Science.gov

Sample records for lactate dehydrogenase reaction

  1. The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path

    NASA Astrophysics Data System (ADS)

    Masterson, Jean E.; Schwartz, Steven D.

    2014-10-01

    Enzymes are the most efficient chemical catalysts known, but the exact nature of chemical barrier crossing in enzymes is not fully understood. Application of transition state theory to enzymatic reactions indicates that the rates of all possible reaction paths, weighted by their relative probabilities, must be considered in order to achieve an accurate calculation of the overall rate. Previous studies in our group have shown a single mechanism for enzymatic barrier passage in human heart lactate dehydrogenase (LDH). To ensure that this result was not due to our methodology insufficiently sampling reactive phase space, we implement high-perturbation transition path sampling in both microcanonical and canonical regimes for the reaction catalyzed by human heart LDH. We find that, although multiple, distinct paths through reactive phase space are possible for this enzymatic reaction, one specific reaction path is dominant. Since the frequency of these paths in a canonical ensemble is inversely proportional to the free energy barriers separating them from other regions of phase space, we conclude that the rarer reaction paths are likely to have a negligible contribution. Furthermore, the non-dominate reaction paths correspond to altered reactive conformations and only occur after multiple steps of high perturbation, suggesting that these paths may be the result of non-biologically significant changes to the structure of the enzymatic active site.

  2. Lactate dehydrogenase-elevating virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  3. Protein Conformational Landscapes and Catalysis. Influence of Active Site Conformations in the Reaction Catalyzed by L-Lactate Dehydrogenase

    PubMed Central

    Świderek, Katarzyna; Tuñón, Iñaki; Martí, Sergio; Moliner, Vicent

    2015-01-01

    In the last decade L-Lactate Dehydrogenase (LDH) has become an extremely useful marker in both clinical diagnosis and in monitoring the course of many human diseases. It has been assumed from the 80s that the full catalytic process of LDH starts with the binding of the cofactor and the substrate followed by the enclosure of the active site by a mobile loop of the protein before the reaction to take place. In this paper we show that the chemical step of the LDH catalyzed reaction can proceed within the open loop conformation, and the different reactivity of the different protein conformations would be in agreement with the broad range of rate constants measured in single molecule spectrometry studies. Starting from a recently solved X-ray diffraction structure that presented an open loop conformation in two of the four chains of the tetramer, QM/MM free energy surfaces have been obtained at different levels of theory. Depending on the level of theory used to describe the electronic structure, the free energy barrier for the transformation of pyruvate into lactate with the open conformation of the protein varies between 12.9 and 16.3 kcal/mol, after quantizing the vibrations and adding the contributions of recrossing and tunneling effects. These values are very close to the experimentally deduced one (14.2 kcal·mol−1) and ~2 kcal·mol−1 smaller than the ones obtained with the closed loop conformer. Calculation of primary KIEs and IR spectra in both protein conformations are also consistent with our hypothesis and in agreement with experimental data. Our calculations suggest that the closure of the active site is mainly required for the inverse process; the oxidation of lactate to pyruvate. According to this hypothesis H4 type LDH enzyme molecules, where it has been propose that lactate is transformed into pyruvate, should have a better ability to close the mobile loop than the M4 type LDH molecules. PMID:25705562

  4. Lactate dehydrogenase in Phycomyces blakesleeanus.

    PubMed Central

    Soler, J; De Arriaga, D; Busto, F; Cadenas, E

    1982-01-01

    1. An NAD-specific L(+)-lactate dehydrogenase (EC 1.1.1.27) from the mycelium of Phycomyces blakesleeanus N.R.R.L. 1555 (-) was purified approximately 700-fold. The enzyme has a molecular weight of 135,000-140,000. The purified enzyme gave a single, catalytically active, protein band after polyacrylamide-gel electrophoresis. It shows optimum activity between pH 6.7 and 7.5. 2. The Phycomyces blakesleeanus lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate, and its coenzyme, NADH, at pH 7.5, indicating the existence of multiple binding sites in the enzyme for these ligands. 3. At pH 6.0, the enzyme shows high substrate inhibition by pyruvate. 3-hydroxypyruvate and 2-oxovalerate exhibit an analogous effect, whereas glyoxylate does not, when tested as substrates at the same pH. 4. At pH 7.5, ATP, which inhibits the enzyme, acts competitively with NADH and pyruvate, whereas at pH 6.0 and low concentrations of ATP it behaves in a allosteric manner as inhibitor with respect to NADH, GTP, however, has no effect under the same experimental conditions. 5. Partially purified enzyme from sporangiophores behaves in entirely similar kinetic manner as the one exhibited by the enzyme from mycelium. PMID:7115293

  5. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactate dehydrogenase test system. 862.1440... Systems § 862.1440 Lactate dehydrogenase test system. (a) Identification. A lactate dehydrogenase test system is a device intended to measure the activity of the enzyme lactate dehydrogenase in serum....

  6. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactate dehydrogenase test system. 862.1440... Systems § 862.1440 Lactate dehydrogenase test system. (a) Identification. A lactate dehydrogenase test system is a device intended to measure the activity of the enzyme lactate dehydrogenase in serum....

  7. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactate dehydrogenase test system. 862.1440... Systems § 862.1440 Lactate dehydrogenase test system. (a) Identification. A lactate dehydrogenase test system is a device intended to measure the activity of the enzyme lactate dehydrogenase in serum....

  8. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase test system. 862.1440... Systems § 862.1440 Lactate dehydrogenase test system. (a) Identification. A lactate dehydrogenase test system is a device intended to measure the activity of the enzyme lactate dehydrogenase in serum....

  9. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate...

  10. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate...

  11. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate...

  12. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  13. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... throughout the body and is important for creating energy for cells. There are five different forms of this enzyme, each made up of four ... and lactate dehydrogenase-B subunits make up the different forms of the ... large amounts of energy during high-intensity physical activity when the body's ...

  14. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility. PMID:5917779

  15. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized 13C labeled pyruvate

    PubMed Central

    Xu, He N.; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim

    2016-01-01

    Background Clinically translatable hyperpolarized (HP) 13C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP 13C-pyruvate into the subject, which is converted to 13C labeled lactate by the enzyme. Parameters such as 13C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP 13C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP 13C-NMR data and investigate if they can be potential predictors of lung inflammation. Methods Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP 13C-pyruvate for injecting into the lungs. A 20 mm 1H/13C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the 13C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of 13C labeled pyruvate and lactate. Results The apparent forward rate constant kp=(3.67±3.31)×10−4 s−1, reverse rate constant kl=(4.95±2.90)×10−2 s−1, rate constant ratio kp/kl=(7.53±5.75)×10−3 for the control lungs; kp=(11.71±4.35)×10−4 s−1, kl=(9.89±3.89)×10−2 s−1, and kp/kl=(12.39±4.18)×10−3 for the inflamed lungs at the 7th day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly larger than those of the control cohort (P<0.001, P=0.001, and P=0.019, respectively). The rate constants of individual lungs correlated significantly with the histology scores of neutrophils and organizing pneumonia foci but not macrophages. Both kp and kp/kl positively correlated with lactate labeling signals. No correlation was found between kl and lactate labeling signals. Conclusions The results indicate bleomycin-induced lung inflammation significantly increased both the forward and reverse reaction rate constants of LDH and their ratio at day-7 after bleomycin treatment. PMID:26981456

  16. Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate.

    PubMed Central

    Hino, T; Kuroda, S

    1993-01-01

    Activity of D-lactate dehydrogenase (D-LDH) was shown not only in cell extracts from Megasphaera elsdenii grown on DL-lactate, but also in cell extracts from glucose-grown cells, although glucose-grown cells contained approximately half as much D-LDH as DL-lactate-grown cells. This indicates that the D-LDH of M. elsdenii is a constitutive enzyme. However, lactate racemase (LR) activity was present in DL-lactate-grown cells, but was not detected in glucose-grown cells, suggesting that LR is induced by lactate. Acetate, propionate, and butyrate were produced similarly from both D- and L-lactate, indicating that LR can be induced by both D- and L-lactate. These results suggest that the primary reason for the inability of M. elsdenii to produce propionate from glucose is that cells fermenting glucose do not synthesize LR, which is induced by lactate. PMID:8439152

  17. Catecholamine regulation of lactate dehydrogenase in rat brain cell culture

    SciTech Connect

    Kumar, S.; McGinnis, J.F.; de Vellis, J.

    1980-03-25

    The mechanism of catecholamine induction of the soluble cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27) was studied in the rat glial tumor cell line, C6. Lactate dehydrogenase was partially purified from extracts of (/sup 3/H)leucine-labeled cells by affinity gel chromatography and quantitatively immunoprecipitated with anti-lactate dehydrogenase-5 IgG and with antilactate dehydrogenase-1 IgG. The immunoprecipitates were dissociated and electrophoresed on sodium dodecyl sulfate polyacrylamide gels. Using this methodology, the increased enzyme activity of lactate dehydrogenase in norepinephrine-treated C6 cells was observed to be concomitant with the increased synthesis of enzyme molecules. Despite the continued presence of norepinephrine, the specific increase in the rate of synthesis of lactate dehydrogenase was transient. It was first detected at 4 h, was maximum at 9 h, and returned to basal levels by 24 h. The half-life of lactate dehydrogenase enzyme activity was 36 h during the induction and 40 h during deinduction. The half-life for decay of /sup 3/H-labeled lactate dehydrogenase was 41 h. These observations suggest that the increase in lactate dehydrogenase activity in norepinephrine-treated cells does not involve any change in the rate of degradation. Norepinephrine increased the specific rate of synthesis of both lactate dehydrogenase-5 (a tetramer of four M subunits) and lactate dehydrogenase-1 (a tetramer of four H subunits), although to different extents. Since these subunits are coded for by two separate genes on separate chromosomes, it suggests that the regulatory mechanism involves at least two separate sites of action.

  18. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1440 Lactate dehydrogenase...

  19. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. PMID:25542170

  20. Serum lactate dehydrogenase activity in canine malignancies.

    PubMed

    Marconato, L; Crispino, G; Finotello, R; Mazzotti, S; Salerni, F; Zini, E

    2009-12-01

    Lactate dehydrogenase (LDH) is commonly used in human cancer patients for prognostic purposes. Aim of this study was to determine the magnitude of serum LDH elevation in dogs with cancer compared with healthy dogs and dogs with non-neoplastic disease, and to verify whether it may support the diagnosis of specific malignancies. About 128 healthy dogs, 211 diseased dogs and 188 cancer dogs were enrolled. Dogs with cancer had significantly higher LDH than diseased (P < 0.001) and healthy dogs (P < 0.001), but large overlap was found. Dogs with lymphoma showed significantly higher LDH compared with dogs with carcinoma (P < 0.001) or mast cell tumour (MCT; P < 0.05) but not compared with other malignancies. When considering lymphoma and MCT, LDH levels were not different between early and advanced clinical stages. Measuring LDH levels may not be useful as a screening tool for cancer detection. More studies are needed to define its role in specific tumours. PMID:19891694

  1. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    NASA Astrophysics Data System (ADS)

    Meany, J. E.

    2007-09-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to enzyme "substrate" interactions: (i) which form of the substrate system serves as the preferential substrate and (ii) which form acts to inhibit the enzyme? Thus the relative concentrations of the forms of these substrate systems (keto, hydrated, enol) may provide a form of metabolic control. In this light, the present article considers the reduction of pyruvate by lactate dehydrogenase in the presence of NADH. This reaction is inhibited by relatively high concentrations of pyruvate and the physiological significance of this inhibition has been a subject of controversy for many years. Summarized in this article are data from the literature pertaining to the interactions of keto, hydrated, and enol pyruvate with lactate dehydrogenase. Biochemistry instructors and their students are invited to review such pertinent articles so that they also may evaluate the possibility that the "substrate" inhibition of the isoenzymes in the heart muscle may be, under certain conditions, relevant as a form of metabolic control.

  2. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1445 Lactate...

  3. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase

    SciTech Connect

    Mat-Jan, F.; Alam, K.Y.; Clark, D.P. )

    1989-01-01

    Mutants of Escherichia coli deficient in the fermentative NAD-linked lactate dehydrogenase (ldh) have been isolated. These mutants showed no growth defects under anaerobic conditions unless present together with a defect in pyruvate formate lyase (pfl). Double mutants (pfl ldh) were unable to grow anaerobically on glucose or other sugars even when supplemented with acetate, whereas pfl mutants can do so. The ldh mutation was found to map at 30.5 min on the E. coli chromosome. The ldh mutant FMJ39 showed no detectable lactate dehydrogenase activity and produced no lactic acid from glucose under anaerobic conditions as estimated by in vivo nuclear magnetic resonance measurements. We also found that in wild-type strains the fermentative lactate dehydrogenase was conjointly induced by anaerobic conditions and an acidic pH. Despite previous findings that phosphate concentrations affect the proportion of lactic acid produced during fermentation, we were unable to find any intrinsic effect of phosphate on lactate dehydrogenase activity, apart from the buffering effect of this ion.

  4. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  5. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    PubMed Central

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min-1 (mg protein)-1. By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  6. NADP+-Preferring d-Lactate Dehydrogenase from Sporolactobacillus inulinus

    PubMed Central

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Ma, Yanhe

    2015-01-01

    Hydroxy acid dehydrogenases, including l- and d-lactate dehydrogenases (L-LDH and D-LDH), are responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids and extensively used in a wide range of biotechnological applications. A common feature of LDHs is their high specificity for NAD+ as a cofactor. An LDH that could effectively use NADPH as a coenzyme could be an alternative enzymatic system for regeneration of the oxidized, phosphorylated cofactor. In this study, a d-lactate dehydrogenase from a Sporolactobacillus inulinus strain was found to use both NADH and NADPH with high efficiencies and with a preference for NADPH as its coenzyme, which is different from the coenzyme utilization of all previously reported LDHs. The biochemical properties of the D-LDH enzyme were determined by X-ray crystal structural characterization and in vivo and in vitro enzymatic activity analyses. The residue Asn174 was demonstrated to be critical for NADPH utilization. Characterization of the biochemical properties of this enzyme will contribute to understanding of the catalytic mechanism and provide referential information for shifting the coenzyme utilization specificity of 2-hydroxyacid dehydrogenases. PMID:26150461

  7. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis☆

    PubMed Central

    Zhao, Rui; Zheng, Sui; Duan, Cuicui; Liu, Fei; Yang, Lijie; Huo, Guicheng

    2013-01-01

    Lactococcus lactis can undergo respiration when hemin is added to an aerobic culture. The most distinctive feature of lactococcal respiration is that lactate could be consumed in the stationary phase concomitantly with the rapid accumulation of diacetyl and acetoin. However, the enzyme responsible for lactate utilization in this process has not yet been identified. As genes for fermentative NAD-dependent l-lactate dehydrogenase (l-nLDH) and potential electron transport chain (ETC)-related NAD-independent l-LDH (l-iLDH) exist in L. lactis, the activities of these enzymes were measured in this study using crude cell extracts prepared from respiratory and fermentation cultures. Further studies were conducted with purified preparations of recombinant LDH homologous proteins. The results showed that l-iLDH activity was hardly detected in both crude cell extracts and purified l-iLDH homologous protein while l-nLDH activity was very significant. This suggested that l-iLDHs were inactive in lactate utilization. The results of kinetic analyses and the effects of activator, inhibitor, substrate and product concentrations on the reaction equilibrium showed that l-nLDH was much more prone to catalyze the pyruvate reduction reaction but could reverse its role provided that the concentrations of NADH and pyruvate were extremely low while NAD and lactate were abundant. Metabolite analysis in respiratory culture revealed that the cellular status in the stationary phase was beneficial for l-nLDH to catalyze lactate oxidation. The factors accounting for the respiration- and stationary phase-dependent lactate utilization in L. lactis are discussed here. PMID:24251099

  8. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae)

    PubMed Central

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2016-01-01

    Testis-specific lactate dehydrogenase (LDH-C4) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4), Lactate Dehydrogenase B4 (LDH-B4), and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L), LDH-B4 (Ki = 23.800 mmol/L), and LDH-C4 (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4. PMID:26751442

  9. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C₄ of the Plateau Pika (Ochotona curzoniae).

    PubMed

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2016-01-01

    Testis-specific lactate dehydrogenase (LDH-C₄) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C₄ in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000-5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C₄ in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A₄ (LDH-A₄), Lactate Dehydrogenase B₄ (LDH-B₄), and LDH-C₄ were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C₄ for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C₄ for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A₄ (Ki = 26.900 mmol/L), LDH-B₄ (Ki = 23.800 mmol/L), and LDH-C₄ (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A₄ and LDH-B₄ were stronger than LDH-C₄. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C₄. PMID:26751442

  10. Isotope effects on binding of NAD+ to lactate dehydrogenase

    SciTech Connect

    LaReau, R.D.; Wan, W.; Anderson, V.E.

    1989-04-18

    The isotope effect on binding (4-/sup 2/H)NAD+ and (4-/sup 3/H)NAD+ to lactate dehydrogenase has been shown to be 1.10 +/- 0.03 by whole molecule isotope ratio mass spectrometry and 1.085 +/- 0.01 by /sup 3/H//sup 14/C scintillation counting. These values demonstrate that specific interactions of the nicotinamide ring with the enzyme make the C-H bond at C-4 less stiff in the binary complex.

  11. Accelerated Lactate Dehydrogenase Activity Potentiates Osteoclastogenesis via NFATc1 Signaling

    PubMed Central

    Kim, Jin Man; Kwon, So Hyun; Lee, Seoung Hoon; Lee, Soo Young; Jeong, Daewon

    2016-01-01

    Osteoclasts seem to be metabolic active during their differentiation and bone-resorptive activation. However, the functional role of lactate dehydrogenase (LDH), a tetrameric enzyme consisting of an A and/or B subunit that catalyzes interconversion of pyruvate to lactate, in RANKL-induced osteoclast differentiation is not known. In this study, RANKL treatment induced gradual gene expression and activation of the LDH A2B2 isotype during osteoclast differentiation as well as the LDH A1B3 and B4 isotypes during osteoclast maturation after pre-osteoclast formation. Glucose consumption and lactate production in growth media were accelerated during osteoclast differentiation, together with enhanced expression of H+-lactate co-transporter and increased extracellular acidification, demonstrating that glycolytic metabolism was stimulated during differentiation. Further, oxygen consumption via mitochondria was stimulated during osteoclast differentiation. On the contrary, depletion of LDH-A or LDH-B subunit suppressed both glycolytic and mitochondrial metabolism, resulting in reduced mature osteoclast formation via decreased osteoclast precursor fusion and down-regulation of the osteoclastogenic critical transcription factor NFATc1 and its target genes. Collectively, our findings suggest that RANKL-induced LDH activation stimulates glycolytic and mitochondrial respiratory metabolism, facilitating mature osteoclast formation via osteoclast precursor fusion and NFATc1 signaling. PMID:27077737

  12. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    PubMed

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. PMID:26126931

  13. Conformational heterogeneity within the Michaelis complex of lactate dehydrogenase.

    PubMed

    Deng, Hua; Vu, Dung V; Clinch, Keith; Desamero, Ruel; Dyer, R Brian; Callender, Robert

    2011-06-16

    A series of isotope edited IR measurements, both static as well as temperature jump relaxation spectroscopy, are performed on lactate dehydrogenase (LDH) to determine the ensemble of structures available to its Michaelis complex. There clearly has been a substantial reduction in the number of states available to the pyruvate substrate (as modeled by the substrate mimic, oxamate) and NADH when bound to protein compared to dissolved in solution, as determined by the bandwidths and positions of the critical C(2)?O band of the bound substrate mimic and the C(4)-H stretch of the NADH reduced nicotinamide group. Moreover, it is found that a strong ionic bond (characterized by a signature IR band discovered in this study) is formed between the carboxyl group of bound pyruvate with (presumably) Arg171, forming a strong "anchor" within the protein matrix. However, conformational heterogeneity within the Michaelis complex is found that has an impact on both catalytic efficiency and thermodynamics of the enzyme. PMID:21568287

  14. Human Lactate Dehydrogenase A Inhibitors: A Molecular Dynamics Investigation

    PubMed Central

    Shi, Yun; Pinto, B. Mario

    2014-01-01

    Lactate dehydrogenase A (LDHA) is an important enzyme in fermentative glycolysis, generating most energy for cancer cells that rely on anaerobic respiration even under normal oxygen concentrations. This renders LDHA a promising molecular target for the treatment of various cancers. Several efforts have been made recently to develop LDHA inhibitors with nanomolar inhibition and cellular activity, some of which have been studied in complex with the enzyme by X-ray crystallography. In this work, we present a molecular dynamics (MD) study of the binding interactions of selected ligands with human LDHA. Conventional MD simulations demonstrate different binding dynamics of inhibitors with similar binding affinities, whereas steered MD simulations yield discrimination of selected LDHA inhibitors with qualitative correlation between the in silico unbinding difficulty and the experimental binding strength. Further, our results have been used to clarify ambiguities in the binding modes of two well-known LDHA inhibitors. PMID:24466056

  15. Structure of the human lactate dehydrogenase B gene.

    PubMed Central

    Takeno, T; Li, S S

    1989-01-01

    Human genomic clones containing parts of the lactate dehydrogenase B (LDH-B) gene (approx. 25 kb in length) were isolated and characterized. The protein-coding sequence of human LDH-B gene is interrupted by six introns at codons nos. 42-43, 82, 140, 198, 237 and 278-279, and the positions of these introns are homologous to those of LDH-A genes from man and mouse. The 5' non-coding region of human LDH-B gene is interrupted by an intron six nucleotide residues upstream of the ATG translation-initiation site, whereas those of human and mouse LDH-A genes are interrupted at 24 nucleotide residues 5' to the ATG initiation codon. As is the case of LDH-A genes from man and mouse, there is no intron in the 3' non-coding region of human LDH-B gene. PMID:2930497

  16. Effect of selected alcohol dehydrogenase inhibitors on human hepatic lactate dehydrogenase activity - an in vitro study.

    PubMed

    Dudka, Jaroslaw; Burdan, Franciszek; Szumilo, Justyna; Tokarska, Edyta; Korobowicz, Agnieszka; Klepacz, Robert; Gieroba, Renata; Madej, Barbara; Korobowicz, Elzbieta

    2005-01-01

    Metabolic acidosis severely complicates methanol and ethylene glycol intoxications. Acidosis is caused by acid metabolites and can be intensified by lactate elevation. Lactate concentration depends on the NADH(2)/NAD ratio. Lactate dehydrogenase (LDH, E.C.1.1.1.27.) supplies more lactate when the level of NADH(2) is elevated. The aim of the study was to evaluate the effect of alcohol dehydrogenase (ADH) inhibitors and substrates: cimetidine, EDTA, 4-methylpyrazole (4-MP), Ukrain and ethanol on LDH activity. The activity of LDH was determined spectrophotometrically in human liver homogenates incubated with cimetidine, EDTA, 4-MP and Ukrain at concentrations of 2 x 10(-6), 10(-5) and 5 x 10(-5) m as well as ethanol at concentrations of 12.50, 25.00, 50.00 mm. The LDH activity was significantly increased by 10(-5) and 5 x 10(-5) m concentrations of cimetidine and 4-MP, and by all concentrations of ethanol. The most effective change of LDH activity of about 26% (P<0.01) was observed at the highest concentration of ethanol. Ukrain inhibited LDH activity at both concentrations, i.e. 10(-5) and 5 x 10(-5) m (P<0.05). However, EDTA did not significantly influence LDH activity. The data showed that ethanol and 4-MP, the main antidotes in methanol or ethylene glycol poisoning, may increase liver LDH activity - an undesirable effect during the therapy of patients intoxicated with these alcohols. On the other hand, the decrease of LDH activity in the presence of Ukrain is a promising finding but definitely requires further investigation. PMID:16208625

  17. Not only osmoprotectant: betaine increased lactate dehydrogenase activity and L-lactate production in lactobacilli.

    PubMed

    Zou, Huibin; Wu, Zaiqiang; Xian, Mo; Liu, Hui; Cheng, Tao; Cao, Yujin

    2013-11-01

    Lactobacilli are commonly used for industrial production of polymer-grade L-lactic acid. The present study tested the Tween 80 alternative betaine in L-lactate production by several industrial lactobacilli. In flask fermentation of Lactobacillus casei, Lactobacillus buchneri, Lactobacillus lactis and Lactobacillus rhamnosus, the betaine addition (2g/l) had similar osmoprotectant effect with Tween 80 but had increased the lactate dehydrogenase activities and L-lactate production than Tween 80 control. In fed-batch fermentation of L. casei, betaine supplementation improved the L-lactic acid titer to 190 g/l, the yield to 95.5% (g L-lactic acid/g glucose), the productivity to 2.6g/lh, and the optical purity to 97.0%. The results demonstrated that supplementation of Tween 80 alternative - betaine in the fermentation medium is feasible for industrial l-lactic acid fermentation by lactobacilli, which will improve the lactate production but will not increase the process costs and modify any process conditions. PMID:24035452

  18. Cloning, E. coli expression, and characterization of heart lactate dehydrogenase B from river buffalo (Bubalus bubalis).

    PubMed

    Nadeem, Muhammad Shahid; Moran, Jenny; Murtaza, Bibi Nazia; Muhammad, Khushi; Ahmad, Habib

    2014-01-01

    Lactate dehydrogenase is an enzyme of glycolytic pathway which catalyzes the interconversion of pyruvate and lactate. The present study describes cDNA cloning, E. coli expression and characterization of lactate dehydrogenase B (LDH-B) from the heart ventricles of river buffalo (Bubalus bubalis). Total RNA was isolated from the heart tissue, a 1005bp cDNA encoding complete polypeptide chain of 334 amino acids was generated by reverse transcriptase reaction and analyzed for nucleotide sequence. The consensus sequence obtained from both strands has shown 84% to 98% homology with that of different mammalian species. The attributed gene was cloned, expressed in BL21 (DE3) RIPL Codon Plus strain of E. coli using pET21a (+) plasmid. The purified recombinant enzyme displayed a KM value of 50 µM for pyruvate, an optimum activity at 35°C and pH 7.0. The enzyme was found as a homotetramer of 140 kDa on FPLC based gel-filtration column. Molecular weight of a subunit of enzyme as determined by mass spectrometric analysis was 36530.21 Da. The present study describes the first ever report about the cDNA sequence and characteristics of recombinant LDH-B from River buffalo. PMID:24299182

  19. Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles.

    PubMed

    Nesakumar, Noel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru

    2013-11-15

    An electrochemical biosensor was developed to determine lactate that plays an important role in clinical diagnosis, fermentation and food quality analysis. Abnormal concentration of lactate has been related to diseases such as hypoxia, acute heart disorders, lactic acidosis, muscle fatigue and meningitis. Also, lactate concentration in blood helps to evaluate the athletic performance in sports. The main aim of the work is to fabricate NADH/LDH/Nano-CeO2/GCE bio-electrode for sensing lactate in human blood samples. Toward this, CeO2 nanoparticles were synthesized by a hydroxide mediated approach using cerium nitrate hexahydrate (Ce(NO3)3·6H2O) and NaOH as precursors. X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM) studies were carried out to determine the structural and morphological characteristics of CeO2 nanoparticles. XRD pattern indicated the formation of highly crystalline CeO2 nanoparticles with face centered cubic structure. The FE-SEM studies revealed the formation of nanospherical particles of size 29.73±2.59 nm. The working electrode was fabricated by immobilizing nicotinamide adenine dinucleotide (NADH) and lactate dehydrogenase (LDH) on GCE surface with CeO2 nanoparticles as an interface. Electrochemical studies were carried out through cyclic voltammetry using a three electrode system with NADH/LDH/NanoCeO2/GCE as a working electrode, Ag/AgCl saturated with 0.1M KCl as a reference electrode and Pt wire as a counter electrode. From the amperometric study, the linearity was found to be in the range of 0.2-2 mM with the response time of less than 4s. PMID:24034216

  20. [Isozyme patterns of lactate dehydrogenase from tissues of mink and arctic fox during postnatal development].

    PubMed

    Tiutiunnik, N N; Kozhevnikova, L K; Unzhakov, A R; Meldo, Kh I

    2002-01-01

    Isozymes of lactate dehydrogenase extracted from heart, kidney, and liver of mink (Mustela vison Briss.) and Arctic fox (Alopex lagopus L.) during postnatal development were separated by agarose gel electrophoresis. Tissue-specific isozyme pattern of lactate dehydrogenase can be revealed at the age of one month, while the definitive pattern is formed at the age of four months. The isozyme patterns of lactate dehydrogenase in the studied tissues of mink and Arctic fox share the properties specific for animal species of various ecogenesis. PMID:12068724

  1. Production of L-lactate in Leuconostoc citreum via heterologous expression of L-lactate dehydrogenase gene.

    PubMed

    Jin, Qing; Jung, Jee Yun; Kim, Yu Jin; Eom, Hyun-Ju; Kim, So-Young; Kim, Tae-Jip; Han, Nam Soo

    2009-10-26

    D-form lactate is often found in fermented foods and excessive dietary intake of D-lactate may cause metabolic stress in both infants and patients. Leuconostoc citreum is a major lactic acid bacterium that produces D-lactate in fermented foods. The aim of this study was to change the pyruvate carbon flux in L. citreum from D-lactate into L-lactate by heterologous expression of L-lactate dehydrogenase (ldhL) gene. For this, ldhL from Lactobacillus plantarum was cloned and introduced into L. citreum using a shuttle vector pLeuCM. In the transformant, ldhL was successfully transcribed and L-lactate dehydrogenase was expressed. As a consequence of transformation, the ratio between D- and L-isomers was changed due to the increment of L-lactate and the decrement of D-lactate, but no significant differences were found in total lactate concentration between the host and transformant cells. This is the first report of metabolic engineering in Leuconostoc by modulating the central carbon flux into health-favored way. PMID:19699768

  2. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    SciTech Connect

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D.

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  3. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    PubMed Central

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series.

  4. Acetate Utilization in Lactococcus lactis Deficient in Lactate Dehydrogenase: a Rescue Pathway for Maintaining Redox Balance

    PubMed Central

    Hols, Pascal; Ramos, Ana; Hugenholtz, Jeroen; Delcour, Jean; de Vos, Willem M.; Santos, Helena; Kleerebezem, Michiel

    1999-01-01

    Acetate was shown to improve glucose fermentation in Lactococcus lactis deficient in lactate dehydrogenase. 13C and 1H nuclear magnetic resonance studies using [2-13C]glucose and [2-13C]acetate as substrates demonstrated that acetate was exclusively converted to ethanol. This novel pathway provides an alternative route for NAD+ regeneration in the absence of lactate dehydrogenase. PMID:10464231

  5. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases.

    PubMed

    Zhou, Meixia; Crawford, Yongping; Ng, Domingos; Tung, Jack; Pynn, Abigail F J; Meier, Angela; Yuk, Inn H; Vijayasankaran, Natarajan; Leach, Kimberly; Joly, John; Snedecor, Bradley; Shen, Amy

    2011-04-20

    Large-scale fed-batch cell culture processes of CHO cells are the standard platform for the clinical and commercial production of monoclonal antibodies. Lactate is one of the major by-products of CHO fed-batch culture. In pH-controlled bioreactors, accumulation of high levels of lactate is accompanied by high osmolality due to the addition of base to control pH of the cell culture medium, potentially leading to lower cell growth and lower therapeutic protein production during manufacturing. Lactate dehydrogenase (LDH) is an enzyme that catalyzes the conversion of the substrate, pyruvate, into lactate and many factors including pyruvate concentration modulate LDH activity. Alternately, pyruvate can be converted to acetyl-CoA by pyruvate dehydrogenases (PDHs), to be metabolized in the TCA cycle. PDH activity is inhibited when phosphorylated by pyruvate dehydrogenase kinases (PDHKs). In this study, we knocked down the gene expression of lactate dehydrogenase A (LDHa) and PDHKs to investigate the effect on lactate metabolism and protein production. We found that LDHa and PDHKs can be successfully downregulated simultaneously using a single targeting vector carrying small inhibitory RNAs (siRNA) for LDHa and PDHKs. Moreover, our fed-batch shake flask evaluation data using siRNA-mediated LDHa/PDHKs knockdown clones showed that downregulating LDHa and PDHKs in CHO cells expressing a therapeutic monoclonal antibody reduced lactate production, increased specific productivity and volumetric antibody production by approximately 90%, 75% and 68%, respectively, without appreciable impact on cell growth. Similar trends of lower lactate level and higher antibody productivity on average in siRNA clones were also observed from evaluations performed in bioreactors. PMID:21392546

  6. Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines

    PubMed Central

    Hussien, Rajaa

    2011-01-01

    We hypothesized that dysregulation of lactate/pyruvate (monocarboxylate) transporters (MCT) and lactate dehydrogenase (LDH) isoforms contribute to the Warburg effect in cancer. Therefore, we assayed for the expression levels and the localizations of MCT (1, 2, and 4), and LDH (A and B) isoforms in breast cancer cell lines MCF-7 and MDA-MB-231 and compared results with those from a control, untransformed primary breast cell line, HMEC 184. Remarkably, MCT1 is not expressed in MDA-MB-231, but MCT1 is expressed in MCF-7 cells, where its abundance is less than in control HMEC 184 cells. When present in HMEC 184 and MCF-7 cells, MCT1 is localized to the plasma membrane. MCT2 and MCT4 were expressed in all the cell lines studied. MCT4 expression was higher in MDA-MB-231 compared with MCF-7 and HMEC 184 cells, whereas MCT2 abundance was higher in MCF-7 compared with MDA-MB-231 and HMEC 184 cells. Unlike MCT1, MCT2 and MCT4 were localized in mitochondria in addition to the plasma membrane. LDHA and LDHB were expressed in all the cell-lines, but abundances were higher in the two cancer cell lines than in the control cells. MCF-7 cells expressed mainly LDHB, while MDA-MB-231 and control cells expressed mainly LDHA. LDH isoforms were localized in mitochondria in addition to the cytosol. These localization patterns were the same in cancerous and control cell lines. In conclusion, MCT and LDH isoforms have distinct expression patterns in two breast cancer cell lines. These differences may contribute to divergent lactate dynamics and oxidative capacities in these cells, and offer possibilities for targeting cancer cells. PMID:21177384

  7. Phylogenetic analysis of vertebrate lactate dehydrogenase (LDH) multigene families.

    PubMed

    Li, Yi-Ju; Tsoi, Stephen C-M; Mannen, Hideyuka; Shoei-lung Li, Steven

    2002-05-01

    In this paper we analyzed 49 lactate dehydrogenase (LDH) sequences, mostly from vertebrates. The amino acid sequence differences were found to be larger for a human-killifish pair than a human-lamprey pair. This indicates that some protein sequence convergence may occur and reduce the sequence differences in distantly related species. We also examined transitions and transversions separately for several species pairs and found that the transitions tend to be saturated in the distantly related species pair, while transversions are increasing. We conclude that transversions maintain a conservative rate through the evolutionary time. Kimura's two-parameter model for multiple-hit correction on transversions only was used to derive a distance measure and then construct a neighbor-joining (NJ) tree. Three findings were revealed from the NJ tree: (i) the branching order of the tree is consistent with the common branch pattern of major vertebrates; (ii) Ldh-A and Ldh-B genes were duplicated near the origin of vertebrates; and (iii) Ldh-C and Ldh-A in mammals were produced by an independent gene duplication in early mammalian history. Furthermore, a relative rate test showed that mammalian Ldh-C evolved more rapidly than mammalian Ldh-A. Under a two-rate model, this duplication event was calibrated to be approximately 247 million years ago (mya), dating back to the Triassic period. Other gene duplication events were also discovered in Xenopus, the first duplication occurring approximately 60-70 mya in both Ldh-A and Ldh-B, followed by another recent gene duplication event, approximately 20 mya, in Ldh-B. PMID:11965434

  8. The effects of season and temperature on D-lactate dehydrogenase, pyruvate kinase and arginine kinase in the foot of Helix pomatia L.

