Zhou, Ying; Ouyang, Jia

    2015-08-10

    L-Phenyllactic acid (L-PLA) is a novel antiseptic agent with broad and effective antimicrobial activity. In addition, L-PLA has been used for synthesis of poly(phenyllactic acid)s, which exhibits better mechanical properties than poly(lactic acid)s. However, the concentration and optical purity of L-PLA produced by native microbes was rather low. An NAD-dependent L-lactate dehydrogenase (L-nLDH) from Bacillus coagulans NL01 was confirmed to have a good ability to produce L-PLA from phenylpyruvic acid (PPA). In the present study, l-nLDH gene and formate dehydrogenase gene were heterologously coexpressed in Escherichia coli. Through two coupled reactions, 79.6mM l-PLA was produced from 82.8mM PPA in 40min and the enantiomeric excess value of L-PLA was high (>99%). Therefore, this process suggested a promising alternative for the production of chiral l-PLA. PMID:26008622

  4. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Bubinski, Michal; Krokosz, Anita; Puchala, Mieczyslaw

    2012-07-01

    Proteins are major targets for oxidative damage due to their abundance in cells and high reactivity with free radicals. In the present study we examined the influence of oxygen on radiation-induced inactivation and structural changes of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). We chose these two enzymes because they occur at high concentrations and participate in the most important processes in organisms; furthermore, they show considerable similarity in their structure. Protein solutions were irradiated with X-rays in doses ranging from 0.1 to 0.7 kGy, in air and N2O. The much higher radiation inactivation of GAPDH as compared to LDH is correlated with substantially greater structural changes in this protein, mainly involving the loss of free thiol groups (-SH). Of lesser importance in the differentiation of the radiosensitivity of the studied enzymes are tryptophan residues. Molecular oxygen, present during irradiation, increased to a significantly greater extent the inactivation and structural changes of GAPDH than that of LDH. The results suggest that the greater effect of oxygen on GAPDH is due to the higher efficiency of the superoxide radical, the higher amount of hydroperoxides generated, and the higher degree of unfolding of this protein.

  5. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma

    PubMed Central

    Li, Juan; Tong, Jing; Hao, Hui; Yang, Jie; Liu, Zhikun; Wang, Yuxiang

    2016-01-01

    Reprogrammed glucose metabolism is an emerging hallmark of cancer cells, which show a unique metabolic phenotype known as the Warburg effect. Lactate dehydrogenase A (LDHA), a key enzyme in the glycolytic process, executes the final step by conversion of lactate into pyruvate. However, little is known about the roles of LDHA in human glioblastoma (GBM). In this study, we aimed to determine the effects of LDHA and elucidate related underlying mechanisms. Data derived from Oncomine database showed that LDHA is commonly upregulated in GBM tissues in comparison with corresponding normal controls. Silencing of LDHA expression resulted in reduced glycolysis, decreased cell growth, increased cell apoptosis, and attenuated invasive ability. In the presence of 2-deoxyglucose, a glycolysis inhibitor, the oncogenic activities of LDHA were completely blocked. These findings provide evidence of the cellular functions of LDHA in the progression of GBM and suggest that LDHA might act as a potential therapeutic target for GBM treatment. PMID:26694942

  6. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma.

    PubMed

    Li, Juan; Zhu, Shuchai; Tong, Jing; Hao, Hui; Yang, Jie; Liu, Zhikun; Wang, Yuxiang

    2016-01-20

    Reprogrammed glucose metabolism is an emerging hallmark of cancer cells, which show a unique metabolic phenotype known as the Warburg effect. Lactate dehydrogenase A (LDHA), a key enzyme in the glycolytic process, executes the final step by conversion of lactate into pyruvate. However, little is known about the roles of LDHA in human glioblastoma (GBM). In this study, we aimed to determine the effects of LDHA and elucidate related underlying mechanisms. Data derived from Oncomine database showed that LDHA is commonly upregulated in GBM tissues in comparison with corresponding normal controls. Silencing of LDHA expression resulted in reduced glycolysis, decreased cell growth, increased cell apoptosis, and attenuated invasive ability. In the presence of 2-deoxyglucose, a glycolysis inhibitor, the oncogenic activities of LDHA were completely blocked. These findings provide evidence of the cellular functions of LDHA in the progression of GBM and suggest that LDHA might act as a potential therapeutic target for GBM treatment. PMID:26694942

  7. Cationic Surfactant-Based Colorimetric Detection of Plasmodium Lactate Dehydrogenase, a Biomarker for Malaria, Using the Specific DNA Aptamer

    PubMed Central

    Lee, Seonghwan; Manjunatha, D H; Jeon, Weejeong; Ban, Changill

    2014-01-01

    A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH) and Plasmodium falciparum LDH (PfLDH) was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs) as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB). The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly with the naked eye and was monitored using UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The reaction conditions were optimized to obtain the maximum color intensity. PvLDH and PfLDH were discernible with a detection limit of 1.25 pM and 2.94 pM, respectively. The applicability of the proposed biosensor was also examined in commercially available human serum. PMID:24992632

  8. Isolation and characterization of two cDNA clones of anaerobically induced lactate dehydrogenase from barley roots

    SciTech Connect

    Hondred, D.; Hanson, A.D. )

    1990-05-01

    In barley roots during hypoxia, five lactate dehydrogenase (LDH) isozymes accumulate with a concomitant increase in enzyme activity ({approximately}20-fold). These isozymes are thought to be tetramers resulting from the random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH have been isolated from a {lambda}gt11 library using antiserum raised against barley LDH purified {approximately}3,000-fold and using nucleic acid probes synthesized by the polymerase chain reaction. Two cDNA clones were obtained (1,305 and 1,166 bp). The deduced amino acid sequences of the two barley LDHs are 96% identical to each other, and 50% and 40% identical to vertebrate and bacterial LDHs, respectively. Northern blots identified a single mRNA band ({approximately}1.5 kb) whose level rose 8-fold during hypoxia.

  9. Evaluation of the anti-tumor effects of lactate dehydrogenase inhibitor galloflavin in endometrial cancer cells.

    PubMed

    Han, Xiaoyun; Sheng, Xiugui; Jones, Hannah M; Jackson, Amanda L; Kilgore, Joshua; Stine, Jessica E; Schointuch, Monica N; Zhou, Chunxiao; Bae-Jump, Victoria L

    2015-01-01

    High rates of aerobic glycolysis represent a key mechanism by which endometrial cancer cells consume glucose as its primary energy source. The up-regulated glycolytic pathway is a common therapeutic target whose inhibition has implications for anti-tumor activity in cancer cells. The present study was aimed at evaluating the potential of a novel lactate dehydrogenase (LDH) inhibitor, Galloflavin, as a therapeutic agent for endometrial cancer. Our results revealed that Galloflavin effectively inhibited cell growth in endometrial cancer cell lines and primary cultures of human endometrial cancer through its involvement in multiple signaling pathways that regulate metabolism, cell cycle, apoptosis, cell stress and metastasis. PMID:25631326

  10. Molecular and Kinetic Characterization of Babesia microti Gray Strain Lactate Dehydrogenase as a Potential Drug Target

    PubMed Central

    Vudriko, Patrick; Masatani, Tatsunori; Cao, Shinuo; Terkawi, Mohamad Alla; Kamyingkird, Ketsarin; Mousa, Ahmed A; Adjou Moumouni, Paul F; Nishikawa, Yoshifumi; Xuan, Xuenan

    2014-01-01

    Babesia microti is an emerging zoonotic protozoan organism that causes “malaria-like” symptoms that can be fatal in immunocompromised people. Owing to lack of specific therapeutic regiment against the disease, we cloned and characterized B. microti lactate dehydrogenase (BmLDH) as a potential molecular drug receptor. The in vitro kinetic properties of BmLDH enzyme was evaluated using nicotinamide adenine dinucleotide (NAD+) as a co-factor and lactate as a substrate. Inhibitory assay was also done using gossypol as BmLDH inhibitor to determine the inhibitory concentration 50 (IC50). The result showed that the 0.99 kbp BmLDH gene codes for a barely soluble 36 kDa protein (332 amino acids) localized in both the cytoplasm and nucleus of the parasite. In vitro enzyme kinetic studies further revealed that BmLDH is an active enzyme with a high catalytic efficiency at optimal pH of 10.2. The Km values of NAD+ and lactate were 8.7 ± 0.57 mM and 99.9 ± 22.33 mM, respectively. The IC50 value for gossypol was 0.345 μM, while at 2.5 μM, gossypol caused 100% inhibition of BmLDH catalytic activity. These findings, therefore, provide initial evidence that BmLDH could be a potential drug target, although further in vivo studies are needed to validate the practical application of lactate dehydrogenase inhibitors against B. microti infection. PMID:25125971

  11. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Gu, Sol-A; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-07-01

    The thermostable d-lactate dehydrogenase from Lactobacillus jensenii (Ljd-LDH) is a key enzyme in the production of the d-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of d-lactic acid are used as biodegradable bioplastics. The crystal structures of Ljd-LDH and in complex with NAD(+) were determined at 2.13 and 2.60Å resolutions, respectively. The Ljd-LDH monomer consists of the N-terminal substrate-binding domain and the C-terminal NAD-binding domain. The Ljd-LDH forms a homodimeric structure, and the C-terminal NAD-binding domain mostly enables the dimerization of the enzyme. The NAD cofactor is bound to the GxGxxG NAD-binding motif located between the two domains. Structural comparisons of Ljd-LDH with other d-LDHs reveal that Ljd-LDH has unique amino acid residues at the linker region, which indicates that the open-close dynamics of Ljd-LDH might be different from that of other d-LDHs. Moreover, thermostability experiments showed that the T50(10) value of Ljd-LDH (54.5°C) was much higher than the commercially available d-lactate dehydrogenase (42.7°C). In addition, Ljd-LDH has at least a 7°C higher denaturation temperature compared to commercially available d-LDHs. PMID:24794195

  12. Catabolism of circulating enzymes: plasma clearance, endocytosis, and breakdown of lactate dehydrogenase-1 in rabbits

    SciTech Connect

    Smit, M.J.; Beekhuis, H.; Duursma, A.M.; Bouma, J.M.; Gruber, M.

    1988-12-01

    Lactate dehydrogenase-1, intravenously injected into rabbits, was cleared with first-order kinetics (half-life 27 min), until at least 80% of the injected activity had disappeared from plasma. Radioactivity from injected SVI-labeled enzyme disappeared at this same rate. Trichloroacetic-acid-soluble breakdown products started to appear in the circulation shortly after injection of the labeled enzyme. Body scans of the rabbits for 80 min after injection of T I-labeled enzyme revealed rapid accumulation of label in the liver, peaking 10-20 min after injection. Subsequently, activity in the liver declined and radioactivity (probably labeled breakdown products of low molecular mass) steadily accumulated in the bladder. Tissue fractionation of liver, 19 min after injection of labeled enzyme, indicated that the radioactivity was present both in endosomes and in lysosomes, suggesting uptake by endocytosis, followed by breakdown in the lysosomes. Measurements of radioactivity in liver and plasma suggest that the liver is responsible for the breakdown of at least 75% of the injected enzyme. Radioautography of tissue sections of liver and spleen showed accumulated radioactivity in sinusoidal liver cells and red pulpa, respectively. These results are very similar to those for lactate dehydrogenase-5, creatine kinase MM, and several other enzymes that we have previously studied in rats.

  13. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  14. Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1).

    PubMed

    Lemire, Joseph; Mailloux, Ryan J; Appanna, Vasu D

    2008-01-01

    Lactate has long been regarded as an end product of anaerobic energy production and its fate in cerebral metabolism has not been precisely delineated. In this report, we demonstrate, for the first time, the ability of a human astrocytic cell line (CCF-STTG1) to consume lactate and to generate ATP via oxidative phosphorylation. (13)C-NMR and HPLC analyses aided in the identification of tricarboxylic acid (TCA) cyle metabolites and ATP in the astrocytic mitochondria incubated with lactate. Oxamate, an inhibitor of lactate dehydrogenase (LDH), abolished mitochondrial lactate consumption. Electrophoretic and fluorescence microscopic analyses helped localize LDH in the mitochondria. Taken together, this study implicates lactate as an important contributor to ATP metabolism in the brain, a finding that may significantly change our notion of how this important organ manipulates its energy budget. PMID:18253497

  15. Mitochondrial Lactate Dehydrogenase Is Involved in Oxidative-Energy Metabolism in Human Astrocytoma Cells (CCF-STTG1)

    PubMed Central

    Lemire, Joseph; Mailloux, Ryan J.; Appanna, Vasu D.

    2008-01-01

    Lactate has long been regarded as an end product of anaerobic energy production and its fate in cerebral metabolism has not been precisely delineated. In this report, we demonstrate, for the first time, the ability of a human astrocytic cell line (CCF-STTG1) to consume lactate and to generate ATP via oxidative phosphorylation. 13C-NMR and HPLC analyses aided in the identification of tricarboxylic acid (TCA) cyle metabolites and ATP in the astrocytic mitochondria incubated with lactate. Oxamate, an inhibitor of lactate dehydrogenase (LDH), abolished mitochondrial lactate consumption. Electrophoretic and fluorescence microscopic analyses helped localize LDH in the mitochondria. Taken together, this study implicates lactate as an important contributor to ATP metabolism in the brain, a finding that may significantly change our notion of how this important organ manipulates its energy budget. PMID:18253497

  16. Structures of lactate dehydrogenase A (LDHA) in apo, ternary and inhibitor-bound forms.

    PubMed

    Kolappan, Subramaniapillai; Shen, David L; Mosi, Renee; Sun, Jianyu; McEachern, Ernest J; Vocadlo, David J; Craig, Lisa

    2015-02-01

    Lactate dehydrogenase (LDH) is an essential metabolic enzyme that catalyzes the interconversion of pyruvate and lactate using NADH/NAD(+) as a co-substrate. Many cancer cells exhibit a glycolytic phenotype known as the Warburg effect, in which elevated LDH levels enhance the conversion of glucose to lactate, making LDH an attractive therapeutic target for oncology. Two known inhibitors of the human muscle LDH isoform, LDHA, designated 1 and 2, were selected, and their IC50 values were determined to be 14.4 3.77 and 2.20 0.15?M, respectively. The X-ray crystal structures of LDHA in complex with each inhibitor were determined; both inhibitors bind to a site overlapping with the NADH-binding site. Further, an apo LDHA crystal structure solved in a new space group is reported, as well as a complex with both NADH and the substrate analogue oxalate bound in seven of the eight molecules and an oxalate only bound in the eighth molecule in the asymmetric unit. In this latter structure, a kanamycin molecule is located in the inhibitor-binding site, thereby blocking NADH binding. These structures provide insights into LDHA enzyme mechanism and inhibition and a framework for structure-assisted drug design that may contribute to new cancer therapies. PMID:25664730

  17. Novel control of lactate dehydrogenase from the freeze tolerant wood frog: role of posttranslational modifications.

    PubMed

    Abboud, Jean; Storey, Kenneth B

    2013-01-01

    Lactate dehydrogenase (LDH), the terminal enzyme of anaerobic glycolysis, plays a crucial role both in sustaining glycolytic ATP production under oxygen-limiting conditions and in facilitating the catabolism of accumulated lactate when stress conditions are relieved. In this study, the effects on LDH of in vivo freezing and dehydration stresses (both of which impose hypoxia/anoxia stress on tissues) were examined in skeletal muscle of the freeze-tolerant wood frog, Rana sylvatica. LDH from muscle of control, frozen and dehydrated wood frogs was purified to homogeneity in a two-step process. The kinetic properties and stability of purified LDH were analyzed, revealing no significant differences in V max, K m and I 50 values between control and frozen LDH. However, control and dehydrated LDH differed significantly in K m values for pyruvate, lactate, and NAD, I 50 urea, and in temperature, glucose, and urea effects on these parameters. The possibility that posttranslational modification of LDH was responsible for the stable differences in enzyme behavior between control and dehydrated states was assessed using ProQ diamond staining to detect phosphorylation and immunoblotting to detect acetylation, methylation, ubiquitination, SUMOylation and nitrosylation of the enzyme. LDH from muscle of dehydrated wood frogs showed significantly lower levels of acetylation, providing one of the first demonstrations of a potential role for protein acetylation in the stress-responsive control of a metabolic enzyme. PMID:23638346

  18. Novel control of lactate dehydrogenase from the freeze tolerant wood frog: role of posttranslational modifications

    PubMed Central

    Abboud, Jean

    2013-01-01

    Lactate dehydrogenase (LDH), the terminal enzyme of anaerobic glycolysis, plays a crucial role both in sustaining glycolytic ATP production under oxygen-limiting conditions and in facilitating the catabolism of accumulated lactate when stress conditions are relieved. In this study, the effects on LDH of in vivo freezing and dehydration stresses (both of which impose hypoxia/anoxia stress on tissues) were examined in skeletal muscle of the freeze-tolerant wood frog, Rana sylvatica. LDH from muscle of control, frozen and dehydrated wood frogs was purified to homogeneity in a two-step process. The kinetic properties and stability of purified LDH were analyzed, revealing no significant differences in Vmax, Km and I50 values between control and frozen LDH. However, control and dehydrated LDH differed significantly in Km values for pyruvate, lactate, and NAD, I50 urea, and in temperature, glucose, and urea effects on these parameters. The possibility that posttranslational modification of LDH was responsible for the stable differences in enzyme behavior between control and dehydrated states was assessed using ProQ diamond staining to detect phosphorylation and immunoblotting to detect acetylation, methylation, ubiquitination, SUMOylation and nitrosylation of the enzyme. LDH from muscle of dehydrated wood frogs showed significantly lower levels of acetylation, providing one of the first demonstrations of a potential role for protein acetylation in the stress-responsive control of a metabolic enzyme. PMID:23638346

  19. Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): genetic, kinetic and thermodynamic aspects.

    PubMed

    Zakhartsev, Maxim; Johansen, Torild; Prtner, Hans O; Blust, Ronny

    2004-01-01

    The aim of this study was to determine the effects of seasonal temperature variation on the functional properties of lactate dehydrogenase (LDH) from white muscle and liver of Norwegian coastal cod (Gadus morhua) and the possible relevance of LDH allelic variability for thermal acclimation. Two groups of fishes were acclimated to 4 degrees C or 12 degrees C for one year. Polymorphism was observed in only one (Ldh-B) of the three Ldh loci expressed in cod liver and/or muscle. Isozyme expression remained unchanged regardless of acclimation temperature (T(A)). The products of locus Ldh-B comprise only 14-19% (depending on the tissue) of total LDH activities and, consequently, differences between phenotypes are negligible in terms of their effect on LDH total performance. No kinetic (, V(max)) or thermodynamic (E(a), DeltaG) differences were found among Ldh-B phenotypes. Clear kinetic differences were observed between LDH isoforms in the two tissues. However, the Arrhenius activation energy (E(a)) for pyruvate reduction was the same for both tissues (E(a)=47 kJ mol(-1)) at T(A)=12 degrees C. Factors T(A), tissue and phenotype did not reveal a significant effect on the Gibbs free energy change (DeltaG) of the reaction (55.5 kJ mol(-1)). However, at T(A)=4 degrees C, the E(a) was increased (E(a)=53-56 kJ mol(-1)) and the temperature dependence of the constant of substrate inhibition for pyruvate () decreased in both muscle and liver. In conclusion, the strategies of LDH adjustment to seasonal temperature variations in cod involve changes in LDH concentration (quantitative), adjustment of thermodynamic (E(a)) and kinetic () properties of the LDH (modulative) but not the expression of alternative isoforms (qualitative). We assume that the observed increase in E(a) and the decrease of temperature dependence of at low T(A) is the result of structural changes of the LDH molecule (temperature-driven protein folding). We propose a new mechanism of metabolic compensation of seasonal temperature variations - cold acclimation results in changes in the kinetic and thermodynamic properties of LDH in a way that favours aerobic metabolism through reduction of the competition of LDH for pyruvate in normoxic conditions. PMID:14638837

  20. Metabolic Control of Anaerobic Glycolysis (Overexpression of Lactate Dehydrogenase in Transgenic Tomato Roots Supports the Davies-Roberts Hypothesis and Points to a Critical Role for Lactate Secretion.

    PubMed Central

    Rivoal, J.; Hanson, A. D.

    1994-01-01

    Roots of all plants examined so far have the potential for both ethanol and lactate fermentation. A short burst of lactate fermentation usually occurs when plant tissues are transferred from normoxic to anoxic conditions. According to the Davies-Roberts hypothesis, the consequent pH drop both initiates ethanol fermentation and blocks further production of lactate by inhibiting lactate dehydrogenase (LDH). However, the role of LDH in this pH control mechanism is still a matter of debate. To perturb the control system in a defined way, a barley LDH cDNA under the control of the cauliflower mosaic virus 35S promoter was introduced into tomato (Lycopersicon esculentum Mill. cv VFMT) using Agrobacterium rhizogenes. The transgenic root clones expressed up to 50 times the LDH activity of controls. The fermentative metabolism of these clones was compared using roots grown previously in normoxic conditions or roots given a 3-d hypoxic pretreatment. During the transition from normoxia to anoxia, lactate accumulation was no faster and no more extensive in transgenic roots than in controls. Similarly, during prolonged anoxia the flux of 14C from [U-14C] glucose to lactate and ethanol was not modified by the expression of the transgene. However, in both transgenic and control roots, hypoxic pretreatment increased the flux to lactate and promoted lactate export to the medium. These results show that LDH has a very low flux control coefficient for lactate fermentation, consistent with the Davies-Roberts hypothesis. Moreover, they suggest that lactate secretion exerts major control over long-term lactate glycolysis in vivo. PMID:12232401

  1. Genistein inhibits activities of methylenetetrahydrofolate reductase and lactate dehydrogenase, enzymes which use NADH as a substrate.

    PubMed

    Grabowski, Micha?; Banecki, Bogdan; Kadzi?ski, Leszek; Jakbkiewicz-Banecka, Joanna; Ka?mierkiewicz, Rajmund; Gabig-Cimi?ska, Magdalena; W?grzyn, Grzegorz; W?grzyn, Alicja; Banecka-Majkutewicz, Zyta

    2015-09-25

    Genistein (5, 7-dihydroxy-3- (4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a natural isoflavone revealing many biological activities. Thus, it is considered as a therapeutic compound in as various disorders as cancer, infections and genetic diseases. Here, we demonstrate for the first time that genistein inhibits activities of bacterial methylenetetrahydrofolate reductase (MetF) and lactate dehydrogenase (LDH). Both enzymes use NADH as a substrate, and results of biochemical as well as molecular modeling studies with MetF suggest that genistein may interfere with binding of this dinucleotide to the enzyme. These results have implications for our understanding of biological functions of genistein and its effects on cellular metabolism. PMID:26253470

  2. Purification and Properties of Hypoxically Induced Lactate Dehydrogenase from Barley Roots 1

    PubMed Central

    Hoffman, Neil E.; Hanson, Andrew D.

    1986-01-01

    Using Affigel Blue and oxamate-agarose affinity chromatography, lactate dehydrogenase (LDH) was purified 2000-fold from hypoxically induced barley roots. Molecular weights of the native and sodium dodecyl sulfate-denatured LDH protein were 157 and 40 kilodaltons, respectively, indicating a tetramer. Purified barley LDH was very similar in size and kinetic properties to potato LDH. However, their amino acid compositions differed substantially and antibodies raised against barley LDH did not cross-react with potato LDH on immunoblots, implying that the barley and potato LDHs are not closely related proteins. In vivo [35S] methionine labeling and immunoprecipitation experiments indicated that hypoxia increased the rate of LDH protein synthesis, and immunoblot analysis showed that LDH protein levels rose during hypoxia. We conclude that increased enzyme synthesis plays a major part in the induction of LDH enzyme activity by low O2 levels in barley roots. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16665088

  3. A rapid beta-NADH-linked fluorescence assay for lactate dehydrogenase in cellular death.

    PubMed

    Moran, J H; Schnellmann, R G

    1996-09-01

    Lactate dehydrogenase (LDH) release in a common marker of cellular death. Traditionally, the fraction of LDH released has been measured using a NADH-linked UV-Vis spectrophotometric method. The limitation of this method is that samples are usually run serially and thus is time intensive. Therefore, we developed a NADH-linked LDH assay using a fluorescence plate reader that had a correlation of 0.95 with the traditional UV-Vis spectrophotometric method. Using rabbit renal proximal tubule suspensions at a concentration of 1 mg cellular protein/ml of media, the fluorescence assay can determine LDH release in 22 samples in 2 min using 12 microL of cellular homogenates and 150 microL of media. The parallel processing of samples and smaller volumes used in the fluorescence assay results in decreased analysis time and costs. PMID:8872918

  4. Analysis of lactate dehydrogenase activities and isoenzyme patterns in colorectal cancer tissues

    PubMed Central

    Zhao, Chun-Hua; Jiang, Chun-Ying; Zhang, Yu-Yi; Liu, Xian-Xi; Luo, Dao-Chun; Zhang, Xiao-Ting; Lin, Yu-Qin

    1997-01-01

    AIM: To investigate the relationship between lactate dehydrogenase (LDH) activity or LDH isoenzyme patterns and the pathogenesis of colorectal cancer. METHODS: Activities of tissue LDH and LDH isoenzyme patterns in 16 patients with colorectal cancer were assayed using spectrophotometric procedures and agarose gel electrophoresis, respectively. RESULTS: The total and specific activities of LDH were significantly higher in colorectal cancer tissues than those in adjacent noncancerous tissues (P < 0.001). The LDH isoenzyme pattern was also different from that in the control. The percentage of LDH5 doubled and the ratio of LDH4 + LDH5/LDH1 + LDH2 was 3.6 ± 1.4 in cancer tissue, significantly greater than in the control. CONCLUSIONS: The increased LDH activity in colorectal cancer tissues resulted mainly from the increased LDH5, suggesting that the alteration of LDH activity and isoenzyme patterns were related to the pathogenesis of colorectal cancer.

  5. Microcomputer Assisted Interpretative Reporting of Sequential Creatine Kinase (CK) and Lactate Dehydrogenase (LDH) Isoenzyme Determination

    PubMed Central

    Talamo, Thomas S.; Losos, Frank J.; Mercer, Donald W.

    1984-01-01

    We have developed a microcomputer based system for interpretative reporting of creatine kinase (CK) and lactate dehydrogenase (LDH) isoenzyme studies. Patient demographic data and test results (total CK, CK-MB, LD-1, and LD-2) are entered manually through the keyboard. The test results are compared with normal range values and an interpretative report is generated. This report consists of all pertinent demographic information with a graphic display of up to 12 previous CK and LDH isoenzyme determinations. Diagnostic interpretative statements are printed beneath the graphic display following analysis of previously entered test results. The combination of graphic data display and interpretations based on analysis of up to 12 previous specimens provides useful and accurate information to the cardiologist.

  6. Lactate Dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma

    PubMed Central

    2014-01-01

    Background Over 90% of cancer-related deaths in clear cell renal cell carcinoma (RCC) are caused by tumor relapse and metastasis. Thus, there is an urgent need for new molecular markers that can potentiate the efficacy of the current clinical-based models of prognosis assessment. The objective of this study is to evaluate the potential significance of lactate dehydrogenase A (LDHA), assessed by immunohistochemical staining, as a prognostic marker in clear cell renal cell carcinoma in relation to clinicopathological features and clinical outcome. Methods We assessed the expression of LDHA at the protein level, by immunohistochemistry, and correlated its expression with multiple clinicopathological features including tumor size, clinical stage, histological grade, disease-free and overall survival in 385 patients with primary clear cell renal cell carcinoma. We also correlated the LDHA expression with overall survival, at mRNA level, in an independent data set of 170 clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases. Cox proportional hazards models adjusted for the potential clinicopathological factors were used to test for associations between the LDHA expression and both disease-free survival and overall survival. Results There is statistically significant positive correlation between LDHA level of expression and tumor size, clinical stage and histological grade. Moreover, LDHA expression shows significantly inverse correlation with both disease-free survival and overall survival in patients with clear cell renal cell carcinoma. Our results are validated by examining LDHA expression, at the mRNA level, in the independent data set of clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases which also shows that higher lactate dehydrogenase A expression is associated with significantly shorter overall survival. Conclusion Our results indicate that LDHA up-regulation can be a predictor of poor prognosis in clear cell renal cell carcinoma. Thus, it represents a potential prognostic biomarker that can boost the accuracy of other prognostic models in patients with clear cell renal cell carcinoma. PMID:24885701

  7. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    PubMed

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. PMID:26201980

  8. Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence

    SciTech Connect

    Millan, J.L.; Driscoll, C.E.; LeVan, K.M.; Goldberg, E.

    1987-08-01

    The sequence and structure of human testis-specific L-lactate dehydrogenase (LDHC/sub 4/, LDHX; (L)-lactate:NAD/sup +/ oxidoreductase, EC 1.1.1.27) has been derived from analysis of a complementary DNA (cDNA) clone comprising the complete protein coding region of the enzyme. From the deduced amino acid sequence, human LDHC/sub 4/ is as different from rodent LDHC/sub 4/ (73% homology) as it is from human LDHA/sub 4/ (76% homology) and porcine LDHB/sub 4/ (68% homology). Subunit homologies are consistent with the conclusion that the LDHC gene arose by at least two independent duplication events. Furthermore, the lower degree of homology between mouse and human LDHC/sub 4/ and the appearance of this isozyme late in evolution suggests a higher rate of mutation in the mammalian LDHC genes than in the LDHA and -B genes. Comparison of exposed amino acid residues of discrete anti-genic determinants of mouse and human LDHC/sub 4/ reveals significant differences. Knowledge of the human LDHC/sub 4/ sequence will help design human-specific peptides useful in the development of a contraceptive vaccine.

  9. Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death

    PubMed Central

    Daniele, Simona; Giacomelli, Chiara; Zappelli, Elisa; Granchi, Carlotta; Trincavelli, Maria Letizia; Minutolo, Filippo; Martini, Claudia

    2015-01-01

    Therapies that target the signal transduction and metabolic pathways of cancer stem cells (CSCs) are innovative strategies to effectively reduce the recurrence and significantly improve the outcome of glioblastoma multiforme (GBM). CSCs exhibit an increased rate of glycolysis, thus rendering them intrinsically more sensitive to prospective therapeutic strategies based on the inhibition of the glycolytic pathway. The enzyme lactate dehydrogenase-A (LDH-A), which catalyses the interconversion of pyruvate and lactate, is up-regulated in human cancers, including GBM. Although several papers have explored the benefits of targeting cancer metabolism in GBM, the effects of direct LDH-A inhibition in glial tumours have not yet been investigated, particularly in the stem cell subpopulation. Here, two representative LDH-A inhibitors (NHI-1 and NHI-2) were studied in GBM-derived CSCs and compared to differentiated tumour cells. LDH-A inhibition was particularly effective in CSCs isolated from different GBM cell lines, where the two compounds blocked CSC formation and elicited long-lasting effects by triggering both apoptosis and cellular differentiation. These data demonstrate that GBM, particularly the stem cell subpopulation, is sensitive to glycolytic inhibition and shed light on the therapeutic potential of LDH-A inhibitors in this tumour type. PMID:26494310

  10. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    PubMed

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH. PMID:26243834

  11. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization.

    PubMed

    Saengdee, Pawasuth; Chaisriratanakul, Woraphan; Bunjongpru, Win; Sripumkhai, Witsaroot; Srisuwan, Awirut; Jeamsaksiri, Wutthinan; Hruanun, Charndet; Poyai, Amporn; Promptmas, Chamras

    2015-05-15

    Three different types of surface, silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium oxynitride (TiON) were modified for lactate dehydrogenase (LDH) immobilization using (3-aminopropyl)triethoxysilane (APTES) to obtain an amino layer on each surface. The APTES modified surfaces can directly react with LDH via physical attachment. LDH can be chemically immobilized on those surfaces after incorporation with glutaraldehyde (GA) to obtain aldehyde layers of APTES-GA modified surfaces. The wetting properties, chemical bonding composition, and morphology of the modified surface were determined by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. In this experiment, the immobilized protein content and LDH activity on each modified surface was used as an indicator of surface modification achievement. The results revealed that both the APTES and APTES-GA treatments successfully link the LDH molecule to those surfaces while retaining its activity. All types of tested surfaces modified with APTES-GA gave better LDH immobilizing efficiency than APTES, especially the SiO2 surface. In addition, the SiO2 surface offered the highest LDH immobilization among tested surfaces, with both APTES and APTES-GA modification. However, TiON and Si3N4 surfaces could be used as alternative candidate materials in the preparation of ion-sensitive field-effect transistor (ISFET) based biosensors, including lactate sensors using immobilized LDH on the ISFET surface. PMID:25108848

  12. Lactate Dehydrogenase B Is Associated with the Response to Neoadjuvant Chemotherapy in Oral Squamous Cell Carcinoma

    PubMed Central

    Sun, Wenyi; Zhang, Xiaomin; Ding, Xu; Li, Huaiqi; Geng, Meiyu; Xie, Zuoquan; Wu, Heming; Huang, Min

    2015-01-01

    Oral squamous cell carcinoma (OSCC) comprises a subset of head and neck squamous cell carcinoma (HNSCC) with poor therapeutic outcomes and high glycolytic dependency. Neoadjuvant chemotherapy regimens of docetaxel, cisplatin and 5-fluorouracil (TPF) are currently accepted as standard regimens for HNSCC patients with a high risk of distant metastatic spread. However, the antitumor outcomes of TPF neoadjuvant chemotherapy in HNSCC remain controversial. This study investigated the role of lactate dehydrogenase B (LDHB), a key glycolytic enzyme catalyzing the inter-conversion between pyruvate and lactate, in determining chemotherapy response and prognosis in OSCC patients. We discovered that a high protein level of LDHB in OSCC patients was associated with a poor response to TPF regimen chemotherapy as well as poor overall survival and disease-free survival. Our in-depth study revealed that high LDHB expression conferred resistance to taxol but not 5-fluorouracil or cisplatin. LDHB deletion sensitized OSCC cell lines to taxol, whereas the introduction of LDHB decreased sensitivity to taxol treatment. Taxol induced a pronounced impact on LDHB-down-regulated OSCC cells in terms of apoptosis, G2/M phase cell cycle arrest and energy metabolism. In conclusion, our study highlighted the critical role of LDHB in OSCC and proposed that LDHB could be used as a biomarker for the stratification of patients for TPF neoadjuvant chemotherapy and the determination of prognosis in OSCC patients. PMID:25973606

  13. Lipopeptide adjuvants: generation of lactate dehydrogenase isoenzyme-specific antibodies for immunochemical diagnosis.

    PubMed

    Gampp, T M; Moser, I; Jobst, G; Urban, G; Ayoub, M; Pfannes, S D; Hoffmann, P; Bessler, W G; Mittenbhler, K

    2001-01-29

    Lactate dehydrogenase catalyzes the final step in glycolysis, the interconversion of pyruvate and lactate. The tetrameric enzyme is composed of one or two subunits (H and/or M) resulting in five isoenzyme forms: LDH-H4, -H3M1, -H2M2, -H1M3, and -M4. The relative distribution of the LDH isoenzymes is tissue dependent and a significant marker for the diagnosis of hepatoma of the liver, myocardial infarction, muscular dystrophy, and a wide variety of other acute and chronic diseases to be detected by alterations of the LDH isoenzyme pattern in serum. Immunochemical approaches to the routine determination of LDH depend on isoenzyme specific antibodies. Since the H- and M-subunits for human LDH are highly homologous, LDH isoenzyme specific antibodies for immunochemical monitoring are hard to generate. Here we present data on the generation and characterization of LDH isoenzyme-specific mono- and polyclonal antibodies in different species in the presence of lipopeptide adjuvants. Western-Blot and ELISA analysis showed that antisera and monoclonal antibodies recognize their homologous antigens with high specificity and are therefore suitable for immunochemical monitoring of the LDH isoenzymes H4 and M4. In addition, they can be used for the determination of LDH isoenzyme specific activity which is an essential prerequisite for online amperometric immunosensor monitoring. PMID:11313186

  14. Putative reaction mechanism of heterologously expressed octopine dehydrogenase from the great scallop, Pecten maximus (L).

    PubMed

    Müller, Andre; Janssen, Frank; Grieshaber, Manfred K

    2007-12-01

    cDNA for octopine dehydrogenase (ODH) from the adductor muscle of the great scallop, Pecten maximus, was cloned using 5'- and 3'-RACE. The cDNA comprises an ORF of 1197 nucleotides and the deduced amino acid sequence encodes a protein of 399 amino acids. ODH was heterologously expressed in Escherichia coli with a C-terminal penta His-tag. ODH-5His was purified to homogeneity using metal-chelate affinity chromatography and Sephadex G-100 gel filtration. Recombinant ODH had kinetic properties similar to those of wild-type ODH isolated from the scallop's adductor muscle. Site-directed mutagenesis was used to elucidate the involvement of several amino acid residues for the reaction catalyzed by ODH. Cys148, which is conserved in all opine dehydrogenases known to date, was converted to serine or alanine, showing that this residue is not intrinsically important for catalysis. His212, Arg324 and Asp329, which are also conserved in all known opine dehydrogenase sequences, were subjected to site-directed mutagenesis. Modification of these residues revealed their importance for the catalytic activity of the enzyme. Conversion of each of these residues to alanine resulted in strong increases in K(m) and decreases in k(cat) values for pyruvate and L-arginine, but had little effect on the K(m) and k(cat) values for NADH. Assuming a similar structure for ODH compared with the only available structure of a bacterial opine dehydrogenase, these three amino acids may function as a catalytic triad in ODH similar to that found in lactate dehydrogenase or malate dehydrogenase. The carboxyl group of pyruvate is then stabilized by Arg324. In addition to orienting the substrate, His212 will act as an acid-base catalyst by donating a proton to the carbonyl group of pyruvate. The acidity of this histidine is further increased by the proximity of Asp329. PMID:18028427

  15. Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions.

    PubMed

    Ramljak, Sanja; Schmitz, Matthias; Zafar, Saima; Wrede, Arne; Schenkel, Sara; Asif, Abdul R; Carimalo, Julie; Doeppner, Thorsten R; Schulz-Schaeffer, Walter J; Weise, Jens; Zerr, Inga

    2015-09-01

    Although a physiological function of the cellular prion protein (PrP(c)) is still not fully clarified, a PrP(c)-mediated neuroprotection against hypoxic/ischemic insult is intriguing. After ischemic stroke prion protein knockout mice (Prnp(0/0)) display significantly greater lesions as compared to wild-type (WT) mice. Earlier reports suggested an interaction between the glycolytic enzyme lactate dehydrogenase (LDH) and PrP(c). Since hypoxic environment enhances LDH expression levels and compels neurons to rely on lactate as an additional oxidative substrate for energy metabolism, we examined possible differences in LDH protein expression in WT and Prnp(0/0) knockout models under normoxic/hypoxic conditions in vitro and in vivo, as well as in a HEK293 cell line. While no differences are observed under normoxic conditions, LDH expression is markedly increased after 60-min and 90-min of hypoxia in WT vs. Prnp(0/0) primary cortical neurons with concurrent less hypoxia-induced damage in the former group. Likewise, cerebral ischemia significantly increases LDH levels in WT vs. Prnp(0/0) mice with accompanying smaller lesions in the WT group. HEK293 cells overexpressing PrP(c) show significantly higher LDH expression/activity following 90-min of hypoxia as compared to control cells. Moreover, a cytoplasmic co-localization of LDH and PrP(c) was recorded under both normoxic and hypoxic conditions. Interestingly, an expression of monocarboxylate transporter 1, responsible for cellular lactate uptake, increases with PrP(c)-overexpression under normoxic conditions. Our data suggest LDH as a direct PrP(c) interactor with possible physiological relevance under low oxygen conditions. PMID:26024859

  16. Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus.

    PubMed Central

    Crawford, D L; Powers, D A

    1989-01-01

    At the extremes of its natural distribution, populations of the common killifish Fundulus heteroclitus experience a difference of more than 15 degrees C in mean annual temperature. These populations are virtually fixed for two different codominant alleles at the heart-type lactate dehydrogenase locus (Ldh-B) which code for allozymes with different and adaptive kinetic responses to temperature. Two populations near the extremes of the species range (i.e., Maine and Georgia) were further studied for thermal adaptation at this locus. In the absence of any kinetic differences one would predict that to maintain a constant reaction velocity, 2 to 3 times as much enzyme would be required for each 10 degrees C decrease in environmental temperature. Consistent with this adaptive strategy and in addition to the adaptive kinetic characteristics, the LDH-B4 enzyme (EC 1.1.1.27) concentration and its mRNA concentration were approximately twice as great in the northern population as in the southern population. Acclimation experiments allow us to conclude that these differences are due to a combination of fixed genetic traits (evolutionary adaptation) and plastic responses to temperature (physiological acclimation). Furthermore, our calculations show that the LDH-B4 reaction velocities are essentially equivalent for these two populations, even though they live in significantly different thermal environments. PMID:2594773

  17. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Fenglei Li

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition, evaporation rate can be controlled or adjusted in this method during the crystallization process to favor either nucleation or growing processes for optimizing crystallization process. The protein crystals gotten by this method were experimentally proven to possess high x-ray diffraction qualities. Finally, we crystallized human lactate dehydrogenase 1 (H4) complexed with NADH and determined its structure by x-ray crystallography. The structure of LDH/NADH displays a significantly different structural feature, compared with LDH/NADH/inhibitor ternary complex structure, that subunits in LDH/NADH complex show open conformation or two conformations on the active site while the subunits in LDH/NADH/inhibitor are all in close conformation. Multiple LDH/NADH crystals were obtained and used for x-ray diffraction experiments. Difference in subunit conformation was observed among the structures independently solved from multiple individual LDH/NADH crystals. Structural differences observed among crystals suggest the existence of multiple conformers in solution.

  18. The drs tumor suppressor regulates glucose metabolism via lactate dehydrogenase-B.

    PubMed

    Tambe, Yukihiro; Hasebe, Masahiro; Kim, Chul Jang; Yamamoto, Akitsugu; Inoue, Hirokazu

    2016-01-01

    Previously, we showed that drs contributes to suppression of malignant tumor formation in drs-knockout (KO) mice. In this study, we demonstrate the regulation of glucose metabolism by drs using comparisons of drs-KO and wild-type (WT) mouse embryonic fibroblasts (MEFs). Extracellular acidification, lactate concentration, and glucose consumption in drs-KO cells were significantly greater than those in WT cells. Metabolomic analyses also confirmed enhanced glycolysis in drs-KO cells. Among glycolysis-regulating proteins, expression of lactate dehydrogenase (LDH)-B was upregulated at the post-transcriptional level in drs-KO cells and increased LDH-B expression, LDH activity, and acidification of culture medium in drs-KO cells were suppressed by retroviral rescue of drs, indicating that LDH-B plays a critical role for glycolysis regulation mediated by drs. In WT cells transformed by activated K-ras, expression of endogenous drs mRNA was markedly suppressed and LDH-B expression was increased. In human cancer cell lines with low drs expression, LDH-B expression was increased. Database analyses also showed the correlation between downregulation of drs and upregulation of LDH-B in human colorectal cancer and lung adenocarcinoma tissues. Furthermore, an LDH inhibitor suppressed anchorage-independent growth of human cancer cells and MEF cells transformed by activated K-ras. These results indicate that drs regulates glucose metabolism via LDH-B. Downregulating drs may contribute to the Warburg effect, which is closely associated with malignant progression of cancer cells. 2015 Wiley Periodicals, Inc. PMID:25620379

  19. Purification and determination of the binding site of lactate dehydrogenase from chicken breast muscle on immobilized ferric ions.

    PubMed

    Chaga, G; Andersson, L; Porath, J

    1992-12-25

    Lactate dehydrogenase from chicken breast muscle was purified to homogeneity in one step by immobilized metal ion affinity chromatography. The purified enzyme was used to localize the binding site to immobilized Fe(III) ions. After cyanogen bromide degradation and digestion with trypsin, small enzyme fragments capable of binding to immobilized Fe(III) ions were obtained. It is proposed that several histidyl groups are involved in the binding. PMID:1487526

  20. Identification of proteins interacting with lactate dehydrogenase in claw muscle of the porcelain crab Petrolisthes cinctipes

    PubMed Central

    Cayenne, Andrea P.; Gabert, Beverly; Stillman, Jonathon H.

    2011-01-01

    Biochemical adaptation of enzymes involves conservation of activity, stability and affinity across a wide range of intracellular and environmental conditions. Enzyme adaptation by alteration of primary structure is well known, but the roles of protein-protein interactions in enzyme adaptation are less well understood. Interspecific differences in thermal stability of lactate dehydrogenase (LDH) in porcelain crabs (genus Petrolisthes) are related to intrinsic differences among LDH molecules and by interactions with other stabilizing proteins. Here, we identified proteins that interact with LDH in porcelain crab claw muscle tissue using co-immunoprecipitation, and showed LDH exists in high molecular weight complexes using size exclusion chromatography and Western blot analyses. Co-immunoprecipitated proteins were separated using 2D SDS PAGE and analyzed by LC/ESI using peptide MS/MS. Peptide MS/MS ions were compared to an EST database for Petrolisthes cinctipes to identify proteins. Identified proteins included cytoskeletal elements, glycolytic enzymes, a phosphagen kinase, and the respiratory protein hemocyanin. Our results support the hypothesis that LDH interacts with glycolytic enzymes in a metabolon structured by cytoskeletal elements that may also include the enzyme for transfer of the adenylate charge in glycolytically produced ATP. Those interactions may play specific roles in biochemical adaptation of glycolytic enzymes. PMID:21968246

  1. Gene Expression Variation in Duplicate Lactate dehydrogenase Genes: Do Ecological Species Show Distinct Responses?

    PubMed Central

    Cristescu, Melania E.; Demiri, Bora; Altshuler, Ianina; Crease, Teresa J.

    2014-01-01

    Lactate dehydrogenase (LDH) has been shown to play an important role in adaptation of several aquatic species to different habitats. The genomes of Daphnia pulex, a pond species, and Daphnia pulicaria, a lake inhabitant, encode two L-LDH enzymes, LDHA and LDHB. We estimated relative levels of Ldh gene expression in these two closely related species and their hybrids in four environmental settings, each characterized by one of two temperatures (10C or 20C), and one of two concentrations of dissolved oxygen (DO; 6.57 mg/l or 23 mg/l). We found that levels of LdhA expression were 4 to 48 times higher than LdhB expression (p<0.005) in all three groups (the two parental species and hybrids). Moreover, levels of LdhB expression differed significantly (p<0.05) between D. pulex and D. pulicaria, but neither species differed from the hybrid. Consistently higher expression of LdhA relative to LdhB in both species and the hybrid suggests that the two isozymes could be performing different functions. No significant differences in levels of gene expression were observed among the four combinations of temperature and dissolved oxygen (p>0.1). Given that Daphnia dwell in environments characterized by fluctuating conditions with long periods of low dissolved oxygen concentration, we suggest that these species could employ regulated metabolic depression to survive in such environments. PMID:25080082

  2. Quick histochemical staining method for measuring lactate dehydrogenase C4 activity in human spermatozoa.

    PubMed

    Cui, Zhaolei; Chen, Liangyuan; Liu, Yaohua; Zeng, Zhangxin; Lan, Fenghua

    2015-04-01

    The enzyme activity of lactate dehydrogenase C4 (LDH-C4, due to tetrameric nature of C-subunit) has been proposed as an important parameter in evaluating sperm motility and semen quality. A novel histochemical staining method for detecting LDH-C4 activity in human spermatozoa is described in this report. The staining working solution comprises sodium 2-hydroxybutyrate (an affinity substrate of LDH-C4), nitrotetrazolium blue chloride (NBT), nicotinamide adenine dinucleotide (NAD) and naphthol blue. The positive products were purple black lumps concentrated in the neck segment of the spermatozoa and weakly in the middle piece. A normal reference range for the integral enzyme activity was constructed from 120 healthy males based upon the scoring criteria. The study further compared the staining method with the routine spectrophotometry technique in terms of the results of 96 cases with infertile status. Moreover, we found the down-regulated LDH-C4 expression was significantly correlated with the lowered enzyme activity (r=0.865, P=0.000). Our data suggest that the histochemical staining method hallmarks a relatively high accuracy and may be a better alternative for measuring LDH-C4 activity in human spermatozoa. PMID:25795631

  3. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases

    PubMed Central

    Boucher, Jeffrey I; Jacobowitz, Joseph R; Beckett, Brian C; Classen, Scott; Theobald, Douglas L

    2014-01-01

    Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this ‘specificity residue’ to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function. DOI: http://dx.doi.org/10.7554/eLife.02304.001 PMID:24966208

  4. Lactate dehydrogenase as a biomarker for early renal damage in patients with sickle cell disease.

    PubMed

    Alzahri, Mohammad S; Mousa, Shaker A; Almomen, Abdulkareem M; Hasanato, Rana M; Polimeni, John M; Racz, Michael J

    2015-11-01

    Among many complications of sickle cell disease, renal failure is the main contributor to early mortality. It is present in up to 21% of patients with sickle cell disease. Although screening for microalbuminuria and proteinuria is the current acceptable practice to detect and follow renal damage in patients with sickle cell disease, there is a crucial need for other, more sensitive biomarkers. This becomes especially true knowing that those biomarkers start to appear only after more than 60% of the kidney function is lost. The primary purpose of this study is to determine whether lactate dehydrogenase (LDH) correlates with other, direct and indirect bio-markers of renal insufficiency in patients with sickle cell disease and, therefore, could be used as a biomarker for early renal damage in patients with sickle cell disease. Fifty-five patients with an established diagnosis of sickle cell disease were recruited to in the study. Blood samples were taken and 24-h urine collection samples were collected. Using Statcrunch, a data analysis tool available on the web, we studied the correlation between LDH and other biomarkers of kidney function as well as the distribution and relationship between the variables. Regression analysis showed a significant negative correlation between serum LDH and creatinine clearance, R (correlation coefficient) = -0.44, P = 0.0008. This correlation was more significant at younger age. This study shows that in sickle cell patients LDH correlates with creatinine clearance and, therefore, LDH could serve as a biomarker to predict renal insufficiency in those patients. PMID:26586054

  5. Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase

    PubMed Central

    Kristjansson, Ragnar P.; Oddsson, Asmundur; Helgason, Hannes; Sveinbjornsson, Gardar; Arnadottir, Gudny A.; Jensson, Brynjar O.; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Bragi Walters, G.; Sulem, Gerald; Oskarsdottir, Arna; Benonisdottir, Stefania; Davidsson, Olafur B.; Masson, Gisli; Th Magnusson, Olafur; Holm, Hilma; Sigurdardottir, Olof; Jonsdottir, Ingileif; Eyjolfsson, Gudmundur I.; Olafsson, Isleifur; Gudbjartsson, Daniel F.; Thorsteinsdottir, Unnur; Sulem, Patrick; Stefansson, Kari

    2016-01-01

    Creatine kinase (CK) and lactate dehydrogenase (LDH) are widely used markers of tissue damage. To search for sequence variants influencing serum levels of CK and LDH, 28.3 million sequence variants identified through whole-genome sequencing of 2,636 Icelanders were imputed into 63,159 and 98,585 people with CK and LDH measurements, respectively. Here we describe 13 variants associating with serum CK and 16 with LDH levels, including four that associate with both. Among those, 15 are non-synonymous variants and 12 have a minor allele frequency below 5%. We report sequence variants in genes encoding the enzymes being measured (CKM and LDHA), as well as in genes linked to muscular (ANO5) and immune/inflammatory function (CD163/CD163L1, CSF1, CFH, HLA-DQB1, LILRB5, NINJ1 and STAB1). A number of the genes are linked to the mononuclear/phagocyte system and clearance of enzymes from the serum. This highlights the variety in the sources of normal diversity in serum levels of enzymes. PMID:26838040

  6. [C-reactive protein and lactate dehydrogenase as single prognostic factors of severity in acute pancreatitis].

    PubMed

    Zrni?, Irena Krznari?; Mili?, Sandra; Fisi?, Elizabeta; Radi?, Mladen; Stimac, Davor

    2007-01-01

    Ranson and Glasgow scores are routinely used for prediction of severity in acute pancreatitis. We undertook a prospective study to investigate the role of lactate dehydrogenase (LDH) and C-reactive protein (CRP) as potential single predictors of severity in acute pancreatitis. In our study we included 100 patients with diagnosis of acute pancreatitis admitted to our hospital during last two years. The inclusion criteria consisted of a combination of clinical features, a typical case history, elevation of serum pancreatic enzymes and diagnosis confirmed by imaging studies (ultrasound or computerised tomography). We used Ranson score for assesment of severity and compared it with single parameters as LDH and CRP on the first and the third day after admission. Cut off values for predicting local and systemic complications were > or =3 for Ranson score, 320 IU for LDH and 5 mg/L for CRP. Ranson score showed highest sensitivity in the prediction of local and systemic complication of acute pancreatitis. Specificity and diagnostic accuracy were highest for LDH on the first day (67.74; 57%). Diagnostic accuracy for Ranson score and CRP on the third day after admission was around 50%. We can conclude that LDH and CRP are available, simple and economical biochemical parameters that can help us predict complications of acute pancreatitis in the early phase of the disease. They showed similar diagnostic accuracy as the far more clinically used Ranson score. PMID:17489509

  7. Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase.