    PubMed

    Wieser, W; Wright, E

    1979-04-01

    The effects of pH, season, environmental and experimental temperatures on the activities and kinetic parameters of D-lactate dehydrogenase, pyruvate kinase and arginine kinase from the foot of the pulmonate snail Helix pomatia were analyzed. Both in phosphate and Tris buffers D-lactate dehydrogenase was the enzyme with the most acid maximum, arginine kinase that with the most alkaline, whilst pyruvate kinase occupied an intermediate position. Pyruvate kinase activity, measured at 20 degrees C, was positively correlated with the environmental temperature at the moment of collecting the animal, whereas neither arginine kinase nor D-lactate dehydrogenase showed such a relationship. A seasonal study based on approximately 100 specimens established that arginine kinase activity remained the same throughout the year. Pyruvate kinase activity was slightly lower, and D-lactate dehydrogenase activity significantly higher, in winter than in summer animals. Snails subjected in spring to a short warm-up period before enzyme extraction showed extreme variability and some extraordinarily high values of pyruvate kinase activity, suggesting that either season or elevated temperature may have an immediate effect on the activity of this enzyme. Individual variability of all three enzymes ranges from 300 to 400%. The activities of pyruvate kinase and D-lactate dehydrogenase are strongly correlated in summer, forming a "constant-proportion-group", whereas in winter, with D-lactate dehydrogenase activity increasing and pyruvate kinase activity decreasing these two enzymes become "uncoupled". The Km value of pyruvate kinase is independent of experimental temperature between 10 and 25 degrees C, whereas that of D-lactate dehydrogenase and arginine kinase increases about three-fold within this range. Thus the temperature relationship of a single enzymic reaction cannot be used as an arguemnt for or against the occurrence of temperature compensation of whole animal metabolism. The possibility of modulation of enzyme activity by environmental temperature is discussed. PMID:35457

  9. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    PubMed Central

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality. One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37–51) and the specificity was 73% (95% CI 69–76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11–4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable and in nonsurgically treated patients. Plasma LDH constitutes a biomarker of poor outcome in patients with AAS. LDH is a rapid and universally available assay that could be used to improve risk stratification and to individualize treatment in patient groups where options are controversial. PMID:26871831

  10. Energy landscape of the Michaelis complex of lactate dehydrogenase: relationship to catalytic mechanism.

    PubMed

    Peng, Huo-Lei; Deng, Hua; Dyer, R Brian; Callender, Robert

    2014-03-25

    Lactate dehydrogenase (LDH) catalyzes the interconversion between pyruvate and lactate with nicotinamide adenine dinucleotide (NAD) as a cofactor. Using isotope-edited difference Fourier transform infrared spectroscopy on the "live" reaction mixture (LDH·NADH·pyruvate ⇌ LDH·NAD(+)·lactate) for the wild-type protein and a mutant with an impaired catalytic efficiency, a set of interconverting conformational substates within the pyruvate side of the Michaelis complex tied to chemical activity is revealed. The important structural features of these substates include (1) electronic orbital overlap between pyruvate's C2═O bond and the nicotinamide ring of NADH, as shown from the observation of a delocalized vibrational mode involving motions from both moieties, and (2) a characteristic hydrogen bond distance between the pyruvate C2═O group and active site residues, as shown by the observation of at least four C2═O stretch bands indicating varying degrees of C2═O bond polarization. These structural features form a critical part of the expected reaction coordinate along the reaction path, and the ability to quantitatively determine them as well as the substate population ratios in the Michaelis complex provides a unique opportunity to probe the structure-activity relationship in LDH catalysis. The various substates have a strong variance in their propensity toward on enzyme chemistry. Our results suggest a physical mechanism for understanding the LDH-catalyzed chemistry in which the bulk of the rate enhancement can be viewed as arising from a stochastic search through an available phase space that, in the enzyme system, involves a restricted ensemble of more reactive conformational substates as compared to the same chemistry in solution. PMID:24576110

  11. Energy Landscape of the Michaelis Complex of Lactate Dehydrogenase: Relationship to Catalytic Mechanism

    PubMed Central

    2015-01-01

    Lactate dehydrogenase (LDH) catalyzes the interconversion between pyruvate and lactate with nicotinamide adenine dinucleotide (NAD) as a cofactor. Using isotope-edited difference Fourier transform infrared spectroscopy on the “live” reaction mixture (LDH·NADH·pyruvate ⇌ LDH·NAD+·lactate) for the wild-type protein and a mutant with an impaired catalytic efficiency, a set of interconverting conformational substates within the pyruvate side of the Michaelis complex tied to chemical activity is revealed. The important structural features of these substates include (1) electronic orbital overlap between pyruvate’s C2=O bond and the nicotinamide ring of NADH, as shown from the observation of a delocalized vibrational mode involving motions from both moieties, and (2) a characteristic hydrogen bond distance between the pyruvate C2=O group and active site residues, as shown by the observation of at least four C2=O stretch bands indicating varying degrees of C2=O bond polarization. These structural features form a critical part of the expected reaction coordinate along the reaction path, and the ability to quantitatively determine them as well as the substate population ratios in the Michaelis complex provides a unique opportunity to probe the structure–activity relationship in LDH catalysis. The various substates have a strong variance in their propensity toward on enzyme chemistry. Our results suggest a physical mechanism for understanding the LDH-catalyzed chemistry in which the bulk of the rate enhancement can be viewed as arising from a stochastic search through an available phase space that, in the enzyme system, involves a restricted ensemble of more reactive conformational substates as compared to the same chemistry in solution. PMID:24576110

  12. Direct Evidence of Catalytic Heterogeneity in Lactate Dehydrogenase by Temperature Jump Infrared Spectroscopy

    PubMed Central

    2015-01-01

    Protein conformational heterogeneity and dynamics are known to play an important role in enzyme catalysis, but their influence has been difficult to observe directly. We have studied the effects of heterogeneity in the catalytic reaction of pig heart lactate dehydrogenase using isotope edited infrared spectroscopy, laser-induced temperature jump relaxation, and kinetic modeling. The isotope edited infrared spectrum reveals the presence of multiple reactive conformations of pyruvate bound to the enzyme, with three major reactive populations having substrate C2 carbonyl stretches at 1686, 1679, and 1674 cm–1, respectively. The temperature jump relaxation measurements and kinetic modeling indicate that these substates form a heterogeneous branched reaction pathway, and each substate catalyzes the conversion of pyruvate to lactate with a different rate. Furthermore, the rate of hydride transfer is inversely correlated with the frequency of the C2 carbonyl stretch (the rate increases as the frequency decreases), consistent with the relationship between the frequency of this mode and the polarization of the bond, which determines its reactivity toward hydride transfer. The enzyme does not appear to be optimized to use the fastest pathway preferentially but rather accesses multiple pathways in a search process that often selects slower ones. These results provide further support for a dynamic view of enzyme catalysis where the role of the enzyme is not just to bring reactants together but also to guide the conformational search for chemically competent interactions. PMID:25149276

  13. Determination of lactate dehydrogenase (LDH) activity in milk by a fluorometric assay.

    PubMed

    Larsen, Torben

    2005-05-01

    Indigenous L-lactate dehydrogenase (LDH) in milk originates mainly from somatic cells, leucocytes and invading microorganisms. Its activity may be used for detection of mastitis. However, existing methods to measure LDH activity in milk both need pretreatment of the samples and still suffer from methodological problems. The present paper describes a fast, reliable method for determination of LDH activity, suitable for milk samples. The method is based on fluorometric determination of enzyme kinetics when L-lactate is converted to pyruvate. The assay uses raw milk without pretreatment and the method is easily adjustable to large-scale analyses on micro assay plates. Detection is based on (straight line) linear response within 4-7 min of initiation of the reaction. A substrate concentration of 35 mM in the reaction mixture was considered to be optimal for the assay. Intra plate assay precision was approx. 6% (CV) and the inter plate precision approx. 10%. Known inhibitors of LDH activity (oxidative direction), i.e., oxalic acid, oxamate, and pyruvate, were tested in different concentrations in order to verify the specificity of the response. The detailed kinetics of samples analysed indicated that the isoenzyme composition may have differed between milk samples, and that this composition may have been altered in high activity samples. PMID:15909687

  14. NAD-Independent L-Lactate Dehydrogenase Is Required for L-Lactate Utilization in Pseudomonas stutzeri SDM

    PubMed Central

    Dou, Peipei; Ma, Cuiqing; Li, Lixiang; Kong, Jian; Xu, Ping

    2012-01-01

    Background Various Pseudomonas strains can use l-lactate as their sole carbon source for growth. However, the l-lactate-utilizing enzymes in Pseudomonas have never been identified and further studied. Methodology/Principal Findings An NAD-independent l-lactate dehydrogenase (l-iLDH) was purified from the membrane fraction of Pseudomonas stutzeri SDM. The enzyme catalyzes the oxidation of l-lactate to pyruvate by using FMN as cofactor. After cloning its encoding gene (lldD), l-iLDH was successfully expressed, purified from a recombinant Escherichia coli strain, and characterized. An lldD mutant of P. stutzeri SDM was constructed by gene knockout technology. This mutant was unable to grow on l-lactate, but retained the ability to grow on pyruvate. Conclusions/Significance It is proposed that l-iLDH plays an indispensable function in Pseudomonas l-lactate utilization by catalyzing the conversion of l-lactate into pyruvate. PMID:22574176

  15. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  16. Free energy landscape of the Michaelis complex of lactate dehydrogenase: A network analysis of atomistic simulations

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoliang; Schwartz, Steven

    2015-03-01

    It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.

  17. INFLUENCE OF STEROID IMPLANTATION AND SUPPLEMENTATION ON PERFORMANCE AND LACTATE DEHYDROGENASE ACTIVITY IN STEERS GRAZING BERMUDAGRASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty-five steers (BW = 246 5.4 kg) were randomly allocated to one of three paddocks of bermudagrass [Cynodon dactylon (L.) Pers] to determine the effects of timing of steroid implantation and supplementation on average daily gain and lactate dehydrogenase (LDH) activity. Steers received either n...

  18. Relationship of lactate dehydrogenase activity to body measurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were to examine 1) relationships between lactate dehydrogenase (LDH) activity and body measurements of grazing beef cows, and 2) the association between maternal LDH activity in late gestation and subsequent calf birth weight (BRW), hip height (HH) at weaning, and adjusted weaning weight ...

  19. Determination of lactate dehydrogenase activity and urea content in milk by dry chemistry.

    PubMed

    Lipperheide, C; Andersson, R; Petersen, B; Sommer, H

    1995-05-01

    Comparison of the new technique of dry chemistry (EKTACHEM 700-XR, Eastman Kodak Co., USA) with conventional wet chemistry (HITACHI 717, Boehringer Mannheim, Germany) for quantitations of lactate dehydrogenase activity and urea content in bovine milk resulted in correlation coefficients of more than 0.9 even when measuring fresh raw milk by dry chemistry. PMID:8578901

  20. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase.

    PubMed

    Arioli, Stefania; Zambelli, Daniele; Guglielmetti, Simone; De Noni, Ivano; Pedersen, Martin B; Pedersen, Per Dedenroth; Dal Bello, Fabio; Mora, Diego

    2013-01-01

    The discovery of heme-induced respiration in Lactococcus lactis has radically improved the industrial processes used for the biomass production of this species. Here, we show that inhibition of the lactate dehydrogenase activity of L. lactis during growth under respiration-permissive conditions can stimulate aerobic respiration, thereby increasing not only growth efficiency but also the robustness of this organism. PMID:23064338

  1. Relationship of lactate dehydrogenase activity with body measeurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angus x Charolais cows (n = 87) and their Angus-sired, spring-born calves (n = 86) were utilized to examine relationships between lactate dehydrogenase (LDH) activity and body measurements of beef cows; and the relationship between maternal LDH activity in late gestation and subsequent calf birth we...

  2. Modification of Rhizopus lactate dehydrogenase for improved resistance to fructose 1,6-bisphosphate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus oryzae is frequently used for fermentative production of lactic acid. We determined that one of the key enzymes, lactate dehydrogenase (LDH), involved in synthesis of lactic acid by R. oryzae was significantly inhibited by fructose 1,6-bisphosphate (FBP) at physiological concentrations. Thi...

  3. Influence of pH on the allosteric properties of lactate dehydrogenase activity of Phycomyces blakesleeanus.

    PubMed Central

    De Arriaga, D; Soler, J; Cadenas, E

    1982-01-01

    1. Lactate dehydrogenase from mycelium of Phycomyces blakesleeanus showed positive homotropic interactions with NADH at all pH values studied (pH 5.0-7.7). The calculated values for the first and last intrinsic association constants remained unaltered with pH, in contrast with the Hill coefficient value, which varied significantly, reaching its maximum values at pH 6.0 and 7.7. This suggests the hypothesis that pH regulates these homotropic effects by changes in the value of the intermediate intrinsic association constants. 2. From pH 7.2 to 7.7 lactate dehydrogenase exhibited, likewise, positive homotropic interactions with pyruvate. There were practically no changes in the first and last intrinsic association constants and in Hill coefficient values with pH. At pH values below 7.2 (pH 5.0-6.8) the enzyme showed high substrate inhibition, which was highly dependent on pH, NADH concentration and temperature. By way of substrate inhibition pH regulates, primarily, lactate dehydrogenase activity towards pyruvate, since the homotropic effects appear not to be dependent on pH. 3. Fructose 1,6-bisphosphate is a true allosteric effector of lactate dehydrogenase of Phycomyces blakesleeanus. it decreases positive co-operativity with NADH, and on the other hand pyruvate co-operativity turns into mixed co-operativity. In addition, the effector decreases the inhibitory effect caused by pyruvate. PMID:7115294

  4. LACTIC ACID PRODUCTION BY SACCHAROMYCES CEREVISIAE EXPRESSING A RHIZOPUS ORYZAE LACTATE DEHYDROGENASE GENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work demonstrates the first example of a fungal LDH expressed in yeast. A L(+)-lactate dehydrogenase gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adhl promoter and terminator, then placed in a 2 micron contai...

  5. Assessment of freshness and freeze-thawing of sea bream fillets (Sparus aurata) by a cytosolic enzyme: Lactate dehydrogenase.

    PubMed

    Diop, Mamadou; Watier, Denis; Masson, Pierre-Yves; Diouf, Amadou; Amara, Rachid; Grard, Thierry; Lencel, Philippe

    2016-11-01

    The evaluation of freshness and freeze-thawing of fish fillets was carried out by assessment of autolysis of cells using a cytosolic enzyme lactate dehydrogenase. Autolysis plays an important role in spoilage of fish and postmortem changes in fish tissue are due to the breakdown of the cellular structures and release of cytoplasmic contents. The outflow of a cytosolic enzyme, lactate dehydrogenase, was studied in sea bream fillets and the Sparus aurata fibroblasts (SAF-1) cell-line during an 8day storage period at +4°C. A significant increase of lactate dehydrogenase release was observed, especially after 5days of storage. The ratio between the free and the total lactate dehydrogenase activity is a promising predictive marker to measure the quality of fresh fish fillets. The effect of freeze-thawing on cytosolic lactate dehydrogenase and lysosomal α-d-glucosidase activities was also tested. Despite the protecting effect of the tissue compared to the cell-line, a loss of lactate dehydrogenase activity, but not of α-d-glucosidase, was observed. In conclusion, lactate dehydrogenase may be used as a marker to both assess freshness of fish and distinguish between fresh and frozen-thawed fish fillets. PMID:27211667

  6. Hypoxically inducible barley lactate dehydrogenase: cDNA cloning and molecular analysis

    SciTech Connect

    Hondred, D. ); Hanson, A.D. Univ. de Montreal, Quebec )

    1990-09-01

    In the roots of barley and other cereals, hypoxia induces a set of five isozymes of L-lactate dehydrogenase (LDH; (S)-lactate:NADH oxidoreductase, EC 1.1.1.27). Biochemical and genetic data indicate that the five LDH isozymes are tetramers that arise from random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH were isolated from a {lambda}gt11 cDNA library derived from hypoxically treated barley roots. The library was screened with antiserum raised against barley LDH purified {approx}3,000-fold by an improved three-step procedure. Immunopositive clones were rescreened with a cDNA probe synthesized by the polymerase chain reaction using primers modeled from the amino acid sequences of two tryptic LDH peptides. Two types of LDH clones were found. Nucleotide sequence analysis of one representative insert of each type (respectively, 1,305 and 1,166 base pairs) revealed open reading framed encoding 10 peptide fragments of LDH. The 1,305-base-pair insert included the entire coding region of a 356-residue LDH monomer. The nucleotide sequences of the two LDH cDNAs were 92% identical in the coding region, but highly divergent in the 3{prime} noncoding region, and thus probably correspond to the two postulated Ldh loci. The deduced amino acid sequences of the two barley LDHs were 96% identical to each other and very similar to those from vertebrate and bacterial LDHs. RNA blot hybridization showed a single mRNA band of 1.5 kilobases whose level rose about 8-fold in roots during hypoxic induction, as did the level of translatable LDH message.

  7. Control of Lactate Dehydrogenase, Lactate Glycolysis, and α-Amylase by O2 Deficit in Barley Aleurone Layers 1

    PubMed Central

    Hanson, Andrew D.; Jacobsen, John V.

    1984-01-01

    After 4 days in an atmosphere of N2, aleurone layers of barley (Hordeum vulgare L. cv Himalaya) remained viable as judged by their ability to produce near normal amounts of α-amylases when incubated with gibberellic acid (GA3) in air. However, layers did not produce α-amylase when GA3 was supplied under N2, apparently because α-amylase mRNA failed to accumulate. When an 8-hour pulse of [U-14C]glucose was supplied under N2 to freshly prepared aleurone layers, both [14C]lactate and [14C]ethanol accumulated; the [14C]lactate/[14C]ethanol ratio was about 0.3. Prior incubation of layers for 1 day under N2 changed this ratio to about 0.8, indicating an increase in the relative importance of the lactate branch of glycolysis. l(+)Lactate dehydrogenase (LDH) activity was low in freshly prepared aleurone layers and increased 10-fold during 2 days under N2, whereas alcohol dehydrogenase activity (ADH) was high initially and rose by 60%. The responses of LDH and ADH activities to O2 tension were dissimilar; when layers were incubated in various O2/N2 mixtures, LDH activity peaked at 2 to 5% O2 whereas ADH activity was highest at 0% O2. The LDH activity was resolved into several enzymically active bands by native polyacrylamide gel electrophoresis. We conclude that barley aleurone layers are highly adapted to O2 deficiency, that they possess an inducible LDH system as well as an ADH system, and we infer that the LDH and ADH systems are independently regulated. Images Fig. 2 Fig. 5 PMID:16663667

  8. Characterization of lactate dehydrogenase enzyme in seminal plasma of Japanese quail (Coturnix coturnix japonica).

    PubMed

    Singh, R P; Sastry, K V H; Pandey, N K; Shit, N; Agrawal, R; Singh, K B; Mohan, Jag; Saxena, V K; Moudgal, R P

    2011-02-01

    Lactate dehydrogenase enzyme present in quail seminal plasma has been characterized. Polyacrylamide gel electrophoresis and subsequently with LDH specific staining of seminal plasma revealed a single isozyme in quail semen. Studies on substrate inhibition, pH for optimum activity and inhibitor (urea) indicated the isozyme present in the quail semen has catalytic properties like LDH-1 viz. H-type. Furthermore, unlike other mammalian species, electrophoretic and kinetic investigations did not support the existence of semen specific LDH-X isozyme in quail semen. The effect of exogenous lactate and pyruvate on sperm metabolic activity was also studied. The addition of 1 mM lactate or pyruvate to quail semen increased sperm metabolic activity. Our results suggested that both pyruvate and lactate could be used by quail spermatozoa to maintain their basic functions. Since the H-type isozyme is important for conversion of lactate to pyruvate under anaerobic conditions it was postulated that exogenous lactate being converted into pyruvate via LDH present in semen may be used by sperm mitochondria to generate ATP. During conversion of lactate to pyruvate NADH is being generated that may be useful for maintaining sperm mitochondrial membrane potential. PMID:21074838

  9. NAD-Independent l-Lactate Dehydrogenase Required for l-Lactate Utilization in Pseudomonas stutzeri A1501

    PubMed Central

    Gao, Chao; Wang, Yujiao; Zhang, Yingxin; Lv, Min; Dou, Peipei; Xu, Ping

    2015-01-01

    ABSTRACT NAD-independent l-lactate dehydrogenases (l-iLDHs) play important roles in l-lactate utilization of different organisms. All of the previously reported l-iLDHs were flavoproteins that catalyze the oxidation of l-lactate by the flavin mononucleotide (FMN)-dependent mechanism. Based on comparative genomic analysis, a gene cluster with three genes (lldA, lldB, and lldC) encoding a novel type of l-iLDH was identified in Pseudomonas stutzeri A1501. When the gene cluster was expressed in Escherichia coli, distinctive l-iLDH activity was detected. The expressed l-iLDH was purified by ammonium sulfate precipitation, ion-exchange chromatography, and affinity chromatography. SDS-PAGE and successive matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis of the purified l-iLDH indicated that it is a complex of LldA, LldB, and LldC (encoded by lldA, lldB, and lldC, respectively). Purified l-iLDH (LldABC) is a dimer of three subunits (LldA, LldB, and LldC), and the ratio between LldA, LldB, and LldC is 1:1:1. Different from the FMN-containing l-iLDH, absorption spectra and elemental analysis suggested that LldABC might use the iron-sulfur cluster for the l-lactate oxidation. LldABC has narrow substrate specificity, and only l-lactate and dl-2-hydrobutyrate were rapidly oxidized. Mg2+ could activate l-iLDH activity effectively (6.6-fold). Steady-state kinetics indicated a ping-pong mechanism of LldABC for the l-lactate oxidation. Based on the gene knockout results, LldABC was confirmed to be required for the l-lactate metabolism of P. stutzeri A1501. LldABC is the first purified and characterized l-iLDH with different subunits that uses the iron-sulfur cluster as the cofactor. IMPORTANCE Providing new insights into the diversity of microbial lactate utilization could assist in the production of valuable chemicals and understanding microbial pathogenesis. An NAD-independent l-lactate dehydrogenase (l-iLDH) encoded by the gene cluster lldABC is indispensable for the l-lactate metabolism in Pseudomonas stutzeri A1501. This novel type of enzyme was purified and characterized in this study. Different from the well-characterized FMN-containing l-iLDH in other microbes, LldABC in P. stutzeri A1501 is a dimer of three subunits (LldA, LldB, and LldC) and uses the iron-sulfur cluster as a cofactor. PMID:25917905

  10. Multichannel Simultaneous Determination of Activities of Lactate Dehydrogenase

    SciTech Connect

    Ma, L.

    2000-09-12

    It is very important to find the best conditions for some enzymes to do the best catalysis in current pharmaceutical industries. Based on the results above, we could say that this set-up could be widely used in finding the optimal condition for best enzyme activity of a certain enzyme. Instead of looking for the best condition for enzyme activity by doing many similar reactions repeatedly, we can complete this assignment with just one run if we could apply enough conditions.

  11. Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain.

    PubMed

    Laughton, J D; Charnay, Y; Belloir, B; Pellerin, L; Magistretti, P J; Bouras, C

    2000-01-01

    The role of lactate in brain energy metabolism has recently received renewed attention. Although blood-borne monocarboxylates such as lactate poorly cross the blood-brain barrier in the adult brain, lactate produced within the brain parenchyma may be a suitable substrate for brain cells. Lactate dehydrogenase is crucial for both the production and utilization of lactate. In this article, we report the regional distribution of the messenger RNAs for lactate dehydrogenase isoforms 1 and 5 in the adult rat brain using in situ hybridization histochemistry with specific [alpha-(35)S]dATP 3' end-labeled oligoprobes. The autoradiographs revealed that the lactate dehydrogenase-1 messenger RNA is highly expressed in a variety of brain structures, including the main olfactory bulb, the piriform cortex, several thalamic and hypothalamic nuclei, the pontine nuclei, the ventral cochlear nucleus, the trigeminal nerve and the solitary tractus nucleus. In addition, the granular and Purkinje cell layers of the cerebellum showed a strong labeling. The neocortex (e.g., cingular, retrosplenial and frontoparietal cortices) often exhibits a marked laminar pattern of distribution of lactate dehydrogenase-1 messenger RNA (layers II/III, IV and VI being most strongly labeled). In contrast, expression of the lactate dehydrogenase-5 messenger RNA generally seemed more diffusely distributed across the different brain regions. Expression was particularly strong in the hippocampal formation (especially in Ammon's horn and dentate gyrus) and in the cerebral cortex, where no laminar pattern of distribution was observed. Overall, these data are consistent with the emerging idea that lactate is an important energy substrate produced and consumed by brain cells. PMID:10717443

  12. Lactate dehydrogenase and oxidative stress activity in primary open-angle glaucoma aqueous humour.

    PubMed

    Jovanovic, Predrag; Zoric, Lepsa; Stefanovic, Ivan; Dzunic, Boban; Djordjevic-Jocic, Jasmina; Radenkovic, Marija; Jovanovic, Maja

    2010-02-01

    Lactate dehydrogenase (LDH) and lactate are some of the hypoxy biochemical parameters. Extracellular activity of this enzyme increases under the condition of oxidative stress, since the cell integrity can be disrupted during the lipid peroxidation process. Subsequently that leads to the increase level of the lactic acid and lactic acid salts. The objective of this investigation is establishing the level of LDH, LDH1 (HBDH) and the lactate concentration in aqueous humour in patients with primary open-angle glaucoma. Biochemical analysis have been made by enzymatic-colometric method (lactate) and UV-kinetic method (LDH and HBDH) in aqueous humour of 30 patients (42 eyes) with primary open-angle glaucoma (POAG) and 30 patients (40 eyes) with cataract (the control group). The increased values of lactate and the activity of LDH and HBDH enzyme in aqueous humour of POAG patients in correlation with the control group are the results not only of oxidative stress but also of hypoxy and the mitochondry oxidative function (p<0,001). The increased activity of the examined biochemical parameters in the aqueous humour of the POAG patients points to the fact that other mechanisms, besides IOP, have a role in glaucoma pathogenesis. PMID:20192938

  13. Factors Affecting the Activity of the Lactate Dehydrogenase of Streptococcus cremoris

    PubMed Central

    Jonas, H. A.; Anders, R. F.; Jago, G. R.

    1972-01-01

    Studies with partially purified extracts of the nicotinamide adenine dinucleotide-linked l(+)-lactate dehydrogenase of Streptococcus cremoris US3 showed that fructose-1,6-diphosphate (FDP) was essential for the catalytic reduction of pyruvate in the pH range 5.0 to 7.0, outside of which the organism does not grow. In the absence of FDP, enzyme activity was observed only in the region of pH 8.0. The optimal pH for the oxidation of lactate was approximately 8.0 in the presence and absence of FDP. The FDP-activated enzyme was markedly inhibited by inorganic phosphate. The enzyme lost activity on standing at 5 C in alkaline triethanolamine, was quite stable at pH 6.0 to 6.5, and underwent irreversible denaturation below pH 5.0. Inorganic phosphate or FDP increased the stability of the enzyme in alkaline buffers. Some distinguishing properties of individual lactate dehydrogenases, activated by FDP, are discussed. PMID:4340864

  14. Lactate Dehydrogenase Is the Key Enzyme for Pneumococcal Pyruvate Metabolism and Pneumococcal Survival in Blood

    PubMed Central

    Gaspar, Paula; Al-Bayati, Firas A. Y.; Andrew, Peter W.; Neves, Ana Rute

    2014-01-01

    Streptococcus pneumoniae is a fermentative microorganism and causes serious diseases in humans, including otitis media, bacteremia, meningitis, and pneumonia. However, the mechanisms enabling pneumococcal survival in the host and causing disease in different tissues are incompletely understood. The available evidence indicates a strong link between the central metabolism and pneumococcal virulence. To further our knowledge on pneumococcal virulence, we investigated the role of lactate dehydrogenase (LDH), which converts pyruvate to lactate and is an essential enzyme for redox balance, in the pneumococcal central metabolism and virulence using an isogenic ldh mutant. Loss of LDH led to a dramatic reduction of the growth rate, pinpointing the key role of this enzyme in fermentative metabolism. The pattern of end products was altered, and lactate production was totally blocked. The fermentation profile was confirmed by in vivo nuclear magnetic resonance (NMR) measurements of glucose metabolism in nongrowing cell suspensions of the ldh mutant. In this strain, a bottleneck in the fermentative steps is evident from the accumulation of pyruvate, revealing LDH as the most efficient enzyme in pyruvate conversion. An increase in ethanol production was also observed, indicating that in the absence of LDH the redox balance is maintained through alcohol dehydrogenase activity. We also found that the absence of LDH renders the pneumococci avirulent after intravenous infection and leads to a significant reduction in virulence in a model of pneumonia that develops after intranasal infection, likely due to a decrease in energy generation and virulence gene expression. PMID:25245810

  15. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Bubinski, Michal; Krokosz, Anita; Puchala, Mieczyslaw

    2012-07-01

    Proteins are major targets for oxidative damage due to their abundance in cells and high reactivity with free radicals. In the present study we examined the influence of oxygen on radiation-induced inactivation and structural changes of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). We chose these two enzymes because they occur at high concentrations and participate in the most important processes in organisms; furthermore, they show considerable similarity in their structure. Protein solutions were irradiated with X-rays in doses ranging from 0.1 to 0.7 kGy, in air and N2O. The much higher radiation inactivation of GAPDH as compared to LDH is correlated with substantially greater structural changes in this protein, mainly involving the loss of free thiol groups (-SH). Of lesser importance in the differentiation of the radiosensitivity of the studied enzymes are tryptophan residues. Molecular oxygen, present during irradiation, increased to a significantly greater extent the inactivation and structural changes of GAPDH than that of LDH. The results suggest that the greater effect of oxygen on GAPDH is due to the higher efficiency of the superoxide radical, the higher amount of hydroperoxides generated, and the higher degree of unfolding of this protein.

  16. Production of optically pure L-phenyllactic acid by using engineered Escherichia coli coexpressing L-lactate dehydrogenase and formate dehydrogenase.

    PubMed

    Zheng, Zhaojuan; Zhao, Mingyue; Zang, Ying; Zhou, Ying; Ouyang, Jia

    2015-08-10

    L-Phenyllactic acid (L-PLA) is a novel antiseptic agent with broad and effective antimicrobial activity. In addition, L-PLA has been used for synthesis of poly(phenyllactic acid)s, which exhibits better mechanical properties than poly(lactic acid)s. However, the concentration and optical purity of L-PLA produced by native microbes was rather low. An NAD-dependent L-lactate dehydrogenase (L-nLDH) from Bacillus coagulans NL01 was confirmed to have a good ability to produce L-PLA from phenylpyruvic acid (PPA). In the present study, l-nLDH gene and formate dehydrogenase gene were heterologously coexpressed in Escherichia coli. Through two coupled reactions, 79.6mM l-PLA was produced from 82.8mM PPA in 40min and the enantiomeric excess value of L-PLA was high (>99%). Therefore, this process suggested a promising alternative for the production of chiral l-PLA. PMID:26008622

  17. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma

    PubMed Central

    Li, Juan; Tong, Jing; Hao, Hui; Yang, Jie; Liu, Zhikun; Wang, Yuxiang

    2016-01-01

    Reprogrammed glucose metabolism is an emerging hallmark of cancer cells, which show a unique metabolic phenotype known as the Warburg effect. Lactate dehydrogenase A (LDHA), a key enzyme in the glycolytic process, executes the final step by conversion of lactate into pyruvate. However, little is known about the roles of LDHA in human glioblastoma (GBM). In this study, we aimed to determine the effects of LDHA and elucidate related underlying mechanisms. Data derived from Oncomine database showed that LDHA is commonly upregulated in GBM tissues in comparison with corresponding normal controls. Silencing of LDHA expression resulted in reduced glycolysis, decreased cell growth, increased cell apoptosis, and attenuated invasive ability. In the presence of 2-deoxyglucose, a glycolysis inhibitor, the oncogenic activities of LDHA were completely blocked. These findings provide evidence of the cellular functions of LDHA in the progression of GBM and suggest that LDHA might act as a potential therapeutic target for GBM treatment. PMID:26694942

  18. Identification of 3,6-disubstituted dihydropyrones as inhibitors of human lactate dehydrogenase.

    PubMed

    Fauber, Benjamin P; Dragovich, Peter S; Chen, Jinhua; Corson, Laura B; Ding, Charles Z; Eigenbrot, Charles; Labadie, Sharada; Malek, Shiva; Peterson, David; Purkey, Hans E; Robarge, Kirk; Sideris, Steve; Ultsch, Mark; Wei, BinQing; Yen, Ivana; Yue, Qin; Zhou, Aihe

    2014-12-15

    A series of 3,6-disubstituted dihydropyrones were identified as inhibitors of human lactate dehydrogenase (LDH)-A. Structure activity relationships were explored and a series of 6,6-spiro analogs led to improvements in LDHA potency (IC50 <350 nM). An X-ray crystal structure of an improved compound bound to human LDHA was obtained and it illustrated additional opportunities to enhance the potency of these compounds, resulting in the identification of 51 (IC50=30 nM). PMID:25467161

  19. Evaluation of the anti-tumor effects of lactate dehydrogenase inhibitor galloflavin in endometrial cancer cells.

    PubMed

    Han, Xiaoyun; Sheng, Xiugui; Jones, Hannah M; Jackson, Amanda L; Kilgore, Joshua; Stine, Jessica E; Schointuch, Monica N; Zhou, Chunxiao; Bae-Jump, Victoria L

    2015-01-01

    High rates of aerobic glycolysis represent a key mechanism by which endometrial cancer cells consume glucose as its primary energy source. The up-regulated glycolytic pathway is a common therapeutic target whose inhibition has implications for anti-tumor activity in cancer cells. The present study was aimed at evaluating the potential of a novel lactate dehydrogenase (LDH) inhibitor, Galloflavin, as a therapeutic agent for endometrial cancer. Our results revealed that Galloflavin effectively inhibited cell growth in endometrial cancer cell lines and primary cultures of human endometrial cancer through its involvement in multiple signaling pathways that regulate metabolism, cell cycle, apoptosis, cell stress and metastasis. PMID:25631326

  20. Resting oxygen consumption varies among lactate dehydrogenase genotypes in the sow bug, Porcellio scaber

    PubMed Central

    Mitton, J. B.; Carter, P. A.; DiGiacomo, A.

    1997-01-01

    Laboratory studies of respiration in the sow bug, Porcellio scaber, reveal that respiration rates are related to genetic variation at the lactate dehydrogenase (Ldh) locus. In population samples taken from Burlington, North Carolina and Pacific Grove, California, respiration rates differed among Ldh genotypes, but not among genotypes at the other enzyme polymorphisms. In both population samples, the respiration rate of the common Ldh homozygote exceeded the respiration rate of the heterozygote by more than 50 per cent. The differences in respiration rates are consistent with previously reported viability differentials at the Ldh polymorphism.

  1. Isolation and characterization of two cDNA clones of anaerobically induced lactate dehydrogenase from barley roots

    SciTech Connect

    Hondred, D.; Hanson, A.D. )

    1990-05-01

    In barley roots during hypoxia, five lactate dehydrogenase (LDH) isozymes accumulate with a concomitant increase in enzyme activity ({approximately}20-fold). These isozymes are thought to be tetramers resulting from the random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH have been isolated from a {lambda}gt11 library using antiserum raised against barley LDH purified {approximately}3,000-fold and using nucleic acid probes synthesized by the polymerase chain reaction. Two cDNA clones were obtained (1,305 and 1,166 bp). The deduced amino acid sequences of the two barley LDHs are 96% identical to each other, and 50% and 40% identical to vertebrate and bacterial LDHs, respectively. Northern blots identified a single mRNA band ({approximately}1.5 kb) whose level rose 8-fold during hypoxia.

  2. Cationic Surfactant-Based Colorimetric Detection of Plasmodium Lactate Dehydrogenase, a Biomarker for Malaria, Using the Specific DNA Aptamer

    PubMed Central

    Lee, Seonghwan; Manjunatha, D H; Jeon, Weejeong; Ban, Changill

    2014-01-01

    A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH) and Plasmodium falciparum LDH (PfLDH) was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs) as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB). The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly with the naked eye and was monitored using UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The reaction conditions were optimized to obtain the maximum color intensity. PvLDH and PfLDH were discernible with a detection limit of 1.25 pM and 2.94 pM, respectively. The applicability of the proposed biosensor was also examined in commercially available human serum. PMID:24992632

  3. Substrate-induced conformational changes in lactate dehydrogenase. Proteolysis of the immobilized enzyme in the presence of specific substrates.

    PubMed

    Royer, G P; Ikeda, S I; Lee, T K

    1977-12-25

    We report here a new approach to the study of the conformation of enzymes in the presence of specific substrates. Rabbit muscle lactate dehydrogenase was attached to CL-Sepharose via a cleavable spacer arm (-NH-(CH2)6NHCO(CH2)2SS(CH2)2CO-). The bound lactate dehydrogenase was digested with subtilisin BPN' in the presence of substrates of lactate dehydrogenase. The use of a flow system permits the maintenance of saturating levels of substrates. Proteolysis was followed by loss of activity of the enzyme column. The time course of proteolysis in the presence of either NADH, NAD+, or pyruvate alone did not differ from the control. However, when NADH and pyruvate were present simultaneously, the enzyme became more susceptible to proteolysis. The initial rate of proteolysis was increased by 40%. The abortive ternary complex (lactate dehydrogenase - NAD+ - pyruvate) also showed an increase in susceptibility to proteolysis. These findings clearly show that the productive ternary complex (lactate dehydrogenase - NADH - pyruvate) is conformationally different from the apoenzyme and binary complexes under optimal catalytic conditions. PMID:200617

  4. Cloning of a lactate dehydrogenase gene from Clostridium acetobutylicum B643 and expression in Escherichia coli

    SciTech Connect

    Contag, P.R.; Williams, M.G.; Rogers, P. )

    1990-12-01

    A lactate dehydrogenase (LDH) gene of Clostridium acetobutylicum B643 was cloned on two recombinant plasmids. pPC37 and pPC58, that were selected by complementation of Escherichia coli PRC436 (acd), a fermentation-defective mutant that does not grown anaerobically on glucose. E. coli PRC436(pPC37) and PRC436(pPC58) grew anaerobically and fermented glucose to mostly lactate. When pPC37 and pPC58 were transformed into E. coli FMJ39 (ldh pfl), an LDH-deficient strain, the resulting strains grew anaerobically on glucose and produced lactate. Crude extracts of E. coli FMJ39(pPC37) and FMJ39(pPC58) contained high LDH activity only when assayed for pyruvate reduction to lactate, and the LDH activity was activated 15- to 30-fold by the addition of fructose 1,6-diphosphate (FDP). E. coli FMJ39 had no detectable LDH activity, and E. coli LDH from a wild-type strain was not activated by FDP. Maxicell analysis showed that both plasmids pPC37 and pPC58 expressed a protein with an apparent M{sub r} of 38,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Restriction endonuclease mapping of pPC37 and pPC58 and DNA hybridization studies indicated that a 2.1-kb region of these two clones of C. acetobutylicum DNA encodes the FDP-activated LDH.

  5. Molecular and Kinetic Characterization of Babesia microti Gray Strain Lactate Dehydrogenase as a Potential Drug Target

    PubMed Central

    Vudriko, Patrick; Masatani, Tatsunori; Cao, Shinuo; Terkawi, Mohamad Alla; Kamyingkird, Ketsarin; Mousa, Ahmed A; Adjou Moumouni, Paul F; Nishikawa, Yoshifumi; Xuan, Xuenan

    2014-01-01

    Babesia microti is an emerging zoonotic protozoan organism that causes “malaria-like” symptoms that can be fatal in immunocompromised people. Owing to lack of specific therapeutic regiment against the disease, we cloned and characterized B. microti lactate dehydrogenase (BmLDH) as a potential molecular drug receptor. The in vitro kinetic properties of BmLDH enzyme was evaluated using nicotinamide adenine dinucleotide (NAD+) as a co-factor and lactate as a substrate. Inhibitory assay was also done using gossypol as BmLDH inhibitor to determine the inhibitory concentration 50 (IC50). The result showed that the 0.99 kbp BmLDH gene codes for a barely soluble 36 kDa protein (332 amino acids) localized in both the cytoplasm and nucleus of the parasite. In vitro enzyme kinetic studies further revealed that BmLDH is an active enzyme with a high catalytic efficiency at optimal pH of 10.2. The Km values of NAD+ and lactate were 8.7 ± 0.57 mM and 99.9 ± 22.33 mM, respectively. The IC50 value for gossypol was 0.345 μM, while at 2.5 μM, gossypol caused 100% inhibition of BmLDH catalytic activity. These findings, therefore, provide initial evidence that BmLDH could be a potential drug target, although further in vivo studies are needed to validate the practical application of lactate dehydrogenase inhibitors against B. microti infection. PMID:25125971

  6. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Gu, Sol-A; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-07-01

    The thermostable d-lactate dehydrogenase from Lactobacillus jensenii (Ljd-LDH) is a key enzyme in the production of the d-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of d-lactic acid are used as biodegradable bioplastics. The crystal structures of Ljd-LDH and in complex with NAD(+) were determined at 2.13 and 2.60Å resolutions, respectively. The Ljd-LDH monomer consists of the N-terminal substrate-binding domain and the C-terminal NAD-binding domain. The Ljd-LDH forms a homodimeric structure, and the C-terminal NAD-binding domain mostly enables the dimerization of the enzyme. The NAD cofactor is bound to the GxGxxG NAD-binding motif located between the two domains. Structural comparisons of Ljd-LDH with other d-LDHs reveal that Ljd-LDH has unique amino acid residues at the linker region, which indicates that the open-close dynamics of Ljd-LDH might be different from that of other d-LDHs. Moreover, thermostability experiments showed that the T50(10) value of Ljd-LDH (54.5°C) was much higher than the commercially available d-lactate dehydrogenase (42.7°C). In addition, Ljd-LDH has at least a 7°C higher denaturation temperature compared to commercially available d-LDHs. PMID:24794195

  7. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  8. Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase

    PubMed Central

    Laughton, Jocelyn D; Bittar, Philippe; Charnay, Yves; Pellerin, Luc; Kovari, Enikö; Magistretti, Pierre J; Bouras, Constantin

    2007-01-01

    Background For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally. The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. Results In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. Conclusion These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons. PMID:17521432

  9. Structures of lactate dehydrogenase A (LDHA) in apo, ternary and inhibitor-bound forms.

    PubMed

    Kolappan, Subramaniapillai; Shen, David L; Mosi, Renee; Sun, Jianyu; McEachern, Ernest J; Vocadlo, David J; Craig, Lisa

    2015-02-01

    Lactate dehydrogenase (LDH) is an essential metabolic enzyme that catalyzes the interconversion of pyruvate and lactate using NADH/NAD(+) as a co-substrate. Many cancer cells exhibit a glycolytic phenotype known as the Warburg effect, in which elevated LDH levels enhance the conversion of glucose to lactate, making LDH an attractive therapeutic target for oncology. Two known inhibitors of the human muscle LDH isoform, LDHA, designated 1 and 2, were selected, and their IC50 values were determined to be 14.4 3.77 and 2.20 0.15?M, respectively. The X-ray crystal structures of LDHA in complex with each inhibitor were determined; both inhibitors bind to a site overlapping with the NADH-binding site. Further, an apo LDHA crystal structure solved in a new space group is reported, as well as a complex with both NADH and the substrate analogue oxalate bound in seven of the eight molecules and an oxalate only bound in the eighth molecule in the asymmetric unit. In this latter structure, a kanamycin molecule is located in the inhibitor-binding site, thereby blocking NADH binding. These structures provide insights into LDHA enzyme mechanism and inhibition and a framework for structure-assisted drug design that may contribute to new cancer therapies. PMID:25664730

  10. Novel control of lactate dehydrogenase from the freeze tolerant wood frog: role of posttranslational modifications.

    PubMed

    Abboud, Jean; Storey, Kenneth B

    2013-01-01

    Lactate dehydrogenase (LDH), the terminal enzyme of anaerobic glycolysis, plays a crucial role both in sustaining glycolytic ATP production under oxygen-limiting conditions and in facilitating the catabolism of accumulated lactate when stress conditions are relieved. In this study, the effects on LDH of in vivo freezing and dehydration stresses (both of which impose hypoxia/anoxia stress on tissues) were examined in skeletal muscle of the freeze-tolerant wood frog, Rana sylvatica. LDH from muscle of control, frozen and dehydrated wood frogs was purified to homogeneity in a two-step process. The kinetic properties and stability of purified LDH were analyzed, revealing no significant differences in V max, K m and I 50 values between control and frozen LDH. However, control and dehydrated LDH differed significantly in K m values for pyruvate, lactate, and NAD, I 50 urea, and in temperature, glucose, and urea effects on these parameters. The possibility that posttranslational modification of LDH was responsible for the stable differences in enzyme behavior between control and dehydrated states was assessed using ProQ diamond staining to detect phosphorylation and immunoblotting to detect acetylation, methylation, ubiquitination, SUMOylation and nitrosylation of the enzyme. LDH from muscle of dehydrated wood frogs showed significantly lower levels of acetylation, providing one of the first demonstrations of a potential role for protein acetylation in the stress-responsive control of a metabolic enzyme. PMID:23638346

  11. Novel control of lactate dehydrogenase from the freeze tolerant wood frog: role of posttranslational modifications

    PubMed Central

    Abboud, Jean

    2013-01-01

    Lactate dehydrogenase (LDH), the terminal enzyme of anaerobic glycolysis, plays a crucial role both in sustaining glycolytic ATP production under oxygen-limiting conditions and in facilitating the catabolism of accumulated lactate when stress conditions are relieved. In this study, the effects on LDH of in vivo freezing and dehydration stresses (both of which impose hypoxia/anoxia stress on tissues) were examined in skeletal muscle of the freeze-tolerant wood frog, Rana sylvatica. LDH from muscle of control, frozen and dehydrated wood frogs was purified to homogeneity in a two-step process. The kinetic properties and stability of purified LDH were analyzed, revealing no significant differences in Vmax, Km and I50 values between control and frozen LDH. However, control and dehydrated LDH differed significantly in Km values for pyruvate, lactate, and NAD, I50 urea, and in temperature, glucose, and urea effects on these parameters. The possibility that posttranslational modification of LDH was responsible for the stable differences in enzyme behavior between control and dehydrated states was assessed using ProQ diamond staining to detect phosphorylation and immunoblotting to detect acetylation, methylation, ubiquitination, SUMOylation and nitrosylation of the enzyme. LDH from muscle of dehydrated wood frogs showed significantly lower levels of acetylation, providing one of the first demonstrations of a potential role for protein acetylation in the stress-responsive control of a metabolic enzyme. PMID:23638346

  12. Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): genetic, kinetic and thermodynamic aspects.

    PubMed

    Zakhartsev, Maxim; Johansen, Torild; Prtner, Hans O; Blust, Ronny

    2004-01-01

    The aim of this study was to determine the effects of seasonal temperature variation on the functional properties of lactate dehydrogenase (LDH) from white muscle and liver of Norwegian coastal cod (Gadus morhua) and the possible relevance of LDH allelic variability for thermal acclimation. Two groups of fishes were acclimated to 4 degrees C or 12 degrees C for one year. Polymorphism was observed in only one (Ldh-B) of the three Ldh loci expressed in cod liver and/or muscle. Isozyme expression remained unchanged regardless of acclimation temperature (T(A)). The products of locus Ldh-B comprise only 14-19% (depending on the tissue) of total LDH activities and, consequently, differences between phenotypes are negligible in terms of their effect on LDH total performance. No kinetic (, V(max)) or thermodynamic (E(a), DeltaG) differences were found among Ldh-B phenotypes. Clear kinetic differences were observed between LDH isoforms in the two tissues. However, the Arrhenius activation energy (E(a)) for pyruvate reduction was the same for both tissues (E(a)=47 kJ mol(-1)) at T(A)=12 degrees C. Factors T(A), tissue and phenotype did not reveal a significant effect on the Gibbs free energy change (DeltaG) of the reaction (55.5 kJ mol(-1)). However, at T(A)=4 degrees C, the E(a) was increased (E(a)=53-56 kJ mol(-1)) and the temperature dependence of the constant of substrate inhibition for pyruvate () decreased in both muscle and liver. In conclusion, the strategies of LDH adjustment to seasonal temperature variations in cod involve changes in LDH concentration (quantitative), adjustment of thermodynamic (E(a)) and kinetic () properties of the LDH (modulative) but not the expression of alternative isoforms (qualitative). We assume that the observed increase in E(a) and the decrease of temperature dependence of at low T(A) is the result of structural changes of the LDH molecule (temperature-driven protein folding). We propose a new mechanism of metabolic compensation of seasonal temperature variations - cold acclimation results in changes in the kinetic and thermodynamic properties of LDH in a way that favours aerobic metabolism through reduction of the competition of LDH for pyruvate in normoxic conditions. PMID:14638837

  13. Metabolic Control of Anaerobic Glycolysis (Overexpression of Lactate Dehydrogenase in Transgenic Tomato Roots Supports the Davies-Roberts Hypothesis and Points to a Critical Role for Lactate Secretion.

    PubMed Central

    Rivoal, J.; Hanson, A. D.

    1994-01-01

    Roots of all plants examined so far have the potential for both ethanol and lactate fermentation. A short burst of lactate fermentation usually occurs when plant tissues are transferred from normoxic to anoxic conditions. According to the Davies-Roberts hypothesis, the consequent pH drop both initiates ethanol fermentation and blocks further production of lactate by inhibiting lactate dehydrogenase (LDH). However, the role of LDH in this pH control mechanism is still a matter of debate. To perturb the control system in a defined way, a barley LDH cDNA under the control of the cauliflower mosaic virus 35S promoter was introduced into tomato (Lycopersicon esculentum Mill. cv VFMT) using Agrobacterium rhizogenes. The transgenic root clones expressed up to 50 times the LDH activity of controls. The fermentative metabolism of these clones was compared using roots grown previously in normoxic conditions or roots given a 3-d hypoxic pretreatment. During the transition from normoxia to anoxia, lactate accumulation was no faster and no more extensive in transgenic roots than in controls. Similarly, during prolonged anoxia the flux of 14C from [U-14C] glucose to lactate and ethanol was not modified by the expression of the transgene. However, in both transgenic and control roots, hypoxic pretreatment increased the flux to lactate and promoted lactate export to the medium. These results show that LDH has a very low flux control coefficient for lactate fermentation, consistent with the Davies-Roberts hypothesis. Moreover, they suggest that lactate secretion exerts major control over long-term lactate glycolysis in vivo. PMID:12232401

  14. In situ Regeneration of NADH via Lipoamide Dehydrogenase-catalyzed Electron Transfer Reaction Evidenced by Spectroelectrochemistry

    SciTech Connect

    Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong; Liu, Jun

    2012-08-01

    NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvate to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.

  15. Complete Nucleotide Sequence of the Mouse Lactate Dehydrogenase-a Functional Gene: Comparison of the Exon-Intron Organization of Dehydrogenase Genes

    PubMed Central

    Fukasawa, Kayoko M.; Li, Steven S.-L.

    1987-01-01

    The complete sequence of 12,851 nucleotides of the mouse lactate dehydrogenase-A (LDH-A) gene has been determined. It includes eight exons, seven introns, promoter and regulatory regions. The B1 repetitive elements present in intron III and VI are oriented in opposite orientation, and they share 72% sequence homology. The exon-intron organization of mouse LDH-A gene is compared with the organizations of other dehydrogenase genes, and the molecular evolution of the nicotinamide adenine dinucleotide binding domains is discussed. PMID:3036647

  16. Identification of substituted 3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase.

    PubMed

    Dragovich, Peter S; Fauber, Benjamin P; Boggs, Jason; Chen, Jinhua; Corson, Laura B; Ding, Charles Z; Eigenbrot, Charles; Ge, HongXiu; Giannetti, Anthony M; Hunsaker, Thomas; Labadie, Sharada; Li, Chiho; Liu, Yichin; Liu, Yingchun; Ma, Shuguang; Malek, Shiva; Peterson, David; Pitts, Keith E; Purkey, Hans E; Robarge, Kirk; Salphati, Laurent; Sideris, Steve; Ultsch, Mark; VanderPorten, Erica; Wang, Jing; Wei, BinQing; Xu, Qing; Yen, Ivana; Yue, Qin; Zhang, Huihui; Zhang, Xuying; Zhou, Aihe

    2014-08-15

    A novel class of 3-hydroxy-2-mercaptocyclohex-2-enone-containing inhibitors of human lactate dehydrogenase (LDH) was identified through a high-throughput screening approach. Biochemical and surface plasmon resonance experiments performed with a screening hit (LDHA IC50=1.7 μM) indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of this screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.18 μM). Two crystal structures of optimized compounds bound to human LDHA were obtained and explained many of the observed structure-activity relationships. In addition, an optimized inhibitor exhibited good pharmacokinetic properties after oral administration to rats (F=45%). PMID:25037916

  17. A rapid beta-NADH-linked fluorescence assay for lactate dehydrogenase in cellular death.

    PubMed

    Moran, J H; Schnellmann, R G

    1996-09-01

    Lactate dehydrogenase (LDH) release in a common marker of cellular death. Traditionally, the fraction of LDH released has been measured using a NADH-linked UV-Vis spectrophotometric method. The limitation of this method is that samples are usually run serially and thus is time intensive. Therefore, we developed a NADH-linked LDH assay using a fluorescence plate reader that had a correlation of 0.95 with the traditional UV-Vis spectrophotometric method. Using rabbit renal proximal tubule suspensions at a concentration of 1 mg cellular protein/ml of media, the fluorescence assay can determine LDH release in 22 samples in 2 min using 12 microL of cellular homogenates and 150 microL of media. The parallel processing of samples and smaller volumes used in the fluorescence assay results in decreased analysis time and costs. PMID:8872918

  18. [Species specificity of the isoenzyme profile of lactate dehydrogenase in organs of rodents of various ecogenesis].

    PubMed

    Kozhevnikova, L K; Tiutiunnik, N N; Unzhakov, A R; Meldo, Kh I

    2004-02-01

    Separation of isoenzymes of lactate dehydrogenase (LDH, EC. 1.1.1.27) in extracts of heart, kidney, liver, spleen, lungs of nutrias, chinchillas by agar gel electrophoresis reveals a species specificity in ratio of electrophoretic fractions of the enzyme. The isoenzymes of LDH were seem to play an important role in adaptation of fur animals to environmental conditions. It has been shown that in semiaquatic mammals--nutrias, the relative content of the A-subunits in the isoenzymatic spectrum of LDH in organs was increased as compared with terrestrial animals--chinchillas, whereas relative content of B-subunits in these organs of chinchillas was very high. This is an example of subtle biochemical specialisation of function at molecular level to environmental conditions. PMID:15143506

  19. Phenylpropanoids and flavonoids from Phlomis kurdica as inhibitors of human lactate dehydrogenase.

    PubMed

    Bader, Ammar; Tuccinardi, Tiziano; Granchi, Carlotta; Martinelli, Adriano; Macchia, Marco; Minutolo, Filippo; De Tommasi, Nunziatina; Braca, Alessandra

    2015-08-01

    Two flavonoids, jaceosidin 7-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (1) and hispidulin 7-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (2), and one phenylpropanoid, 3,3'-dimethyl-lunariifolioside (3), along with 11 known compounds (4-14), were isolated from the aerial parts of Phlomis kurdica growing in Jordan. Structures of 1-3 were elucidated on the basis of spectroscopic data. These isolated compounds were assayed for their inhibitory activity against isoform 5 of human lactate dehydrogenase. Compound 4, luteolin 7-O-β-d-glucopyranoside, showed an IC50 value comparable to that of galloflavin, used as reference compound. Docking studies were carried out to hypothesize the interaction mode of compound 4 in the enzyme active site. PMID:25890391

  20. Lactate dehydrogenase and its isoenzymes in serum from patients with multiple myeloma.

    PubMed

    Copur, S; Kus, S; Kars, A; Renda, N; Tekuzman, G; Firat, D

    1989-09-01

    Concentrations of total lactate dehydrogenase (LDH; EC 1.1.1.27) and LDH isoenzyme patterns were studied in serum of 19 patients with multiple myeloma and in 19 healthy controls. Patients were divided into three groups (pretreatment, nonresponders, and responders to treatment), based on their clinical status at the time of blood sampling for LDH. The LDH values were found to be significantly higher (P less than 0.05) in the pretreatment group and in the nonresponders than in the responders and the control group, the mean +/- SE values being 445 +/- 35 and 532 +/- 75 units/mL vs 349 +/- 75 and 190 +/- 7.1 units/mL, respectively. Compared with responders and healthy controls, newly diagnosed patients and nonresponders had slight diminutions in LDH-1 and LDH-2, but increased LDH-3. We conclude that determination of LDH and its isoenzymes in serum can be of value as prognostic factors in patients with multiple myeloma. PMID:2776328

  1. Analysis of lactate dehydrogenase activities and isoenzyme patterns in colorectal cancer tissues

    PubMed Central

    Zhao, Chun-Hua; Jiang, Chun-Ying; Zhang, Yu-Yi; Liu, Xian-Xi; Luo, Dao-Chun; Zhang, Xiao-Ting; Lin, Yu-Qin

    1997-01-01

    AIM: To investigate the relationship between lactate dehydrogenase (LDH) activity or LDH isoenzyme patterns and the pathogenesis of colorectal cancer. METHODS: Activities of tissue LDH and LDH isoenzyme patterns in 16 patients with colorectal cancer were assayed using spectrophotometric procedures and agarose gel electrophoresis, respectively. RESULTS: The total and specific activities of LDH were significantly higher in colorectal cancer tissues than those in adjacent noncancerous tissues (P < 0.001). The LDH isoenzyme pattern was also different from that in the control. The percentage of LDH5 doubled and the ratio of LDH4 + LDH5/LDH1 + LDH2 was 3.6 ± 1.4 in cancer tissue, significantly greater than in the control. CONCLUSIONS: The increased LDH activity in colorectal cancer tissues resulted mainly from the increased LDH5, suggesting that the alteration of LDH activity and isoenzyme patterns were related to the pathogenesis of colorectal cancer.

  2. Microcomputer Assisted Interpretative Reporting of Sequential Creatine Kinase (CK) and Lactate Dehydrogenase (LDH) Isoenzyme Determination

    PubMed Central

    Talamo, Thomas S.; Losos, Frank J.; Mercer, Donald W.

    1984-01-01

    We have developed a microcomputer based system for interpretative reporting of creatine kinase (CK) and lactate dehydrogenase (LDH) isoenzyme studies. Patient demographic data and test results (total CK, CK-MB, LD-1, and LD-2) are entered manually through the keyboard. The test results are compared with normal range values and an interpretative report is generated. This report consists of all pertinent demographic information with a graphic display of up to 12 previous CK and LDH isoenzyme determinations. Diagnostic interpretative statements are printed beneath the graphic display following analysis of previously entered test results. The combination of graphic data display and interpretations based on analysis of up to 12 previous specimens provides useful and accurate information to the cardiologist.

  3. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    PubMed

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. PMID:26201980

  4. Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence

    SciTech Connect

    Millan, J.L.; Driscoll, C.E.; LeVan, K.M.; Goldberg, E.

    1987-08-01

    The sequence and structure of human testis-specific L-lactate dehydrogenase (LDHC/sub 4/, LDHX; (L)-lactate:NAD/sup +/ oxidoreductase, EC 1.1.1.27) has been derived from analysis of a complementary DNA (cDNA) clone comprising the complete protein coding region of the enzyme. From the deduced amino acid sequence, human LDHC/sub 4/ is as different from rodent LDHC/sub 4/ (73% homology) as it is from human LDHA/sub 4/ (76% homology) and porcine LDHB/sub 4/ (68% homology). Subunit homologies are consistent with the conclusion that the LDHC gene arose by at least two independent duplication events. Furthermore, the lower degree of homology between mouse and human LDHC/sub 4/ and the appearance of this isozyme late in evolution suggests a higher rate of mutation in the mammalian LDHC genes than in the LDHA and -B genes. Comparison of exposed amino acid residues of discrete anti-genic determinants of mouse and human LDHC/sub 4/ reveals significant differences. Knowledge of the human LDHC/sub 4/ sequence will help design human-specific peptides useful in the development of a contraceptive vaccine.

  5. Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death

    PubMed Central

    Daniele, Simona; Giacomelli, Chiara; Zappelli, Elisa; Granchi, Carlotta; Trincavelli, Maria Letizia; Minutolo, Filippo; Martini, Claudia

    2015-01-01

    Therapies that target the signal transduction and metabolic pathways of cancer stem cells (CSCs) are innovative strategies to effectively reduce the recurrence and significantly improve the outcome of glioblastoma multiforme (GBM). CSCs exhibit an increased rate of glycolysis, thus rendering them intrinsically more sensitive to prospective therapeutic strategies based on the inhibition of the glycolytic pathway. The enzyme lactate dehydrogenase-A (LDH-A), which catalyses the interconversion of pyruvate and lactate, is up-regulated in human cancers, including GBM. Although several papers have explored the benefits of targeting cancer metabolism in GBM, the effects of direct LDH-A inhibition in glial tumours have not yet been investigated, particularly in the stem cell subpopulation. Here, two representative LDH-A inhibitors (NHI-1 and NHI-2) were studied in GBM-derived CSCs and compared to differentiated tumour cells. LDH-A inhibition was particularly effective in CSCs isolated from different GBM cell lines, where the two compounds blocked CSC formation and elicited long-lasting effects by triggering both apoptosis and cellular differentiation. These data demonstrate that GBM, particularly the stem cell subpopulation, is sensitive to glycolytic inhibition and shed light on the therapeutic potential of LDH-A inhibitors in this tumour type. PMID:26494310

  6. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization.

    PubMed

    Saengdee, Pawasuth; Chaisriratanakul, Woraphan; Bunjongpru, Win; Sripumkhai, Witsaroot; Srisuwan, Awirut; Jeamsaksiri, Wutthinan; Hruanun, Charndet; Poyai, Amporn; Promptmas, Chamras

    2015-05-15

    Three different types of surface, silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium oxynitride (TiON) were modified for lactate dehydrogenase (LDH) immobilization using (3-aminopropyl)triethoxysilane (APTES) to obtain an amino layer on each surface. The APTES modified surfaces can directly react with LDH via physical attachment. LDH can be chemically immobilized on those surfaces after incorporation with glutaraldehyde (GA) to obtain aldehyde layers of APTES-GA modified surfaces. The wetting properties, chemical bonding composition, and morphology of the modified surface were determined by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. In this experiment, the immobilized protein content and LDH activity on each modified surface was used as an indicator of surface modification achievement. The results revealed that both the APTES and APTES-GA treatments successfully link the LDH molecule to those surfaces while retaining its activity. All types of tested surfaces modified with APTES-GA gave better LDH immobilizing efficiency than APTES, especially the SiO2 surface. In addition, the SiO2 surface offered the highest LDH immobilization among tested surfaces, with both APTES and APTES-GA modification. However, TiON and Si3N4 surfaces could be used as alternative candidate materials in the preparation of ion-sensitive field-effect transistor (ISFET) based biosensors, including lactate sensors using immobilized LDH on the ISFET surface. PMID:25108848

  7. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    PubMed

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH. PMID:26243834

  8. Putative reaction mechanism of heterologously expressed octopine dehydrogenase from the great scallop, Pecten maximus (L).

    PubMed

    Müller, Andre; Janssen, Frank; Grieshaber, Manfred K

    2007-12-01

    cDNA for octopine dehydrogenase (ODH) from the adductor muscle of the great scallop, Pecten maximus, was cloned using 5'- and 3'-RACE. The cDNA comprises an ORF of 1197 nucleotides and the deduced amino acid sequence encodes a protein of 399 amino acids. ODH was heterologously expressed in Escherichia coli with a C-terminal penta His-tag. ODH-5His was purified to homogeneity using metal-chelate affinity chromatography and Sephadex G-100 gel filtration. Recombinant ODH had kinetic properties similar to those of wild-type ODH isolated from the scallop's adductor muscle. Site-directed mutagenesis was used to elucidate the involvement of several amino acid residues for the reaction catalyzed by ODH. Cys148, which is conserved in all opine dehydrogenases known to date, was converted to serine or alanine, showing that this residue is not intrinsically important for catalysis. His212, Arg324 and Asp329, which are also conserved in all known opine dehydrogenase sequences, were subjected to site-directed mutagenesis. Modification of these residues revealed their importance for the catalytic activity of the enzyme. Conversion of each of these residues to alanine resulted in strong increases in K(m) and decreases in k(cat) values for pyruvate and L-arginine, but had little effect on the K(m) and k(cat) values for NADH. Assuming a similar structure for ODH compared with the only available structure of a bacterial opine dehydrogenase, these three amino acids may function as a catalytic triad in ODH similar to that found in lactate dehydrogenase or malate dehydrogenase. The carboxyl group of pyruvate is then stabilized by Arg324. In addition to orienting the substrate, His212 will act as an acid-base catalyst by donating a proton to the carbonyl group of pyruvate. The acidity of this histidine is further increased by the proximity of Asp329. PMID:18028427

  9. Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions.

    PubMed

    Ramljak, Sanja; Schmitz, Matthias; Zafar, Saima; Wrede, Arne; Schenkel, Sara; Asif, Abdul R; Carimalo, Julie; Doeppner, Thorsten R; Schulz-Schaeffer, Walter J; Weise, Jens; Zerr, Inga

    2015-09-01

    Although a physiological function of the cellular prion protein (PrP(c)) is still not fully clarified, a PrP(c)-mediated neuroprotection against hypoxic/ischemic insult is intriguing. After ischemic stroke prion protein knockout mice (Prnp(0/0)) display significantly greater lesions as compared to wild-type (WT) mice. Earlier reports suggested an interaction between the glycolytic enzyme lactate dehydrogenase (LDH) and PrP(c). Since hypoxic environment enhances LDH expression levels and compels neurons to rely on lactate as an additional oxidative substrate for energy metabolism, we examined possible differences in LDH protein expression in WT and Prnp(0/0) knockout models under normoxic/hypoxic conditions in vitro and in vivo, as well as in a HEK293 cell line. While no differences are observed under normoxic conditions, LDH expression is markedly increased after 60-min and 90-min of hypoxia in WT vs. Prnp(0/0) primary cortical neurons with concurrent less hypoxia-induced damage in the former group. Likewise, cerebral ischemia significantly increases LDH levels in WT vs. Prnp(0/0) mice with accompanying smaller lesions in the WT group. HEK293 cells overexpressing PrP(c) show significantly higher LDH expression/activity following 90-min of hypoxia as compared to control cells. Moreover, a cytoplasmic co-localization of LDH and PrP(c) was recorded under both normoxic and hypoxic conditions. Interestingly, an expression of monocarboxylate transporter 1, responsible for cellular lactate uptake, increases with PrP(c)-overexpression under normoxic conditions. Our data suggest LDH as a direct PrP(c) interactor with possible physiological relevance under low oxygen conditions. PMID:26024859

  10. Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus.

    PubMed Central

    Crawford, D L; Powers, D A

    1989-01-01

    At the extremes of its natural distribution, populations of the common killifish Fundulus heteroclitus experience a difference of more than 15 degrees C in mean annual temperature. These populations are virtually fixed for two different codominant alleles at the heart-type lactate dehydrogenase locus (Ldh-B) which code for allozymes with different and adaptive kinetic responses to temperature. Two populations near the extremes of the species range (i.e., Maine and Georgia) were further studied for thermal adaptation at this locus. In the absence of any kinetic differences one would predict that to maintain a constant reaction velocity, 2 to 3 times as much enzyme would be required for each 10 degrees C decrease in environmental temperature. Consistent with this adaptive strategy and in addition to the adaptive kinetic characteristics, the LDH-B4 enzyme (EC 1.1.1.27) concentration and its mRNA concentration were approximately twice as great in the northern population as in the southern population. Acclimation experiments allow us to conclude that these differences are due to a combination of fixed genetic traits (evolutionary adaptation) and plastic responses to temperature (physiological acclimation). Furthermore, our calculations show that the LDH-B4 reaction velocities are essentially equivalent for these two populations, even though they live in significantly different thermal environments. PMID:2594773

  11. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Fenglei Li

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition, evaporation rate can be controlled or adjusted in this method during the crystallization process to favor either nucleation or growing processes for optimizing crystallization process. The protein crystals gotten by this method were experimentally proven to possess high x-ray diffraction qualities. Finally, we crystallized human lactate dehydrogenase 1 (H4) complexed with NADH and determined its structure by x-ray crystallography. The structure of LDH/NADH displays a significantly different structural feature, compared with LDH/NADH/inhibitor ternary complex structure, that subunits in LDH/NADH complex show open conformation or two conformations on the active site while the subunits in LDH/NADH/inhibitor are all in close conformation. Multiple LDH/NADH crystals were obtained and used for x-ray diffraction experiments. Difference in subunit conformation was observed among the structures independently solved from multiple individual LDH/NADH crystals. Structural differences observed among crystals suggest the existence of multiple conformers in solution.

  12. Low intensity microwave radiation as modulator of the L-lactate dehydrogenase activity.

    PubMed

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2011-07-01

    In this study, we investigated experimentally the possibility of modulating protein activity by low intensity microwaves by measuring alternations of L: -Lactate Dehydrogenase enzyme (LDH) activity. The LDH enzyme solutions were irradiated by microwaves of the selected frequencies and powers using the Transverse Electro-Magnetic (TEM) cell. The kinetics of the irradiated LDH was measured by continuous monitoring of nicotine adenine dinucleotide, reduced (NADH) absorbance at 340 nm. A comparative analysis of changes in the activity of the irradiated LDH enzyme versus the non-radiated enzyme was performed for the selected frequencies and powers. It was found that LDH activity can be selectively increased only by irradiation at the particular frequencies of 500 MHz [electric field: 0.02 V/m (1.2 × 10⁻⁶ W/m²)-2.1 V/m (1.2 × 10⁻² W/m²)] and 900 MHz [electric field: 0.021-0.21 V/m (1.2 × 10⁻⁴ W/m²)]. Based on results obtained it was concluded that LDH enzyme activity can be modulated by specific frequencies of low power microwave radiation. This finding can serve to support the hypothesis that low intensity microwaves can induce non-thermal effects in bio-molecules. PMID:21308416

  13. Gene Expression Variation in Duplicate Lactate dehydrogenase Genes: Do Ecological Species Show Distinct Responses?

    PubMed Central

    Cristescu, Melania E.; Demiri, Bora; Altshuler, Ianina; Crease, Teresa J.

    2014-01-01

    Lactate dehydrogenase (LDH) has been shown to play an important role in adaptation of several aquatic species to different habitats. The genomes of Daphnia pulex, a pond species, and Daphnia pulicaria, a lake inhabitant, encode two L-LDH enzymes, LDHA and LDHB. We estimated relative levels of Ldh gene expression in these two closely related species and their hybrids in four environmental settings, each characterized by one of two temperatures (10°C or 20°C), and one of two concentrations of dissolved oxygen (DO; 6.5–7 mg/l or 2–3 mg/l). We found that levels of LdhA expression were 4 to 48 times higher than LdhB expression (p<0.005) in all three groups (the two parental species and hybrids). Moreover, levels of LdhB expression differed significantly (p<0.05) between D. pulex and D. pulicaria, but neither species differed from the hybrid. Consistently higher expression of LdhA relative to LdhB in both species and the hybrid suggests that the two isozymes could be performing different functions. No significant differences in levels of gene expression were observed among the four combinations of temperature and dissolved oxygen (p>0.1). Given that Daphnia dwell in environments characterized by fluctuating conditions with long periods of low dissolved oxygen concentration, we suggest that these species could employ regulated metabolic depression to survive in such environments. PMID:25080082

  14. Gene expression variation in duplicate lactate dehydrogenase genes: do ecological species show distinct responses?

    PubMed

    Cristescu, Melania E; Demiri, Bora; Altshuler, Ianina; Crease, Teresa J

    2014-01-01

    Lactate dehydrogenase (LDH) has been shown to play an important role in adaptation of several aquatic species to different habitats. The genomes of Daphnia pulex, a pond species, and Daphnia pulicaria, a lake inhabitant, encode two L-LDH enzymes, LDHA and LDHB. We estimated relative levels of Ldh gene expression in these two closely related species and their hybrids in four environmental settings, each characterized by one of two temperatures (10°C or 20°C), and one of two concentrations of dissolved oxygen (DO; 6.5-7 mg/l or 2-3 mg/l). We found that levels of LdhA expression were 4 to 48 times higher than LdhB expression (p<0.005) in all three groups (the two parental species and hybrids). Moreover, levels of LdhB expression differed significantly (p<0.05) between D. pulex and D. pulicaria, but neither species differed from the hybrid. Consistently higher expression of LdhA relative to LdhB in both species and the hybrid suggests that the two isozymes could be performing different functions. No significant differences in levels of gene expression were observed among the four combinations of temperature and dissolved oxygen (p>0.1). Given that Daphnia dwell in environments characterized by fluctuating conditions with long periods of low dissolved oxygen concentration, we suggest that these species could employ regulated metabolic depression to survive in such environments. PMID:25080082

  15. Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase.