    PubMed

    Kristjansson, Ragnar P; Oddsson, Asmundur; Helgason, Hannes; Sveinbjornsson, Gardar; Arnadottir, Gudny A; Jensson, Brynjar O; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Bragi Walters, G; Sulem, Gerald; Oskarsdottir, Arna; Benonisdottir, Stefania; Davidsson, Olafur B; Masson, Gisli; Th Magnusson, Olafur; Holm, Hilma; Sigurdardottir, Olof; Jonsdottir, Ingileif; Eyjolfsson, Gudmundur I; Olafsson, Isleifur; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Sulem, Patrick; Stefansson, Kari

    2016-01-01

    Creatine kinase (CK) and lactate dehydrogenase (LDH) are widely used markers of tissue damage. To search for sequence variants influencing serum levels of CK and LDH, 28.3 million sequence variants identified through whole-genome sequencing of 2,636 Icelanders were imputed into 63,159 and 98,585 people with CK and LDH measurements, respectively. Here we describe 13 variants associating with serum CK and 16 with LDH levels, including four that associate with both. Among those, 15 are non-synonymous variants and 12 have a minor allele frequency below 5%. We report sequence variants in genes encoding the enzymes being measured (CKM and LDHA), as well as in genes linked to muscular (ANO5) and immune/inflammatory function (CD163/CD163L1, CSF1, CFH, HLA-DQB1, LILRB5, NINJ1 and STAB1). A number of the genes are linked to the mononuclear/phagocyte system and clearance of enzymes from the serum. This highlights the variety in the sources of normal diversity in serum levels of enzymes. PMID:26838040

  8. Lactate Dehydrogenase Is an Important Prognostic Indicator for Hepatocellular Carcinoma after Partial Hepatectomy12

    PubMed Central

    Zhang, Jing-Ping; Wang, Hong-Bo; Lin, Yue-Hao; Xu, Jing; Wang, Jun; Wang, Kai; Liu, Wan-Li

    2015-01-01

    Preoperative serum lactate dehydrogenase (LDH) has been used as a prognostic indicator for patients with hepatocellular carcinoma (HCC) treated with sorafenib or undergoing transcatheter arterial chemoembolization, but its significance in predicting survival of HCC patients who received curative resection remains undefined. A total of 683 patients with histopathologically confirmed HCC were enrolled in this study. The prognostic significance of preoperative serum LDH was determined by Kaplan-Meier analysis and a Cox proportional hazards regression model. The association between the preoperative serum LDH and clinicopathological parameters was evaluated by the ?2 test or linear regression analysis when appropriate. Higher preoperative serum LDH level was associated with worse prognosis. In a multivariate Cox proportional hazards analysis, the preoperative serum LDH level could predict overall survival and recurrence independently. Higher preoperative serum LDH level is associated with the elevated serum alpha-fetoprotein, the presence of hepatitis B surface antigen, larger tumor size, the presence of macrovascular invasion, the advanced tumorlymph nodemetastasis stage, worse tumor differentiation, and Child-Pugh B. Preoperative serum LDH level was an inexpensive, simple, convenient, and routinely measured biomarker exhibiting a potential to select patients at high risk with poor clinical outcome for appropriate treatment strategies. PMID:26692531

  9. Glycoconjugates Influence Caspase Release and Minimize Production of Lactate Dehydrogenase upon Pathogen Exposure

    NASA Astrophysics Data System (ADS)

    Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Many pathogens stimulate cell death of immune cells while promoting survival of pathogens. Early cell death is characterized by the release of mediators, namely Caspases (Cas). Infections caused by pathogens can be eradicated if immune cells could resist cell death and kill pathogens upon exposure. In this research, we studied whether glycoconjugates (GCs) influence Cas release and cytotoxicity upon pathogen damage. GC1 and GC3 constituted samples studied principally. Bacterial spores were used as a pathogen model. GC effects were determined "prior to," "during," and "following" pathogen exposure throughout phagocytosis. Cytotoxic damage was assessed by measuring lactate dehydrogenase (LDH) production. Our data show that GC3 was more effective than GC1 during phagocytosis. GC3 controls Cas release under all three exposure conditions. Minimum production of LDH was noticed in the "following" exposure condition compared to the "prior to" and "during" exposure conditions for GC1 and GC3. The present study provided the selection method of GC ligands bearing anti-cytotoxic and anti-apoptotic properties.

  10. Establishment of permanent chimerism in a lactate dehydrogenase-deficient mouse mutant with hemolytic anemia

    SciTech Connect

    Datta, T.; Doermer, P.

    1987-12-01

    Pluripotent hemopoietic stem cell function was investigated in the homozygous muscle type lactate dehydrogenase (LDH-A) mutant mouse using bone marrow transplantation experiments. Hemopoietic tissues of LDH-A mutants showed a marked decreased in enzyme activity that was associated with severe hemolytic anemia. This condition proved to be transplantable into wild type mice (+/+) through total body irradiation (TBI) at a lethal dose of 8.0 Gy followed by engraftment of mutant bone marrow cells. Since the mutants are extremely radiosensitive (lethal dose50/30 4.4 Gy vs 7.3 Gy in +/+ mice), 8.0-Gy TBI followed by injection of even high numbers of normal bone marrow cells did not prevent death within 5-6 days. After a nonlethal dose of 4.0 Gy and grafting of normal bone marrow cells, a transient chimerism showing peripheral blood characteristics of the wild type was produced that returned to the mutant condition within 12 weeks. The transfusion of wild type red blood cells prior to and following 8.0-Gy TBI and reconstitution with wild type bone marrow cells prevented the early death of the mutants and permanent chimerism was achieved. The chimeras showed all hematological parameters of wild type mice, and radiosensitivity returned to normal. It is concluded that the mutant pluripotent stem cells are functionally comparable to normal stem cells, emphasizing the significance of this mouse model for studies of stem cell regulation.

  11. Low intensity microwave radiation as modulator of the L-lactate dehydrogenase activity.

    PubMed

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2011-07-01

    In this study, we investigated experimentally the possibility of modulating protein activity by low intensity microwaves by measuring alternations of L: -Lactate Dehydrogenase enzyme (LDH) activity. The LDH enzyme solutions were irradiated by microwaves of the selected frequencies and powers using the Transverse Electro-Magnetic (TEM) cell. The kinetics of the irradiated LDH was measured by continuous monitoring of nicotine adenine dinucleotide, reduced (NADH) absorbance at 340 nm. A comparative analysis of changes in the activity of the irradiated LDH enzyme versus the non-radiated enzyme was performed for the selected frequencies and powers. It was found that LDH activity can be selectively increased only by irradiation at the particular frequencies of 500 MHz [electric field: 0.02 V/m (1.2 × 10⁻⁶ W/m²)-2.1 V/m (1.2 × 10⁻² W/m²)] and 900 MHz [electric field: 0.021-0.21 V/m (1.2 × 10⁻⁴ W/m²)]. Based on results obtained it was concluded that LDH enzyme activity can be modulated by specific frequencies of low power microwave radiation. This finding can serve to support the hypothesis that low intensity microwaves can induce non-thermal effects in bio-molecules. PMID:21308416

  12. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor.

    PubMed

    Valvona, Cara J; Fillmore, Helen L; Nunn, Peter B; Pilkington, Geoffrey J

    2016-01-01

    There are over 120 types of brain tumor and approximately 45% of primary brain tumors are gliomas, of which glioblastoma multiforme (GBM) is the most common and aggressive with a median survival rate of 14 months. Despite progress in our knowledge, current therapies are unable to effectively combat primary brain tumors and patient survival remains poor. Tumor metabolism is important to consider in therapeutic approaches and is the focus of numerous research investigations. Lactate dehydrogenase A (LDHA) is a cytosolic enzyme, predominantly involved in anaerobic and aerobic glycolysis (the Warburg effect); however, it has multiple additional functions in non-neoplastic and neoplastic tissues, which are not commonly known or discussed. This review summarizes what is currently known about the function of LDHA and identifies areas that would benefit from further exploration. The current knowledge of the role of LDHA in the brain and its potential as a therapeutic target for brain tumors will also be highlighted. The Warburg effect appears to be universal in tumors, including primary brain tumors, and LDHA (because of its involvement with this process) has been identified as a potential therapeutic target. Currently, there are, however, no suitable LDHA inhibitors available for tumor therapies in the clinic. PMID:26269128

  13. Early diagnosis of radiodermatitis using lactate dehydrogenase isozymes in hairless mice (SKH1-hr)

    PubMed Central

    Kim, Won-Dong

    2012-01-01

    In this study, we evaluate a method for the early diagnosis of radiodermatitis for use in the prevention and therapy of this condition. Hairless mice (SKH1-hr) were used to study the early diagnosis of radiodermatitis. Lactate dehydrogenase (LDH, EC 1.1.1.27) isozymes were analyzed using native-polyacrylamide gel electrophoresis and western blotting of blood serum and tissues collected from SKH1-hr mice. Radiodermatitis developed 24 days after the first X-irradiation. Reduced spleen weight was observed after the last X-irradiation (P<0.05). Thereafter the weight increased until 24 days after the first irradiation, finally reaching levels comparable to those in the sham-irradiated control group. LDH activity was the highest in skeletal muscle and lowest in blood serum. LDH C4, A4, A3B, A2B2, AB3, and B4 isozymes were detected, in the mentioned order, from the cathode. This result was similar in other mouse strains. In the irradiated group, LDH A4 isozyme levels were reduced in the serum until inflammation occurred, whereas those of B4 isozyme were elevated. The subunits A and B followed a similar trend to that of LDH A4 and B4 isozyme, respectively. Importantly, antibodies against LDH B4 isozyme could prove useful in the early diagnosis of radiodermatitis. PMID:23326284

  14. Quantification of lactate-dehydrogenase and cell viability in postmortem human dental pulp.

    PubMed

    Caviedes-Bucheli, Javier; Avendao, Nuvia; Gutierrez, Rhina; Hernndez, Sandra; Moreno, Gloria Cristina; Romero, Mara Consuelo; Muoz, Hugo Roberto

    2006-03-01

    Understanding pulp repair and regeneration requires being familiar with this tissue's behavior under extreme conditions, such as postmortem state where an abrupt interruption of tissue blood supply occurs. The purpose of this study was to quantify cell viability and the amount of lactate-dehydrogenase (LDH) expressed in human pulp tissue 6, 12, and 24 hours postmortem to establish how long dental pulp remains viable after death. Pulp samples were obtained from 14 unidentified corpses of people who had received lethal injuries in car accidents or from gunshot wounds; they had at least three caries- and restoration-free incisors. Half of each sample was used for determining cell viability at three different time intervals. The rest of each sample was used for quantifying LDH expression at the same time intervals. Another 14 pulp samples were obtained from live patients' healthy premolars where extraction was indicated for orthodontic reasons to assess normal LDH value in pulp tissue. The results showed cell viability decreasing from 89 to 68 to 41% measured 6, 12, and 24 hours postmortem, respectively. LDH expression in healthy pulps was 246 U/mg pulp weight. Expression increased after death from 249 U/mg at 6 hours to 337 U/mg at 12 hours. LDH expression decreased to 131 U/mg 24 hours postmortem. These findings are valuable in understanding dental pulp survival capability under extreme conditions that may have important clinical significance in terms of repair and regeneration. PMID:16500222

  15. INACTIVATION OF LACTATE DEHYDROGENASE BY SEVERAL CHEMICALS: IMPLICATIONS FOR IN VITRO TOXICOLOGY STUDIES

    PubMed Central

    Kendig, Derek M.; Tarloff, Joan B.

    2007-01-01

    Lactate dehydrogenase (LDH) release is frequently used as an end-point for cytotoxicity studies. We have been unable to measure LDH release during studies using para-aminophenol (PAP) in LLC-PK1 cells. When LLC-PK1 cells were incubated with either PAP (010 mM) or menadione (01000 ?M), viability was markedly reduced when assessed by alamar Blue or total LDH activity but not by release of LDH into the incubation medium. In addition, we incubated cells with PAP or menadione and compared LDH activity using two different assays. Both assays confirmed our observation of decreased LDH activity in cell lysates without corresponding increases in LDH activity in incubation media. Using purified LDH and 10 mM PAP, we that PAP produced loss of LDH activity that was inversely proportional to the amount of LDH initially added. In additional experiments, we incubated 0.5 units of LDH for 1 h with varying concentrations of PAP, menadione, hydrogen peroxide (H2O2) or cisplatin. All four chemicals produced concentration-dependent decreases in LDH activity. In previous experiments, inclusion of antioxidants such as reduced glutathione (GSH) and ascorbate protected cells from PAP toxicity. GSH (1 mM) preserved LDH activity in the presence of toxicants while ascorbate (1 mM) only prevented LDH loss induced by PAP. These studies suggest that LDH that is released into the incubation medium is susceptible to degradation when reactive chemicals are present. PMID:17079110

  16. Muscular cholinesterase and lactate dehydrogenase activities in deep-sea fish from the NW Mediterranean.

    PubMed

    Koenig, Samuel; Sol, Montserrat

    2014-03-01

    Organisms inhabiting submarine canyons can be potentially exposed to higher inputs of anthropogenic chemicals than their counterparts from the adjacent areas. To find out to what extend this observation applies to a NW Mediterranean canyon (i.e. Blanes canyon) off the Catalan coast, four deep-sea fish species were collected from inside the canyon (BC) and the adjacent open slope (OS). The selected species were: Alepocephalus rostratus, Lepidion lepidion, Coelorinchus mediterraneus and Bathypterois mediterraneus. Prior to the choice of an adequate sentinel species, the natural variation of the selected parameters (biomarkers) in relation to factors such as size, sex, sampling depth and seasonality need to be characterised. In this study, the activities of cholinesterases (ChEs) and lactate dehydrogenase (LDH) enzymes were determined in the muscle of the four deep-sea fish. Of all ChEs, acetylcholinesterase (AChE) activity was dominant and selected for further monitoring. Overall, AChE activity exhibited a significant relationship with fish size whereas LDH activity was mostly dependent on the sex and gonadal development status, although in a species-dependent manner. The seasonal variability of LDH activity was more marked than for AChE activity, and inside-outside canyon (BC-OS) differences were not consistent in all contrasted fish species, and in fact they were more dependent on biological traits. Thus, they did not suggest a differential stress condition between sites inside and outside the canyon. PMID:24296242

  17. Alternative splicing of testis-specific lactate dehydrogenase C gene in mammals and pigeon.

    PubMed

    Huang, Lin; Lin, Yaqiu; Jin, Suyu; Liu, Wei; Xu, Yaou; Zheng, Yucai

    2012-04-01

    The objective of the present study was to confirm the widespread existence of alternative splicing of lactate dehydrogenase c (ldhc) gene in mammals. RT-PCR was employed to amplify cDNAs of ldhc from testes of mammals including pig, dog, rabbit, cat, rat, and mouse, as well as pigeon. Two to six kinds of splice variants of ldhc were observed in the seven species as a result of deletion of one or more exons or insertion of partial sequence of an intron in the mature mRNA. The deleted exons occur mostly in exons 5, 4, 6, and 3. The insertion of a partial sequence of introns, which resulted in an abnormal stop codon in the inserted intron sequence, was observed only in dog and rat. The deletion of exons also resulted in a reading frame shift and formation of a stop codon in some variants. No alternative splicing was observed for ldha and ldhb genes in testis of yak. Native polyacrylamide gel electrophoresis and Western blot analysis revealed no obvious LDH-C4 activity derived from expressed ldhc variants. Our results demonstrated the widespread and unique existence of alternative splicing of ldhc genes in mammals. PMID:22537060

  18. Regulation of the Activity of Lactate Dehydrogenases from Four Lactic Acid Bacteria*

    PubMed Central

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L.; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V.; Kreikemeyer, Bernd; Wade, Rebecca C.; Fiedler, Tomas

    2013-01-01

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ? Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ? Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs. PMID:23720742

  19. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    PubMed

    Penna-Coutinho, Julia; Cortopassi, Wilian Augusto; Oliveira, Aline Alves; Frana, Tanos Celmar Costa; Krettli, Antoniana Ursine

    2011-01-01

    The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH) has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH) all exhibit ?90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH) and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole) were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2). The IC(50) values for each drug in both tests were similar, were lowest for posaconazole (<5 M) and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use. PMID:21779323

  20. DNA Sequence Polymorphism of the Lactate Dehydrogenase Genefrom Iranian Plasmodium vivax and Plasmodium falciparum Isolates

    PubMed Central

    GETACHER FELEKE, Daniel; NATEGHPOUR, Mehdi; MOTEVALLI HAGHI, Afsaneh; HAJJARAN, Homa; FARIVAR, Leila; MOHEBALI, Mehdi; RAOOFIAN, Reza

    2015-01-01

    Background: Parasite lactate dehydrogenase (pLDH) is extensively employed as malaria rapid diagnostic tests (RDTs). Moreover, it is a well-known drug target candidate. However, the genetic diversity of this gene might influence performance of RDT kits and its drug target candidacy. This study aimed to determine polymorphism of pLDH gene from Iranian isolates of P. vivax and P. falciparum. Methods: Genomic DNA was extracted from whole blood of microscopically confirmed P. vivax and P. falciparum infected patients. pLDH gene of P. falciparum and P. vivax was amplified using conventional PCR from 43 symptomatic malaria patients from Sistan and Baluchistan Province, Southeast Iran from 2012 to 2013. Results: Sequence analysis of 15 P. vivax LDH showed fourteen had 100% identity with P. vivax Sal-1 and Belem strains. Two nucleotide substitutions were detected with only one resulted in amino acid change. Analysis of P. falciparum LDH sequences showed six of the seven sequences had 100% homology with P. falciparum 3D7 and Mzr-1. Moreover, PfLDH displayed three nucleotide changes that resulted in changing only one amino acid. PvLDH and PfLDH showed 75%76% nucleotide and 90.4%90.76% amino acid homology. Conclusion: pLDH gene from Iranian P. falciparum and P. vivax isolates displayed 98.8100% homology with 13 nucleotide substitutions. This indicated this gene was relatively conserved. Additional studies can be done weather this genetic variation can influence the performance of pLDH based RDTs or not.

  1. Nicotine promotes Streptococcus mutans extracellular polysaccharide synthesis, cell aggregation and overall lactate dehydrogenase activity.

    PubMed

    Huang, R; Li, M; Gregory, R L

    2015-08-01

    Several epidemiology studies have reported a positive relationship between smoking and dental caries. Nicotine, an alkaloid component of tobacco, has been demonstrated to stimulate biofilm formation and metabolic activity of Streptococcus mutans, one of the most important pathogens of dental caries. The first aim of the present study was to explore the possible mechanisms leading to increased biofilm by nicotine treatment from three aspects, extracellular polysaccharides (EPS) synthesis, glucosyltransferase (Gtf) synthesis and glucan-binding protein (Gbp) synthesis at the mRNA and protein levels. The second aim was to investigate how nicotine affects S. mutans virulence, particular in lactate dehydrogenase (LDH) activity. Confocal laser scanning microscopy results demonstrated that both biofilm bacterial cell numbers and EPS were increased by nicotine. Gtf and GbpA protein expression of S. mutans planktonic cells were upregulated while GbpB protein expression of biofilm cells were downregulated by nicotine. The mRNA expression trends of those genes were mostly consistent with results on protein level but not statistically significant, and gtfD and gbpD of biofilm cells were inhibited. Nicotine was not directly involved in S. mutans LDH activity. However, since it increases the total number of bacterial cells in biofilm, the overall LDH activity of S. mutans biofilm is increased. In conclusion, nicotine stimulates S. mutans planktonic cell Gtf and Gbp expression. This leads to more planktonic cells attaching to the dental biofilm. Increased cell numbers within biofilm results in higher overall LDH activity. This contributes to caries development in smokers. PMID:25985036

  2. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates.

    PubMed

    Keluskar, Priyadarshan; Singh, Vineeta; Gupta, Purva; Ingle, Sanjay

    2014-08-01

    Control and eradication of malaria is hindered by the acquisition of drug resistance by Plasmodium species. This has necessitated a persistent search for novel drugs and more efficient targets. Plasmodium species specific lactate dehydrogenase is one of the potential therapeutic and diagnostic targets, because of its indispensable role in endoerythrocytic stage of the parasite. A target molecule that is highly conserved in the parasite population can be more effectively used in diagnostics and therapeutics, hence, in the present study polymorphism in PfLDH (Plasmodiumfalciparum specific LDH) and PvLDH (Plasmodiumvivax specific LDH) genes was analyzed using PCR-single strand confirmation polymorphism (PCR-SSCP) and sequencing. Forty-six P. falciparum and thirty-five P. vivax samples were screened from different states of India. Our findings have revealed presence of a single PfLDH genotype and six PvLDH genotypes among the studied samples. Interestingly, along with synonymous substitutions, nonsynonymous substitutions were reported to be present for the first time in the PvLDH genotypes. Further, through amino acid sequence alignment and homology modeling studies we observed that the catalytic residues were conserved in all PvLDH genotypes and the nonsynonymous substitutions have not altered the enzyme structure significantly. Evolutionary genetics studies have confirmed that PfLDH and PvLDH loci are under strong purifying selection. Phylogenetic analysis of the pLDH gene sequences revealed that P. falciparum compared to P. vivax, has recent origin. The study therefore supports PfLDH and PvLDH as suitable therapeutic and diagnostic targets as well as phylogenetic markers to understand the genealogy of malaria species. PMID:24953504

  3. The lactate dehydrogenase--reduced nicotinamide--adenine dinucleotide--pyruvate complex. Kinetics of pyruvate binding and quenching of coeznyme fluorescence.

    PubMed

    Südi, J

    1974-04-01

    The stopped-flow kinetic studies described in this and the following paper (Südi, 1974) demonstrate that a Haldane-type description of the reversible lactate dehydrogenase reaction presents an experimentally feasible task. Combined results of these two papers yield numerical values for the six rate constants defined by the following equilibrium scheme, where E represents lactate dehydrogenase: [Formula: see text] The experiments were carried out at pH8.4 at a relatively low temperature (6.3 degrees C) with the pig heart enzyme. Identification of the above two intermediates and determination of the corresponding rate constants actually involve four series of independent observations in these studies, since (a) the reaction can be followed in both directions, and (b) both the u.v. absorption and the fluorescence of the coenzymes are altered in the reaction, and it is shown that these two spectral changes do not occur simultaneously. Kinetic observations made in the reverse direction are reported in this paper. It is demonstrated that the fluorescence of NADH can no longer be observed in the ternary complex E(NADH) (Pyr). Even though the oxidation-reduction reaction rapidly follows the formation of this complex, the numerical values of k(-4) (8.33x10(5)m(-1).s(-1)) and k(+4) (222s(-1)) are easily obtained from a directly observed second-order reaction step in which fluorescent but not u.v.-absorbing material is disappearing. U.v.-absorption measurements do not clearly resolve the subsequent oxidation-reduction step from the dissociation of lactate. It is shown that this must be due partly to the instrumental dead time, and partly to a low transient concentration of E(NAD+) (Lac) in the two-step sequential reaction in which the detectable disappearance of u.v.-absorbing material takes place. It is estimated that about one-tenth of the total change in u.v. absorption is due to a ;burst reaction' in which E(NAD+) (Lac) is produced, and this estimation yields, from k(obs.)=120s(-1), k(-2)=1200s(-1). PMID:4377095

  4. Direct electrochemistry of lactate dehydrogenase immobilized on silica sol-gel modified gold electrode and its application.

    PubMed

    Di, Junwei; Cheng, Jiongjia; Xu, Quan; Zheng, Huie; Zhuang, Jingyue; Sun, Yongbo; Wang, Keyu; Mo, Xiangyin; Bi, Shuping

    2007-12-15

    The direct electrochemistry of lactate dehydrogenase (LDH) immobilized in silica sol-gel film on gold electrode was investigated, and an obvious cathodic peak at about -200 mV (versus SCE) was found for the first time. The LDH-modified electrode showed a surface controlled irreversible electrode process involving a one electron transfer reaction with the charge-transfer coefficient (alpha) of 0.79 and the apparent heterogeneous electron transfer rate constant (K(s)) of 3.2 s(-1). The activated voltammetric response and decreased charge-transfer resistance of Ru(NH(3))(6)(2+/3+) on the LDH-modified electrode provided further evidence. The surface morphologies of silica sol-gel and the LDH embedded in silica sol-gel film were characterized by SEM. A potential application of the LDH-modified electrode as a biosensor for determination of lactic acid was also investigated. The calibration range of lactic acid was from 2.0 x 10(-6) to 3.0 x 10(-5) mol L(-1) and the detection limit was 8.0 x 10(-7) mol L(-1) at a signal-to-noise ratio of 3. Finally, the effect of environmental pollutant resorcinol on the direct electrochemical behavior of LDH was studied. The experimental results of voltammetry indicated that the conformation of LDH molecule was altered by the interaction between LDH and resorcinol. The modified electrode can be applied as a biomarker to study the pollution effect in the environment. PMID:17869089

  5. Pre-treatment serum lactate dehydrogenase and alkaline phosphatase as predictors of metastases in extremity osteosarcoma

    PubMed Central

    Marais, Leonard C.; Bertie, Julia; Rodseth, Reitze; Sartorius, Benn; Ferreira, Nando

    2015-01-01

    Background The prognosis of patients with metastatic osteosarcoma remains poor. However, the chance of survival can be improved by surgical resection of all metastases. In this study we investigate the value of serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in predicting the presence of metastatic disease at time of diagnosis. Methods Sixty-one patients with histologically confirmed conventional osteosarcoma of the extremity were included in the study. Only 19.7% of cases presented without evidence of systemic spread of the disease. Pre-treatment serum ALP and LDH were analysed in patients with and without skeletal or pulmonary metastases. Results Serum LDH and ALP levels were not significantly different in patients with or without pulmonary metastases (p=0.88 and p=0.47, respectively). The serum LDH and ALP levels did however differ significantly in patients with or without skeletal metastases (p<0.001 and p=0.02, respectively). The optimal breakpoint for serum LDH as a marker of skeletal metastases was 849 IU/L (AUC 0.839; Sensitivity=0.88; Specificity=0.73). LDH >454 IU/L equated to 100% sensitivity for detected bone metastases (positive diagnostic likelihood ratio (DLR)=1.32). With a cut-off of 76 IU/L a sensitivity of 100% was reached for serum ALP predicting the presence of skeletal metastases (positive DLR=1.1). In a multivariate analysis both LDH ?850 IU/L (odds ratio [OR]=9; 95% confidence interval (CI) 1.844.3) and ALP ?280 IU/L (OR=10.3; 95% CI 2.150.5) were predictive of skeletal metastases. LDH however lost its significance in a multivariate model which included pre-treatment tumour volume. Conclusion In cases of osteosarcoma with LDH >850 IU/L and/or ALP >280 IU/L it may be prudent to consider more sensitive staging investigations for detection of skeletal metastases. Further research is required to determine the value and the most sensitive cut-off points of serum ALP and LDH in the prediction of skeletal metastases. PMID:26587373

  6. The use of ternary complexes to study ionizations and isomerizations during catalysis by lactate dehydrogenase*

    PubMed Central

    Holbrook, J. John; Stinson, Robert A.

    1973-01-01

    1. The binding of oxamate to pig heart and pig muscle isoenzymes of lactate dehydrogenase in the presence of NADH was studied by fluorescence titration. The dissociation constant of oxamate from the heart enzyme complex is 3μm and from the muscle isoenzyme 25μm at pH5. These values quantitatively increase with pH as predicted if oxamate can bind only to the enzyme–NADH complex if a group with pK6.9 is protonated. There are four non-interacting oxamate-binding sites per tetramer. 2. o-Nitrophenylpyruvate is a poor substrate for both isoenzymes but has a reasonable affinity to the heart isoenzyme. Initially, it forms an enzyme–NADH–substrate complex, which can be detected either by protein-fluorescence quenching or by NADH-fluorescence quenching. The pH-dependence of the dissociation constant of nitrophenylpyruvate also shows that this ternary complex can only form if a group with pK6.8 is protonated. Taken with the results of chemical-modification experiments, these results allow the pK of 6.8 to be assigned to a system probably involving the imidazole side chain of histidine-195. Formation of a ternary complex from a binary one at pH8 is predicted to result in a proton being taken up from solution. 3. Isotope-effect studies with NADH and its deuterium analogue show that the rapidly formed ternary complex with o-nitrophenylpyruvate slowly isomerizes to give an active ternary complex, which then rapidly decomposes to NAD+. The isomerization is pH-independent, and it is suggested that histidine-195 is still protonated in the activated ternary complex, which is present before hydride transfer. 4. All four subunits of the enzyme are kinetically equivalent with respect to the oxidation of bound NADH by o-nitrophenylpyruvate. 5. A partial mechanism for the enzyme is described which emphasizes the isomerizations and ionizations involved in forming the reduced ternary complex at pH6 and 8. PMID:4352914

  7. The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli.

    PubMed

    Berros-Rivera, Susana J; San, Ka-Yiu; Bennett, George N

    2003-01-01

    In previous studies, we showed that cofactor manipulations can potentially be used as a tool in metabolic engineering. In this study, sugars similar to glucose, that can feed into glycolysis and pyruvate production, but with different oxidation states, were used as substrates. This provided a simple way of testing the effect of manipulating the NADH/NAD+ ratio or the availability of NADH on the metabolic patterns of Escherichia coli under anaerobic conditions and on the production of 1,2-propanediol (1,2-PD), which requires NADH for its synthesis. Production of 1,2-PD was achieved by overexpressing the two enzymes methylglyoxal synthase from Clostridium acetobutylicum and glycerol dehydrogenase from E. coli. In addition, the effect of eliminating a pathway competing for NADH by using a ldh(-) strain (without lactate dehydrogenase activity) on the production of 1,2-PD was investigated. The oxidation state of the carbon source significantly affected the yield of metabolites, such as ethanol, acetate and lactate. However, feeding a more reduced carbon source did not increase the yield of 1,2-PD. The production of 1,2-PD with glucose as the carbon source was improved by the incorporation of a ldh(-) mutation. The results of these experiments indicate that our current 1,2-PD production system is not limited by NADH, but rather by the pathways following the formation of methylglyoxal. PMID:12545384

  8. Tyrosine Phosphorylation of Lactate Dehydrogenase A Is Important for NADH/NAD+ Redox Homeostasis in Cancer Cells ?

    PubMed Central

    Fan, Jun; Hitosugi, Taro; Chung, Tae-Wook; Xie, Jianxin; Ge, Qingyuan; Gu, Ting-Lei; Polakiewicz, Roberto D.; Chen, Georgia Z.; Boggon, Titus J.; Lonial, Sagar; Khuri, Fadlo R.; Kang, Sumin; Chen, Jing

    2011-01-01

    The Warburg effect describes an increase in aerobic glycolysis and enhanced lactate production in cancer cells. Lactate dehydrogenase A (LDH-A) regulates the last step of glycolysis that generates lactate and permits the regeneration of NAD+. LDH-A gene expression is believed to be upregulated by both HIF and Myc in cancer cells to achieve increased lactate production. However, how oncogenic signals activate LDH-A to regulate cancer cell metabolism remains unclear. We found that the oncogenic receptor tyrosine kinase FGFR1 directly phosphorylates LDH-A. Phosphorylation at Y10 and Y83 enhances LDH-A activity by enhancing the formation of active, tetrameric LDH-A and the binding of LDH-A substrate NADH, respectively. Moreover, Y10 phosphorylation of LDH-A is common in diverse human cancer cells, which correlates with activation of multiple oncogenic tyrosine kinases. Interestingly, cancer cells with stable knockdown of endogenous LDH-A and rescue expression of a catalytic hypomorph LDH-A mutant, Y10F, demonstrate increased respiration through mitochondrial complex I to sustain glycolysis by providing NAD+. However, such a compensatory increase in mitochondrial respiration in Y10F cells is insufficient to fully sustain glycolysis. Y10 rescue cells show decreased cell proliferation and ATP levels under hypoxia and reduced tumor growth in xenograft nude mice. Our findings suggest that tyrosine phosphorylation enhances LDH-A enzyme activity to promote the Warburg effect and tumor growth by regulating the NADH/NAD+ redox homeostasis, representing an acute molecular mechanism underlying the enhanced lactate production in cancer cells. PMID:21969607

  9. Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells.

    PubMed Central

    Alcazar, O; Tiedge, M; Lenzen, S

    2000-01-01

    The role of lactate dehydrogenase (LDH) in the generation of the metabolic signal for insulin secretion was studied after stable overexpression in INS-1 and RINm5F insulin-producing cells. INS-1 cells with a 25-fold overexpression of LDH-A, the highest level achieved, showed a 20-30% decrease in the glucose oxidation rate at glucose concentrations above 5 mM when compared with control cells, whereas values were unchanged at lower glucose concentrations. Lactate release increased in parallel with a decrease in the glucose oxidation rate. However, the INS-1 cell glucose-induced insulin secretory response, together with the rate of glucose utilization, were not significantly affected by LDH-A overexpression. Despite 3-fold overexpression of LDH-A in glucose-unresponsive RINm5F cells, there was no change in insulin secretion, glucose metabolism or lactate production in these cells. Exogenously added pyruvate and lactate potentiated glucose-stimulated insulin secretion in INS-1 cells, an effect that was abolished after LDH-A overexpression. Both compounds significantly decreased glucose oxidation rates in control cells. After overexpression of LDH-A in INS-1 cells, the effects of pyruvate and lactate on glucose oxidation were diminished. On the other hand, after LDH-A overexpression, both glycolytic metabolites decreased the glucose utilization rate at 5 mM glucose. The present data suggest that the level of LDH expression in insulin-secreting cells is critical for correct channelling of pyruvate towards mitochondrial metabolism. Interestingly, glucokinase-mediated glycolytic flux was decreased after LDH-A overexpression. Thus preferential channelling of glucose towards aerobic metabolism by glucokinase may be determined, at least in part, by the low level of constitutive expression of LDH-A in pancreatic beta-cells. In conclusion, the level of LDH expression in insulin-secreting cells is an important determinant of the physiological insulin-secretory capacity, and also determines how pyruvate and lactate affect insulin secretion. PMID:11085930

  10. Defect in signal transduction at the level of the plasma membrane accounts for inability of insulin to activate pyruvate dehydrogenase in white adipocytes of lactating rats.

    PubMed Central

    Kilgour, E; Vernon, R G

    1988-01-01

    1. The mechanism responsible for the failure of insulin to activate pyruvate dehydrogenase (PDH) in white adipose tissue in vivo during lactation was investigated. 2. Insulin failed to increase PDH in isolated adipocytes from lactating rats. 3. Insulin binding to plasma membranes from adipocytes was unchanged by lactation. 4. Incubation of plasma membranes plus permeabilized mitochondria from adipocytes in the presence of insulin resulted in activation of PDH when the plasma membranes were obtained from virgin rats, whereas no activation was observed when plasma membranes from lactating rats were used. 5. The results show that the failure of insulin to activate PDH in adipose tissue from lactating rats is due to a failure of the signal-transduction system in the plasma membrane at steps subsequent to insulin binding to the insulin receptor. PMID:2844153

  11. [Kinetic study of the mechanisms of eliminating substrate inhibition of lactate dehydrogenase by anions and pH].

    PubMed

    Saburova, E A; Iagodina, L O

    1990-10-01

    The dependence of lactate dehydrogenase inhibition at high pyruvate concentrations on pH and neutral salt anions was studied. It was shown that Cl- anions compete with the substrate within the ternary inhibitory complex, ENADpyr in equilibrium ENADCl-, as a result of which the pyruvate-induced inhibition is eliminated. The KD values for Cl- (50 mM) and I- (27 mM) were calculated from the substrate velocity curves at high concentrations of pyruvate. It was supposed that pyruvate inhibition elimination by OH- proceeds via the same kinetic mechanism. The pK value (7.1 +/- 0.1) calculated from this model corresponds to pKn of essential His-195. The additivity of OH- and Cl- function was demonstrated. PMID:2078626

  12. Creatine kinase and lactate dehydrogenase isoenzymes in serum of patients suffering burns, blunt trauma, or myocardial infarction.

    PubMed

    Shahangian, S; Ash, K O; Wahlstrom, N O; Warden, G D; Saffle, J R; Taylor, A; Green, L S

    1984-08-01

    Medical records of 53 burn and trauma patients were reviewed to assess the possibility of myocardial damage. Except for electrophoretically detectable creatine kinase MB isoenzyme, none showed evidence of myocardial injury. Lactate dehydrogenase isoenzyme tests, electrocardiograms, myocardial pyrophosphate scans, clinical course, and results of (two) autopsies were all negative for myocardial necrosis or ischemia. Types of patient, number, mean peak value (U/L) for serum creatine kinase, and ranges of percentage MB isoenzyme were as follows. Burns from direct electrical contact: 28, 16 600, 0-29; electrical flash or other thermal burns: 10, 4340, 0-22; blunt trauma (mostly from automobile accidents): 15, 3430, 0-18; myocardial infarction: 57, 1520, 4-46. Evidently creatine kinase MB isoenzyme is nonspecific in burn and trauma patients and should not be the only test result used to assess myocardial involvement. PMID:6744581

  13. The Conformation of NAD+ Bound to Lactate Dehydrogenase Determined by Nuclear Magnetic Resonance with Suppression of Spin Diffusion

    NASA Astrophysics Data System (ADS)

    Vincent, Sebastien J. F.; Zwahlen, Catherine; Post, Carol Beth; Burgner, John W.; Bodenhausen, Geoffrey

    1997-04-01

    We have reinvestigated the conformation of NAD+ bound to dogfish lactate dehydrogenase (LDH) by using an NMR experiment that allows one to exploit nuclear Overhauser effects to determine internuclear distances between pairs of protons, without perturbation of spin-diffusion effects from other protons belonging either to the cofactor or to the binding pocket of the enzyme. The analysis indicates that the structure of bound NAD+ is in accord with the conformation determined in the solid state by x-ray diffraction for the adenosine moiety, but deviates significantly from that of the nicotinamide. The NMR data indicate conformational averaging about the glycosidic bond of the nicotinamide nucleotide. In view of the strict stereospecificity of catalysis by LDH and the conformational averaging of bound NAD+ that we infer from solution-state NMR, we suggest that LDH binds the cofactor in both syn and anti conformations, but that binding interactions in the syn conformation are not catalytically productive.

  14. Evaluation of determination of lactate dehydrogenase isoenzyme 1 by chemical inhibition with perchlorate or with 1,6-hexanediol.

    PubMed

    Paz, J M; Garcia, A; Gonzales, M; Trevio, M; Tutor, J C; Jaquet, M; Rodriguez-Segade, S

    1990-02-01

    We have evaluated the determination of lactate dehydrogenase (EC 1.1.1.27) isoenzyme 1 activity by chemical inhibition of the other isoenzymes with perchlorate and with 1,6-hexanediol. In the hexanediol method, we studied the effect of the duration of incubation with the inhibitor; a 5-min incubation yielded results closest to those of an immunochemical technique (Isomune-LD). The perchlorate method was the most precise, and the hexanediol method the least, although for none of the techniques did the coefficient of variation exceed the medically acceptable limit prescribed by the College of American Pathologists. Pairwise correlation among the immunoprecipitation, electrophoretic, and chemical inhibition methods was good (r greater than 0.991), although the differences between means were statistically significant (except for the comparison of the two chemical inhibition methods). Because of its ease, low cost, and precision, we recommend the perchlorate method for routine use. PMID:2154344

  15. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    SciTech Connect

    Li, Yongchao; Tschaplinski, Timothy J; Engle, Nancy L; Hamilton, Choo Yieng; Rodriguez, Jr., Miguel; Liao, James C; Schadt, Christopher Warren; Guss, Adam M; Yang, Yunfeng; Graham, David E

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from complex biomass substrates.

  16. Cloning, nucleotide sequence, expression, and chromosomal location of ldh, the gene encoding L-(+)-lactate dehydrogenase, from Lactococcus lactis.

    PubMed Central

    Llanos, R M; Hillier, A J; Davidson, B E

    1992-01-01

    A gene (designated ldh) that encodes fructose-1,6-bisphosphate-activated L-(+)-lactate dehydrogenase was cloned from Lactococcus lactis subsp. lactis. Plasmids containing ldh conferred fructose-1,6-bisphosphate-activated L-(+)-lactate dehydrogenase activity on Escherichia coli cells. This activity was conferred only when a promoter had been introduced into the plasmid to express the cloned ldh. The nucleotide sequence of ldh predicted a chain length of 324 amino acids and a subunit molecular weight of 34,910 for the enzyme, after removal of the N-terminal methionine residue. Northern analyses of L. lactis subsp. lactis RNA showed that a 4.1-kb transcript hybridized strongly with ldh and that 1.2- and 1.1-kb transcripts hybridized to much lesser extents. Promoter- and terminator-cloning studies in which we used the vectors pGKV210 and pGKV259 in L. lactis subsp. lactis revealed that the 5' flanking DNA of ldh is devoid of transcription initiation signals and that transcription entering the 3' flanking DNA from either direction is efficiently terminated. These data and the data from Northern analyses led to the conclusion that ldh is expressed as the 3' gene of the 4.1-kb transcript and suggested that posttranscriptional processing yielded the shorter transcripts. We determined that ldh is located on the L. lactis subsp. lactis chromosome between coordinates 1.619 and 1.669 of the previously reported physical map (D. L. Tulloch, L. R. Finch, A. J. Hillier, and B. E. Davidson, J. Bacteriol. 173:2768-2775, 1991). Images PMID:1400245

  17. Highly stereoselective biosynthesis of (R)-?-hydroxy carboxylic acids through rationally re-designed mutation of d-lactate dehydrogenase

    PubMed Central

    Zheng, Zhaojuan; Sheng, Binbin; Gao, Chao; Zhang, Haiwei; Qin, Tong; Ma, Cuiqing; Xu, Ping

    2013-01-01

    An NAD-dependent d-lactate dehydrogenase (d-nLDH) of Lactobacillus bulgaricus ATCC 11842 was rationally re-designed for asymmetric reduction of a homologous series of ?-keto carboxylic acids such as phenylpyruvic acid (PPA), ?-ketobutyric acid, ?-ketovaleric acid, ?-hydroxypyruvate. Compared with wild-type d-nLDH, the Y52L mutant d-nLDH showed elevated activities toward unnatural substrates especially with large substitutes at C-3. By the biocatalysis combined with a formate dehydrogenase for in situ generation of NADH, the corresponding (R)-?-hydroxy carboxylic acids could be produced at high yields and highly optical purities. Taking the production of chiral (R)-phenyllactic acid (PLA) from PPA for example, 50?mM PPA was completely reduced to (R)-PLA in 90?min with a high yield of 99.0% and a highly optical purity (>99.9% e.e.) by the coupling system. The results presented in this work suggest a promising alternative for the production of chiral ?-hydroxy carboxylic acids. PMID:24292439

  18. Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases

    PubMed Central

    2013-01-01

    Background Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding l-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expressed in a new host organism, the non-conventional yeast Candida sonorensis, with or without the competing ethanol fermentation pathway. Results Each LDH strain produced substantial amounts of lactate, but the properties of the heterologous LDH affected the distribution of carbon between lactate and by-products significantly, which was reflected in extra-and intracellular metabolite concentrations. Under neutralizing conditions C. sonorensis expressing L. helveticus LDH accumulated lactate up to 92 g/l at a yield of 0.94 g/g glucose, free of ethanol, in minimal medium containing 5 g/l dry cell weight. In rich medium with a final pH of 3.8, 49 g/l lactate was produced. The fermentation pathway was modified in some of the strains studied by deleting either one or both of the pyruvate decarboxylase encoding genes, PDC1 and PDC2. The deletion of both PDC genes together abolished ethanol production and did not result in significantly reduced growth characteristic to Saccharomyces cerevisiae deleted of PDC1 and PDC5. Conclusions We developed an organism without previous record of genetic engineering to produce L-lactic acid to a high concentration, introducing a novel host for the production of an industrially important metabolite, and opening the way for exploiting C. sonorensis in additional biotechnological applications. Comparison of metabolite production, growth, and enzyme activities in a representative set of transformed strains expressing different LDH genes in the presence and absence of a functional ethanol pathway, at neutral and low pH, generated a comprehensive picture of lactic acid production in this yeast. The findings are applicable in generation other lactic acid producing yeast, thus providing a significant contribution to the field of biotechnical production of lactic acid. PMID:23706009

  19. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer.

    PubMed

    Wang, Jian; Wang, Hui; Liu, Aifen; Fang, Changge; Hao, Jianguo; Wang, Zhenghui

    2015-08-14

    Reprogramming metabolism of tumor cells is a hallmark of cancer. Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumor cells. Previous studies has shown higher levels of LDHA is related with colorectal cancer (CRC), but its role in tumor maintenance and underlying molecular mechanisms has not been established. Here, we investigated miRNAs-induced changes in LDHA expression. We reported that colorectal cancer express higher levels of LDHA compared with adjacent normal tissue. Knockdown of LDHA resulted in decreased lactate and ATP production, and glucose uptake. Colorectal cancer cells with knockdown of LDHA had much slower growth rate than control cells. Furthermore, we found that miR-34a, miR-34c, miR-369-3p, miR-374a, and miR-4524a/b target LDHA and regulate glycolysis in cancer cells. There is a negative correlation between these miRNAs and LDHA expression in colorectal cancer tissues. More importantly, we identified a genetic loci newly associated with increased colorectal cancer progression, rs18407893 at 11p15.4 (in 3'-UTR of LDHA), which maps to the seed sequence recognized by miR-374a. Cancer cells overexpressed miR-374a has decreased levels of LDHA compared with miR-374a-MUT (rs18407893 at 11p15.4). Taken together, these novel findings provide more therapeutic approaches to the Warburg effect and therapeutic targets of cancer energy metabolism. PMID:26062441

  20. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer

    PubMed Central

    Liu, Aifen; Fang, Changge; Hao, Jianguo; Wang, Zhenghui

    2015-01-01

    Reprogramming metabolism of tumor cells is a hallmark of cancer. Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumor cells. Previous studies has shown higher levels of LDHA is related with colorectal cancer (CRC), but its role in tumor maintenance and underlying molecular mechanisms has not been established. Here, we investigated miRNAs-induced changes in LDHA expression. We reported that colorectal cancer express higher levels of LDHA compared with adjacent normal tissue. Knockdown of LDHA resulted in decreased lactate and ATP production, and glucose uptake. Colorectal cancer cells with knockdown of LDHA had much slower growth rate than control cells. Furthermore, we found that miR-34a, miR-34c, miR-369-3p, miR-374a, and miR-4524a/b target LDHA and regulate glycolysis in cancer cells. There is a negative correlation between these miRNAs and LDHA expression in colorectal cancer tissues. More importantly, we identified a genetic loci newly associated with increased colorectal cancer progression, rs18407893 at 11p15.4 (in 3?-UTR of LDHA), which maps to the seed sequence recognized by miR-374a. Cancer cells overexpressed miR-374a has decreased levels of LDHA compared with miR-374a-MUT (rs18407893 at 11p15.4). Taken together, these novel findings provide more therapeutic approaches to the Warburg effect and therapeutic targets of cancer energy metabolism. PMID:26062441

  1. Lactation

    PubMed Central

    1989-01-01

    Lactation is the most energy-efficient way to provide for the dietary needs of young mammals, their mother's milk being actively protective, immunomodulatory, and ideal for their needs. Intrauterine mammary gland development in the human female is already apparent by the end of the sixth week of gestation. During puberty and adolescence secretions of the anterior pituitary stimulate the maturation of the graafian follicles in the ovaries and stimulate the secretion of follicular estrogens, which stimulate development of the mammary ducts. Pregnancy has the most dramatic effect on the breast, but development of the glandular breast tissue and deposition of fat and connective tissue continue under the influence of cyclic sex-hormone stimulation. Many changes occur in the nipple and breast during pregnancy and at delivery as a prelude to lactation. Preparation of the breasts is so effective that lactation could commence even if pregnancy were discontinued at 16 weeks. Following birth, placental inhibition of milk synthesis is removed, and a woman's progesterone blood levels decline rapidly. The breasts fill with milk, which is a high-density, low-volume feed called colostrum until about 30 hours after birth. Because it is not the level of maternal hormones, but the efficiency of infant suckling and/or milk removal that governs the volume of milk produced in each breast, mothers who permit their infants to feed ad libitum commonly observe that they have large volumes of milk 24-48 hours after birth. The two maternal reflexes involved in lactation are the milk-production and milk-ejection reflex. A number of complementary reflexes are involved when the infant feeds: the rooting reflex (which programmes the infant to search for the nipple), the sucking reflex (rhythmic jaw action creating negative pressure and a peristaltic action of the tongue), and the swallowing reflex. The infant's instinctive actions need to be consolidated into learned behaviour in the postpartum period when the use of artificial teats and dummies (pacifiers) may condition the infant to different oral actions that are inappropriate for breast-feeding. Comparisons of breast milk and cow's milk fail to describe the many important differences between them, e.g., the structural and qualitative differences in proteins and fats, and the bioavailability of minerals. The protection against infection and allergies conferred on the infant, which is impossible to attain through any other feeding regimen, is one of breast milk's most outstanding qualities. The maximum birth-spacing effect of lactation is achieved when an infant is fully, or nearly fully, breast-fed and the mother consequently remains amenorrhoeic. PMID:20604468

  2. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    PubMed Central

    2012-01-01

    Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from cellobiose, cellulose and switchgrass. PMID:22214220

  3. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.

    PubMed Central

    Gupta, S; Clark, D P

    1989-01-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed in terms of redox balance. PMID:2661531

  4. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation

    SciTech Connect

    Gupta, S.; Clark, D.P. )

    1989-07-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed terms of redox balance.

  5. Chorismate mutase-prephenate dehydrogenase from Escherichia coli. 1. Kinetic characterization of the dehydrogenase reaction by use of alternative substrates.

    PubMed

    Turnbull, J; Cleland, W W; Morrison, J F

    1990-11-01

    The bifunctional enzyme involved in tyrosine biosynthesis, chorismate mutase-prephenate dehydrogenase, has been isolated from extracts of a plasmid-containing strain of Escherichia coli K12 and purified to homogeneity by a modified procedure that involves chromatography on both Matrex Blue A and Sepharose-AMP. Detailed studies of the dehydrogenase reaction have been undertaken with analogues of prephenate that act as substrates. The analogues, which included two of the four possible diastereoisomers of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate (deoxodihydroprephenate) as well as D- and L-arogenate, were synthesized chemically. As judged by their V/K values, all analogues were poorer substrates than prephenate. The order of their effectiveness as substrates is prephenate greater than one isomer of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate greater than L-arogenate greater than other isomer of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate greater than D-arogenate. Thus the dehydrogenase activity is dependent on the degree and position of unsaturation in the ring structure of prephenate as well as on the type of substitution on the pyruvyl side chain. With prephenate as a substrate, the reaction is irreversible because it involves oxidative decarboxylation. By contrast, 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate undergoes only a simple oxidation, and thus, with this substrate, the reaction is reversible. Steady-state velocity data, obtained by varying substrates over a range of higher concentrations, suggest that the dehydrogenase reaction conforms to a rapid equilibrium, random mechanism with 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate as a substrate in the forward reaction or with the corresponding ketone derivative as a substrate in the reverse direction. The initial velocity patterns obtained by varying prephenate or 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate over a range of lower concentrations, at different fixed concentrations of NAD, were nonlinear and consistent with a unique model that is described by a velocity equation which is the ratio of quadratic polynomials. An equilibrium constant of 1.4 x 10(-7) M for the reaction in the presence of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate indicates that the equilibrium lies very much in favor of ketone production. PMID:2271652

  6. Changes in the ratio of lactate dehydrogenase isoenzymes 1 and 2 during the first day after acute myocardial infarction.

    PubMed

    Jablonsky, G; Leung, F Y; Henderson, A R

    1985-10-01

    It is known that the ratio of isoenzyme 1 to total lactate dehydrogenase (LD, EC 1.1.1.27) in serum is increased in all patients with acute myocardial infarction within 24 h of the infarct. We now show that the LD-1/LD-2 ratio for serum more promptly indicates acute myocardial infarction, being for most patients equivalent to measurement of creatine kinase (EC 2.7.3.2) isoenzyme 2 (CK-2, CK-MB) in serum. Of 128 patients with a confirmed diagnosis of myocardial infarction, 66 had normal values for all "cardiac" enzymes at the time of admission, but greater than 75% of them showed a parallel increase in values for CK-2 and the LD-1/LD-2 ratio. Of the 26 patients who had one or more abnormal values for cardiac enzymes on admission, 95% showed a parallel increase in CK-2 and the LD-1/LD-2 ratio, the median time for the beginning of these changes being 9 h from the onset of chest pain. The remaining 36 patients were excluded from the study because CK-2 decreased after admission or because the time of onset of chest pain was uncertain. PMID:4042327

  7. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of D-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-08-01

    The thermostable D-lactate dehydrogenase from Lactobacillus jensenii (LjD-LDH) is a key enzyme for the production of the D-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of lactic acid are used as biodegradable bioplastics. The LjD-LDH protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 28%(w/v) polyethylene glycol 400, 100 mM Tris-HCl pH 9, 200 mM magnesium sulfate at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.1 Å. The crystal belonged to space group P3121, with unit-cell parameters a = b = 90.5, c = 157.8 Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.58 Å(3) Da(-1), which corresponds to a solvent content of approximately 52.3%. The structure was solved by single-wavelength anomalous dispersion using a selenomethionine derivative. PMID:25084378

  8. Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics

    PubMed Central

    Zhu, Guan

    2015-01-01

    Abstract The apicomplexan, Cryptosporidium parvum, possesses a bacterial-type lactate dehydrogenase (CpLDH). This is considered to be an essential enzyme, as this parasite lacks the Krebs cycle and cytochrome-based respiration, and mainly–if not solely, relies on glycolysis to produce ATP. Here, we provide evidence that in extracellular parasites (e.g., sporozoites and merozoites), CpLDH is localized in the cytosol. However, it becomes associated with the parasitophorous vacuole membrane (PVM) during the intracellular developmental stages, suggesting involvement of the PVM in parasite energy metabolism. We characterized the biochemical features of CpLDH and observed that, at lower micromolar levels, the LDH inhibitors gossypol and FX11 could inhibit both CpLDH activity (Ki = 14.8 μM and 55.6 μM, respectively), as well as parasite growth in vitro (IC50 = 11.8 μM and 39.5 μM, respectively). These observations not only reveal a new function for the poorly understood PVM structure in hosting the intracellular development of C. parvum, but also suggest LDH as a potential target for developing therapeutics against this opportunistic pathogen, for which fully effective treatments are not yet available. PMID:26562790

  9. Prognostic implications of dynamic serum lactate dehydrogenase assessments in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy

    PubMed Central

    Zhou, Guan-Qun; Ren, Xian-Yue; Mao, Yan-Ping; Chen, Lei; Sun, Ying; Liu, Li-Zhi; Li, Li; Lin, Ai-Hua; Mai, Hai-Qiang; Ma, Jun

    2016-01-01

    The prognostic value of dynamic serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT) hasn’t been explored. We retrospectively analyzed 1,428 cases of NPC treated with IMRT with or without chemotherapy. Elevated pre- and/or post-treatment LDH levels were found to be associated with unfavorable overall survival (OS), disease-free survival (DFS) and distant metastasis-free survival (DMFS), but not with local relapse-free survival (LRFS). The dynamic variations in LDH levels were prognostic factors for OS, DFS and DMFS, but not for LRFS. Multivariate analysis revealed that the N category, T category, post-treatment serum LDH level and age were independent prognostic factors for OS. Our results demonstrated that dynamic variations in LDH levels were associated with risk of distant failure and death, which may shed light on the dynamics of the disease and the response to therapy. We consider that LDH measurements will be of great clinical importance in the management of NPC, especially, when considering “decision points” in treatment algorithms. Therefore, we strongly recommend that LDH levels should be determined before and after treatment in NPC patients and the results integrated into decisions regarding treatment strategies. PMID:26928265

  10. The value of lactate dehydrogenase serum levels as a prognostic and predictive factor for advanced pancreatic cancer patients receiving sorafenib

    PubMed Central

    Faloppi, Luca; Bianconi, Maristella; Giampieri, Riccardo; Sobrero, Alberto; Labianca, Roberto; Ferrari, Daris; Barni, Sandro; Aitini, Enrico; Zaniboni, Alberto; Boni, Corrado; Caprioni, Francesco; Mosconi, Stefania; Fanello, Silvia; Berardi, Rossana; Bittoni, Alessandro; Andrikou, Kalliopi; Cinquini, Michela; Torri, Valter; Scartozzi, Mario; Cascinu, Stefano

    2015-01-01

    Although lactate dehydrogenase (LDH) serum levels, indirect markers of angiogenesis, are associated with a worse outcome in several tumours, their prognostic value is not defined in pancreatic cancer. Moreover, high levels are associated even with a lack of efficacy of tyrosine kinase inhibitors, contributing to explain negative results in clinical trials. We assessed the role of LDH in advanced pancreatic cancer receiving sorafenib. Seventy-one of 114 patients included in the randomised phase II trial MAPS (chemotherapy plus or not sorafenib) and with available serum LDH levels, were included in this analysis. Patients were categorized according to serum LDH levels (LDH ≤vs.> upper normal rate). A significant difference was found in progression free survival (PFS) and in overall survival (OS) between patients with LDH values under or above the cut-off (PFS: 5.2 vs. 2.7 months, p = 0.0287; OS: 10.7 vs. 5.9 months, p = 0.0021). After stratification according to LDH serum levels and sorafenib treatment, patients with low LDH serum levels treated with sorafenib showed an advantage in PFS (p = 0.05) and OS (p = 0.0012). LDH appears to be a reliable parameter to assess the prognosis of advanced pancreatic cancer patients, and it may be a predictive parameter to select patients candidate to receive sorafenib. PMID:26397228

  11. Purification of a recombinant histidine-tagged lactate dehydrogenase from the malaria parasite, Plasmodium vivax, and characterization of its properties.