    PubMed

    Kristjansson, Ragnar P; Oddsson, Asmundur; Helgason, Hannes; Sveinbjornsson, Gardar; Arnadottir, Gudny A; Jensson, Brynjar O; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Bragi Walters, G; Sulem, Gerald; Oskarsdottir, Arna; Benonisdottir, Stefania; Davidsson, Olafur B; Masson, Gisli; Th Magnusson, Olafur; Holm, Hilma; Sigurdardottir, Olof; Jonsdottir, Ingileif; Eyjolfsson, Gudmundur I; Olafsson, Isleifur; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Sulem, Patrick; Stefansson, Kari

    2016-01-01

    Creatine kinase (CK) and lactate dehydrogenase (LDH) are widely used markers of tissue damage. To search for sequence variants influencing serum levels of CK and LDH, 28.3 million sequence variants identified through whole-genome sequencing of 2,636 Icelanders were imputed into 63,159 and 98,585 people with CK and LDH measurements, respectively. Here we describe 13 variants associating with serum CK and 16 with LDH levels, including four that associate with both. Among those, 15 are non-synonymous variants and 12 have a minor allele frequency below 5%. We report sequence variants in genes encoding the enzymes being measured (CKM and LDHA), as well as in genes linked to muscular (ANO5) and immune/inflammatory function (CD163/CD163L1, CSF1, CFH, HLA-DQB1, LILRB5, NINJ1 and STAB1). A number of the genes are linked to the mononuclear/phagocyte system and clearance of enzymes from the serum. This highlights the variety in the sources of normal diversity in serum levels of enzymes. PMID:26838040

  16. Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase

    PubMed Central

    Kristjansson, Ragnar P.; Oddsson, Asmundur; Helgason, Hannes; Sveinbjornsson, Gardar; Arnadottir, Gudny A.; Jensson, Brynjar O.; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Bragi Walters, G.; Sulem, Gerald; Oskarsdottir, Arna; Benonisdottir, Stefania; Davidsson, Olafur B.; Masson, Gisli; Th Magnusson, Olafur; Holm, Hilma; Sigurdardottir, Olof; Jonsdottir, Ingileif; Eyjolfsson, Gudmundur I.; Olafsson, Isleifur; Gudbjartsson, Daniel F.; Thorsteinsdottir, Unnur; Sulem, Patrick; Stefansson, Kari

    2016-01-01

    Creatine kinase (CK) and lactate dehydrogenase (LDH) are widely used markers of tissue damage. To search for sequence variants influencing serum levels of CK and LDH, 28.3 million sequence variants identified through whole-genome sequencing of 2,636 Icelanders were imputed into 63,159 and 98,585 people with CK and LDH measurements, respectively. Here we describe 13 variants associating with serum CK and 16 with LDH levels, including four that associate with both. Among those, 15 are non-synonymous variants and 12 have a minor allele frequency below 5%. We report sequence variants in genes encoding the enzymes being measured (CKM and LDHA), as well as in genes linked to muscular (ANO5) and immune/inflammatory function (CD163/CD163L1, CSF1, CFH, HLA-DQB1, LILRB5, NINJ1 and STAB1). A number of the genes are linked to the mononuclear/phagocyte system and clearance of enzymes from the serum. This highlights the variety in the sources of normal diversity in serum levels of enzymes. PMID:26838040

  17. Lactate Dehydrogenase Is an Important Prognostic Indicator for Hepatocellular Carcinoma after Partial Hepatectomy12

    PubMed Central

    Zhang, Jing-Ping; Wang, Hong-Bo; Lin, Yue-Hao; Xu, Jing; Wang, Jun; Wang, Kai; Liu, Wan-Li

    2015-01-01

    Preoperative serum lactate dehydrogenase (LDH) has been used as a prognostic indicator for patients with hepatocellular carcinoma (HCC) treated with sorafenib or undergoing transcatheter arterial chemoembolization, but its significance in predicting survival of HCC patients who received curative resection remains undefined. A total of 683 patients with histopathologically confirmed HCC were enrolled in this study. The prognostic significance of preoperative serum LDH was determined by Kaplan-Meier analysis and a Cox proportional hazards regression model. The association between the preoperative serum LDH and clinicopathological parameters was evaluated by the χ2 test or linear regression analysis when appropriate. Higher preoperative serum LDH level was associated with worse prognosis. In a multivariate Cox proportional hazards analysis, the preoperative serum LDH level could predict overall survival and recurrence independently. Higher preoperative serum LDH level is associated with the elevated serum alpha-fetoprotein, the presence of hepatitis B surface antigen, larger tumor size, the presence of macrovascular invasion, the advanced tumor–lymph node–metastasis stage, worse tumor differentiation, and Child-Pugh B. Preoperative serum LDH level was an inexpensive, simple, convenient, and routinely measured biomarker exhibiting a potential to select patients at high risk with poor clinical outcome for appropriate treatment strategies. PMID:26692531

  18. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases

    PubMed Central

    Boucher, Jeffrey I; Jacobowitz, Joseph R; Beckett, Brian C; Classen, Scott; Theobald, Douglas L

    2014-01-01

    Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this ‘specificity residue’ to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function. DOI: http://dx.doi.org/10.7554/eLife.02304.001 PMID:24966208

  19. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases.

    PubMed

    Boucher, Jeffrey I; Jacobowitz, Joseph R; Beckett, Brian C; Classen, Scott; Theobald, Douglas L

    2014-01-01

    Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function. PMID:24966208

  20. Quick histochemical staining method for measuring lactate dehydrogenase C4 activity in human spermatozoa.

    PubMed

    Cui, Zhaolei; Chen, Liangyuan; Liu, Yaohua; Zeng, Zhangxin; Lan, Fenghua

    2015-04-01

    The enzyme activity of lactate dehydrogenase C4 (LDH-C4, due to tetrameric nature of C-subunit) has been proposed as an important parameter in evaluating sperm motility and semen quality. A novel histochemical staining method for detecting LDH-C4 activity in human spermatozoa is described in this report. The staining working solution comprises sodium 2-hydroxybutyrate (an affinity substrate of LDH-C4), nitrotetrazolium blue chloride (NBT), nicotinamide adenine dinucleotide (NAD) and naphthol blue. The positive products were purple black lumps concentrated in the neck segment of the spermatozoa and weakly in the middle piece. A normal reference range for the integral enzyme activity was constructed from 120 healthy males based upon the scoring criteria. The study further compared the staining method with the routine spectrophotometry technique in terms of the results of 96 cases with infertile status. Moreover, we found the down-regulated LDH-C4 expression was significantly correlated with the lowered enzyme activity (r=0.865, P=0.000). Our data suggest that the histochemical staining method hallmarks a relatively high accuracy and may be a better alternative for measuring LDH-C4 activity in human spermatozoa. PMID:25795631

  1. Glycoconjugates Influence Caspase Release and Minimize Production of Lactate Dehydrogenase upon Pathogen Exposure

    NASA Astrophysics Data System (ADS)

    Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Many pathogens stimulate cell death of immune cells while promoting survival of pathogens. Early cell death is characterized by the release of mediators, namely Caspases (Cas). Infections caused by pathogens can be eradicated if immune cells could resist cell death and kill pathogens upon exposure. In this research, we studied whether glycoconjugates (GCs) influence Cas release and cytotoxicity upon pathogen damage. GC1 and GC3 constituted samples studied principally. Bacterial spores were used as a pathogen model. GC effects were determined "prior to," "during," and "following" pathogen exposure throughout phagocytosis. Cytotoxic damage was assessed by measuring lactate dehydrogenase (LDH) production. Our data show that GC3 was more effective than GC1 during phagocytosis. GC3 controls Cas release under all three exposure conditions. Minimum production of LDH was noticed in the "following" exposure condition compared to the "prior to" and "during" exposure conditions for GC1 and GC3. The present study provided the selection method of GC ligands bearing anti-cytotoxic and anti-apoptotic properties.

  2. Quantification of lactate-dehydrogenase and cell viability in postmortem human dental pulp.

    PubMed

    Caviedes-Bucheli, Javier; Avendao, Nuvia; Gutierrez, Rhina; Hernndez, Sandra; Moreno, Gloria Cristina; Romero, Mara Consuelo; Muoz, Hugo Roberto

    2006-03-01

    Understanding pulp repair and regeneration requires being familiar with this tissue's behavior under extreme conditions, such as postmortem state where an abrupt interruption of tissue blood supply occurs. The purpose of this study was to quantify cell viability and the amount of lactate-dehydrogenase (LDH) expressed in human pulp tissue 6, 12, and 24 hours postmortem to establish how long dental pulp remains viable after death. Pulp samples were obtained from 14 unidentified corpses of people who had received lethal injuries in car accidents or from gunshot wounds; they had at least three caries- and restoration-free incisors. Half of each sample was used for determining cell viability at three different time intervals. The rest of each sample was used for quantifying LDH expression at the same time intervals. Another 14 pulp samples were obtained from live patients' healthy premolars where extraction was indicated for orthodontic reasons to assess normal LDH value in pulp tissue. The results showed cell viability decreasing from 89 to 68 to 41% measured 6, 12, and 24 hours postmortem, respectively. LDH expression in healthy pulps was 246 U/mg pulp weight. Expression increased after death from 249 U/mg at 6 hours to 337 U/mg at 12 hours. LDH expression decreased to 131 U/mg 24 hours postmortem. These findings are valuable in understanding dental pulp survival capability under extreme conditions that may have important clinical significance in terms of repair and regeneration. PMID:16500222

  3. SYNAPTOSOMAL LACTATE DEHYDROGENASE ISOENZYME COMPOSITION IS SHIFTED TOWARD AEROBIC FORMS IN PRIMATE BRAIN EVOLUTION

    PubMed Central

    Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  4. Synaptosomal lactate dehydrogenase isoenzyme composition is shifted toward aerobic forms in primate brain evolution.

    PubMed

    Duka, Tetyana; Anderson, Sarah M; Collins, Zachary; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  5. Regulation of cell growth and apoptosis through lactate dehydrogenase C over-expression in Chinese hamster ovary cells.

    PubMed

    Fu, Tuo; Zhang, Cunchao; Jing, Yu; Jiang, Cheng; Li, Zhenhua; Wang, Shengyu; Ma, Kai; Zhang, Dapeng; Hou, Sheng; Dai, Jianxin; Kou, Geng; Wang, Hao

    2016-06-01

    Lactate has long been credited as a by-product, which jeopardizes cell growth and productivity when accumulated over a certain concentration during the manufacturing process of therapeutic recombinant proteins by Chinese hamster ovary (CHO) cells. A number of efforts to decrease the lactate concentration have been developed; however, the accumulation of lactate is still a critical issue by the late stage of fed-batch culture. Therefore, a lactate-tolerant cell line was developed through over-expression of lactate dehydrogenase C (LDH-C). In fed-batch culture, sodium lactate or sodium pyruvate was supplemented into the culture medium to simulate the environment of lactate accumulation, and LDH-C over-expression increased the highest viable cell density by over 30 and 50 %, respectively, on day 5, meanwhile the viability was also improved significantly since day 5 compared with that of the control. The percentages of cells suffering early and late apoptosis decreased by 3.2 to 12.5 and 2.0 to 4.3 %, respectively, from day 6 onwards in the fed-batch culture when 40 mM sodium pyruvate was added compared to the control. The results were confirmed by mitochondrial membrane potential assay. In addition, the expression of cleaved caspases 3 and 7 decreased in cells over-expressing LDH-C, suggesting the mitochondrial pathway was involved in the LDH-C regulated anti-apoptosis. In conclusion, a novel cell line with higher lactate tolerance, lowered lactate production, and alleviated apoptosis response was developed by over-expression of LDH-C, which may potentially represent an efficient and labor-saving approach in generating recombinant proteins. PMID:26841889

  6. Preliminary Study on Serum Lactate Dehydrogenase (LDH)-Prognostic Biomarker in Carcinoma Breast

    PubMed Central

    Gandhe, Mahendra Bhauraoji; Gupta, Dilip; Reddy, M.V.R.

    2016-01-01

    Introduction Serum Lactate Dehydrogenase (LDH) is one of the biochemical markers for breast cancer. Serum LDH is enzyme required for anaerobic glycolysis. One of its isoenzyme is increased in breast cancer due to up-regulation in its gene. It leads to increase in serum LDH level in breast cancer patients. Serum LDH is economical, easily available and easy to estimate. Aim In the present study, we evaluated the LDH levels in circulation of newly diagnosed patients of breast cancer and tried to correlate it with different TNM staging of carcinoma breast before interventions and after adjuvant therapy of these patients. Materials and Methods This prospective study was done on 83 diagnosed patients of breast cancer was conducted among poor patients in rural area. This study was conducted in the Department of Surgery between October 2008 to October 2010, at MGIMS, Sevagram, Maharashtra, a rural medical college located in Central India. Out of total 83 participants, 10 participants were having adverse events following surgery and remaining 73 participants were without adverse events following surgery. The significant difference in serum LDH levels between two groups, with and without adverse surgical outcome was calculated by Mann-Whitney U test. Results Patients with higher clinical TNM staging were having higher serum LDH levels. The serum LDH levels at sixth months following surgery showed a trend of statistically significant difference between patients with and without adverse events. As increased serum LDH levels in breast cancer patients shows poor prognosis, surgical outcome or advanced metastases. Conclusion Serum LDH monitoring can be used as a prognostic biomarker in patients of breast cancer. For confirmation of this finding, we require further more studies on larger sample size and long-term follow-up in patients specifically with higher serum LDH levels.

  7. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates.

    PubMed

    Keluskar, Priyadarshan; Singh, Vineeta; Gupta, Purva; Ingle, Sanjay

    2014-08-01

    Control and eradication of malaria is hindered by the acquisition of drug resistance by Plasmodium species. This has necessitated a persistent search for novel drugs and more efficient targets. Plasmodium species specific lactate dehydrogenase is one of the potential therapeutic and diagnostic targets, because of its indispensable role in endoerythrocytic stage of the parasite. A target molecule that is highly conserved in the parasite population can be more effectively used in diagnostics and therapeutics, hence, in the present study polymorphism in PfLDH (Plasmodiumfalciparum specific LDH) and PvLDH (Plasmodiumvivax specific LDH) genes was analyzed using PCR-single strand confirmation polymorphism (PCR-SSCP) and sequencing. Forty-six P. falciparum and thirty-five P. vivax samples were screened from different states of India. Our findings have revealed presence of a single PfLDH genotype and six PvLDH genotypes among the studied samples. Interestingly, along with synonymous substitutions, nonsynonymous substitutions were reported to be present for the first time in the PvLDH genotypes. Further, through amino acid sequence alignment and homology modeling studies we observed that the catalytic residues were conserved in all PvLDH genotypes and the nonsynonymous substitutions have not altered the enzyme structure significantly. Evolutionary genetics studies have confirmed that PfLDH and PvLDH loci are under strong purifying selection. Phylogenetic analysis of the pLDH gene sequences revealed that P. falciparum compared to P. vivax, has recent origin. The study therefore supports PfLDH and PvLDH as suitable therapeutic and diagnostic targets as well as phylogenetic markers to understand the genealogy of malaria species. PMID:24953504

  8. Regulation of the Activity of Lactate Dehydrogenases from Four Lactic Acid Bacteria*

    PubMed Central

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L.; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V.; Kreikemeyer, Bernd; Wade, Rebecca C.; Fiedler, Tomas

    2013-01-01

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs. PMID:23720742

  9. Analysis of the rat lactate dehydrogenase A subunit gene promoter/regulatory region.

    PubMed Central

    Short, M L; Huang, D; Milkowski, D M; Short, S; Kunstman, K; Soong, C J; Chung, K C; Jungmann, R A

    1994-01-01

    The rat lactate dehydrogenase (LDH) A subunit gene promoter contains a putative AP-1 binding site at -295/-289 bp, two consensus Sp1 binding sites at -141/-136 bp and -103/-98 bp, and a single copy of a consensus cyclic AMP-responsive element (CRE) at -48 to -41 bp upstream of the transcription initiation site. Additionally, an as yet unidentified silencer element is located within the -1173/-830 bp 5'-flanking region. Transient transfection analyses of a -1173/+25 bp LDH A-chLoramphenicol acetyltransferase fusion gene has indicated a complete inability of the promoter fragment to direct basal or forskolin-induced transcription. Deletion of the -1173/-830 bp sequence restored basal and cyclic AMP (cAMP)-inducible activity. Point mutations in the Sp1 binding sites of a -830/+25 bp promoter fragment reduced basal but not the relative degree of cAMP-inducible activity. cAMP-regulated transcriptional activity was dependent upon an 8 bp CRE, -TGACGTCA-, located at the -48/-41 bp upstream region. Mutations in the CRE abolished cAMP-mediated induction and reduced basal activity by about 65%. The CRE binds a 47 kDa protein which has previously been identified as CRE binding protein (CREB)-327, an isoform of the activating transcription factor/CREB transcription factor gene family. Co-transfection of a vector that expresses the catalytic subunit of cAMP-dependent protein kinase stimulates LDH A subunit promoter activity suggesting that cAMP induces LDH A subunit gene expression through phosphorylative modification of CREB-327. This study emphasizes a fundamental role of several modules including Sp1 and CREB binding sites in regulating basal and cAMP-mediated transcriptional activity of the LDH A gene. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7998973

  10. The lactate dehydrogenase--reduced nicotinamide--adenine dinucleotide--pyruvate complex. Kinetics of pyruvate binding and quenching of coeznyme fluorescence.

    PubMed

    Südi, J

    1974-04-01

    The stopped-flow kinetic studies described in this and the following paper (Südi, 1974) demonstrate that a Haldane-type description of the reversible lactate dehydrogenase reaction presents an experimentally feasible task. Combined results of these two papers yield numerical values for the six rate constants defined by the following equilibrium scheme, where E represents lactate dehydrogenase: [Formula: see text] The experiments were carried out at pH8.4 at a relatively low temperature (6.3 degrees C) with the pig heart enzyme. Identification of the above two intermediates and determination of the corresponding rate constants actually involve four series of independent observations in these studies, since (a) the reaction can be followed in both directions, and (b) both the u.v. absorption and the fluorescence of the coenzymes are altered in the reaction, and it is shown that these two spectral changes do not occur simultaneously. Kinetic observations made in the reverse direction are reported in this paper. It is demonstrated that the fluorescence of NADH can no longer be observed in the ternary complex E(NADH) (Pyr). Even though the oxidation-reduction reaction rapidly follows the formation of this complex, the numerical values of k(-4) (8.33x10(5)m(-1).s(-1)) and k(+4) (222s(-1)) are easily obtained from a directly observed second-order reaction step in which fluorescent but not u.v.-absorbing material is disappearing. U.v.-absorption measurements do not clearly resolve the subsequent oxidation-reduction step from the dissociation of lactate. It is shown that this must be due partly to the instrumental dead time, and partly to a low transient concentration of E(NAD+) (Lac) in the two-step sequential reaction in which the detectable disappearance of u.v.-absorbing material takes place. It is estimated that about one-tenth of the total change in u.v. absorption is due to a ;burst reaction' in which E(NAD+) (Lac) is produced, and this estimation yields, from k(obs.)=120s(-1), k(-2)=1200s(-1). PMID:4377095

  11. A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film.

    PubMed

    Rahman, M M; Shiddiky, Muhammad J A; Rahman, Md Aminur; Shim, Yoon-Bo

    2009-01-01

    An amperometric lactate biosensor was developed based on a conducting polymer, poly-5,2'-5',2''-terthiophene-3'-carboxylic acid (pTTCA), and multiwall carbon nanotube (MWNT) composite on a gold electrode. Lactate dehydrogenase (LDH) and the oxidized form of nicotinamide adenine dinucleotide (NAD(+)) were subsequently immobilized onto the pTTCA/MWNT composite film. The modified electrode was characterized by quartz crystal microbalance (QCM), scanning electron microscopy (SEM), and electrochemical experiments. The detection signal was amplified by the pTTCA/MWNT assembly onto which a sufficient amount of enzyme was immobilized and stabilized by the covalent bond formation between the amine groups of enzyme and the carboxylic acid groups of the pTTCA/MWNT film. Experimental parameters affecting the sensor responses, such as applied potential, pH, and temperature, were assessed and optimized. Analytical performances and dynamic ranges of the sensor were determined, and the results showed that the sensitivity, stability, and reproducibility of the sensor improved significantly using pTTCA/MWNT composite film. The calibration plot was linear (r(2)=0.9995) over the range of 5 to 90 microM. The sensitivity was approximately 0.0106 microA/microM, with a detection limit of 1 microM, based on a signal/noise ratio of 3. The applicability of the sensor for the analysis of l-lactate concentration in commercial milk and human serum samples was demonstrated successfully. PMID:18851940

  12. The use of ternary complexes to study ionizations and isomerizations during catalysis by lactate dehydrogenase*

    PubMed Central

    Holbrook, J. John; Stinson, Robert A.

    1973-01-01

    1. The binding of oxamate to pig heart and pig muscle isoenzymes of lactate dehydrogenase in the presence of NADH was studied by fluorescence titration. The dissociation constant of oxamate from the heart enzyme complex is 3μm and from the muscle isoenzyme 25μm at pH5. These values quantitatively increase with pH as predicted if oxamate can bind only to the enzyme–NADH complex if a group with pK6.9 is protonated. There are four non-interacting oxamate-binding sites per tetramer. 2. o-Nitrophenylpyruvate is a poor substrate for both isoenzymes but has a reasonable affinity to the heart isoenzyme. Initially, it forms an enzyme–NADH–substrate complex, which can be detected either by protein-fluorescence quenching or by NADH-fluorescence quenching. The pH-dependence of the dissociation constant of nitrophenylpyruvate also shows that this ternary complex can only form if a group with pK6.8 is protonated. Taken with the results of chemical-modification experiments, these results allow the pK of 6.8 to be assigned to a system probably involving the imidazole side chain of histidine-195. Formation of a ternary complex from a binary one at pH8 is predicted to result in a proton being taken up from solution. 3. Isotope-effect studies with NADH and its deuterium analogue show that the rapidly formed ternary complex with o-nitrophenylpyruvate slowly isomerizes to give an active ternary complex, which then rapidly decomposes to NAD+. The isomerization is pH-independent, and it is suggested that histidine-195 is still protonated in the activated ternary complex, which is present before hydride transfer. 4. All four subunits of the enzyme are kinetically equivalent with respect to the oxidation of bound NADH by o-nitrophenylpyruvate. 5. A partial mechanism for the enzyme is described which emphasizes the isomerizations and ionizations involved in forming the reduced ternary complex at pH6 and 8. PMID:4352914

  13. Metabolism of D- and L-lactate by Pseudomonas putida.

    PubMed

    O'Brien, R W

    1977-12-01

    Pseudomonas putida grew at the same rate with the same molar growth yield on D-, L, or DL-lactate as the sole source of carbon for growth. D- and L- lactate were utilized simultaneously and at the same rate when the organism was grown on DL-lactate (ratio of D isomer to L isomer of 1:1). Growth on either isomer alone, or in combination, caused the induction of both a D-lactate, and an L-lactate dehydrogenase. Both enzymes were particulate and used dichlorophenolindophenol, or oxygen, but not NAD, as electron acceptor, and were inhibited by cyanide when oxygen was the electron acceptor. The pH optimum for the D-lactate dehydrogenase was about 6.5, and for the L-lactate dehydrogenase was about 8.0. The D-lactate dehydrogenase was more heat-sensitive than the L-lactate dehydrogenase. The stoichiometry of both enzyme reactions was the same with 2 mol of lactate dehydrogenase. The stoichiometry of both enzyme reactions was the same with 2 mol of lactate being oxidized by 1 mol of oxygen to form 2 mol of pyruvate. No lactate racemase was detected in the cell extracts. PMID:614007

  14. Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain

    PubMed Central

    2014-01-01

    Background 2,3-Butanediol (2,3-BD) is a high-value chemical usually produced petrochemically but which can also be synthesized by some bacteria. To date, Klebsiella pneumoniae is the most powerful 2,3-BD producer which can utilize a wide range of substrates. However, many by-products are also produced by K. pneumoniae, such as ethanol, lactate, and acetate, which negatively regulate the 2,3-BD yield and increase the costs of downstream separation and purification. Results In this study, we constructed K. pneumoniae mutants with lactate dehydrogenase (LDH), acetaldehyde dehydrogenase (ADH), and phosphotransacetylase (PTA) deletion individually by suicide vector conjugation. These mutants showed different behavior of production formation. Knock out of ldhA had little influence on the yield of 2,3-BD, whereas knock out of adhE or pta significantly improved the formation of 2,3-BD. The accumulation of the intermediate of 2,3-BD biosynthesis, acetoin, was decreased in all the mutants. The mutants were then tested in five different carbon sources and increased 2,3-BD was observed. Also a double mutant strain with deletion of adhE and ldhA was constructed which resulted in accelerated fermentation and higher 2,3-BD production. In fed-batch culture this strain achieved more than 100 g/L 2,3-BD from glucose with a relatively high yield of 0.49 g/g. Conclusion 2,3-BD production was dramatically improved with the inactivation of adhE and pta. The inactivation of ldhA could advance faster cell growth and shorter fermentation time. The double mutant strain with deletion of adhE and ldhA resulted in accelerated fermentation and higher 2,3-BD production. These results provide new insights for industrial production of 2,3-BD by K. pneumoniae. PMID:24669952

  15. Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes.

    PubMed

    Zhao, Hongxin; Lu, Yuan; Wang, Liyan; Zhang, Chong; Yang, Cheng; Xing, Xinhui

    2015-10-01

    Hydrogen production by Enterobacter aerogenes from glucose was enhanced by deleting the targeted ldhA and adh genes responsible for two NADH-consuming pathways which consume most NADH generated from glycolysis. Compared with the wild-type, the hydrogen yield of IAM1183-ΔldhA increased 1.5 fold. Metabolic flux analysis showed both IAM1183-ΔldhA and IAM1183-Δadh exhibited significant changes in flux, including enhanced flux towards the hydrogen generation. The lactate production of IAM1183-ΔldhA significantly decreased by 91.42%, while the alcohol yield of IAM1183-Δadh decreased to 30%. The mutant IAM1183-ΔldhA with better hydrogen-producing performance was selected for further investigation in a 5-L fermentor. The hydrogen production of IAM1183-ΔldhA was 2.3 times higher than the wild-type. Further results from the fermentation process showed that the pH decreased to 5.39 levels, then gradually increased to 5.96, indicating that some acidic metabolites might be degraded or uptaken by cells. PMID:26188552

  16. 220 MHz Proton Nuclear Magnetic Resonance Study of the Interaction between Chicken M4 Lactate Dehydrogenase and Reduced Diphosphopyridine Nucleotide*

    PubMed Central

    Sarma, Ramaswamy H.; Kaplan, Nathan O.

    1970-01-01

    220 MHz proton nuclear magnetic resonance investigations of reduced pyridine coenzymes and coenzyme fragments, both in the presence and absence of M4 lactate dehydrogenase, show the following: (1) That the energy barrier between a folded and open conformation of the reduced pyridine coenzyme (in aqueous solutions) is insignificant because an unfavorable enthalpy change of 5 kcal is compensated for by a favorable entropy change of 19 entropy units. (2) The coenzyme, however, appears to maintain its intramolecularly folded conformation on contact with the enzyme. The binding of the coenzyme results in the immobilization of the adenine and pyridine moieties and there is no longer any gain in the conformational entropy as a result of unfolding as in aqueous solutions. (3) The purine moiety of the coenzyme facilitates the binding of the pyridine ring and indicates how high frequency nuclear magnetic resonance can be utilized to study binding of small molecules to enzymes. PMID:4395025

  17. The Conformation of NAD+ Bound to Lactate Dehydrogenase Determined by Nuclear Magnetic Resonance with Suppression of Spin Diffusion

    NASA Astrophysics Data System (ADS)

    Vincent, Sebastien J. F.; Zwahlen, Catherine; Post, Carol Beth; Burgner, John W.; Bodenhausen, Geoffrey

    1997-04-01

    We have reinvestigated the conformation of NAD+ bound to dogfish lactate dehydrogenase (LDH) by using an NMR experiment that allows one to exploit nuclear Overhauser effects to determine internuclear distances between pairs of protons, without perturbation of spin-diffusion effects from other protons belonging either to the cofactor or to the binding pocket of the enzyme. The analysis indicates that the structure of bound NAD+ is in accord with the conformation determined in the solid state by x-ray diffraction for the adenosine moiety, but deviates significantly from that of the nicotinamide. The NMR data indicate conformational averaging about the glycosidic bond of the nicotinamide nucleotide. In view of the strict stereospecificity of catalysis by LDH and the conformational averaging of bound NAD+ that we infer from solution-state NMR, we suggest that LDH binds the cofactor in both syn and anti conformations, but that binding interactions in the syn conformation are not catalytically productive.

  18. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    SciTech Connect

    Li, Yongchao; Tschaplinski, Timothy J; Engle, Nancy L; Hamilton, Choo Yieng; Rodriguez, Jr., Miguel; Liao, James C; Schadt, Christopher Warren; Guss, Adam M; Yang, Yunfeng; Graham, David E

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from complex biomass substrates.

  19. Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases

    PubMed Central

    2013-01-01

    Background Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding l-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expressed in a new host organism, the non-conventional yeast Candida sonorensis, with or without the competing ethanol fermentation pathway. Results Each LDH strain produced substantial amounts of lactate, but the properties of the heterologous LDH affected the distribution of carbon between lactate and by-products significantly, which was reflected in extra-and intracellular metabolite concentrations. Under neutralizing conditions C. sonorensis expressing L. helveticus LDH accumulated lactate up to 92 g/l at a yield of 0.94 g/g glucose, free of ethanol, in minimal medium containing 5 g/l dry cell weight. In rich medium with a final pH of 3.8, 49 g/l lactate was produced. The fermentation pathway was modified in some of the strains studied by deleting either one or both of the pyruvate decarboxylase encoding genes, PDC1 and PDC2. The deletion of both PDC genes together abolished ethanol production and did not result in significantly reduced growth characteristic to Saccharomyces cerevisiae deleted of PDC1 and PDC5. Conclusions We developed an organism without previous record of genetic engineering to produce L-lactic acid to a high concentration, introducing a novel host for the production of an industrially important metabolite, and opening the way for exploiting C. sonorensis in additional biotechnological applications. Comparison of metabolite production, growth, and enzyme activities in a representative set of transformed strains expressing different LDH genes in the presence and absence of a functional ethanol pathway, at neutral and low pH, generated a comprehensive picture of lactic acid production in this yeast. The findings are applicable in generation other lactic acid producing yeast, thus providing a significant contribution to the field of biotechnical production of lactic acid. PMID:23706009

  20. Age-related responses of right ventricle in swim-trained rats: changes in lactate and pyruvate contents and lactate dehydrogenase activity.

    PubMed

    Anitha, V; Asha Devi, S

    1996-09-18

    Age related changes in carbohydrate substrates such as, glucose, glycogen, pyruvic acid and lactic acid and the activity of lactate dehydrogenase (LDH) and LDH isoenzyme profile were evaluated in the right ventricle (RV) of swim-trained rats of 6- (adult), 12- (middle-aged) and 18- (old) months-of-age. Moderate hypertrophy was seen in the heart and RV in response to training in all age groups with the 12 months exhibiting a significant increase. While resting levels of pyruvate and glucose in the RV showed small elevations in adult and middle-aged rats, lactic acid showed reductions in all ages. Glycogen supercompensation was seen in the RV of trained animals. These age-related alterations in RV were associated with decreases in blood lactic acid and glucose in the trained rats belonging to all ages. Total protein of the RV decreased with age and exercise increased the content. Total LDH and M4-LDH activities decreased with age. However, training increased their activities in all ages. These changes in the RV suggests that swimming activity produces adaptations (e.g. increased LDH and M4) in all age groups. Considering the degree of adaptations, it can be suggested that adult and middle-aged are suitable for initiating swim-training programs, but not in old age. PMID:8869911

  1. Interdependence of coenzyme-induced conformational work and binding potential in yeast alcohol and porcine heart lactate dehydrogenases: a hydrogen-deuterium exchange study

    SciTech Connect

    De Weck, Z.; Pande, J.; Kaegi, J.H.R.

    1987-07-28

    Binding of NAD coenzymes to yeast alcohol dehydrogenase (YADH) and porcine heart lactate dehydrogenase (PHLDH) was studied by hydrogen-deuterium exchange with the infrared technique. Conformational changes in the enzymes specific to the coenzymes and their fragments were observed, and the pH dependence of the exchange reaction shows that it conforms to the EX-2 scheme. In both YADH and PHLDH the magnitude of the conformational change as measured by exchange retardation is considerably larger for the NAD/sup +/ than for NADH. Studies with coenzyme fragments like ADP-ribose, ADP, and AMP also highlight the lack of rigorous correlation between structural features such as charge and size and their influence on exchange behavior. Ternary complexes such as YADH-NAD/sup +/-pyrazole, PHLDH-NAD/sup +/-oxalate, and PHLDH-NADH-oxamate, which mimic the transition state, have a significantly more pronounced effect on exchange rates than the corresponding binary complexes. The outstanding feature of this study is the demonstration that in the binary enzyme-coenzyme complexes the more loosely bound NAD/sup +/ is more effective in retarding exchange than the more firmly bound NADH. These differences are attributed to the unequal structural constraints exerted by the two coenzymes upon the enzymes, which translate to unequal expenditure of transconformational work in the formation of the two complexes. The opposing variation in the free energy of binding and the transconformational work expended can be viewed as an unequal partitioning of the net free energy gain resulting from the protein-ligand interaction into a binding term and that required for conformational change.

  2. Lactation

    PubMed Central

    1989-01-01

    Lactation is the most energy-efficient way to provide for the dietary needs of young mammals, their mother's milk being actively protective, immunomodulatory, and ideal for their needs. Intrauterine mammary gland development in the human female is already apparent by the end of the sixth week of gestation. During puberty and adolescence secretions of the anterior pituitary stimulate the maturation of the graafian follicles in the ovaries and stimulate the secretion of follicular estrogens, which stimulate development of the mammary ducts. Pregnancy has the most dramatic effect on the breast, but development of the glandular breast tissue and deposition of fat and connective tissue continue under the influence of cyclic sex-hormone stimulation. Many changes occur in the nipple and breast during pregnancy and at delivery as a prelude to lactation. Preparation of the breasts is so effective that lactation could commence even if pregnancy were discontinued at 16 weeks. Following birth, placental inhibition of milk synthesis is removed, and a woman's progesterone blood levels decline rapidly. The breasts fill with milk, which is a high-density, low-volume feed called colostrum until about 30 hours after birth. Because it is not the level of maternal hormones, but the efficiency of infant suckling and/or milk removal that governs the volume of milk produced in each breast, mothers who permit their infants to feed ad libitum commonly observe that they have large volumes of milk 24-48 hours after birth. The two maternal reflexes involved in lactation are the milk-production and milk-ejection reflex. A number of complementary reflexes are involved when the infant feeds: the rooting reflex (which programmes the infant to search for the nipple), the sucking reflex (rhythmic jaw action creating negative pressure and a peristaltic action of the tongue), and the swallowing reflex. The infant's instinctive actions need to be consolidated into learned behaviour in the postpartum period when the use of artificial teats and dummies (pacifiers) may condition the infant to different oral actions that are inappropriate for breast-feeding. Comparisons of breast milk and cow's milk fail to describe the many important differences between them, e.g., the structural and qualitative differences in proteins and fats, and the bioavailability of minerals. The protection against infection and allergies conferred on the infant, which is impossible to attain through any other feeding regimen, is one of breast milk's most outstanding qualities. The maximum birth-spacing effect of lactation is achieved when an infant is fully, or nearly fully, breast-fed and the mother consequently remains amenorrhoeic. PMID:20604468

  3. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation

    SciTech Connect

    Gupta, S.; Clark, D.P. )

    1989-07-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed terms of redox balance.