    PubMed

    Sundaram, Balamurugan; Varadarajan, Nandan Mysore; Subramani, Pradeep Annamalai; Ghosh, Susanta Kumar; Nagaraj, Viswanathan Arun

    2014-12-01

    Lactate dehydrogenase (LDH) of the malaria parasite, Plasmodium vivax (Pv), serves as a drug target and immunodiagnostic marker. The LDH cDNA generated from total RNA of a clinical isolate of the parasite was cloned into pRSETA plasmid. Recombinant his-tagged PvLDH was over-expressed in E. coli Rosetta2DE3pLysS and purified using Ni(2+)-NTA resin giving a yield of 25-30mg/litre bacterial culture. The recombinant protein was enzymatically active and its catalytic efficiency for pyruvate was 5.4נ10(8)min(-1)M(-1), 14.5 fold higher than a low yield preparation reported earlier to obtain PvLDH crystal structure. The enzyme activity was inhibited by gossypol and sodium oxamate. The recombinant PvLDH was reactive in lateral flow immunochromatographic assays detecting pan- and vivax-specific LDH. The soluble recombinant PvLDH purified using heterologous expression system can facilitate the generation of vivax LDH-specific monoclonals and the screening of chemical compound libraries for PvLDH inhibitors. PMID:25048245

  12. Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics.

    PubMed

    Zhang, Haili; Guo, Fengguang; Zhu, Guan

    2015-11-01

    The apicomplexan, Cryptosporidium parvum, possesses a bacterial-type lactate dehydrogenase (CpLDH). This is considered to be an essential enzyme, as this parasite lacks the Krebs cycle and cytochrome-based respiration, and mainly-if not solely, relies on glycolysis to produce ATP. Here, we provide evidence that in extracellular parasites (e.g., sporozoites and merozoites), CpLDH is localized in the cytosol. However, it becomes associated with the parasitophorous vacuole membrane (PVM) during the intracellular developmental stages, suggesting involvement of the PVM in parasite energy metabolism. We characterized the biochemical features of CpLDH and observed that, at lower micromolar levels, the LDH inhibitors gossypol and FX11 could inhibit both CpLDH activity (Ki = 14.8 μM and 55.6 μM, respectively), as well as parasite growth in vitro (IC50 = 11.8 μM and 39.5 μM, respectively). These observations not only reveal a new function for the poorly understood PVM structure in hosting the intracellular development of C. parvum, but also suggest LDH as a potential target for developing therapeutics against this opportunistic pathogen, for which fully effective treatments are not yet available. PMID:26562790

  13. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    PubMed Central

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  14. Prognostic implications of dynamic serum lactate dehydrogenase assessments in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy.

    PubMed

    Zhou, Guan-Qun; Ren, Xian-Yue; Mao, Yan-Ping; Chen, Lei; Sun, Ying; Liu, Li-Zhi; Li, Li; Lin, Ai-Hua; Mai, Hai-Qiang; Ma, Jun

    2016-01-01

    The prognostic value of dynamic serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT) hasn't been explored. We retrospectively analyzed 1,428 cases of NPC treated with IMRT with or without chemotherapy. Elevated pre- and/or post-treatment LDH levels were found to be associated with unfavorable overall survival (OS), disease-free survival (DFS) and distant metastasis-free survival (DMFS), but not with local relapse-free survival (LRFS). The dynamic variations in LDH levels were prognostic factors for OS, DFS and DMFS, but not for LRFS. Multivariate analysis revealed that the N category, T category, post-treatment serum LDH level and age were independent prognostic factors for OS. Our results demonstrated that dynamic variations in LDH levels were associated with risk of distant failure and death, which may shed light on the dynamics of the disease and the response to therapy. We consider that LDH measurements will be of great clinical importance in the management of NPC, especially, when considering "decision points" in treatment algorithms. Therefore, we strongly recommend that LDH levels should be determined before and after treatment in NPC patients and the results integrated into decisions regarding treatment strategies. PMID:26928265

  15. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  16. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues.

    PubMed

    Hara, Masakazu; Monna, Shuhei; Murata, Takae; Nakano, Taiyo; Amano, Shono; Nachbar, Markus; Wätzig, Hermann

    2016-04-01

    Dehydrin, which is one of the late embryogenesis abundant (LEA) proteins, is involved in the ability of plants to tolerate the lack of water. Although many reports have indicated that dehydrins bind heavy metals, the physiological role of this metal binding has not been well understood. Here, we report that the Arabidopsis KS-type dehydrin (AtHIRD11) recovered the lactate dehydrogenase (LDH) activity denatured by Cu(2+). The LDH activity was partially inhibited by 0.93μM Cu(2+) but totally inactivated by 9.3μM Cu(2+). AtHIRD11 recovered the activity of LDH treated with 9.3μM Cu(2+) in a dose-dependent manner. The recovery activity of AtHIRD11 was significantly higher than those of serum albumin and lysozyme. The conversion of His residues to Ala in AtHIRD11 resulted in the loss of the Cu(2+) binding of the protein as well as the disappearance of the conformational change induced by Cu(2+) that is observed by circular dichroism spectroscopy. The mutant protein showed lower recovery activity than the original AtHIRD11. These results indicate that AtHIRD11 can reactivate LDH inhibited by Cu(2+) via the His residues. This function may prevent physiological damage to plants due to heavy-metal stress. PMID:26940498

  17. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme.

    PubMed

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24?h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  18. Measurements of C-reactive protein in serum and lactate dehydrogenase in serum and synovial fluid of patients with osteoarthritis.

    PubMed

    Hurter, K; Spreng, D; Rytz, U; Schawalder, P; Ott-Knüsel, F; Schmökel, H

    2005-03-01

    Diagnosis of osteoarthritis (OA) is based upon the clinical orthopaedic examination and the radiographic assessment, both of which can be non-specific and insensitive in early joint disease. The aim of our study was to investigate if there is an increase in serum levels of C-reactive protein (CRP) in degenerative joint disease (DJD) and if CRP could be used to help diagnose OA. We also wished to investigate whether it was possible to distinguish a joint with clinically and radiographically confirmed OA from a healthy joint by comparing lactate dehydrogenase (LDH) levels within the synovial fluid and the serum. We have shown a difference in synovial LDH levels between diseased and healthy joints (P<0.0001). There was also a significant difference between LDH in arthritic synovial fluid and serum, with no correlation between the values. Despite the fact that the values of our clinical patients tended to be higher than the values of our control group (P=0.05) all measured values were within the normal limits of previous publications. From these data, we conclude that single measurements of serum CRP do not permit detection of OA in clinical patients and that serum LDH is not a reliable marker for osteoarthritis. LDH levels in the synovial fluid could be of diagnostic value for identifying osteoarthritis. PMID:15727922

  19. The effect of foetal bovine serum supplementation upon the lactate dehydrogenase cytotoxicity assay: Important considerations for in vitro toxicity analysis.

    PubMed

    Thomas, Martin G; Marwood, Roxanne M; Parsons, Anna E; Parsons, Richard B

    2015-12-25

    The lactate dehydrogenase (LDH) assay is a commonly-used tool for assessing toxicity in vitro. However, anecdotal reports suggest that foetal bovine serum (FBS) may contain LDH at concentrations significant enough to interfere with the assay and thus reduce its sensitivity. A series of experiments were performed to determine whether addition of FBS to culture medium significantly elevated culture media LDH content, and whether replacement of FBS with heat inactivated foetal bovine serum (HI-FBS) reduced LDH content and interfered with cell response to cytotoxic challenge. The addition of FBS at 5, 10 and 15% final concentrations increased culture medium LDH content in a dose-dependent manner. The substitution of HI-FBS for FBS reduced culture medium LDH content and increased the dynamic range of the assay. Cell viability of the SH-SY5Y human neuroblastoma and N27 rat mesencephalic neurone cell lines were significantly reduced as measured using the MTT reduction assay, whilst HI-FBS only affected toxicity response in a cell- and toxin-specific manner, although these effects were small. Hence, for cell lines with a high FBS requirement, the use of HI-FBS or alternative toxicity assays can be considered, or the use of alternative formulations, such as chemically-defined serum-free media, be adopted. PMID:26498060

  20. Lactate dehydrogenase as a marker of nasopharyngeal inflammatory injury during viral upper respiratory infection: implications for acute otitis media

    PubMed Central

    Ede, Linda C.; OBrien, James; Chonmaitree, Tasnee; Han, Yimei; Patel, Janak A.

    2013-01-01

    Background Acute otitis media (AOM) is a frequent complication of viral upper respiratory tract infection (URI). We hypothesized that severity of nasopharyngeal cellular injury during URI, as measured by lactate dehydrogenase (LDH) concentrations in nasopharyngeal secretions (NPS), is related to AOM complication. Methods LDH concentrations were determined in NPS samples (n=594) which were collected at the initial visit for URI from 183 children who were followed for development of AOM. A subset of NPS samples (n= 134) were analyzed for interleukin (IL)-1?, IL-6, and tumor necrosis factor (TNF) ? concentrations. Results AOM complication was independently predicted by LDH concentrations (median mU/ml with AOM = 2438 vs. without AOM = 1573, estimate=0.276; P=0.02). LDH effect on AOM development was highest during the first 4 days of URI. LDH concentrations were higher in URIs due to adenoviruses, bocaviruses, and rhinoviruses when compared to virus-negative samples (P <0.05). There was a positive correlation between concentrations of LDH and all cytokines (P< 0.001). Conclusion LDH concentrations in NPS are positively associated with AOM risk, suggesting that the severity of nasopharyngeal inflammatory injury during URI contributes to the development of AOM, and that reduction of inflammatory injury may reduce the risk for AOM. PMID:23202721

  1. Biochemical and in silico Characterization of Recombinant L-Lactate Dehydrogenase of Theileria annulata.

    PubMed

    Nural, Belma; Erdemir, Aysegul; Mutlu, Ozal; Yakarsonmez, Sinem; Danis, Ozkan; Topuzogullari, Murat; Turgut-Balik, Dilek

    2016-04-01

    Theileria annulata is a parasite that causes theileriosis in cattle. Reports about drug resistance made essential to develop new drug. LDH of Theileria schizonts is the vital enzyme for its anaerobic metabolism. TaLDH gene was first cloned into pGEM-T cloning vector with two introns in our previous study. Here we report cloning of TaLDH without introns into pLATE 31 vector in E. coli BL21(DE3). Protein was in an inactive form. Two mutations were fixed to express the active protein. Protein was purified by affinity chromatography and evaluated by SDS-PAGE and size exclusion chromatography. Optimum pH of enzyme was performed in pH 7.5, and enzyme was stabilized at 20-40 °C. Enzyme kinetics of recombinant TaLDH were found to be in the direction of pyruvate to lactate K m 0.1324 and K i 4.295 mM, k cat , 44.55/s and k cat /K m , 3.3693 × 10(5)/M/s. 3D structure of TaLDH was predicted, and possible drug binding sites were determined by homology modelling. PMID:26921192

  2. Identification of N-acylhydrazone derivatives as novel lactate dehydrogenase A inhibitors.

    PubMed

    Rupiani, Sebastiano; Buonfiglio, Rosa; Manerba, Marcella; Di Ianni, Lorenza; Vettraino, Marina; Giacomini, Elisa; Masetti, Matteo; Falchi, Federico; Di Stefano, Giuseppina; Roberti, Marinella; Recanatini, Maurizio

    2015-08-28

    Glycolysis is drastically increased in tumors and it is the main route to energy production with a minor use of oxidative phosphorylation. Among the key enzymes in the glycolytic process, LDH is emerging as one of the most interesting targets for the development of new inhibitors. In this context, in the present work, we carried out a virtual screening procedure followed by chemical modifications of the identified structures according to a "hit-to-lead" process. The effects of the new molecules were preliminary probed against purified human LDH-A. The compounds active at low micromolar level were additionally characterized for their activity on some cellular metabolic processes by using Raji human cell line. Within the series, 1 was considered the best candidate, and a more detailed characterization of its biological properties was performed. In Raji cells exposed to compound 1 we evidenced the occurrence of effects usually observed in cancer cells after LDH-A inhibition: reduced lactate production and NAD/NADH ratio, apoptosis. The flow cytometry analysis of treated cells also showed cell cycle changes compatible with effects exerted at the glycolytic level. Finally, in agreement with the data obtained with other inhibitors or by silencing LDH-A expression, compound 1 was found to increase Raji cells response to some commonly used chemotherapeutic agents. Taken together, all these finding are in support of the LDH-A inhibiting activity of compound 1. PMID:26114812

  3. Contact lens-induced edema in vitro--amelioration by lactate dehydrogenase inhibitors.

    PubMed

    Rohde, M D; Huff, J W

    1986-10-01

    Isolated rabbit corneas bathed in Krebs-bicarbonate Ringer solution were observed for thickness changes after a 90 minute equilibration period. Control corneas swelled an average of 0.5 micron/hr, and placement of a polymethylmechacrylate (PMMA) contact lens on the epithelial surface caused the corneas to swell 24.5 microns/hr, an effect similar to 0.5 mM epithelial cyanide exposure. The pronounced swelling induced by PMMA lens placement was much less however, in the epithelial presence of 3.2 mM sodium oxalate (3.22 microns/hr) or 3.2 mM sodium oxamate (5.38 microns/hr). An equiosmotic excess of 4.8 mM NaCl was least active (15.89 microns/hr). On normal isolated corneas (without contact lenses), the Ringer containing an excess of 4.8 mM NaCl significantly deswelled the corneas (-13.44 microns/hr), which contrasted with oxalate and oxamate containing Ringer solutions (1.17 and 1.33 micron/hr respectively). The present study supports the notion that contact lens-induced edema results from stromal lactate accumulation, and suggests a potential alternative to osmotic therapy for its amelioration. These LDH inhibitors, in the concentrations used, have no acute osmotic or toxic effect on normal corneas in vitro. PMID:3769523

  4. Reactions of benzylamines with methylamine dehydrogenase. Evidence for a carbanionic reaction intermediate and reaction mechanism similar to eukaryotic quinoproteins.

    PubMed

    Davidson, V L; Jones, L H; Graichen, M E

    1992-04-01

    It had been previously reported that aromatic amines were not substrates for the bacterial quinoprotein methylamine dehydrogenase. In this study, benzylamine-dependent activity was also not observed in the steady-state assay of this enzyme with the artificial electron acceptor phenazine ethosulfate (PES). Benzylamines did, however, stoichiometrically reduce the protein-bound tryptophan tryptophylquinone (TTQ) prosthetic group and acted as reversible competitive inhibitors of methylamine oxidation when the enzyme was assayed with PES. When methylamine dehydrogenase activity was monitored using a steady-state assay which employed its physiological electron acceptor amicyanin instead of PES, very low but detectable benzylamine-dependent activity was observed. The reactions of a series of para-substituted benzylamines with methylamine dehydrogenase were examined. A Hammett plot of the log of Ki values for the competitive inhibition by these amines against sigma p exhibited a negative slope. Rapid kinetic measurements allowed the determination of values of k3 and Ks for the reduction of TTQ by each of these amines. A Hammett plot of log k3 versus sigma p exhibited a positive slope, which suggests that the oxidation of these amines by methylamine dehydrogenase proceeds through a carbanionic reaction intermediate. A negative slope was observed for the correlation between log Ks and sigma p. Plots of log k3 and log Ks against substituent constants which reflected either resonance or field/inductive parameters for each para substituent indicated that the magnitude of k3 was primarily influenced by field/inductive effects while Ks was primarily influenced by resonance effects. No correlation was observed between either k3 or Ks and the relative hydrophobicity of the para-substituted benzylamines or steric parameters.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1554720

  5. Reaction norm model to describe environmental sensitivity across first lactation in dairy cattle under tropical conditions.

    PubMed

    Bignardi, Annaiza Braga; El Faro, Lenira; Pereira, Rodrigo Junqueira; Ayres, Denise Rocha; Machado, Paulo Fernando; de Albuquerque, Lucia Galvo; Santana, Mrio Luiz

    2015-10-01

    Reaction norm models have been widely used to study genotype by environment interaction (G??E) in animal breeding. The objective of this study was to describe environmental sensitivity across first lactation in Brazilian Holstein cows using a reaction norm approach. A total of 50,168 individual monthly test day (TD) milk yields (10 test days) from 7476 complete first lactations of Holstein cattle were analyzed. The statistical models for all traits (10 TDs and for 305-day milk yield) included the fixed effects of contemporary group, age of cow (linear and quadratic effects), and days in milk (linear effect), except for 305-day milk yield. A hierarchical reaction norm model (HRNM) based on the unknown covariate was used. The present study showed the presence of G??E in milk yield across first lactation of Holstein cows. The variation in the heritability estimates implies differences in the response to selection depending on the environment where the animals of this population are evaluated. In the average environment, the heritabilities for all traits were rather similar, in range from 0.02 to 0.63. The scaling effect of G??E predominated throughout most of lactation. Particularly during the first 2 months of lactation, G??E caused reranking of breeding values. It is therefore important to include the environmental sensitivity of animals according to the phase of lactation in the genetic evaluations of Holstein cattle in tropical environments. PMID:26143280

  6. An atypical distribution of lactate dehydrogenase isoenzymes in the hooded seal (Cystophora cristata) brain may reflect a biochemical adaptation to diving.

    PubMed

    Hoff, Mariana Leivas Müller; Fabrizius, Andrej; Folkow, Lars P; Burmester, Thorsten

    2016-04-01

    The brains of some diving mammals can withstand periods of severe hypoxia without signs of deleterious effects. This may in part be due to an enhanced cerebral capacity for anaerobic energy production. Here, we have tested this hypothesis by comparing various parameters of the lactate dehydrogenase (LDH) in the brain of the hooded seal (Cystophora cristata) with those in the brains of the ferret (Mustela putorius furo) and mouse (Mus musculus). We found that mRNA and protein expression of lactate dehydrogenase a (LDHA) and lactate dehydrogenase b (LDHB), and also the LDH activity were significantly higher in the ferret brain than in brains of the hooded seal and the mouse (p < 0.0001). No conspicuous differences in the LDHA and LDHB sequences were observed. There was also no difference in the buffering capacities of the brains. Thus, an enhanced capacity for anaerobic energy production likely does not explain the higher hypoxia tolerance of the seal brain. However, the brain of the hooded seal had higher relative levels of LDHB isoenzymes (LDH1 and LDH2) compared to the non-diving mammals. Moreover, immunofluorescence studies showed more pronounced co-localization of LDHB and glial fibrillary acidic protein in the cortex of the hooded seal. Since LDHB isoenzymes primarily catalyze the conversion of lactate to pyruvate, this finding suggests that the contribution of astrocytes to the brain aerobic metabolism is higher in the hooded seal than in non-diving species. The cerebral tolerance of the hooded seal to hypoxia may therefore partly rely on different LDH isoenzymes distribution. PMID:26820264

  7. Hot spots in cold adaptation: Localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes

    PubMed Central

    Fields, Peter A.; Somero, George N.

    1998-01-01

    To elucidate mechanisms of enzymatic adaptation to extreme cold, we determined kinetic properties, thermal stabilities, and deduced amino acid sequences of lactate dehydrogenase A4 (A4-LDH) from nine Antarctic (?1.86 to 1C) and three South American (4 to 10C) notothenioid teleosts. Higher MichaelisMenten constants (Km) and catalytic rate constants (kcat) distinguish orthologs of Antarctic from those of South American species, but no relationship exists between adaptation temperature and the rate at which activity is lost because of heat denaturation. In all species, active site residues are conserved fully, and differences in kcat and Km are caused by substitutions elsewhere in the molecule. Within geographic groups, identical kinetic properties are generated by different substitutions. By combining our data with A4-LDH sequences for other vertebrates and information on roles played by localized conformational changes in setting kcat, we conclude that notothenioid A4-LDHs have adapted to cold temperatures by increases in flexibility in small areas of the molecule that affect the mobility of adjacent active-site structures. Using these findings, we propose a model that explains linked temperature-adaptive variation in Km and kcat. Changes in sequence that increase flexibility of regions of the enzyme involved in catalytic conformational changes may reduce energy (enthalpy) barriers to these rate-governing shifts in conformation and, thereby, increase kcat. However, at a common temperature of measurement, the higher configurational entropy of a cold-adapted enzyme may foster conformations that bind ligands poorly, leading to high Km values relative to warm-adapted orthologs. PMID:9736762

  8. Impact of Pre-Treatment Lactate Dehydrogenase Levels on Prognosis and Bevacizumab Efficacy in Patients with Metastatic Colorectal Cancer

    PubMed Central

    Passardi, Alessandro; Scarpi, Emanuela; Tamberi, Stefano; Cavanna, Luigi; Tassinari, Davide; Fontana, Annalisa; Pini, Sara; Bernardini, Ilaria; Accettura, Caterina; Ulivi, Paola; Frassineti, Giovanni Luca; Amadori, Dino

    2015-01-01

    Background To investigate the impact of pre-treatment lactate dehydrogenase (LDH) levels on the outcome of patients with metastatic colorectal cancer treated with first-line chemotherapy with or without the anti-VEGF monoclonal antibody, bevacizumab, in a phase III prospective multicentre randomized ITACa (Italian Trial in Advanced Colorectal Cancer) trial. Methods Three hundred and seventy patients enrolled onto the ITACa first-line trial were considered for this study, 176 receiving chemotherapy (either FOLFIRI or FOLFOX) plus bevacizumab and 194 receiving chemotherapy only. Pre-treatment LDH levels were evaluated to identify a potential correlation with progression-free survival (PFS), overall survival (OS) and objective response rate. Results Information on pre-treatment LDH levels was available for 344 patients. High LDH levels were predictive of a lower median PFS (8.1 months vs. 9.2 months, p< 0.0001) and median OS (16.1 months vs. 25.2 months, p< 0.0001) in the overall population. In the chemotherapy plus bevacizumab group, median PFS was 9.1 and 9.8 months in patients with high LDH and low LDH, respectively (p= 0.073), whereas in the chemotherapy-only arm it was 6.9 and 9.1 months, respectively (p < 0.0001). In patients with high LDH, the addition of bevacizumab to chemotherapy led to a reduction in the rate of progressive disease (16.4 vs. 30.5%, p= 0.081) and to a prolonged PFS (p= 0.028). Conclusion A high LDH value was confirmed as a marker of poor prognosis. Bevacizumab reduced the progressive disease rate and improved PFS in the high-LDH subgroup, making serum LDH a potentially effective an easily available and marker to select patients who benefit from bevacizumab. Trial Registration NCT01878422 ClinicalTrials.gov PMID:26244985

  9. Correlation between the Lactate Dehydrogenase Levels with Laboratory Variables in the Clinical Severity of Sickle Cell Anemia in Congolese Patients

    PubMed Central

    Mikobi, Tite Minga; Lukusa Tshilobo, Prosper; Aloni, Michel Ntetani; Mvumbi Lelo, Georges; Akilimali, Pierre Zalagile; Muyembe-Tamfum, Jean Jacques; Race, Valrie; Matthijs, Gert; Mbuyi Mwamba, Jean Marie

    2015-01-01

    Background Sickle cell anemia is an inflammatory disease and is characterized by chronic hemolysis. We sought to evaluate the association of lactate dehydrogenase levels with specific clinical phenotypes and laboratory variables in patients with sickle cell anemia. Methods The present cross-sectional study was conducted in Sickle Cell Centre of Yolo in Kinshasa, the Democratic Republic of Congo. Two hundred and eleven patients with Sickle Cell Anemia in steady state were recruited. Seventy-four participants with normal Hb (Hb-AA) were selected as a control group. Results The average rates of hemoglobin, hematocrit, and red blood cells tended to be significantly lower in subjects with Hb-SS (p<0.001). The average rates of white blood cells, platelets, reticulocytes and serum LDH were significantly higher in subjects with Hb-SS (p<0.001). The average rates of Hb, HbF, hematocrit and red blood cells of Hb-SS patients with asymptomatic clinical phenotype were significantly higher than those of the two other phenotypes. However, the average rates of white blood cells, platelets, reticulocytes, and LDH of Hb-SS patients with the severe clinical phenotype are higher than those of two other clinical phenotypes. Significant correlations were observed between Hb and white blood cell in severe clinical phenotype (r3 = -0.37 *) between Hb and red blood cells in the three phenotypes (r1 = 0.69 * r2 * = 0.69, r3 = 0.83 *), and finally between Hb and reticulocytes in the asymptomatic clinical phenotype and severe clinical phenotype (r1 = -0.50 * r3 = 0.45 *). A significant increase in LDH was observed in patients with leg ulcer, cholelithiasis and aseptic necrosis of the femoral head. Conclusion The increase in serum LDH is accompanied by changes in hematological parameters. In our midst, serum LDH may be considered as an indicator of the severity of the disease. PMID:25946088

  10. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome

    PubMed Central

    Mohammad, Goran Hamid; Olde Damink, S. W. M.; Malago, Massimo; Dhar, Dipok Kumar; Pereira, Stephen P.

    2016-01-01

    Pancreatic cancer has a 5-year survival rate of less than 4%. Despite advances in diagnostic technology, pancreatic cancer continues to be diagnosed at a late and incurable stage. Accurate biomarkers for early diagnosis and to predict treatment response are urgently needed. Since alteration of glucose metabolism is one of the hallmarks of cancer cells, we proposed that pyruvate kinase type M2 (M2PK) and lactate dehydrogenase A (LDHA) enzymes could represent novel diagnostic markers and potential therapeutic targets in pancreatic cancer. In 266 tissue sections from normal pancreas, pancreatic cystic neoplasms, pancreatic intraepithelial neoplasia (PanIN) and cancer, we evaluated the expression of PKM2, LDHA, Ki-67 and CD8+ by immunohistochemistry and correlated these markers with clinicopathological characteristics and patient survival. PKM2 and LDHA expression was also assessed by Western blot in 10 human pancreatic cancer cell lines. PKM2 expression increased progressively from cyst through PanIN to cancer, whereas LDHA was overexpressed throughout the carcinogenic process. All but one cell line showed high expression of both proteins. Patients with strong PKM2 and LDHA expression had significantly worse survival than those with weak PKM2 and/or LDHA expression (7.0 months vs. 27.9 months, respectively, p = 0.003, log rank test). The expression of both PKM2 and LDHA correlated directly with Ki-67 expression, and inversely with intratumoral CD8+ cell count. PKM2 was significantly overexpressed in poorly differentiated tumours and both PKM2 and LDHA were overexpressed in larger tumours. Multivariable analysis showed that combined expression of PKM2 and LDHA was an independent poor prognostic marker for survival. In conclusion, our results demonstrate a high expression pattern of two major glycolytic enzymes during pancreatic carcinogenesis, with increased expression in aggressive tumours and a significant adverse effect on survival. PMID:26989901

  11. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    SciTech Connect

    Liao, Ya-Tang; Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; Genomics Research Center, Academia Sinica, Taiwan ; Chen, Chien-Jen; Genomics Research Center, Academia Sinica, Taiwan ; Li, Wan-Fen; Hsu, Ling-I; Tsai, Li-Yu; Huang, Yeou-Lih; Sun, Chien-Wen; Chen, Wei J.; Wang, Shu-Li; Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan

    2012-08-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  12. Electron acquisition system constructed from an NAD-independent D-lactate dehydrogenase and cytochrome c2 in Rhodopseudomonas palustris No. 7.

    PubMed

    Horikiri, Shunsuke; Aizawa, Yoshiyuki; Kai, Taiki; Amachi, Seigo; Shinoyama, Hirofumi; Fujii, Takaaki

    2004-03-01

    The activities of NAD-independent D- and L-lactate dehydrogenases (D-LDH, L-LDH) were detected in Rhodopseudomonas palustris No. 7 grown photoanaerobically on lactate. One of these enzymes, D-LDH, was purified as an electrophoretically homogeneous protein (M(r), about 235,000; subunit M(r) about 57,000). The pI was 5.0. The optimum pH and temperature of the enzyme were pH 8.5 and 50 degrees C, respectively. The Km of the enzyme for D-lactate was 0.8 mM. The enzyme had narrow substrate specificity (D-lactate and DL-2-hydroxybutyrate). The enzymatic activity was competitively inhibited by oxalate (Ki, 0.12 mM). The enzyme contained a FAD cofactor. Cytochrome c(2) was purified from strain No. 7 as an electrophoretically homogeneous protein. Its pI was 9.4. Cytochrome c(2) was reduced by incubating with D-LDH and D-lactate. PMID:15056881

  13. Purification and Properties of White Muscle Lactate Dehydrogenase from the Anoxia-Tolerant Turtle, the Red-Eared Slider, Trachemys scripta elegans

    PubMed Central

    Dawson, Neal J.; Bell, Ryan A. V.; Storey, Kenneth B.

    2013-01-01

    Lactate dehydrogenase (LDH; E.C. 1.1.1.27) is a crucial enzyme involved in energy metabolism in muscle, facilitating the production of ATP via glycolysis during oxygen deprivation by recycling NAD+. The present study investigated purified LDH from the muscle of 20?h anoxic and normoxic T. s. elegans, and LDH from anoxic muscle showed a significantly lower (47%) Km for L-lactate and a higher Vmax value than the normoxic form. Several lines of evidence indicated that LDH was converted to a low phosphate form under anoxia: (a) stimulation of endogenously present protein phosphatases decreased the Km of L-lactate of control LDH to anoxic levels, whereas (b) stimulation of kinases increased the Km of L-lactate of anoxic LDH to normoxic levels, and (c) dot blot analysis shows significantly less serine (78%) and threonine (58%) phosphorylation in anoxic muscle LDH as compared to normoxic LDH. The physiological consequence of anoxia-induced LDH dephosphorylation appears to be an increase in LDH activity to promote the reduction of pyruvate in muscle tissue, converting the glycolytic end product to lactate to maintain a prolonged glycolytic flux under energy-stressed anoxic conditions. PMID:23533717

  14. Secondary sup 15 N isotope effects on the reactions catalyzed by alcohol and formate dehydrogenases

    SciTech Connect

    Rotberg, N.S.; Cleland, W.W. )

    1991-04-23

    Secondary {sup 15}N isotope effects at the N-1 position of 3-acetylpyridine adenine dinucleotide have been determined, by using the internal competition technique, for horse liver alcohol dehydrogenase (LADH) with cyclohexanol as a substrate and yeast formate dehydrogenase (FDH) with formate as a substrate. On the basis of less precise previous measurements of these {sup 15}N isotope effects, the nicotinamide ring of NAD has been suggested to adopt a boat conformation with carbonium ion character at C-4 during hydride transfer. If this mechanism were valid, as N-1 becomes pyramidal an {sup 15}N isotope effect for the reaction catalyzed by LADH was measured. These values suggest that a significant {sup 15}N kinetic isotope effect is not associated with hydride transfer for LADH and FDH. Thus, in contrast with the deformation mechanism previously postulated, the pyridine ring of the nucleotide apparently remains planar during these dehydrogenase reactions.

  15. Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase.

    PubMed

    Kumar, Vinod; Sankaranarayanan, Mugesh; Durgapal, Meetu; Zhou, Shengfang; Ko, Yeounjoo; Ashok, Somasundar; Sarkar, Ritam; Park, Sunghoon

    2013-05-01

    In the present study, the lactate dehydrogenase-deficient (ldhA(-)) recombinant Klebsiella pneumoniae overexpressing an ALDH (KGSADH) was developed and the co-production of 3-HP and PDO from glycerol by this recombinant under resting cell conditions was examined. The new recombinant did not produce any appreciable lactate, which seriously inhibits the production of 3-HP and PDO. The final titers of 3-HP and PDO by the ldhA(-) recombinant strain at 60 h were 252.2 mM and 308.7 mM, respectively, which were improved by approximately 30% and 50%, respectively, compared to those by the counterpart recombinant strain, which was the wild type for ldhA. In addition, after deleting ldhA, the cumulative yield on glycerol and specific production rate of these two metabolites (3-HP and PDO) were enhanced by 41.4% and 52%, respectively. PMID:23228456

  16. Synthesis and application of a photoaffinity analog of nicotinamide adenosine dinucleotide: Identification of the active sites of glutamate and lactate dehydrogenases

    SciTech Connect

    Kim, H.

    1990-01-01

    A photoaffinity analog of NAD{sup +} has been synthesized by chemically coupling ({sup 32}P)2-azido-AMP and NMN{sup +} to produce ({sup 32}P)nicotinamide 2-azidoadenosine dinucleotide (2-azido-NAD{sup +}). The utility of 2-azido-NAD{sup +} as an effective active-site-directed photoprobe was demonstrated using bovine liver glutamate dehydrogenase and porcine muscle lactate dehydrogenase as model enzymes. In the absence of ultraviolet light 2-azido-NAD{sup +} is a substrate for these enzymes. The specificity of active site labeling was demonstrated by photoinhibition, saturation and competition experiments. The active sites of these enzymes were identified utilizing 2-azido-NAD{sup +}. The immobilized boronate column chromatography was used to isolate the photolabeled peptides. The results demonstrate that the photoaffinity analog of NAD{sup +} has potential application as a probe to characterize NAD{sup +}binding proteins and to identify the active sites of these proteins.

  17. Significance of the variation in isozymes of liver lactate dehydrogenase with thermal acclimation in goldfish--I. Thermostability and temperature dependency.

    PubMed

    Yamawaki, H; Tsukuda, H

    1979-01-01

    1. Total and isozyme properties as well as isozyme pattern were examined in liver lactate dehydrogenase (LDH) from goldfish acclimated to different temperatures. 2. LDH of warm-acclimated fish were thermostable and exhibited higher Q10 in low temperature range as compared with that of co ld-acclimated fish. 3. The relative activities of LDH-1, LDH-2 and LDH-3, which were more thermostable, increased and LDH-4 and LDH-5, which were more heat sensitive, decreased during warm acclimation. Q10 in the low temperature range for LDH-5 was lower than that for LDH-1. PMID:318439

  18. Lactate dehydrogenase test

    MedlinePLUS

    ... value range is 105 - 333 IU/L (international units per liter). Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your doctor about the ...

  19. Stereoselective titanium-mediated aldol reactions of a chiral lactate-derived ethyl ketone with ketones.

    PubMed

    Alcoberro, Sandra; Gmez-Palomino, Alejandro; Sol, Ricard; Romea, Pedro; Urp, Flix; Font-Bardia, Merc

    2014-01-17

    Aldol reactions of titanium enolates of lactate-derived ethyl ketone 1 with other ketones proceed in a very efficient and stereocontrolled manner provided that a further equivalent of TiCl4 is added to the reacting mixture. The scope of these reactions encompasses simple ketones such as acetone or cyclohexanone as well as other ketones that contain potential chelating groups such as pyruvate esters or ?- and ?-hydroxy ketones. PMID:24372372

  20. Changes in milk yield, lactate dehydrogenase, milking frequency, and interquarter yield ratio persist for up to 8 weeks after antibiotic treatment of mastitis.

    PubMed

    Fogsgaard, K K; Lvendahl, P; Bennedsgaard, T W; stergaard, S

    2015-11-01

    Within the dairy industry, the appearance of milk and withdrawal time due to antibiotic residuals in the milk are used to determine recovery status after cases of treated mastitis. However, both milk production and dairy cow behavior have been shown to be affected after the normalization of milk appearance, indicating that animals may not have fully recovered. The aim of the present study was to describe the changes in milk yield, lactate dehydrogenase activity, milking frequency, and interquarter yield ratio (defined as the coefficient of variation between the active quarters) after cases of naturally occurring mastitis with special focus on the recovery period after antibiotic treatment. A second aim was to examine whether these changes were affected by the pathogens present at the time of mastitis diagnosis. This retrospective study was based on a cohort data set including 1,032 lactations from 795 dairy cows kept on 2 Danish farms and milked by an automatic milking system. A total of 174 treated mastitis cases were compared with nontreated control cows from 5 wk before treatment and until 8 wk after. Treated mastitis resulted in reduced milk yield, elevated lactate dehydrogenase activity, lower milking frequency, and elevated interquarter yield ratio. Within these measures, deviations from baseline levels and from the control cows were found as early as 1 to 3 wk before the antibiotic treatment and peaked around the days of treatment. In some cases, the mastitic cows returned to premastitis levels, whereas in others they remained affected throughout the rest of the observation period. To correctly estimate the effects of treated mastitis and the recovery status of cows, it is important to take the individual cow into account and not only compare with herd levels, as this might mask the true degree of the changes. The effects on each outcome variable depended on the involved pathogen and differences were found between primiparous cows and older animals. However, in general, the changes in milk production, lactate dehydrogenase activity, and interquarter yield ratio showed parallels, suggesting that the recovery period continued for weeks after antibiotic treatment. These results call for further investigation into management of mastitic dairy cows to optimize recovery, limit milk loss, and ensure animal welfare during the period after mastitis. PMID:26364092

  1. Interaction of the membrane-bound D-lactate dehydrogenase of Escherichia coli with phospholipid vesicles and reconstitution of activity using a spin-labeled fatty acid as an electron acceptor: A magnetic resonance and biochemical study

    SciTech Connect

    Truong, Hoaithu N.; Pratt, E.A.; Ho, Chien )

    1991-04-23

    The interaction with phospholipid vesicles of the membrane-bound respiratory enzyme D-lactate dehydrogenase of Escherichia coli has been studied. Proteolytic digestion studies show that D-lactate dehydrogenase is protected from trypsin digestion to a larger extent when it interacts with phosphatidylglycerol than with phosphatidylcholine vesicles. Wild-type D-lactate dehydrogenase and mutants in which an additional tryptophan is substituted in selected areas by site-specific oligonucleotide-directed mutagenesis have been labeled with 5-fluorotryptophan. {sup 19}F nuclear magnetic resonance studies of the interaction of these labeled enzymes with small unilamellar phospholipid vesicles show that Trp 243, 340, and 361 are exposed to the lipid phase, while Trp 384, 407, and 567 are accessible to the external aqueous phase. Reconstitution of enzymatic activity in phospholipid vesicles has been studied by adding enzyme and substrate to phospholipid vesicles containing a spin-labeled fatty acid as an electron acceptor. The reduction of the doxyl group of the spin-labeled fatty acid has been monitored indirectly by nuclear magnetic resonance and directly by electron paramagnetic resonance. These results indicate that an artificial electron-transfer system can be created by mixing D-lactate dehydrogenase and D-lactate together with phospholipid vesicles containing spin-labeled fatty acids.

  2. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.

    PubMed

    Jiang, Ting; Xu, Yanbing; Sun, Xiucheng; Zheng, Zhaojuan; Ouyang, Jia

    2014-03-01

    Bacillus coagulans is a homofermentative, acid-tolerant and thermophilic sporogenic lactic acid bacterium, which is capable of producing high yields of optically pure lactic acid. The l-(+)-lactate dehydrogenase (l-LDH) from B. coagulans is considered as an ideal biocatalyst for industrial production. In this study, the gene ldhL encoding a thermostable l-LDH was amplified from B. coagulans NL01 genomic DNA and successfully expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was partially purified and its enzymatic properties were characterized. Sequence analysis demonstrated that the l-LDH was a fructose 1,6-diphosphate-activated NAD-dependent lactate dehydrogenase (l-nLDH). Its molecular weight was approximately 34-36kDa. The Km and Vmax values of the purified l-nLDH for pyruvate were 1.910.28mM and 2613.576.43?mol(minmg)(-1), respectively. The biochemical properties of l-nLDH showed that the specific activity were up to 2323.29U/mg with optimum temperature of 55C and pH of 6.5 in the pyruvate reduction and 351.01U/mg with temperature of 55C and pH of 11.5 in the lactate oxidation. The enzyme also showed some activity in the absence of FDP, with a pH optimum of 4.0. Compared to other lactic acid bacterial l-nLDHs, the enzyme was found to be relatively stable at 50C. Ca(2+), Ba(2+), Mg(2+) and Mn(2+) ions had activated effects on the enzyme activity, and the enzyme was greatly inhibited by Ni(2+) ion. Besides these, l-nLDH showed the higher specificity towards pyruvate esters, such as methyl pyruvate and ethyl pyruvate. PMID:24412354

  3. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    PubMed Central

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, Franois; Guerin, Philippe J

    2009-01-01

    Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart Malaria pLDH (Pan), CareStart Malaria pLDH (Pan, Pf) and OptiMAL-IT)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart Malaria tests and seven days for OptiMAL-IT. Tests were heat stable up to 90 days except for OptiMAL-IT (Pf specific pLDH stable to day 20 at 35C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT performed best overall and would perform best in an area of high malaria prevalence among screened fever cases. However, heat stability was unacceptable and the number of steps to perform this test is a significant drawback in the field. A reliable, heat-stable, highly sensitive RDT, capable of diagnosing all Plasmodium species has yet to be identified. PMID:19860920

  4. Reanalysis of mGWAS results and in vitro validation show that lactate dehydrogenase interacts with branched-chain amino acid metabolism.

    PubMed

    Heemskerk, Mattijs M; van Harmelen, Vanessa Ja; van Dijk, Ko Willems; van Klinken, Jan Bert

    2016-01-01

    The assignment of causative genes to noncoding variants identified in genome-wide association studies (GWASs) is challenging. We show how combination of knowledge from gene and pathway databases and chromatin interaction data leads to reinterpretation of published quantitative trait loci for blood metabolites. We describe a previously unidentified link between the rs2403254 locus, which is associated with the ratio of 3-methyl-2-oxobutanoate and alpha-hydroxyisovalerate levels, and the distal LDHA gene. We confirmed that lactate dehydrogenase can catalyze the conversion between these metabolites in vitro, suggesting that it has a role in branched-chain amino acid metabolism. Examining datasets from the ENCODE project we found evidence that the locus and LDHA promoter physically interact, showing that LDHA expression is likely under control of distal regulatory elements. Importantly, this discovery demonstrates that bioinformatic workflows for data integration can have a vital role in the interpretation of GWAS results. PMID:26014429

  5. Significance of the variation in isozymes of liver lactate dehydrogenase with thermal acclimation in goldfish--II. Effect of pH.

    PubMed

    Yamawaki, H; Tsukuda, H

    1979-01-01

    1. Effect of pH on liver lactate dehydrogenase (LDH) and its isozymes was examined in the goldfish acclimated to different temperatures and some purification of the LDH was attempted. 2. The optimal pH and the Km value at 30 degrees C of the enzyme were independent of acclimation temperature. 3. the optimal pH of isozyme was more basic in the order of LDH-1, LDH-2, LDH-3, LDH-4 and LDH-5. Km values of isozymes at 30 degrees C were higher in the order of LDH-1, LDH-3 and LDH-5. 4. There was no change in the enzyme activity during thermal acclimation. PMID:45548

  6. Lactate dehydrogenase genes of caiman and Chinese soft-shelled turtle, with emphasis on the molecular phylogenetics and evolution of reptiles.

    PubMed

    Liao, C H; Ho, W Z; Huang, H W; Kuo, C H; Lee, S C; Li, S S

    2001-11-14

    L-Lactate dehydrogenase (LDH) cDNAs encoding for LDH-A(4) (muscle) and LDH-B(4) (heart) isozymes from caiman (Caiman crocodilus apaporiensis) belonging to the order Crocodilia and Chinese soft-shelled turtle (Pelodiscus sinensis) belonging to the order Chelonia were sequenced. The phylogenetic relationships of the newly determined cDNA and their deduced protein sequences, as well as the previously published sequences of vertebrate LDH isozymes, were analyzed by various phylogenetic tree construction methods. These results indicated that Chelonia is indeed more closely related to Crocodilia. The divergent times between caiman and alligator, turtle and soft-shelled turtle, and Chelonia and Crocodilia were estimated to be approximately 36, 100 and 177 million years, respectively. PMID:11722846

  7. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle.

    PubMed

    Chaga, G; Hopp, J; Nelson, P

    1999-02-01

    A rapid method for the purification of lactate dehydrogenase from whole chicken muscle extract in one chromatographic step is reported. The purification procedure can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent is used that can be utilized at linear flow rates higher than 5 cm/min. The final preparation of the enzyme was with purity higher than 95% as ascertained by SDS-PAGE. Three immobilized metal ions (Ni2+, Zn2+ and Co2+) were compared for their binding properties towards the purified enzyme. The binding site of the enzyme for immobilized intermediate metal ions was determined after cleavage with CNBr and binding studies of the derivative peptides on immobilized Co2+. A peptide located on the N-terminus of the enzyme, implicated in the binding, has great potential as a purification tag in fusion proteins. PMID:9889081

  8. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans

    PubMed Central

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian

    2014-01-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production—NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)—were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  9. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    PubMed

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  10. Effect of hyperoxia on the ultrastructural pathology of alveolar epithelium in relation to glutathione peroxidase, lactate dehydrogenase activities, and free radical production in rats, Rattus norvigicus.

    PubMed

    Bin-Jaliah, Ismaeel; Dallak, Mohammed; Haffor, Al-Said A

    2009-01-01

    Hyperoxia (HP) exposure inducts reactive oxygen species (ROS) in the lungs that may result in lung injury, including alveolar epithelial and endothelial cells. Lactate dehydrogenase (LDH) activity relates to glycolysis, whereas glutathione peroxidase (Gpx) activity relies on the pentose phosphate pathway (PPP). The purpose of this study was to examine early ROS-induced alveolar pathological changes in relation to the activity of glutathione peroxidase (GPx) and lactate dehydrogenase (LDH) activity. Twenty adult male rats, matched with age and body weight, were randomly assigned to two groups, control and experimental. The experimental group was exposed to hyperoxia for 24 h. Ultrastructure examination showed degenerated pneumocyte type I, containing swollen mitochondria associated with dilated rough endoplasmic reticulum, and was projecting into the alveolar lumen. Pneumocyte II showed mitochondria swelling and hyperplasia and was desquamated in structure, depleted in surfactant, and falling into the alveolar lumen. Pulmonary capillary showed distention without observed damage in the endothelial layer. Following HP, the average (+/-) free radical (FR) production increased significantly (p<.05) from the baseline control of 181.20+/-30.06 to 260.30+/-68.10 (Carr U) and average (+/-SD) GPx activity also increased significantly (p<.05) from the baseline control of 8178.30+/-2402.62 to 19,589.50+/-2392.44 (U/L), whereas average (+/-SD) LDH activity decreased significantly (p<.05) from baseline control of 194.11+/-75.52 to 42.68+/-11.41 (U/L), which demonstrated slowing down of glycolysis. Based on these results it can be concluded that exposure to high inspired oxygen inducted the buildup of mitochondria-driven ROS that was related to early injury in the alveolar epithelium without obvious endothelium injury. PMID:19479651

  11. Purification of the fructose 1,6-bisphosphate-dependent lactate dehydrogenase from Streptococcus uberis and an investigation of its existence in different forms.

    PubMed Central

    Williams, R A; Andrews, P

    1986-01-01

    The fructose 1,6-bisphosphate [Fru(1,6)P2]-dependent lactate dehydrogenase in cells of Streptococcus uberis N.C.D.O. 2039 was purified by a procedure that included chromatography on DEAE-cellulose and Blue Sepharose CL-6B in phosphate buffers. The enzyme appeared to interact with Blue Sepharose through NADH-binding sites. The homogeneous enzyme had catalytic properties that were generally similar to those of other Fru(1,6)P2-dependent lactate dehydrogenases, and it had no catalytic activity in the absence of Fru(1,6)P2. Its existence in different forms, depending on conditions, was investigated by ultracentrifugation, analytical gel filtration and activity measurements. It consisted of subunits with Mr 35,900 +/- 500 and, in the presence of adequate concentrations of Fru(1,6)P2, phosphate or NADH, it existed as a tetramer, whereas when these ligands were in lower concentrations or absent, the subunits were in a concentration-dependent association-dissociation equilibrium. Dissociation occurred slowly and inactivated the enzyme, and although added ligands reversed the dissociation, the lost activity was at best only partly restored. An exception occurred when dissociation was caused by a decrease in temperature, in which case the lost activity was fully restored at the original temperature. The tetramer also lost activity at certain ligand concentrations without dissociating. The results together indicated the presence on the enzyme of two classes of binding site for both Fru(1,6)P2 and NADH, and the likelihood that phosphate bound at the same sites as Fru(1,6)P2. Two different ligands together were much more effective at preventing inactivation and dissociation than was expected from their effectiveness when present separately. It was concluded that tetrameric forms of the enzyme rather than the enzyme in association-dissociation equilibrium were involved in the regulation of its activity in vivo. PMID:3790089

  12. [Leucine arylamidase, lactate dehydrogenase and alkaline phosphatase activity of the urine of normal subjects of infant age].

    PubMed

    Camerini, G; Castaldi, G; Menegatti, E

    1980-04-01

    Urinary activity of Leucine arylamidase, lactate dahydrogenase and Alkaline phosphatase in 14 healt subjects, ranging from 2 to 10 years are described. Some correlations between enzymatic activities, ratios enzymatic activities/creatininuria and enzymatic activities/dayly proteic clearance are investigated. PMID:7375016

  13. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of L-lactate dehydrogenase and its H171C mutant from Bacillus subtilis

    SciTech Connect

    Zhang, Yanfeng; Gao, Xiaoli

    2012-08-31

    L-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to L-lactate with the simultaneous oxidation of NADH to NAD{sup +}. In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD{sup +} and the crystal diffracted to 2.38 {angstrom} resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 {angstrom}. BsLDH-H171C was also crystallized as the apoenzyme and in complex with NAD{sup +}, and data sets were collected to 2.20 and 2.49 {angstrom} resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 {angstrom} and a = b = 133.43, c = 99.09 {angstrom}, respectively. Tetramers were observed in the asymmetric units of all three crystals.

  14. Stable Suppression of Lactate Dehydrogenase Activity during Anoxia in the Foot Muscle of Littorina littorea and the Potential Role of Acetylation as a Novel Posttranslational Regulatory Mechanism

    PubMed Central

    Shahriari, Ali; Dawson, Neal J.; Bell, Ryan A. V.; Storey, Kenneth B.

    2013-01-01

    The intertidal marine snail, Littorina littorea, has evolved to withstand extended bouts of oxygen deprivation brought about by changing tides or other potentially harmful environmental conditions. Survival is dependent on a strong suppression of its metabolic rate and a drastic reorganization of its cellular biochemistry in order to maintain energy balance under fixed fuel reserves. Lactate dehydrogenase (LDH) is a crucial enzyme of anaerobic metabolism as it is typically responsible for the regeneration of NAD+, which allows for the continued functioning of glycolysis in the absence of oxygen. This study compared the kinetic and structural characteristics of the D-lactate specific LDH (E.C. 1.1.1.28) from foot muscle of aerobic control versus 24 h anoxia-exposed L. littorea. Anoxic LDH displayed a near 50% decrease in Vmax (pyruvate-reducing direction) as compared to control LDH. These kinetic differences suggest that there may be a stable modification and regulation of LDH during anoxia, and indeed, subsequent dot-blot analyses identified anoxic LDH as being significantly less acetylated than the corresponding control enzyme. Therefore, acetylation may be the regulatory mechanism that is responsible for the suppression of LDH activity during anoxia, which could allow for the production of alternative glycolytic end products that in turn would increase the ATP yield under fixed fuel reserves. PMID:24233354

  15. Mechanism of the dehydrogenase reaction of DmpFG and analysis of inter-subunit channeling efficiency and thermodynamic parameters in the overall reaction.

    PubMed

    Smith, Natalie E; Tie, Wan Jun; Flematti, Gavin R; Stubbs, Keith A; Corry, Ben; Attwood, Paul V; Vrielink, Alice

    2013-08-01

    The bifunctional, microbial enzyme DmpFG is comprised of two subunits: the aldolase, DmpG, and the dehydrogenase, DmpF. DmpFG is of interest due to its ability to channel substrates between the two spatially distinct active sites. While the aldolase is well studied, significantly less is known about the dehydrogenase. Steady-state kinetic measurements of the reverse reaction of DmpF confirmed that the dehydrogenase uses a ping-pong mechanism, with substrate inhibition by acetyl CoA indicating that NAD(+)/NADH and CoA/acetyl CoA bind to the same site in DmpF. The Km of DmpF for exogenous acetaldehyde as a substrate was 23.7 mM, demonstrating the necessity for the channel to deliver acetaldehyde directly from the aldolase to the dehydrogenase active site. A channeling assay on the bifunctional enzyme gave an efficiency of 93% indicating that less than 10% of the toxic acetaldehyde leaks out of the channel into the bulk media, prior to reaching the dehydrogenase active site. The thermodynamic activation parameters of the reactions catalyzed by the aldolase, the dehydrogenase and the DmpFG complex were determined. The Gibb's free energy of activation for the dehydrogenase reaction was lower than that obtained for the full DmpFG reaction, in agreement with the high kcat obtained for the dehydrogenase reaction in isolation. Furthermore, although both the DmpF and DmpG reactions occur with small, favorable entropies of activation, the full DmpFG reaction occurs with a negative entropy of activation. This supports the concept of allosteric structural communication between the two enzymes to coordinate their activities. PMID:23742989

  16. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frbortov, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbc, Jan; Novk, Ondrej; Bilyeu, Kristin D; English, James T; Frbort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  17. Production of a covalent flavin linkage in lipoamide dehydrogenase. Reaction with 8-Cl-FAD.

    PubMed

    Moore, E G; Cardemil, E; Massey, V

    1978-09-25

    A method is described for preparation of apolipoamide dehydrogenase which gives quantitative removal of FAD. Active holoenzyme can be reconstituted by incubation with FAD. Reconstitution of apoenzyme with 8-Cl-FAD results in the fixation of most of the flavin to the protein in a covalently bound form. The portion noncovalently bound was shown to be unmodified 8-Cl-FAD. The covalently bound flavin has an absorption spectrum quite different from that of 8-Cl-FAD. It has a single band in the visible with a maximum at 459 nm (extinction coefficient of 22 mM-1 cm-1) and a shoulder at 480 nm. Model reactions between 8-Cl-Flavin (riboflavin or FAD) and organic thiols (thiophenol, beta-mercaptoethanol, or N-acetylcysteine) give products with spectra which are similar to that of FAD covalently bound to lipoamide dehydrogenase. The products of the model reactions have a single visible band with a maximum at 480 nm (extinction coefficient of 23.6 mM-1 cm-1 to 28.4 mM-1 cm-1) and a shoulder at 460 nm. The products of the model reaction and the covalently bound FAD of lipoamide dehydrogenase appear to be the result of a nucleophilic attack on the carbon at position 8 of the flavin ring by a thiolate anion, displacing the chloride. Thus, the product of the model reaction is 8-(RS)-flavin, and the product of the reaction between 8-Cl-FAD and protein probably has a cysteinyl residue covalently attacked at position 8 of FAD. Reconstitution of apoliopoamide dehydrogenase with 8-Cl-FAD gives two enzyme products which are fractionated by ammonium sulfate. Enzyme fractionating between 20% and 45% ammonium sulfate is monomeric and contains covanently bound FAD. Enzyme fractionating between 55% and 75% ammonium sulfate is dimeric and contains both covalently bound FAD and noncovalently bound 8-Cl-FAD. Both protein fractions contain one FAD per protein subunit and both are active with physiological substrates with Km values for NAD and dihydrolipoamide similar to those of native lipoamide dehydrogenase. The maximum turnover rates differ dramatically. Enzyme fractionating between 55% and 75% ammonium sulfate has a Vmax which is 61 times slower than native enzyme. Enzyme fractionating between 20% and 45% ammonium sulfate has a Vmax which is 7400 times slower than native enzyme. These slower rates are partially explainable by the oxidation-reduction potentials of the modified enzymes. Both covalently bound FAD and noncovalently bound FAD appear to reside in the native flavin binding site of the enzyme. However, once dimerization of the protien has taken place, the noncovalently bound 8-Cl-FAD cannot be induced to form a covalent bond with the protein except under protein denaturing conditions. The implications of these findings are discussed. PMID:681358

  18. Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon Monoxide Dehydrogenase.

    PubMed

    Wang, Vincent C-C; Islam, Shams T A; Can, Mehmet; Ragsdale, Stephen W; Armstrong, Fraser A

    2015-10-29

    Protein film electrochemistry has been used to investigate reactions of highly active nickel-containing carbon monoxide dehydrogenases (CODHs). When attached to a pyrolytic graphite electrode, these enzymes behave as reversible electrocatalysts, displaying CO2 reduction or CO oxidation at minimal overpotential. The O2 sensitivity of CODH is suppressed by adding cyanide, a reversible inhibitor of CO oxidation, or by raising the electrode potential. Reduction of N2O, isoelectronic with CO2, is catalyzed by CODH, but the reaction is sluggish, despite a large overpotential, and results in inactivation. Production of H2 and formate under highly reducing conditions is consistent with calculations predicting that a nickel-hydrido species might be formed, but the very low rates suggest that such a species is not on the main catalytic pathway. PMID:26176986

  19. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant.

    PubMed

    Snchez, Ailen M; Bennett, George N; San, Ka-Yiu

    2005-01-01

    An adhE, ldhA double mutant Escherichia coli strain, SBS110MG, has been constructed to produce succinic acid in the presence of heterologous pyruvate carboxylase (PYC). The strategic design aims at diverting maximum quantities of NADH for succinate synthesis by inactivation of NADH competing pathways to increase succinate yield and productivity. Additionally an operational PFL enzyme allows formation of acetyl-CoA for biosynthesis and formate as a potential source of reducing equivalents. Furthermore, PYC diverts pyruvate toward OAA to favor succinate generation. SBS110MG harboring plasmid pHL413, which encodes the heterologous pyruvate carboxylase from Lactococcus lactis, produced 15.6 g/L (132 mM) of succinate from 18.7 g/L (104 mM) of glucose after 24 h of culture in an atmosphere of CO(2) yielding 1.3 mol of succinate per mole of glucose. This molar yield exceeded the maximum theoretical yield of succinate that can be achieved from glucose (1 mol/mol) under anaerobic conditions in terms of NADH balance. The current work further explores the importance of the presence of formate as a source of reducing equivalents in SBS110MG(pHL413). Inactivation of the native formate dehydrogenase pathway (FDH) in this strain significantly reduced succinate yield, suggesting that reducing power was lost in the form of formate. Additionally we investigated the effect of ptsG inactivation in SBS110MG(pHL413) to evaluate the possibility of a further increase in succinate yield. Elimination of the ptsG system increased the succinate yield to 1.4 mol/mol at the expense of a reduction in glucose consumption of 33%. In the presence of PYC and an efficient conversion of glucose to products, the ptsG mutation is not indispensable since PEP converted to pyruvate as a result of glucose phosphorylation by the glucose specific PTS permease EIICB(glu) can be rediverted toward OAA favoring succinate production. PMID:15801771

  20. Overexpression of Pyruvate Dehydrogenase Kinase 1 and Lactate Dehydrogenase A in Nerve Cells Confers Resistance to Amyloid ? and Other Toxins by Decreasing Mitochondrial Respiration and Reactive Oxygen Species Production*

    PubMed Central

    Newington, Jordan T.; Rappon, Tim; Albers, Shawn; Wong, Daisy Y.; Rylett, R. Jane; Cumming, Robert C.

    2012-01-01

    We previously demonstrated that nerve cell lines selected for resistance to amyloid ? (A?) peptide exhibit elevated aerobic glycolysis in part due to increased expression of pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA). Here, we show that overexpression of either PDK1 or LDHA in a rat CNS cell line (B12) confers resistance to A? and other neurotoxins. Treatment of A?-sensitive cells with various toxins resulted in mitochondrial hyperpolarization, immediately followed by rapid depolarization and cell death, events accompanied by increased production of cellular reactive oxygen species (ROS). In contrast, cells expressing either PDK1 or LDHA maintained a lower mitochondrial membrane potential and decreased ROS production with or without exposure to toxins. Additionally, PDK1- and LDHA-overexpressing cells exhibited decreased oxygen consumption but maintained levels of ATP under both normal culture conditions and following A? treatment. Interestingly, immunoblot analysis of wild type mouse primary cortical neurons treated with A? or cortical tissue extracts from 12-month-old APPswe/PS1dE9 transgenic mice showed decreased expression of LDHA and PDK1 when compared with controls. Additionally, post-mortem brain extracts from patients with Alzheimer disease exhibited a decrease in PDK1 expression compared with nondemented patients. Collectively, these findings indicate that key Warburg effect enzymes play a central role in mediating neuronal resistance to ?? or other neurotoxins by decreasing mitochondrial activity and subsequent ROS production. Maintenance of PDK1 or LDHA expression in certain regions of the brain may explain why some individuals tolerate high levels of A? deposition without developing Alzheimer disease. PMID:22948140

  1. The oxidative half-reaction of xanthine dehydrogenase with NAD; reaction kinetics and steady-state mechanism.

    PubMed

    Harris, C M; Massey, V

    1997-11-01

    The reaction between reduced xanthine dehydrogenase (XDH) from bovine milk and NAD has been studied in detail. An understanding of this reaction is necessary for a complete description of XDH turnover with its presumed natural electron acceptor and to address the preference of XDH for NAD over oxygen as a substrate. The reaction between pre-reduced XDH and NAD was studied by stopped-flow spectrophotometry. The reaction was found to involve two rounds of oxidation with 2 eq of NAD. The first round goes to completion, and the second round reaches a slightly disfavored equilibrium. Rapid binding of NAD with an apparent Kd of 25 +/- 2 microM is followed by NAD reduction at a rate constant of 130 +/- 13 s-1. NADH dissociation at a rate constant of 42 +/- 12 s-1 completes a round of oxidation. These steps have been successfully tested and modeled to repeat themselves in the second round of oxidation. The association rate constant for NAD binding was estimated to be much greater than any rate constant measured in the oxidation by molecular oxygen, thus explaining how NAD competes with oxygen for reducing equivalents. Rate constants for NAD reduction and NADH dissociation are respectively 21- and 7-fold greater than kcat, indicating that the reductive half-reaction of the enzyme by xanthine is mostly rate-limiting in xanthine/NAD turnover. A steady-state mechanism for XDH is discussed. PMID:9353290

  2. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    SciTech Connect

    Malik, Radhika; Viola, Ronald E.

    2010-10-28

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  3. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. PMID:25988244

  4. Indoleamine 2,3?dioxygenase downregulates T?cell receptor complex ??chain and c?Myc, and reduces proliferation, lactate dehydrogenase levels and mitochondrial glutaminase in human T?cells.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Antoniadi, Georgia; Tsogka, Konstantina; Sounidaki, Maria; Liakopoulos, Vassilios; Stefanidis, Ioannis

    2016-01-01

    Indoleamine 2,3?dioxygenase (IDO), through L?tryptophan depletion, activates general control non?derepressible (GCN)2 kinase and suppresses T?cell proliferation, in addition to suppressing aerobic glycolysis and glutaminolysis, which are required for these rapidly proliferating cells. A number of, however not all of these alterations, are partially mediated through IDO?induced p53upregulation. In two?way mixed lymphocyte reactions (MLRs), IDO reduced cellular proliferation. In MLR?derived T?cells, IDO induced the expression levels of p53and p21, however concurrently reduced the levels of ??chain, c?Myc, lactate dehydrogenaseA (LDH?A) and glutaminase (GLS)2. However, p53had no effect on the expression of the above proteins. These results were recapitulated in T?cells activated with anti?CD2, anti?CD3and anti?CD28by direct activation of the GCN2kinase with tryptophanol. In conclusion, IDO, through GCN2kinase activation, downregulates the levels of TCR?complex ??chain and c?Myc, resulting in the suppression of T?cell proliferation and a reduction in the levels of LDH?A and GLS2, which are key enzymes involved in aerobic glycolysis and glutaminolysis, respectively. PMID:26647830

  5. Lactate-Dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1

    PubMed Central

    2010-01-01

    Aims As one of the five Lactate dehydrogenase (LDH) isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival. Methods Primary lung cancers (n = 269) and non neoplastic lung tissue (n = 35) were tested for LDH5 expression by immunohistochemistry using a polyclonal LDH5 antibody (ab53010). The results of LDH5 expression were correlated to clinico-pathological data as well as to patient's survival. In addition, the results of the previously tested Transketolase like 1 protein (TKTL1) expression were correlated to LDH5 expression. Results 89.5% (n = 238) of NSCLC revealed LDH5 expression whereas LDH5 expression was not detected in non neoplastic lung tissues (n = 34) (p < 0.0001). LDH5 overexpression was associated with histological type (adenocarcinoma = 57%, squamous cell carcinoma = 45%, large cell carcinoma = 46%, p = 0.006). No significant correlation could be detected with regard to TNM-stage, grading or survival. A two sided correlation between the expression of TKTL1 and LDH5 could be shown (p = 0.002) within the overall cohort as well as for each grading and pN group. A significant correlation between LDH5 and TKTL1 within each histologic tumortype could not be revealed. Conclusions LDH5 is overexpressed in NSCLC and could hence serve as an additional marker for malignancy. Furthermore, LDH5 correlates positively with the prognostic marker TKTL1. Our results confirm a close link between the two metabolic enzymes and indicate an alteration in the glucose metabolism in the process of malignant transformation. PMID:20385008

  6. Insulin, CCAAT/Enhancer-Binding Proteins and Lactate Regulate the Human 11β-Hydroxysteroid Dehydrogenase Type 2 Gene Expression in Colon Cancer Cell Lines

    PubMed Central

    Alikhani-Koupaei, Rasoul; Ignatova, Irena D.; Guettinger, Andreas; Frey, Felix J.; Frey, Brigitte M.

    2014-01-01

    11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon. PMID:25133511

  7. Improved Production of Homo-d-Lactic Acid via Xylose Fermentation by Introduction of Xylose Assimilation Genes and Redirection of the Phosphoketolase Pathway to the Pentose Phosphate Pathway in l-Lactate Dehydrogenase Gene-Deficient Lactobacillus plantarum▿

    PubMed Central

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose. PMID:19820147

  8. Rationally re-designed mutation of NAD-independent l-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background NAD-independent l-lactate dehydrogenase (l-iLDH) from Pseudomonas stutzeri SDM can potentially be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather low activity towards aromatic 2-hydroxycarboxylic acids. Results Val-108 of l-iLDH was changed to Ala by rationally site-directed mutagenesis. The l-iLDH mutant exhibited much higher activity than wide-type l-iLDH towards l-mandelate, an aromatic 2-hydroxycarboxylic acid. Using the engineered Escherichia coli expressing the mutant l-iLDH as a biocatalyst, 40 g·L-1 of dl-mandelic acid was converted to 20.1 g·L-1 of d-mandelic acid (enantiomeric purity higher than 99.5%) and 19.3 g·L-1 of benzoylformic acid. Conclusions A new biocatalyst with high catalytic efficiency toward an unnatural substrate was constructed by rationally re-design mutagenesis. Two building block intermediates (optically pure d-mandelic acid and benzoylformic acid) were efficiently produced by the one-pot biotransformation system. PMID:23176608

  9. Incompatibility of silver nanoparticles with lactate dehydrogenase leakage assay for cellular viability test is attributed to protein binding and reactive oxygen species generation.

    PubMed

    Oh, Seok-Jeong; Kim, Hwa; Liu, Yingqiu; Han, Hyo-Kyung; Kwon, Kyenghee; Chang, Kyung-Hwa; Park, Kwangsik; Kim, Younghun; Shim, Kyuhwan; An, Seong Soo A; Lee, Moo-Yeol

    2014-03-21

    A growing number of studies report that conventional cytotoxicity assays are incompatible with certain nanoparticles (NPs) due to artifacts caused by the distinctive characteristics of NPs. Lactate dehydrogenase (LDH) leakage assays have inadequately detected cytotoxicity of silver nanoparticles (AgNPs), leading to research into the underlying mechanism. When ECV304 endothelial-like umbilical cells were treated with citrate-capped AgNPs (cAgNPs) or bare AgNPs (bAgNPs), the plasma membrane was disrupted, but the LDH leakage assay failed to detect cytotoxicity, indicating interference with the assay by AgNPs. Both cAgNPs and bAgNPs inactivated LDH directly when treated to cell lysate as expected. AgNPs adsorbed LDH and thus LDH, together with AgNPs, was removed from assay reactants during sample preparation, with a resultant underestimation of LDH leakage from cells. cAgNPs, but not bAgNPs, generated reactive oxygen species (ROS), which were successfully scavenged by N-acetylcysteine or ascorbic acid. LDH inhibition by cAgNPs could be restored partially by simultaneous treatment with those antioxidants, suggesting the contribution of ROS to LDH inactivation. Additionally, the composition of the protein corona surrounding AgNPs was identified employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In sum, the LDH leakage assay, a conventional cell viability test method, should be employed with caution when assessing cytotoxicity of AgNPs. PMID:24463055

  10. Baseline Serum Lactate Dehydrogenase Levels for Patients Treated With Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Predictor of Poor Prognosis and Subsequent Liver Metastasis

    SciTech Connect

    Zhou Guanqun; Tang Linglong; Mao Yanping; Chen Lei; Li Wenfei; Sun Ying; Liu Lizhi; Li Li; Lin Aihua; Ma Jun

    2012-03-01

    Purpose: To evaluate the prognostic value of baseline serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Cases of NPC (n = 465) that involved treatment with IMRT with or without chemotherapy were retrospectively analyzed. Results: The mean ({+-}SD) and median baseline serum LDH levels for this cohort were 172.77 {+-} 2.28 and 164.00 IU/L, respectively. Levels of LDH were significantly elevated in patients with locoregionally advanced disease (p = 0.016). Elevated LDH levels were identified as a prognostic factor for rates of overall survival (OS), disease-free survival (DFS), and distant metastasis-free survival (DMFS), with p values <0.001 in the univariate analysis and p < 0.001, p = 0.004, and p = 0.003, respectively, in the multivariate analysis. Correspondingly, the prognostic impact of patient LDH levels was found to be statistically significant for rates of OS, DFS, and DMFS (p = 0.028, 0.024, and 0.020, respectively). For patients who experienced subsequent liver failure after treatment, markedly higher pretreatment serum LDH levels were detected compared with patients experiencing distant metastasis events at other sites (p = 0.032). Conclusions: Elevated baseline LDH levels are associated with clinically advanced disease and are a poor prognosticator for OS, DFS, and DMFS for NPC patients. These results suggest that elevated serum levels of LDH should be considered when evaluating treatment options.

  11. Momordica charantia seed extract reduces pre-adipocyte viability, affects lactate dehydrogenase release, and lipid accumulation in 3T3-L1 cells.

    PubMed

    Popovich, David G; Lee, Yiyu; Li, Lu; Zhang, Wei

    2011-03-01

    A triterpenoid containing bitter melon (Momordica charantia) seed (BMS) extract was found to reduce cultured 3T3-L1 cell viability. The 50% lethal concentration values were determined to be 0.78??0.01?mg/mL at 24 hours, 0.69??0.01?mg/mL at 48 hours, and 0.56??0.02?mg/mL at 72 hours. 3T3-L1 cells were utilized as models of pre-adipocyte to adipocyte differentiation. BMS extract also caused a G(2)/M arrest in the cell cycle reducing cells by 23.9%, 37.7%, and 34.7% compared with the control after 72 hours of treatment at concentrations of 0.4, 0.5, and 0.6?mg/mL respectively. BMS extract did not increase the release of lactate dehydrogenase from 3T3-L1 cells, which was unexpected. Furthermore, BMS extract reduced lipid accumulation during differentiation from pre-adipocyte to adipocyte corresponding to reduction in overall triglyceride of 32.4% after 72 hours compared with untreated control cells. BMS is an underutilized agricultural commodity that may have potential for nutraceutical and functional food development. PMID:21332398

  12. Decreased Hematocrit-To-Viscosity Ratio and Increased Lactate Dehydrogenase Level in Patients with Sickle Cell Anemia and Recurrent Leg Ulcers

    PubMed Central

    Connes, Philippe; Lamarre, Yann; Hardy-Dessources, Marie-Dominique; Lemonne, Nathalie; Waltz, Xavier; Mougenel, Danièle; Mukisi-Mukaza, Martin; Lalanne-Mistrih, Marie-Laure; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Romana, Marc

    2013-01-01

    Leg ulcer is a disabling complication in patients with sickle cell anemia (SCA) but the exact pathophysiological mechanisms are unknown. The aim of this study was to identify the hematological and hemorheological alterations associated with recurrent leg ulcers. Sixty-two SCA patients who never experienced leg ulcers (ULC-) and 13 SCA patients with a positive history of recurrent leg ulcers (ULC+) - but with no leg ulcers at the time of the study – were recruited. All patients were in steady state condition. Blood was sampled to perform hematological, biochemical (hemolytic markers) and hemorheological analyses (blood viscosity, red blood cell deformability and aggregation properties). The hematocrit-to-viscosity ratio (HVR), which reflects the red blood cell oxygen transport efficiency, was calculated for each subject. Patients from the ULC+ group were older than patients from the ULC- group. Anemia (red blood cell count, hematocrit and hemoglobin levels) was more pronounced in the ULC+ group. Lactate dehydrogenase level was higher in the ULC+ group than in the ULC- group. Neither blood viscosity, nor RBC aggregation properties differed between the two groups. HVR was lower and RBC deformability tended to be reduced in the ULC+ group. Our study confirmed increased hemolytic rate and anemia in SCA patients with leg ulcers recurrence. Furthermore, our data suggest that although systemic blood viscosity is not a major factor involved in the pathophysiology of this complication, decreased red blood cell oxygen transport efficiency (i.e., low hematocrit/viscosity ratio) may play a role. PMID:24223994

  13. A Streamlined, Automated Protocol for the Production of Milligram Quantities of Untagged Recombinant Rat Lactate Dehydrogenase A Using KTAxpressTM.

    PubMed

    Nowicki, Matthew W; Blackburn, Elizabeth A; McNae, Iain W; Wear, Martin A

    2015-01-01

    We developed an efficient, automated 2-step purification protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A (rLDHA) from E. coli, using the KTAxpress chromatography system. Cation exchange followed by size exclusion results in average final purity in excess of 93% and yields ~ 14 milligrams per 50 ml of original cell culture in EnPresso B media, in under 8 hrs, including all primary sample processing and column equilibration steps. The protein is highly active and coherent biophysically and a viable alternative to the more problematic human homolog for structural and ligand-binding studies; an apo structure of untagged rLDHA was solved to a resolution 2.29 (PDB ID 5ES3). Our automated methodology uses generic commercially available pre-packed columns and simple buffers, and represents a robust standard method for the production of milligram amounts of untagged rLDHA, facilitating a novel fragment screening approach for new inhibitors. PMID:26717415

  14. Serum lactate dehydrogenase with a systemic inflammation score is useful for predicting response and survival in patients with newly diagnosed diffuse large B-cell lymphoma.

    PubMed

    Jung, Sung-Hoon; Yang, Deok-Hwan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-01-01

    We evaluated the relationship between serum lactate dehydrogenase (LDH) level with systemic inflammation score and survival in 213 patients with diffuse large B-cell lymphoma (DLBCL) receiving R-CHOP chemotherapy. The patients were classified into 3 groups based on LDH with the Glasgow Prognostic Score (L-GPS). A score of 2 was assigned to patients with elevated C-reactive protein, hypoalbuminemia and elevated LDH, a score of 1 to those with one or two abnormalities and a score of 0 to those with no abnormality. In multivariate analysis, independent poor prognostic factors for progression-free survival were L-GPS 2 [hazard ratio (HR) 5.415, p = 0.001], Eastern Cooperative Oncology Group performance status (ECOG PS) ?2 (HR 3.504, p = 0.001) and bulky lesion (HR 2.030, p = 0.039). Independent poor prognostic factors for overall survival were L-GPS 2 (HR 5.898, p = 0.001) and ECOG PS ?2 (HR 3.525, p = 0.001). The overall response rate for the R-CHOP chemotherapy decreased according to the L-GPS; it was 96.7% at L-GPS 0, 87% at L-GPS 1 and 75% at L-GPS 2 (p = 0.009). L-GPS based on systemic inflammatory indicators may be a useful clinical prognostic indicator for survival, and predicts the response for R-CHOP chemotherapy in patients with newly diagnosed DLBCL. PMID:24969101

  15. A Mutation Affecting the Lactate Dehydrogenase Locus Ldh-1 in the Mouse. II. Mechanism of the Ldh-a Deficiency Associated with Hemolytic Anemia

    PubMed Central

    Pretsch, W.; Merkle, S.; Favor, J.; Werner, T.

    1993-01-01

    A procarbazine hydrochloride-induced mutation at the Ldh-1 structural locus encoding the A subunit of lactate dehydrogenase (LDH) was used to study the molecular and metabolic basis of severe hemolytic anemia due to LDH-A deficiency in the mouse. The mutant allele designated Ldh-1(a-m1Neu) codes for an enzyme that as homotetramer differs from the wild-type enzyme by a marked instability, acidic shift of the pH profile, increased K(m) for pyruvate and altered inhibition by high concentrations of this substrate. Except for the latter, all these altered properties of the mutant protein contribute to the diminished LDH activity in heterozygous and homozygous mutant individuals. Impaired energy metabolism of erythrocytes indicated by a relatively low ATP concentration is suggested to result in cell death at the end of the reticulocyte stage leading to the expression of hemolytic anemia with extreme reticulocytosis and hyperbilirubinemia. Despite the severe anemia, affected homozygous mutants exhibit approximately normal body weight and do not show noticeable impairment of viability or fertility. To date no such condition is observed in man. This discrepancy is likely due to the fact that in human erythrocytes both LDH-A and LDH-B subunits are expressed such that homozygotes for a LDH-A or LDH-B deficiency would not result in a comparably extreme LDH activity deficiency. PMID:8224816

  16. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients.

    PubMed

    Crane, Courtney A; Austgen, Kathryn; Haberthur, Kristen; Hofmann, Carly; Moyes, Kara White; Avanesyan, Lia; Fong, Lawrence; Campbell, Michael J; Cooper, Stewart; Oakes, Scott A; Parsa, Andrew T; Lanier, Lewis L

    2014-09-01

    Myeloid cells are key regulators of the tumor microenvironment, governing local immune responses. Here we report that tumor-infiltrating myeloid cells and circulating monocytes in patients with glioblastoma multiforme (GBM) express ligands for activating the Natural killer group 2, member D (NKG2D) receptor, which cause down-regulation of NKG2D on natural killer (NK) cells. Tumor-infiltrating NK cells isolated from GBM patients fail to lyse NKG2D ligand-expressing tumor cells. We demonstrate that lactate dehydrogenase (LDH) isoform 5 secreted by glioblastoma cells induces NKG2D ligands on monocytes isolated from healthy individuals. Furthermore, sera from GBM patients contain elevated amounts of LDH, which correlate with expression of NKG2D ligands on their autologous circulating monocytes. NKG2D ligands also are present on circulating monocytes isolated from patients with breast, prostate, and hepatitis C virus-induced hepatocellular carcinomas. Together, these findings reveal a previously unidentified immune evasion strategy whereby tumors produce soluble factors that induce NKG2D ligands on myeloid cells, subverting antitumor immune responses. PMID:25136121

  17. Dynamics of a Lactate Dehydrogenase Polymorphism in the Wood Louse PORCELLIO SCABER Latr.: Evidence for Partial Assortative Mating and Heterosis in Natural Populations

    PubMed Central

    Sassaman, Clay

    1978-01-01

    Electrophoretic separation of lactate dehydrogenase (LDH) of Porcellio scaber from 14 natural populations in California, and one each in Oregon, Delaware and Massachusetts, indicates a biallelic polymorphism. Phenotypes are recovered from laboratory matings of virgin females in frequencies agreeing with simple Mendelian inheritance, and the frequency distributions of phenotypes in natural populations are typically in agreement with the appropriate Hardy-Weinberg distributions for these same populations. The same allele predominates in all natural populations examined. Temporal stability within populations suggests that the polymorphism is at, or near, equilibrium. The spatial distribution of allele frequencies, however, is apparently mosaic. Abrupt discontinuities in gene frequency over short distances (50 m to 1 km) suggest that interpopulation migration is insufficient to swamp local differences in gene frequency. Analysis of the transmission dynamics of the polymorphism in natural populations using mother-offspring genotype comparisons suggests that the allelic frequencies of transmitted male gametes are not independent of female genotype. Specifically, the observed mating scheme in natural populations appears to be partially assortative. Comparisons of progeny genotype distributions with yearling (or adult) genotype distributions from the same populations indicate a superior post-partum viability of heterozygous individuals relative to homozygotes. The distortion of progeny genotypic distributions created by assortment is thus apparently counteracted by subsequent heterosis. PMID:640378

  18. Engineered topographic determinants with alpha beta, beta alpha beta, and beta alpha beta alpha topologies show high affinity binding to native protein antigen (lactate dehydrogenase-C4).

    PubMed

    Kobs-Conrad, S; Lee, H; DiGeorge, A M; Kaumaya, P T

    1993-12-01

    The use of peptides has attracted much interest in the development of synthetic vaccines. Although our current understanding of peptide antigens as immunogens has been greatly advanced recently, there still remain many obstacles. The B cell response elicited by a peptide antigen is governed by a number of poorly understood events such as epitope structure, T cell dependency and major histocompatibility complex restriction, adjuvancy, route of immunization, and immunogen stability. In this paper, we extend our previous studies on the problem of the topographical nature of antigenic sites on native protein antigens, in terms of how much molecular mimicry must be maintained in an antigenic determinant for the induction of high affinity antibodies specific for native protein. We show here that an antigenic epitope from the model contraceptive vaccine candidate lactate dehydrogenase (LDH-C4) can be rationally engineered into a highly structured conformation that mimics the corresponding site in the native three-dimensional protein. Our strategy is based on the selection of an antigenic segment which exhibits certain secondary structural properties and by design principles is fixed in three dimensions by appropriate grafting onto a supersecondary structural motif such as alpha beta, beta alpha beta, or beta alpha beta alpha. The biophysical data are consistent with the proposed secondary structures, and antibodies raised to the various construct show high affinity for the native protein. These studies lend further credence to the conformational nature of peptide epitopes and provide a basis for the rational design of peptide vaccines. PMID:8244959

  19. A Streamlined, Automated Protocol for the Production of Milligram Quantities of Untagged Recombinant Rat Lactate Dehydrogenase A Using ÄKTAxpressTM

    PubMed Central

    Nowicki, Matthew W.; Blackburn, Elizabeth A.; McNae, Iain W.; Wear, Martin A.

    2015-01-01

    We developed an efficient, automated 2-step purification protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A (rLDHA) from E. coli, using the ÄKTAxpress™ chromatography system. Cation exchange followed by size exclusion results in average final purity in excess of 93% and yields ~ 14 milligrams per 50 ml of original cell culture in EnPresso B media, in under 8 hrs, including all primary sample processing and column equilibration steps. The protein is highly active and coherent biophysically and a viable alternative to the more problematic human homolog for structural and ligand-binding studies; an apo structure of untagged rLDHA was solved to a resolution 2.29 Å (PDB ID 5ES3). Our automated methodology uses generic commercially available pre-packed columns and simple buffers, and represents a robust standard method for the production of milligram amounts of untagged rLDHA, facilitating a novel fragment screening approach for new inhibitors. PMID:26717415

  20. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.

    PubMed

    Zhang, Xiqing; Zhang, Shuli; Shi, Yan; Shen, Fadi; Wang, Haikuan

    2014-07-01

    Phenyl lactic acid (PLA) has been widely reported as a new natural antimicrobial compound. In this study, 120 Lactobacillus plantarum strains were demonstrated to produce PLA using high-performance liquid chromatography. Lactobacillus plantarum IMAU10124 was screened with a PLA yield of 0.229 g L(-1) . Compared with all previous reports, this is the highest PLA-producing lactic acid bacteria (LAB) when grown in MRS broth without any optimizing conditions. When 3.0 g L(-1) phenyl pyruvic acid (PPA) was added to the medium as substrate, PLA production reached 2.90 g L(-1) , with the highest 96.05% conversion rate. A lowest PLA-yielding L. plantarum IMAU40105 (0.043 g L(-1) ) was also screened. It was shown that the conversion from PPA to PLA by lactic dehydrogenase (LDH) is the key factor in the improvement of PLA production by LAB. Comparing the LDH gene of two strains, four amino acid mutation sites were found in this study in the LDH of L. plantarum IMAU10124. PMID:24861375

  1. Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans)

    SciTech Connect

    Gozalo, Alfonso S.; Chavera, Alfonso; Montoya, Enrique J.; Takano, Juan; Weller, Richard E.

    2008-02-01

    The purpose of this study was to determine serum reference values for crea- tine kinase (CK), aspartate aminotransferase (AST), and lactate dehydroge- nase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Urine samples were also collected and semi-quantitative tests performed. There was no statistically significant difference between CK, AST, and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition, the CK/AST ratio revealed that 29% of the animals included in this study had values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries, and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman’s capsule, and peritubular space fibroplasia. These findings suggest that CK, AST, and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria, and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction.

  2. A reagentless amperometric electrode based on carbon paste, chemically modified with D-lactate dehydrogenase, NAD(+), and mediator containing polymer for D-lactic acid analysis. I. Construction, composition, and characterization.

    PubMed

    Shu, H C; Mattiasson, B; Persson, B; Nagy, G; Gorton, L; Sahni, S; Geng, L; Boguslavsky, L; Skotheim, T

    1995-05-01

    A reagentless carbon paste electrode was designed for D-lactic acid analysis in a flow injection system for the monitoring of the production of D-lactate in a batch fermentation. D-Lactate dehydrogenase, nicotinamide adenine dinucleotide (NAD(+)), a synthetic redox polymer containing covalently attached toluidine blue O as mediator, graphite powder, and paraffin oil were used for the construction of the modified carbon paste electrode. D-Lactate selectivity was indicated by insignificant responses from a variety of possible interfernces including L-lactate. The electrodes gave a linear response in the range between 0.05 and 5 mM D-lactate, with a detecting limit of 30 muM, allowing a sample throughput of 20 h(-1). Preliminary investigations were made by covering the electrode surface with electropolymerized membranes. Satisfactory stability was observed, indicated by a reproducibility of 3.3% relative standard deviation (RSD, n = 31), with a non-membrane-covered electrode for the analysis of D-lactate in fermentation broth. A long-term stability (230 broth samples) was proven, suggesting the electrodes to have a good potential for use in on-line monitoring of fermentation processes. (c) 1995 John Wiley & Sons, Inc. PMID:18623311

  3. Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenase and ?1-Pyrroline-5-carboxylate Dehydrogenase Coupled Reaction of Proline Utilization A (PutA)*

    PubMed Central

    Moxley, Michael A.; Sanyal, Nikhilesh; Krishnan, Navasona; Tanner, John J.; Becker, Donald F.

    2014-01-01

    PutA (proline utilization A) is a large bifunctional flavoenzyme with proline dehydrogenase (PRODH) and ?1-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains that catalyze the oxidation of l-proline to l-glutamate in two successive reactions. In the PRODH active site, proline undergoes a two-electron oxidation to ?1-pyrroline-5-carboxlylate, and the FAD cofactor is reduced. In the P5CDH active site, l-glutamate-?-semialdehyde (the hydrolyzed form of ?1-pyrroline-5-carboxylate) undergoes a two-electron oxidation in which a hydride is transferred to NAD+-producing NADH and glutamate. Here we report the first kinetic model for the overall PRODH-P5CDH reaction of a PutA enzyme. Global analysis of steady-state and transient kinetic data for the PRODH, P5CDH, and coupled PRODH-P5CDH reactions was used to test various models describing the conversion of proline to glutamate by Escherichia coli PutA. The coupled PRODH-P5CDH activity of PutA is best described by a mechanism in which the intermediate is not released into the bulk medium, i.e., substrate channeling. Unexpectedly, single-turnover kinetic experiments of the coupled PRODH-P5CDH reaction revealed that the rate of NADH formation is 20-fold slower than the steady-state turnover number for the overall reaction, implying that catalytic cycling speeds up throughput. We show that the limiting rate constant observed for NADH formation in the first turnover increases by almost 40-fold after multiple turnovers, achieving half of the steady-state value after 15 turnovers. These results suggest that EcPutA achieves an activated channeling state during the approach to steady state and is thus a new example of a hysteretic enzyme. Potential underlying causes of activation of channeling are discussed. PMID:24352662

  4. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work

    PubMed Central

    Kane, Daniel A.

    2014-01-01

    Lactate, the conjugate base of lactic acid occurring in aqueous biological fluids, has been derided as a dead-end waste product of anaerobic metabolism. Catalyzed by the near-equilibrium enzyme lactate dehydrogenase (LDH), the reduction of pyruvate to lactate is thought to serve to regenerate the NAD+ necessary for continued glycolytic flux. Reaction kinetics for LDH imply that lactate oxidation is rarely favored in the tissues of its own production. However, a substantial body of research directly contradicts any notion that LDH invariably operates unidirectionally in vivo. In the current Perspective, a model is forwarded in which the continuous formation and oxidation of lactate serves as a mitochondrial electron shuttle, whereby lactate generated in the cytosol of the cell is oxidized at the mitochondria of the same cell. From this perspective, an intracellular lactate shuttle operates much like the malate-aspartate shuttle (MAS); it is also proposed that the two shuttles are necessarily interconnected in a lactate-MAS. Among the requisite features of such a model, significant compartmentalization of LDH, much like the creatine kinase of the phosphocreatine shuttle, would facilitate net cellular lactate oxidation in a variety of cell types. PMID:25505376

  5. Molecular Characterization of CcpA and Involvement of This Protein in Transcriptional Regulation of Lactate Dehydrogenase and Pyruvate Formate-Lyase in the Ruminal Bacterium Streptococcus bovis

    PubMed Central

    Asanuma, Narito; Yoshii, Takahiro; Hino, Tsuneo

    2004-01-01

    A ccpA gene that encodes global catabolite control protein A (CcpA) in Streptococcus bovis was identified and characterized, and the involvement of CcpA in transcriptional control of a gene (ldh) encoding lactate dehydrogenase (LDH) and a gene (pfl) encoding pyruvate formate-lyase (PFL) was examined. The ccpA gene was shown to be transcribed as a monocistronic operon. A catabolite-responsive element (cre) was found in the promoter region of ccpA, suggesting that ccpA transcription in S. bovis is autogenously regulated. CcpA required HPr that was phosphorylated at the serine residue at position 46 (HPr-[Ser-P]) for binding to the cre site, but glucose 6-phosphate, fructose 1,6-bisphosphate, and NADP had no effect on binding. Diauxic growth was observed when S. bovis was grown in a medium containing glucose and lactose, but it disappeared when ccpA was disrupted, which indicates that CcpA is involved in catabolite repression in S. bovis. The level of ccpA mRNA was higher when cells were grown on glucose than when they were grown on lactose, which was in line with the level of ldh mRNA. When cells were grown on glucose, the ldh mRNA level was lower but the pfl mRNA level was higher in a ccpA-disrupted mutant than in the parent strain, which suggests that ldh transcription is enhanced and pfl transcription is suppressed by CcpA. The ccpA-disrupted mutant produced less lactate and more formate than the parent, probably because the mutant had reduced LDH activity and elevated PFL activity. In the upper region of both ldh and pfl, a cre-like sequence was found, suggesting that the complex consisting of CcpA and HPr-[Ser-P] binds to the possible cre sites. Thus, CcpA appears to be involved in the global regulation of sugar utilization in S. bovis. PMID:15345406

  6. Testis-Specific Lactate Dehydrogenase (LDH-C4) in Skeletal Muscle Enhances a Pika’s Sprint-Running Capacity in Hypoxic Environment

    PubMed Central

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2015-01-01

    LDH-C4 is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, ldh-c was originally thought to be expressed only in testis and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia tolerant mammal living 3000–5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testis and sperm but also in somatic tissues of plateau pika. In this study, the effects of N-propyl oxamate and N-isopropyl oxamate on LDH isozyme kinetics were compared to screens for a selective inhibitor of LDH-C4. To reveal the role and physiological mechanism of LDH-C4 in skeletal muscle of plateau pika, we investigated the effect of N-isopropyl oxamate on the pika exercise tolerance as well as the physiological mechanism. Our results show that Ki of N-propyl oxamate and N-isopropyl oxamate for LDH-A4, LDH-B4, and LDH-C4 were 0.094 mmol/L and 0.462 mmol/L, 0.119 mmol/L and 0.248 mmol/L, and 0.015 mmol/L and 0.013 mmol/L, respectively. N-isopropyl oxamate is a powerful selective inhibitor of plateau pika LDH-C4. In our exercise tolerance experiment, groups treated with inhibitors had significantly lower swimming times than the uninhibited control group. The inhibition rates of LDH, LD, and ATP were 37.12%, 66.27%, and 32.42%, respectively. Our results suggested that ldh-c is expressed in the skeletal muscle of plateau pika, and at least 32.42% of ATP in the skeletal muscle is catalyzed by LDH-C4 by anaerobic glycolysis. This suggests that pika has reduced dependence on oxygen and enhanced adaptation to hypoxic environment due to increased anaerobic glycolysis by LDH-C4 in skeletal muscle. LDH-C4 in plateau pika plays the crucial role in anaerobic glycolysis and generates ATP rapidly since this is the role of LDH-A4 in most species on plain land, which provide evidence that the native humans and animals in Qinghai-Tibet plateau can adapt to the hypoxia environment. PMID:26262630

  7. The elementary reactions of the pig heart pyruvate dehydrogenase complex. A study of the inhibition by phosphorylation.

    PubMed

    Walsh, D A; Cooper, R H; Denton, R M; Bridges, B J; Randle, P J

    1976-07-01

    1. A method was devised for preparing pig heart pyruvate dehydrogenase free of thiamin pyrophosphate (TPP), permitting studies of the binding of [35S]TPP to pyruvate dehydrogenase and pyruvate dehydrogenase phosphate. The Kd of TPP for pyruvate dehydrogenase was in the range 6.2-8.2 muM, whereas that for pyruvate dehydrogenase phosphate was approximately 15 muM; both forms of the complex contained about the same total number of binding sites (500 pmol/unit of enzyme). EDTA completely inhibited binding of TPP; sodium pyrophosphate, adenylyl imidodiphosphate and GTP, which are inhibitors (competitive with TPP) of the overall pyruvate dehydrogenase reaction, did not appreciably affect TPP binding. 2. Initial-velocity patterns of the overall pyruvate dehydrogenase reaction obtained with varying TPP, CoA and NAD+ concentrations at a fixed pyruvate concentration were consistent with a sequential three-site Ping Pong mechanism; in the presence of oxaloacetate and citrate synthase to remove acetyl-CoA (an inhibitor of the overall reaction) the values of Km for NAD+ and CoA were 53+/- 5 muM and 1.9+/-0.2 muM respectively. Initial-velocity patterns observed with varying TPP concentrations at various fixed concentrations of pyruvate were indicative of either a compulsory order of addition of substrates to form a ternary complex (pyruvate-Enz-TPP) or a random-sequence mechanism in which interconversion of ternary intermediates is rate-limiting; values of Km for pyruvate and TPP were 25+/-4 muM and 50+/-10 nM respectively. The Kia-TPP (the dissociation constant for Enz-TPP complex calculated from kinetic plots) was close to the value of Kd-TPP (determined by direct binding studies). 3. Inhibition of the overall pyruvate dehydrogenase reaction by pyrophosphate was mixed non-competitive versus pyruvate and competitive versus TPP; however, pyrophosphate did not alter the calculated value for Kia-TPP, consistent with the lack of effect of pyrophosphate on the Kd for TPP. 4. Pyruvate dehydrogenase catalysed a TPP-dependent production of 14CO2 from [1-14C]pyruvate in the absence of NAD+ and CoA at approximately 0.35% of the overall reaction rate; this was substantially inhibited by phosphorylation of the enzyme both in the presence and absence of acetaldehyde (which stimulates the rate of 14CO2 production two- or three-fold). 5. Pyruvate dehydrogenase catalysed a partial back-reaction in the presence of TPP, acetyl-CoA and NADH. The Km for TPP was 4.1+/-0.5 muM. The partial back-reaction was stimulated by acetaldehyde, inhibited by pyrophosphate and abolished by phosphorylation. 6. Formation of enzyme-bound [14C]acetylhydrolipoate from [3-14C]pyruvate but not from [1-14C]acetyl-CoA was inhibited by phosphorylation. Phosphorylation also substantially inhibited the transfer of [14C]acetyl groups from enzyme-bound [14C]acetylhydrolipoate to TPP in the presence of NADH. 7... PMID:183746

  8. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis).

    PubMed

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-03-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×10(5) cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology. PMID:25049573

  9. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase.

    PubMed

    Li, L; Shin, S-Y; Lee, K W; Han, N S

    2014-10-01

    Phenyllactic acid (PLA) is an antimicrobial compound naturally synthesized in various fermented foods and its D-form of PLA is known to be more active than the L-isomer. In this study, Leuconostoc mesenteroides ATCC 8293 cells, elaborating D-lactate dehydrogenase (D-ldh) were used to produce D-PLA from phenylpyruvic acid (PPA). When cultured in the presence of PPA (?50 mmol l(-1)), growing cells produced a maximum yield of 35 mmol l(-1) of D-PLA, and the yields were between 752 and 833%. Higher conversion yields were obtained at pH 60-70 when growing cells were used, while the optimum pH range was broader for resting cells. The time required for the complete conversion of PPA into PLA could be shortened to 3 h using resting cells. D-ldh, an enzyme encoded by the LEUM_1756 gene of Leuc. mesenteroides ATCC 8293, was found to be responsible for the conversion of PPA into PLA. The Km and kcat values of the enzyme for PPA were found to be 154 mmol l(-1) and 5645 s(-1), respectively. The conditions required for the efficient production of D-PLA were optimized for both growing and resting cells of Leuc. mesenteroides, with special emphasis on achieving high stereoselectivity and conversion yield. Significance and impact of the study: This is the first study on the production of D-phenyllactic acid, which is a natural antimicrobial compound, from phenylpyruvate using Leuconostoc mesenteroides cells. The strain, ATCC 8293, that was used in the study, possesses high stereoselectivity and delivers a high yield. Therefore, it might be a promising candidate for use in large-scale production facilities and in fermented foods. PMID:24888766

  10. Preventive effect of glycosaminoglycans from Amussium pleuronectus (Linne) on biomolecules, lactate dehydrogenase-isoenzyme and electrocardiographic patterns in isoproterenol-induced myocardial infarction in Wistar rats

    PubMed Central

    Saravanan, Ramachandran; Shanmugam, Annaian; Rajkumar, Devaraj

    2012-01-01

    Objectives: This study was aimed to assess the cardioprotective role of low molecular weight glycosaminoglycans (LMW-GAG) in isoproterenol (ISO)-induced myocardial infarction (MI) in male Wistar rats. Effect of LMW-GAG on biomolecules, lactate dehydrogenase (LDH)-isoenzyme, and electrocardiographic (ECG)-patterns was studied as evidence of cardioprotection. Materials and Methods: Male Wistar rats (140 10 g) were divided into four groups; untreated control (group I), LMW-GAG treated (300 ?g/day s. c. for 2 weeksgroup II), ISO (85 mg s.c. injected on 13th and 14th daysgroup III), and LMW-GAG plus ISO (300 ?g/day s. c. for 12 days followed by 85 mg/kg ISO on the end of 13th and 14th daysgroup IV). At the end of the experimental period, all animals were terminated. Results: Rats treated with LMW-GAG (300 ?g/kg) for 12 days showed significant increasing levels of triglyceride (TG) (both serum and heart tissue), low density lipoprotein (LDL), very low density lipoprotein (VLDL), total cholesterol, uric acid, creatinine, and glucose. However, it significantly decreased the levels of high density lipoprotein (HDL) (serum), plasma total protein, and albumin/globulin (A/G) ratio. ISO also adversely affected the LDH-isoenzymes and caused marked elevation in ST segment. Pretreatment with LMW-GAG (300 ?g/kg) daily for a period of 2 weeks prevented the ISO-treated changes. Conclusions: The results indicate that LMW-GAG exhibits a cardioprotective effect in ISO-induced MI in rats, by maintaining the biomolecules and LDH-isoenzymes. PMID:23112422

  11. Bioactivity-guided identification and cell signaling technology to delineate the lactate dehydrogenase A inhibition effects of Spatholobus suberectus on breast cancer.

    PubMed

    Wang, Zhiyu; Wang, Dongmei; Han, Shouwei; Wang, Neng; Mo, Feizhi; Loo, Tjing Yung; Shen, Jiangang; Huang, Hui; Chen, Jianping

    2013-01-01

    Aerobic glycolysis is an important feature of cancer cells. In recent years, lactate dehydrogenase A (LDH-A) is emerging as a novel therapeutic target for cancer treatment. Seeking LDH-A inhibitors from natural resources has been paid much attention for drug discovery. Spatholobus suberectus (SS) is a common herbal medicine used in China for treating blood-stasis related diseases such as cancer. This study aims to explore the potential medicinal application of SS for LDH-A inhibition on breast cancer and to determine its bioactive compounds. We found that SS manifested apoptosis-inducing, cell cycle arresting and anti-LDH-A activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cell. Oral herbal extracts (1 g/kg/d) administration attenuated tumor growth and LDH-A expression in both breast cancer xenografts. Bioactivity-guided fractionation finally identified epigallocatechin as a key compound in SS inhibiting LDH-A activity. Further studies revealed that LDH-A plays a critical role in mediating the apoptosis-induction effects of epigallocatechin. The inhibited LDH-A activities by epigallocatechin is attributed to disassociation of Hsp90 from HIF-1? and subsequent accelerated HIF-1? proteasome degradation. In vivo study also demonstrated that epigallocatechin could significantly inhibit breast cancer growth, HIF-1?/LDH-A expression and trigger apoptosis without bringing toxic effects. The preclinical study thus suggests that the potential medicinal application of SS for inhibiting cancer LDH-A activity and the possibility to consider epigallocatechin as a lead compound to develop LDH-A inhibitors. Future studies of SS for chemoprevention or chemosensitization against breast cancer are thus warranted. PMID:23457597

  12. Long term intensive exercise training leads to a higher plasma malate/lactate dehydrogenase (M/L) ratio and increased level of lipid mobilization in horses.

    PubMed

    Li, Gebin; Lee, Peter; Mori, Nobuko; Yamamoto, Ichiro; Arai, Toshiro

    2012-06-01

    Continuous high intensity training may induce alterations to enzyme activities related to glucose and lipid metabolism in horses. In our study, five Thoroughbred race horses (3 male and 2 female, avg age=5 yrs old) were compared against five riding horses (1 male, 1 female, 3 gelding, avg age=13 yrs old) in terms of energy metabolism, by examining plasma malate (MDH) and lactate (LDH) dehydrogenase activities and M/L ratio. MDH is involved in NADH and ATP generation, whereas LDH can convert NADH back into NAD(+) for ATP generation. An increase in plasma M/L ratio can reflect heightened energy metabolism in the liver and skeletal muscle of horses adapted to continuous intensive exercise. Moreover, plasma lipid metabolism analytes (adiponectin, NEFA, total cholesterol (T-Cho), and triglycerides (TG)) can reflect changes to lipolysis rate, which can also indicate a change in energy metabolism. Overall, race horses demonstrated increased MDH and LDH activity in plasma (4x and 2x greater, respectively), in addition to a plasma M/L ratio twice as high as that of riding horses (2.0 vs 1.0). In addition, race horses also demonstrated significantly higher levels of plasma NEFA (50% greater), TG (2x greater), and T-Cho (20% greater) as compared to riding horses. Therefore, race horse muscles may have adapted to prolonged high intensity endurance exercise by gaining a higher oxidative capacity and an increased capacity for fat utilization as an energy source, resulting in heightened energy metabolism and increased rate of lipid mobilization. PMID:22297553

  13. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus.

    PubMed

    Carlson Scholz, Jodi A; Garg, Rohit; Compton, Susan R; Allore, Heather G; Zeiss, Caroline J; Uchio, Edward M

    2011-10-01

    The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology. PMID:22330347

  14. Karnofsky Performance Status and Lactate Dehydrogenase Predict the Benefit of Palliative Whole-Brain Irradiation in Patients With Advanced Intra- and Extracranial Metastases From Malignant Melanoma

    SciTech Connect

    Partl, Richard; Richtig, Erika; Avian, Alexander; Berghold, Andrea; Kapp, Karin S.

    2013-03-01

    Purpose: To determine prognostic factors that allow the selection of melanoma patients with advanced intra- and extracerebral metastatic disease for palliative whole-brain radiation therapy (WBRT) or best supportive care. Methods and Materials: This was a retrospective study of 87 patients who underwent palliative WBRT between 1988 and 2009 for progressive or multiple cerebral metastases at presentation. Uni- and multivariate analysis took into account the following patient- and tumor-associated factors: gender and age, Karnofsky performance status (KPS), neurologic symptoms, serum lactate dehydrogenase (LDH) level, number of intracranial metastases, previous resection or stereotactic radiosurgery of brain metastases, number of extracranial metastasis sites, and local recurrences as well as regional lymph node metastases at the time of WBRT. Results: In univariate analysis, KPS, LDH, number of intracranial metastases, and neurologic symptoms had a significant influence on overall survival. In multivariate survival analysis, KPS and LDH remained as significant prognostic factors, with hazard ratios of 3.3 (95% confidence interval [CI] 1.6-6.5) and 2.8 (95% CI 1.6-4.9), respectively. Patients with KPS ≥70 and LDH ≤240 U/L had a median survival of 191 days; patients with KPS ≥70 and LDH >240 U/L, 96 days; patients with KPS <70 and LDH ≤240 U/L, 47 days; and patients with KPS <70 and LDH >240 U/L, only 34 days. Conclusions: Karnofsky performance status and serum LDH values indicate whether patients with advanced intra- and extracranial tumor manifestations are candidates for palliative WBRT or best supportive care.

  15. Reaction of pyranose dehydrogenase from Agaricus meleagris with its carbohydrate substrates.

    PubMed

    Graf, Michael M H; Sucharitakul, Jeerus; Bren, Urban; Chu, Dinh Binh; Koellensperger, Gunda; Hann, Stephan; Furtmüller, Paul G; Obinger, Christian; Peterbauer, Clemens K; Oostenbrink, Chris; Chaiyen, Pimchai; Haltrich, Dietmar

    2015-11-01

    Monomeric Agaricus meleagris pyranose dehydrogenase (AmPDH) belongs to the glucose-methanol-choline family of oxidoreductases. An FAD cofactor is covalently tethered to His103 of the enzyme. AmPDH can double oxidize various mono- and oligosaccharides at different positions (C1 to C4). To study the structure/function relationship of selected active-site residues of AmPDH pertaining to substrate (carbohydrate) turnover in more detail, several active-site variants were generated, heterologously expressed in Pichia pastoris, and characterized by biochemical, biophysical and computational means. The crystal structure of AmPDH shows two active-site histidines, both of which could take on the role as the catalytic base in the reductive half-reaction. Steady-state kinetics revealed that His512 is the only catalytic base because H512A showed a reduction in (kcat /KM )glucose by a factor of 10(5) , whereas this catalytic efficiency was reduced by two or three orders of magnitude for His556 variants (H556A, H556N). This was further corroborated by transient-state kinetics, where a comparable decrease in the reductive rate constant was observed for H556A, whereas the rate constant for the oxidative half-reaction (using benzoquinone as substrate) was increased for H556A compared to recombinant wild-type AmPDH. Steady-state kinetics furthermore indicated that Gln392, Tyr510, Val511 and His556 are important for the catalytic efficiency of PDH. Molecular dynamics (MD) simulations and free energy calculations were used to predict d-glucose oxidation sites, which were validated by GC-MS measurements. These simulations also suggest that van der Waals interactions are the main driving force for substrate recognition and binding. PMID:26284701

  16. Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-?-d-glucosaminidase for detecting dairy cows with intramammary infection.

    PubMed

    Nyman, A-K; Emanuelson, U; Waller, K Persson

    2016-02-01

    The main objective of this study was to investigate the diagnostic test performance of somatic cell count (SCC), lactate dehydrogenase (LDH), and N-acetyl-?-d-glucosaminidase (NAGase), analyzed in composite test milking samples, for detecting dairy cows with or without intramammary infection (IMI). A second objective was to investigate whether an adjustment of these udder health indicators according to their associations with different influential factors (i.e., parity, days in milk, and season) improved their test performance. Moreover, we wanted to investigate whether test performance of SCC improved if SCC results from previous adjacent test milkings were included in the model. Such test milking data were not available for LDH or NAGase. In this cross-sectional study, quarter milk samples for bacteriological examination were taken from almost 1,000 cows from 25 dairy herds during 3 consecutive days: the day before test milking, the day of test milking, and the day after test milking. From each cow, a composite test milking sample was analyzed for milk composition, SCC, LDH, and NAGase. Among the cows sampled, 485 were IMI negative and 256 were IMI positive in one or more udder quarters according to the definitions used. The remaining cows had inconclusive IMI status. To assess the test performance of SCC, LDH, and NAGase to identify IMI-negative and IMI-positive cows, univariable generalized estimating equation models were used with the udder health indicator of interest as outcome and IMI status as explanatory variable. From these models, receiver-operator characteristic curves were created and the area under cure (AUC) was calculated. From each model, a cut-off was chosen for calculations of the sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), and accuracy (ACC) for each udder health indicator. The AUC was similar for the adjusted SCC (0.84), nonadjusted SCC (0.83) and geometric mean SCC (0.80-0.81), but much lower for LDH (0.66) and NAGase (0.62). The highest Se, Sp, PPV, NPV, and ACC were obtained using SCC. Adjustment of the udder health indicators for influential factors (e.g., parity) did not improve the test performance markedly, whereas adding information about SCC from previous adjacent test milkings improved the test performance of SCC slightly. In conclusion, of the udder health indicators investigated, SCC had the best overall ability to correctly identify IMI-negative and IMI-positive dairy cows. PMID:26627859

  17. Age-dependent poliomyelitis of mice: expression of endogenous retrovirus correlates with cytocidal replication of lactate dehydrogenase-elevating virus in motor neurons.