  4. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.

    PubMed Central

    Gupta, S; Clark, D P

    1989-01-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed in terms of redox balance. PMID:2661531

  5. Chorismate mutase-prephenate dehydrogenase from Escherichia coli. 1. Kinetic characterization of the dehydrogenase reaction by use of alternative substrates.

    PubMed

    Turnbull, J; Cleland, W W; Morrison, J F

    1990-11-01

    The bifunctional enzyme involved in tyrosine biosynthesis, chorismate mutase-prephenate dehydrogenase, has been isolated from extracts of a plasmid-containing strain of Escherichia coli K12 and purified to homogeneity by a modified procedure that involves chromatography on both Matrex Blue A and Sepharose-AMP. Detailed studies of the dehydrogenase reaction have been undertaken with analogues of prephenate that act as substrates. The analogues, which included two of the four possible diastereoisomers of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate (deoxodihydroprephenate) as well as D- and L-arogenate, were synthesized chemically. As judged by their V/K values, all analogues were poorer substrates than prephenate. The order of their effectiveness as substrates is prephenate greater than one isomer of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate greater than L-arogenate greater than other isomer of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate greater than D-arogenate. Thus the dehydrogenase activity is dependent on the degree and position of unsaturation in the ring structure of prephenate as well as on the type of substitution on the pyruvyl side chain. With prephenate as a substrate, the reaction is irreversible because it involves oxidative decarboxylation. By contrast, 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate undergoes only a simple oxidation, and thus, with this substrate, the reaction is reversible. Steady-state velocity data, obtained by varying substrates over a range of higher concentrations, suggest that the dehydrogenase reaction conforms to a rapid equilibrium, random mechanism with 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate as a substrate in the forward reaction or with the corresponding ketone derivative as a substrate in the reverse direction. The initial velocity patterns obtained by varying prephenate or 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate over a range of lower concentrations, at different fixed concentrations of NAD, were nonlinear and consistent with a unique model that is described by a velocity equation which is the ratio of quadratic polynomials. An equilibrium constant of 1.4 x 10(-7) M for the reaction in the presence of 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate indicates that the equilibrium lies very much in favor of ketone production. PMID:2271652

  6. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of D-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-08-01

    The thermostable D-lactate dehydrogenase from Lactobacillus jensenii (LjD-LDH) is a key enzyme for the production of the D-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of lactic acid are used as biodegradable bioplastics. The LjD-LDH protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 28%(w/v) polyethylene glycol 400, 100 mM Tris-HCl pH 9, 200 mM magnesium sulfate at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.1 Å. The crystal belonged to space group P3121, with unit-cell parameters a = b = 90.5, c = 157.8 Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.58 Å(3) Da(-1), which corresponds to a solvent content of approximately 52.3%. The structure was solved by single-wavelength anomalous dispersion using a selenomethionine derivative. PMID:25084378

  7. The value of lactate dehydrogenase serum levels as a prognostic and predictive factor for advanced pancreatic cancer patients receiving sorafenib

    PubMed Central

    Faloppi, Luca; Bianconi, Maristella; Giampieri, Riccardo; Sobrero, Alberto; Labianca, Roberto; Ferrari, Daris; Barni, Sandro; Aitini, Enrico; Zaniboni, Alberto; Boni, Corrado; Caprioni, Francesco; Mosconi, Stefania; Fanello, Silvia; Berardi, Rossana; Bittoni, Alessandro; Andrikou, Kalliopi; Cinquini, Michela; Torri, Valter; Scartozzi, Mario; Cascinu, Stefano

    2015-01-01

    Although lactate dehydrogenase (LDH) serum levels, indirect markers of angiogenesis, are associated with a worse outcome in several tumours, their prognostic value is not defined in pancreatic cancer. Moreover, high levels are associated even with a lack of efficacy of tyrosine kinase inhibitors, contributing to explain negative results in clinical trials. We assessed the role of LDH in advanced pancreatic cancer receiving sorafenib. Seventy-one of 114 patients included in the randomised phase II trial MAPS (chemotherapy plus or not sorafenib) and with available serum LDH levels, were included in this analysis. Patients were categorized according to serum LDH levels (LDH ≤vs.> upper normal rate). A significant difference was found in progression free survival (PFS) and in overall survival (OS) between patients with LDH values under or above the cut-off (PFS: 5.2 vs. 2.7 months, p = 0.0287; OS: 10.7 vs. 5.9 months, p = 0.0021). After stratification according to LDH serum levels and sorafenib treatment, patients with low LDH serum levels treated with sorafenib showed an advantage in PFS (p = 0.05) and OS (p = 0.0012). LDH appears to be a reliable parameter to assess the prognosis of advanced pancreatic cancer patients, and it may be a predictive parameter to select patients candidate to receive sorafenib. PMID:26397228

  8. Measurements of C-reactive protein in serum and lactate dehydrogenase in serum and synovial fluid of patients with osteoarthritis.

    PubMed

    Hurter, K; Spreng, D; Rytz, U; Schawalder, P; Ott-Knüsel, F; Schmökel, H

    2005-03-01

    Diagnosis of osteoarthritis (OA) is based upon the clinical orthopaedic examination and the radiographic assessment, both of which can be non-specific and insensitive in early joint disease. The aim of our study was to investigate if there is an increase in serum levels of C-reactive protein (CRP) in degenerative joint disease (DJD) and if CRP could be used to help diagnose OA. We also wished to investigate whether it was possible to distinguish a joint with clinically and radiographically confirmed OA from a healthy joint by comparing lactate dehydrogenase (LDH) levels within the synovial fluid and the serum. We have shown a difference in synovial LDH levels between diseased and healthy joints (P<0.0001). There was also a significant difference between LDH in arthritic synovial fluid and serum, with no correlation between the values. Despite the fact that the values of our clinical patients tended to be higher than the values of our control group (P=0.05) all measured values were within the normal limits of previous publications. From these data, we conclude that single measurements of serum CRP do not permit detection of OA in clinical patients and that serum LDH is not a reliable marker for osteoarthritis. LDH levels in the synovial fluid could be of diagnostic value for identifying osteoarthritis. PMID:15727922

  9. Prognostic implications of dynamic serum lactate dehydrogenase assessments in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy.

    PubMed

    Zhou, Guan-Qun; Ren, Xian-Yue; Mao, Yan-Ping; Chen, Lei; Sun, Ying; Liu, Li-Zhi; Li, Li; Lin, Ai-Hua; Mai, Hai-Qiang; Ma, Jun

    2016-01-01

    The prognostic value of dynamic serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT) hasn't been explored. We retrospectively analyzed 1,428 cases of NPC treated with IMRT with or without chemotherapy. Elevated pre- and/or post-treatment LDH levels were found to be associated with unfavorable overall survival (OS), disease-free survival (DFS) and distant metastasis-free survival (DMFS), but not with local relapse-free survival (LRFS). The dynamic variations in LDH levels were prognostic factors for OS, DFS and DMFS, but not for LRFS. Multivariate analysis revealed that the N category, T category, post-treatment serum LDH level and age were independent prognostic factors for OS. Our results demonstrated that dynamic variations in LDH levels were associated with risk of distant failure and death, which may shed light on the dynamics of the disease and the response to therapy. We consider that LDH measurements will be of great clinical importance in the management of NPC, especially, when considering "decision points" in treatment algorithms. Therefore, we strongly recommend that LDH levels should be determined before and after treatment in NPC patients and the results integrated into decisions regarding treatment strategies. PMID:26928265

  10. Lactate dehydrogenase like crystallin: a potentially protective shield for indian spiny-tailed lizard (Uromastyx hardwickii) lens against environmental stress?

    PubMed

    Atta, Ambreen; Ilyas, Amber; Hashim, Zehra; Ahmed, Aftab; Zarina, Shamshad

    2014-04-01

    Taxon specific lens crystallins in vertebrates are either similar or identical with various metabolic enzymes. These bifunctional crystallins serve as structural protein in lens along with their catalytic role. In the present study, we have partially purified and characterized lens crystallin from Indian spiny-tailed lizard (Uromastyx hardwickii). We have found lactate dehydrogenase (LDH) activity in lens indicating presence of an enzyme crystallin with dual functions. Taxon specific lens crystallins are product of gene sharing or gene duplication phenomenon where a pre-existing enzyme is recruited as lens crystallin in addition to structural role. In lens, same gene adopts refractive role in lens without modification or loss of pre-existing function during gene sharing phenomenon. Apart from conventional role of structural protein, LDH activity containing crystallin in U. hardwickii lens is likely to have adaptive characteristics to offer protection against toxic effects of oxidative stress and ultraviolet light, hence justifying its recruitment. Taxon specific crystallins may serve as good models to understand structure-function relationship of these proteins. PMID:24500074

  11. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  12. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme.

    PubMed

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  13. Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics

    PubMed Central

    Zhu, Guan

    2015-01-01

    Abstract The apicomplexan, Cryptosporidium parvum, possesses a bacterial-type lactate dehydrogenase (CpLDH). This is considered to be an essential enzyme, as this parasite lacks the Krebs cycle and cytochrome-based respiration, and mainly–if not solely, relies on glycolysis to produce ATP. Here, we provide evidence that in extracellular parasites (e.g., sporozoites and merozoites), CpLDH is localized in the cytosol. However, it becomes associated with the parasitophorous vacuole membrane (PVM) during the intracellular developmental stages, suggesting involvement of the PVM in parasite energy metabolism. We characterized the biochemical features of CpLDH and observed that, at lower micromolar levels, the LDH inhibitors gossypol and FX11 could inhibit both CpLDH activity (Ki = 14.8 μM and 55.6 μM, respectively), as well as parasite growth in vitro (IC50 = 11.8 μM and 39.5 μM, respectively). These observations not only reveal a new function for the poorly understood PVM structure in hosting the intracellular development of C. parvum, but also suggest LDH as a potential target for developing therapeutics against this opportunistic pathogen, for which fully effective treatments are not yet available. PMID:26562790

  14. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    PubMed Central

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  15. Adjustments of serum lactate dehydrogenase isoenzymes and their significance in monitoring the treatment in patients with tubercular pyothorax.

    PubMed

    Ahmad, Riaz; Alam, Mumtaz; Siddiqui, M Faisal; Hasnain, Absar-Ul

    2008-04-01

    The adjustments and diagnostic significance of polyacrylamide gel electrophoretic (PAGE) profiles of lactate dehydrogenase isoenzymes (LDH: 1.1.1.27) was evaluated in the sera and pleural fluid of patients with tubercular pyothorax. Sera and pleural fluid samples were randomly collected from 72 and 18 patients respectively at two different timings; first, when patients were admitted to the Hospital and second, after an intensive phase of treatment. Sera of 20 healthy individuals served as control. Our results demonstrate significant differences in sera LDH (sLDH) and pleural fluid LDH (pfLDH) isoenzymes. In patients the order of LDH isoenzyme in sera and pleural fluid followed: LDH-5>-4>-2>-3>-1 and LDH-5>-4>-3>-2>-1 respectively. The ranking of activity levels in control was LDH-2>-1>-3>-5>-4. In the second phase of sampling from 31 patients, values of sLDH isoenzymes showed recovery and resembled profiles of controls. Therefore, the sLDH zymograms of patients can be used as the prognostic marker, since they tend to reach the normal level during recovery signifying the effect of chemotherapy in hospitalized patients. Moreover, according to the present findings on LDH-PAGE profiles, the levels of LDH-5 and-4 rise in pyothorax patients significantly (P<0.05). This elevation along with the rise in total LDH activity may, therefore, be used in the diagnosis and monitoring of tubercular pyothorax. PMID:23105748

  16. Lactate dehydrogenase as a marker of nasopharyngeal inflammatory injury during viral upper respiratory infection: implications for acute otitis media

    PubMed Central

    Ede, Linda C.; OBrien, James; Chonmaitree, Tasnee; Han, Yimei; Patel, Janak A.

    2013-01-01

    Background Acute otitis media (AOM) is a frequent complication of viral upper respiratory tract infection (URI). We hypothesized that severity of nasopharyngeal cellular injury during URI, as measured by lactate dehydrogenase (LDH) concentrations in nasopharyngeal secretions (NPS), is related to AOM complication. Methods LDH concentrations were determined in NPS samples (n=594) which were collected at the initial visit for URI from 183 children who were followed for development of AOM. A subset of NPS samples (n= 134) were analyzed for interleukin (IL)-1?, IL-6, and tumor necrosis factor (TNF) ? concentrations. Results AOM complication was independently predicted by LDH concentrations (median mU/ml with AOM = 2438 vs. without AOM = 1573, estimate=0.276; P=0.02). LDH effect on AOM development was highest during the first 4 days of URI. LDH concentrations were higher in URIs due to adenoviruses, bocaviruses, and rhinoviruses when compared to virus-negative samples (P <0.05). There was a positive correlation between concentrations of LDH and all cytokines (P< 0.001). Conclusion LDH concentrations in NPS are positively associated with AOM risk, suggesting that the severity of nasopharyngeal inflammatory injury during URI contributes to the development of AOM, and that reduction of inflammatory injury may reduce the risk for AOM. PMID:23202721

  17. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan.

    PubMed

    Liao, Ya-Tang; Chen, Chien-Jen; Li, Wan-Fen; Hsu, Ling-I; Tsai, Li-Yu; Huang, Yeou-Lih; Sun, Chien-Wen; Chen, Wei J; Wang, Shu-Li

    2012-08-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose-response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P<0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07-14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. PMID:22569360

  18. Prognostic implications of dynamic serum lactate dehydrogenase assessments in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy

    PubMed Central

    Zhou, Guan-Qun; Ren, Xian-Yue; Mao, Yan-Ping; Chen, Lei; Sun, Ying; Liu, Li-Zhi; Li, Li; Lin, Ai-Hua; Mai, Hai-Qiang; Ma, Jun

    2016-01-01

    The prognostic value of dynamic serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT) hasn’t been explored. We retrospectively analyzed 1,428 cases of NPC treated with IMRT with or without chemotherapy. Elevated pre- and/or post-treatment LDH levels were found to be associated with unfavorable overall survival (OS), disease-free survival (DFS) and distant metastasis-free survival (DMFS), but not with local relapse-free survival (LRFS). The dynamic variations in LDH levels were prognostic factors for OS, DFS and DMFS, but not for LRFS. Multivariate analysis revealed that the N category, T category, post-treatment serum LDH level and age were independent prognostic factors for OS. Our results demonstrated that dynamic variations in LDH levels were associated with risk of distant failure and death, which may shed light on the dynamics of the disease and the response to therapy. We consider that LDH measurements will be of great clinical importance in the management of NPC, especially, when considering “decision points” in treatment algorithms. Therefore, we strongly recommend that LDH levels should be determined before and after treatment in NPC patients and the results integrated into decisions regarding treatment strategies. PMID:26928265

  19. Purification of a recombinant histidine-tagged lactate dehydrogenase from the malaria parasite, Plasmodium vivax, and characterization of its properties.

    PubMed

    Sundaram, Balamurugan; Varadarajan, Nandan Mysore; Subramani, Pradeep Annamalai; Ghosh, Susanta Kumar; Nagaraj, Viswanathan Arun

    2014-12-01

    Lactate dehydrogenase (LDH) of the malaria parasite, Plasmodium vivax (Pv), serves as a drug target and immunodiagnostic marker. The LDH cDNA generated from total RNA of a clinical isolate of the parasite was cloned into pRSETA plasmid. Recombinant his-tagged PvLDH was over-expressed in E. coli Rosetta2DE3pLysS and purified using Ni(2+)-NTA resin giving a yield of 25-30mg/litre bacterial culture. The recombinant protein was enzymatically active and its catalytic efficiency for pyruvate was 5.4נ10(8)min(-1)M(-1), 14.5 fold higher than a low yield preparation reported earlier to obtain PvLDH crystal structure. The enzyme activity was inhibited by gossypol and sodium oxamate. The recombinant PvLDH was reactive in lateral flow immunochromatographic assays detecting pan- and vivax-specific LDH. The soluble recombinant PvLDH purified using heterologous expression system can facilitate the generation of vivax LDH-specific monoclonals and the screening of chemical compound libraries for PvLDH inhibitors. PMID:25048245

  20. Serial lumbar and ventricle cerebrospinal fluid lactate dehydrogenase activities in patients with leptomeningeal metastases from solid and haematological tumours.

    PubMed Central

    Twijnstra, A; van Zanten, A P; Hart, A A; Ongerboer de Visser, B W

    1987-01-01

    Lactate dehydrogenase (LDH) activities were measured in cerebrospinal fluid in 350 patients with various neurological diseases to establish the sensitivity and specificity of the CSF LDH as a marker for the diagnosis of leptomeningeal metastases. Slight elevations of CSF LDH were observed in nonmalignant diseases, while marked elevations were observed in a considerable number of patients with bacterial meningitis. A sensitivity of 79% and a specificity of 83% were calculated. In the 34 patients with leptomeningeal metastases from solid and haematological tumours, the LDH in lumbar and ventricular CSF were measured simultaneously. The lumbar CSF LDH concentration in patients with leptomeningeal metastases was about five times greater than that in the ventricular CSF. No relationship was found between the CSF LDH and histology of the primary tumour. A good correlation was demonstrated between the lumbar CSF LDH and the effected area of the neuraxis. Serial determinations of CSF LDH showed a relationship between level changes and responses to therapy or progression. The findings of this study indicate that measurement of LDH in CSF can be used as an adjunctive diagnostic test for leptomeningeal metastases and in monitoring the efficacy of treatment. PMID:3559613

  1. Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics.

    PubMed

    Zhang, Haili; Guo, Fengguang; Zhu, Guan

    2015-11-01

    The apicomplexan, Cryptosporidium parvum, possesses a bacterial-type lactate dehydrogenase (CpLDH). This is considered to be an essential enzyme, as this parasite lacks the Krebs cycle and cytochrome-based respiration, and mainly-if not solely, relies on glycolysis to produce ATP. Here, we provide evidence that in extracellular parasites (e.g., sporozoites and merozoites), CpLDH is localized in the cytosol. However, it becomes associated with the parasitophorous vacuole membrane (PVM) during the intracellular developmental stages, suggesting involvement of the PVM in parasite energy metabolism. We characterized the biochemical features of CpLDH and observed that, at lower micromolar levels, the LDH inhibitors gossypol and FX11 could inhibit both CpLDH activity (Ki = 14.8 μM and 55.6 μM, respectively), as well as parasite growth in vitro (IC50 = 11.8 μM and 39.5 μM, respectively). These observations not only reveal a new function for the poorly understood PVM structure in hosting the intracellular development of C. parvum, but also suggest LDH as a potential target for developing therapeutics against this opportunistic pathogen, for which fully effective treatments are not yet available. PMID:26562790

  2. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues.

    PubMed

    Hara, Masakazu; Monna, Shuhei; Murata, Takae; Nakano, Taiyo; Amano, Shono; Nachbar, Markus; Wätzig, Hermann

    2016-04-01

    Dehydrin, which is one of the late embryogenesis abundant (LEA) proteins, is involved in the ability of plants to tolerate the lack of water. Although many reports have indicated that dehydrins bind heavy metals, the physiological role of this metal binding has not been well understood. Here, we report that the Arabidopsis KS-type dehydrin (AtHIRD11) recovered the lactate dehydrogenase (LDH) activity denatured by Cu(2+). The LDH activity was partially inhibited by 0.93μM Cu(2+) but totally inactivated by 9.3μM Cu(2+). AtHIRD11 recovered the activity of LDH treated with 9.3μM Cu(2+) in a dose-dependent manner. The recovery activity of AtHIRD11 was significantly higher than those of serum albumin and lysozyme. The conversion of His residues to Ala in AtHIRD11 resulted in the loss of the Cu(2+) binding of the protein as well as the disappearance of the conformational change induced by Cu(2+) that is observed by circular dichroism spectroscopy. The mutant protein showed lower recovery activity than the original AtHIRD11. These results indicate that AtHIRD11 can reactivate LDH inhibited by Cu(2+) via the His residues. This function may prevent physiological damage to plants due to heavy-metal stress. PMID:26940498

  3. Ontogenetic changes in citrate synthase and lactate dehydrogenase activity in the jumping muscle of the American locust (Schistocerca americana).

    PubMed

    Kirkton, Scott D; Nyberg, Elizabeth T; Fox, Kristin M

    2011-10-01

    Intraspecific studies have repeatedly shown that muscle-specific oxidative enzyme activities scale negatively with body mass while muscle-specific glycolytic enzyme activities scale positively. However, most of these studies have not included juveniles. In this study, we examined how citrate synthase (CS, EC 2.3.3.1) and lactate dehydrogenase (LDH; EC 1.1.1.27) activity in the jumping muscle of Schistocerca americana grasshoppers varied with ontogeny across a 40-fold increase in body size. In contrast to the pattern observed when adult conspecifics are compared, we show that jumping muscle CS activity increased more than 2-fold from 2nd instars to adults, while jumping muscle LDH activity increased more than 5-fold. The increased LDH activity in older grasshoppers supports previous data that older grasshoppers have a reduced jumping endurance. The increased CS activity with age may help older grasshoppers efficiently produce aerobic ATP to bend cuticular springs for energy storage before a jump or alternatively recover from anaerobic metabolism after jumping. Metabolic changes in S. americana jumping muscle are similar to other developing taxa and highlight the importance of including juveniles within intraspecific studies. When compared to adults, juvenile locomotion may have increased selection pressure because of both greater energetic demands during growth and higher predation rates. PMID:21807111

  4. Biochemical and in silico Characterization of Recombinant L-Lactate Dehydrogenase of Theileria annulata.

    PubMed

    Nural, Belma; Erdemir, Aysegul; Mutlu, Ozal; Yakarsonmez, Sinem; Danis, Ozkan; Topuzogullari, Murat; Turgut-Balik, Dilek

    2016-04-01

    Theileria annulata is a parasite that causes theileriosis in cattle. Reports about drug resistance made essential to develop new drug. LDH of Theileria schizonts is the vital enzyme for its anaerobic metabolism. TaLDH gene was first cloned into pGEM-T cloning vector with two introns in our previous study. Here we report cloning of TaLDH without introns into pLATE 31 vector in E. coli BL21(DE3). Protein was in an inactive form. Two mutations were fixed to express the active protein. Protein was purified by affinity chromatography and evaluated by SDS-PAGE and size exclusion chromatography. Optimum pH of enzyme was performed in pH 7.5, and enzyme was stabilized at 20-40 °C. Enzyme kinetics of recombinant TaLDH were found to be in the direction of pyruvate to lactate K m 0.1324 and K i 4.295 mM, k cat , 44.55/s and k cat /K m , 3.3693 × 10(5)/M/s. 3D structure of TaLDH was predicted, and possible drug binding sites were determined by homology modelling. PMID:26921192

  5. Contact lens-induced edema in vitro--amelioration by lactate dehydrogenase inhibitors.

    PubMed

    Rohde, M D; Huff, J W

    1986-10-01

    Isolated rabbit corneas bathed in Krebs-bicarbonate Ringer solution were observed for thickness changes after a 90 minute equilibration period. Control corneas swelled an average of 0.5 micron/hr, and placement of a polymethylmechacrylate (PMMA) contact lens on the epithelial surface caused the corneas to swell 24.5 microns/hr, an effect similar to 0.5 mM epithelial cyanide exposure. The pronounced swelling induced by PMMA lens placement was much less however, in the epithelial presence of 3.2 mM sodium oxalate (3.22 microns/hr) or 3.2 mM sodium oxamate (5.38 microns/hr). An equiosmotic excess of 4.8 mM NaCl was least active (15.89 microns/hr). On normal isolated corneas (without contact lenses), the Ringer containing an excess of 4.8 mM NaCl significantly deswelled the corneas (-13.44 microns/hr), which contrasted with oxalate and oxamate containing Ringer solutions (1.17 and 1.33 micron/hr respectively). The present study supports the notion that contact lens-induced edema results from stromal lactate accumulation, and suggests a potential alternative to osmotic therapy for its amelioration. These LDH inhibitors, in the concentrations used, have no acute osmotic or toxic effect on normal corneas in vitro. PMID:3769523

  6. Reactions of benzylamines with methylamine dehydrogenase. Evidence for a carbanionic reaction intermediate and reaction mechanism similar to eukaryotic quinoproteins.

    PubMed

    Davidson, V L; Jones, L H; Graichen, M E

    1992-04-01

    It had been previously reported that aromatic amines were not substrates for the bacterial quinoprotein methylamine dehydrogenase. In this study, benzylamine-dependent activity was also not observed in the steady-state assay of this enzyme with the artificial electron acceptor phenazine ethosulfate (PES). Benzylamines did, however, stoichiometrically reduce the protein-bound tryptophan tryptophylquinone (TTQ) prosthetic group and acted as reversible competitive inhibitors of methylamine oxidation when the enzyme was assayed with PES. When methylamine dehydrogenase activity was monitored using a steady-state assay which employed its physiological electron acceptor amicyanin instead of PES, very low but detectable benzylamine-dependent activity was observed. The reactions of a series of para-substituted benzylamines with methylamine dehydrogenase were examined. A Hammett plot of the log of Ki values for the competitive inhibition by these amines against sigma p exhibited a negative slope. Rapid kinetic measurements allowed the determination of values of k3 and Ks for the reduction of TTQ by each of these amines. A Hammett plot of log k3 versus sigma p exhibited a positive slope, which suggests that the oxidation of these amines by methylamine dehydrogenase proceeds through a carbanionic reaction intermediate. A negative slope was observed for the correlation between log Ks and sigma p. Plots of log k3 and log Ks against substituent constants which reflected either resonance or field/inductive parameters for each para substituent indicated that the magnitude of k3 was primarily influenced by field/inductive effects while Ks was primarily influenced by resonance effects. No correlation was observed between either k3 or Ks and the relative hydrophobicity of the para-substituted benzylamines or steric parameters.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1554720

  7. An atypical distribution of lactate dehydrogenase isoenzymes in the hooded seal (Cystophora cristata) brain may reflect a biochemical adaptation to diving.

    PubMed

    Hoff, Mariana Leivas Müller; Fabrizius, Andrej; Folkow, Lars P; Burmester, Thorsten

    2016-04-01

    The brains of some diving mammals can withstand periods of severe hypoxia without signs of deleterious effects. This may in part be due to an enhanced cerebral capacity for anaerobic energy production. Here, we have tested this hypothesis by comparing various parameters of the lactate dehydrogenase (LDH) in the brain of the hooded seal (Cystophora cristata) with those in the brains of the ferret (Mustela putorius furo) and mouse (Mus musculus). We found that mRNA and protein expression of lactate dehydrogenase a (LDHA) and lactate dehydrogenase b (LDHB), and also the LDH activity were significantly higher in the ferret brain than in brains of the hooded seal and the mouse (p < 0.0001). No conspicuous differences in the LDHA and LDHB sequences were observed. There was also no difference in the buffering capacities of the brains. Thus, an enhanced capacity for anaerobic energy production likely does not explain the higher hypoxia tolerance of the seal brain. However, the brain of the hooded seal had higher relative levels of LDHB isoenzymes (LDH1 and LDH2) compared to the non-diving mammals. Moreover, immunofluorescence studies showed more pronounced co-localization of LDHB and glial fibrillary acidic protein in the cortex of the hooded seal. Since LDHB isoenzymes primarily catalyze the conversion of lactate to pyruvate, this finding suggests that the contribution of astrocytes to the brain aerobic metabolism is higher in the hooded seal than in non-diving species. The cerebral tolerance of the hooded seal to hypoxia may therefore partly rely on different LDH isoenzymes distribution. PMID:26820264

  8. Lactate dehydrogenase release as an indicator of dithranol-induced membrane injury in cultured human keratinocytes. A time profile study.

    PubMed

    Bonnekoh, B; Farkas, B; Geisel, J; Mahrle, G

    1990-01-01

    HaCaT cells, a rapidly multiplying human keratinocyte line, were tested for their sensitivity to antipsoriatic dithranol with regard to classical proliferation parameters and for the drug's action on the plasma membrane integrity by the dose- and time-dependent release of cytosolic lactate dehydrogenase (LDH). In the case of 3H thymidine as well as 14C amino acid incorporation the 50% inhibition concentration (IC50) was 0.2 microM dithranol 24 h after initial exposure to the drug. For protein content of attached cells the IC50 proved to be greater than 3.0 microM. Using 0.3, 1.0 and 3.0 microM dithranol, significant (p less than 0.05) dose dependent LDH release of 0.866 +/- 0.387, 1.842 +/- 1.127 and 2.938 +/- 1.635 mU per hour and cm2 confluent culture area was measured between the 5th and the 24th hour, compared to an acetone control of 0.504 +/- 0.299 mU/h x cm2. Between the 2nd and the 4th hour as well as from the 25th to the 48th hour and the 49th to the 72nd hour the LDH release after dithranol treatment did not exceed the control value. In accordance with these findings dose-dependent morphological signs of cell injury were detected by phase contrast microscopy beyond the 4th hour. The data reveal that: HaCaT cells are a very sensitive target for the antiproliferative action of dithranol; the drug causes considerable plasma membrane damage even at concentrations as low as 0.3 microM; and this membrane damage becomes evident after a latency of at least 4 h and for a limited period of up to 24 h. PMID:2221984

  9. Impact of Pre-Treatment Lactate Dehydrogenase Levels on Prognosis and Bevacizumab Efficacy in Patients with Metastatic Colorectal Cancer

    PubMed Central

    Passardi, Alessandro; Scarpi, Emanuela; Tamberi, Stefano; Cavanna, Luigi; Tassinari, Davide; Fontana, Annalisa; Pini, Sara; Bernardini, Ilaria; Accettura, Caterina; Ulivi, Paola; Frassineti, Giovanni Luca; Amadori, Dino

    2015-01-01

    Background To investigate the impact of pre-treatment lactate dehydrogenase (LDH) levels on the outcome of patients with metastatic colorectal cancer treated with first-line chemotherapy with or without the anti-VEGF monoclonal antibody, bevacizumab, in a phase III prospective multicentre randomized ITACa (Italian Trial in Advanced Colorectal Cancer) trial. Methods Three hundred and seventy patients enrolled onto the ITACa first-line trial were considered for this study, 176 receiving chemotherapy (either FOLFIRI or FOLFOX) plus bevacizumab and 194 receiving chemotherapy only. Pre-treatment LDH levels were evaluated to identify a potential correlation with progression-free survival (PFS), overall survival (OS) and objective response rate. Results Information on pre-treatment LDH levels was available for 344 patients. High LDH levels were predictive of a lower median PFS (8.1 months vs. 9.2 months, p< 0.0001) and median OS (16.1 months vs. 25.2 months, p< 0.0001) in the overall population. In the chemotherapy plus bevacizumab group, median PFS was 9.1 and 9.8 months in patients with high LDH and low LDH, respectively (p= 0.073), whereas in the chemotherapy-only arm it was 6.9 and 9.1 months, respectively (p < 0.0001). In patients with high LDH, the addition of bevacizumab to chemotherapy led to a reduction in the rate of progressive disease (16.4 vs. 30.5%, p= 0.081) and to a prolonged PFS (p= 0.028). Conclusion A high LDH value was confirmed as a marker of poor prognosis. Bevacizumab reduced the progressive disease rate and improved PFS in the high-LDH subgroup, making serum LDH a potentially effective an easily available and marker to select patients who benefit from bevacizumab. Trial Registration NCT01878422 ClinicalTrials.gov PMID:26244985

  10. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    SciTech Connect

    Liao, Ya-Tang; Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; Genomics Research Center, Academia Sinica, Taiwan ; Chen, Chien-Jen; Genomics Research Center, Academia Sinica, Taiwan ; Li, Wan-Fen; Hsu, Ling-I; Tsai, Li-Yu; Huang, Yeou-Lih; Sun, Chien-Wen; Chen, Wei J.; Wang, Shu-Li; Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan

    2012-08-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  11. Prognostic value of ferritin, neuron-specific enolase, lactate dehydrogenase, and urinary and plasmatic catecholamine metabolites in children with neuroblastoma

    PubMed Central

    Cangemi, Giuliana; Reggiardo, Giorgio; Barco, Sebastiano; Barbagallo, Laura; Conte, Massimo; D’Angelo, Paolo; Bianchi, Maurizio; Favre, Claudio; Galleni, Barbara; Melioli, Giovanni; Haupt, Riccardo; Garaventa, Alberto; Corrias, Maria V

    2012-01-01

    Different plasma and urinary parameters have been tested as valuable prognostic markers for children with neuroblastoma (NB), but conclusive results from multivariate analyses are still lacking. Samples collected at diagnosis from 505 patients diagnosed in Italy between June 1994 and November 2010 were analyzed at the Italian reference laboratory according to standard methodologies. Patient clinical data were retrieved from the Italian NB Registry. For statistical analysis, patients were grouped according to stage, age, MYCN status, and outcome. Cumulative survival was calculated by the Kaplan–Meier procedure using the first quartile of the marker distribution as a cut-off value to stratify the patients. Multivariate analysis was performed by the Cox regression model by considering only the significant variables. When the entire cohort of patients was considered, none of the different parameters had an independent prognostic value. However, in patients with localized disease without MYCN amplification the significant positive associations between urinary and plasmatic vanillylmandelic acid (VMA)/homovanillic acid (HVA) ratio and a better prognosis remained significant (P < 0.05 and P < 0.01, respectively), as well as, the positive association between high lactate dehydrogenase (LDH) values and a worse prognosis (P < 0.001). Moreover, in stage 4 patients without MYCN amplification, neuron-specific enolase levels above 200 ng/mL and LDH levels above 2500 IU/mL maintained their significant association with a worse outcome (P = 0.01 and P = 0.0001, respectively). In conclusion, LDH had an independent prognostic value in patients of all stages without MYCN amplification. Moreover, the urinary and plasmatic VMA/HVA ratio was an independent predictor of prognosis in patients with localized disease without MYCN amplification. Since LDH and catecholamine metabolites are measured in all patients at diagnosis, these findings may be helpful for an easy, cost-effective, patient risk stratification. PMID:23226699

  12. Prognostic value of ferritin, neuron-specific enolase, lactate dehydrogenase, and urinary and plasmatic catecholamine metabolites in children with neuroblastoma.

    PubMed

    Cangemi, Giuliana; Reggiardo, Giorgio; Barco, Sebastiano; Barbagallo, Laura; Conte, Massimo; D'Angelo, Paolo; Bianchi, Maurizio; Favre, Claudio; Galleni, Barbara; Melioli, Giovanni; Haupt, Riccardo; Garaventa, Alberto; Corrias, Maria V

    2012-01-01

    Different plasma and urinary parameters have been tested as valuable prognostic markers for children with neuroblastoma (NB), but conclusive results from multivariate analyses are still lacking. Samples collected at diagnosis from 505 patients diagnosed in Italy between June 1994 and November 2010 were analyzed at the Italian reference laboratory according to standard methodologies. Patient clinical data were retrieved from the Italian NB Registry. For statistical analysis, patients were grouped according to stage, age, MYCN status, and outcome. Cumulative survival was calculated by the Kaplan-Meier procedure using the first quartile of the marker distribution as a cut-off value to stratify the patients. Multivariate analysis was performed by the Cox regression model by considering only the significant variables. When the entire cohort of patients was considered, none of the different parameters had an independent prognostic value. However, in patients with localized disease without MYCN amplification the significant positive associations between urinary and plasmatic vanillylmandelic acid (VMA)/homovanillic acid (HVA) ratio and a better prognosis remained significant (P < 0.05 and P < 0.01, respectively), as well as, the positive association between high lactate dehydrogenase (LDH) values and a worse prognosis (P < 0.001). Moreover, in stage 4 patients without MYCN amplification, neuron-specific enolase levels above 200 ng/mL and LDH levels above 2500 IU/mL maintained their significant association with a worse outcome (P = 0.01 and P = 0.0001, respectively). In conclusion, LDH had an independent prognostic value in patients of all stages without MYCN amplification. Moreover, the urinary and plasmatic VMA/HVA ratio was an independent predictor of prognosis in patients with localized disease without MYCN amplification. Since LDH and catecholamine metabolites are measured in all patients at diagnosis, these findings may be helpful for an easy, cost-effective, patient risk stratification. PMID:23226699

  13. Benefit from thoracic radiotherapy in patients with extensive-disease small-cell lung cancer with elevated lactate dehydrogenase

    PubMed Central

    Qin, Tao; Zhou, Ningning; Zeng, Yin-duo; Dinglin, Xiaoxiao; Zhao, Yuanyuan; Liu, Huai; Chen, Likun

    2016-01-01

    Background High lactate dehydrogenase (LDH) is associated with a large tumor burden in extensive-disease small-cell lung cancer (ED-SCLC). This study evaluated the benefit of additional thoracic radiotherapy (TRT) in patients with ED-SCLC with elevated LDH. Methods We analyzed 94 patients with ED-SCLC and evaluated LDH at Sun Yat-sen University Cancer Center during the period between January 2000 and March 2010. Patients were divided into two groups according to whether TRT was received. Survival was evaluated by the Kaplan–Meier method and Cox’s regression analysis. Results The median age of the 94 patients with ED-SCLC was 58.5 years. The main metastatic sites included the liver, bone, brain, and adrenal glands. The response rate in the TRT group was 46.9%. There were 32 patients (34.04%) receiving TRT and 5.3% receiving prophylactic cranial irradiation. The median survival time reached 10 months (95% confidence interval: 8.22, 11.78 months), and the 1-, 2-, and 5-year survival rates were 43.6%, 11.7%, and 2.1%, respectively. There was a significant difference in the median progression-free survival (PFS) and overall survival (OS) between the TRT group and the no TRT group (PFS: 9.0 months vs 6.0 months, P=0.018; OS: 13.0 months vs 9.0 months, P=0.006). Conclusion The use of TRT improves the survival of patients with ED-SCLC. Future studies should use the LDH level for categorizing patients for treatment. PMID:27042102

  14. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome

    PubMed Central

    Mohammad, Goran Hamid; Olde Damink, S. W. M.; Malago, Massimo; Dhar, Dipok Kumar; Pereira, Stephen P.