    PubMed Central

    Contag, C H; Plagemann, P G

    1989-01-01

    The widespread presence of endogenous retroviruses in the genomes of animals and humans has suggested that these viruses may be involved in both normal and abnormal developmental processes. Previous studies have indicated the involvement of endogenous ecotropic murine leukemia virus (MuLV) in the development of age-dependent poliomyelitis caused by infection of old C58 or AKR mice by lactate dehydrogenase-elevating virus (LDV). The only genetic components which segregate with susceptibility to LDV-induced paralytic disease are multiple proviral copies of ecotropic MuLV and the permissive allele, at the Fv-1 locus, for N-tropic, ecotropic virus replication (Fv-1n/n). Using in situ hybridization and Northern (RNA) blot hybridization, we have correlated the expression of the endogenous MuLV, both temporally and spatially, with LDV infection of anterior horn motor neurons and the development of paralysis. Our data indicate that treatment of 6- to 7-month-old C58/M mice with cyclophosphamide, which renders these mice susceptible to LDV-induced paralytic disease, results in transient increases in ecotropic MuLV RNA levels in motor neurons throughout the spinal cord. Peripheral inoculation of C58/M mice with LDV, at the time of elevated MuLV RNA levels, results in a rapid spread of LDV to some spinal cord motor neurons. LDV infections then spread slowly but progressively throughout the spinal cord, involving an increasing number of motor neurons. LDV replication is cytocidal and results in neuron destruction and paralysis of the infected animals 2 to 3 weeks postinfection. The slow replication of LDV in the spinal cord contrasts sharply with the rapid replication of LDV in macrophages, the normal host cells for LDV, during the acute phase of infection. The data indicate that the interaction between the endogenous MuLV with the generally nonpathogenic murine togavirus LDV occurs at the level of the motor neuron. We discuss potential mechanisms for the novel dual-virus etiology of age-dependent poliomyelitis of mice. Images PMID:2550670

  18. Structural features of aluminium(III) complexes with bioligands in glutamate dehydrogenase reaction system--a review.

    PubMed

    Yang, Xiaodi; Zhang, Qianqian; Li, Laifa; Shen, Renfang

    2007-09-01

    Aluminium(III) complexes are essential for understanding the toxicity, bioavailability and transport mechanisms of aluminium in environmental and biological systems. Since elucidation of the exact structures of these weakly coordinated systems is very difficult, the structures of Al(III) complexes in glutamate dehydrogenase reactions system were investigated recently from the following four aspects: (1) Constitutional studies: The keto-enol tautomerism of the complexes between aluminium(III) ion and alpha-ketoglutarate ligands in acidic aqueous solutions was studied. It is clearly demonstrated that Al(III) can promote the keto-enol tautomerization of alpha-ketoglutarate. (2) Configurational studies: Compared with L-Glu, the complex stability of D-Glu-Al is stronger, especially for the tridentate species. The result was further supported by computational results in the molecular mechanics model with the UFF forcefield. It is implied that Al(III) complexation may favor the racemization from L- to D-amino acids. (3) Conformational studies: At biologically relevant pH and concentrations of Al(III) and NADH, Al(III) was found to increase the percentage of folded forms of NADH, which results in reducing the activity of the coenzyme NADH in the hollow-dehydrogenase reactions system. However, the conformations of NAD(+) and Al-NAD(+) are dependent upon the solvents and other ligands in the complexes. (4) Biological effects: The effects of Al(III) on the activity of the glutamate dehydrogenase-catalyzed reactions were studied by monitoring the differential-pulse polarography reduction current of NAD(+). At the physiologically relevant pH values (pH 6.5 and 7.5), the activity of the GDH enzyme was strongly dependent on the concentration of the Al(III) in the assayed mixture solutions. PMID:17643493

  19. Lack of effect of strain type on detection of toxigenic Clostridium difficile by glutamate dehydrogenase and polymerase chain reaction.

    PubMed

    Goldenberg, Simon D; Gumban, Maria; Hall, Anthony; Patel, Amita; French, Gary L

    2011-07-01

    Glutamate dehydrogenase (GDH) is popular as a preliminary test for the detection of Clostridium difficile. Recent work has suggested that GDH sensitivity may vary according to ribotype and may be lower for ribotypes 002, 027, and 106 compared with polymerase chain reaction (PCR). We investigated this effect using a dilution series of 64 isolates tested by GDH and Cepheid GeneXpert PCR. PCR was significantly more sensitive than GDH overall; however, there was no difference in detection according to specific ribotype. PMID:21683272

  20. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate.

    PubMed Central

    Veiga da Cunha, M; Foster, M A

    1992-01-01

    The simultaneous fermentation of glycerol and sugar by lactobacillus brevis B22 and Lactobacillus buchneri B190 increases both the growth rate and total growth. The reduction of glycerol to 1,3-propanediol by the lactobacilli was found to influence the metabolism of the sugar cofermented by channelling some of the intermediate metabolites (e.g., pyruvate) towards NADH-producing (rather than NADH-consuming) reactions. Ultimately, the absolute requirement for NADH to prevent the accumulation of 3-hydroxypropionaldehyde leads to a novel lactate-glycerol cofermentation. As a result, additional ATP can be made not only by (i) converting pyruvate to acetate via acetyl phosphate rather than to the ethanol usually found and (ii) oxidizing part of the intermediate pyruvate to acetate instead of the usual reduction to lactate but also by (iii) reoxidation of accumulated lactate to acetate via pyruvate. The conversion of lactate to pyruvate is probably catalyzed by NAD-independent lactate dehydrogenases that are found only in the cultures oxidizing lactate and producing 1,3-propanediol, suggesting a correlation between the expression of these enzymes and a raised intracellular NAD/NADH ratio. The enzymes metabolizing glycerol (glycerol dehydratase and 1,3-propanediol dehydrogenase) were expressed in concert without necessary induction by added glycerol, although their expression may also be influenced by the intracellular NAD/NADH ratio set by the different carbohydrates fermented. PMID:1732191

  1. Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: Reaction optimization and identification of sodium lactate as the active catalyst

    SciTech Connect

    Wadley, D.C.; Tam, M.S.; Miller, D.J.

    1997-01-15

    Lactic acid is converted to 2,3-pentanedione, acrylic acid, and other products in vapor-phase reactions over silica-supported sodium lactate formed from sodium nitrate. Multiparameter optimization of reaction conditions using a Box-Benkhen experimental design shows that the highest yield and selectivity to 2,3-pentanedione are achieved at low temperature, elevated pressure, and long contact time, while yield and selectivity to acrylic acid are most favorable at high temperature, low pressure, and short contact time. Post-reaction Fourier transform infrared spectroscopic analyses of the catalyst indicate that sodium nitrate as the initial catalyst material is transformed to sodium lactate at the onset of reaction via proton transfer from lactic acid to nitrate. The resultant nitric acid vaporizes as it is formed, leaving sodium lactate as the sole sodium-bearing species on the catalyst during reaction. 19 refs., 8 figs., 5 tabs.

  2. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    PubMed

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (?adhE?ackA-pta?ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.50.5 g/L with yield of 0.460.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.44.5 g/L, 0.490.02 g/g, 1.200.05 g/Lh, and 27.21.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed. PMID:25895450

  3. Lactation Consultant

    MedlinePLUS

    ... lactation. Job description Lactation consultants educate women, families, health professionals, and the community about breast feeding and human lactation; facilitate the development of policies ...

  4. A new class of chromophoric organomercurials and their reactions with d-glyceraldehyde 3-phosphate dehydrogenase

    PubMed Central

    McMurray, C. H.; Trentham, D. R.

    1969-01-01

    The syntheses of the following organomercurials are described: 2-chloromercuri-4-nitrophenol, 2-chloromercuri-4,6-dinitrophenol, 4-chloromercuri-2-nitrophenol and 2,6-dichloromercuri-4-nitrophenol. All four organomercurials show large spectral changes in the visible spectrum when thiols displace a more weakly bound ligand such as EDTA from the mercury atom. These spectral changes are primarily associated with pK perturbation of the nitrophenols. The mercurials are therefore chromophoric probes for thiol groups in proteins and other thiols of biological interest. The enzyme d-glyceraldehyde 3-phosphate dehydrogenase from lobster muscle is used as a model system in which the properties of the organomercurials may be illustrated. In particular it is shown how d-glyceraldehyde 3-phosphate dehydrogenase carboxymethylated at the active site may be mercurated at a specific site. This mercurial derivative may be crystallized and shown to be isomorphous with the parent enzyme. The mercurials also act as `reporter groups' by monitoring phosphate or pyrophosphate binding to the enzyme. The mercurials may also be used to estimate cations by an EDTA displacement method. ImagesFig. 4.PLATE 1 PMID:4982839

  5. Pre-steady state transients in the Drosophila alcohol dehydrogenase catalyzed reaction: isotope effects and stereospecificity

    SciTech Connect

    Place, A.R.; Eccleston, J.F.

    1987-05-01

    The alcohol dehydrogenase (ADH) isolated from Drosophila is unique among alcohol metabolizing enzymes by not requiring metals for catalysis, by showing 4-pro-S (B-sided) hydride transfer stereospecificity, and by possessing a greater catalytic turnover rate for secondary alcohols than for primary alcohols. They have extended their studies on the kinetic mechanism for this enzyme by examining the pre-steady state transients of ternary complex interconversion using stopped-flow fluorescence methods. When enzyme and a 30-fold molar excess of NADH is mixed with excess acetadehyde, methyl ethyl ketone (MEK), or cyclohexanone a rapid (> 100 s/sup -1/) transient is observe before the steady-state. The rates are insensitive to isotope substitution. With the substrate MEK, the rate and amplitude suggests a single turnover of the enzyme. Similar pre-steady state transients are observed when enzyme and a 50-fold molar excess of NAD/sup +/ is mixed with ethanol, 2-propanol, and cyclohexanol. The rates show a hyperbolic concentration dependence and a deuterium isotope effect. With d/sub 6/-deuteroethanol the transient no longer occurs in the pre-steady state. When the optical isomers of secondary alcohols are used as substrates, transients are observed only in the R-(-) isomers for all chain lengths. With 2-S(+)-heptanol and 2-S(+)-octanol no transients occur.

  6. Reaction norm of fertility traits adjusted for protein and fat production level across lactations in Holstein cattle.

    PubMed

    Menendez-Buxadera, A; Carabao, M J; Gonzalez-Recio, O; Cue, R I; Ugarte, E; Alenda, R

    2013-07-01

    A total of 304,001 artificial insemination outcomes in up to 7 lactations from 142,389 Holstein cows, daughters of 5,349 sires and 101,433 dams, calving between January 1995 and December 2007 in 1,347 herds were studied by a reaction norm model. The (co)variance components for days to first service (DFS), days open, nonreturn rate in the first service (NRFS), and number of services per conception were estimated by 6 models: 3 Legendre polynomial degrees for the genetic effects and adjustment or not for the level of fat plus protein (FP) production recorded at day closest to DFS. For all traits and type of FP adjustment, a second degree polynomial showed the best fit. The use of the adjusted FP model did not increase the level of genetic (co)variance components except for DFS. The heritability for each of the traits was low in general (0.03-0.10) and increased from the first to fourth calving; nevertheless, very important variability was found for the estimated breeding value (EBV) of the sires. The genetic correlations (rg) were close to unity between adjacent calvings, but decreased for most distant parities, ranging from rg=0.36 (for DFS) to rg=0.63 (for NRFS), confirming the existence of heterogeneous genetic (co)variance components and EBV across lactations. The results of the eigen decomposition of rg shows that the first eigenvalue explained between 82 to 92% and the second between 8 to 14% of the genetic variance for all traits; therefore, a deformation of the overall mean trajectory for reproductive performance across the trajectory of the different calving could be expected if selection favored these eigenfunctions. The results of EBV for the 50 best sires showed a substantial reranking and variation in the shape of response across lactations. The more important aspect to highlight, however, is the difference between the EBV of the same sires in different calvings, a characteristic known as plasticity, which is particularly important for DFS and NRFS. This component of fertility adds another dimension to selection for fertility that can be used to change the negative genetic progress of reproductive performance presented in this population of Holstein cows. The use of a reaction norm model should allow producers to obtain more robust cows for maintenance of fertility levels along the whole productive life of the cows. PMID:23664344

  7. Complete amino acid sequence and characterization of the reaction mechanism of a glucosamine-induced novel alcohol dehydrogenase from Agrobacterium radiobacter (tumefaciens).

    PubMed

    Iwamoto, Ryoko; Kubota, Humie; Hosoki, Tomoko; Ikehara, Kenji; Tanaka, Mieko

    2002-02-15

    A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex. PMID:11831851

  8. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis.

    PubMed

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-11-14

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme. PMID:25258317

  9. GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast l-Lactate Cytochrome c Oxidoreductase, Supports l-Lactate Oxidation in Roots of Arabidopsis.

    PubMed

    Engqvist, Martin K M; Schmitz, Jessica; Gertzmann, Anke; Florian, Alexandra; Jaspert, Nils; Arif, Muhammad; Balazadeh, Salma; Mueller-Roeber, Bernd; Fernie, Alisdair R; Maurino, Veronica G

    2015-10-01

    In roots of Arabidopsis (Arabidopsis thaliana), l-lactate is generated by the reduction of pyruvate via l-lactate dehydrogenase, but this enzyme does not efficiently catalyze the reverse reaction. Here, we identify the Arabidopsis glycolate oxidase (GOX) paralogs GOX1, GOX2, and GOX3 as putative l-lactate-metabolizing enzymes based on their homology to CYB2, the l-lactate cytochrome c oxidoreductase from the yeast Saccharomyces cerevisiae. We found that GOX3 uses l-lactate with a similar efficiency to glycolate; in contrast, the photorespiratory isoforms GOX1 and GOX2, which share similar enzymatic properties, use glycolate with much higher efficiencies than l-lactate. The key factor making GOX3 more efficient with l-lactate than GOX1 and GOX2 is a 5- to 10-fold lower Km for the substrate. Consequently, only GOX3 can efficiently metabolize l-lactate at low intracellular concentrations. Isotope tracer experiments as well as substrate toxicity tests using GOX3 loss-of-function and overexpressor plants indicate that l-lactate is metabolized in vivo by GOX3. Moreover, GOX3 rescues the lethal growth phenotype of a yeast strain lacking CYB2, which cannot grow on l-lactate as a sole carbon source. GOX3 is predominantly present in roots and mature to aging leaves but is largely absent from young photosynthetic leaves, indicating that it plays a role predominantly in heterotrophic rather than autotrophic tissues, at least under standard growth conditions. In roots of plants grown under normoxic conditions, loss of function of GOX3 induces metabolic rearrangements that mirror wild-type responses under hypoxia. Thus, we identified GOX3 as the enzyme that metabolizes l-lactate to pyruvate in vivo and hypothesize that it may ensure the sustainment of low levels of l-lactate after its formation under normoxia. PMID:26246447

  10. The Levels of Serum C-Reactive Protein, Beta 2 Microglobulin, Ferritin, Lactate Dehydrogenase and Some Specific Proteins in Patients with Non-Hodgkins Lymphoma Before and After Treatment

    PubMed Central

    Yildirim, Rahsan; Gundogdu, Mehmet; Erdem, Fuat; Kiki, lhami; Bilici, Mehmet

    2009-01-01

    Objective: The aim of this study was to measure serum C reactive protein, ?2 microglobulin, ferritin, lactate dehydrogenase, complement 3, complement 4, immunoglobulin A, immunoglobulin M, immunoglobulin G and transferrin levels in patients with Non-Hodgkin Lymphoma before and after treatment, and to determine whether any differences occur with treatment, investigate relationship between these parameters and systemic symptoms, and to determine whether they could be used as tumor markers. Materials and Methods: The parameters listed above were studied before and after treatment in sera of 27 patients with the diagnosis of Non-Hodgkin Lymphoma who admitted to our department. Of the patients, 10 (37%) were females and 17 (63%) were males. Mean age was 57.7 16.5 (1982) years. The subjects were newly diagnosed and treatment. Results: Post-treatment serum ferritin and CRP levels were found to be significantly decreased in patients with NHL compared to pre-treatment levels (p=0.009 and p=0.015, respectively). In addition, ferritin levels measured before treatment were significantly lower in subjects with B symptoms than those without B symptoms (p=0.02). IgA levels of patients with B symptom were significantly increased compared to those without B symptoms following treatment (p=0.03). Conclusions: We are in the opinion that serum ferritin and CRP parameters may be used as tumor markers and may be indicators in the efficacy evaluation of treatment in Non-Hodgkins Lymphoma. PMID:25610096

  11. Efficient Production of Optically Pure d-Lactic Acid from Raw Corn Starch by Using a Genetically Modified l-Lactate Dehydrogenase Gene-Deficient and α-Amylase-Secreting Lactobacillus plantarum Strain▿

    PubMed Central

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct d-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct d-lactic acid fermentation from raw starch. PMID:19011066

  12. Conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active complex by the phosphate reaction in heart mitochondria is inhibited by alloxan-diabetes or starvation in the rat.

    PubMed

    Hutson, N J; Kerbey, A L; Randle, P J; Sugden, P H

    1978-08-01

    1. The conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active (dephosphorylated) complex by pyruvate dehydrogenase phosphate phosphatase is inhibited in heart mitochondria prepared from alloxan-diabetic or 48h-starved rats, in mitochondria prepared from acetate-perfused rat hearts and in mitochondria prepared from normal rat hearts incubated with respiratory substrates for 6 min (as compared with 1 min). 2. This conclusion is based on experiments with isolated intact mitochondria in which the pyruvate dehydrogenase kinase reaction was inhibited by pyruvate or ATP depletion (by using oligomycin and carbonyl cyanide m-chlorophenylhydrazone), and in experiments in which the rate of conversion of inactive complex into active complex by the phosphatase was measured in extracts of mitochondria. The inhibition of the phosphatase reaction was seen with constant concentrations of Ca2+ and Mg2+ (activators of the phosphatase). The phosphatase reaction in these mitochondrial extracts was not inhibited when an excess of exogenous pig heart pyruvate dehydrogenase phosphate was used as substrate. It is concluded that this inhibition is due to some factor(s) associated with the substrate (pyruvate dehydrogenase phosphate complex) and not to inhibition of the phosphatase as such. 3. This conclusion was verified by isolating pyruvate dehydrogenase phosphate complex, free of phosphatase, from hearts of control and diabetic rats an from heart mitochondria incubed for 1min (control) or 6min with respiratory substrates. The rates of re-activation of the inactive complexes were then measured with preparations of ox heart or rat heart phosphatase. The rates were lower (relative to controls) with inactive complex from hearts of diabetic rats or from heart mitochondria incubated for 6min with respiratory substrates. 4. The incorporation of 32Pi into inactive complex took 6min to complete in rat heart mitocondria. The extent of incorporation was consistent with three or four sites of phosphorylation in rat heart pyruvate dehydrogenase complex. 5. It is suggested that phosphorylation of sites additional to an inactivating site may inhibit the conversion of inactive complex into active complex by the phosphatase in heart mitochondria from alloxan-diabetic or 48h-starved rats or in mitochondria incubated for 6min with respiratory substrates. PMID:212016

  13. Luteal 3beta-hydroxysteroid dehydrogenase and 20alpha-hydroxysteroid dehydrogenase activities in the rat corpus luteum of pseudopregnancy: Effect of the deciduoma reaction

    PubMed Central

    Clementi, Marisa A; Deis, Ricardo P; Telleria, Carlos M

    2004-01-01

    Background In the rat, the maintenance of gestation is dependent on progesterone production from the corpora lutea (CL), which are under the control of pituitary, decidual and placental hormones. The luteal metabolism of progesterone during gestation has been amply studied. However, the regulation of progesterone synthesis and degradation during pseudopregnancy (PSP), in which the CL are mainly under the control of pituitary prolactin (PRL), is not well known. The objectives of this investigation were: i) to study the luteal metabolism of progesterone during PSP by measuring the activities of the enzymes 3beta-hydroxysteroid dehydrogenase (3betaHSD), involved in progesterone biosynthesis, and that of 20alpha-hydroxysteroid dehydrogenase (20alphaHSD), involved in progesterone catabolism; and ii) to determine the role of decidualization on progesterone metabolism in PSP. Methods PSP was induced mechanically at 10:00 h on the estrus of 4-day cycling Wistar rats, and the stimulus for decidualization was provided by scratching the uterus on day 4 of PSP. 3betaHSD and 20alphaHSD activities were measured in the CL isolated from ovaries of PSP rats using a spectrophotometric method. Serum concentrations of progesterone, PRL, androstenedione, and estradiol were measured by radioimmunoassay (RIA). Results The PSP stage induced mechanically in cycling rats lasted 11.3 0.09 days (n = 14). Serum progesterone concentration was high until day 10 of PSP, and declined thereafter. Serum PRL concentration was high on the first days of PSP but decreased significantly from days 6 to 9, having minimal values on days 10 and 11. Luteal 3betaHSD activities were elevated until day 6 of PSP, after which they progressively declined, reaching minimal values at the end of PSP. Luteal 20alphaHSD activities were very low until day 9, but abruptly increased at the end of PSP. When the deciduoma was induced by scratching the uterus of pseudopregnant animals on day 4 (PSP+D), PSP was extended to 18 2.2 days (n = 8). In PSP + D rats, serum progesterone and PRL levels, and luteal 3betaHSD activities were higher than in pseudopregnant rats on day 11. Decidualization also prevented the increase in luteal 20alphaHSD activities observed on day 11 of PSP. Administration of the dopaminergic agonist CB154 in PSP + D rats on day 10 of PSP induced a decline in both serum PRL and progesterone on day 11 of PSP, values that were not different from that of pseudopregnant controls. Conclusions We have established that during the final period of PSP a decline in progesterone biosynthesis occurs before the increase in progesterone catabolism. We have also shown that decidualization in pseudopregnant rats extends the life of the CL by prolonging the production of pituitary PRL, and by maintaining high 3betaHSD and low 20alphaHSD activities within the CL leading to sustained production of progesterone. PMID:15140254

  14. Avoiding Buffer Interference in ITC Experiments: A Case Study from the Analysis of Entropy-Driven Reactions of Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Bianconi, M Lucia

    2016-01-01

    Isothermal titration calorimetry (ITC) is a label-free technique that allows the direct determination of the heat absorbed or released in a reaction. Frequently used to determining binding parameters in biomolecular interactions, it is very useful to address enzyme-catalyzed reactions as both kinetic and thermodynamic parameters can be obtained. Since calorimetry measures the total heat effects of a reaction, it is important to consider the contribution of the heat of protonation/deprotonation that is possibly taking place. Here, we show a case study of the reaction catalyzed by the glucose-6-phosphate dehydrogenase (G6PD) from Leuconostoc mesenteroides. This enzyme is able to use either NAD(+) or NADP(+) as a cofactor. The reactions were done in five buffers of different enthalpy of protonation. Depending on the buffer used, the observed calorimetric enthalpy (?H(cal)) of the reaction varied from -22.93kJ/mol (Tris) to 19.37kJ/mol (phosphate) for the NADP(+)-linked reaction, and -11.67kJ/mol (Tris) to 7.32kcal/mol or 30.63kJ/mol (phosphate) for the NAD(+) reaction. We will use this system as an example of how to extract proton-independent reaction enthalpies from kinetic data to ensure that the reported accurately represent the intrinsic heat of reaction. PMID:26794357

  15. Colour remediation of pulp mill effluent using purified fungal cellobiose dehydrogenase: reaction optimisation and mechanism of degradation.

    PubMed

    Wingate, Kathryn G; Stuthridge, Trevor; Mansfield, Shawn D

    2005-04-01

    Cellobiose dehydrogenase purified from two different fungal sources was assessed for its ability to remove and/or reduce colour from pulp mill bleach plant effluent. Cellobiose dehydrogenase purified from Phanerochaete chrysosporium was shown to prefer acidic conditions and was consequently used to treat the acid effluent stream discharged from a pulp mill bleach plant, while an analogous enzyme originating from Humicola insolens preferred alkaline conditions, and was applied to the effluent discharged from the caustic sewer of the bleach plant. Both enzyme preparations were able to remove colour from their respective effluent sources to a comparable extent. Up to 50% of the effluent colour was removed within 4 days when treated under optimised conditions. Furthermore, it was also shown that this enzymatic approach was effective at removing colour generated by both softwood and hardwood resources. Mechanistically, it was shown that colour was removed from all molecular weight fractions, and the higher molecular weight material (>300 kDa) was concurrently preferentially degraded. Cellobiose dehydrogenase treatment of effluent did not target phenolic, stilbene, or alpha-carbonyl structures, but did affect the quinone content. Further investigations using model compounds confirmed these results, and subsequently showed that only the para-quinones with low substitution were reduced with cellobiose dehydrogenase. PMID:15726583

  16. Combining Parasite Lactate Dehydrogenase-Based and Histidine-Rich Protein 2-Based Rapid Tests To Improve Specificity for Diagnosis of Malaria Due to Plasmodium knowlesi and Other Plasmodium Species in Sabah, Malaysia

    PubMed Central

    William, Timothy; Barber, Bridget E.; Parameswaran, Uma; Bird, Elspeth; Piera, Kim; Aziz, Ammar; Dhanaraj, Prabakaran; Yeo, Tsin W.; Anstey, Nicholas M.

    2014-01-01

    Plasmodium knowlesi causes severe and fatal malaria in Malaysia. Microscopic misdiagnosis is common and may delay appropriate treatment. P. knowlesi can cross-react with species-specific parasite lactate dehydrogenase (pLDH) monoclonal antibodies used in rapid diagnostic tests (RDTs) to detect P. falciparum and P. vivax. At one tertiary-care hospital and two district hospitals in Sabah, we prospectively evaluated two combination RDTs for malaria diagnosis by using both a pan-Plasmodium-pLDH (pan-pLDH)/P. falciparum-specific-pLDH (Pf-pLDH) RDT (OptiMAL-IT) and a non-P. falciparum VOM-pLDH/Pf-HRP2 RDT (CareStart). Differential cross-reactivity among these combinations was hypothesized to differentiate P. knowlesi from other Plasmodium monoinfections. Among 323 patients with PCR-confirmed P. knowlesi (n = 193), P. falciparum (n = 93), and P. vivax (n = 37) monoinfections, the VOM-pLDH individual component had the highest sensitivity for nonsevere (35%; 95% confidence interval [CI], 27 to 43%) and severe (92%; CI, 81 to 100%) P. knowlesi malaria. CareStart demonstrated a P. knowlesi sensitivity of 42% (CI, 34 to 49%) and specificity of 74% (CI, 65 to 82%), a P. vivax sensitivity of 83% (CI, 66 to 93%) and specificity of 71% (CI, 65 to 76%), and a P. falciparum sensitivity of 97% (CI, 90 to 99%) and specificity of 99% (CI, 97 to 100%). OptiMAL-IT demonstrated a P. knowlesi sensitivity of 32% (CI, 25 to 39%) and specificity of 21% (CI, 15 to 29%), a P. vivax sensitivity of 60% (CI, 42 to 75%) and specificity of 97% (CI, 94 to 99%), and a P. falciparum sensitivity of 82% (CI, 72 to 89%) and specificity of 39% (CI, 33 to 46%). The combination of CareStart plus OptiMAL-IT for P. knowlesi using predefined criteria gave a sensitivity of 25% (CI, 19 to 32%) and specificity of 97% (CI, 92 to 99%). Combining two RDT combinations was highly specific for P. knowlesi malaria diagnosis; however, sensitivity was poor. The specificity of pLDH RDTs was decreased for P. vivax and P. falciparum because of P. knowlesi cross-reactivity and cautions against their use alone in areas where P. knowlesi malaria is endemic. Sensitive P. knowlesi-specific RDTs and/or alternative molecular diagnostic tools are needed in areas where P. knowlesi malaria is endemic. PMID:24696029

  17. Infection of central nervous system cells by ecotropic murine leukemia virus in C58 and AKR mice and in in utero-infected CE/J mice predisposes mice to paralytic infection by lactate dehydrogenase-elevating virus.

    PubMed

    Anderson, G W; Palmer, G A; Rowland, R R; Even, C; Plagemann, P G

    1995-01-01

    Certain mouse strains, such as AKR and C58, which possess N-tropic, ecotropic murine leukemia virus (MuLV) proviruses and are homozygous at the Fv-1n locus are specifically susceptible to paralytic infection (age-dependent poliomyelitis [ADPM]) by lactate dehydrogenase-elevating virus (LDV). Our results provide an explanation for this genetic linkage and directly prove that ecotropic MuLV infection of spinal cord cells is responsible for rendering anterior horn neurons susceptible to cytocidal LDV infection, which is the cause of the paralytic disease. Northern (RNA) blot hybridization of total tissue RNA and in situ hybridization of tissue sections demonstrated that only mice harboring central nervous system (CNS) cells that expressed ecotropic MuLV were susceptible to ADPM. Our evidence indicates that the ecotropic MuLV RNA is transcribed in CNS cells from ecotropic MuLV proviruses that have been acquired by infection with exogenous ecotropic MuLV, probably during embryogenesis, the time when germ line proviruses in AKR and C58 mice first become activated. In young mice, MuLV RNA-containing cells were found exclusively in white-matter tracts and therefore were glial cells. An increase in the ADPM susceptibility of the mice with advancing age correlated with the presence of an increased number of ecotropic MuLV RNA-containing cells in the spinal cords which, in turn, correlated with an increase in the number of unmethylated proviruses in the DNA extracted from spinal cords. Studies with AKXD recombinant inbred strains showed that possession of a single replication-competent ecotropic MuLV provirus (emv-11) by Fv-1n/n mice was sufficient to result in ecotropic MuLV infection of CNS cells and ADPM susceptibility. In contrast, no ecotropic MuLV RNA-positive cells were present in the CNSs of mice carrying defective ecotropic MuLV proviruses (emv-3 or emv-13) or in which ecotropic MuLV replication was blocked by the Fv-1n/b or Fv-1b/b phenotype. Such mice were resistant to paralytic LDV infection. In utero infection of CE/J mice, which are devoid of any endogenous ecotropic MuLVs, with the infectious clone of emv-11 (AKR-623) resulted in the infection of CNS cells, and the mice became ADPM susceptible, whereas littermates that had not become infected with ecotropic MuLV remained ADPM resistant. PMID:7983723

  18. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.

    PubMed

    Bekers, K M; Heijnen, J J; van Gulik, W M

    2015-08-01

    With the current quantitative metabolomics techniques, only whole-cell concentrations of NAD and NADH can be quantified. These measurements cannot provide information on the in vivo redox state of the cells, which is determined by the ratio of the free forms only. In this work we quantified free NAD:NADH ratios in yeast under anaerobic conditions, using alcohol dehydrogenase (ADH) and the lumped reaction of glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase as sensor reactions. We showed that, with an alternative accurate acetaldehyde determination method, based on rapid sampling, instantaneous derivatization with 2,4 diaminophenol hydrazine (DNPH) and quantification with HPLC, the ADH-catalysed oxidation of ethanol to acetaldehyde can be applied as a relatively fast and simple sensor reaction to quantify the free NAD:NADH ratio under anaerobic conditions. We evaluated the applicability of ADH as a sensor reaction in the yeast Saccharomyces cerevisiae, grown in anaerobic glucose-limited chemostats under steady-state and dynamic conditions. The results found in this study showed that the cytosolic redox status (NAD:NADH ratio) of yeast is at least one order of magnitude lower, and is thus much more reduced, under anaerobic conditions compared to aerobic glucose-limited steady-state conditions. The more reduced state of the cytosol under anaerobic conditions has major implications for (central) metabolism. Accurate determination of the free NAD:NADH ratio is therefore of importance for the unravelling of in vivo enzyme kinetics and to judge accurately the thermodynamic reversibility of each redox reaction. PMID:26059529

  19. Genetics Home Reference: Lactate dehydrogenase deficiency

    MedlinePLUS

    ... the body breaks down sugar to use as energy in cells, primarily muscle cells. There are two ... throughout the body and is important for creating energy for cells. There are five different forms of ...

  20. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron... to 155, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part...

  1. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid.... (1996), pp. 154 to 155, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1...

  2. Mechanism of action of butyryl-CoA dehydrogenase: reactions with acetylenic, olefinic, and fluorinated substrate analogues.

    PubMed

    Fendrich, G; Abeles, R H

    1982-12-21

    The acetylenic thio ester (3-pentynoyl)pantetheine irreversibly inactivates butyryl-CoA dehydrogenase from Megasphaera elsdenii. The inactivator becomes covalently attached to the protein (0.61 +/- 0.1 mol of 14C-labeled inactivator/mol of enzyme flavin). No modification of the flavin cofactor is seen. The covalent enzyme-inactivator adduct is labile toward base and neutral hydroxylamine. These treatments release 85 +/- 5% of the incorporated 14C label from the protein. Base-catalyzed hydrolysis of the adduct releases 3-oxopentanoic acid (0.6 mol/mol of incorporated inactivator). Treatment with hydroxylamine leads to formation of a hydroxamic acid on the protein (0.64 +/- 0.09 mol/mol of incorporated inactivator). The covalent adduct can be reduced with sodium borohydride with release of 1,3-pentanediol. Hydrolysis of the protein with 6 N HCl after sodium borohydride reduction yields 2-amino-5-hydroxyvaleric acid and proline. We conclude that the inactivator has reacted with the gamma-carboxyl group of a glutamate residue at the enzyme active site. The inactivation proceeds through enzyme-catalyzed rearrangement of the acetylene to an allene, followed by nucleophilic addition of the carboxyl group to the allene. (3-Chloro-3-butenoyl)pantetheine irreversibly inactivates the enzyme in a fashion similar to the acetylenic thio ester and also modifies a glutamate residue. Butyryl-CoA dehydrogenase catalyzes the isomerization of (3-butenoyl)pantetheine to (2-butenoyl)pantetheine. The enzyme catalyzes the elimination of HF from 3-fluoropropionyl-CoA and (3,3-difluorobutyryl)pantetheine. We suggest, that these results together support an oxidation mechanism for butyryl-CoA dehydrogenase which is initiated by alpha-proton abstraction. PMID:7159554

  3. Yeast mitochondrial dehydrogenases are associated in a supramolecular complex.

    PubMed

    Grandier-Vazeille, X; Bathany, K; Chaignepain, S; Camougrand, N; Manon, S; Schmitter, J M

    2001-08-21

    Separation of yeast mitochondrial complexes by colorless native polyacrylamide gel electrophoresis led to the identification of a supramolecular structure exhibiting NADH-dehydrogenase activity. Components of this complex were identified by N-terminal Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. The complex was found to contain the five known intermembrane space-facing dehydrogenases, namely two external NADH-dehydrogenases Nde1p and Nde2p, glycerol-3-phosphate dehydrogenase Gut2p, D- and L-lactate-dehydrogenases Dld1p and Cyb2p, the matrix-facing NADH-dehydrogenase Ndi1p, two probable flavoproteins YOR356Wp and YPR004Cp, four tricarboxylic acids cycle enzymes (malate dehydrogenase Mdh1p, citrate synthase Cit1p, succinate dehydrogenase Sdh1p, and fumarate hydratase Fum1p), and the acetaldehyde dehydrogenase Ald4p. The association of these proteins is discussed in terms of NADH-channeling. PMID:11502169

  4. Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production

    PubMed Central

    Wang, Yujiao; Lv, Min; Zhang, Yingxin; Xiao, Xieyue; Jiang, Tianyi; Zhang, Wen; Hu, Chunhui; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-01-01

    As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and reconstruction of the lactate utilization system in the P. putida strain, a novel biocatalyst that only exhibited NAD-independent d-lactate dehydrogenase activity was prepared and used in l-2-hydroxy-carboxylates production. Since the side reaction catalyzed by the NAD-independent l-lactate dehydrogenase was eliminated in whole cells of recombinant P. putida KT2440, two important l-2-hydroxy-carboxylates (l-lactate and l-2-hydroxybutyrate) were produced in high yield and high optical purity by kinetic resolution of racemic 2-hydroxy carboxylic acids. The results highlight the promise in biocatalysis by the biotechnologically important organism P. putida KT2440 through genomic analysis and recombination. PMID:25373400

  5. Lactate Test

    MedlinePLUS

    ... evaluation of someone who is suspected of having sepsis . Typically, if the person's lactate level is above ... be initiated without delay. If a person with sepsis can be diagnosed and treated promptly, their chances ...

  6. Lactate metabolism in the fetal rabbit lung

    SciTech Connect

    Engle, M.J.; Brown, D.J.; Dooley, M.

    1986-05-01

    Lactate is frequently overlooked as a potential substrate for the fetal lung, even though it is present in the fetal circulation in concentrations as high as 8 mM. These high concentrations, coupled with the relatively low levels of glucose in the fetal blood, may indicate that lactate can substitute for glucose in pulmonary energy generation and phospholipid synthesis. A series of experiments was therefore undertaken in order to investigate the role of lactate in perinatal pulmonary development. Explants from 30 day gestation fetal rabbit lungs were incubated in Krebs-Ringer bicarbonate buffer supplemented with 3 mM (U-/sup 14/C)-glucose and varying levels of lactate. In the absence of medium lactate, fetal rabbit lung explants were capable of producing lactate at a rate of approximately 200 etamoles/mg protein/hour. The addition of lactate to the bathing medium immediately reduced net lactate production and above 4 mM, fetal rabbit lung explants became net utilizers of lactate. Media lactate concentrations of 2.5 mM, 5 mM and 10 mM also decreased glucose incorporation into total tissue disaturated phosphatidylcholine by approximately 20%, 35%, and 45%, respectively. Glucose incorporation into surfactant phosphatidylcholine was also reduced by approximately 50%, when lactate was present in the incubation medium at a concentration of 5 mM. Additional experiments also revealed that fetal lung lactate dehydrogenase activity was almost twice that found in the adult rabbit lung. These data indicate that lactate may be an important carbon source for the developing lung and could be a significant component in the manufacture of surfactant phosphatidylcholine during late gestation.

  7. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction

    PubMed Central

    Zhang, Jinrui; Pierick, Angela ten; van Rossum, Harmen M.; Maleki Seifar, Reza; Ras, Cor; Daran, Jean-Marc; Heijnen, Joseph J.; Aljoscha Wahl, S.

    2015-01-01

    Eukaryotic metabolism is organised in complex networks of enzyme catalysed reactions which are distributed over different organelles. To quantify the compartmentalised reactions, quantitative measurements of relevant physiological variables in different compartments are needed, especially of cofactors. NADP(H) are critical components in cellular redox metabolism. Currently, available metabolite measurement methods allow whole cell measurements. Here a metabolite sensor based on a fast equilibrium reaction is introduced to monitor the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae: . The cytosolic NADPH/NADP ratio was determined by measuring the shikimate and dehydroshikimate concentrations (by GC-MS/MS). The cytosolic NADPH/NADP ratio was determined under batch and chemostat (aerobic, glucose-limited, D?=?0.1?h?1) conditions, to be 22.0??2.6 and 15.6??0.6, respectively. These ratios were much higher than the whole cell NADPH/NADP ratio (1.05??0.08). In response to a glucose pulse, the cytosolic NADPH/NADP ratio first increased very rapidly and restored the steady state ratio after 3 minutes. In contrast to this dynamic observation, the whole cell NADPH/NADP ratio remained nearly constant. The novel cytosol NADPH/NADP measurements provide new insights into the thermodynamic driving forces for NADP(H)-dependent reactions, like amino acid synthesis, product pathways like fatty acid production or the mevalonate pathway. PMID:26243542

  8. Lactate is always the end product of glycolysis

    PubMed Central

    Rogatzki, Matthew J.; Ferguson, Brian S.; Goodwin, Matthew L.; Gladden, L. Bruce

    2015-01-01

    Through much of the history of metabolism, lactate (La?) has been considered merely a dead-end waste product during periods of dysoxia. Congruently, the end product of glycolysis has been viewed dichotomously: pyruvate in the presence of adequate oxygenation, La? in the absence of adequate oxygenation. In contrast, given the near-equilibrium nature of the lactate dehydrogenase (LDH) reaction and that LDH has a much higher activity than the putative regulatory enzymes of the glycolytic and oxidative pathways, we contend that La? is always the end product of glycolysis. Cellular La? accumulation, as opposed to flux, is dependent on (1) the rate of glycolysis, (2) oxidative enzyme activity, (3) cellular O2 level, and (4) the net rate of La? transport into (influx) or out of (efflux) the cell. For intracellular metabolism, we reintroduce the Cytosol-to-Mitochondria Lactate Shuttle. Our proposition, analogous to the phosphocreatine shuttle, purports that pyruvate, NAD+, NADH, and La? are held uniformly near equilibrium throughout the cell cytosol due to the high activity of LDH. La? is always the end product of glycolysis and represents the primary diffusing species capable of spatially linking glycolysis to oxidative phosphorylation. PMID:25774123

  9. Glycolysis and the significance of lactate in traumatic brain injury

    PubMed Central

    Carpenter, Keri L. H.; Jalloh, Ibrahim; Hutchinson, Peter J.

    2015-01-01

    In traumatic brain injury (TBI) patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well-recognized, and are associated statistically with unfavorable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolized via glycolysis (Embden-Meyerhof-Parnas pathway) to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate's association with unfavorable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilization of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labeled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labeling in glutamine consistent with lactate utilization via the TCA cycle. This suggests that where neurons are too damaged to utilize the lactate produced from glucose by astrocytes, i.e., uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining the association between high lactate and poor outcome. Recently, an intravenous exogenous lactate supplementation study in TBI patients revealed evidence for a beneficial effect judged by surrogate endpoints. Here we review the current state of knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better clinical outcome. PMID:25904838

  10. How to draw kinetic barrier diagrams for enzyme-catalysed reactions.

    PubMed Central

    Sdi, J

    1991-01-01

    A modified way to construct kinetic barrier diagrams is presented. Although the diagram superficially resembles a free-energy profile, it is independent of any conception derived from transition-state theory. Some simple calculations referring to the lactate dehydrogenase turnover reaction at equilibrium demonstrate self-consistency of the diagram and its direct relevance to the results of numerical simulations of the detailed course of enzyme-catalysed reactions. PMID:2039478

  11. Genetics Home Reference: Glucose-6-phosphate dehydrogenase deficiency

    MedlinePLUS

    ... eating fava beans or inhaling pollen from fava plants (a reaction called favism). Glucose-6-dehydrogenase deficiency ... The G6PD gene provides instructions for making an enzyme called glucose-6-phosphate dehydrogenase. This enzyme is ...

  12. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous...) and 1 CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave....

  13. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous...) and 1 CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave....

  14. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous...) and 1 CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave....

  15. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

    PubMed

    Gannavaram, Swathi; Sirin, Sarah; Sherman, Woody; Gadda, Giovanni

    2014-10-21

    The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the ?-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ?4 from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ?10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms. PMID:25243743

  16. d-3-Hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Kinetic mechanism from steady-state kinetics of the reaction catalysed by the enzyme in solution and covalently attached to diethylaminoethylcellulose

    PubMed Central

    Preuveneers, M. J.; Peacock, D.; Crook, E. M.; Clark, J. B.; Brocklehurst, K.

    1973-01-01

    1. The reversible NAD+-linked oxidation of d-3-hydroxybutyrate to acetoacetate in 0.1m-sodium pyrophosphate buffer, pH8.5, at 25.0C, catalysed by d-3-hydroxybutyrate dehydrogenase (d-3-hydroxybutyrateNAD+ oxidoreductase, EC 1.1.1.30), was studied by initial-velocity, dead-end inhibition and product-inhibition analysis. 2. The reactions were carried out on (a) the soluble enzyme from Rhodopseudomonas spheroides and (b) an insoluble derivative of this enzyme prepared by its covalent attachment to DEAE-cellulose by using 2-amino-4,6-dichloro-s-triazine as coupling agent. 3. The insolubilized enzyme preparation contained 5mg of protein/g wet wt. of total material, and when freshly prepared its specific activity was 1.2?mol/min per mg of protein, which is 67% of that of the soluble dialysed enzyme. 4. The reactions catalysed by both the enzyme in solution and the insolubilized enzyme were shown to follow sequential pathways in which the nicotinamide nucleotides bind obligatorily first to the enzyme. Evidence is presented for kinetically significant ternary complexes and that the rate-limiting step(s) of both catalyses probably involves isomerization of the enzymenicotinamide nucleotide complexes and/or dissociation of the nicotinamide nucleotides from the enzyme. Both catalyses therefore are probably best described as ordered Bi Bi mechanisms, possibly with multiple enzymenicotinamide nucleotide complexes. 5. The kinetic parameters and the calculable rate constants for the catalysis by the soluble enzyme are similar to the corresponding parameters and rate constants for the catalysis by the insolubilized enzyme. PMID:4352835

  17. Heavy atom isotope effects on enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  18. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    DOEpatents

    Miller, Matthew; Suominen, Pirkko; Aristidou, Aristos; Hause, Benjamin Matthew; Van Hoek, Pim; Dundon, Catherine Asleson

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  19. Evaluation of NAD(P)-Dependent Dehydrogenase Activities in Neutrophilic Granulocytes by the Bioluminescent Method.

    PubMed

    Savchenko, A A

    2015-09-01

    Bioluminescent method for measurements of the neutrophilic NAD(P)-dependent dehydrogenases (lactate dehydrogenase, NAD-dependent malate dehydrogenase, NADP-dependent decarboxylating malate dehydrogenase, NAD-dependent isocitrate dehydrogenase, and glucose- 6-phosphate dehydrogenase) is developed. The sensitivity of the method allows minimization of the volume of biological material for measurements to 104 neutrophils per analysis. The method is tried in patients with diffuse purulent peritonitis. Low levels of NADPH synthesis enzymes and high levels of enzymes determining the substrate flow by the Krebs cycle found in these patients can lead to attenuation of functional activity of cells. PMID:26468025

  20. The primary pathway for lactate oxidation in Desulfovibrio vulgaris.

    PubMed

    Vita, Nicolas; Valette, Odile; Brasseur, Gaël; Lignon, Sabrina; Denis, Yann; Ansaldi, Mireille; Dolla, Alain; Pieulle, Laetitia

    2015-01-01

    The ability to respire sulfate linked to lactate oxidation is a key metabolic signature of the Desulfovibrio genus. Lactate oxidation by these incomplete oxidizers generates reductants through lactate dehydrogenase (LDH) and pyruvate-ferredoxin oxidoreductase (PFOR), with the latter catalyzing pyruvate conversion into acetyl-CoA. Acetyl-CoA is the source of substrate-level phosphorylation through the production of ATP. Here, we show that these crucial steps are performed by enzymes encoded by a nonacistronic transcriptional unit named now as operon luo (for lactate utilization operon). Using a combination of genetic and biochemical techniques, we assigned a physiological role to the operon genes DVU3027-28 and DVU3032-33. The growth of mutant Δ26-28 was highly disrupted on D-lactate, whereas the growth of mutant Δ32-33 was slower on L-lactate, which could be related to a decrease in the activity of D-lactate or L-lactate oxidase in the corresponding mutants. The DVU3027-28 and DVU3032-33 genes thus encode functional D-LDH and L-LDH enzymes, respectively. Scanning of the genome for lactate utilization revealed several lactate permease and dehydrogenase homologs. However, transcriptional compensation was not observed in any of the mutants except for lactate permease. Although there is a high degree of redundancy for lactate oxidase, it is not functionally efficient in LDH mutants. This result could be related to the identification of several operon enzymes, including LDHs, in the PFOR activity bands, suggesting the occurrence of a lactate-oxidizing supermolecular structure that can optimize the performance of lactate utilization in Desulfovibrio species. PMID:26167158

  1. The primary pathway for lactate oxidation in Desulfovibrio vulgaris

    PubMed Central

    Vita, Nicolas; Valette, Odile; Brasseur, Gaël; Lignon, Sabrina; Denis, Yann; Ansaldi, Mireille; Dolla, Alain; Pieulle, Laetitia

    2015-01-01

    The ability to respire sulfate linked to lactate oxidation is a key metabolic signature of the Desulfovibrio genus. Lactate oxidation by these incomplete oxidizers generates reductants through lactate dehydrogenase (LDH) and pyruvate-ferredoxin oxidoreductase (PFOR), with the latter catalyzing pyruvate conversion into acetyl-CoA. Acetyl-CoA is the source of substrate-level phosphorylation through the production of ATP. Here, we show that these crucial steps are performed by enzymes encoded by a nonacistronic transcriptional unit named now as operon luo (for lactate utilization operon). Using a combination of genetic and biochemical techniques, we assigned a physiological role to the operon genes DVU3027-28 and DVU3032-33. The growth of mutant Δ26-28 was highly disrupted on D-lactate, whereas the growth of mutant Δ32-33 was slower on L-lactate, which could be related to a decrease in the activity of D-lactate or L-lactate oxidase in the corresponding mutants. The DVU3027-28 and DVU3032-33 genes thus encode functional D-LDH and L-LDH enzymes, respectively. Scanning of the genome for lactate utilization revealed several lactate permease and dehydrogenase homologs. However, transcriptional compensation was not observed in any of the mutants except for lactate permease. Although there is a high degree of redundancy for lactate oxidase, it is not functionally efficient in LDH mutants. This result could be related to the identification of several operon enzymes, including LDHs, in the PFOR activity bands, suggesting the occurrence of a lactate-oxidizing supermolecular structure that can optimize the performance of lactate utilization in Desulfovibrio species. PMID:26167158

  2. Comprehensive review on lactate metabolism in human health.

    PubMed

    Adeva-Andany, M; Lpez-Ojn, M; Funcasta-Caldern, R; Ameneiros-Rodrguez, E; Donapetry-Garca, C; Vila-Altesor, M; Rodrguez-Seijas, J

    2014-07-01

    Metabolic pathways involved in lactate metabolism are important to understand the physiological response to exercise and the pathogenesis of prevalent diseases such as diabetes and cancer. Monocarboxylate transporters are being investigated as potential targets for diagnosis and therapy of these and other disorders. Glucose and alanine produce pyruvate which is reduced to lactate by lactate dehydrogenase in the cytoplasm without oxygen consumption. Lactate removal takes place via its oxidation to pyruvate by lactate dehydrogenase. Pyruvate may be either oxidized to carbon dioxide producing energy or transformed into glucose. Pyruvate oxidation requires oxygen supply and the cooperation of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. Congenital or acquired deficiency on gluconeogenesis or pyruvate oxidation, including tissue hypoxia, may induce lactate accumulation. Both obese individuals and patients with diabetes show elevated plasma lactate concentration compared to healthy subjects, but there is no conclusive evidence of hyperlactatemia causing insulin resistance. Available evidence suggests an association between defective mitochondrial oxidative capacity in the pancreatic ?-cells and diminished insulin secretion that may trigger the development of diabetes in patients already affected with insulin resistance. Several mutations in the mitochondrial DNA are associated with diabetes mellitus, although the pathogenesis remains unsettled. Mitochondrial DNA mutations have been detected in a number of human cancers. d-lactate is a lactate enantiomer normally formed during glycolysis. Excess d-lactate is generated in diabetes, particularly during diabetic ketoacidosis. d-lactic acidosis is typically associated with small bowel resection. PMID:24929216

  3. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.

    PubMed

    Zhu, J; Shimizu, K

    2004-04-01

    The effect of gene knockout on metabolism in the pflA-, pflB-, pflC-, and pflD- mutants of Escherichia coli was investigated. Batch cultivations of the pfl- mutants and their parent strain were conducted using glucose as a carbon source. It was found that pflA- and pflB- mutants, but not pflC- and pflD- mutants, produced large amounts of D-lactate from glucose under the microaerobic condition, and the maximum yield was 73%. In order to investigate the metabolic regulation mechanism, we measured enzyme activities for the following eight enzymes: glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), pyruvate kinase, lactate dehydrogenase (LDH), phosphoenolpyruvate carboxylase, acetate kinase, and alcohol dehydrogenase. Intracellular metabolite concentrations of glucose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate, pyruvate, acetyl coenzyme A as well as ATP, ADP, AMP, NADH, and NAD+ were also measured. It was shown that the GAPDH and LDH activities were considerably higher in pflA- and pflB- mutants, which implies coupling between NADH production and consumption between the two corresponding reactions. The urgent energy requirement was shown by the lower ATP/AMP level due to both oxygen limitation and pfl gene knockout, which promoted significant stepping-up of glycolysis when using glucose as a carbon source. It was shown that the demand for energy is more important than intracellular redox balance, thus excess NADH produced through GAPDH resulted in a significantly higher intracellular NADH/NAD+ ratio in pfl- mutants. Consequently, the homolactate production was achieved to meet the requirements of the redox balance and the energy production through glycolysis. The effect of using different carbon sources such as gluconate, pyruvate, fructose, and glycerol was investigated. PMID:14673546

  4. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-30

    Shewanella oneidensis MR-1 is a facultative anaerobe growing by coupling organic matter oxidation to reduction of wide range of electron acceptors. Here we quantitatively assessed lactate and pyruvate metabolism of these bacteria under three distinct conditions: electron acceptor limited growth on lactate with O2 and fumarate, and pyruvate fermentation, which does not sustain growth but allows cells to survive for prolonged period. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of all ATP needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute much to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, and TCA cycle did not contribute significantly to substrate oxidation. Pyruvate dehydrogenase reaction was not involved in lactate metabolism under O2 limitation, however was important for anaerobic growth probably supplying reducing equivalents for biosynthesis. Unexpectedly, obtained results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination between substrate-level phosphorylation and a respiratory process, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). Based on involved enzymes localization we hypothesize that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  5. Efficient Production of Pyruvate from DL-Lactate by the Lactate-Utilizing Strain Pseudomonas stutzeri SDM

    PubMed Central

    Gao, Chao; Qiu, Jianhua; Ma, Cuiqing; Xu, Ping

    2012-01-01

    Background The platform chemical lactate is currently produced mainly through the fermentation of sugars presented in biomass. Besides the synthesis of biodegradable polylactate, lactate is also viewed as a feedstock for the green chemistry of the future. Pyruvate, another important platform chemical, can be produced from lactate through biocatalysis. Methodology/Principal Findings It was established that whole cells of Pseudomonas stutzeri SDM catalyze lactate oxidation with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) through the inherent electron transfer chain. Unlike the lactate oxidation processes observed in previous reports, the mechanism underlying lactate oxidation described in the present study excluded the costliness of the cofactor regeneration step and production of the byproduct hydrogen peroxide. Conclusions/Significance Biocatalysis conditions were optimized by using the cheap dl-lactate as the substrate and whole cells of the lactate-utilizing P. stutzeri SDM as catalyst. Under optimal conditions, the biocatalytic process produced pyruvate at a high concentration (48.4 g l−1) and a high yield (98%). The bioconversion system provides a promising alternative for the green production of pyruvate. PMID:22792404

  6. [High-efficiency L-lactate production from glycerol by metabolically engineered Escherichia coli].

    PubMed

    Tian, Kangming; Shi, Guiyang; Lu, Fuping; Singh, Suren; Wang, Zhengxiang

    2013-09-01

    High-efficient conversion of glycerol to L-lactate is beneficial for the development of both oil hydrolysis industry and biodegradable materials manufacturing industry. In order to construct an L-lactate producer, we first cloned a coding region of gene BcoaLDH encoding an L-lactate dehydrogenase from Bacillus coagulans CICIM B1821 and the promoter sequence (P(ldhA)) of the D-lactate dehydrogenase (LdhA) from Escherichia coli CICIM B0013. Then we assembled these two DNA fragments in vitro and yielded an expression cassette, P(ldhA)-BcoaLDH. Then, the cassette was chromosomally integrated into an ldhA mutant strain, Escherichia coli CICIM B0013-080C, by replacing lldD encoding an FMN-dependent L-lactate dehydrogenase. An L-lactate higher-producer strain, designated as E. coli B0013-090B, possessing genotype of lldD::P(ldhA)-BcoaLDH, deltaack-pta deltapps deltapflB deltadld deltapoxB deltaadhE deltafrdA and deltaldhA, was generated. Under the optimal condition, 132.4 g/L L-lactate was accumulated by B0013-090B with the lactate productivity of 4.90 g/Lh and the yield of 93.7% in 27 h from glycerol. The optical purity of L-lactate in broth is above 99.95%. PMID:24409690

  7. Utilization of d-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans

    PubMed Central

    Sheng, Binbin; Xu, Jing; Zhang, Yingxin; Jiang, Tianyi; Deng, Sisi; Kong, Jian; Ma, Cuiqing; Xu, Ping

    2015-01-01

    d-Lactate was identified as one of the few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, the strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with high activity toward d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity toward d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate-oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase. PMID:25862219

  8. Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells

    PubMed Central

    Bunik, Victoria I.; Artiukhov, Artem; Kazantsev, Alexey; Goncalves, Renata; Daloso, Danilo; Oppermann, Henry; Kulakovskaya, Elena; Lukashev, Nikolay; Fernie, Alisdair; Brand, Martin; Gaunitz, Frank

    2015-01-01

    The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 μM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 μM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition. PMID:26503465

  9. Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells.

    PubMed

    Bunik, Victoria I; Artiukhov, Artem; Kazantsev, Alexey; Goncalves, Renata; Daloso, Danilo; Oppermann, Henry; Kulakovskaya, Elena; Lukashev, Nikolay; Fernie, Alisdair; Brand, Martin; Gaunitz, Frank

    2015-11-24

    The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 μM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 μM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition. PMID:26503465

  10. Miniaturized flexible amperometric lactate probe.

    PubMed

    Wang, D L; Heller, A

    1993-04-15

    A flexible lactate electrode was made of 400 +/- 100 7-micron-diameter carbon fibers, epoxy embedded in a 0.3-mm-diameter polyimide tubing. The electrode was modified by precipitating on it the relatively insoluble complex formed between 1100 kDa partially N-ethylamine quaternized poly[(vinylpyridine)-Os(bipyridine)2Cl]Cl (POs-EA) and lactate oxidase. The steady-state lactate electrooxidation current, at 2 mM lactate concentration and at 22 degrees C, was 400 nA. The 50 +/- 10 microAc cm-2 current density and the 20 mA cm-2 M-1 sensitivity decreased only by 5% when the partial pressure of oxygen was increased from 0.0 to 0.2 atm. The electrode retains its sensitivity after dry storage at 4 degrees C for 4 months in air but loses half of its sensitivity in 7 h at 37 degrees C through polymer desorption when operated at 0.4 V (SCE). To eliminate interference by species that are electrooxidized at 0.4 V (SCE), the lactate-sensing probe was (a) electrically insulated with an epoxy made of poly(vinylimidazole) cross-linked with ethylene glycol diglycidyl ether and (b) coated with an immobilized horseradish peroxidase (HRP)/glucose oxidase (GOX) film. The latter film was formed by coimmobilizing the two enzymes through periodate oxidation of their oligosaccharides to aldehydes and forming Schiff bases between the polyaldehydes and the enzymes' lysyl amines. In the presence of 1 mM glucose and in air, the interfering electrooxidation of 0.1 mM ascorbate was reduced by a factor of 20. This reduction results from formation of hydrogen peroxide in the glucose-catalyzed reaction and H2O2 oxidation of the ascorbate in a reaction catalyzed by HRP. PMID:8494172

  11. A comparative proteomic analysis of Bacillus coagulans in response to lactate stress during the production of L-lactic acid.

    PubMed

    Wang, Xiuwen; Qin, Jiayang; Wang, Landong; Xu, Ping

    2014-12-01

    The growth rate and maximum biomass of Bacillus coagulans 2-6 were inhibited by lactate; inhibition by sodium lactate was stronger than by calcium lactate. The differences of protein expressions by B. coagulans 2-6 under the lactate stress were determined using two-dimensional electrophoresis coupled with mass spectrometric identification. Under the non-stress condition, calcium lactate stress and sodium lactate stress, the number of detected protein spots was 1,571117, 1,281231 and 904127, respectively. Four proteins with high expression under lactate stress were identified: lactate dehydrogenase, cysteine synthase A, aldo/keto reductase and ribosomal protein L7/L12. These proteins are thus potential targets for the reconstruction of B. coagulans to promote its resistance to lactate stress. PMID:25214213

  12. Photo-electrochemical Bioanalysis of Guanosine Monophosphate Using Coupled Enzymatic Reactions at a CdS/ZnS Quantum Dot Electrode.

    PubMed

    Sabir, Nadeem; Khan, Nazimuddin; Vlkner, Johannes; Widdascheck, Felix; Del Pino, Pablo; Witte, Gregor; Riedel, Marc; Lisdat, Fred; Konrad, Manfred; Parak, Wolfgang J

    2015-11-01

    A photo-electrochemical sensor for the specific detection of guanosine monophosphate (GMP) is demonstrated, based on three enzymes combined in a coupled reaction assay. The first reaction involves the adenosine triphosphate (ATP)-dependent conversion of GMP to guanosine diphosphate (GDP) by guanylate kinase, which warrants substrate specificity. The reaction products ADP and GDPare co-substrates for the enzymatic conversion of phosphoenolpyruvate to pyruvate in a second reaction mediated by pyruvate kinase. Pyruvate in turn is the co-substrate for lactate dehydrogenase that generates lactate via oxidation of nicotinamide adenine dinucleotide (reduced form) NADH to NAD(+) . This third enzymatic reaction is electrochemically detected. For this purpose a CdS/ZnS quantum dot (QD) electrode is illuminated and the photocurrent response under fixed potential conditions is evaluated. The sequential enzyme reactions are first evaluated in solution. Subsequently, a sensor for GMP is constructed using polyelectrolytes for enzyme immobilization. PMID:26395754

  13. Analysis of lactation shapes in extended lactations.

    PubMed

    Steri, R; Dimauro, C; Canavesi, F; Nicolazzi, E L; Macciotta, N P P

    2012-10-01

    In order to describe the temporal evolution of milk yield (MY) and composition in extended lactations, 21 658 lactations of Italian Holstein cows were analyzed. Six empirical mathematical models currently used to fit 305 standard lactations (Wood, Wilmink, Legendre, Ali and Schaeffer, quadratic and cubic splines) and one function developed specifically for extended lactations (a modification of the Dijkstra model) were tested to identify a suitable function for describing patterns until 1000 days in milk (DIM). Comparison was performed on individual patterns and on average curves grouped according to parity (primiparous and multiparous) and lactation length (standard ?305 days, and extended from 600 to 1000 days). For average patterns, polynomial models showed better fitting performances when compared with the three or four parameters models. However, LEG and spline regression, showed poor prediction ability at the extremes of the lactation trajectory. The Ali and Schaeffer polynomial and Dijkstra function were effective in modelling average curves for MY and protein percentage, whereas a reduced fitting ability was observed for fat percentage and somatic cell score. When individual patterns were fitted, polynomial models outperformed nonlinear functions. No detectable differences were observed between standard and extended patterns in the initial phase of lactation, with similar values of peak production and time at peak. A considerable difference in persistency was observed between 200 and 305 DIM. Such a difference resulted in an estimated difference between standard and extended cycle of about 7 and 9 kg/day for daily yield at 305 DIM and of 463 and 677 kg of cumulated milk production at 305 DIM for the first- and second-parity groups, respectively. For first and later lactation animals, peak yield estimates were nearly 31 and 38 kg, respectively, and occurred at around 65 and 40 days. The asymptotic level of production was around 9 kg for multiparous cows, whereas the estimate was negative for first parity. PMID:22717349

  14. Structure and Function of Plasmodium falciparum malate dehydrogenase: Role of Critical Amino Acids in C-substrate Binding Procket

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our lab have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal g...

  15. Analysis of Quaternary Structure of a [LDH-like] Malate Dehydrogenase of Plasmodium falciparum with Oligomeric Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-Malate dehydrogenase (PfMDH) from Plasmodium falciparum, the causative agent for the most severe form of malaria, has shown remarkable similarities to L-lactate dehydrogenase (PfLDH). PfMDH is more closely related to [LDH-like] MDHs characterized in archea and other prokaryotes. Initial sequence a...

  16. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction, and tumors of the lung or kidneys. (b) Classification. Class II (special controls). The device...

  17. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    ERIC Educational Resources Information Center

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to

  18. [Autoimmune hemolytic anemia with normal serum lactate dehydrogenase level].

    PubMed

    Mizuno, Hideaki; Hangaishi, Akira; Saika, Makoto; Morioka, Takehiko; Ando, Yayoi; Kida, Michiko; Usuki, Kensuke

    2015-11-01

    We herein report two cases of AIHA (autoimmune hemolytic anemia), a 25-year-old woman and a 77-year-old man, who presented with normal serum LDH values. Though in these two cases, low hemoglobin and haptoglobin, high total bilirubin and positive direct Coombs' test results led to the diagnosis of AIHA, both patients had normal LDH levels (218 and 187 IU/l). Both cases were successfully treated with prednisone. In the diagnosis of AIHA, elevated LDH is usually used as a marker of hemolysis. However, medical records of 24 AIHA patients collected in our institute from January 2001 to August 2012 revealed LDH levels to have been normal in 25% of these cases. This report indicates the importance of obtaining complete information about the blood testing of patients and taking these data into account when considering the diagnosis of AIHA. PMID:26666722

  19. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    ERIC Educational Resources Information Center

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to…

  20. The Partial Purification and Characterization of Lactate Dehydrogenase.

    ERIC Educational Resources Information Center

    Wolf, Edward C.

    1988-01-01

    Offers several advantages over other possibilities as the enzyme of choice for a student's first exposure to a purification scheme. Uses equipment and materials normally found in biochemistry laboratories. Incorporates several important biochemical techniques including spectrophotometry, chromatography, centrifugation, and electrophoresis. (MVL)

  1. RNA silencing of lactate dehydrogenase gene in Rhizopus oryzae

    PubMed Central

    Gheinani, Ali Hashemi; Jahromi, Neda Haghayegh; Feuk-Lagerstedt, Elisabeth; Taherzadeh, Mohammad J

    2011-01-01

    Rhizopus oryzae is a filamentous fungus, belonging to the order Mucorales. It can ferment a wide range of carbohydrates hydrolyzed from lignocellulosic materials and even cellobiose to produce ethanol. However, R. oryzae also produces lactic acid as a major metabolite, which reduces the yield of ethanol. In this study, we show that significant reduction of lactic acid production could be achieved by short (25nt) synthetic siRNAs targeting the ldhA gene. The average yield of lactic acid production by R. oryzae during the batch fermentation process, where glucose had been used as a sole carbon source, diminished from 0.07gm/gm in wild type to 0.01gm/gm in silenced samples. In contrast, the average yield of ethanol production increased from 0.39gm/gm in wild type to 0.45gm/gm in silenced samples. These results show 85.7% (gm/gm) reduction in lactic acid production as compared with the wild type R. oryzae, while an increase of 15.4% (gm/gm) in ethanol yield. PMID:21769297

  2. BACTERIAL EXPRESSION, PURIFICATION, AND CHARACTERIZATION OF ARABIDOPSIS THALIANA PYRUVATE DEHYDROGENASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pyruvate dehydrogenase complex (PDC) is a very large multi-component structure that catalyzes decarboxylation of pyruvate, yielding CO2, NADH, and acetyl-CoA as products. The decarboxylation reaction is catalyzed by pyruvate dehydrogenase (E1). The PDC occupies a key position in intermediary met...

  3. Membrane filtration affinity purification (MFAP) of dehydrogenases using cibacron blue.

    PubMed

    Ling, T G; Mattiasson, B

    1989-12-01

    The method for purification of biomolecules by a combination of affinity interactions and membrane filtration for separation of unwanted material has been found to be of interest for large-scale work. This study examines the suitability of silica nanoparticles as carriers in the process. Alcohol dehydrogenase and lactate dehydrogenases were chosen as target molecules to be purified. The binding capacity was found to be comparative to what is obtained for high-performance liquid chromatography (HPLC) packing material. Both binding and desorption of the enzymes were found to be effective. The limiting factor of the process was the filtration flow rate. PMID:18588072

  4. Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase.

    PubMed

    Torres, Joseph J; Grigsby, Michelle D; Clarke, M Elizabeth

    2012-06-01

    Zones of minimum oxygen form at intermediate depth in all the world's oceans as a result of global circulation patterns that keep the water at oceanic mid-depths out of contact with the atmosphere for hundreds of years. In areas where primary production is very high, the microbial oxidation of sinking organic matter results in very low oxygen concentrations at mid-depths. Such is the case with the Arabian Sea, with O(2) concentrations reaching zero at 200 m and remaining very low (<0.1 ml O(2)l(-1)) for hundreds of meters below this depth, and in the California borderland, where oxygen levels reach 0.2 ml O(2)l(-1) at 700 m with severely hypoxic (<1.0 ml O(2)l(-1)) waters at depths 300 m above and below that. Despite the very low oxygen, mesopelagic fishes (primarily lanternfishes: Mytophidae) inhabiting the Arabian Sea and California borderland perform a daily vertical migration into the low-oxygen layer, spending daylight hours in the oxygen minimum zone and migrating upward into normoxic waters at night. To find out how fishes were able to survive their daily sojourns into the minimum zone, we tested the activity of four enzymes, one (lactate dehydrogenase, LDH) that served as a proxy for anaerobic glycolysis with a conventional lactate endpoint, a second (citrate synthase, CS) that is indicative of aerobic metabolism, a third (malate dehydrogenase) that functions in the Krebs' cycle and as a bridge linking mitochondrion and cytosol, and a fourth (alcohol dehydrogenase, ADH) that catalyzes the final reaction in a pathway where pyruvate is reduced to ethanol. Ethanol is a metabolic product easily excreted by fish, preventing lactate accumulation. The ADH pathway is rarely very active in vertebrate muscle; activity has previously been seen only in goldfish and other cyprinids capable of prolonged anaerobiosis. Activity of the enzyme suite in Arabian Sea and California fishes was compared with that of ecological analogs in the same family and with the same lifestyle but living in systems with much higher oxygen concentrations: the Gulf of Mexico and the Southern Ocean. ADH activities in the Arabian Sea fishes were similar to those of goldfish, far higher than those of confamilials from the less severe minimum in the Gulf of Mexico, suggesting that the Arabian Sea fishes are capable of exploiting the novel ethanol endpoint to become competent anaerobes. In turn, the fishes of California exhibited a higher ADH activity than their Antarctic relatives. It was concluded that ADH activity is more widespread in fishes than previously believed and that it may play a role in allowing vertically migrating fishes to exploit the safe haven afforded by severe oxygen minima. PMID:22573769

  5. Studies on the phenazine methosulphate-tetrazolium capture reaction in NAD(P)+-dependent dehydrogenase cytochemistry. II. A novel hypothesis for the mode of action of PMS and a study of the properties of reduced PMS.

    PubMed

    Raap, A K; Van Duijn, P

    1983-09-01

    The results in the preceding paper have shown that the PMS-tetrazolium capture reaction as such is not sufficient to guarantee a correct localization of formazan in microscopically small dehydrogenase sites. For cytochemical reactions where the application of PMS leads to increased formazan formation, it is proposed that PMS functions not on its own, but as an efficient acceptor of NAD(P)H-oxidizing flavoproteins and thus increases the local NAD(P)H tetrazolium oxidoreductase activity. For the redox mediator vitamin K3 this type of mechanism could be proven with rat liver fractions. The relatively rapid NADPH oxidation precluded such simple experiments with PMS. An indication of such a stimulation by PMS was, however, obtained with soluble rat liver fraction. As escape of reducing equivalents from the site might also occur at the level of reduced PMS (PMSH) the solubility properties of PMSH were studied. It was found that PMSH has a low solubility in aqueous media and is hydrophobic. On basis of these findings a 'post-tetrazolium reduction' method seemed possible and could be experimentally confirmed. PMID:6629853

  6. Metabolic control analysis of L-lactate synthesis pathway in Rhizopus oryzae As 3.2686.

    PubMed

    Ke, Wei; Chang, Shu; Chen, Xiaoju; Luo, Shuizhong; Jiang, Shaotong; Yang, Peizhou; Wu, Xuefeng; Zheng, Zhi

    2015-11-01

    The relationship between the metabolic flux and the activities of the pyruvate branching enzymes of Rhizopus oryzae As 3.2686 during L-lactate fermentation was investigated using the perturbation method of aeration. The control coefficients for five enzymes, pyruvate dehydrogenase (PDH), pyruvate carboxylase (PC), pyruvate decarboxylase (PDC), lactate dehydrogenase (LDH), and alcohol dehydrogenase (ADH), were calculated. Our results indicated significant correlations between PDH and PC, PDC and LDH, PDC and ADH, LDH and ADH, and PDC and PC. It also appeared that PDH, PC, and LDH strongly controlled the L-lactate flux; PDH and ADH strongly controlled the ethanol flux; while PDH and PC strongly controlled the acetyl coenzyme A flux and the oxaloacetate flux. Further, the flux control coefficient curves indicated that the control of the system gradually transferred from PDC to PC during the steady state. Therefore, PC was the key rate-limiting enzyme that controls the flux distribution. PMID:26288952

  7. Water recycling in lactation.

    PubMed

    Baverstock, P; Green, B

    1975-02-21

    During lactation, female rodents, dingoes, and kangaroos consume urine and feces excreted by the young. Studies with tritiated water as a tracer for native water showed that roughly one-third of the water secreted as milk was returned to the mother. The results are cogent to studies of water balance of lactation and to current methods used for estimating milk production. PMID:1167701

  8. Physiology of lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The breast changes in size, shape, and function during puberty, pregnancy, and lactation. The physiology of lactation is reviewed here. The breast is composed of fat and connective tissue that supports a tubuloalveolar structure. During development, anatomic changes involving new lobule formation an...

  9. Lactate Racemization as a Rescue Pathway for Supplying d-Lactate to the Cell Wall Biosynthesis Machinery in Lactobacillus plantarum

    PubMed Central

    Goffin, Philippe; Deghorain, Marie; Mainardi, Jean-Luc; Tytgat, Isabelle; Champomier-Vergs, Marie-Christine; Kleerebezem, Michiel; Hols, Pascal

    2005-01-01

    Lactobacillus plantarum is a lactic acid bacterium that produces d- and l-lactate using stereospecific NAD-dependent lactate dehydrogenases (LdhD and LdhL, respectively). However, reduction of glycolytic pyruvate by LdhD is not the only pathway for d-lactate production since a mutant defective in this activity still produces both lactate isomers (T. Ferain, J. N. Hobbs, Jr., J. Richardson, N. Bernard, D. Garmyn, P. Hols, N. E. Allen, and J. Delcour, J. Bacteriol. 178:5431-5437, 1996). Production of d-lactate in this species has been shown to be connected to cell wall biosynthesis through its incorporation as the last residue of the muramoyl-pentadepsipeptide peptidoglycan precursor. This particular feature leads to natural resistance to high concentrations of vancomycin. In the present study, we show that L. plantarum possesses two pathways for d-lactate production: the LdhD enzyme and a lactate racemase, whose expression requires l-lactate. We report the cloning of a six-gene operon, which is involved in lactate racemization activity and is positively regulated by l-lactate. Deletion of this operon in an L. plantarum strain that is devoid of LdhD activity leads to the exclusive production of l-lactate. As a consequence, peptidoglycan biosynthesis is affected, and growth of this mutant is d-lactate dependent. We also show that the growth defect can be partially restored by expression of the d-alanyl-d-alanine-forming Ddl ligase from Lactococcus lactis, or by supplementation with various d-2-hydroxy acids but not d-2-amino acids, leading to variable vancomycin resistance levels. This suggests that L. plantarum is unable to efficiently synthesize peptidoglycan precursors ending in d-alanine and that the cell wall biosynthesis machinery in this species is specifically dedicated to the production of peptidoglycan precursors ending in d-lactate. In this context, the lactate racemase could thus provide the bacterium with a rescue pathway for d-lactate production upon inactivation or inhibition of the LdhD enzyme. PMID:16166538

  10. Multiple retinoid dehydrogenases in testes cytosol from alcohol dehydrogenase negative or positive deermice.

    PubMed

    Posch, K C; Napoli, J L

    1992-05-28

    Retinoic acid syntheses from retinol by cytosol from testes of alcohol dehydrogenase negative or positive deermice were similar in specific activity and in their insensitivity to 1 M ethanol or 100 mM 4-methylpyrazole. Anion-exchange followed by size-exclusion chromatography revealed multiple and similarly migrating peaks in each cytosol that had both retinol and retinal dehydrogenase activities. Thus, the effects of ethanol on testes cannot be caused by direct inhibition of cytosolic retinoic acid synthesis because retinoid dehydrogenases distinct from mouse class A2 alcohol dehydrogenases, which corresponds to human class I, occurred in testes and they were not inhibited by ethanol. These data also demonstrate the occurrence of multiple cytosolic retinoic acid synthesis activities and indicate that the two reactions of cytosolic retinoic acid synthesis, retinol and retinal dehydrogenation, may be catalyzed by enzymes that occur as complexes. PMID:1599517

  11. Aerobically-Derived Lactate Stimulates Revascularization and Tissue Repair via Redox Mechanisms

    PubMed Central

    HUNT, THOMAS K; ASLAM, RUMMANA S.; BECKERT, STEFAN; WAGNER, SILVIA; GHANI, Q. PERVEEN; HUSSAIN, M. ZAMIRUL; ROY, SASHWATI; SEN, CHANDAN K.

    2008-01-01

    Hypoxia serves as a physiological cue to drive angiogenic response via HIF-dependent mechanisms. Interestingly, minor elevation of lactate levels in the tissue produces the same effect under aerobic conditions. Aerobic glycolysis contributes to lactate accumulation in the presence of oxygen especially under inflammatory conditions. We have previously postulated that aerobic lactate accumulation, already known to stimulate collagen deposition, will also stimulate angiogenesis. If substantiated, this concept would advance understanding of wound healing and aerobic angiogenesis because lactate accumulation has many aerobic sources. In this study, Matrigel plugs containing a powdered, hydrolysable lactate polymer were implanted into the subcutaneous space of mice. Lactate monomer concentrations in the implant were consistent with wound levels for over 11 days. They induced little inflammation but considerable VEGF production and were highly angiogenic as opposed to controls. Arterial hypoxia abrogated angiogenesis. Furthermore, inhibition of lactate dehydrogenase using oxamate also prevented the angiogenic effects of lactate. Lactate monomer, at concentrations found in cutaneous wounds, stabilized HIF-1? and increased VEGF levels in aerobically cultured human endothelial cells. Accumulated lactate, therefore, appears to convey the impression of metabolic need for vascularization even in well-oxygenated and pH-neutral conditions. Lactate and oxygen both stimulate angiogenesis and matrix deposition. PMID:17567242

  12. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  13. The Essential Function of Genes for a Hydratase and an Aldehyde Dehydrogenase for Growth of Pseudomonas sp. Strain Chol1 with the Steroid Compound Cholate Indicates an Aldolytic Reaction Step for Deacetylation of the Side Chain

    PubMed Central

    Holert, Johannes; Jagmann, Nina

    2013-01-01

    In the bacterial degradation of steroid compounds, the enzymes initiating the breakdown of the steroid rings are well known, while the reactions for degrading steroid side chains attached to C-17 are largely unknown. A recent in vitro analysis with Pseudomonas sp. strain Chol1 has shown that the degradation of the C5 acyl side chain of the C24 steroid compound cholate involves the C22 intermediate 7?,12?-dihydroxy-3-oxopregna-1,4-diene-20S-carbaldehyde (DHOPDCA) with a terminal aldehyde group. In the present study, candidate genes with plausible functions in the formation and degradation of this aldehyde were identified. All deletion mutants were defective in growth with cholate but could transform it into dead-end metabolites. A mutant with a deletion of the shy gene, encoding a putative enoyl coenzyme A (CoA) hydratase, accumulated the C24 steroid (22E)-7?,12?-dihydroxy-3-oxochola-1,4,22-triene-24-oate (DHOCTO). Deletion of the sal gene, formerly annotated as the steroid ketothiolase gene skt, resulted in the accumulation of 7?,12?,22-trihydroxy-3-oxochola-1,4-diene-24-oate (THOCDO). In cell extracts of strain Chol1, THOCDO was converted into DHOPDCA in a coenzyme A- and ATP-dependent reaction. A sad deletion mutant accumulated DHOPDCA, and expression in Escherichia coli revealed that sad encodes an aldehyde dehydrogenase for oxidizing DHOPDCA to the corresponding acid 7?,12?-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) with NAD+ as the electron acceptor. These results clearly show that the degradation of the acyl side chain of cholate proceeds via an aldolytic cleavage of an acetyl residue; they exclude a thiolytic cleavage for this reaction step. Based on these results and on sequence alignments with predicted aldolases from other bacteria, we conclude that the enzyme encoded by sal catalyzes this aldolytic cleavage. PMID:23708132

  14. The essential function of genes for a hydratase and an aldehyde dehydrogenase for growth of Pseudomonas sp. strain Chol1 with the steroid compound cholate indicates an aldolytic reaction step for deacetylation of the side chain.

    PubMed

    Holert, Johannes; Jagmann, Nina; Philipp, Bodo

    2013-08-01

    In the bacterial degradation of steroid compounds, the enzymes initiating the breakdown of the steroid rings are well known, while the reactions for degrading steroid side chains attached to C-17 are largely unknown. A recent in vitro analysis with Pseudomonas sp. strain Chol1 has shown that the degradation of the C5 acyl side chain of the C24 steroid compound cholate involves the C22 intermediate 7?,12?-dihydroxy-3-oxopregna-1,4-diene-20S-carbaldehyde (DHOPDCA) with a terminal aldehyde group. In the present study, candidate genes with plausible functions in the formation and degradation of this aldehyde were identified. All deletion mutants were defective in growth with cholate but could transform it into dead-end metabolites. A mutant with a deletion of the shy gene, encoding a putative enoyl coenzyme A (CoA) hydratase, accumulated the C24 steroid (22E)-7?,12?-dihydroxy-3-oxochola-1,4,22-triene-24-oate (DHOCTO). Deletion of the sal gene, formerly annotated as the steroid ketothiolase gene skt, resulted in the accumulation of 7?,12?,22-trihydroxy-3-oxochola-1,4-diene-24-oate (THOCDO). In cell extracts of strain Chol1, THOCDO was converted into DHOPDCA in a coenzyme A- and ATP-dependent reaction. A sad deletion mutant accumulated DHOPDCA, and expression in Escherichia coli revealed that sad encodes an aldehyde dehydrogenase for oxidizing DHOPDCA to the corresponding acid 7?,12?-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) with NAD(+) as the electron acceptor. These results clearly show that the degradation of the acyl side chain of cholate proceeds via an aldolytic cleavage of an acetyl residue; they exclude a thiolytic cleavage for this reaction step. Based on these results and on sequence alignments with predicted aldolases from other bacteria, we conclude that the enzyme encoded by sal catalyzes this aldolytic cleavage. PMID:23708132

  15. Evidences of Basal Lactate Production in the Main White Adipose Tissue Sites of Rats. Effects of Sex and a Cafeteria Diet

    PubMed Central

    Arriarn, Sofa; Agnelli, Silvia; Sabater, David; Remesar, Xavier; Fernndez-Lpez, Jos Antonio; Alemany, Mari

    2015-01-01

    Female and male adult Wistar rats were fed standard chow or a simplified cafeteria diet for one month. Then, the rats were killed and the white adipose tissue (WAT) in four sites: perigonadal, retroperitoneal, mesenteric and subcutaneous (inguinal) were sampled and frozen. The complete WAT weight in each site was measured. Gene expression analysis of key lipid and glucose metabolism enzymes were analyzed, as well as tissue and plasma lactate and the activity of lactate dehydrogenase. Lactate gradients between WAT and plasma were estimated. The influence of sex and diet (and indirectly WAT mass) on lactate levels and their relationships with lactate dehydrogenase activity and gene expressions were also measured. A main conclusion is the high production of lactate by WAT, practically irrespective of site, diet or sex. Lactate production is a direct correlate of lactate dehydrogenase activity in the tissue. Furthermore, lactate dehydrogenase activity is again directly correlated with the expression of the genes Ldha and Ldhb for this enzyme. In sum, the ability to produce lactate by WAT is not directly dependent of WAT metabolic state. We postulate that, in WAT, a main function of the lactate dehydrogenase path may be that of converting excess available glucose to 3C fragments, as a way to limit tissue self-utilization as substrate, to help control glycaemia and/or providing short chain substrates for use as energy source elsewhere. More information must be gathered before a conclusive role of WAT in the control of glycaemia, and the full existence of a renewed glucose-lactate-fatty acid cycle is definitely established. PMID:25741703

  16. Catalytic mechanism of human UDP-glucose 6-dehydrogenase: in situ proton NMR studies reveal that the C-5 hydrogen of UDP-glucose is not exchanged with bulk water during the enzymatic reaction.

    PubMed

    Eixelsberger, Thomas; Brecker, Lothar; Nidetzky, Bernd

    2012-07-15

    Human UDP-glucose 6-dehydrogenase (hUGDH) catalyzes the biosynthetic oxidation of UDP-glucose into UDP-glucuronic acid. The catalytic reaction proceeds in two NAD(+)-dependent steps via covalent thiohemiacetal and thioester enzyme intermediates. Formation of the thiohemiacetal adduct occurs through attack of Cys(276) on C-6 of the UDP-gluco-hexodialdose produced in the first oxidation step. Because previous studies of the related enzyme from bovine liver had suggested loss of the C-5 hydrogen from UDP-gluco-hexodialdose due to keto-enol tautomerism, we examined incorporation of solvent deuterium into product(s) of UDP-glucose oxidation by hUGDH. We used wild-type enzyme and a slow-reacting Glu(161)?Gln mutant that accumulates the thioester adduct at steady state. In situ proton NMR measurements showed that UDP-glucuronic acid was the sole detectable product of both enzymatic transformations. The product contained no deuterium at C-5 within the detection limit (?2%). The results are consistent with the proposed mechanistic idea for hUGDH that incipient UDP-gluco-hexodialdose is immediately trapped by thiohemiacetal adduct formation. PMID:22525098

  17. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    PubMed Central

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  18. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    PubMed

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  19. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGESBeta

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  20. Glyceraldehyde-phosphate dehydrogenase (total and isoenzyme activity) in the early diagnosis of myocardial infarction.

    PubMed

    Griffiths, J; Shaw, S

    1977-02-01

    Enzyme "panels," in which creatine kinase and lactate dehydrogenase activities in serum are measured, are useful indicators of myocardial infarction. We examined a further enzyme, glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.12), by comparison with creatine kinase (EC 2.7.3.2), in the early diagnosis of such infarctions. Results indicate that this total dehydrogenase appears in the serum before total creatine kinase activity; however, the lack of cardio-specificity relating to the dehydrogenase isoenzyme fraction 2 in comparison to the creatine kinase MB band is a major disadvantage, as is its relatively poor in vitro stability. We conclude that measurement of this dehydrogenase does not allow a substantially earlier diagnosis of myocardial infarction. PMID:832386

  1. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle.

    PubMed

    Park, Jae Mo; Josan, Sonal; Mayer, Dirk; Hurd, Ralph E; Chung, Youngran; Bendahan, David; Spielman, Daniel M; Jue, Thomas

    2015-10-01

    The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-(13)C]lactate and [2-(13)C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3s temporal resolution, (13)C DNP NMR detects both [1-(13)C]lactate and [2-(13)C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-(13)C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products. PMID:26347554

  2. Reference values of blood parameters in beef cattle of different ages and stages of lactation.

    PubMed Central

    Doornenbal, H; Tong, A K; Murray, N L

    1988-01-01

    Reference (normal) values for 12 blood serum components were determined for 48 Shorthorn cows (2-10 years old) and their 48 calves, 357 crossbred cows (12-14 years old), 36 feedlot bulls and 36 feedlot steers. In addition, hemoglobin, hematocrit, triiodothyronine, thyroxine and cortisol levels were determined for the crossbred cows, and feedlot bulls and steers. Reference values were tabulated according to sex, age and stage of lactation. Serum concentrations of urea, total protein and bilirubin, and serum activity of aspartate aminotransferase and lactate dehydrogenase increased with age (P less than 0.05), while calcium, phosphorus and alkaline phosphatase decreased with age (P less than 0.05) from birth to the age of ten years. The Shorthorn cows had the highest levels of glucose at parturition (P less than 0.05) with decreasing levels during lactation. Creatinine concentration decreased during lactation and increased during postweaning. Both lactate dehydrogenase and aspartate aminotransferase levels increased (P less than 0.05) during lactation. Urea and uric acid were present at higher concentrations in lactating than nonlactating cows (P less than 0.05). The values reported, based on a wide age range and large number of cattle, could serve as clinical guides and a basis for further research. PMID:3349406

  3. An NADP-linked prostacyclin dehydrogenase in rabbit kidney.

    PubMed

    Korff, J M; Jarabak, J

    1981-05-01

    An NADP-linked 15-hydroxyprostaglandin dehydrogenase specific for prostacyclin was purified 1,300-fold from rabbit kidney. Prostaglandins E2, F2 alpha, and 6-keto PGF1 alpha and thromboxane B2 were oxidized by the purified enzyme with rates of reaction less than 4% that of PGI2. Unlike other rabbit kidney NADP-linked 15-hydroxyprostaglandin dehydrogenases, this enzyme catalyzes oxido-reduction more rapidly at the 15- position than at the 9- position and does not utilize NAD as a cofactor. It has a molecular weight of 62,000 and migrates on polyacrylamide disc gel electrophoresis as a single diffuse band. The reaction product was identified by thin-layer chromatography as 6,15-diketo PGF1 alpha. Prostacyclin dehydrogenase is the first 15-hydroxyprostaglandin dehydrogenase described which is specific for the metabolism of prostacyclin. PMID:7041194

  4. Evidence that adrenal hexose-6-phosphate dehydrogenase can effect microsomal P450 cytochrome steroidogenic enzymes

    PubMed Central

    Foster, Christy A.; Mick, Gail J.; Wang, Xudong; McCormick, Kenneth

    2014-01-01

    The role of adrenal hexose-6-phosphate dehydrogenase in providing reducing equivalents to P450 cytochrome steroidogenic enzymes in the endoplasmic reticulum is uncertain. Hexose-6-phosphate dehydrogenase resides in the endoplasmic reticulum lumen and co-localizes with the bidirectional enzyme 11?-hydroxysteroid dehydrogenase 1. Hexose-6-phosphate dehydrogenase likely provides 11?-hydroxysteroid dehydrogenase 1 with NADPH electrons via channeling. Intracellularly, two compartmentalized reactions generate NADPH upon oxidation of glucose-6-phosphate: cytosolic glucose-6-phosphate dehydrogenase and microsomal hexose-6-phosphate dehydrogenase. Because some endoplasmic reticulum enzymes require an electron donor (NADPH), it is conceivable that hexose-6-phosphate dehydrogenase serves in this capacity for these pathways. Besides 11?-hydroxysteroid dehydrogenase 1, we examined whether hexose-6-phosphate dehydrogenase generates reduced pyridine nucleotide for pivotal adrenal microsomal P450 enzymes. 21-hydroxylase activity was increased with glucose-6-phosphate and, also, glucose and glucosamine-6-phosphate. The latter two substrates are only metabolized by hexose-6-phosphate dehydrogenase, indicating that requisite NADPH for 21-hydroxylase activity was not via glucose-6-phosphate dehydrogenase. Moreover, dihydroepiandrostenedione, a non-competitive inhibitor of glucose-6-phosphate dehydrogenase, but not hexose-6-phosphate dehydrogenase, did not curtail activation by glucose-6-phosphate. Finally, the most compelling observation was that the microsomal glucose-6-phosphate transport inhibitor, chlorogenic acid, blunted the activation by glucose-6-phosphate of both 21-hydroxylase and 17-hydroxylase indicating that luminal hexose-6-phosphate dehydrogenase can supply NADPH for these enzymes. Analogous kinetic observations were found with microsomal 17-hydroxylase. These findings indicate that hexose-6-phosphate dehydrogenase can be a source, but not exclusively so, of NADPH for several adrenal P450 enzymes in the steroid pathway. Although the reduced pyridine nucleotides are produced intra-luminally, these compounds may also slowly transverse the endoplasmic reticulum membrane by unknown mechanisms. PMID:23665046

  5. Lactate does not activate NF-κB in oxidative tumor cells

    PubMed Central

    Van Hée, Vincent F.; Pérez-Escuredo, Jhudit; Cacace, Andrea; Copetti, Tamara; Sonveaux, Pierre

    2015-01-01

    The lactate anion is currently emerging as an oncometabolite. Lactate, produced and exported by glycolytic and glutaminolytic cells in tumors, can be recycled as an oxidative fuel by oxidative tumors cells. Independently of hypoxia, it can also activate transcription factor hypoxia-inducible factor-1 (HIF-1) in tumor and endothelial cells, promoting angiogenesis. These protumoral activities of lactate depend on lactate uptake, a process primarily facilitated by the inward, passive lactate-proton symporter monocarboxylate transporter 1 (MCT1); the conversion of lactate and NAD+ to pyruvate, NADH and H+ by lactate dehydrogenase-1 (LDH-1); and a competition between pyruvate and α-ketoglutarate that inhibits prolylhydroxylases (PHDs). Endothelial cells do not primarily use lactate as an oxidative fuel but, rather, as a signaling agent. In addition to HIF-1, lactate can indeed activate transcription factor nuclear factor-κB (NF-κB) in these cells, through a mechanism not only depending on PHD inhibition but also on NADH alimenting NAD(P)H oxidases to generate reactive oxygen species (ROS). While NF-κB activity in endothelial cells promotes angiogenesis, NF-κB activation in tumor cells is known to stimulate tumor progression by conferring resistance to apoptosis, stemness, pro-angiogenic and metastatic capabilities. In this study, we therefore tested whether exogenous lactate could activate NF-κB in oxidative tumor cells equipped for lactate signaling. We report that, precisely because they are oxidative, HeLa and SiHa human tumor cells do not activate NF-κB in response to lactate. Indeed, while lactate-derived pyruvate is well-known to inhibit PHDs in these cells, we found that NADH aliments oxidative phosphorylation (OXPHOS) in mitochondria rather than NAD(P)H oxidases in the cytosol. These data were confirmed using oxidative human Cal27 and MCF7 tumor cells. This new information positions the malate-aspartate shuttle as a key player in the oxidative metabolism of lactate: similar to glycolysis that aliments OXPHOS with pyruvate produced by pyruvate kinase and NADH produced by glyceraldehyde-3-phosphate dehydrogenase (GAPDH), oxidative lactate metabolism aliments OXPHOS in oxidative tumor cells with pyruvate and NADH produced by LDH1. PMID:26528183

  6. Properties of Alanine Dehydrogenase and Aspartase from Propionibacterium freudenreichii subsp. shermanii

    PubMed Central

    Crow, Vaughan L.

    1987-01-01

    During lactate fermentation by Propionibacterium freudenreichii subsp. shermanii ATCC 9614, the only amino acid metabolized was aspartate. After lactate exhaustion, alanine was one of the two amino acids to be metabolized. For every 3 mol of alanine metabolized, 2 mol of propionate, 1 mol each of acetate and CO2, and 3 mol of ammonia were formed. The specific activity of alanine dehydrogenase was 0.08 U/mg of protein during lactate fermentation, and it increased to 0.9 U/mg of protein after lactate exhaustion. Alanine dehydrogenase and aspartase, key enzymes in the metabolism of alanine and aspartate, respectively, were partially purified, and some of their properties were studied. Alanine dehydrogenase had a pH optimum of 9.2 to 9.6 and high Km values for both NAD+ (1 to 4 mM) and alanine (7 to 20 mM). Activity was inhibited by low concentrations of pyruvate and NADH. The pH optimum of aspartase decreased from ∼7.5 to ∼6.4 when the MgCl2 and aspartate concentrations were decreased. Plots of aspartate concentration versus activity showed either hyperbolic or sigmoidal kinetics (interaction coefficient, up to a value of 3.1), depending on pH and MgCl2 concentration. MgCl2 was either an activator or an inhibitor, depending on pH and its concentration. Aspartase activity was inhibited by low concentrations of fumarate. The properties of alanine dehydrogenase and aspartase are consistent with the finding that aspartate is metabolized during lactate fermentation, while alanine is only fermented after lactate exhaustion and then at a slow rate. PMID:16347414

  7. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    PubMed

    Nissen, Jakob D; Paj?cka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and ?-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from ?-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. PMID:26221781

  8. Modeling Extended Lactations of Holsteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modeling extended lactations for the US Holsteins is useful as a majority (>55%) of the cows in the present population produce lactations longer than 305 d. In this study nine empirical and mechanistic models were compared on their suitability for modeling 305-d and 999-d lactations of US Holsteins...

  9. Properties of formate dehydrogenase in Methanobacterium formicicum

    SciTech Connect

    Schauer, N.L.; Ferry, J.G.

    1982-04-01

    Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50..mu..mol of methyl viologen per min per mg of protein and 8.2 ..mu..mol of coenzyme F/sub 420/ per min per mg of protein. The apparent K/sub m/ for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F/sub 420/, was 10-fold greater (63 ..mu..M) than for coenzyme F/sub 420/ (6 ..mu..M). The purified enzyme also reduced flavin mononucleotide (K/sub m/ = 13 ..mu..M) and flavin adenine dinucleotide (K/sub m/ = 25 ..mu..M) with formate, but did not reduce NAD/sup +/ or NADP/sup +/. The reduction of NADP/sup +/ with formate required formate dehydrogenase, coenzyme F/sub 420/, and coenzyme F/sub 420/:NADP/sup +/ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F/sub 420/. The optimal reaction rate occurred at 55/sup 0/C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (K/sub i/ = 6 ..mu..M), azide (K/sub i/ = 39 ..mu..M),..cap alpha..,..cap alpha..-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.

  10. N-Acylethanolamines as Novel Alcohol Dehydrogenase 3 Substrates

    PubMed Central

    Ivkovic, Milena; Dempsey, Daniel R.; Handa, Sumit; Hilton, Joshua H.; Lowe, Edward W.; Merkler, David J.

    2011-01-01

    N-Acylethanolamines (NAEs) are members of the fatty acid amide family. The NAEs have been proposed to serve as metabolic precursors to N-acylglycines (NAGs). The sequential oxidation of the NAEs by an alcohol dehydrogenase and an aldehyde dehydrogenase would yield the N-acylglycinals and/or the NAGs. Alcohol dehydrogenase 3 (ADH3) is one enzyme that might catalyze this reaction. To define a potential role for ADH3 in NAE catabolism, we synthesized a set of NAEs and evaluated these as ADH3 substrates. NAEs were oxidized by ADH3, yielding the N-acylglycinals as the product. The (V/K)app values for the NAEs included here were low relative to cinnamyl alcohol. Our data show that the NAEs can serve as alcohol dehydrogenase substrates. PMID:21144815

  11. Human placental 15-hydroxyprostaglandin dehydrogenase.

    PubMed

    Jarabak, J

    1972-03-01

    Normal, term, human placentas are a rich source of a 15-hydroxyprostaglandin dehydrogenase. The enzyme is extremely labile, and partial purification could be achieved only after stabilization with glycerol. The instability of the enzyme and its K(m) for NAD are indications that it is different from the 15-hydroxyprostaglandin dehydrogenase isolated from swine lung. Human placental tissue should provide a very useful source from which large amounts of highly purified 15-hydroxyprostaglandin dehydrogenase may be obtained. PMID:4501572

  12. Human Placental 15-Hydroxyprostaglandin Dehydrogenase

    PubMed Central

    Jarabak, Joseph

    1972-01-01

    Normal, term, human placentas are a rich source of a 15-hydroxyprostaglandin dehydrogenase. The enzyme is extremely labile, and partial purification could be achieved only after stabilization with glycerol. The instability of the enzyme and its Km for NAD are indications that it is different from the 15-hydroxyprostaglandin dehydrogenase isolated from swine lung. Human placental tissue should provide a very useful source from which large amounts of highly purified 15-hydroxyprostaglandin dehydrogenase may be obtained. PMID:4501572

  13. Postpartum Exercise and Lactation.

    PubMed

    Bane, Susan M

    2015-12-01

    Many women who are breastfeeding also want to participate in exercise, but have concerns about the safety of their newborn. The following chapter reviews issues related to postpartum exercise and lactation. The goals of the chapter are to help clinicians understand the benefits of exercise, examine the impact of postpartum exercise on breastfeeding, and provide practical recommendations for exercise during the postpartum period in women who are breastfeeding. PMID:26398298

  14. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  15. Docosahexaenoic acid and lactation.

    PubMed

    Jensen, Craig L; Lapillonne, Alexandre

    2009-01-01

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina and brain and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews data addressing the impact of different DHA intakes by lactating women on infant and maternal outcomes to determine if available data are sufficient to estimate optimal breast milk DHA content and estimate dietary reference intakes (DRIs) for DHA by breast-feeding mothers. Results of published observational studies and interventional trials assessing the impact of maternal DHA intake (or breast milk DHA content) on infant visual function, neurodevelopment, and immunologic status were reviewed. Studies related to the potential impact of DHA intake on depression or cognitive function of lactating women also were reviewed. Although only a limited number of studies are available in the current medical literature, and study results have not been consistent, better infant neurodevelopment and/or visual function have been reported with higher vs. lower levels of breast milk DHA. The effect of DHA intake on the incidence or severity of depression in lactating women is not clear. Increasing breast milk DHA content above that typically found in the US, by increasing maternal DHA intake, may confer neurodevelopmental benefits to the recipient breast-fed infant. However, current data are insufficient to permit determination of specific DRIs during this period. PMID:19632101

  16. Prostaglandin 15-hydroxy dehydrogenase from human placenta.

    PubMed

    Schlegel, W; Greep, R O

    1975-08-01

    The enzyme system prostaglandin 15-hydroxy dehydrogenase, which catalyzes the inactivation of all biologically active prostaglandins, has been purified 1270-fold from human placenta. Kinetic studies on the enzyme have provided information on a well-organized control mechanism to avoid prostaglandin accumulation and for a fast prostaglandin degradation. 15-Ketoprostaglandin E2 and 13,14-dihydro-15-ketoprostaglandin E2 inhibit prostaglandin 15-hydroxy dehydrogenase non-competitively with respect to prostaglandin E2. The rate equation of enzyme reaction for two substrates was used for determination of the equilibrium constant and Michaelis constants of the enzyme. The following kinetic constants for prostaglandin 15-hydroxy dehydrogenase have been found. The equilibrium constant with repect to prostaglandin E2 is 18 muM, the Michaelis constant Km for prostaglandin E2 is 1 muM for NAD+ 44muM. The inhibition constants for 15-ketoprostaglandin E2 ar Ki(slope) = 70 muM, Ki(intercept) = 150 muM, and for 13,14-dihydro-15-ketoprostaglandin E2 Ki(slope) = 80 muM, and Ki(intercept) = 150 muM. The maximal velocity for the forward reaction is V1 = 0.45 mumol/min. These kinetic data exclude a random or ping-pong mechanism, and also a Theorell-Chance type as suggested by Braithwaite and Jarabak. We propose, therefore, a sequential ordered mechanism. The isoelectric point for prostaglandin 15-hydroxy dehydrogenase is at pH 5.35, judged by isoelectric focusing. PMID:170102

  17. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  18. Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis

    PubMed Central

    Doherty, Joanne R.; Yang, Chunying; Scott, Kristen E. N.; Cameron, Michael D.; Fallahi, Mohammad; Li, Weimin; Hall, Mark A.; Amelio, Antonio L.; Mishra, Jitendra K.; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J.; Lu, Yunqi; Dang, Chi. V.; Kumar, K. Ganesh; Butler, Andrew A.; Bannister, Thomas D.; Hooper, Andrea T.; Unsal-Kacmaz, Keziban; Roush, William R.; Cleveland, John L.

    2014-01-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1, and that elevated MCT1 levels are manifest in premalignant and neoplastic E?-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, and reductions in glucose transport, and in levels of ATP, NADPH and glutathione. Reductions in glutathione then lead to increases in hydrogen peroxide, mitochondrial damage and, ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  19. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis.

    PubMed

    Doherty, Joanne R; Yang, Chunying; Scott, Kristen E N; Cameron, Michael D; Fallahi, Mohammad; Li, Weimin; Hall, Mark A; Amelio, Antonio L; Mishra, Jitendra K; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J; Lu, Yunqi; Dang, Chi V; Kumar, K Ganesh; Butler, Andrew A; Bannister, Thomas D; Hooper, Andrea T; Unsal-Kacmaz, Keziban; Roush, William R; Cleveland, John L

    2014-02-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here, we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1 and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, reductions in glucose transport, and in levels of ATP, NADPH, and ultimately, glutathione (GSH). Reductions in GSH then lead to increases in hydrogen peroxide, mitochondrial damage, and ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  20. Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas

    SciTech Connect

    Odom, J.M.; Peck, H.D. Jr.

    1981-07-01

    Various dehydrogenases, reductases, and electron transfer proteins involved in respiratory sulfate reduction by Desulfovibrio gigas have been localized with respect to the periplasmic space, membrane, and cytoplasm. This species was grown on a lactate-sulfate medium, and the distribution of enzyme activities and concentrations of electron transfer components were determined in intact cells, cell fractions prepared with a French press, and lysozyme spheroplasts. A significant fraction of formate dehydrogenase was demonstrated to be localized in the periplasmic space in addition to hydrogenase and some c-type cytochrome. Cytochrome b, menaquinone, fumarate reductase, and nitrite reductase were largely localized on the cytoplasmic membrane. Fumarate reductase was situated on the inner aspect on the membrane, and the nitrite reductase appeared to be transmembraneous. Adenylylsulfate reductase, bisulfite reductase (desulfoviridin), pyruvate dehydrogenase, and succinate dehydrogenase activities were localized in the cytoplasm. Significant amounts of hydrogenase and c-type cytochromes were also detected in the cytoplasm. Growth of D. gigas on a formate-sulfate medium containing acetate resulted in a 10-fold increase in membrane-bound formate dehydrogenase and a doubling of c-type cytochromes. Growth on fumarate with formate resulted in an additional increase in b-type cytochrome compared with lactate-sulfate-grown cells.

  1. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study

    SciTech Connect

    Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel; Conjard-Duplany, Agnes

    2010-01-01

    As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

  2. Macroscopic identification of early myocardial infarction by dehydrogenase alterations

    PubMed Central

    Ramkissoon, Reuben A.

    1966-01-01

    A method utilizing a general dehydrogenase reaction has been used to demonstrate early gross myocardial infarctions. The procedure takes advantage of substrate and enzyme loss from the damaged myocardium. In the viable muscle, where endogenous substrates, coenzymes, and dehydrogenases are present, reduction of Nitro-BT yields a dark blue formazan. Necrotic muscle fibres remain unstained by this technique. A survey of 31 human hearts obtained at necropsy disclosed that there is no alteration in the Nitro-BT reaction following acute coronary insufficiency with sudden death or severe congestive heart failure. The earliest myocardial infarct to show loss of dehydrogenase activity was of eight hours' duration. Post-infarction scars and patchy interstitial fibrosis provided very precise information concerning topographic relationships when this method was applied to heart slices. Images PMID:5919360

  3. The role of tetrahydrofolate dehydrogenase in the hepatic supply of tetrahydrobiopterin in rats.

    PubMed Central

    Stone, K J

    1976-01-01

    The reduction of 7,8-dihydrobiopterin to 5,6,7,8-tetrahydrobiopterin by rat liver tetrahydrofolate dehydrogenase (5,6,7,8-tetrahydrofolate-NADP+ oxidoreductase, EC 1.5.1.3) is competitively inhibited by trimethoprim lactate (apparent Ki 0.285 muM). An apparent Michaelis constant of 43 muM for dihydrobiopterin was obtained, which is 430 times higher than the reported Km for dihydrofolate with this enzyme. The reduction of dihydrobiopterin is thus more susceptible to inhibition by trimethoprim lactate than is the reduction of dihydrofolate. However, intraperitoneal administration of trimethoprim had no significant effect on the hepatic supply of tetrahydrobiopterin in rats. PMID:962851

  4. MODELING EXTENDED LACTATIONS IN HOLSTEINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop an equation for predicting average yield of cows still in milk from 1 to 999 days. Test day yields (kg/d) of 903,529 lactations of 305,202 Holstein cows calved between 1997 and 2003 were used. Average daily yield (Y) for each 30-d interval of lactation wa...