    2016-01-01

    Pancreatic cancer has a 5-year survival rate of less than 4%. Despite advances in diagnostic technology, pancreatic cancer continues to be diagnosed at a late and incurable stage. Accurate biomarkers for early diagnosis and to predict treatment response are urgently needed. Since alteration of glucose metabolism is one of the hallmarks of cancer cells, we proposed that pyruvate kinase type M2 (M2PK) and lactate dehydrogenase A (LDHA) enzymes could represent novel diagnostic markers and potential therapeutic targets in pancreatic cancer. In 266 tissue sections from normal pancreas, pancreatic cystic neoplasms, pancreatic intraepithelial neoplasia (PanIN) and cancer, we evaluated the expression of PKM2, LDHA, Ki-67 and CD8+ by immunohistochemistry and correlated these markers with clinicopathological characteristics and patient survival. PKM2 and LDHA expression was also assessed by Western blot in 10 human pancreatic cancer cell lines. PKM2 expression increased progressively from cyst through PanIN to cancer, whereas LDHA was overexpressed throughout the carcinogenic process. All but one cell line showed high expression of both proteins. Patients with strong PKM2 and LDHA expression had significantly worse survival than those with weak PKM2 and/or LDHA expression (7.0 months vs. 27.9 months, respectively, p = 0.003, log rank test). The expression of both PKM2 and LDHA correlated directly with Ki-67 expression, and inversely with intratumoral CD8+ cell count. PKM2 was significantly overexpressed in poorly differentiated tumours and both PKM2 and LDHA were overexpressed in larger tumours. Multivariable analysis showed that combined expression of PKM2 and LDHA was an independent poor prognostic marker for survival. In conclusion, our results demonstrate a high expression pattern of two major glycolytic enzymes during pancreatic carcinogenesis, with increased expression in aggressive tumours and a significant adverse effect on survival. PMID:26989901

  15. Reaction norm model to describe environmental sensitivity across first lactation in dairy cattle under tropical conditions.

    PubMed

    Bignardi, Annaiza Braga; El Faro, Lenira; Pereira, Rodrigo Junqueira; Ayres, Denise Rocha; Machado, Paulo Fernando; de Albuquerque, Lucia Galvão; Santana, Mário Luiz

    2015-10-01

    Reaction norm models have been widely used to study genotype by environment interaction (G × E) in animal breeding. The objective of this study was to describe environmental sensitivity across first lactation in Brazilian Holstein cows using a reaction norm approach. A total of 50,168 individual monthly test day (TD) milk yields (10 test days) from 7476 complete first lactations of Holstein cattle were analyzed. The statistical models for all traits (10 TDs and for 305-day milk yield) included the fixed effects of contemporary group, age of cow (linear and quadratic effects), and days in milk (linear effect), except for 305-day milk yield. A hierarchical reaction norm model (HRNM) based on the unknown covariate was used. The present study showed the presence of G × E in milk yield across first lactation of Holstein cows. The variation in the heritability estimates implies differences in the response to selection depending on the environment where the animals of this population are evaluated. In the average environment, the heritabilities for all traits were rather similar, in range from 0.02 to 0.63. The scaling effect of G × E predominated throughout most of lactation. Particularly during the first 2 months of lactation, G × E caused reranking of breeding values. It is therefore important to include the environmental sensitivity of animals according to the phase of lactation in the genetic evaluations of Holstein cattle in tropical environments. PMID:26143280

  16. Electron acquisition system constructed from an NAD-independent D-lactate dehydrogenase and cytochrome c2 in Rhodopseudomonas palustris No. 7.

    PubMed

    Horikiri, Shunsuke; Aizawa, Yoshiyuki; Kai, Taiki; Amachi, Seigo; Shinoyama, Hirofumi; Fujii, Takaaki

    2004-03-01

    The activities of NAD-independent D- and L-lactate dehydrogenases (D-LDH, L-LDH) were detected in Rhodopseudomonas palustris No. 7 grown photoanaerobically on lactate. One of these enzymes, D-LDH, was purified as an electrophoretically homogeneous protein (M(r), about 235,000; subunit M(r) about 57,000). The pI was 5.0. The optimum pH and temperature of the enzyme were pH 8.5 and 50 degrees C, respectively. The Km of the enzyme for D-lactate was 0.8 mM. The enzyme had narrow substrate specificity (D-lactate and DL-2-hydroxybutyrate). The enzymatic activity was competitively inhibited by oxalate (Ki, 0.12 mM). The enzyme contained a FAD cofactor. Cytochrome c(2) was purified from strain No. 7 as an electrophoretically homogeneous protein. Its pI was 9.4. Cytochrome c(2) was reduced by incubating with D-LDH and D-lactate. PMID:15056881

  17. Relayed 13C magnetization transfer: Detection of malate dehydrogenase reaction in vivo

    NASA Astrophysics Data System (ADS)

    Yang, Jehoon; Shen, Jun

    2007-02-01

    Malate dehydrogenase catalyzes rapid interconversion between dilute metabolites oxaloacetate and malate. Both oxaloacetate and malate are below the detection threshold of in vivo MRS. Oxaloacetate is also in rapid exchange with aspartate catalyzed by aspartate aminotransferase, the latter metabolite is observable in vivo using 13C MRS. We hypothesized that the rapid turnover of oxaloacetate can effectively relay perturbation of magnetization between malate and aspartate. Here, we report indirect observation of the malate dehydrogenase reaction by saturating malate C2 resonance at 71.2 ppm and detecting a reduced aspartate C2 signal at 53.2 ppm due to relayed magnetization transfer via oxaloacetate C2 at 201.3 ppm. Using this strategy the rate of the cerebral malate dehydrogenase reaction was determined to be 9 ± 2 μmol/g wet weight/min (means ± SD, n = 5) at 11.7 Tesla in anesthetized adult rats infused with [1,6- 13C 2]glucose.

  18. Secondary sup 15 N isotope effects on the reactions catalyzed by alcohol and formate dehydrogenases

    SciTech Connect

    Rotberg, N.S.; Cleland, W.W. )

    1991-04-23

    Secondary {sup 15}N isotope effects at the N-1 position of 3-acetylpyridine adenine dinucleotide have been determined, by using the internal competition technique, for horse liver alcohol dehydrogenase (LADH) with cyclohexanol as a substrate and yeast formate dehydrogenase (FDH) with formate as a substrate. On the basis of less precise previous measurements of these {sup 15}N isotope effects, the nicotinamide ring of NAD has been suggested to adopt a boat conformation with carbonium ion character at C-4 during hydride transfer. If this mechanism were valid, as N-1 becomes pyramidal an {sup 15}N isotope effect for the reaction catalyzed by LADH was measured. These values suggest that a significant {sup 15}N kinetic isotope effect is not associated with hydride transfer for LADH and FDH. Thus, in contrast with the deformation mechanism previously postulated, the pyridine ring of the nucleotide apparently remains planar during these dehydrogenase reactions.

  19. Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase.

    PubMed

    Kumar, Vinod; Sankaranarayanan, Mugesh; Durgapal, Meetu; Zhou, Shengfang; Ko, Yeounjoo; Ashok, Somasundar; Sarkar, Ritam; Park, Sunghoon

    2013-05-01

    In the present study, the lactate dehydrogenase-deficient (ldhA(-)) recombinant Klebsiella pneumoniae overexpressing an ALDH (KGSADH) was developed and the co-production of 3-HP and PDO from glycerol by this recombinant under resting cell conditions was examined. The new recombinant did not produce any appreciable lactate, which seriously inhibits the production of 3-HP and PDO. The final titers of 3-HP and PDO by the ldhA(-) recombinant strain at 60 h were 252.2 mM and 308.7 mM, respectively, which were improved by approximately 30% and 50%, respectively, compared to those by the counterpart recombinant strain, which was the wild type for ldhA. In addition, after deleting ldhA, the cumulative yield on glycerol and specific production rate of these two metabolites (3-HP and PDO) were enhanced by 41.4% and 52%, respectively. PMID:23228456

  20. Synthesis and application of a photoaffinity analog of nicotinamide adenosine dinucleotide: Identification of the active sites of glutamate and lactate dehydrogenases

    SciTech Connect

    Kim, H.

    1990-01-01

    A photoaffinity analog of NAD{sup +} has been synthesized by chemically coupling ({sup 32}P)2-azido-AMP and NMN{sup +} to produce ({sup 32}P)nicotinamide 2-azidoadenosine dinucleotide (2-azido-NAD{sup +}). The utility of 2-azido-NAD{sup +} as an effective active-site-directed photoprobe was demonstrated using bovine liver glutamate dehydrogenase and porcine muscle lactate dehydrogenase as model enzymes. In the absence of ultraviolet light 2-azido-NAD{sup +} is a substrate for these enzymes. The specificity of active site labeling was demonstrated by photoinhibition, saturation and competition experiments. The active sites of these enzymes were identified utilizing 2-azido-NAD{sup +}. The immobilized boronate column chromatography was used to isolate the photolabeled peptides. The results demonstrate that the photoaffinity analog of NAD{sup +} has potential application as a probe to characterize NAD{sup +}binding proteins and to identify the active sites of these proteins.

  1. A novel polyclonal antibody-based sandwich ELISA for detection of Plasmodium vivax developed from two lactate dehydrogenase protein segments

    PubMed Central

    2014-01-01

    Background Immunoassays for Plasmodium detection are, presently, most frequently based on monoclonal antibodies (MAbs); Polyclonal antibodies (PAbs), which are cheaper to develop and manufacture, are much less frequently used. In the present study we describe a sandwich ELISA assay which is capable of detecting P. vivax Lactate Dehydrogenase (LDH) in clinical blood samples, without cross reacting with those infected with P. falciparum. Methods Two recombinant proteins were produced from different regions of the P. vivax LDH gene. Two sandwich ELISA assay were then designed: One which uses mouse anti-LDH 1-43aa PAbs as primary antibodies (“Test 1”) and another which uses anti-LDH 35-305aa PAbs (“Test 2”) as the primary antibodies. Rabbit anti-LDH 1-43aa PAbs were used as capture antibodies in both ELISA assays. Blood samples taken from P. vivax and P. falciparum infected patients (confirmed by light microscopy) were analysed using both tests. Results “Test 2” performed better at detecting microscopy-positive blood samples when compared to “Test 1”, identifying 131 of 154 positive samples (85%); 85 positives (55%) were identified using “test 1”. “Test 1” produced one false positive sample (from the 20 malaria-free control) blood samples; “test 2” produced none. Kappa coefficient analysis of the results produced a value of 0.267 when microscope-positive blood smears were compared with “test 1”, but 0.734 when microscope-positive blood smears were compared with the results from “test 2”. Positive predictive value (PPV) and negative predictive value (NPV) were observed to be 98% and 22% respectively, for “Test 1”, and 99% and 45%, for “test 2”. No cross reactivity was detected with P. falciparum positive blood samples (n = 15) with either test assay. Conclusion Both tests detected P. vivax infected blood and showed no evidence of cross-reacting with P. falciparum. Further studies will need to be conducted to establish the full potential of this technique for malaria diagnostics. As well as representing a promising new cost-effective novel technique for P. vivax diagnosis and research, the method for developing this assay also highlights the potential for PAb-based strategies for diagnostics in general. PMID:24475751

  2. Selective antibody neutralization prevents neuropathogenic lactate dehydrogenase-elevating virus from causing paralytic disease in immunocompetent mice.

    PubMed

    Chen, Z; Li, K; Rowland, R R; Plagemann, P G

    1999-04-01

    Neuropathogenic lactate dehydrogenase-elevating viruses (LDV) cytocidally infect anterior horn neurons in C58 and AKR mice via interaction with endogenous murine retroviruses to cause a paralytic disease, age-dependent poliomyelitis (ADPM). The induction of ADPM requires a suppressed host immune system as a result of old age, genetic defects (such as nude mice) or any immunosuppressive treatment. Previous results have shown that the infection of anterior horn neurons by neuropathogenic LDV isolates and the subsequent development of ADPM are prevented by anti-LDV antibodies either induced actively during infection or when passively administered. However, the mechanism of protection was unclear since both neutralizing and non-neutralizing polyclonal antibodies seemed protective, whereas only neutralizing monoclonal antibodies were protective. Furthermore, the protection of motor neurons from infection occurred in the absence of any apparent effect on LDV replication in a subpopulation of macrophages known to be the primary permissive host cells. These paradoxes have now been resolved. We have recently reported that the neuropathogenic LDV isolates contain both neuropathogenic and non-neuropathogenic quasispecies that differ in their ability to establish a high viremia persistent infection. Using biological clones of both neuropathogenic and non-neuropathogenic quasispecies, we now demonstrate that both replicate in the same subpopulation of permissive macrophages, but that the neuropathogenic quasispecies are about 100 times more susceptible to in vitro antibody neutralization than the non-neuropathogenic ones, and that antibodies that neutralize the neuropathogenic but not the non-neuropathogenic quasispecies develop as soon as 7 days after infection with neuropathogenic LDVs and selectively suppress the replication of the neuropathogenic LDVs in vivo in FVB, BALB/c, C57 BL/6 and C58 mice. The previously observed lack of neutralizing effect of early polyclonal anti-LDV antibodies and the apparent ineffective antibody control of LDV replication in macrophages were due to outgrowth of the non-neuropathogenic quasispecies that are also present in the neuropathogenic LDV inoculum and are highly resistant to antibody neutralization. Using cloned neuropathogenic LDV quasispecies, we demonstrate a clear relationship in the development of neutralizing antibodies, replication suppression of the neuropathogenic LDVs and the prevention of ADPM in C58 mice. Our results therefore establish an inseparable relationship between the neuron-protective effect of an antibody and its neutralization of the neuropathogenic LDV quasispecies and explain why neuropathogenic LDVs cause paralytic disease only in immunosuppressed mice. PMID:10321985

  3. Lactate dehydrogenase test

    MedlinePlus

    ... value range is 105 - 333 IU/L (international units per liter). Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your doctor about the ...

  4. Stereoselective titanium-mediated aldol reactions of a chiral lactate-derived ethyl ketone with ketones.

    PubMed

    Alcoberro, Sandra; Gómez-Palomino, Alejandro; Solà, Ricard; Romea, Pedro; Urpí, Fèlix; Font-Bardia, Mercè

    2014-01-17

    Aldol reactions of titanium enolates of lactate-derived ethyl ketone 1 with other ketones proceed in a very efficient and stereocontrolled manner provided that a further equivalent of TiCl4 is added to the reacting mixture. The scope of these reactions encompasses simple ketones such as acetone or cyclohexanone as well as other ketones that contain potential chelating groups such as pyruvate esters or α- and β-hydroxy ketones. PMID:24372372

  5. Changes in milk yield, lactate dehydrogenase, milking frequency, and interquarter yield ratio persist for up to 8 weeks after antibiotic treatment of mastitis.

    PubMed

    Fogsgaard, K K; Løvendahl, P; Bennedsgaard, T W; Østergaard, S

    2015-11-01

    Within the dairy industry, the appearance of milk and withdrawal time due to antibiotic residuals in the milk are used to determine recovery status after cases of treated mastitis. However, both milk production and dairy cow behavior have been shown to be affected after the normalization of milk appearance, indicating that animals may not have fully recovered. The aim of the present study was to describe the changes in milk yield, lactate dehydrogenase activity, milking frequency, and interquarter yield ratio (defined as the coefficient of variation between the active quarters) after cases of naturally occurring mastitis with special focus on the recovery period after antibiotic treatment. A second aim was to examine whether these changes were affected by the pathogens present at the time of mastitis diagnosis. This retrospective study was based on a cohort data set including 1,032 lactations from 795 dairy cows kept on 2 Danish farms and milked by an automatic milking system. A total of 174 treated mastitis cases were compared with nontreated control cows from 5 wk before treatment and until 8 wk after. Treated mastitis resulted in reduced milk yield, elevated lactate dehydrogenase activity, lower milking frequency, and elevated interquarter yield ratio. Within these measures, deviations from baseline levels and from the control cows were found as early as 1 to 3 wk before the antibiotic treatment and peaked around the days of treatment. In some cases, the mastitic cows returned to premastitis levels, whereas in others they remained affected throughout the rest of the observation period. To correctly estimate the effects of treated mastitis and the recovery status of cows, it is important to take the individual cow into account and not only compare with herd levels, as this might mask the true degree of the changes. The effects on each outcome variable depended on the involved pathogen and differences were found between primiparous cows and older animals. However, in general, the changes in milk production, lactate dehydrogenase activity, and interquarter yield ratio showed parallels, suggesting that the recovery period continued for weeks after antibiotic treatment. These results call for further investigation into management of mastitic dairy cows to optimize recovery, limit milk loss, and ensure animal welfare during the period after mastitis. PMID:26364092

  6. Low potential detection of NADH based on Fe₃O₄ nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor.

    PubMed

    Teymourian, Hazhir; Salimi, Abdollah; Hallaj, Rahman

    2012-03-15

    Fe(3)O(4) magnetic nanoparticles were in situ loaded on the surface of multiwalled carbon nanotubes (MWCNTs) by a simple coprecipitation procedure. The resulting Fe(3)O(4)/MWCNTs nanocomposite brings new capabilities for electrochemical sensing by combining the advantages of Fe(3)O(4) magnetic nanoparticles and MWCNTs. It was found that Fe(3)O(4) has redox properties similar to those of frequently used mediators used for electron transfer between NADH and electrode. The cyclic voltammetric results indicated the ability of Fe(3)O(4)/MWCNTs modified GC electrode to catalyze the oxidation of NADH at a very low potential (0.0 mV vs. Ag/AgCl) and subsequently, a substantial decrease in the overpotential by about 650 mV compared with the bare GC electrode. The catalytic oxidation current allows the stable and selective amperometric detection of NADH at an applied potential of 0.0 mV (Ag/AgCl) with a detection limit of 0.3 μM and linear response up to 300 μM. This modified electrode can be used as an efficient transducer in the design of biosensors based on coupled dehydrogenase enzymes. Lactate dehydrogenase (LDH) and NAD(+) were subsequently immobilized onto the Fe(3)O(4)/MWCNTs nanocomposite film by covalent bond formation between the amine groups of enzyme or NAD(+) and the carboxylic acid groups of the Fe(3)O(4)/MWCNT film. Differential pulse voltammetric detection of lactate on Fe(3)O(4)/MWCNT/LDH/NAD(+) modified GC electrode gives linear responses over the concentration range of 50-500 μM with the detection limit of 5 μM and sensitivity of 7.67 μA mM(-1). Furthermore, the applicability of the sensor for the analysis of lactate concentration in human serum samples has been successfully demonstrated. PMID:22230696

  7. Interaction of the membrane-bound D-lactate dehydrogenase of Escherichia coli with phospholipid vesicles and reconstitution of activity using a spin-labeled fatty acid as an electron acceptor: A magnetic resonance and biochemical study

    SciTech Connect

    Truong, Hoaithu N.; Pratt, E.A.; Ho, Chien )

    1991-04-23

    The interaction with phospholipid vesicles of the membrane-bound respiratory enzyme D-lactate dehydrogenase of Escherichia coli has been studied. Proteolytic digestion studies show that D-lactate dehydrogenase is protected from trypsin digestion to a larger extent when it interacts with phosphatidylglycerol than with phosphatidylcholine vesicles. Wild-type D-lactate dehydrogenase and mutants in which an additional tryptophan is substituted in selected areas by site-specific oligonucleotide-directed mutagenesis have been labeled with 5-fluorotryptophan. {sup 19}F nuclear magnetic resonance studies of the interaction of these labeled enzymes with small unilamellar phospholipid vesicles show that Trp 243, 340, and 361 are exposed to the lipid phase, while Trp 384, 407, and 567 are accessible to the external aqueous phase. Reconstitution of enzymatic activity in phospholipid vesicles has been studied by adding enzyme and substrate to phospholipid vesicles containing a spin-labeled fatty acid as an electron acceptor. The reduction of the doxyl group of the spin-labeled fatty acid has been monitored indirectly by nuclear magnetic resonance and directly by electron paramagnetic resonance. These results indicate that an artificial electron-transfer system can be created by mixing D-lactate dehydrogenase and D-lactate together with phospholipid vesicles containing spin-labeled fatty acids.

  8. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    PubMed Central

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J

    2009-01-01

    Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart™ Malaria pLDH (Pan), CareStart™ Malaria pLDH (Pan, Pf) and OptiMAL-IT®)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria™ pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT®: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria™ pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart™ Malaria tests and seven days for OptiMAL-IT®. Tests were heat stable up to 90 days except for OptiMAL-IT® (Pf specific pLDH stable to day 20 at 35°C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT® performed best overall and would perform best in an area of high malaria prevalence among screened fever cases. However, heat stability was unacceptable and the number of steps to perform this test is a significant drawback in the field. A reliable, heat-stable, highly sensitive RDT, capable of diagnosing all Plasmodium species has yet to be identified. PMID:19860920

  9. d-Lactate Dehydrogenase Gene (ldhD) Inactivation and Resulting Metabolic Effects in the Lactobacillus johnsonii Strains La1 and N312

    PubMed Central

    Lapierre, Luciane; Germond, Jacques-Edouard; Ott, Andreas; Delley, Michele; Mollet, Beat

    1999-01-01

    Lactobacillus johnsonii La1, a probiotic bacterium with demonstrated health effects, grows in milk, where it ferments lactose to d- and l-lactate in a 60:40% ratio. The d-lactate dehydrogenase (D-LDH) gene (ldhD) of this strain was isolated, and an in vitro-truncated copy of that gene was used to inactivate the genomic copy in two strains, La1 and N312, by gene replacement. For that, an 8-bp deletion was generated within the cloned ldhD gene to inactivate its function. The plasmid containing the altered ldhD was transferred to L. johnsonii via conjugative comobilization with Lactococcus lactis carrying pAMβ1. Crossover integrations of the plasmid at the genomic ldhD site were selected, and appropriate resolution of the cointegrate structures resulted in mutants that had lost the plasmid and in which the original ldhD was replaced by the truncated copy. These mutants completely lacked D-LDH activity. Nevertheless, the lower remaining L-LDH activity of the cells was sufficient to reroute most of the accumulating pyruvate to l-lactate. Only a marginal increase in production of the secondary end products acetaldehyde, diacetyl, and acetoin was observed. It can be concluded that in L. johnsonii D- and L-LDH are present in substantial excess for their role to eliminate pyruvate and regenerate NAD+ and that accumulated pyruvate is therefore not easily redirected in high amounts to secondary metabolic routes. PMID:10473408

  10. (4B-3H) NADH-H2O exchange reaction of the mitochondrial NADH dehydrogenase

    SciTech Connect

    Chen, S.; Guillory, R.J.

    1985-06-14

    The purified mitochondrial NADH dehydrogenase enzyme has been shown to catalyze a rapid (4B-/sup 3/H) NADH-H/sub 2/O exchange reaction. When the enzyme is subjected to a single freeze-thaw cycle there is a complete loss of NADH dehydrogenation without a measurable decrease in the (4B-/sup 3/H) NADH-H/sub 2/O exchange. Complete loss of the (4B-/sup 3/H) NADH-H/sub 2/O exchange follows brief exposure to ultraviolet photoirradiation. The differential sensitivity of the water exchange reaction and the dehydrogenase activity suggests a direct involvement of the enzymes flavin cofactor in the catalysis of the (4B-/sup 3/H) NADH-H/sub 2/O exchange. Arylazido-beta-alanyl NAD+ (A3'-0-(3-(N-4-azido-2-nitrophenyl)amino) propionyl)NAD+) is shown to be a potent photodependent inhibitor of the (4B-3H) NADH-H/sub 2/O exchange activity following photoirradiation with visible light. This is consistent with the observed photodependent inhibition of the dehydrogenase activity by this photoprobe.

  11. Reanalysis of mGWAS results and in vitro validation show that lactate dehydrogenase interacts with branched-chain amino acid metabolism.

    PubMed

    Heemskerk, Mattijs M; van Harmelen, Vanessa Ja; van Dijk, Ko Willems; van Klinken, Jan Bert

    2016-01-01

    The assignment of causative genes to noncoding variants identified in genome-wide association studies (GWASs) is challenging. We show how combination of knowledge from gene and pathway databases and chromatin interaction data leads to reinterpretation of published quantitative trait loci for blood metabolites. We describe a previously unidentified link between the rs2403254 locus, which is associated with the ratio of 3-methyl-2-oxobutanoate and alpha-hydroxyisovalerate levels, and the distal LDHA gene. We confirmed that lactate dehydrogenase can catalyze the conversion between these metabolites in vitro, suggesting that it has a role in branched-chain amino acid metabolism. Examining datasets from the ENCODE project we found evidence that the locus and LDHA promoter physically interact, showing that LDHA expression is likely under control of distal regulatory elements. Importantly, this discovery demonstrates that bioinformatic workflows for data integration can have a vital role in the interpretation of GWAS results. PMID:26014429

  12. Purification of the fructose 1,6-bisphosphate-dependent lactate dehydrogenase from Streptococcus uberis and an investigation of its existence in different forms.

    PubMed Central

    Williams, R A; Andrews, P

    1986-01-01

    The fructose 1,6-bisphosphate [Fru(1,6)P2]-dependent lactate dehydrogenase in cells of Streptococcus uberis N.C.D.O. 2039 was purified by a procedure that included chromatography on DEAE-cellulose and Blue Sepharose CL-6B in phosphate buffers. The enzyme appeared to interact with Blue Sepharose through NADH-binding sites. The homogeneous enzyme had catalytic properties that were generally similar to those of other Fru(1,6)P2-dependent lactate dehydrogenases, and it had no catalytic activity in the absence of Fru(1,6)P2. Its existence in different forms, depending on conditions, was investigated by ultracentrifugation, analytical gel filtration and activity measurements. It consisted of subunits with Mr 35,900 +/- 500 and, in the presence of adequate concentrations of Fru(1,6)P2, phosphate or NADH, it existed as a tetramer, whereas when these ligands were in lower concentrations or absent, the subunits were in a concentration-dependent association-dissociation equilibrium. Dissociation occurred slowly and inactivated the enzyme, and although added ligands reversed the dissociation, the lost activity was at best only partly restored. An exception occurred when dissociation was caused by a decrease in temperature, in which case the lost activity was fully restored at the original temperature. The tetramer also lost activity at certain ligand concentrations without dissociating. The results together indicated the presence on the enzyme of two classes of binding site for both Fru(1,6)P2 and NADH, and the likelihood that phosphate bound at the same sites as Fru(1,6)P2. Two different ligands together were much more effective at preventing inactivation and dissociation than was expected from their effectiveness when present separately. It was concluded that tetrameric forms of the enzyme rather than the enzyme in association-dissociation equilibrium were involved in the regulation of its activity in vivo. PMID:3790089

  13. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans

    PubMed Central

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian

    2014-01-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production—NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)—were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  14. Effect of hyperoxia on the ultrastructural pathology of alveolar epithelium in relation to glutathione peroxidase, lactate dehydrogenase activities, and free radical production in rats, Rattus norvigicus.

    PubMed

    Bin-Jaliah, Ismaeel; Dallak, Mohammed; Haffor, Al-Said A

    2009-01-01

    Hyperoxia (HP) exposure inducts reactive oxygen species (ROS) in the lungs that may result in lung injury, including alveolar epithelial and endothelial cells. Lactate dehydrogenase (LDH) activity relates to glycolysis, whereas glutathione peroxidase (Gpx) activity relies on the pentose phosphate pathway (PPP). The purpose of this study was to examine early ROS-induced alveolar pathological changes in relation to the activity of glutathione peroxidase (GPx) and lactate dehydrogenase (LDH) activity. Twenty adult male rats, matched with age and body weight, were randomly assigned to two groups, control and experimental. The experimental group was exposed to hyperoxia for 24 h. Ultrastructure examination showed degenerated pneumocyte type I, containing swollen mitochondria associated with dilated rough endoplasmic reticulum, and was projecting into the alveolar lumen. Pneumocyte II showed mitochondria swelling and hyperplasia and was desquamated in structure, depleted in surfactant, and falling into the alveolar lumen. Pulmonary capillary showed distention without observed damage in the endothelial layer. Following HP, the average (+/-) free radical (FR) production increased significantly (p<.05) from the baseline control of 181.20+/-30.06 to 260.30+/-68.10 (Carr U) and average (+/-SD) GPx activity also increased significantly (p<.05) from the baseline control of 8178.30+/-2402.62 to 19,589.50+/-2392.44 (U/L), whereas average (+/-SD) LDH activity decreased significantly (p<.05) from baseline control of 194.11+/-75.52 to 42.68+/-11.41 (U/L), which demonstrated slowing down of glycolysis. Based on these results it can be concluded that exposure to high inspired oxygen inducted the buildup of mitochondria-driven ROS that was related to early injury in the alveolar epithelium without obvious endothelium injury. PMID:19479651

  15. [Leucine arylamidase, lactate dehydrogenase and alkaline phosphatase activity of the urine of normal subjects of infant age].

    PubMed

    Camerini, G; Castaldi, G; Menegatti, E

    1980-04-01

    Urinary activity of Leucine arylamidase, lactate dahydrogenase and Alkaline phosphatase in 14 healt subjects, ranging from 2 to 10 years are described. Some correlations between enzymatic activities, ratios enzymatic activities/creatininuria and enzymatic activities/dayly proteic clearance are investigated. PMID:7375016

  16. Highly stereoselective biosynthesis of (R)-α-hydroxy carboxylic acids through rationally re-designed mutation of d-lactate dehydrogenase

    PubMed Central

    Zheng, Zhaojuan; Sheng, Binbin; Gao, Chao; Zhang, Haiwei; Qin, Tong; Ma, Cuiqing; Xu, Ping

    2013-01-01

    An NAD-dependent d-lactate dehydrogenase (d-nLDH) of Lactobacillus bulgaricus ATCC 11842 was rationally re-designed for asymmetric reduction of a homologous series of α-keto carboxylic acids such as phenylpyruvic acid (PPA), α-ketobutyric acid, α-ketovaleric acid, β-hydroxypyruvate. Compared with wild-type d-nLDH, the Y52L mutant d-nLDH showed elevated activities toward unnatural substrates especially with large substitutes at C-3. By the biocatalysis combined with a formate dehydrogenase for in situ generation of NADH, the corresponding (R)-α-hydroxy carboxylic acids could be produced at high yields and highly optical purities. Taking the production of chiral (R)-phenyllactic acid (PLA) from PPA for example, 50 mM PPA was completely reduced to (R)-PLA in 90 min with a high yield of 99.0% and a highly optical purity (>99.9% e.e.) by the coupling system. The results presented in this work suggest a promising alternative for the production of chiral α-hydroxy carboxylic acids. PMID:24292439

  17. Mechanism of the dehydrogenase reaction of DmpFG and analysis of inter-subunit channeling efficiency and thermodynamic parameters in the overall reaction.

    PubMed

    Smith, Natalie E; Tie, Wan Jun; Flematti, Gavin R; Stubbs, Keith A; Corry, Ben; Attwood, Paul V; Vrielink, Alice

    2013-08-01

    The bifunctional, microbial enzyme DmpFG is comprised of two subunits: the aldolase, DmpG, and the dehydrogenase, DmpF. DmpFG is of interest due to its ability to channel substrates between the two spatially distinct active sites. While the aldolase is well studied, significantly less is known about the dehydrogenase. Steady-state kinetic measurements of the reverse reaction of DmpF confirmed that the dehydrogenase uses a ping-pong mechanism, with substrate inhibition by acetyl CoA indicating that NAD(+)/NADH and CoA/acetyl CoA bind to the same site in DmpF. The Km of DmpF for exogenous acetaldehyde as a substrate was 23.7 mM, demonstrating the necessity for the channel to deliver acetaldehyde directly from the aldolase to the dehydrogenase active site. A channeling assay on the bifunctional enzyme gave an efficiency of 93% indicating that less than 10% of the toxic acetaldehyde leaks out of the channel into the bulk media, prior to reaching the dehydrogenase active site. The thermodynamic activation parameters of the reactions catalyzed by the aldolase, the dehydrogenase and the DmpFG complex were determined. The Gibb's free energy of activation for the dehydrogenase reaction was lower than that obtained for the full DmpFG reaction, in agreement with the high kcat obtained for the dehydrogenase reaction in isolation. Furthermore, although both the DmpF and DmpG reactions occur with small, favorable entropies of activation, the full DmpFG reaction occurs with a negative entropy of activation. This supports the concept of allosteric structural communication between the two enzymes to coordinate their activities. PMID:23742989

  18. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of L-lactate dehydrogenase and its H171C mutant from Bacillus subtilis

    SciTech Connect

    Zhang, Yanfeng; Gao, Xiaoli

    2012-08-31

    L-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to L-lactate with the simultaneous oxidation of NADH to NAD{sup +}. In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD{sup +} and the crystal diffracted to 2.38 {angstrom} resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 {angstrom}. BsLDH-H171C was also crystallized as the apoenzyme and in complex with NAD{sup +}, and data sets were collected to 2.20 and 2.49 {angstrom} resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 {angstrom} and a = b = 133.43, c = 99.09 {angstrom}, respectively. Tetramers were observed in the asymmetric units of all three crystals.

  19. Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: involvement of the Akt-mTOR signaling pathway.

    PubMed

    Zhao, Zhi; Han, Fanghai; Yang, Shibin; Wu, Jianhai; Zhan, Wenhua

    2015-03-01

    Cancer cells produce a substantial amount of energy through aerobic glycolysis even in the presence of adequate oxygen. Lactate dehydrogenase (LDH), a key regulator of glycolysis, reversibly catalyzes the conversion of pyruvate to lactate. Recently, oxamate, an inhibitor of LDH, has been shown to be a promising anticancer agent. However, the detailed mechanism remains largely unclear. In this study, we demonstrate that oxamate inhibits the viability of human gastric cancer cells in a dose- and time-dependent manner. In addition, treatment with oxamate induces protective autophagy in gastric cancer cells. Moreover, autophagy inhibited by chloroquine or Beclin 1 small interfering RNA (siRNA) enhances oxamate-induced apoptosis and proliferation inhibition. Further study has shown that oxamate treatment significantly augments reactive oxygen species (ROS) production. Furthermore, cells pretreated with N-acetyl cysteine (NAC), a ROS inhibitor, display significantly reduced ROS production and attenuated oxamate-induced autophagy. Finally, functional studies reveal that the Akt-mTOR signaling pathway, a major negative regulator of autophagy, is inhibited by oxamate. Together, our results provide new insights regarding the biological and anti-proliferative activities of oxamate against gastric cancer, and may offer a promising therapeutic strategy for gastric cancer. PMID:25524555

  20. Stable Suppression of Lactate Dehydrogenase Activity during Anoxia in the Foot Muscle of Littorina littorea and the Potential Role of Acetylation as a Novel Posttranslational Regulatory Mechanism

    PubMed Central

    Shahriari, Ali; Dawson, Neal J.; Bell, Ryan A. V.; Storey, Kenneth B.