  5. The bloodless lactate profile.

    PubMed

    Foster, C; Crowe, M P; Holum, D; Sandvig, S; Schrager, M; Snyder, A C; Zajakowski, S

    1995-06-01

    The blood lactate profile (HLa-P) is an accepted method of evaluating athletes and providing a basis for the prescription of training intensity. For both logistic and public health reasons HLa-P is less than optimal. In this study we evaluate the relative velocity or the %HR-max, obtained during a training session, as alternatives to HLa-P. Competitive speed skaters (N = 20) performed HLa-P consisting of 5.2000 m/400 m at incremental velocities ranging from very slow to maximal (time = 3.0-5.0 min). Blood lactate measured during a 60-s interval following each repetition was used to construct HLa-P and to predict the velocity associated with steady state (HLa = 4.0-6.5 mmol.l-1). Relative velocity was calculated relative to the velocity of the maximal trial. A plot of relative velocity and %HRmax vs HLa demonstrated that HLa = 4.0-6.5 mmol.l-1 occurred at a relative velocity of 78-88% (R2 = 0.807) and at 84-92 %HRmax (R2 = 0.748). In a separate training session the relative velocity and %HRmax models were cross validated by having the subjects skate 9.2000 m/400 m at constant velocity. HLa changes during the training session defined the presence/absence of steady state (delta HLa < 1.0 mM from trial 3 to 9). Comparing the velocity during the training session vs the velocity predicted from HLa-P, relative velocity model and %HRmax model allowed a test of the accuracy of bloodless means of defining steady state. HLa-P correctly predicted 81% of training session HLa responses, the relative velocity model correctly predicted 78%, and the %HRmax model correctly predicted 68%.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7658957

  6. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals previously uncharacterized machinery for lactate utilization

    SciTech Connect

    Pinchuk, Grigoriy E.; Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Osterman, Andrei L.; Dervyn, Etienne; Geydebrekht, Oleg V.; Reed, Samantha B.; Romine, Margaret F.; Collart, Frank R.; Scott, J.; Fredrickson, Jim K.; Beliaev, Alex S.

    2009-02-24

    The ability to utilize lactate as a sole source of carbon and energy is one of the key metabolic signatures of Shewanellae, a diverse group of dissimilatory metal reducing bacteria commonly found in aquatic and sedimentary environments. Nonetheless, homology searches failed to recognize orthologs of previously described bacterial D- or L-lactate oxidizing enzymes (Escherichia coli genes dld and lldD) in any of the 13 analyzed genomes of Shewanella spp. Using comparative genomic techniques, we identified a conserved chromosomal gene cluster in Shewanella oneidensis MR-1 (locus tag: SO1522-SO1518) containing lactate permease and candidate genes for both D- and L-lactate dehydrogenase enzymes. The predicted D-LDH gene (dldD, SO1521) is a distant homolog of FAD-dependent lactate dehydrogenase from yeast, whereas the predicted L-LDH is encoded by three genes with previously unknown functions (lldEGF, SO1520-19-18). Through a combination of genetic and biochemical techniques, we experimentally confirmed the predicted physiological role of these novel genes in S. oneidensis MR-1 and carried out successful functional validation studies in Escherichia coli and Bacillus subtilis. We conclusively showed that dldD and lldEFG encode fully functional D-and L-LDH enzymes, which catalyze the oxidation of the respective lactate stereoisomers to pyruvate. Notably, the S. oneidensis MR-1 LldEFG enzyme is the first described example of a multi-subunit lactate oxidase. Comparative analysis of >400 bacterial species revealed the presence of LldEFG and Dld in a broad range of diverse species accentuating the potential importance of these previously unknown proteins in microbial metabolism.

  7. Molybdenum center of xanthine dehydrogenase

    SciTech Connect

    Wahl, R.C.

    1983-01-01

    Cyanolysis of native, oxidized xanthine dehydrogenase is known to inactivate the enzyme by removing a unique sulfur as thiocyanate. Chemical, genetic, and spectroscopic evidence indicates that this sulfur is a terminal ligand of Mo and is present in native xanthine dehydrogenase, but not in cyanolyzed xanthine dehydrogenase or native sulfite oxidase. A procedure for rapid, reproducible, and quantitative reconstitution of desulfo Mo hydroxylases with sulfide was developed. The cyanolyzable sulfur of xanthine dehydrogenase was specifically radiolabeled with /sup 35/sulfide using this procedure. Various chemical properties of the cyanolyzable sulfur could be determined with the radiolabelled enzyme. The data support the conclusion that the cyanolyzable sulfur is a terminal sulfur ligand of the Mo atoms, and is not part of an organic moiety. Application of the resulfuration procedure to crude extracts of Drosophila melanogaster ma-1 flies, which are pleiotropically deficient in xanthine dehydrogenase and aldehyde oxidase, led to the emergence of these enzyme activities. Evidence for the identity of in vitro reconstituted xanthine dehydrogenase from ma-1 mutants with wild type enzyme is presented. A system for efficient reconstitution of the apo-subunits of the molybdoenzyme nitrate reductase from the Neurospora crassa mutant nit-1 with molybdenum cofactor from denatured purified molybdoenzymes in the absence of exogenous molybdate was developed.

  8. Suppression of NDA-Type Alternative Mitochondrial NAD(P)H Dehydrogenases in Arabidopsis thaliana Modifies Growth and Metabolism, but not High Light Stimulation of Mitochondrial Electron Transport

    PubMed Central

    Wallstrm, Sab V.; Florez-Sarasa, Igor; Arajo, Wagner L.; Escobar, Matthew A.; Geisler, Daniela A.; Aidemark, Mari; Lager, Ida; Fernie, Alisdair R.; Ribas-Carb, Miquel; Rasmusson, Allan G.

    2014-01-01

    The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)+ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins. PMID:24486764

  9. Lactate and lactate clearance in acute cardiac care patients

    PubMed Central

    Lazzeri, Chiara; Picariello, Claudio; Dini, Carlotta Sorini; Gensini, Gian Franco; Valente, Serafina

    2012-01-01

    Hyperlactataemia is commonly used as a diagnostic and prognostic tool in intensive care settings. Recent studies documented that serial lactate measurements over time (or lactate clearance), may be clinically more reliable than lactate absolute value for risk stratification in different pathological conditions. While the negative prognostic role of hyperlactataemia in several critical ill diseases (such as sepsis and trauma) is well established, data in patients with acute cardiac conditions (i.e. acute coronary syndromes) are scarce and controversial. The present paper provides an overview of the current available evidence on the clinical role of lactic acid levels and lactate clearance in acute cardiac settings (acute coronary syndromes, cardiogenic shock, cardiac surgery), focusing on its prognostic role. PMID:24062898

  10. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  11. Synthesis of Triptorelin Lactate Catalyzed by Lipase in Organic Media

    PubMed Central

    Zhuang, Hong; Wang, Zhi; Wang, Jiaxin; Zhang, Hong; Xun, Erna; Chen, Ge; Yue, Hong; Tang, Ning; Wang, Lei

    2012-01-01

    Triptorelin lactate was successfully synthesized by porcine pancreatic lipase (PPL) in organic solvents. The effects of acyl donor, substrate ratio, organic solvent, temperature, and water activity were investigated. Under the optimum conditions, a yield of 30% for its ester could be achieved in the reaction for about 48 h. PMID:22949842

  12. Enzymatic in situ determination of stereospecificity of NAD-dependent dehydrogenases

    SciTech Connect

    Esaki, N.; Shimoi, H.; Nakajima, N.; Ohshima, T.; Tanaka, H.; Soda, K.

    1989-06-15

    Amino acid racemases inherently catalyze the exchange of alpha-hydrogen of amino acids with deuterium during racemization in /sup 2/H/sub 2/O. When the reactions catalyzed by alanine racemase and L-alanine dehydrogenase (EC 1.4.1.1), which is pro-R specific for the C-4 hydrogen transfer of NADH, are coupled in /sup 2/H/sub 2/O, (4R-2H)NADH is exclusively produced. Similarly, (4S-2H)NADH is made in /sup 2/H/sub 2/O with amino-acid racemase with low substrate specificity and L-leucine dehydrogenase, which is pro-S specific. We have established a simple procedure for the in situ analysis of stereospecificity of C-4 hydrogen transfer of NADH by an NAD-dependent dehydrogenase by combination with either of the above two couples of enzymes in the same reaction mixture. When the C-4 hydrogen of NAD+ is fully retained after sufficient incubation, the stereospecificity of hydrogen transfer by a dehydrogenase is the same as that of alanine dehydrogenase or leucine dehydrogenase. However, when the C-4 hydrogen of NAD+ is exchanged with deuterium, the enzyme to be examined shows the different stereospecificity from alanine dehydrogenase or leucine dehydrogenase. Thus, we can readily determine the stereospecificity by /sup 1/H NMR measurement without isolation of the coenzymes and products.

  13. Thermostable NAD-linked secondary alcohol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244.

    PubMed Central

    Hou, C T; Patel, R N; Laskin, A I; Barist, I; Barnabe, N

    1983-01-01

    NAD-linked alcohol dehydrogenase activity was detected in cell-free crude extracts from various propane-grown bacteria. Two NAD-linked alcohol dehydrogenases, one which preferred primary alcohols (alcohol dehydrogenase I) and another which preferred secondary alcohols (alcohol dehydrogenase II), were found in propane-grown Pseudomonas fluorescens NRRL B-1244 and were separated from each other by DEAE-cellulose column chromatography. The properties of alcohol dehydrogenase I resembled those of well-known primary alcohol dehydrogenases. Alcohol dehydrogenase II was purified 46-fold; it was homogeneous as judged by acrylamide gel electrophoresis. The molecular weight of this secondary alcohol dehydrogenase is 144,500; it consisted of four subunits per molecule of enzyme protein. It oxidized secondary alcohols, notably, 2-propanol, 2-butanol, and 2-pentanol. Primary alcohols and diols were also oxidized, but at a lower rate. Alcohols with more than six carbon atoms were not oxidized. The pH and temperature optima for secondary alcohol dehydrogenase activity were 8 to 9 and 60 to 70 degrees C, respectively. The activation energy calculated from an Arrhenius plot was 8.2 kcal (ca. 34 kJ). The Km values at 25 degrees C, pH 7.0, were 8.2 X 10(-6) M for NAD and 8.5 X 10(-5) M for 2-propanol. The secondary alcohol dehydrogenase activity was inhibited by strong thiol reagents and strong metal-chelating agents such as 4-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), 5-nitro-8-hydroxyquinoline, and 1,10-phenanthroline. The enzyme oxidized the stereoisomers of 2-butanol at an equal rate. Alcohol dehydrogenase II had good thermal stability and the ability to catalyze reactions at high temperature (85 degrees C). It appears to have properties distinct from those of previously described primary and secondary alcohol dehydrogenases. Images PMID:6412630

  14. Purification and in vitro complementation of mutant histidinol dehydrogenases.

    PubMed Central

    Lee, S Y; Grubmeyer, C T

    1987-01-01

    The biochemistry of interallelic complementation within the Salmonella typhimurium hisD gene was investigated by in vitro protein complementation of mutant histidinol dehydrogenases (EC 1.1.1.23). Double-mutant strains were constructed containing the hisO1242 (constitutive overproducer) attenuator mutation and selected hisDa or hisDb mutations. Extracts from such hisDa986 and hisDb1799 mutant cells failed to show histidinol dehydrogenase activity but complemented to produce active enzyme. Inactive mutant histidinol dehydrogenases were purified from each of the two mutants by ion-exchange chromatography. Complementation by the purified mutant proteins required the presence of 2-mercaptoethanol and MnCl2, and protein-protein titrations indicated that heterodimers were strongly preferred in mixtures of the complementary mutant enzymes. Neither mutant protein showed negative complementation with wild-type enzyme. The Vmax for hybrid histidinol dehydrogenase was 11% of that for native enzyme, with only minor changes in Km values for substrate or coenzyme. Both purified mutant proteins failed to catalyze NAD-NADH exchange reactions reflective of the first catalytic step of the two-step reaction. The inactive enzymes bound 54Mn2+ weakly or not at all in the presence of 2-mercaptoethanol, in contrast to wild-type enzyme which bound 54Mn2+ to 0.6 sites per monomer under the same conditions. The mutant proteins, like wild-type histidinol dehydrogenase, behaved as dimers on analytical gel filtration chromatography, but dissociated to form monomers in the presence of 2-mercaptoethanol. This effect of 2-mercaptoethanol was prevented by low levels of MnCl2. It thus appears that mutant histidinol dehydrogenase molecules bind metal ion poorly. The complementation procedure may allow for formation of a functional Mn2+-binding site, perhaps at the subunit interface. Images PMID:3305475

  15. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.

    PubMed

    Wang, Zei Wen; Saini, Mukesh; Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng

    2015-11-01

    Crude glycerol resulting from biodiesel production is an abundant and renewable resource. However, the impurities in crude glycerol usually make microbial fermentation problematic. This issue was addressed by systematic engineering of Escherichia coli for the production of d-lactate from crude glycerol. First, mgsA and the synthetic pathways of undesired products were eliminated in E. coli, rendering the strain capable of homofermentative production of optically pure d-lactate. To direct carbon flux toward d-lactate, the resulting strain was endowed with an enhanced expression of glpD-glpK in the glycerol catabolism and of a heterologous gene encoding d-lactate dehydrogenase. Moreover, the strain was evolved to improve its utilization of cruder glycerol and subsequently equipped with the FocA channel to export intracellular d-lactate. Finally, the fed-batch fermentation with two-phase culturing was carried out with a bioreactor. As a result, the engineered strain enabled production of 105 g/L d-lactate (99.9% optical purity) from 121 g/L crude glycerol at 40 h. The result indicates the feasibility of our approach to engineering E. coli for the crude glycerol-based fermentation. PMID:26477354

  16. Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release.

    PubMed

    Zhang, Xiaomeng; Ding, Shushu; Cao, Sumei; Zhu, Anwei; Shi, Guoyue

    2016-06-15

    Selective and sensitive detection of extracellular lactate is of fundamental significance for studying the metabolic alterations in tumor progression. Here we report the rational design and synthesis of a quantum-dot-hydrogel-based fluorescent probe for biosensing and bioimaging the extracellular lactate. By surface engineering the destabilized quantum dot sol with Nile Blue, the destabilized Nile-Blue-functionalized quantum dot sol cannot only self-assemble forming quantum dot hydrogel but also monitor lactate in the presence of nicotinamide adenine dinucleotide cofactor and lactate dehydrogenase through fluorescence resonance energy transfer. Notably, the surface engineered quantum dot hydrogel show high selectivity toward lactate over common metal ions, amino acids and other small molecules that widely coexist in biological system. Moreover, the destabilized Nile-Blue-functionalized quantum dots can encapsulate isolated cancer cells when self-assembled into a hydrogel and thus specifically detect and image the extracellular lactate metabolism. By virtue of these properties, the functionalized quantum dot hydrogel was further successfully applied to monitor the effect of metabolic agents. PMID:26852200

  17. Fermentation and alternative respiration compensate for NADH dehydrogenase deficiency in a prokaryotic model of DJ-1-associated Parkinsonism.

    PubMed

    Messaoudi, Nadia; Gautier, Valérie; Dairou, Julien; Mihoub, Mouhad; Lelandais, Gaëlle; Bouloc, Philippe; Landoulsi, Ahmed; Richarme, Gilbert

    2015-11-01

    YajL is the closest prokaryotic homologue of Parkinson's disease-associated DJ-1, a protein of undefined function involved in the oxidative stress response. We reported recently that YajL and DJ-1 protect cells against oxidative stress-induced protein aggregation by acting as covalent chaperones for the thiol proteome, including the NuoG subunit of NADH dehydrogenase 1, and that NADH dehydrogenase 1 activity is negligible in the yajL mutant. We report here that this mutant compensates for low NADH dehydrogenase activity by utilizing NADH-independent alternative dehydrogenases, including pyruvate oxidase PoxB and d-amino acid dehydrogenase DadA, and mixed acid aerobic fermentations characterized by acetate, lactate, succinate and ethanol excretion. The yajL mutant has a low adenylate energy charge favouring glycolytic flux, and a high NADH/NAD ratio favouring fermentations over pyruvate dehydrogenase and the Krebs cycle. DNA array analysis showed upregulation of genes involved in glycolytic and pentose phosphate pathways and alternative respiratory pathways. Moreover, the yajL mutant preferentially catabolized pyruvate-forming amino acids over Krebs cycle-related amino acids, and thus the yajL mutant utilizes pyruvate-centred respiro-fermentative metabolism to compensate for the NADH dehydrogenase 1 defect and constitutes an interesting model for studying eukaryotic respiratory complex I deficiencies, especially those associated with Alzheimer's and Parkinson's diseases. PMID:26377309

  18. Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa

    PubMed Central

    Gao, Chao; Hu, Chunhui; Zheng, Zhaojuan; Jiang, Tianyi; Dou, Peipei; Zhang, Wen; Che, Bin; Wang, Yujiao; Lv, Min

    2012-01-01

    NAD-independent l-lactate dehydrogenase (l-iLDH) and NAD-independent d-lactate dehydrogenase (d-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an l-iLDH), and lldE (encoding a d-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses d-iLDH and l-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldRM, lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. l-Lactate and d-lactate interfered with the DNA-binding activity of LldR. Thus, l-iLDH and d-iLDH were expressed when the operon was induced in the presence of l-lactate or d-lactate. PMID:22408166

  19. Cadmium chloride inhibits lactate gluconeogenesis in isolated human renal proximal tubules: a cellular metabolomic approach with 13C-NMR.

    PubMed

    Faiz, Hassan; Conjard-Duplany, Agnès; Boghossian, Michelle; Martin, Guy; Baverel, Gabriel; Ferrier, Bernard

    2011-09-01

    As part of a study on cadmium nephrotoxicity, we studied the effect of cadmium chloride (CdCl2) in isolated human renal proximal tubules metabolizing the physiological substrate lactate. Dose-effect experiments showed that 10-500 μM CdCl2 reduced lactate removal, glucose production and the cellular levels of ATP, coenzyme A, acetyl-coenzyme A and of reduced glutathione in a dose-dependent manner. After incubation with 5 mM L: -[1-(13)C]-, or L: -[2-(13)C]-, or L: -[3-(13)C] lactate or 5 mM L: -lactate plus 25 mM NaH(13)CO3 as substrates, substrate utilization and product formation were measured by both enzymatic and carbon 13 NMR methods. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism previously validated showed that 100 μM CdCl2 caused an inhibition of flux through lactate dehydrogenase and alanine aminotransferase and through the entire gluconeogenic pathway; fluxes were diminished by 19% (lactate dehydrogenase), 28% (alanine aminotransferase), 28% (pyruvate carboxylase), 42% (phosphoenolpyruvate carboxykinase), and 52% (glucose-6-phosphatase). Such effects occurred without altering the oxidation of the lactate carbons or fluxes through enzymes of the tricarboxylic acid cycle despite a large fall of the cellular ATP level, a marker of the energy status and of the viability of the renal cells. These results that were observed at clinically relevant tissue concentrations of cadmium provide a biochemical basis for a better understanding of the cellular mechanism of cadmium-induced renal proximal tubulopathy in humans chronically exposed to cadmium. PMID:21153630

  20. Towards an effective biosensor for monitoring AD leachate: a knockout E. coli mutant that cannot catabolise lactate.

    PubMed

    Sweeney, Joseph; Murphy, Cormac D; McDonnell, Kevin

    2015-12-01

    Development of a biosensor for the convenient measurement of acetate and propionate concentrations in a two-phase anaerobic digestor (AD) requires a bacterium that will be unresponsive to the other organic acids present in the leachate, of which lactate is the most abundant. Successive gene knockouts of E.coli W3110 D-lactate dehydrogenase (dld), L-lactate dehydrogenase (lldD), glycolate oxidase (glcD) and a suspected L-lactate dehdrogenase (ykgF) were performed. The resulting quadruple mutant (IMD Wldgy) was incapable of growth on D- and L-lactate, whereas the wild type grew readily on these substrates. Furthermore, the O2 consumption rates of acetate-grown IMD Wldgy cell suspensions supplied with either acetate (0.1mM) or a synthetic leachate including acetate (0.1mM) and DL-lactate (1mM) were identical (2.79 and 2.70mgl(-1)min(-1), respectively). This was in marked contrast to similar experiments with the wild type which gave initial O2 consumption rates of 2.00, 2.36 and 2.97mgl(-1)min(-1) when cell suspensions were supplied with acetate (0.1mM), acetate (0.1mM) plus D-lactate (1mM) or acetate (0.1mM) plus L-lactate (1mM), respectively. The knockout strain provides a platform for the design of a biosensor that can accessibly monitor acetate and propionate concentrations in AD leachate via O2-uptake measurements. PMID:26272093

  1. l-Lactate Production from Biodiesel-Derived Crude Glycerol by Metabolically Engineered Enterococcus faecalis: Cytotoxic Evaluation of Biodiesel Waste and Development of a Glycerol-Inducible Gene Expression System

    PubMed Central

    2015-01-01

    Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD+ ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (?pfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h?1 (1.6 g liter?1 h?1). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. PMID:25576618

  2. L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system.

    PubMed

    Doi, Yuki

    2015-03-01

    Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD(+) ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (?pfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h(-1) (1.6 g liter(-1) h(-1)). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. PMID:25576618

  3. Genetics Home Reference: Pyruvate dehydrogenase deficiency

    MedlinePLUS

    ... the most common cause of pyruvate dehydrogenase deficiency, accounting for approximately 80 percent of cases. These mutations ... Where can I find information about diagnosis or management of pyruvate dehydrogenase deficiency? These resources address the ...

  4. Measurement of interstitial lactate during hypoxia-induced dilatation in isolated pressurised porcine coronary arteries.

    PubMed

    Frbert, Ole; Mikkelsen, Erich O; Bagger, Jens P; Gravholt, Claus H

    2002-02-15

    Lactate is formed in the coronary arterial wall and in the myocardium as a consequence of ischaemia and infarction. We combined direct measurement of coronary artery diameter and interstitial arterial wall lactate concentration ex vivo in order to ascertain the possible role of lactate in hypoxia-induced vasodilatation. The wall of porcine coronary arteries, precontracted during an intraluminal pressure of 40 mmHg by addition of prostaglandin F2alpha, was cannulated using a microdialysis catheter, and exposed to hypoxia for 60 min, followed by 45 min of reoxygenation. The exchange fraction of [14C]lactate over the microdialysis membrane increased from 0.38 +/- 0.04 to 0.52 +/- 0.05 (P < 0.001) during the study period. Coronary artery diameter increased by 15.5 +/- 2.0 % (n = 20) during hypoxia (P < 0.001, compared to normoxic controls) and interstitial lactate concentration rose from 1.07 +/- 0.21 to 2.50 +/- 0.40 mmol x l(-1) during hypoxia (P < 0.01) and was unchanged in controls. The increase in coronary artery diameter correlated with the increase in interstitial lactate concentration in the period between 30 and 60 min of hypoxia (r = 0.62; P = 0.02). Dichloroacetate (10(-5) M), an agent that reduces lactate generation by activating pyruvate dehydrogenase, abolished hypoxia-induced lactate production, but caused a further increase in coronary arterial diameter (30.2 +/- 4.4 %, n = 9; P < 0.001 vs. hypoxia and no dichloroacetate). Under control conditions, the addition of L-lactate (10(-3)-10(-2) M) increased dose-dependently coronary arterial diameter by 22.0 +/- 4.2 % (n = 5) and interstitial lactate concentration from 0.52 +/- 0.04 to 5.70 +/- 0.66 mmol x l(-1) (P < 0.001). There was a correlation between the increase in coronary artery diameter and interstitial lactate concentration (r = 0.60; P = 0.02). The present observations represent the first direct measurements of metabolites by microdialysis in a blood vessel wall. The lactate concentration may affect, but is not essential for, hypoxia-induced vasodilatation in porcine coronary arteries. PMID:11850519

  5. Nutritional aspects of human lactation*

    PubMed Central

    Thomson, A. M.; Black, A. E.

    1975-01-01

    This paper reviews the literature on the incidence and duration of breast-feeding in various countries, the volume and composition of breast milk, the health and nutrition of breast-fed babies as judged by growth and morbidity, maternal nutritional requirements during lactation, and the effect of prolonged lactation on maternal health. It appears that lactation can be as well sustained by impoverished as by affluent mothers, and that even in communities where malnutrition is common the average growth of infants is satisfactory up to the age of about 3 months on a diet of breast milk alone. Breast milk appears to have specific anti-infective properties, but prolonged breast-feeding will not prevent infections among older infants reared in a poor environment. The authors believe that breast-feeding is the best form of nutrition for the young infant and deplore its decline in modern industrial societies. The recommendations of various FAO/WHO Expert Groups on nutritional intakes during lactation are summarized. The need for an increased daily energy intake of 4.2 MJ (1 000 kcal) is questioned, and an increase of 2.5 MJ (600 kcal) is suggested. Data on the effect of prolonged lactation on the health of the mother are scanty; body weight appears to be maintained even among poorly nourished mothers. The authors stress the need for well-planned and technically adequate studies of the material and psychological factors involved in breast feeding. PMID:816479

  6. Carbon monoxide dehydrogenase from Rhodospirillum rubrum

    SciTech Connect

    Bonam, D.; Murrell, S.A.; Ludden, P.W.

    1984-07-01

    The carbon monoxide dehydrogenase from the photosynthetic bacterium Rhodospirillum rubrum was purified over 600-fold by DEAE-cellulose chromatography, heat treatment, hydroxylapatite chromatography, and preparative scale gel electrophoresis. In vitro, this enzyme catalyzed a two-election oxidation of CO to form CO/sub 2/ as the product. The reaction was dependent on the addition of an electron acceptor. The enzyme was oxygen labile, heat stable, and resistant to tryptic and chymotryptic digestion. Optimum in vitro activity occurred at pH 10.0. A sensitive, hemoglobin-based assay for measuring dissolved CO levels is presented. The in vitro K/sub m/ for CO was determined to be ..mu..M. CO, through an unknown mechanism, stimulated hydrogen evolution in whole cells, suggesting the presence of a reversible hydrogenase in R. rubrum which is CO insensitive in vivo. 38 references, 7 figures, 2 tables.

  7. Dehydrogenase enzyme/coenzyme/substrate interactions

    NASA Astrophysics Data System (ADS)

    Hester, Ronald E.; Austin, J. C.

    1991-05-01

    Resonance Raman spectra of several apo and holodehydrogenase enzymes excited with ultraviolet laser wavelengths are reported. At 260 nm maximum selective enhancement of the NAD and NADH coenzyme vibrational spectra is seen and effects associated with the coenzyme binding to the several different enzymes are attributed to polarity and hydrogen bonding between adenine component and amino acid residues at the enzyme binding sites. With 220 nm excitation the aromatic amino acid residues dominate the RR vibrational spectra while 240 nm excitation is selected to probe the acyl enzyme intermediate in the reaction of glyceraldehyde3phosphate dehydrogenase (GAPDH) with its substrate GAP. Comparisons are made with recent results from normal nonresonance Raman studies and finally new data on inelastic neutron scattering (INS) are presented. 2.

  8. Carbon monoxide dehydrogenase from Rhodospirillum rubrum.

    PubMed Central

    Bonam, D; Murrell, S A; Ludden, P W

    1984-01-01

    The carbon monoxide dehydrogenase from the photosynthetic bacterium Rhodospirillum rubrum was purified over 600-fold by DEAE-cellulose chromatography, heat treatment, hydroxylapatite chromatography, and preparative scale gel electrophoresis. In vitro, this enzyme catalyzed a two-electron oxidation of CO to form CO2 as the product. The reaction was dependent on the addition of an electron acceptor. The enzyme was oxygen labile, heat stable, and resistant to tryptic and chymotryptic digestion. Optimum in vitro activity occurred at pH 10.0. A sensitive, hemoglobin-based assay for measuring dissolved CO levels is presented. The in vitro Km for CO was determined to be 110 microM. CO, through an unknown mechanism, stimulated hydrogen evolution in whole cells, suggesting the presence of a reversible hydrogenase in R. rubrum which is CO insensitive in vivo. PMID:6430875

  9. Antipsychotics in pregnancy and lactation

    PubMed Central

    Babu, Girish N.; Desai, Geetha; Chandra, Prabha S.

    2015-01-01

    Research on psychotropic medications during pregnancy and lactation is limited as often involves complex ethical issues. Information on safety of psychotropic drugs during these critical phases is either inconclusive or undetermined. Many women with severe mental illness have unplanned pregnancies and require antipsychotic medication during pregnancy and lactation. Multiple issues have to be considered while choosing safe treatments for pregnant and lactating women and the best approach is to individualize the treatment. Medication should be guided primarily by its safety data and by the psychiatric history of the patient. Important issues to be kept in mind include pre-pregnancy counseling for all women, including planning pregnancies; folate supplementation, discussion with patient and family regarding options, and active liaison with obstetricians, ultrasonologists and pediatricians. Whenever possible, non-pharmacological approaches should be used in addition. PMID:26330648

  10. Antipsychotics in pregnancy and lactation.

    PubMed

    Babu, Girish N; Desai, Geetha; Chandra, Prabha S

    2015-07-01

    Research on psychotropic medications during pregnancy and lactation is limited as often involves complex ethical issues. Information on safety of psychotropic drugs during these critical phases is either inconclusive or undetermined. Many women with severe mental illness have unplanned pregnancies and require antipsychotic medication during pregnancy and lactation. Multiple issues have to be considered while choosing safe treatments for pregnant and lactating women and the best approach is to individualize the treatment. Medication should be guided primarily by its safety data and by the psychiatric history of the patient. Important issues to be kept in mind include pre-pregnancy counseling for all women, including planning pregnancies; folate supplementation, discussion with patient and family regarding options, and active liaison with obstetricians, ultrasonologists and pediatricians. Whenever possible, non-pharmacological approaches should be used in addition. PMID:26330648

  11. Exposure to pressure stimulus enhances succinate dehydrogenase activity in L6 myoblasts.

    PubMed

    Morita, Noriteru; Iizuka, Kenji; Okita, Koichi; Oikawa, Takashi; Yonezawa, Kazuya; Nagai, Tatsuya; Tokumitsu, Yukiko; Murakami, Takeshi; Kitabatake, Akira; Kawaguchi, Hideaki

    2004-12-01

    Contraction of skeletal muscle generates pressure stimuli to intramuscular tissues. However, the effects of pressure stimuli, other than those created by electricity or nerve impulse, on physiological and biochemical responses in skeletal muscles are unknown. The purpose of this study is to examine the effects of a pure pressure stimulus on metabolic responses in a skeletal muscle cell line. Atmospheric pressure was applied to L6 myoblasts using an original apparatus. Succinate dehydrogenase (SDH) activity was evaluated by colorimetric assay using tetrazolium monosodium salt. The amounts of 2-deoxy-[(3)H]glucose uptake and lactate release were measured. SDH activity was 2.6- to 2.9-fold higher in pressurized L6 cells than in nonpressurized L6 cells (P < 0.01), and 2-deoxy-[(3)H]glucose uptake was 2.2-fold higher (P < 0.001). In addition, the amount of released lactate decreased from 6.8 to 3.7 mumol/dish when pressure was applied (P < 0.001). In contrast, the intracellular lactate contents of the pressurized cells were higher than those of nonpressurized cells (P < 0.01). However, the total amount of released lactate and intracellular lactate was lower in the pressurized cells than in nonpressurized cells. These findings demonstrate that a pure pressure stimulus enhances aerobic metabolism in L6 skeletal muscle cells and raise the possibility that elevated intramuscular pressure during muscle activity may be an important factor in stimulating oxidative metabolic responses in skeletal muscles. PMID:15292033

  12. Glycerol 3-phosphate dehydrogenase 1 deficiency enhances exercise capacity due to increased lipid oxidation during strenuous exercise.

    PubMed

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2015-02-20

    A large percentage of energy produced during high-intensity exercise depends on the aerobic glycolytic pathway. Maintenance of a cytoplasmic redox balance ([NADH]/[NAD(+)] ratio) by the glycerophosphate shuttle involves sustained aerobic glycolysis. Glycerol 3-phosphate dehydrogenase 1 (GPD1) catalyzes an oxidation reaction in the glycerophosphate shuttle. In this study, we examined whether GPD1 deficiency decreases exercise capacity due to impairment of aerobic glycolysis by using the GPD1 null mouse model BALB/cHeA (HeA). Unexpectedly, we found that exercise endurance was significantly higher in HeA mice than in BALBc/By (By) mice used as controls. Furthermore, aerobic glycolysis in HeA mice was not impaired. During exercise, lipid oxidation was significantly higher in HeA mice than in By mice, concomitant with an increase in phosphorylation of AMP-activated protein kinase (AMPK). HeA mice also showed a delay in the onset of muscle glycogen usage and lactate production during exercise. These data suggest that contribution of lipid oxidation as a fuel source for exercise is increased in HeA mice, and GPD1 deficiency enhances exercise capacity by increasing lipid oxidation, probably due to activation of AMPK. We propose that GPD1 deficiency induces an adaptation that enhances lipid availability in the skeletal muscle during exercise. PMID:25603051

  13. Reduction of d-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene.

    PubMed

    Jin, Qing; Li, Ling; Moon, Jin Seok; Cho, Seung Kee; Kim, Yu Jin; Lee, Soo Jin; Han, Nam Soo

    2016-05-01

    The d-form of lactate, which causes metabolic stress upon excessive dietary intake, is mainly produced by Leuconostoc sp., the predominant species in sauerkraut. To shift the metabolic flux of d-lactate from pyruvate to l-lactate, we expressed the l-lactate dehydrogenase (ldhL) gene in Leuconostoc mesenteroides ATCC 8293. The ldhL gene from Lactobacillus plantarum was introduced into L. mesenteroides using the shuttle vectors pLeuCM and pLeuCM42. To elevate the expression level of ldhL in L. mesenteroides, the nucleotides for pyruvate kinase promoter were fused to ldhL and cloned into above vectors to construct pLC18pkL and pLC42pkL. As results, introduction of pLC42pkL in L. mesenteroides significantly improved both l-LDH activity and l-lactate productivity during fermentation, decreasing the d-/l-lactate ratio. When used as a starter culture for sauerkraut fermentation, recombinant L. mesenteroides harboring pLC42pkL increased l-lactate concentration and decreased d-lactate concentration compared to the wild type strain. We newly developed a recombinant L. mesenteroides which has high l-lactate dehydrogenase activity and applied this strain to minimize the harmful effect of d-lactate during the sauerkraut fermentation. To the best of our knowledge, we demonstrate for the first time the effective use of recombinant Leuconostoc sp. for quality improvement of fermented foods. PMID:26472127

  14. L-lactate utilization by dairy goats

    SciTech Connect

    Rodriguez, N.R.

    1984-01-01

    Three Toggenberg goats were used to investigate utilization of L-lactate as substrate for lipogenesis and gluconeogenesis. Objectives were: (1) to determine the extent lactate could be used for body and milk fat synthesis; (2) to estimate contribution of lactate to glucose synthesis; (3) to assess differences in these measurements during early lactation, mid-lactation and the dry period; and (4) to observe differences in labeling of glycerol and free fatty acid (FFA) fractions in body and milk fat 7 days post-infusion of isotopes. Goats were fed in metabolism crates a 70% concentrate ration in hourly increments to meet individual requirements. After a pulse dose, U-/sup 14/C-lactate (34 uCi/hr) and 6-/sup 3/H-Glucose (100 uCi/hr) was infused via jugular cannula for 8 hours. Blood an milk were sampled hourly beginning 3 and 3.5 hours, respectively, after the pulse dose. Body fat was biopsied after the infusion (Day 0) and one week post-infusion (Day 7). Plasma glucose and lactate concentrations were greater in early 70.4 and 7.7 mg/dl, respectively) compared to mid-lactation (50.8 and 5.9 gm/dl). Mid-lactation and dry period values were similar. Glucose turnover differed for early and mid-lactation and the dry period (141, 86, and 70 mmol/hr, respectively). Percentage of glucose derived from lactate tended to decrease through lactation into the dry period (28% vs 10%). Plasma lactate turnover was greater during lactation as opposed to the dry period (124 and 35 mmol/hr). During early lactation a greater proportion of lactate was incorporated into glucose than during either mid-lactation or the dry period.

  15. Mutagenesis and Laue structures of enzyme intermediates: isocitrate dehydrogenase.

    PubMed

    Bolduc, J M; Dyer, D H; Scott, W G; Singer, P; Sweet, R M; Koshland, D E; Stoddard, B L

    1995-06-01

    Site-directed mutagenesis and Laue diffraction data to 2.5 A resolution were used to solve the structures of two sequential intermediates formed during the catalytic actions of isocitrate dehydrogenase. Both intermediates are distinct from the enzyme-substrate and enzyme-product complexes. Mutation of key catalytic residues changed the rate determining steps so that protein and substrate intermediates within the overall reaction pathway could be visualized. PMID:7761851

  16. Cyanobacterial lactate oxidases serve as essential partners in N2 fixation and evolved into photorespiratory glycolate oxidases in plants.

    PubMed

    Hackenberg, Claudia; Kern, Ramona; Hge, Jan; Stal, Lucas J; Tsuji, Yoshinori; Kopka, Joachim; Shiraiwa, Yoshihiro; Bauwe, Hermann; Hagemann, Martin

    2011-08-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N(2)-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to harbor genes for both GlcD and GOX proteins. The GOX-like proteins from Nostoc (No-LOX) and from Chlamydomonas reinhardtii showed high L-lactate oxidase (LOX) and low GOX activities, whereas glycolate was the preferred substrate of the phylogenetically related At-GOX2 from Arabidopsis thaliana. Changing the active site of No-LOX to that of At-GOX2 by site-specific mutagenesis reversed the LOX/GOX activity ratio of No-LOX. Despite its low GOX activity, No-LOX overexpression decreased the accumulation of toxic glycolate in a cyanobacterial photorespiratory mutant and restored its ability to grow in air. A LOX-deficient Nostoc mutant grew normally in nitrate-containing medium but died under N(2)-fixing conditions. Cultivation under low oxygen rescued this lethal phenotype, indicating that N(2) fixation was more sensitive to O(2) in the ?lox Nostoc mutant than in the wild type. We propose that LOX primarily serves as an O(2)-scavenging enzyme to protect nitrogenase in extant N(2)-fixing cyanobacteria, whereas in plants it has evolved into GOX, responsible for glycolate oxidation during photorespiration. PMID:21828292

  17. Inducing Lactation: Breastfeeding for Adoptive Moms

    MedlinePLUS

    ... Español Text Size Email Print Share Inducing Lactation: Breastfeeding for Adoptive Moms Page Content Article Body A growing number of adoptive mothers are interested in breastfeeding their babies through induced lactation. Prescription Medications No ...

  18. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  19. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  20. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  1. Cellcell and intracellular lactate shuttles

    PubMed Central

    Brooks, George A

    2009-01-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. Cellcell and intracellular lactate shuttle concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cellcell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other. PMID:19805739

  2. The Occurrence of Glycolate Dehydrogenase and Glycolate Oxidase in Green Plants

    PubMed Central

    Frederick, Sue Ellen; Gruber, Peter J.; Tolbert, N. E.

    1973-01-01

    Homogenates of various lower land plants, aquatic angiosperms, and green algae were assayed for glycolate oxidase, a peroxisomal enzyme present in green leaves of higher plants, and for glycolate dehydrogenase, a functionally analogous enzyme characteristic of certain green algae. Green tissues of all lower land plants examined (including mosses, liverworts, ferns, and fern allies), as well as three freshwater aquatic angiosperms, contained an enzyme resembling glycolate oxidase, in that it oxidized l- but not d-lactate in addition to glycolate, and was insensitive to 2 mm cyanide. Many of the green algae (including Chlorella vulgaris, previously claimed to have glycolate oxidase) contained an enzyme resembling glycolate dehydrogenase, in that it oxidized d- but not l-lactate, and was inhibited by 2 mm cyanide. Other green algae had activity characteristic of glycolate oxidase and, accordingly, showed a substantial glycolate-dependent O2 uptake. It is pointed out that this distribution pattern of glycolate oxidase and glycolate dehydrogenase among the green plants may have phylogenetic significance. Activities of catalase, a marker enzyme for peroxisomes, were also determined and were generally lower in the algae than in the land plants or aquatic angiosperms. Among the algae, however, there were no consistent correlations between levels of catalase and the type of enzyme which oxidized glycolate. PMID:16658555

  3. Imaging Pregnant and Lactating Patients.

    PubMed

    Tirada, Nikki; Dreizin, David; Khati, Nadia J; Akin, Esma A; Zeman, Robert K

    2015-10-01

    As use of imaging in the evaluation of pregnant and lactating patients continues to increase, misperceptions of radiation and safety risks have proliferated, which has led to often unwarranted concerns among patients and clinicians. When radiologic examinations are appropriately used, the benefits derived from the information gained usually outweigh the risks. This review describes appropriateness and safety issues, estimated doses for imaging examinations that use iodizing radiation (ie, radiography, computed tomography, nuclear scintigraphy, and fluoroscopically guided interventional radiology), radiation risks to the mother and conceptus during various stages of pregnancy, and use of iodinated or gadolinium-based contrast agents and radiotracers in pregnant and lactating women. Maternal radiation risk must be weighed with the potential consequences of missing a life-threatening diagnosis such as pulmonary embolus. Fetal risks (ie, spontaneous abortion, teratogenesis, or carcinogenesis) vary with gestational age and imaging modality and should be considered in the context of the potential benefit of medically necessary diagnostic imaging. When feasible and medically indicated, modalities that do not use ionizing radiation (eg, magnetic resonance imaging) are preferred in pregnant and lactating patients. Radiologists should strive to minimize risks of radiation to the mother and fetus, counsel patients effectively, and promote a realistic understanding of risks related to imaging during pregnancy and lactation. PMID:26466183

  4. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  5. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  6. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  7. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  8. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  9. The origin and evolution of lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of mammary glands are the defining morphological feature of mammals, and a successful lactation is crucial to mammalian reproductive strategies. Among mammalian species, the nature of lactation and the composition of milk vary greatly. The evolution of lactation and its diversity amon...

  10. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism.

    PubMed

    da Silva, Sofia M; Voordouw, Johanna; Leito, Cristina; Martins, Mnica; Voordouw, Gerrit; Pereira, Ins A C

    2013-08-01

    The genome of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough encodes three formate dehydrogenases (FDHs), two of which are soluble periplasmic enzymes (FdhAB and FdhABC3) and one that is periplasmic but membrane-associated (FdhM). FdhAB and FdhABC3 were recently shown to be the main enzymes present during growth with lactate, formate or hydrogen. To address the role of these two enzymes, ?fdhAB and ?fdhABC3, mutants were generated and studied. Different phenotypes were observed in the presence of either molybdenum or tungsten, since both enzymes were important for growth on formate in the presence of Mo, whereas in the presence of W only FdhAB played a role. Both ?fdhAB and ?fdhABC3 mutants displayed defects in growth with lactate and sulfate providing the first direct evidence for the involvement of formate cycling under these conditions. In support of this mechanism, incubation of concentrated cell suspensions of the mutant strains with lactate and limiting sulfate also gave elevated formate concentrations, as compared to the wild-type strain. In contrast, both mutants grew similarly to the wild-type with H2 and sulfate. In the absence of sulfate, the wild-type D. vulgaris cells produced formate when supplied with H2 and CO2, which resulted from CO2 reduction by the periplasmic FDHs. The conversion of H2 and CO2 to formate allows the reversible storage of reducing power in a much more soluble molecule. Furthermore, we propose this may be an expression of the ability of some sulfate-reducing bacteria to grow by hydrogen oxidation, in syntrophy with organisms that consume formate, but are less efficient in H2 utilization. PMID:23728629

  11. The Crystal Structure of a Ternary Complex of Betaine Aldehyde Dehydrogenase from Pseudomonas aeruginosa Provides New Insight Into the Reaction Mechansim and Shows A Novel Binding Mode of the 2'-Phosphate of NADP+ and A Novel Cation Binding Site

    SciTech Connect

    Gonzalez-Segura, L.; Rudino-Pinera, E; Munoz-Clares, R; Horjales, E

    2009-01-01

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is in an intrasubunit cavity that we found to be present in all known ALDH structures. The othersingle bondnot described before for any ALDH but most likely present in most of themsingle bondis located in between the dimeric unit, helping structure a region involved in coenzyme binding and catalysis. This may explain the effects of K+ ions on the activity and stability of PaBADH.

  12. Formate dehydrogenase of Clostridium pasteurianum.

    PubMed Central

    Liu, C L; Mortenson, L E

    1984-01-01

    Formate dehydrogenase was purified to electrophoretic homogeneity from N2-fixing cells of Clostridium pasteurianum W5. The purified enzyme has a minimal Mr of 117,000 with two nonidentical subunits with molecular weights of 76,000 and 34,000, respectively. It contains 2 mol of molybdenum, 24 mol of nonheme iron, and 28 mol of acid-labile sulfide per mol of enzyme; no other metal ions were detected. Analysis of its iron-sulfur centers by ligand exchange techniques showed that 20 iron atoms of formate dehydrogenase can be extruded as Fe4S4 centers. Fluorescence analysis of its isolated molybdenum centers suggests it is a molybdopterin. The clostridial formate dehydrogenase has a pH optimum between 8.3 and 8.5 and a temperature optimum of 52 degrees C. The Km for formate is 1.72 mM with a Vmax of 551 mumol of methyl viologen reduced per min per mg of protein. Sodium azide competes competitively with formate (K1 = 3.57 microM), whereas the inactivation by cyanide follows pseudo-first-order kinetics with K = 5 X 10(2) M-1 s-1. PMID:6547435

  13. Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system.

    PubMed Central

    Lascelles, J; Burke, K A

    1978-01-01

    Membrane fractions with L-lactate dehydrogenase, sn-glycerol-3-phosphate (G3P) dehydrogenase, and nitrate reductase activities were prepared from Staphylococcus aureus wild-type and hem mutant strains. These preparations reduced ferric to ferrous iron with L-lactate or G3P as the source of reductant, using ferrozine to trap the ferrous iron. Reduction of ferric iron was insensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) with either L-lactate or G3P as reductant, but oxalate and dicumarol inhibited reduction with L-lactate as substrate. The membranes had L-lactate- and G3P-nitrate reductase activities, which were inhibited by azide and by HQNO. Reduction of ferric iron under anaerobic conditions was inhibited by nitrate with preparations from the wild-type strain. This effect of nitrate was abolished by blocking electron transport to the nitrate reductase system with azide or HQNO. Nitrate did not inhibit reduction of ferric iron in heme-depleted membranes from the hem mutant unless hemin was added to restore L-lactate- and G3P-nitrate reductase activity. We conclude that reduced components of the electron transport chain that precede cytochrome b serve as the source of reductant for ferric iron and that these components are oxidized preferentially by a functional nitrate reductase system. PMID:207671

  14. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells.

    PubMed

    Husain, Zaheed; Huang, Yannu; Seth, Pankaj; Sukhatme, Vikas P

    2013-08-01

    In this study, we explore the hypothesis that enhanced production of lactate by tumor cells, because of high glycolytic activity, results in inhibition of host immune response to tumor cells. Lactate dehydrogenase-A (LDH-A), responsible for conversion of pyruvate to lactate, is highly expressed in tumor cells. Lentiviral vector-mediated LDH-A short hairpin RNA knockdown Pan02 pancreatic cancer cells injected in C57BL/6 mice developed smaller tumors than mice injected with Pan02 cells. A decrease occurred in the frequency of myeloid-derived suppressor cells (MDSCs) in the spleens of mice carrying LDH-A-depleted tumors. NK cells from LDH-A-depleted tumors had improved cytolytic function. Exogenous lactate increased the frequency of MDSCs generated from mouse bone marrow cells with GM-CSF and IL-6 in vitro. Lactate pretreatment of NK cells in vitro inhibited cytolytic function of both human and mouse NK cells. This reduction of NK cytotoxic activity was accompanied by lower expression of perforin and granzyme in NK cells. The expression of NKp46 was decreased in lactate-treated NK cells. These studies strongly suggest that tumor-derived lactate inhibits NK cell function via direct inhibition of cytolytic function as well as indirectly by increasing the numbers of MDSCs that inhibit NK cytotoxicity. Depletion of glucose levels using a ketogenic diet to lower lactate production by glycolytic tumors resulted in smaller tumors, decreased MDSC frequency, and improved antitumor immune response. These studies provide evidence for an immunosuppressive role of tumor-derived lactate in inhibiting innate immune response against developing tumors via regulation of MDSC and NK cell activity. PMID:23817426

  15. Dissolution Dynamic Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by NMR.

    PubMed

    Balzan, Riccardo; Fernandes, Laetitia; Comment, Arnaud; Pidial, Laetitia; Tavitian, Bertrand; Vasos, Paul R

    2016-01-01

    The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer. The high NMR signal obtained can be used to monitor chemical reactions in real time. The downside of hyperpolarized NMR resides in the limited time window available for signal acquisition, which is usually on the order of the nuclear spin longitudinal relaxation time constant, T1, or, in favorable cases, on the order of the relaxation time constant associated with the singlet-state of coupled nuclei, TLLS. Cellular uptake of endogenous molecules and metabolic rates can provide essential information on tumor development and drug response. Numerous previous hyperpolarized NMR studies have demonstrated the relevancy of pyruvate as a metabolic substrate for monitoring enzymatic activity in vivo. This work provides a detailed description of the experimental setup and methods required for the study of enzymatic reactions, in particular the pyruvate-to-lactate conversion rate in presence of lactate dehydrogenase (LDH), by hyperpolarized NMR. PMID:26967906

  16. PHYLOGENY AND EVOLUTION OF ALDEHYDE DEHYDROGENASE-HOMOLOGOUS FOLATE ENZYMES

    PubMed Central

    Strickland, Kyle C.; Holmes, Roger S.; Oleinik, Natalia V.; Krupenko, Natalia I.; Krupenko, Sergey A.

    2011-01-01

    Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP+-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO2 in an NADP+-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago. PMID:21215736

  17. Phylogeny and evolution of aldehyde dehydrogenase-homologous folate enzymes.

    PubMed

    Strickland, Kyle C; Holmes, Roger S; Oleinik, Natalia V; Krupenko, Natalia I; Krupenko, Sergey A

    2011-05-30

    Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydro-folate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP(+)-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO(2) in an NADP(+)-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago. PMID:21215736

  18. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria

    PubMed Central

    Watanabe, Seiya; Sueda, Rui; Fukumori, Fumiyasu; Watanabe, Yasuo

    2015-01-01

    Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(P)H-dependent dehydrogenases (synthases), which catalyze the reductive condensation of ?-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti) plasmid. In addition to the reverse oxidative reaction(s), the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated) oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation). We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different ?-, ?-, and ?-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A), and exhibited dehydrogenase (but not oxidase) activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each ?-subunit together with common ?- and ?-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by subunit-exchange. To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase. PMID:26382958

  19. Pyruvate dehydrogenase deficiency and epilepsy.

    PubMed

    Prasad, Chitra; Rupar, Tony; Prasad, Asuri N

    2011-11-01

    The pyruvate dehydrogenase complex (PDHc) is a mitochondrial matrix multienzyme complex that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the conversion of pyruvate into acetyl-CoA. PDHc deficiency is one of the commoner metabolic disorders of lactic acidosis presenting with neurological phenotypes that vary with age and gender. In this mini-review, we postulate mechanisms of epilepsy in the setting of PDHc deficiency using two illustrative cases (one with pyruvate dehydrogenase complex E1-alpha polypeptide (PDHA1) deficiency and the second one with pyruvate dehydrogenase complex E1-beta subunit (PDHB) deficiency (a rare subtype of PDHc deficiency)) and a selected review of published case series. PDHc plays a critical role in the pathway of carbohydrate metabolism and energy production. In severe deficiency states the resulting energy deficit impacts on brain development in utero resulting in structural brain anomalies and epilepsy. Milder deficiency states present with variable manifestations that include cognitive delay, ataxia, and seizures. Epileptogenesis in PDHc deficiency is linked to energy failure, development of structural brain anomalies and abnormal neurotransmitter metabolism. The use of the ketogenic diet bypasses the metabolic block, by providing a direct source of acetyl-CoA, leading to amelioration of some symptoms. Genetic counseling is essential as PDHA1 deficiency (commonest defect) is X-linked although females can be affected due to unfavorable lyonization, while PDHB and PDH phosphatase (PDP) deficiencies (much rarer defects) are of autosomal recessive inheritance. Research is in progress for looking into animal models to better understand pathogenesis and management of this challenging disorder. PMID:21908116

  20. Characterization of retinaldehyde dehydrogenase 3

    PubMed Central

    Graham, CarolineE.; Brocklehurst, Keith; Pickersgill, RichardW.; Warren, MartinJ.

    2005-01-01

    RALDH3 (retinal dehydrogenase 3) was characterized by kinetic and binding studies, protein engineering, homology modelling, ligand docking and electrostatic-potential calculations. The major recognition determinant of an RALDH3 substrate was shown to be an eight-carbon chain bonded to the aldehyde group whose kinetic influence (kcat/Km at pH8.5) decreases when shortened or lengthened. Surprisingly, the ?-ionone ring of all-trans-retinal is not a major recognition site. The dissociation constants (Kd) of the complexes of RALDH3 with octanal, NAD+ and NADH were determined by intrinsic tryptophan fluorescence. The similarity of the Kd values for the complexes with NAD+ and with octanal suggests a random kinetic mechanism for RALDH3, in contrast with the ordered sequential mechanism often associated with aldehyde dehydrogenase enzymes. Inhibition of RALDH3 by tri-iodothyronine binding in competition with NAD+, predicted by the modelling, was established kinetically and by immunoprecipitation. Mechanistic implications of the kinetically influential ionizations with macroscopic pKa values of 5.0 and 7.5 revealed by the pH-dependence of kcat are discussed. Analogies with data for non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans, together with the present modelled structure of the thioacyl RALDH3, suggest (a) that kcat characterizes deacylation of this intermediate for specific substrates and (b) the assignment of the pKa of the major ionization (approximating to 7.5) to the perturbed carboxy group of Glu280 whose conjugate base is envisaged as supplying general base catalysis to attack of a water molecule. The macroscopic pKa of the minor ionization (5.0) is considered to approximate to that of the carboxy group of Glu488. PMID:16241904

  1. Riboflavin requirement of lactating swine.

    PubMed

    Frank, G R; Bahr, J M; Easter, R A

    1988-01-01

    Twenty-five crossbred gilts and 25 crossbred sows were used in an experiment to estimate the riboflavin requirement of lactating swine. During gestation the females were fed a 12% crude protein, corn-soybean meal diet that was marginal in riboflavin content, i.e., 2.3 mg/kg. After farrowing, litter size was equalized across lactation diets within each parity category. The basal, 14% crude-protein corn-soybean meal lactation diet was supplemented to provide five levels of dietary riboflavin: 1.25, 2.25, 3.25, 4.25 and 5.25 mg/kg. Five gilts and five sows were fed each dietary treatment. Each dam was provided her assigned diet ad libitum during the 24-d lactation; piglets were not provided supplemental feed. The erythrocyte glutathione reductase activity coefficient (EGRAC), an indicator of riboflavin status, was measured on blood samples obtained from the dams and their piglets on d 1 and d 24 postpartum. On d 1, the mean EGRAC of gilts was slightly higher than that of sows, while piglet EGRAC was similar regardless of maternal age. On d 24 gilts and their piglets had higher average EGRAC (P less than .01) than did sows and their piglets. Thus, there was a treatment x dam age interaction (P less than .05). Lactation performance criteria gave further evidence of similar treatment x age group interactions. Gilts fed the diet containing 1.25 ppm riboflavin had higher piglet mortality, consumed less feed and lost more weight (P less than .05) for each criterion than did sows fed the same diet. Despite these observations, the broken-line estimates of the riboflavin requirement, based on EGRAC, for gilts and sows were 16.3 and 16.2 mg/d, respectively. The EGRAC values for piglets closely paralleled those of their dams regardless of treatment, suggesting that there is no mechanism to protect the nursing piglets from a maternal dietary deficiency of riboflavin. PMID:3366715

  2. Isocitrate dehydrogenase mutations in leukemia

    PubMed Central

    McKenney, Anna Sophia; Levine, Ross L.

    2013-01-01

    Recent genome-wide discovery studies have identified a spectrum of mutations in different malignancies and have led to the elucidation of novel pathways that contribute to oncogenic transformation. The discovery of mutations in the genes encoding isocitrate dehydrogenase (IDH) has uncovered a critical role for altered metabolism in oncogenesis, and the neomorphic, oncogenic function of IDH mutations affects several epigenetic and gene regulatory pathways. Here we discuss the relevance of IDH mutations to leukemia pathogenesis, therapy, and outcome and how mutations in IDH1 and IDH2 affect the leukemia epigenome, hematopoietic differentiation, and clinical outcome. PMID:23999441

  3. Cellobiose dehydrogenase in cellulose degradation

    SciTech Connect

    Eriksson, L.; Igarashi, Kiyohiko; Samejima, Masahiro

    1996-10-01

    Cellobiose dehydrogenase is produced by a variety of fungi. Although it was already discovered during the 70`s, it`s role in cellulose and lignin degradation is yet ambiguous. The enzyme contains both heme and FAD as prosthetic groups, and seems to have a domain specifically designed to bind the enzyme to cellulose. It`s affinity to amorphous cellulose is higher than to crystalline cellulose. We will report on the binding behavior of the enzyme, its usefulness in elucidation of cellulose structures and also, possibilities for applications such as its use in measuring individual and synergistic mechanisms for cellulose degradation by endo- and exo-glucanases.

  4. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of wide range of electron acceptors. Here, we quantitatively assessed lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor limited growth on lactate with O2; lactate with fumarate; and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the TCA cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under O2 limitation but was required for anaerobic growth likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  5. Effects of decreased lactate accumulation after dichloroacetate administration on exercise training–induced mitochondrial adaptations in mouse skeletal muscle

    PubMed Central

    Hoshino, Daisuke; Tamura, Yuki; Masuda, Hiroyuki; Matsunaga, Yutaka; Hatta, Hideo

    2015-01-01

    Recent studies suggested that lactate accumulation can be a signal for mitochondrial biogenesis in skeletal muscle. We investigated whether reductions in lactate concentrations in response to dichloroacetate (DCA), an activator of pyruvate dehydrogenase, attenuate mitochondrial adaptations after exercise training in mice. We first confirmed that DCA administration (200 mg/kg BW by i.p. injection) 10 min before exercise decreased muscle and blood lactate concentrations after high-intensity interval exercise (10 bouts of 1 min treadmill running at 40 m/min with a 1 min rest). At the same time, exercise-induced signal cascades did not change by pre-exercise DCA administration. These results suggested that DCA administration affected only lactate concentrations after exercise. We next examined the effects of acute DCA administration on mRNA expressions involved with mitochondrial biogenesis after same high-intensity interval exercise and the effects of chronic DCA administration on mitochondrial adaptations after high-intensity interval training (increasing intensity from 38 to 43 m/min by the end of training period). Acute DCA administration did not change most of the exercise-induced mRNA upregulation. These data suggest that lactate reductions by DCA administration did not affect transcriptional activation after high-intensity interval exercise. However, chronic DCA administration attenuated, in part, mitochondrial adaptations such as training-induced increasing rates of citrate synthase (P = 0.06), β-hydroxyacyl CoA dehydrogenase activity (P < 0.05), cytochrome c oxidase IV (P < 0.05) and a fatty acid transporter, fatty acid translocase/CD36 (P < 0.05), proteins after exercise training. These results suggest that lactate accumulation during high-intensity interval exercise may be associated with mitochondrial adaptations after chronic exercise training. PMID:26416973

  6. Effects of decreased lactate accumulation after dichloroacetate administration on exercise training-induced mitochondrial adaptations in mouse skeletal muscle.

    PubMed

    Hoshino, Daisuke; Tamura, Yuki; Masuda, Hiroyuki; Matsunaga, Yutaka; Hatta, Hideo

    2015-09-01

    Recent studies suggested that lactate accumulation can be a signal for mitochondrial biogenesis in skeletal muscle. We investigated whether reductions in lactate concentrations in response to dichloroacetate (DCA), an activator of pyruvate dehydrogenase, attenuate mitochondrial adaptations after exercise training in mice. We first confirmed that DCA administration (200mg/kg BW by i.p. injection) 10min before exercise decreased muscle and blood lactate concentrations after high-intensity interval exercise (10 bouts of 1min treadmill running at 40m/min with a 1min rest). At the same time, exercise-induced signal cascades did not change by pre-exercise DCA administration. These results suggested that DCA administration affected only lactate concentrations after exercise. We next examined the effects of acute DCA administration on mRNA expressions involved with mitochondrial biogenesis after same high-intensity interval exercise and the effects of chronic DCA administration on mitochondrial adaptations after high-intensity interval training (increasing intensity from 38 to 43m/min by the end of training period). Acute DCA administration did not change most of the exercise-induced mRNA upregulation. These data suggest that lactate reductions by DCA administration did not affect transcriptional activation after high-intensity interval exercise. However, chronic DCA administration attenuated, in part, mitochondrial adaptations such as training-induced increasing rates of citrate synthase (P=0.06), ?-hydroxyacyl CoA dehydrogenase activity (P<0.05), cytochrome c oxidase IV (P<0.05) and a fatty acid transporter, fatty acid translocase/CD36 (P<0.05), proteins after exercise training. These results suggest that lactate accumulation during high-intensity interval exercise may be associated with mitochondrial adaptations after chronic exercise training. PMID:26416973

  7. Maternal flaxseed diet during lactation changes adrenal function in adult male rat offspring.

    PubMed

    Figueiredo, Mariana Sarto; da Conceição, Ellen Paula Santos; de Oliveira, Elaine; Lisboa, Patricia Cristina; de Moura, Egberto Gaspar

    2015-10-14

    Flaxseed (Linum usitatissimum L.) has been a focus of interest in the field of functional foods because of its potential health benefits. However, we hypothesised that maternal flaxseed intake during lactation could induce several metabolic dysfunctions in adult offspring. In the present study, we aimed to characterise the adrenal function of adult offspring whose dams were supplemented with whole flaxseed during lactation. At birth, lactating Wistar rats were divided into two groups: rats from dams fed the flaxseed diet (FLAX) with 25% of flaxseed and controls dams. Pups received standard diet after weaning and male offspring were killed at age 180 days old to collect blood and tissues. We evaluated body weight and food intake during development, corticosteronaemia, adrenal catecholamine content, hepatic cholesterol, TAG and glycogen contents, and the protein expression of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), 11-β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and adrenaline β2 receptor at postnatal day 180 (PN180). After weaning, pups from the FLAX group had a higher body weight (+10 %) and food intake (+10%). At PN180, the FLAX offspring exhibited higher serum corticosterone (+48%) and lower adrenal catecholamine ( - 23%) contents, lower glycogen ( - 30%), higher cholesterol (4-fold increase) and TAG (3-fold-increase) contents in the liver, and higher 11β-HSD1 (+62%) protein expression. Although the protein expression of hypothalamic CRH was unaffected, the FLAX offspring had lower protein expression of pituitary ACTH ( - 34%). Therefore, induction of hypercorticosteronaemia by dietary flaxseed during lactation may be due to an increased hepatic activation of 11β-HSD1 and suppression of ACTH. The changes in the liver fat content of the FLAX group are suggestive of steatosis, in which hypercorticosteronaemia may play an important role. Thus, it is recommended that lactating women restrict the intake of flaxseed during lactation. PMID:26337632

  8. Effects of alpha-adrenergic stimulation on the regulation of the pyruvate dehydrogenase complex in the perfused rat liver

    SciTech Connect

    Fisher, R.A.; Tanabe, S.; Buxton, D.B.; Olson, M.S.

    1985-08-05

    The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of UCO2 from infused (1- UC) pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Results show that alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.

  9. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance

    PubMed Central

    Omlin, Teye; Langevin, Karolanne

    2014-01-01

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 μmol·kg−1·min−1. This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  10. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance.

    PubMed

    Omlin, Teye; Langevin, Karolanne; Weber, Jean-Michel

    2014-10-15

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 μmol·kg(-1)·min(-1). This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  11. Dichloroacetate increases glucose use and decreases lactate in developing rat brain

    SciTech Connect

    Miller, A.L.; Hatch, J.P.; Prihoda, T.J. )

    1990-12-01

    Dichloroacetate (DCA) activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase. Neutralized DCA (100 mg/kg) or saline was intravenously administered to 20 to 25-day-old rats (50-75g). Fifteen minutes later a mixture of {sup 6-14}C glucose and {sup 3}H fluorodeoxyglucose (FDG) was administered intravenously and the animals were sacrificed by microwave irradiation (2450 MHz, 8.0 kW, 0.6-0.8 sec) after 2 or 5 min. Brain regional rates of glucose use and metabolite levels were determined. DCA-treated rats had increased rates of glucose use in all regions studied (cortex, thalamus, striatum, and brain stem), with an average increase of 41%. Lactate levels were lower in all regions, by an average of 35%. There were no significant changes in levels of ATP, creatine phosphate, or glycogen in any brain region. Blood levels of lactate did not differ significantly between the DCA- and the saline-treated groups. Blood glucose levels were higher in the DCA group. In rats sacrificed by freeze-blowing, DCA treatment caused lower brain levels of both lactate and pyruvate. These results cannot be explained by any systemic effect of DCA. Rather, it appears that in the immature rat, DCA treatment results in activation of brain PDH, increased metabolism of brain pyruvate and lactate, and a resulting increase in brain glycolytic rate.

  12. Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression

    PubMed Central

    Chaube, Balkrishna; Malvi, Parmanand; Singh, Shivendra Vikram; Mohammad, Naoshad; Meena, Avtar Singh; Bhat, Manoj Kumar

    2015-01-01

    Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma. PMID:26484566

  13. Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression.

    PubMed

    Chaube, Balkrishna; Malvi, Parmanand; Singh, Shivendra Vikram; Mohammad, Naoshad; Meena, Avtar Singh; Bhat, Manoj Kumar

    2015-11-10

    Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma. PMID:26484566

  14. Mitochondrial lactate metabolism is involved in antioxidative defense in human astrocytoma cells.

    PubMed

    Lemire, Joseph; Auger, Christopher; Mailloux, Ryan; Appanna, Vasu D

    2014-04-01

    Although lactate has traditionally been known to be an end product of anaerobic metabolism, recent studies have revealed its disparate biological functions. Oxidative energy production and cell signaling are two important roles assigned to this monocarboxylic acid. Here we demonstrate that mitochondrial lactate metabolism to pyruvate mediated by lactate dehydrogenase (LDH) in a human astrocytic cell line is involved in antioxidative defense. The pooling of this ?-ketoacid helps to detoxify reactive oxygen species, with the concomitant formation of acetate. In-gel activity assays following blue native PAGE electrophoresis were utilized to demonstrate the increase in mitochondrial LDH activity coupled to the decrease in pyruvate dehydrogenase activity in the cells challenged by oxidative stress. The enhanced production of pyruvate with the concomitant formation of acetate in astrocytoma cells was monitored by high-performance liquid chromatography. The ability of pyruvate to fend off oxidative stress was visualized by fluorescence microscopy with the aid of the dye 2',7'-dichlorodihydrofluorescein diacetate. Immunoblotting helped confirm the presence of elevated levels of LDH in cells exposed to oxidative stress, and recovery experiments were performed with pyruvate to diminish the oxidative burden on the astrocytoma. The acetate, generated as a consequence of the antioxidative attribute of pyruvate, was subsequently channeled toward the production of lipids, a process facilitated by the upregulation in activity of acetyl-CoA synthetase and acetyl-CoA carboxylase, as demonstrated by in-gel activity assays. The mitochondrial lactate metabolism mediated by LDH appears to play an important role in antioxidative defence in this astrocytic system. PMID:24452607

  15. LACTATE AS PREDICTOR OF MORTALITY IN POLYTRAUMA

    PubMed Central

    FREITAS, Andria Diane; FRANZON, Orli

    2015-01-01

    Background: The lactate is a product of anaerobic metabolism; it can be used as a marker on demand and availability of oxygen. Changes in lactate levels can be effectively used as a marker in resuscitation maneuvers, even in patients with stable vital signs. Aim: To verify the lactate clearance as a predictor of mortality in trauma patients, in need of intensive care. Method: A total of 851 patients were admitted in ICU, in which 146 were victims of multiple trauma; due to the exclusion criteria, were included 117. Results: Patients were 87% male, mean age 32.4 years, motorcycle drivers, Glasgow coma scale between 3-8, affected by cranial trauma, followed by abdominal trauma. Was verified mortality up to 48 h and global mortality, that did not show statistical relationship between lactate clearance and mortality (p=0.928). Conclusion: There is no correlation between admission lactate or lactate clearance and mortality in patients treated with multiple trauma. PMID:26537138

  16. Inhibition of Rhizopus Lactate Dehydrogenase by Fructose 1,6-bisphosphate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of the filamentous fungus Rhizopus is of significant value because of the organism’s industrial importance, clinical detriment, and agricultural problems. Yet, research has yielded very few advances that allow site directed integration of DNA used for transformation. This is because plas...

  17. Effect of a Marathon Run on Serum Lipoproteins, Creatine Kinase, and Lactate Dehydrogenase in Recreational Runners

    ERIC Educational Resources Information Center

    Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A.

    2005-01-01

    The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride…

  18. Evaluation of lactate dehydrogenase activity as an index of cervical malignancy.

    PubMed

    Gerolymatos, A; Fotiou, S; Tserkezoglou, A; Somarakis, M; Katsilieris, J; Kotsalis, N; Aravantinos, D

    1991-01-01

    The diagnostic accuracy of an investigational test for cervix cancer screening is studied. The method involves a vaginal tampon that changes colour in relation to LDH activity and can detect preinvasive and invasive cervical lesions. The test was applied in 50 women with CIN, 50 women with histologically proved cervical cancer and in 500 women with no history of malignancy. The test was positive in 54% of CINs and 86% of cervix cancer patients, while it was not specific in 16% and 4% respectively. Among 268 healthy controls the test results were negative in 77.99% and false positive in 12.31%. The test can be performed any day of the menstrual cycle apart from the time of menstruation. It can also be performed, without any serious problem of misinterpretation in women suffering from myomas, vaginal relaxation or menstrual disorders. On the contrary, the test should be avoided if vaginitis or cervicitis are present, since false positive conclusions might be drawn. The test results suggest that the sensitivity of this method was 77% and the specificity 86% if we exclude the benign conditions that influence or possibly influence the colour indication of the tampon. PMID:1809580

  19. Lactate dehydrogenase and caspase activity in nasopharyngeal secretions are predictors of bronchiolitis severity

    PubMed Central

    Mehta, Reena; Scheffler, Margaret; Tapia, Lorena; Aideyan, Letisha; Patel, Kirtida D; Jewell, Alan M; Avadhanula, Vasanthi; Mei, Minghua; Garofalo, Roberto P; Piedra, Pedro A

    2014-01-01

    Background Bronchiolitis is the leading cause of hospitalization in infants. Biomarkers of disease severity might help in clinical management. Objective To determine the clinical predictiveness of NW-LDH, NW-caspase 3/7, and NW-LDH/NW-caspase 3/7 ratio in bronchiolitis. Methods Previously healthy children less than 24months of age with bronchiolitis were recruited from the Texas Children's emergency room and intensive care unit from October 2010 to April 2011. Demographic, clinical information, and NW samples were obtained at enrollment. NW samples were analyzed for respiratory viruses, caspase 3/7, and LDH. Results A viral pathogen was detected in 916% of 131 children, with the most common being respiratory syncytial virus and human rhinovirus. A single infection was found in 618% of subjects and co-infection in 298%. Children admitted to ICU had significantly higher NW-LDH than children sent home from the ER or admitted to the general floor (P=002). Children infected with RSV had the highest NW-LDH concentration (P=003) compared with other viral infections. NW-LDH and NW-caspase were significantly correlated (r=077, P<00001). The univariate models showed NW-LDH and NW-LDH/NW- caspase 3/7 ratio were directly associated with hospitalization. Mutivariate regression analyses suggested a complex interaction between the biomarkers, demographics, and disposition. Conclusions NW-LDH, NW-caspase 3/7 and NW-LDH/NW-caspase 3/7 ratio and their interactions with demographic factors are predictive of bronchiolitis severity and can help distinguish children requiring ICU-level care from those admitted to the general floor, or discharged home from the emergency center. PMID:25132512

  20. Relationship between polymorphisms in lactate dehydrogenase B gene and milk characteristics in beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450s are a group of heme-containing monooxygenases necessary for the oxidative metabolism of foreign biological substances. Our goal was to determine the frequency of single nucleotide polymorphism (SNP) 994 in the CYP3A28 sequence of three breed types of cattle. The distribution of geno...

  1. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  2. Effect of a Marathon Run on Serum Lipoproteins, Creatine Kinase, and Lactate Dehydrogenase in Recreational Runners

    ERIC Educational Resources Information Center

    Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A.

    2005-01-01

    The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride

  3. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    PubMed

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-01

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brnsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ?33?% yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260?C in supercritical 95:5 (w/w) ethanol/water. PMID:26685114

  4. MECHANISTIC ANALYSIS OF PYRUVATE DEHYDROGENASE KINASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyruvate dehydrogenase kinase (PDK) is the primary regulator of flux through the mitochondrial pyruvate dehydrogenase complex. The PDK is a member of the ATPase/kinase superfamily. Member proteins of this family are characterized by four signature sequences in the catalytic domain (N-, D-, F-, and G...

  5. Genetics Home Reference: Pyruvate dehydrogenase deficiency

    MedlinePLUS

    ... important role in the pathways that convert the energy from food into a form that cells can use. The pyruvate dehydrogenase complex converts a molecule called pyruvate, which is formed from the breakdown of ... produce energy for cells. The pyruvate dehydrogenase complex is made ...

  6. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  7. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  8. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and....1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid with sodium hydroxide. (b)...

  9. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  10. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  11. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium lactate. 184.1207 Section 184.1207 Food... GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O, where x is any integer up to 5, CAS Reg. No. 814-80-2) is prepared commercially by the neutralization of lactic acid with...

  12. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium lactate. 184.1207 Section 184.1207 Food... Specific Substances Affirmed as GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O, where... lactic acid with calcium carbonate or calcium hydroxide. (b) The ingredient meets the specifications...

  13. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium lactate. 184.1207 Section 184.1207 Food... Specific Substances Affirmed as GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O, where... lactic acid with calcium carbonate or calcium hydroxide. (b) The ingredient meets the specifications...

  14. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium lactate. 184.1207 Section 184.1207 Food and... Substances Affirmed as GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O, where x is any... calcium carbonate or calcium hydroxide. (b) The ingredient meets the specifications of the Food...

  15. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium lactate. 184.1207 Section 184.1207 Food... Specific Substances Affirmed as GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O, where... lactic acid with calcium carbonate or calcium hydroxide. (b) The ingredient meets the specifications...

  16. The effect of exercise on lactate metabolism

    PubMed Central

    Hubbard, Judith L.

    1973-01-01

    1. An I.V. injection of 5 ?c [U-14C]sodium L(+)-lactate was given to four subjects at rest and again 10 min after beginning a 40-50 min period of heavy exercise at an estimated 62-72% of their maximum aerobic power (V?O2 max.). Both blood lactate concentration and V?O2 remained relatively constant after the first few minutes of exercise. 2. In all subjects both at rest and during exercise blood lactate and total radioactivity were measured at frequent intervals after injection of [14C]lactate. Timed expired gas collections were made and the quantity of 14CO2 present in each collection measured. In two subjects the specific activity of lactate and of glucose isolated from blood was also measured. 3. It was found that during 30 min of exercise 35-68% of the administered [14C]lactate was recovered as 14CO2 in the expired gas, whereas at rest only 3-7% was recovered in the same period. 4. After injection of [14C]lactate the blood 14C concentration and the specific activity of the blood lactate declined very rapidly. This decline was more rapid during exercise than at rest. 5. In the two subjects in whom it was measured the specific activity of blood glucose was lower during exercise than at rest. 6. These results show that both at rest and during heavy exercise, lactate is removed from the blood and metabolized, and that during exercise this metabolism is much more rapid. 7. In the light of these findings the sustained blood lactate concentration observed in these experiments is regarded as representing a dynamic equilibrium between the production and metabolism of lactate during exercise. The results give no support to the hypothesis that lactate is produced only during the first few minutes of submaximal work. PMID:4715350

  17. Cerebral Lactate Metabolism After Traumatic Brain Injury.

    PubMed

    Patet, Camille; Suys, Tamarah; Carteron, Laurent; Oddo, Mauro

    2016-04-01

    Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome. PMID:26898683

  18. Oxamate Improves Glycemic Control and Insulin Sensitivity via Inhibition of Tissue Lactate Production in db/db Mice

    PubMed Central

    Ye, Weiran; Zheng, Yijia; Zhang, Shanshan; Yan, Li; Cheng, Hua; Wu, Muchao

    2016-01-01

    Oxamate (OXA) is a pyruvate analogue that directly inhibits the lactate dehydrogenase (LDH)-catalyzed conversion process of pyruvate into lactate. Earlier and recent studies have shown elevated blood lactate levels among insulin-resistant and type 2 diabetes subjects and that blood lactate levels independently predicted the development of incident diabetes. To explore the potential of OXA in the treatment of diabetes, db/db mice were treated with OXA in vivo. Treatment of OXA (350–750 mg/kg of body weight) for 12 weeks was shown to decrease body weight gain and blood glucose and HbA1c levels and improve insulin secretion, the morphology of pancreatic islets, and insulin sensitivity in db/db mice. Meanwhile, OXA reduced the lactate production of adipose tissue and skeletal muscle and serum lactate levels and decreased serum levels of TG, FFA, CRP, IL-6, and TNF-α in db/db mice. The PCR array showed that OXA downregulated the expression of Tnf, Il6, leptin, Cxcr3, Map2k1, and Ikbkb, and upregulated the expression of Irs2, Nfkbia, and Pde3b in the skeletal muscle of db/db mice. Interestingly, LDH-A expression increased in the islet cells of db/db mice, and both treatment of OXA and pioglitazone decreased LDH-A expression, which might be related to the improvement of insulin secretion. Taken together, increased lactate production of adipose tissue and skeletal muscle may be at least partially responsible for insulin resistance and diabetes in db/db mice. OXA improved glycemic control and insulin sensitivity in db/db mice primarily via inhibition of tissue lactate production. Oxamic acid derivatives may be a potential drug for the treatment of type 2 diabetes. PMID:26938239

  19. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland. PMID:19702690

  20. Tin-containing silicates: alkali salts improve methyl lactate yield from sugars.

    PubMed

    Tolborg, Sren; Sdaba, Irantzu; Osmundsen, Christian M; Fristrup, Peter; Holm, Martin S; Taarning, Esben

    2015-02-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group?I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the catalyst or directly to the solvent mixture to achieve the highest reported yield of methyl lactate (ca. 75?%) from sucrose at 170?C in methanol. The beneficial effect of adding alkali to the reaction media applies not only to highly defect-free Sn-Beta prepared through the fluoride route, but also to materials prepared by post-treatment of dealuminated commercial Beta zeolites, as well as ordered mesoporous stannosilicates, in this case Sn-MCM-41 and Sn-SBA-15. These findings open the door to the possibility of using other preparation methods or different Sn-containing silicates with equally high methyl lactate yields as Sn-Beta. PMID:25605624

  1. Reaction of cells cultured in vitro to different asbestos dusts of equal surface area but different fibre length.

    PubMed Central

    Kaw, J. L.; Tilkes, F.; Beck, E. G.

    1982-01-01

    Peritoneal macrophages from mice were cultured in Leighton tubes and exposed to UICC chrysotile, crocidolite or amosite. Their cytotoxicity (Erythrosin uptake), release of lactate dehydrogenase (LDH) and uptake of 3H amino acids were determined according to weight (100 micrograms/tube), surface area (21.3 cm2 or fibre length. In all reactions tested chrysotile was more active than the amphiboles, but the latter gained activity if applied according to surface area. Uptake of 3H amino acids basis. Long-fibred asbestos dusts proved more cytotoxic than the corresponding short fibres when used on the basis of equal mass. In experiments with ascites tumour cells induced by nemalite the different asbestos dusts showed a very significant reduction of 3H-labelled thymidine uptake, but on weight basis the amphibole uptake was markedly higher. Images Fig. 1 Fig. 2 Fig. 3 PMID:7066178

  2. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle

    PubMed Central

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg-1, 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle—regulated by both diet and CB1 receptor activity—through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD. PMID:26671069

  3. Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase

    PubMed Central

    Köpke, Michael; Gerth, Monica L.; Maddock, Danielle J.; Mueller, Alexander P.; Liew, FungMin

    2014-01-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h−1 optical density unit−1), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  4. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers

    PubMed Central

    2015-01-01

    Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC) mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4) and pyruvate dehydrogenase phosphatases (PDP1 and 2). PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases. PMID:26124988

  5. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjgren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), ?-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  6. SAXS fingerprints of aldehyde dehydrogenase oligomers

    PubMed Central

    Tanner, John J.

    2015-01-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), SjgrenLarsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), ?-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 55135522; Luo et al., J. Mol. Biol. 425 (2013) 31063120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  7. Flavocytochrome b2-Based Enzymatic Method of L-Lactate Assay in Food Products

    PubMed Central

    Smutok, Halyna

    2013-01-01

    L-lactate, a key metabolite of the anaerobic glycolytic pathway, plays an important role as a biomarker in medicine, in the nutritional sector and food quality control. For these reasons, there is a need for very specific, sensitive, and simple analytical methods for the accurate L-lactate measuring. A new highly selective enzymatic method for L-lactate determination based on the use of flavocytochrome b2 (EC 1.1.2.3; FC b2) isolated from the recombinant strain of the yeast Hansenula polymorpha has been developed. A proposed enzymatic method exploits an enzymatic oxidation of L-lactate to pyruvate coupled with nitrotetrazolium blue (NTZB) reduction to a colored product, formazan. The maximal absorption peak of the colored product is near λ = 525 nm and the linear range is observed in the interval 0.005–0.14 mM of L-lactate. The main advantages of the proposed method when compared to the LDH-based routine approaches are a higher sensitivity (2.0 μM of L-lactate), simple procedure of analysis, usage of inexpensive, nontoxic reagents, and small amount of the enzyme. Enzymatic oxidation of L-lactate catalyzed by flavocytochrome b2 and coupled with formazan production from nitrotetrazolium blue was shown to be used for L-lactate assay in food samples. A high correlation between results of the proposed method and reference ones proves the possibility to use flavocytochrome b2-catalysed reaction for enzymatic measurement of L-lactate in biotechnology and food chemistry. PMID:24223505

  8. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  9. Molecular basis of isovaleric acidemia and medium-chain acyl-CoA dehydrogenase deficiency.

    PubMed

    Tanaka, K; Ikeda, Y; Matsubara, Y; Hyman, D B

    1987-01-01

    Our early study of isovaleric acidemia (IVA) indicated that isovaleryl-CoA is dehydrogenated by an enzyme that is specific for isovaleryl-CoA. We subsequently identified and purified isovaleryl-CoA dehydrogenase (IVD) and 2-methyl-branched chain acyl-CoA dehydrogenase, which were previously unknown. We also purified and characterized three previously known acyl-CoA dehydrogenases. Five acyl-CoA dehydrogenases share similar molecular features and reaction mechanisms, indicating a close evolutionary relationship. Using the tritium release assay and [35S]methionine labeling/immunoprecipitation, we showed that IVA is due to a mutation of IVD. We also demonstrated that there are at least 5 distinct forms of mutant IVD, indicating an extensive molecular heterogeneity. Furthermore, we cloned cDNAs encoding IVD and medium-chain acyl-CoA dehydrogenases. The comparison of their complete primary sequences revealed a high degree of homology, indicating that these enzymes belong to a gene family, the acyl-CoA dehydrogenase family. PMID:3326738

  10. Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation.

    PubMed

    Omumasaba, Crispinus A; Okai, Naoko; Inui, Masayuki; Yukawa, Hideaki

    2004-01-01

    Corynebacterium glutamicum gapA and gapB encode glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) that differ in molecular weight and activity in the presence of ATP. Comparative genome analysis revealed that GapA, the product of gapA, represented the canonical GAPDH that is highly conserved across the three major life forms. GapB, with an additional 110-residue-long sequence upstream of its GAPDH-specific domain, was homologous only to select microbial putative GAPDHs. Upon gene disruption, the initial growth rates of the wild-type, DeltagapA and DeltagapB strains on glucose (0.77, 0.00 and 0.76 h(-1), respectively), lactate (0.20, 0.18 and 0.15 h(-1), respectively), pyruvate (0.39, 0.29 and 0.20 h(-1), respectively), and acetate (0.06, 0.06 and 0.04 h(-1), respectively), implied that GapA was indispensable for growth on glucose, that GapB, but not GapA, affected early growth on acetate, and that GapB had a greater influence on growth under gluconeogenic conditions than GapA. The disruption of either gapA or gapB showed no significant effect on the transcription of any of the other gap cluster genes although it led to reduced triosephosphate isomerase (TPI) activities. Glycolytic GAPDH activity at low in vitro ATP concentrations was solely attributed to the 35.9-kDa GapA. At higher ATP concentrations, the same activity was attributed to the 51.2-kDa GapB. Both enzymes, however, exhibited similar NADP-dependent GAPDH activities at the higher ATP concentrations. In effect therefore, the GAPDH-catalyzed reaction at low ATP concentrations was irreversible, with all the glycolytic activity strictly NAD-dependent and attributed to GapA. At higher ATP concentrations, the reaction was reversible, with glycolytic activity NAD- or NADP-dependent and attributed to GapB, while gluconeogenic activity was attributable to both GapA and GapB. PMID:15925900

  11. Cysteine reactivity in Thermoanaerobacter brockii alcohol dehydrogenase.

    PubMed Central

    Peretz, M.; Weiner, L. M.; Burstein, Y.

    1997-01-01

    The free cysteine residues in the extremely thermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) were characterized using selective chemical modification with the stable nitroxyl biradical bis(1-oxy-2,2,5,5-tetramethyl-3-imidazoline-4-yl)disulfide, via a thiol-disulfide exchange reaction and with 2[14C]iodoacetic acid, via S-alkylation. The respective reactions were monitored by electron paramagenetic resonance (EPR) and by the incorporation of the radioactive label. In native TBADH, the rapid modification of one cysteine residue per subunit by the biradical and the concomitant loss of catalytic activity was reversed by DTT. NADP protected the enzyme from both modification and inactivation by the biradical. RPLC fingerprint analysis of reduced and S-carboxymethylated lysyl peptides from the radioactive alkylated enzyme identified Cys 203 as the readily modified residue. A second cysteine residue was rapidly modified with both modification reagents when the catalytic zinc was removed from the enzyme by o-phenanthroline. This cysteine residue, which could serve as a putative ligand to the active-site zinc atom, was identified as Cys 37 in RPLC. The EPR data suggested a distance of < or 10 A between Cys 37 and Cys 203. Although Cys 283 and Cys 295 were buried within the protein core and were not accessible for chemical modification, the two residues were oxidized to cystine when TBADH was heated at 75 degrees C, forming a disulfide bridge that was not present in the native enzyme, without affecting either enzymatic activity or thermal stability. The status of these cysteine residues was verified by site directed mutagenesis. PMID:9144779

  12. Integration of Metabolic Modeling with Gene Co-expression Reveals Transcriptionally Programmed Reactions Explaining Robustness in Mycobacterium tuberculosis.

    PubMed

    Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Mittal, Inna; Mobeen, Ahmed; Ramachandran, Srinivasan

    2016-01-01

    Robustness of metabolic networks is accomplished by gene regulation, modularity, re-routing of metabolites and plasticity. Here, we probed robustness against perturbations of biochemical reactions of M. tuberculosis in the form of predicting compensatory trends. In order to investigate the transcriptional programming of genes associated with correlated fluxes, we integrated with gene co-expression network. Knock down of the reactions NADH2r and ATPS responsible for producing the hub metabolites, and Central carbon metabolism had the highest proportion of their associated genes under transcriptional co-expression with genes of their flux correlated reactions. Reciprocal gene expression correlations were observed among compensatory routes, fresh activation of alternative routes and in the multi-copy genes of Cysteine synthase and of Phosphate transporter. Knock down of 46 reactions caused the activation of Isocitrate lyase or Malate synthase or both reactions, which are central to the persistent state of M. tuberculosis. A total of 30 new freshly activated routes including Cytochrome c oxidase, Lactate dehydrogenase, and Glycine cleavage system were predicted, which could be responsible for switching into dormant or persistent state. Thus, our integrated approach of exploring transcriptional programming of flux correlated reactions has the potential to unravel features of system architecture conferring robustness. PMID:27000948

  13. Integration of Metabolic Modeling with Gene Co-expression Reveals Transcriptionally Programmed Reactions Explaining Robustness in Mycobacterium tuberculosis

    PubMed Central

    Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Mittal, Inna; Mobeen, Ahmed; Ramachandran, Srinivasan

    2016-01-01

    Robustness of metabolic networks is accomplished by gene regulation, modularity, re-routing of metabolites and plasticity. Here, we probed robustness against perturbations of biochemical reactions of M. tuberculosis in the form of predicting compensatory trends. In order to investigate the transcriptional programming of genes associated with correlated fluxes, we integrated with gene co-expression network. Knock down of the reactions NADH2r and ATPS responsible for producing the hub metabolites, and Central carbon metabolism had the highest proportion of their associated genes under transcriptional co-expression with genes of their flux correlated reactions. Reciprocal gene expression correlations were observed among compensatory routes, fresh activation of alternative routes and in the multi-copy genes of Cysteine synthase and of Phosphate transporter. Knock down of 46 reactions caused the activation of Isocitrate lyase or Malate synthase or both reactions, which are central to the persistent state of M. tuberculosis. A total of 30 new freshly activated routes including Cytochrome c oxidase, Lactate dehydrogenase, and Glycine cleavage system were predicted, which could be responsible for switching into dormant or persistent state. Thus, our integrated approach of exploring transcriptional programming of flux correlated reactions has the potential to unravel features of system architecture conferring robustness. PMID:27000948

  14. Effect of whole body gamma radiation on hepatic LDH activity, lactate, pyruvate concentration and rate of oxygen consumption in Bufo melanostictus.

    PubMed

    Mishra, J; Mittra, B; Mittra, A

    2002-11-01

    Whole body Co60 gamma radiation induced changes in lactic dehydrogenase (LDH) activity, pyruvate, lactate content and rate of oxygen (O2) consumption in a tropical hibernating anuran (Bufo melanostictus). In 3.5 and 7 Gy treated groups, a significant increase in LDH activity and lactate/pyruvate ratio was observed, whereas a significant decrease in O2 consumption rate was observed in treated animals on post-irradiation day (PID) 1, 5 and 10. Increase in LDH activity was observed on PID-1 in both the treated groups, reached to a peak on PID-5 in 7 Gy treated group and then declined on PID-10. PMID:13677637

  15. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism.

    PubMed

    Zschocke, J; Ruiter, J P; Brand, J; Lindner, M; Hoffmann, G F; Wanders, R J; Mayatepek, E

    2000-12-01

    We report a novel inborn error of metabolism identified in a child with an unusual neurodegenerative disease. The male patient was born at term and recovered well from a postnatal episode of metabolic decompensation and lactic acidosis. Psychomotor development in the first year of life was only moderately delayed. After 14 mo of age, there was progressive loss of mental and motor skills; at 2 years of age, he was severely retarded with marked restlessness, choreoathetoid movements, absence of directed hand movements, marked hypotonia and little reaction to external stimuli. Notable laboratory findings included marked elevations of urinary 2-methyl-3-hydroxybutyrate and tiglylglycine without elevation of 2-methylacetoacetate, mild elevations of lactate in CSF and blood, and a slightly abnormal acylcarnitine profile. These abnormalities became more apparent after isoleucine challenge. Enzyme studies showed absent activity of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) in the mitochondrial oxidation of 2-methyl branched-chain fatty acids and isoleucine. Under dietary isoleucine restriction, neurologic symptoms stabilized over the next 7 months. PMID:11102558

  16. [Lactate kinetics during constant hemodiafiltration in critically severe patients with the systemic inflammatory response syndrome and multiple organ failure].

    PubMed

    Iakovleva, I I; Timokhov, V S; Pestriakov, E V; Moroz, V V; Molchanova, L V; Murav'ev, O B; Sergeev, A Iu

    2000-01-01

    High-volume hemodiafiltration is a new approach to the treatment of critical patients with generalized inflammatory reaction and multiple organ failure. Increase of the liquid exchange during the procedure is fraught with the development of secondary metabolic disorders in cases when lactate-based buffer is used (with high amounts of lactate). This study was undertaken to evaluate the consequences for the acid-base balance in patients with hypoxia and circulatory failure. Twelve patients (6 men and 6 women) with APACHE II score 25 were examined. The major treatment modality was continuous hemodiafiltration. The results indicate that lactate-buffered solutions can be used in critical patients, because they do not cause a notable increase in the blood lactate levels due to its good utilization. Moreover, it is associated with correction of disorders in acid-base balance. No negative clinical consequences were observed after using lactate anion in high concentrations as the major buffer compound. PMID:10900718

  17. Enhancement of the latent 3-isopropylmalate dehydrogenase activity of promiscuous homoisocitrate dehydrogenase by directed evolution.

    PubMed

    Suzuki, Yumewo; Asada, Kuniko; Miyazaki, Junichi; Tomita, Takeo; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2010-11-01

    HICDH (homoisocitrate dehydrogenase), which is involved in lysine biosynthesis through ?-aminoadipate, is a paralogue of IPMDH [3-IPM (3-isopropylmalate) dehydrogenase], which is involved in leucine biosynthesis. TtHICDH (Thermus thermophilus HICDH) can recognize isocitrate, as well as homoisocitrate, as the substrate, and also shows IPMDH activity, although at a considerably decreased rate. In the present study, the promiscuous TtHICDH was evolved into an enzyme showing distinct IPMDH activity by directed evolution using a DNA-shuffling technique. Through five repeats of DNA shuffling/screening, variants that allowed Escherichia coli C600 (leuB?) to grow on a minimal medium in 2 days were obtained. One of the variants LR5-1, with eight amino acid replacements, was found to possess a 65-fold increased k(cat)/K(m) value for 3-IPM, compared with TtHICDH. Introduction of a single back-replacement H15Y change caused a further increase in the k(cat)/K(m) value and a partial recovery of the decreased thermotolerance of LR5-1. Site-directed mutagenesis revealed that most of the amino acid replacements found in LR5-1 effectively increased IPMDH activity; replacements around the substrate-binding site contributed to the improved recognition for 3-IPM, and other replacements at sites away from the substrate-binding site enhanced the turnover number for the IPMDH reaction. The crystal structure of LR5-1 was determined at 2.4 resolution and revealed that helix ?4 was displaced in a manner suitable for recognition of the hydrophobic ?-moiety of 3-IPM. On the basis of the crystal structure, possible reasons for enhancement of the turnover number are discussed. PMID:20735360

  18. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods 73.165 Ferrous lactate. (a) Identity. The color additive...

  19. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods 73.165 Ferrous lactate. (a) Identity. The color additive...

  20. Best Prediction of Yields for Long Lactations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactation records of any length now can be processed with the selection index methods known as best prediction (BP). Previous programs were limited to the 305-day standard used since 1935. Best prediction was implemented in 1998 to calculate lactation records in USDA genetic evaluations, replacing t...

  1. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 582.5311 Ferrous lactate. (a)...

  2. Cyanobacterial Lactate Oxidases Serve as Essential Partners in N2 Fixation and Evolved into Photorespiratory Glycolate Oxidases in Plants[w

    PubMed Central

    Hackenberg, Claudia; Kern, Ramona; Hge, Jan; Stal, Lucas J.; Tsuji, Yoshinori; Kopka, Joachim; Shiraiwa, Yoshihiro; Bauwe, Hermann; Hagemann, Martin

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to harbor genes for both GlcD and GOX proteins. The GOX-like proteins from Nostoc (No-LOX) and from Chlamydomonas reinhardtii showed high l-lactate oxidase (LOX) and low GOX activities, whereas glycolate was the preferred substrate of the phylogenetically related At-GOX2 from Arabidopsis thaliana. Changing the active site of No-LOX to that of At-GOX2 by site-specific mutagenesis reversed the LOX/GOX activity ratio of No-LOX. Despite its low GOX activity, No-LOX overexpression decreased the accumulation of toxic glycolate in a cyanobacterial photorespiratory mutant and restored its ability to grow in air. A LOX-deficient Nostoc mutant grew normally in nitrate-containing medium but died under N2-fixing conditions. Cultivation under low oxygen rescued this lethal phenotype, indicating that N2 fixation was more sensitive to O2 in the ?lox Nostoc mutant than in the wild type. We propose that LOX primarily serves as an O2-scavenging enzyme to protect nitrogenase in extant N2-fixing cyanobacteria, whereas in plants it has evolved into GOX, responsible for glycolate oxidation during photorespiration. PMID:21828292

  3. Reduction of reactive oxygen species ameliorates metabolism-secretion coupling in islets of diabetic GK rats by suppressing lactate overproduction.

    PubMed

    Sasaki, Mayumi; Fujimoto, Shimpei; Sato, Yuichi; Nishi, Yuichi; Mukai, Eri; Yamano, Gen; Sato, Hiroki; Tahara, Yumiko; Ogura, Kasane; Nagashima, Kazuaki; Inagaki, Nobuya

    2013-06-01

    We previously demonstrated that impaired glucose-induced insulin secretion (IS) and ATP elevation in islets of Goto-Kakizaki (GK) rats, a nonobese model of diabetes, were significantly restored by 30-60-min suppression of endogenous reactive oxygen species (ROS) overproduction. In this study, we investigated the effect of a longer (12 h) suppression of ROS on metabolism-secretion coupling in ?-cells by exposure to tempol, a superoxide (O2(-)) dismutase mimic, plus ebselen, a glutathione peroxidase mimic (TE treatment). In GK islets, both H2O2 and O2(-) were sufficiently reduced and glucose-induced IS and ATP elevation were improved by TE treatment. Glucose oxidation, an indicator of Krebs cycle velocity, also was improved by TE treatment at high glucose, whereas glucokinase activity, which determines glycolytic velocity, was not affected. Lactate production was markedly increased in GK islets, and TE treatment reduced lactate production and protein expression of lactate dehydrogenase and hypoxia-inducible factor 1? (HIF1?). These results indicate that the Warburg-like effect, which is characteristic of aerobic metabolism in cancer cells by which lactate is overproduced with reduced linking to mitochondria metabolism, plays an important role in impaired metabolism-secretion coupling in diabetic ?-cells and suggest that ROS reduction can improve mitochondrial metabolism by suppressing lactate overproduction through the inhibition of HIF1? stabilization. PMID:23349483

  4. Application of Hyperpolarized [1-13C]Lactate for the In Vivo Investigation of Cardiac Metabolism

    PubMed Central

    Mayer, Dirk; Yen, Yi-Fen; Josan, Sonal; Park, Jae Mo; Pfefferbaum, Adolf; Hurd, Ralph E.; Spielman, Daniel M.

    2012-01-01

    In addition to cancer imaging, 13C-MRS of hyperpolarized pyruvate also has demonstrated utility for the investigation of cardiac metabolism and ischemic heart disease. Although no adverse effects have yet been reported for doses commonly used in vivo, high substrate concentrations lead to supraphysiological pyruvate levels that can affect the underlying metabolism and have to be taken into account when interpreting the results. With lactate serving as an important energy source for the heart and with physiological lactate levels one to two orders of magnitude higher than for pyruvate, hyperpolarized lactate could potentially be used as an alternative to pyruvate for probing cardiac metabolism. In this study, hyperpolarized [1-13C]lactate was used to acquire time-resolved spectra from the healthy rat heart in vivo and to measure dichloroacetate (DCA)-modulated changes in flux through pyruvate dehydrogenase (PDH). Both the primary oxidation of lactate to pyruvate and the subsequent conversion of pyruvate to alanine and bicarbonate could reliably be detected. As DCA stimulates the activity of PDH through inhibition of PDH kinase, a more than 2.5-fold increase in bicarbonate-to-substrate ratio was found after administration of DCA similar to the effect when using [1-13C]pyruvate as the substrate. PMID:22278751

  5. Reducing lactate secretion by ldhA Deletion in L-glutamate- producing strain Corynebacterium glutamicum GDK-9.

    PubMed

    Zhang, Dalong; Guan, Dan; Liang, Jingbo; Guo, Chunqian; Xie, Xixian; Zhang, Chenglin; Xu, Qingyang; Chen, Ning

    2014-01-01

    L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9?ldhA. GDK-9?ldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of such by-products as ?-ketoglutarate, L-lactate and L-alanine. Since dissolved oxygen (DO) is one of main factors affecting L-lactate formation during L-glutamate fermentation, we investigated the effect of ldhA deletion from GDK-9 under different DO conditions. Under both oxygen-deficient and high oxygen conditions, L-glutamate production by GDK-9?ldhA was not higher than that of the GDK-9. However, under micro-aerobic conditions, GDK-9?ldhA exhibited 11.61% higher L-glutamate and 58.50% lower L-alanine production than GDK-9. Taken together, it is demonstrated that deletion of ldhA can enhance L-glutamate production and lower the unwanted by-products concentration, especially under micro-aerobic conditions. PMID:25763057

  6. Is human lactation a particularly efficient process?

    PubMed

    Frigerio, C; Schutz, Y; Prentice, A; Whitehead, R; Jéquier, E

    1991-09-01

    The recommended dietary allowances of many expert committees (UK DHSS 1979, FAO/WHO/UNU 1985, USA NRC 1989) have set out the extra energy requirements necessary to support lactation on the basis of an efficiency of 80 per cent for human milk production. The metabolic efficiency of milk synthesis can be derived from the measurements of resting energy expenditure in lactating women and in a matched control group of non-pregnant non-lactating women. The results of the present study in Gambian women, as well as a review of human studies on energy expenditure during lactation performed in different countries, suggest an efficiency of human milk synthesis greater than the value currently used by expert committees. We propose that an average figure of 95 per cent would be more appropriate to calculate the energy cost of human lactation. PMID:1959517

  7. NDRG3-mediated lactate signaling in hypoxia

    PubMed Central

    Park, Kyung Chan; Lee, Dong Chul; Yeom, Young Il

    2015-01-01

    Hypoxia is associated with many pathological conditions as well as the normal physiology of metazoans. We identified a lactate-dependent signaling pathway in hypoxia, mediated by the oxygen- and lactate-regulated protein NDRG family member 3 (NDRG3). Oxygen negatively regulates NDRG3 expression at the protein level via the PHD2/VHL system, whereas lactate, produced in excess under prolonged hypoxia, blocks its proteasomal degradation by binding to NDRG3. We also found that the stabilized NDRG3 protein promotes angiogenesis and cell growth under hypoxia by activating the Raf-ERK pathway. Inhibiting cellular lactate production abolishes NDRG3-mediated hypoxia responses. The NDRG3-Raf-ERK axis therefore provides the genetic basis for lactate-induced hypoxia signaling, which can be exploited for the development of therapies targeting hypoxia-induced diseases in addition to advancing our understanding of the normal physiology of hypoxia responses. [BMB Reports 2015; 48(6): 301-302] PMID:25936780

  8. Regulation of xanthine dehydrogenase in chick liver

    PubMed Central

    Corte, E. Della; Stirpe, F.

    1967-01-01

    1. It has been confirmed that the xanthine-dehydrogenase activity of chick liver is enhanced by starvation and by administration of inosine; the effects of these treatments are not additive. 2. Inosine has no effect when given to chicks depleted of the enzyme by feeding a low-protein diet. 3. Actinomycin D prevents the effect of inosine, but itself enhances the activity of xanthine dehydrogenase. 4. The xanthine-dehydrogenase activity is unchanged after addition of orotic acid to the diet, and is stimulated by injection of inorganic iron. PMID:6029610

  9. Effects of Molybdate, Tungstate, and Selenium Compounds on Formate Dehydrogenase and Other Enzyme Systems in Escherichia coli1

    PubMed Central

    Enoch, Harry G.; Lester, Robert L.

    1972-01-01

    The role of selenium and molybdenum in the metabolism of Escherichia coli was explored by growing cells in a simple salts medium and examining the metabolic consequences of altering the concentration of molybdenum and selenium compounds in the medium. The addition of tungstate increased the molybdate deficiency of this medium, as reflected by lowered levels of enzyme systems previously recognized to require compounds of molybdenum and selenium for their formation [formate-dependent oxygen reduction, formate dehydrogenase (FDH) (EC 1.2.2.1), and nitrate reductase (EC 1.9.6.1)]. The requirement for selenium and molybdenum appears to be unique to the enzymes of formate and nitrate metabolism since molybdate- and selenite-deficient medium had no effect on the level of several dehydrogenase and oxidase systems, for which the electron donors were reduced nicotinamide adenine dinucleotide, succinate, d- or l-lactate, and glycerol. In addition, no effect was observed on the growth rate or cell yield with any carbon source tested (glucose, glycerol, dl-lactate, acetate, succinate, and l-malate) when the medium was deficient in molybdenum and selenium. dl-Selenocystine was about as effective as selenite in stimulating the formation of formate dehydrogenase, whereas dl-selenomethionine was only 1% as effective. In aerobic cells, an amount of FDH was formed such that 3,200 or 3,800 moles of formate were oxidized per min per mole of added selenium (added as dl-selenocystine or selenite, respectively). PMID:4555402

  10. Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris.

    PubMed Central

    Soares-Silva, Isabel; Schuller, Dorit; Andrade, Raquel P; Baltazar, Ftima; Cssio, Fernanda; Casal, Margarida

    2003-01-01

    In Saccharomyces cerevisiae the activity for the lactate-proton symporter is dependent on JEN1 gene expression. Pichia pastoris was transformed with an integrative plasmid containing the JEN1 gene. After 24 h of methanol induction, Northern and Western blotting analyses indicated the expression of JEN1 in the transformants. Lactate permease activity was obtained in P. pastoris cells with a V (max) of 2.1 nmol x s(-1) x mg of dry weight(-1). Reconstitution of the lactate permease activity was achieved by fusing plasma membranes of P. pastoris methanol-induced cells with Escherichia coli liposomes containing cytochrome c oxidase, as proton-motive force. These assays in reconstituted heterologous P. pastoris membrane vesicles demonstrate that S. cerevisiae Jen1p is a functional lactate transporter. Moreover, a S. cerevisiae strain deleted in the JEN1 gene was transformed with a centromeric plasmid containing JEN1 under the control of the glyceraldehyde-3-phosphate dehydrogenase constitutive promotor. Constitutive JEN1 expression and lactic acid uptake were observed in cells grown on either glucose and/or acetic acid. The highest V (max) (0.84 nmol x s(-1) x mg of dry weight(-1)) was obtained in acetic acid-grown cells. Thus overexpression of the S. cerevisiae JEN1 gene in both S. cerevisiae and P. pastoris cells resulted in increased activity of lactate transport when compared with the data previously reported in lactic acid-grown cells of native S. cerevisiae strains. Jen1p is the only S. cerevisiae secondary porter characterized so far by heterologous expression in P. pastoris at both the cell and the membrane-vesicle levels. PMID:12962538

  11. The degradation of l-histidine, imidazolyl-l-lactate and imidazolylpropionate by Pseudomonas testosteroni

    PubMed Central

    Coote, J. G.; Hassall, H.

    1973-01-01

    1. Imidazol-5-ylpropionate and imidazol-5-yl-lactate are degraded by Pseudomonas testosteroni via inducible pathways. 2. Growth on either compound as the sole source of carbon results in the induction of the enzymes for histidine catabolism. 3. The pathway of histidine degradation in this organism, a non-fluorescent Pseudomonad, is shown to be the same as that operating in Pseudomonas fluorescens and Pseudomonas putida. It consists of the successive formation of urocanate, imidazol-4-on-5-ylpropionate, N-formimino-l-glutamate, N-formyl-l-glutamate and glutamate. 4. Whole cells of P. testosteroni accumulate urocanate in the reaction mixture when incubated with imidazolylpropionate, but only after an adaptive lag period which is removed by previous growth on imidazolylpropionate as the source of carbon. 5. Imidazolyl-lactate is oxidized to imidazolylpyruvate, which then gives rise to histidine by specific transamination with l-glutamate. 6. Cells grown on histidine, urocanate or imidazolylpropionate are also able to degrade imidazolyllactate. 7. Mutants lacking urocanase are unable to grow on imidazolylpropionate, imidazolyl-lactate, histidine or urocanate. One with impaired histidase activity cannot utilize histidine or imidazolyl-lactate, but grows normally on imidazolylpropionate or urocanate. A mutant unable to grow on imidazolylpropionate is indistinguishable from the wild-type with respect to growth on histidine, imidazolyl-lactate or urocanate. 8. Thus it is established that imidazolyl-lactate is metabolized via histidine whereas imidazolylpropionate enters the histidine degradation pathway after conversion into urocanate. ImagesPLATE 1 PMID:4146796

  12. Genetics Home Reference: Phosphoglycerate dehydrogenase deficiency

    MedlinePLUS

    ... in the production of the protein building block (amino acid) serine. Specifically, the enzyme converts a substance called ... glossary definitions help with understanding phosphoglycerate dehydrogenase deficiency? amino acid ; ataxia ; atrophy ; autosomal ; autosomal recessive ; blood-brain barrier ; ...

  13. Genetics Home Reference: Dihydrolipoamide dehydrogenase deficiency

    MedlinePLUS

    ... cardiomyopathy). Other features of this condition include excess ammonia in the blood (hyperammonemia), a buildup of molecules ... help with understanding dihydrolipoamide dehydrogenase deficiency? acidosis ; acids ; ammonia ; Ashkenazi Jewish ; ataxia ; autosomal ; autosomal recessive ; breakdown ; cardiomyopathy ; ...

  14. Genetics Home Reference: Phosphoglycerate dehydrogenase deficiency

    MedlinePLUS

    ... that connects the two halves of the brain (corpus callosum) is small and thin, and the fluid-filled ... recessive ; blood-brain barrier ; cell ; central nervous system ; corpus callosum ; deficiency ; dehydrogenase ; developmental delay ; disability ; enzyme ; epilepsy ; fatty ...

  15. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    MedlinePLUS

    ... Families Recursos en Español Teaching Resources Medical and Science Glossaries More Quick Links Evaluating Health Information Financial ... Links About the National Center for Advancing Translational Sciences (NCATS) GARD Home Diseases Glucose-6-phosphate dehydrogenase ...

  16. Novel prost