    2013-01-01

    The intertidal marine snail, Littorina littorea, has evolved to withstand extended bouts of oxygen deprivation brought about by changing tides or other potentially harmful environmental conditions. Survival is dependent on a strong suppression of its metabolic rate and a drastic reorganization of its cellular biochemistry in order to maintain energy balance under fixed fuel reserves. Lactate dehydrogenase (LDH) is a crucial enzyme of anaerobic metabolism as it is typically responsible for the regeneration of NAD+, which allows for the continued functioning of glycolysis in the absence of oxygen. This study compared the kinetic and structural characteristics of the D-lactate specific LDH (E.C. 1.1.1.28) from foot muscle of aerobic control versus 24 h anoxia-exposed L. littorea. Anoxic LDH displayed a near 50% decrease in Vmax (pyruvate-reducing direction) as compared to control LDH. These kinetic differences suggest that there may be a stable modification and regulation of LDH during anoxia, and indeed, subsequent dot-blot analyses identified anoxic LDH as being significantly less acetylated than the corresponding control enzyme. Therefore, acetylation may be the regulatory mechanism that is responsible for the suppression of LDH activity during anoxia, which could allow for the production of alternative glycolytic end products that in turn would increase the ATP yield under fixed fuel reserves. PMID:24233354

  1. Use of tritiated prostaglandins in metabolism studies. I: Evaluation of the kinetic isotope effect in the prostaglandin dehydrogenase reactions

    SciTech Connect

    Moussard, C.; Alber, D.; Perruche, C.; Henry, J.C.

    1986-03-01

    Although numerous data exist concerning tritium kinetic isotope effect in enzymic reactions, little is related to the metabolism of tritiated prostaglandins. The present study reports an evaluation of the kinetic isotope effect which occurs during the oxidation of 15-hydroxyl group of tritium-labeled prostaglandins E2 and F2 alpha by the 15-hydroxyprostaglandin dehydrogenase and during the oxidation of 9-hydroxyl group of tritium-labeled prostaglandin F2 alpha by the 9-hydroxyprostaglandin dehydrogenase. The large kinetic isotope effect tends to limit the validity of the dehydrogenase assay using tritium-labeled prostaglandins as substrate. However these assays can be considered to be an indication of relative enzyme activity.

  2. Disequilibrium in the malate dehydrogenase reaction in rat liver mitochondria in vivo

    PubMed Central

    Heath, D. F.; Phillips, J. C.

    1972-01-01

    1. When [2-14C]pyruvate is injected into rats the C3-position of liver glutamate becomes more heavily labelled than the C2-position, thus establishing that oxaloacetate and fumarate are not in equilibrium in rat liver mitochondria in vivo. The amount of disequilibrium was shown to be simply related to the value that the C3-label/C2-label ratio would have were no label recycled. This ratio, z, was calculated for post-absorptive rats in environmental temperatures of 20° and 30°C from determinations of the distribution of label within glutamate 1, 3 and 10min after intravenous injection of [2-14C]pyruvate. The values of z (best estimate and range) were 1.65 (1.60–1.69) in rats at 20°C and 2.43 (2.23–2.63) in rats at 30°C. These values of z imply the following rates of interconversion in mitochondria of fumarate and oxaloacetate (in terms of the oxaloacetate→citrate flux, R) in rats at 20°C: [Formula: see text] and in rats at 30°C: [Formula: see text] 2. The kinetic parameters of malate dehydrogenase and fumarate hydratase and the intramitochondrial concentrations of NAD+ and NADH under (as far as could be judged) conditions in vivo were collated. From them and the best estimates of R now available were calculated the rates of interconversion of fumarate, malate and oxaloacetate required to give the found values of z. These rates showed that the fumarate hydratase reaction was nearly in equilibrium, but that the malate dehydrogenase reaction was considerably out of equilibrium. The calculations also led to the following conclusions. 3. In livers of rats at 20° and 30°C mitochondrial malate concentrations were respectively about 5 and 1.5 times mean cellular concentrations. 4. Mitochondrial oxaloacetate concentrations were less than 0.2 of the mean cellular concentrations. They were also only 0.65 and 0.55 of the equilibrium concentrations for the malate dehydrogenase reaction in rats at 20° and 30°C respectively. 5. Malate dehydrogenase activity was low because of the very low oxaloacetate concentrations in the mitochondria and the very small fraction of the enzyme complexed with NAD+, i.e. in each direction one substrate concentration was very sub-optimal. PMID:4342489

  3. Inhibition of lactate glucogneogenesis in rat kidney by dichloroacetate.

    PubMed Central

    Lacey, J H; Randle, P J

    1978-01-01

    1. Sodium dichloroacetate (1mM) inhibited glucose production from L-lactate in kidney-cortex slices from fed, starved or alloxan-diabetic rates. In general gluconeogenesis from other substrates was no inhibited. 2. Sodium dichloracetate inhibited glucose production from L-lactate but no from pyruvate in perfused isolated kidneys from normal or alloxan-diabetic rats. 3. Sodium dichloroacetate is an inhibitor of the pyruvate dehydrogenase kinase reaction and it effected conversion of pyruvate dehydrogenase into its its active (dephosphorylated) form in kidney in vivo. In general, pyruvate dehydrogenase was mainly in the active form in kidneys perfused or incubated with L-lactate and the inhibitory effect of dichloroacetate on glucose production was not dependent on activation of pyruvate dehydrogenase. 4. Balance data from kidney slices showed that dichloroacetate inhibits lactate uptake, glucose and pyruvate production from lactate, but no oxidation of lactate. 5. The mechanism of this effect of dichloroactetate on glucose production from lactate has not been fully defined, but evidence suggests that it may involve a fall in tissue pyruvate concentration and inhibition of pyruvate carboxylation. PMID:646800

  4. Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon Monoxide Dehydrogenase.

    PubMed

    Wang, Vincent C-C; Islam, Shams T A; Can, Mehmet; Ragsdale, Stephen W; Armstrong, Fraser A

    2015-10-29

    Protein film electrochemistry has been used to investigate reactions of highly active nickel-containing carbon monoxide dehydrogenases (CODHs). When attached to a pyrolytic graphite electrode, these enzymes behave as reversible electrocatalysts, displaying CO2 reduction or CO oxidation at minimal overpotential. The O2 sensitivity of CODH is suppressed by adding cyanide, a reversible inhibitor of CO oxidation, or by raising the electrode potential. Reduction of N2O, isoelectronic with CO2, is catalyzed by CODH, but the reaction is sluggish, despite a large overpotential, and results in inactivation. Production of H2 and formate under highly reducing conditions is consistent with calculations predicting that a nickel-hydrido species might be formed, but the very low rates suggest that such a species is not on the main catalytic pathway. PMID:26176986

  5. Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors

    PubMed Central

    Meng, Hengkai; Liu, Pi; Sun, Hongbing; Cai, Zhen; Zhou, Jie; Lin, Jianping; Li, Yin

    2016-01-01

    Engineering the cofactor specificity of a natural enzyme often results in a significant decrease in its activity on original cofactor. Here we report that a NADH-dependent dehydrogenase (d-LDH) from Lactobacillus delbrueckii 11842 can be rationally engineered to efficiently use both NADH and NADPH as cofactors. Point mutations on three amino acids (D176S, I177R, F178T) predicted by computational analysis resulted in a modified enzyme designated as d-LDH*. The Kcat/Km of the purified d-LDH* on NADPH increased approximately 184-fold while the Kcat/Km on NADH also significantly increased, showing for the first time that a rationally engineered d-LDH could exhibit comparable activity on both NADPH and NADH. Further kinetic analysis revealed that the enhanced affinity with NADH or NADPH and the significant increased Kcat of d-LDH* resulted in the significant increase of d-LDH* activity on both NADPH and NADH. This study thus demonstrated that the cofactor specificity of dehydrogenase can be broadened by using targeted engineering approach, and the engineered enzyme can efficiently function in NADH-rich, or NADPH-rich, or NADH and NADPH-rich environment. PMID:27109778

  6. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    SciTech Connect

    Malik, Radhika; Viola, Ronald E.

    2010-10-28

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  7. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. PMID:25988244

  8. Insulin, CCAAT/Enhancer-Binding Proteins and Lactate Regulate the Human 11β-Hydroxysteroid Dehydrogenase Type 2 Gene Expression in Colon Cancer Cell Lines

    PubMed Central

    Alikhani-Koupaei, Rasoul; Ignatova, Irena D.; Guettinger, Andreas; Frey, Felix J.; Frey, Brigitte M.

    2014-01-01

    11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon. PMID:25133511

  9. Improved Production of Homo-d-Lactic Acid via Xylose Fermentation by Introduction of Xylose Assimilation Genes and Redirection of the Phosphoketolase Pathway to the Pentose Phosphate Pathway in l-Lactate Dehydrogenase Gene-Deficient Lactobacillus plantarum▿

    PubMed Central

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose. PMID:19820147

  10. Inhibition of Growth by Combined Treatment with Inhibitors of Lactate Dehydrogenase and either Phenformin or Inhibitors of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3.

    PubMed

    Lea, Michael A; Guzman, Yolanda; Desbordes, Charles

    2016-04-01

    Enhanced glycolysis in cancer cells presents a target for chemotherapy. Previous studies have indicated that proliferation of cancer cells can be inhibited by treatment with phenformin and with an inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB) namely 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). In the present work, the action of two inhibitors that are effective at lower concentrations than 3PO, namely 1-(3-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PQP) and 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) were investigated. The inhibitors of lactate dehydrogenase (LDHA) studied in order of half-maximal inhibitory concentrations were methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (NHI-2) < isosafrole < oxamate. In colonic and bladder cancer cells, additive growth inhibitory effects were seen with the LDHA inhibitors, of which NHI-2 was effective at the lowest concentrations. Growth inhibition was generally greater with PFK15 than with PQP. The increased acidification of the culture medium and glucose uptake caused by phenformin was blocked by combined treatment with PFKFB3 or LDHA inhibitors. The results suggest that combined treatment with phenformin and inhibitors of glycolysis can cause additive inhibition of cell proliferation and may mitigate lactic acidosis caused by phenformin when used as a single agent. PMID:27069123

  11. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase.

    PubMed Central

    Llanos, R M; Harris, C J; Hillier, A J; Davidson, B E

    1993-01-01

    The discovery of a novel multicistronic operon that encodes phosphofructokinase, pyruvate kinase, and lactate dehydrogenase in the lactic acid bacterium Lactococcus lactis is reported. The three genes in the operon, designated pfk, pyk, and ldh, contain 340, 502, and 325 codons, respectively. The intergenic distances are 87 bp between pfk and pyk and 117 bp between pyk and ldh. Plasmids containing pfk and pyk conferred phosphofructokinase and pyruvate kinase activity, respectively, on their host. The identity of ldh was established previously by the same approach (R. M. Llanos, A. J. Hillier, and B. E. Davidson, J. Bacteriol. 174:6956-6964, 1992). Each of the genes is preceded by a potential ribosome binding site. The operon is expressed in a 4.1-kb transcript. The 5' end of the transcript was determined to be a G nucleotide positioned 81 bp upstream from the pfk start codon. The pattern of codon usage within the operon is highly biased, with 11 unused amino acid codons. This degree of bias suggests that the operon is highly expressed. The three proteins encoded on the operon are key enzymes in the Embden-Meyerhoff pathway, the central pathway of energy production and lactic acid synthesis in L. lactis. For this reason, we have called the operon the las (lactic acid synthesis) operon. Images PMID:8478320

  12. Incompatibility of silver nanoparticles with lactate dehydrogenase leakage assay for cellular viability test is attributed to protein binding and reactive oxygen species generation.

    PubMed

    Oh, Seok-Jeong; Kim, Hwa; Liu, Yingqiu; Han, Hyo-Kyung; Kwon, Kyenghee; Chang, Kyung-Hwa; Park, Kwangsik; Kim, Younghun; Shim, Kyuhwan; An, Seong Soo A; Lee, Moo-Yeol

    2014-03-21

    A growing number of studies report that conventional cytotoxicity assays are incompatible with certain nanoparticles (NPs) due to artifacts caused by the distinctive characteristics of NPs. Lactate dehydrogenase (LDH) leakage assays have inadequately detected cytotoxicity of silver nanoparticles (AgNPs), leading to research into the underlying mechanism. When ECV304 endothelial-like umbilical cells were treated with citrate-capped AgNPs (cAgNPs) or bare AgNPs (bAgNPs), the plasma membrane was disrupted, but the LDH leakage assay failed to detect cytotoxicity, indicating interference with the assay by AgNPs. Both cAgNPs and bAgNPs inactivated LDH directly when treated to cell lysate as expected. AgNPs adsorbed LDH and thus LDH, together with AgNPs, was removed from assay reactants during sample preparation, with a resultant underestimation of LDH leakage from cells. cAgNPs, but not bAgNPs, generated reactive oxygen species (ROS), which were successfully scavenged by N-acetylcysteine or ascorbic acid. LDH inhibition by cAgNPs could be restored partially by simultaneous treatment with those antioxidants, suggesting the contribution of ROS to LDH inactivation. Additionally, the composition of the protein corona surrounding AgNPs was identified employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In sum, the LDH leakage assay, a conventional cell viability test method, should be employed with caution when assessing cytotoxicity of AgNPs. PMID:24463055

  13. Baseline Serum Lactate Dehydrogenase Levels for Patients Treated With Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Predictor of Poor Prognosis and Subsequent Liver Metastasis

    SciTech Connect

    Zhou Guanqun; Tang Linglong; Mao Yanping; Chen Lei; Li Wenfei; Sun Ying; Liu Lizhi; Li Li; Lin Aihua; Ma Jun

    2012-03-01

    Purpose: To evaluate the prognostic value of baseline serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Cases of NPC (n = 465) that involved treatment with IMRT with or without chemotherapy were retrospectively analyzed. Results: The mean ({+-}SD) and median baseline serum LDH levels for this cohort were 172.77 {+-} 2.28 and 164.00 IU/L, respectively. Levels of LDH were significantly elevated in patients with locoregionally advanced disease (p = 0.016). Elevated LDH levels were identified as a prognostic factor for rates of overall survival (OS), disease-free survival (DFS), and distant metastasis-free survival (DMFS), with p values <0.001 in the univariate analysis and p < 0.001, p = 0.004, and p = 0.003, respectively, in the multivariate analysis. Correspondingly, the prognostic impact of patient LDH levels was found to be statistically significant for rates of OS, DFS, and DMFS (p = 0.028, 0.024, and 0.020, respectively). For patients who experienced subsequent liver failure after treatment, markedly higher pretreatment serum LDH levels were detected compared with patients experiencing distant metastasis events at other sites (p = 0.032). Conclusions: Elevated baseline LDH levels are associated with clinically advanced disease and are a poor prognosticator for OS, DFS, and DMFS for NPC patients. These results suggest that elevated serum levels of LDH should be considered when evaluating treatment options.

  14. A Streamlined, Automated Protocol for the Production of Milligram Quantities of Untagged Recombinant Rat Lactate Dehydrogenase A Using ÄKTAxpressTM

    PubMed Central

    Nowicki, Matthew W.; Blackburn, Elizabeth A.; McNae, Iain W.; Wear, Martin A.

    2015-01-01

    We developed an efficient, automated 2-step purification protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A (rLDHA) from E. coli, using the ÄKTAxpress™ chromatography system. Cation exchange followed by size exclusion results in average final purity in excess of 93% and yields ~ 14 milligrams per 50 ml of original cell culture in EnPresso B media, in under 8 hrs, including all primary sample processing and column equilibration steps. The protein is highly active and coherent biophysically and a viable alternative to the more problematic human homolog for structural and ligand-binding studies; an apo structure of untagged rLDHA was solved to a resolution 2.29 Å (PDB ID 5ES3). Our automated methodology uses generic commercially available pre-packed columns and simple buffers, and represents a robust standard method for the production of milligram amounts of untagged rLDHA, facilitating a novel fragment screening approach for new inhibitors. PMID:26717415

  15. Rationally re-designed mutation of NAD-independent l-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background NAD-independent l-lactate dehydrogenase (l-iLDH) from Pseudomonas stutzeri SDM can potentially be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather low activity towards aromatic 2-hydroxycarboxylic acids. Results Val-108 of l-iLDH was changed to Ala by rationally site-directed mutagenesis. The l-iLDH mutant exhibited much higher activity than wide-type l-iLDH towards l-mandelate, an aromatic 2-hydroxycarboxylic acid. Using the engineered Escherichia coli expressing the mutant l-iLDH as a biocatalyst, 40 g·L-1 of dl-mandelic acid was converted to 20.1 g·L-1 of d-mandelic acid (enantiomeric purity higher than 99.5%) and 19.3 g·L-1 of benzoylformic acid. Conclusions A new biocatalyst with high catalytic efficiency toward an unnatural substrate was constructed by rationally re-design mutagenesis. Two building block intermediates (optically pure d-mandelic acid and benzoylformic acid) were efficiently produced by the one-pot biotransformation system. PMID:23176608

  16. A comparison of the primary structures of lactate dehydrogenase isozymes M4 from giant panda, red panda, black bear and dog.

    PubMed

    Liang, S P; Zhang, L X

    1987-03-01

    Lactate dehydrogenase isozymes M4 have been isolated and purified from red panda (Ailurus fulgens), black bear (Selenarctos thibetanus) and dog (Canis familiars) by affinity chromatography and compared with that from giant panda (Ailuropoda melanoleuca). Experimental results have shown that the N-termini, C-termini and the molecular weights of LDH-M subunits of red panda, black bear and dog are the same as those of the LDH-M subunit of giant panda. Analysis and comparison of HPLC peptide maps from the tryptic digests of the isozymes of red panda, black bear and dog have shown that most of their peptide fragments had the same retention time and amino acid composition as the corresponding peptide fragments from giant panda. Fragments with different retention times and/or amino acid compositions were sequenced. Careful examination of those variant amino acid residues demonstrated clearly that the primary structure of giant panda LDH-M subunit is unique and it appears that the giant panda might be classified as an independent family. PMID:3629217

  17. Dynamics of a Lactate Dehydrogenase Polymorphism in the Wood Louse PORCELLIO SCABER Latr.: Evidence for Partial Assortative Mating and Heterosis in Natural Populations

    PubMed Central

    Sassaman, Clay

    1978-01-01

    Electrophoretic separation of lactate dehydrogenase (LDH) of Porcellio scaber from 14 natural populations in California, and one each in Oregon, Delaware and Massachusetts, indicates a biallelic polymorphism. Phenotypes are recovered from laboratory matings of virgin females in frequencies agreeing with simple Mendelian inheritance, and the frequency distributions of phenotypes in natural populations are typically in agreement with the appropriate Hardy-Weinberg distributions for these same populations. The same allele predominates in all natural populations examined. Temporal stability within populations suggests that the polymorphism is at, or near, equilibrium. The spatial distribution of allele frequencies, however, is apparently mosaic. Abrupt discontinuities in gene frequency over short distances (50 m to 1 km) suggest that interpopulation migration is insufficient to swamp local differences in gene frequency. Analysis of the transmission dynamics of the polymorphism in natural populations using mother-offspring genotype comparisons suggests that the allelic frequencies of transmitted male gametes are not independent of female genotype. Specifically, the observed mating scheme in natural populations appears to be partially assortative. Comparisons of progeny genotype distributions with yearling (or adult) genotype distributions from the same populations indicate a superior post-partum viability of heterozygous individuals relative to homozygotes. The distortion of progeny genotypic distributions created by assortment is thus apparently counteracted by subsequent heterosis. PMID:640378

  18. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis)

    PubMed Central

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-01-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×105 cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology. PMID:25049573

  19. Decreased hematocrit-to-viscosity ratio and increased lactate dehydrogenase level in patients with sickle cell anemia and recurrent leg ulcers.

    PubMed

    Connes, Philippe; Lamarre, Yann; Hardy-Dessources, Marie-Dominique; Lemonne, Nathalie; Waltz, Xavier; Mougenel, Danièle; Mukisi-Mukaza, Martin; Lalanne-Mistrih, Marie-Laure; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Romana, Marc

    2013-01-01

    Leg ulcer is a disabling complication in patients with sickle cell anemia (SCA) but the exact pathophysiological mechanisms are unknown. The aim of this study was to identify the hematological and hemorheological alterations associated with recurrent leg ulcers. Sixty-two SCA patients who never experienced leg ulcers (ULC-) and 13 SCA patients with a positive history of recurrent leg ulcers (ULC+)--with no leg ulcers at the time of the study--were recruited. All patients were in steady state condition. Blood was sampled to perform hematological, biochemical (hemolytic markers) and hemorheological analyses (blood viscosity, red blood cell deformability and aggregation properties). The hematocrit-to-viscosity ratio (HVR), which reflects the red blood cell oxygen transport efficiency, was calculated for each subject. Patients from the ULC+ group were older than patients from the ULC- group. Anemia (red blood cell count, hematocrit and hemoglobin levels) was more pronounced in the ULC+ group. Lactate dehydrogenase level was higher in the ULC+ group than in the ULC- group. Neither blood viscosity, nor RBC aggregation properties differed between the two groups. HVR was lower and RBC deformability tended to be reduced in the ULC+ group. Our study confirmed increased hemolytic rate and anemia in SCA patients with leg ulcers recurrence. Furthermore, our data suggest that although systemic blood viscosity is not a major factor involved in the pathophysiology of this complication, decreased red blood cell oxygen transport efficiency (i.e., low hematocrit/viscosity ratio) may play a role. PMID:24223994

  20. Decreased Hematocrit-To-Viscosity Ratio and Increased Lactate Dehydrogenase Level in Patients with Sickle Cell Anemia and Recurrent Leg Ulcers

    PubMed Central

    Connes, Philippe; Lamarre, Yann; Hardy-Dessources, Marie-Dominique; Lemonne, Nathalie; Waltz, Xavier; Mougenel, Danièle; Mukisi-Mukaza, Martin; Lalanne-Mistrih, Marie-Laure; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Romana, Marc

    2013-01-01

    Leg ulcer is a disabling complication in patients with sickle cell anemia (SCA) but the exact pathophysiological mechanisms are unknown. The aim of this study was to identify the hematological and hemorheological alterations associated with recurrent leg ulcers. Sixty-two SCA patients who never experienced leg ulcers (ULC-) and 13 SCA patients with a positive history of recurrent leg ulcers (ULC+) - but with no leg ulcers at the time of the study – were recruited. All patients were in steady state condition. Blood was sampled to perform hematological, biochemical (hemolytic markers) and hemorheological analyses (blood viscosity, red blood cell deformability and aggregation properties). The hematocrit-to-viscosity ratio (HVR), which reflects the red blood cell oxygen transport efficiency, was calculated for each subject. Patients from the ULC+ group were older than patients from the ULC- group. Anemia (red blood cell count, hematocrit and hemoglobin levels) was more pronounced in the ULC+ group. Lactate dehydrogenase level was higher in the ULC+ group than in the ULC- group. Neither blood viscosity, nor RBC aggregation properties differed between the two groups. HVR was lower and RBC deformability tended to be reduced in the ULC+ group. Our study confirmed increased hemolytic rate and anemia in SCA patients with leg ulcers recurrence. Furthermore, our data suggest that although systemic blood viscosity is not a major factor involved in the pathophysiology of this complication, decreased red blood cell oxygen transport efficiency (i.e., low hematocrit/viscosity ratio) may play a role. PMID:24223994

  1. Engineered topographic determinants with alpha beta, beta alpha beta, and beta alpha beta alpha topologies show high affinity binding to native protein antigen (lactate dehydrogenase-C4).

    PubMed

    Kobs-Conrad, S; Lee, H; DiGeorge, A M; Kaumaya, P T

    1993-12-01

    The use of peptides has attracted much interest in the development of synthetic vaccines. Although our current understanding of peptide antigens as immunogens has been greatly advanced recently, there still remain many obstacles. The B cell response elicited by a peptide antigen is governed by a number of poorly understood events such as epitope structure, T cell dependency and major histocompatibility complex restriction, adjuvancy, route of immunization, and immunogen stability. In this paper, we extend our previous studies on the problem of the topographical nature of antigenic sites on native protein antigens, in terms of how much molecular mimicry must be maintained in an antigenic determinant for the induction of high affinity antibodies specific for native protein. We show here that an antigenic epitope from the model contraceptive vaccine candidate lactate dehydrogenase (LDH-C4) can be rationally engineered into a highly structured conformation that mimics the corresponding site in the native three-dimensional protein. Our strategy is based on the selection of an antigenic segment which exhibits certain secondary structural properties and by design principles is fixed in three dimensions by appropriate grafting onto a supersecondary structural motif such as alpha beta, beta alpha beta, or beta alpha beta alpha. The biophysical data are consistent with the proposed secondary structures, and antibodies raised to the various construct show high affinity for the native protein. These studies lend further credence to the conformational nature of peptide epitopes and provide a basis for the rational design of peptide vaccines. PMID:8244959

  2. Reactions of d-glyceraldehyde 3-phosphate dehydrogenase facilitated by oxidized nicotinamide–adenine dinucleotide

    PubMed Central

    Trentham, D. R.

    1971-01-01

    Transient kinetic methods have been used to study the influence of NAD+ on the rate of elementary processes of the reversible oxidative phosphorylation of d-glyceraldehyde 3-phosphate catalysed by d-glyceraldehyde 3-phosphate dehydrogenase. In the pH range 5–8 NAD+ is bound to the enzyme during the following elementary processes of the mechanism: phosphorolysis of the acyl-enzyme, its formation from 1,3-diphosphoglycerate and the enzyme and the formation and breakdown of the glyceraldehyde 3-phosphate–enzyme complex. The rates of these four elementary processes only equal or exceed the turnover rate of the enzyme when NAD+ is bound and are as much as 104 times the rates in the absence of NAD+. Autocatalysis of the reductive dephosphorylation of 1,3-diphosphoglycerate occurs when glyceraldehyde 3-phosphate release is rate determining because NAD+ is a reaction product. An important feature of the enzyme mechanism is that the negative-free-energy change of a chemical reaction, acyl-enzyme formation, is linked in a simple way to the positive-free-energy change of a dissociation reaction, NAD+ release. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7.Fig. 9. PMID:4330968

  3. Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans)

    SciTech Connect

    Gozalo, Alfonso S.; Chavera, Alfonso; Montoya, Enrique J.; Takano, Juan; Weller, Richard E.

    2008-02-01

    The purpose of this study was to determine serum reference values for crea- tine kinase (CK), aspartate aminotransferase (AST), and lactate dehydroge- nase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Urine samples were also collected and semi-quantitative tests performed. There was no statistically significant difference between CK, AST, and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition, the CK/AST ratio revealed that 29% of the animals included in this study had values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries, and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman’s capsule, and peritubular space fibroplasia. These findings suggest that CK, AST, and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria, and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction.

  4. Studies of the reductive half-reaction of milk xanthine dehydrogenase.

    PubMed

    Hunt, J; Massey, V

    1994-07-22

    The reductive half-reaction of milk xanthine dehydrogenase (XDH) with NADH and with xanthine has been studied at pH 7.5, 25 degree C. NADH reduces XDH to the two-electron reduced form at a rate of 18 s-1, independent of NADH concentration over the range studied. Further reduction by NADH to the four-electron state is inhibited by excess NADH. Subsequent binding of NADH to the four-electron reduced form of the enzyme causes the redistribution of one electron from the flavin to the molybdenum center. The four-electron reduced species reached through reduction by NADH is the same as the species obtained upon reaction of NAD with fully reduced XDH. In contrast, xanthine rapidly reduces XDH to the four-electron level; further reduction is comparatively slow and is inhibited by excess xanthine. Studies using substoichiometric xanthine show that the reaction of XDH with 1 equivalent of xanthine involves rapid substrate binding and rapid reduction of the molybdenum center of the enzyme. Before the release of urate from the molybdenum active site, an electron is transferred at 15 s-1 from the reduced molybdenum center to one of the iron-sulfur centers of XDH. Urate is then released at a rate of 13 s-1, followed by a rapid electron redistribution within the protein. The reductive half-reaction of XDH with xanthine is rate-limiting in xanthine/NAD turnover, which appears to occur between the two- and four-electron reduced enzyme species. The reduction of XDH by substoichiometric amounts of the fluorescent substrate xanthopterin was also studied. This reaction, monitored by changes in both absorbance and fluorescence, was found to involve the formation of two molybdenum complexes (an Eox.S complex and an Ered.P complex) followed by the release of the product, leucopterin. PMID:8034647

  5. A reagentless amperometric electrode based on carbon paste, chemically modified with D-lactate dehydrogenase, NAD(+), and mediator containing polymer for D-lactic acid analysis. I. Construction, composition, and characterization.

    PubMed

    Shu, H C; Mattiasson, B; Persson, B; Nagy, G; Gorton, L; Sahni, S; Geng, L; Boguslavsky, L; Skotheim, T

    1995-05-01

    A reagentless carbon paste electrode was designed for D-lactic acid analysis in a flow injection system for the monitoring of the production of D-lactate in a batch fermentation. D-Lactate dehydrogenase, nicotinamide adenine dinucleotide (NAD(+)), a synthetic redox polymer containing covalently attached toluidine blue O as mediator, graphite powder, and paraffin oil were used for the construction of the modified carbon paste electrode. D-Lactate selectivity was indicated by insignificant responses from a variety of possible interfernces including L-lactate. The electrodes gave a linear response in the range between 0.05 and 5 mM D-lactate, with a detecting limit of 30 muM, allowing a sample throughput of 20 h(-1). Preliminary investigations were made by covering the electrode surface with electropolymerized membranes. Satisfactory stability was observed, indicated by a reproducibility of 3.3% relative standard deviation (RSD, n = 31), with a non-membrane-covered electrode for the analysis of D-lactate in fermentation broth. A long-term stability (230 broth samples) was proven, suggesting the electrodes to have a good potential for use in on-line monitoring of fermentation processes. (c) 1995 John Wiley & Sons, Inc. PMID:18623311

  6. Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenase and Δ1-Pyrroline-5-carboxylate Dehydrogenase Coupled Reaction of Proline Utilization A (PutA)*

    PubMed Central

    Moxley, Michael A.; Sanyal, Nikhilesh; Krishnan, Navasona; Tanner, John J.; Becker, Donald F.

    2014-01-01

    PutA (proline utilization A) is a large bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains that catalyze the oxidation of l-proline to l-glutamate in two successive reactions. In the PRODH active site, proline undergoes a two-electron oxidation to Δ1-pyrroline-5-carboxlylate, and the FAD cofactor is reduced. In the P5CDH active site, l-glutamate-γ-semialdehyde (the hydrolyzed form of Δ1-pyrroline-5-carboxylate) undergoes a two-electron oxidation in which a hydride is transferred to NAD+-producing NADH and glutamate. Here we report the first kinetic model for the overall PRODH-P5CDH reaction of a PutA enzyme. Global analysis of steady-state and transient kinetic data for the PRODH, P5CDH, and coupled PRODH-P5CDH reactions was used to test various models describing the conversion of proline to glutamate by Escherichia coli PutA. The coupled PRODH-P5CDH activity of PutA is best described by a mechanism in which the intermediate is not released into the bulk medium, i.e., substrate channeling. Unexpectedly, single-turnover kinetic experiments of the coupled PRODH-P5CDH reaction revealed that the rate of NADH formation is 20-fold slower than the steady-state turnover number for the overall reaction, implying that catalytic cycling speeds up throughput. We show that the limiting rate constant observed for NADH formation in the first turnover increases by almost 40-fold after multiple turnovers, achieving half of the steady-state value after 15 turnovers. These results suggest that EcPutA achieves an activated channeling state during the approach to steady state and is thus a new example of a hysteretic enzyme. Potential underlying causes of activation of channeling are discussed. PMID:24352662

  7. Testis-Specific Lactate Dehydrogenase (LDH-C4) in Skeletal Muscle Enhances a Pika’s Sprint-Running Capacity in Hypoxic Environment

    PubMed Central

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2015-01-01

    LDH-C4 is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, ldh-c was originally thought to be expressed only in testis and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia tolerant mammal living 3000–5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testis and sperm but also in somatic tissues of plateau pika. In this study, the effects of N-propyl oxamate and N-isopropyl oxamate on LDH isozyme kinetics were compared to screens for a selective inhibitor of LDH-C4. To reveal the role and physiological mechanism of LDH-C4 in skeletal muscle of plateau pika, we investigated the effect of N-isopropyl oxamate on the pika exercise tolerance as well as the physiological mechanism. Our results show that Ki of N-propyl oxamate and N-isopropyl oxamate for LDH-A4, LDH-B4, and LDH-C4 were 0.094 mmol/L and 0.462 mmol/L, 0.119 mmol/L and 0.248 mmol/L, and 0.015 mmol/L and 0.013 mmol/L, respectively. N-isopropyl oxamate is a powerful selective inhibitor of plateau pika LDH-C4. In our exercise tolerance experiment, groups treated with inhibitors had significantly lower swimming times than the uninhibited control group. The inhibition rates of LDH, LD, and ATP were 37.12%, 66.27%, and 32.42%, respectively. Our results suggested that ldh-c is expressed in the skeletal muscle of plateau pika, and at least 32.42% of ATP in the skeletal muscle is catalyzed by LDH-C4 by anaerobic glycolysis. This suggests that pika has reduced dependence on oxygen and enhanced adaptation to hypoxic environment due to increased anaerobic glycolysis by LDH-C4 in skeletal muscle. LDH-C4 in plateau pika plays the crucial role in anaerobic glycolysis and generates ATP rapidly since this is the role of LDH-A4 in most species on plain land, which provide evidence that the native humans and animals in Qinghai-Tibet plateau can adapt to the hypoxia environment. PMID:26262630

  8. Molecular Characterization of CcpA and Involvement of This Protein in Transcriptional Regulation of Lactate Dehydrogenase and Pyruvate Formate-Lyase in the Ruminal Bacterium Streptococcus bovis

    PubMed Central

    Asanuma, Narito; Yoshii, Takahiro; Hino, Tsuneo

    2004-01-01

    A ccpA gene that encodes global catabolite control protein A (CcpA) in Streptococcus bovis was identified and characterized, and the involvement of CcpA in transcriptional control of a gene (ldh) encoding lactate dehydrogenase (LDH) and a gene (pfl) encoding pyruvate formate-lyase (PFL) was examined. The ccpA gene was shown to be transcribed as a monocistronic operon. A catabolite-responsive element (cre) was found in the promoter region of ccpA, suggesting that ccpA transcription in S. bovis is autogenously regulated. CcpA required HPr that was phosphorylated at the serine residue at position 46 (HPr-[Ser-P]) for binding to the cre site, but glucose 6-phosphate, fructose 1,6-bisphosphate, and NADP had no effect on binding. Diauxic growth was observed when S. bovis was grown in a medium containing glucose and lactose, but it disappeared when ccpA was disrupted, which indicates that CcpA is involved in catabolite repression in S. bovis. The level of ccpA mRNA was higher when cells were grown on glucose than when they were grown on lactose, which was in line with the level of ldh mRNA. When cells were grown on glucose, the ldh mRNA level was lower but the pfl mRNA level was higher in a ccpA-disrupted mutant than in the parent strain, which suggests that ldh transcription is enhanced and pfl transcription is suppressed by CcpA. The ccpA-disrupted mutant produced less lactate and more formate than the parent, probably because the mutant had reduced LDH activity and elevated PFL activity. In the upper region of both ldh and pfl, a cre-like sequence was found, suggesting that the complex consisting of CcpA and HPr-[Ser-P] binds to the possible cre sites. Thus, CcpA appears to be involved in the global regulation of sugar utilization in S. bovis. PMID:15345406

  9. [The expression of the sperm-specific lactate dehydrogenase gene Ldh-c in plateau pika (Ochotona curzoniae) cardiac muscle and its effect on the anaerobic glycolysis].

    PubMed

    Li, Xiao; Wei, Lian; Wang, Yang; Xu, Li-Na; Wei, Lin-Na; Wei, Deng-Bang

    2015-06-25

    The plateau pika (Ochotona curzoniae) has a strong adaptability to hypoxic plateau environment. We found that the sperm-specific lactate dehydrogenase (LDH-C4) gene Ldh-c expressed in plateau pika cardiac muscle. In order to shed light on the effect of LDH-C4 on the anaerobic glycolysis in plateau pika cardiac muscle, 20 pikas were randomly divided into the inhibitor group and the control group, and the sample size of each group was 10. The pikas of inhibitor group were injected with 1 mL 1 mol/L N-isopropyl oxamate, a specific LDH-C4 inhibitor, in biceps femoris muscle of hind legs, each leg with 500 μL. The pikas of control group were injected with the same volume of normal saline (0.9% NaCl). The mRNA and protein expression levels of Ldh-c gene in plateau pika cardiac muscle were determined by real-time PCR and Western blot. The activities of LDH, and the contents of lactate (LD) and ATP in cardiac muscle were compared between the inhibitor group and the control group. The results showed that 1) the expression levels of Ldh-c mRNA and protein were 0.47 ± 0.06 and 0.68 ± 0.08, respectively; 2) 30 min after injection of 1 mL 1 mol/L N-isopropyl oxamate in biceps femoris muscle, the concentration of N-isopropyl oxamate in blood was 0.08 mmol/L; 3) in cardiac muscle of the inhibitor group and the control group, the LDH activities were (6.18 ± 0.48) U/mg and (9.08 ± 0.58) U/mg, the contents of LD were (0.21 ± 0.03) mmol/g and (0.26 ± 0.04) mmol/g, and the contents of ATP were (4.40 ± 0.69) nmol/mg and (6.18 ± 0.73) nmol/mg (P < 0.01); 5) the inhibition rates of N-isopropyl oxamate to LDH, LD and ATP were 31.98%, 20.90% and 28.70%, respectively. The results suggest that Ldh-c expresses in cardiac muscle of plateau pika, and the pika cardiac muscle may get at least 28% ATP for its activities by LDH-C4 catalyzed anaerobic glycolysis, which reduces the dependence on oxygen and enhances the adaptation to the hypoxic environments. PMID:26109304

  10. Testis-Specific Lactate Dehydrogenase (LDH-C4) in Skeletal Muscle Enhances a Pika's Sprint-Running Capacity in Hypoxic Environment.

    PubMed

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2015-08-01

    LDH-C4 is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, ldh-c was originally thought to be expressed only in testis and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia tolerant mammal living 3000-5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testis and sperm but also in somatic tissues of plateau pika. In this study, the effects of N-propyl oxamate and N-isopropyl oxamate on LDH isozyme kinetics were compared to screens for a selective inhibitor of LDH-C4. To reveal the role and physiological mechanism of LDH-C4 in skeletal muscle of plateau pika, we investigated the effect of N-isopropyl oxamate on the pika exercise tolerance as well as the physiological mechanism. Our results show that Ki of N-propyl oxamate and N-isopropyl oxamate for LDH-A4, LDH-B4, and LDH-C4 were 0.094 mmol/L and 0.462 mmol/L, 0.119 mmol/L and 0.248 mmol/L, and 0.015 mmol/L and 0.013 mmol/L, respectively. N-isopropyl oxamate is a powerful selective inhibitor of plateau pika LDH-C4. In our exercise tolerance experiment, groups treated with inhibitors had significantly lower swimming times than the uninhibited control group. The inhibition rates of LDH, LD, and ATP were 37.12%, 66.27%, and 32.42%, respectively. Our results suggested that ldh-c is expressed in the skeletal muscle of plateau pika, and at least 32.42% of ATP in the skeletal muscle is catalyzed by LDH-C4 by anaerobic glycolysis. This suggests that pika has reduced dependence on oxygen and enhanced adaptation to hypoxic environment due to increased anaerobic glycolysis by LDH-C4 in skeletal muscle. LDH-C4 in plateau pika plays the crucial role in anaerobic glycolysis and generates ATP rapidly since this is the role of LDH-A4 in most species on plain land, which provide evidence that the native humans and animals in Qinghai-Tibet plateau can adapt to the hypoxia environment. PMID:26262630

  11. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus.

    PubMed

    Carlson Scholz, Jodi A; Garg, Rohit; Compton, Susan R; Allore, Heather G; Zeiss, Caroline J; Uchio, Edward M

    2011-10-01

    The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology. PMID:22330347

  12. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis).

    PubMed

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-03-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×10(5) cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology. PMID:25049573

  13. Postnatal maturation of cytochrome oxidase and lactate dehydrogenase activity and age-dependent consequences of lithium-pilocarpine status epilepticus in the rat: a regional histoenzymology study.

    PubMed

    Raffo, Emmanuel; Koning, Estelle; Nehlig, Astrid

    2004-10-01

    The lithium-pilocarpine (Li-Pilo) model of epilepsy reproduces some pathophysiological, temporal, and developmental features of human temporal lobe epilepsy. In this model, rates of cerebral glucose utilization measured by the [(14)C]2-deoxyglucose technique increased during the initial status epilepticus (SE) and decreased during the latent or chronic periods. To correlate these metabolic changes with the activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histoenzymology the regional activity of two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation, at various times after SE induced by Li-Pilo in 10- (P10), 21-d-old (P21) and adult rats for CO and in adult rats only for LDH. CO activity was slightly affected in P10 and P21 rats only at 4 and 24 h and normalized by 14 d after SE. In adult rats, CO activity decreased at 4 and 24 h in damaged areas, like entorhinal cortex, hippocampal CA3 area, amygdala, and thalamus. At 14 d after SE, CO activity was decreased only in entorhinal cortex and increased in brainstem regions involved in the remote control of seizures. In adult rats, LDH activity decreased at 24 h and 14 d after SE in sensorimotor and entorhinal cortex. These data show that the enzymatic equipment underlying the metabolism of glucose is not severely affected by Li-Pilo SE and confirm our previous observations concerning the relative metabolic hyperactivity of brain regions involved in the seizure circuit despite marked neuronal loss. PMID:15295083

  14. A study of salivary lactate dehydrogenase isoenzyme levels in patients with oral leukoplakia and squamous cell carcinoma by gel electrophoresis method

    PubMed Central

    Joshi, Priya Shirish; Golgire, Someshwar

    2014-01-01

    Context: The enzyme lactate dehydrogenase (LDH), which is found in almost all the cells of body tissues, can be separated into five fractions and the isoenzyme pattern is believed to vary according to the metabolic requirement of each tissue. LDH concentration in saliva, as an expression of cellular necrosis, could be considered to be a specific indicator for oral lesions that affect the integrity of the oral mucosa. Aim: The present study was designed to evaluate salivary LDH isoenzyme pattern in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) and to correlate between LDH isoenzyme levels and histopathologic grading in selected cases of OL and OSCC. Materials and Methods: Clinically diagnosed 30 cases each of OL and OSCC were selected for the study and 30 healthy individuals of comparable age served as control. Unstimulated whole saliva was aseptically collected and was processed immediately for LDH isoenzymes measurement by agarose gel electrophoresis. Biopsy specimen obtained was processed and stained by hematoxylin and eosin. Sections of OL and OSCC cases were scrutinized histopathologically and appropriately graded for epithelial dysplasia and differentiation of carcinoma respectively. Statistical Analysis Used: Two sample t test for testing the significance of difference between two group means was used. Results and Conclusion: The present salivary analysis for LDH isoenzyme reveals an overall increased salivary LDH isoenzyme level in OL and OSCC cases and a significant correlation between levels of salivary LDH isoenzymes and histopathologic grades of dysplasia in OL and OSCC. Salivary analysis of LDH will definitely provide the clinician and/or the patient himself with an efficient, non invasive and friendly new tool for diagnosis and monitoring of oral precancer and cancer. PMID:25364177

  15. Karnofsky Performance Status and Lactate Dehydrogenase Predict the Benefit of Palliative Whole-Brain Irradiation in Patients With Advanced Intra- and Extracranial Metastases From Malignant Melanoma

    SciTech Connect

    Partl, Richard; Richtig, Erika; Avian, Alexander; Berghold, Andrea; Kapp, Karin S.

    2013-03-01

    Purpose: To determine prognostic factors that allow the selection of melanoma patients with advanced intra- and extracerebral metastatic disease for palliative whole-brain radiation therapy (WBRT) or best supportive care. Methods and Materials: This was a retrospective study of 87 patients who underwent palliative WBRT between 1988 and 2009 for progressive or multiple cerebral metastases at presentation. Uni- and multivariate analysis took into account the following patient- and tumor-associated factors: gender and age, Karnofsky performance status (KPS), neurologic symptoms, serum lactate dehydrogenase (LDH) level, number of intracranial metastases, previous resection or stereotactic radiosurgery of brain metastases, number of extracranial metastasis sites, and local recurrences as well as regional lymph node metastases at the time of WBRT. Results: In univariate analysis, KPS, LDH, number of intracranial metastases, and neurologic symptoms had a significant influence on overall survival. In multivariate survival analysis, KPS and LDH remained as significant prognostic factors, with hazard ratios of 3.3 (95% confidence interval [CI] 1.6-6.5) and 2.8 (95% CI 1.6-4.9), respectively. Patients with KPS ≥70 and LDH ≤240 U/L had a median survival of 191 days; patients with KPS ≥70 and LDH >240 U/L, 96 days; patients with KPS <70 and LDH ≤240 U/L, 47 days; and patients with KPS <70 and LDH >240 U/L, only 34 days. Conclusions: Karnofsky performance status and serum LDH values indicate whether patients with advanced intra- and extracranial tumor manifestations are candidates for palliative WBRT or best supportive care.

  16. Long term intensive exercise training leads to a higher plasma malate/lactate dehydrogenase (M/L) ratio and increased level of lipid mobilization in horses.

    PubMed

    Li, Gebin; Lee, Peter; Mori, Nobuko; Yamamoto, Ichiro; Arai, Toshiro

    2012-06-01

    Continuous high intensity training may induce alterations to enzyme activities related to glucose and lipid metabolism in horses. In our study, five Thoroughbred race horses (3 male and 2 female, avg age=5 yrs old) were compared against five riding horses (1 male, 1 female, 3 gelding, avg age=13 yrs old) in terms of energy metabolism, by examining plasma malate (MDH) and lactate (LDH) dehydrogenase activities and M/L ratio. MDH is involved in NADH and ATP generation, whereas LDH can convert NADH back into NAD(+) for ATP generation. An increase in plasma M/L ratio can reflect heightened energy metabolism in the liver and skeletal muscle of horses adapted to continuous intensive exercise. Moreover, plasma lipid metabolism analytes (adiponectin, NEFA, total cholesterol (T-Cho), and triglycerides (TG)) can reflect changes to lipolysis rate, which can also indicate a change in energy metabolism. Overall, race horses demonstrated increased MDH and LDH activity in plasma (4x and 2x greater, respectively), in addition to a plasma M/L ratio twice as high as that of riding horses (2.0 vs 1.0). In addition, race horses also demonstrated significantly higher levels of plasma NEFA (50% greater), TG (2x greater), and T-Cho (20% greater) as compared to riding horses. Therefore, race horse muscles may have adapted to prolonged high intensity endurance exercise by gaining a higher oxidative capacity and an increased capacity for fat utilization as an energy source, resulting in heightened energy metabolism and increased rate of lipid mobilization. PMID:22297553

  17. Dacarbazine with or without oblimersen (a Bcl-2 antisense oligonucleotide) in chemotherapy-naive patients with advanced melanoma and low-normal serum lactate dehydrogenase: 'The AGENDA trial'.

    PubMed

    Bedikian, Agop Y; Garbe, Claus; Conry, Robert; Lebbe, Celeste; Grob, Jean J

    2014-06-01

    In a previous large randomized, open-label study, retrospective subset analysis revealed that the addition of the Bcl-2 antisense oligonucleotide oblimersen to dacarbazine (Dac) significantly improved overall survival, progression-free survival, and the response rate in chemotherapy-naive patients with advanced melanoma and normal baseline serum lactate dehydrogenase (LDH) levels. To confirm and expand on this observation, we conducted a prospective double-blind, placebo-controlled study to determine whether oblimersen augmented the efficacy of Dac in advanced melanoma patients with low-normal baseline LDH levels. A total of 314 chemotherapy-naive patients were randomly assigned to receive Dac (1000 mg/m(2)) preceded by a 5-day continuous intravenous infusion of either oblimersen sodium (7 mg/kg/day) or placebo every 21 days for less than eight cycles. Co-primary efficacy endpoints were overall survival and progression-free survival. Response and progression of the disease were assessed by independent blinded review of computed tomography scan images. No difference in overall nor progression-free survival was observed between the Dac-oblimersen and Dac-placebo groups. Although the overall (17.2 vs. 12.1%) and durable (10.8 vs. 7.6%) response rates numerically favored Dac-oblimersen over Dac-placebo, they did not differ significantly (P=0.19 and 0.32, respectively). The incidence of hematologic adverse events, particularly thrombocytopenia and neutropenia, was higher in the Dac-oblimersen group than in the Dac-placebo group. Withdrawals from the study because of treatment-related adverse events were low (i.e. <2.5%) in both groups. The addition of oblimersen to Dac did not significantly improve overall survival nor progression-free survival in patients with advanced melanoma and low-normal levels of LDH at baseline. PMID:24667300

  18. Reaction of pyranose dehydrogenase from Agaricus meleagris with its carbohydrate substrates.

    PubMed

    Graf, Michael M H; Sucharitakul, Jeerus; Bren, Urban; Chu, Dinh Binh; Koellensperger, Gunda; Hann, Stephan; Furtmüller, Paul G; Obinger, Christian; Peterbauer, Clemens K; Oostenbrink, Chris; Chaiyen, Pimchai; Haltrich, Dietmar

    2015-11-01

    Monomeric Agaricus meleagris pyranose dehydrogenase (AmPDH) belongs to the glucose-methanol-choline family of oxidoreductases. An FAD cofactor is covalently tethered to His103 of the enzyme. AmPDH can double oxidize various mono- and oligosaccharides at different positions (C1 to C4). To study the structure/function relationship of selected active-site residues of AmPDH pertaining to substrate (carbohydrate) turnover in more detail, several active-site variants were generated, heterologously expressed in Pichia pastoris, and characterized by biochemical, biophysical and computational means. The crystal structure of AmPDH shows two active-site histidines, both of which could take on the role as the catalytic base in the reductive half-reaction. Steady-state kinetics revealed that His512 is the only catalytic base because H512A showed a reduction in (kcat /KM )glucose by a factor of 10(5) , whereas this catalytic efficiency was reduced by two or three orders of magnitude for His556 variants (H556A, H556N). This was further corroborated by transient-state kinetics, where a comparable decrease in the reductive rate constant was observed for H556A, whereas the rate constant for the oxidative half-reaction (using benzoquinone as substrate) was increased for H556A compared to recombinant wild-type AmPDH. Steady-state kinetics furthermore indicated that Gln392, Tyr510, Val511 and His556 are important for the catalytic efficiency of PDH. Molecular dynamics (MD) simulations and free energy calculations were used to predict d-glucose oxidation sites, which were validated by GC-MS measurements. These simulations also suggest that van der Waals interactions are the main driving force for substrate recognition and binding. PMID:26284701

  19. Chitosan promotes immune responses, ameliorates glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, but enhances lactate dehydrogenase levels in normal mice in vivo

    PubMed Central

    YEH, MING-YANG; SHIH, YUNG-LUEN; CHUNG, HSUEH-YU; CHOU, JASON; LU, HSU-FENG; LIU, CHIA-HUI; LIU, JIA-YOU; HUANG, WEN-WEN; PENG, SHU-FEN; WU, LUNG-YUAN; CHUNG, JING-GUNG

    2016-01-01

    Chitosan, a naturally derived polymer, has been shown to possess antimicrobial and anti-inflammatory properties; however, little is known about the effect of chitosan on the immune responses and glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) activities in normal mice. The aim of the present study was to investigate whether chitosan has an effect on the immune responses and GOT, GPT and LDH activities in mice in vivo. BALB/c mice were divided into four groups. The negative control group was treated with a normal diet; the positive control group was treated with a normal diet plus orally administered acetic acid and two treatment groups were treated with a normal diet plus orally administered chitosan in acetic acid at doses of 5 and 20 mg/kg, respectively, every other day for 24 days. Mice were weighed during the treatment, and following the treatment, blood was collected, and liver and spleen samples were isolated and weighted. The blood samples were used for measurement of white blood cell markers, and the spleen samples were used for analysis of phagocytosis, natural killer (NK) cell activity and cell proliferation using flow cytometry. The results indicated that chitosan did not markedly affect the body, liver and spleen weights at either dose. Chitosan increased the percentages of CD3 (T-cell marker), CD19 (B-cell marker), CD11b (monocytes) and Mac-3 (macrophages) when compared with the control group. However, chitosan did not affect the phagocytic activity of macrophages in peripheral blood mononuclear cells, although it decreased it in the peritoneal cavity. Treatment with 20 mg/kg chitosan led to a reduction in the cytotoxic activity of NK cells at an effector to target ratio of 25:1. Chitosan did not significantly promote B-cell proliferation in lipopolysaccharide-pretreated cells, but significantly decreased T-cell proliferation in concanavalin A-pretreated cells, and decreased the activity of GOT and GPT compared with that in the acetic acid-treated group,. In addition, it significantly increased LDH activity, to a level similar to that in normal mice, indicating that chitosan can protect against liver injury. PMID:27073440

  20. Structural features of aluminium(III) complexes with bioligands in glutamate dehydrogenase reaction system--a review.

    PubMed

    Yang, Xiaodi; Zhang, Qianqian; Li, Laifa; Shen, Renfang

    2007-09-01

    Aluminium(III) complexes are essential for understanding the toxicity, bioavailability and transport mechanisms of aluminium in environmental and biological systems. Since elucidation of the exact structures of these weakly coordinated systems is very difficult, the structures of Al(III) complexes in glutamate dehydrogenase reactions system were investigated recently from the following four aspects: (1) Constitutional studies: The keto-enol tautomerism of the complexes between aluminium(III) ion and alpha-ketoglutarate ligands in acidic aqueous solutions was studied. It is clearly demonstrated that Al(III) can promote the keto-enol tautomerization of alpha-ketoglutarate. (2) Configurational studies: Compared with L-Glu, the complex stability of D-Glu-Al is stronger, especially for the tridentate species. The result was further supported by computational results in the molecular mechanics model with the UFF forcefield. It is implied that Al(III) complexation may favor the racemization from L- to D-amino acids. (3) Conformational studies: At biologically relevant pH and concentrations of Al(III) and NADH, Al(III) was found to increase the percentage of folded forms of NADH, which results in reducing the activity of the coenzyme NADH in the hollow-dehydrogenase reactions system. However, the conformations of NAD(+) and Al-NAD(+) are dependent upon the solvents and other ligands in the complexes. (4) Biological effects: The effects of Al(III) on the activity of the glutamate dehydrogenase-catalyzed reactions were studied by monitoring the differential-pulse polarography reduction current of NAD(+). At the physiologically relevant pH values (pH 6.5 and 7.5), the activity of the GDH enzyme was strongly dependent on the concentration of the Al(III) in the assayed mixture solutions. PMID:17643493

  1. Highly efficient L-lactate production using engineered Escherichia coli with dissimilar temperature optima for L-lactate formation and cell growth

    PubMed Central

    2014-01-01

    L-Lactic acid, one of the most important chiral molecules and organic acids, is produced via pyruvate from carbohydrates in diverse microorganisms catalyzed by an NAD+-dependent L-lactate dehydrogenase. Naturally, Escherichia coli does not produce L-lactate in noticeable amounts, but can catabolize it via a dehydrogenation reaction mediated by an FMN-dependent L-lactate dehydrogenase. In aims to make the E. coli strain to produce L-lactate, three L-lactate dehydrogenase genes from different bacteria were cloned and expressed. The L-lactate producing strains, 090B1 (B0013-070, ΔldhA::diflldD::Pldh-ldhLca), 090B2 (B0013-070, ΔldhA::diflldD::Pldh-ldhStrb) and 090B3 (B0013-070, ΔldhA::diflldD::Pldh-ldhBcoa) were developed from a previously developed D-lactate over-producing strain, E. coli strain B0013-070 (ack-ptappspflBdldpoxBadhEfrdA) by: (1) deleting ldhA to block D-lactate formation, (2) deleting lldD to block the conversion of L-lactate to pyruvate, and (3) expressing an L-lactate dehydrogenase (L-LDH) to convert pyruvate to L-lactate under the control of the ldhA promoter. Fermentation tests were carried out in a shaking flask and in a 25-l bioreactor. Strains 090B1, 090B2 or 090B3 were shown to metabolize glucose to L-lactate instead of D-lactate. However, L-lactate yield and cell growth rates were significantly different among the metabolically engineered strains which can be attributed to a variation between temperature optimum for cell growth and temperature optimum for enzymatic activity of individual L-LDH. In a temperature-shifting fermentation process (cells grown at 37°C and L-lactate formed at 42°C), E. coli 090B3 was able to produce 142.2 g/l of L-lactate with no more than 1.2 g/l of by-products (mainly acetate, pyruvate and succinate) accumulated. In conclusion, the production of lactate by E. coli is limited by the competition relationship between cell growth and lactate synthesis. Enzymatic properties, especially the thermodynamics of an L-LDH can be effectively used as a factor to regulate a metabolic pathway and its metabolic flux for efficient L-lactate production. Highlights The enzymatic thermodynamics was used as a tool for metabolic regulation. ► minimizing the activity of L-lactate dehydrogenase in growth phase improved biomass accumulation. ► maximizing the activity of L-lactate dehydrogenase improved lactate productivity in production phase. PMID:24884499

  2. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate.

    PubMed Central

    Veiga da Cunha, M; Foster, M A

    1992-01-01

    The simultaneous fermentation of glycerol and sugar by lactobacillus brevis B22 and Lactobacillus buchneri B190 increases both the growth rate and total growth. The reduction of glycerol to 1,3-propanediol by the lactobacilli was found to influence the metabolism of the sugar cofermented by channelling some of the intermediate metabolites (e.g., pyruvate) towards NADH-producing (rather than NADH-consuming) reactions. Ultimately, the absolute requirement for NADH to prevent the accumulation of 3-hydroxypropionaldehyde leads to a novel lactate-glycerol cofermentation. As a result, additional ATP can be made not only by (i) converting pyruvate to acetate via acetyl phosphate rather than to the ethanol usually found and (ii) oxidizing part of the intermediate pyruvate to acetate instead of the usual reduction to lactate but also by (iii) reoxidation of accumulated lactate to acetate via pyruvate. The conversion of lactate to pyruvate is probably catalyzed by NAD-independent lactate dehydrogenases that are found only in the cultures oxidizing lactate and producing 1,3-propanediol, suggesting a correlation between the expression of these enzymes and a raised intracellular NAD/NADH ratio. The enzymes metabolizing glycerol (glycerol dehydratase and 1,3-propanediol dehydrogenase) were expressed in concert without necessary induction by added glycerol, although their expression may also be influenced by the intracellular NAD/NADH ratio set by the different carbohydrates fermented. PMID:1732191

  3. Functional Exchangeability of Oxidase and Dehydrogenase Reactions in the Biosynthesis of Hydroxyphenylglycine, a Nonribosomal Peptide Building Block.

    PubMed

    Diez, Veronica; Loznik, Mark; Taylor, Sandra; Winn, Michael; Rattray, Nicholas J W; Podmore, Helen; Micklefield, Jason; Goodacre, Royston; Medema, Marnix H; Müller, Ulrike; Bovenberg, Roel; Janssen, Dick B; Takano, Eriko

    2015-07-17

    A key problem in the engineering of pathways for the production of pharmaceutical compounds is the limited diversity of biosynthetic enzymes, which restricts the attainability of suitable traits such as less harmful byproducts, enhanced expression features, or different cofactor requirements. A promising synthetic biology approach is to redesign the biosynthetic pathway by replacing the native enzymes by heterologous proteins from unrelated pathways. In this study, we applied this method to effectively re-engineer the biosynthesis of hydroxyphenylglycine (HPG), a building block for the calcium-dependent antibiotic of Streptomyces coelicolor, a nonribosomal peptide. A key step in HPG biosynthesis is the conversion of 4-hydroxymandelate to 4-hydroxyphenylglyoxylate, catalyzed by hydroxymandelate oxidase (HmO), with concomitant generation of H2O2. The same reaction can also be catalyzed by O2-independent mandelate dehydrogenase (MdlB), which is a catabolic enzyme involved in bacterial mandelate utilization. In this work, we engineered alternative HPG biosynthetic pathways by replacing the native HmO in S. coelicolor by both heterologous oxidases and MdlB dehydrogenases from various sources and confirmed the restoration of calcium-dependent antibiotic biosynthesis by biological and UHPLC-MS analysis. The alternative enzymes were isolated and kinetically characterized, confirming their divergent substrate specificities and catalytic mechanisms. These results demonstrate that heterologous enzymes with different physiological contexts can be used in a Streptomyces host to provide an expanded library of enzymatic reactions for a synthetic biology approach. This study thus broadens the options for the engineering of antibiotic production by using enzymes with different catalytic and structural features. PMID:25713978

  4. Pre-steady state transients in the Drosophila alcohol dehydrogenase catalyzed reaction: isotope effects and stereospecificity

    SciTech Connect

    Place, A.R.; Eccleston, J.F.

    1987-05-01

    The alcohol dehydrogenase (ADH) isolated from Drosophila is unique among alcohol metabolizing enzymes by not requiring metals for catalysis, by showing 4-pro-S (B-sided) hydride transfer stereospecificity, and by possessing a greater catalytic turnover rate for secondary alcohols than for primary alcohols. They have extended their studies on the kinetic mechanism for this enzyme by examining the pre-steady state transients of ternary complex interconversion using stopped-flow fluorescence methods. When enzyme and a 30-fold molar excess of NADH is mixed with excess acetadehyde, methyl ethyl ketone (MEK), or cyclohexanone a rapid (> 100 s/sup -1/) transient is observe before the steady-state. The rates are insensitive to isotope substitution. With the substrate MEK, the rate and amplitude suggests a single turnover of the enzyme. Similar pre-steady state transients are observed when enzyme and a 50-fold molar excess of NAD/sup +/ is mixed with ethanol, 2-propanol, and cyclohexanol. The rates show a hyperbolic concentration dependence and a deuterium isotope effect. With d/sub 6/-deuteroethanol the transient no longer occurs in the pre-steady state. When the optical isomers of secondary alcohols are used as substrates, transients are observed only in the R-(-) isomers for all chain lengths. With 2-S(+)-heptanol and 2-S(+)-octanol no transients occur.

  5. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    PubMed

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed. PMID:25895450

  6. Kinetic studies of oxidized nicotinamide–adenine dinucleotide-facilitated reactions of d-glyceraldehyde 3-phosphate dehydrogenase

    PubMed Central

    Harrigan, Patricia J.; Trentham, David R.

    1974-01-01

    The kinetics of the acylation of d-glyceraldehyde 3-phosphate dehydrogenase from pig muscle by 1,3-diphosphoglycerate in the presence of NAD+ has been analysed by using the relaxation temperature-jump method. At pH7.2 and 8°C the rate of acylation of the NAD+-bound (or holo-) enzyme was 3.3×105m−1·s−1 and the rate of phosphorolysis, the reverse reaction, was 7.5×103m−1·s−1. After a temperature-jump perturbation the equilibrium of NAD+ binding to the acyl-enzyme was re-established more rapidly than that of the acylation. The rate of phosphorolysis of the apoacylenzyme from sturgeon muscle and of aldehyde release from the d-glyceraldehyde 3-phosphate–apoenzyme complex were ≤40m−1·s−1 and ≤12s−1 respectively at pH8.0 and 22°C, which means that both processes are too slow to contribute significantly to the reaction pathway of the reversible NAD+-linked oxidative phosphorylation of d-glyceraldehyde 3-phosphate. Phosphorolysis of both acyl-apoenzyme and acyl-holoenzyme was first-order in Pi up to 100mm-Pi and more. PO43− could be the reactive species of the phosphorolysis of the acyl-holoenzyme, in which case phosphorolysis is a diffusion-controlled reaction, although other kinetically indistinguishable rate equations for the reaction are possible. ImagesFig. 1.Fig. 3.Fig. 5.Fig. 7. PMID:4376943

  7. Complete amino acid sequence and characterization of the reaction mechanism of a glucosamine-induced novel alcohol dehydrogenase from Agrobacterium radiobacter (tumefaciens).

    PubMed

    Iwamoto, Ryoko; Kubota, Humie; Hosoki, Tomoko; Ikehara, Kenji; Tanaka, Mieko

    2002-02-15

    A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex. PMID:11831851

  8. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis.

    PubMed

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-11-14

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme. PMID:25258317

  9. Equating salivary lactate dehydrogenase (LDH) with LDH-5 expression in patients with oral squamous cell carcinoma: An insight into metabolic reprogramming of cancer cell as a predictor of aggressive phenotype.

    PubMed

    Saluja, Tajindra Singh; Spadigam, Anita; Dhupar, Anita; Syed, Shaheen

    2016-04-01

    Oral squamous cell carcinoma (OSCC) is the sixth most common human malignancy. According to World Health Organization, oral cancer has been reported to have the highest morbidity and mortality and a survival rate of approximately 50 % at 5 years from diagnosis. This is attributed to the subjectivity in TNM staging and histological grading which may result in less than optimum treatment outcomes including tumour recurrence. One of the hallmarks of cancer is aerobic glycolysis also known as the Warburg effect. This glycolytic phenotype (hypoxic state) not only confers immortality to cancer cells, but also correlates with the belligerent behaviour of various malignancies and is reflected as an increase in the expression of lactate dehydrogenase 5 (LDH-5), the main isoform of LDH catalysing the conversion of pyruvate to lactate during glycolysis. The diagnostic role of salivary LDH in assessing the metabolic phenotype of oral cancer has not been studied. Since salivary LDH is mainly sourced from oral epithelial cells, any pathological changes in the epithelium should reflect diagnostically in saliva. Thus in our current research, we made an attempt to ascertain the biological behaviour and aggressiveness of OSCC by appraising its metabolic phenotype as indirectly reflected in salivary LDH activity. We found that salivary LDH can be used to assess the aggressiveness of different histological grades of OSCC. For the first time, an evidence of differing metabolic behaviour in similar histologic tumour grade is presented. Taken together, our study examines the inclusion of salivary LDH as potential diagnostic parameter and therapeutic index in OSCC. PMID:26577856

  10. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma1

    PubMed Central

    Koukourakis, Michael I; Giatromanolaki, Alexandra; Sivridis, Efthimios; Gatter, Kevin C; Harris, Adrian L; “Tumor and Angiogenesis Research Group”

    2005-01-01

    Abstract Pyruvate dehydrogenase (PDH) catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP) to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs). Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5). In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect). Although hypoxic intratumoral conditions account for HIF1α stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIF1α stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIF1α stabilization and “aerobic glycolysis.” However, about half of PDH-deficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time. PMID:15736311

  11. Elevated levels of plasma lactate dehydrogenase is an unfavorable prognostic factor in patients with epidermal growth factor receptor mutation-positive non-small cell lung cancer, receiving treatment with gefitinib or erlotinib

    PubMed Central

    INOMATA, MINEHIKO; HAYASHI, RYUJI; TANAKA, HIROAKI; SHIMOKAWA, KAZUKI; TOKUI, KOTARO; TAKA, CHIHIRO; OKAZAWA, SEISUKE; KAMBARA, KENTA; ICHIKAWA, TOMOMI; YAMADA, TORU; MIWA, TOSHIRO; KASHII, TATSUHIKO; MATSUI, SHOKO; TOBE, KAZUYUKI

    2016-01-01

    Treatment with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has been shown to prolong survival in patients with EGFR mutation-positive non-small cell lung cancer (NSCLC). The present study performed a retrospective analysis to investigate the association between the plasma lactate dehydrogenase (LDH) levels and survival in patients with EGFR mutation-positive NSCLC receiving treatment with EGFR-TKIs. The medical charts of patients with EGFR mutation-positive NSCLC who were receiving treatment with EGFR-TKIs at Toyama University Hospital between 2007 and 2014 were assessed. The data from 65 patients were included in the analysis. Patients with higher plasma LDH levels exhibited shorter progression-free survival (6.2 vs. 13.2 months; P<0.01) and overall survival (10.5 vs. 36.1 months; P<0.01) periods compared with patients with lower plasma LDH levels. A Cox proportional hazards model identified that the plasma LDH level was associated with the progression-free survival (P=0.05) and overall survival (P<0.01). An association was demonstrated between the pretreatment plasma LDH level and the survival in patients with EGFR mutation-positive NSCLC receiving treatment with EGFR-TKIs. Close observation is required in EGFR mutation-positive NSCLC patients exhibiting high plasma LDH levels following the initiation of treatment with EGFR-TKIs.

  12. C58 and AKR mice of all ages develop motor neuron disease after lactate dehydrogenase-elevating virus infection but only if antiviral immune responses are blocked by chemical or genetic means or as a result of old age.

    PubMed

    Anderson, G W; Even, C; Rowland, R R; Palmer, G A; Harty, J T; Plagemann, P G

    1995-09-01

    Age-dependent poliomyelitis is a paralytic disease of C58 and AKR mice caused by cytocidal infection of anterior horn neurons with neuropathogenic strains of lactate dehydrogenase-elevating virus (LDV). The motor neurons are rendered LDV-permissive via an unknown mechanism through the expression of ecotropic murine leukemia virus (MuLV) in central nervous system (CNS) glial cells. Only old mice develop paralytic disease after LDV infection, but mice 5-6 months old or older can be rendered susceptible by suppression of anti-LDV immune responses by a single treatment with cyclophosphamide or X-irradiation before LDV infection. Younger mice appeared to be resistant in spite of this immunosuppresive treatment. The present results confirm that mice as young as 1 month of age possess CNS cells expressing ecotropic MuLV and show that these mice are susceptible to paralytic LDV infection provided their anti-LDV immune responses are blocked for an extended period of time by repeated cyclophosphamide treatments or by a genetic defect. Furthermore, old mice become naturally susceptible to paralytic LDV infection because of an impaired ability to mount a motor neuron protective anti-LDV immune response. PMID:9222362

  13. Efficient Production of Optically Pure d-Lactic Acid from Raw Corn Starch by Using a Genetically Modified l-Lactate Dehydrogenase Gene-Deficient and α-Amylase-Secreting Lactobacillus plantarum Strain▿

    PubMed Central

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct d-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct d-lactic acid fermentation from raw starch. PMID:19011066

  14. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    PubMed

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch. PMID:19011066

  15. [The development of transaminase activity (SGOT and SGPT), lactate dehydrogenase and alkaline phosphatase in the blood plasma of calves up to the age of 4 months].

    PubMed

    Surynek, J; Kucera, A; Janů, J

    1976-11-01

    A trial was performed in 204 healthy calves (heifers) of the Bohemian Spotted breed in the post-natal period from birth to the age of four months. The activities of the following enzymes in blood plasma were determined: L-aspartate: 2-oxoglutarate: aminotransferase, EC.2.6.1.1. (GOT), L-alanine: oxoglutarate: aminotransferase, EC.2.6.1.2. (GPT), L-lactate: NAD oxidoreductase, EC.1.1.1.27 (LDH), and orthophosphoric acid monoester phosphohydrolase, EC.3.1.3.1. (alkaline phosphatase). The calves were divided into age categories according to the date of birth with an interval of one week. GOT activity in blood plasma increased significantly until the age of eight weeks (from the original value of 1.1708 +/- 0.2598 micronmol ml-1 to 1.8150 +/- 0.6362 micronmol ml-1, with the maximum of 2.0317 +/- 0.7777 micronmol ml-1 of plasma in the sixth week). In the subsequent period the GOT curve has not a characteristic course. While the activity of GOT increased in the first weeks after birth, the activity of GPT showed a significant drop (from the original level of 0.9000 +/- 0.3364 micronmol ml-1 to the minimum of 0.3675 +/- 0.1901 micronmol ml-1 of plasma in the seventh week); from the 10th week on the values rise so that at the end of the period of study they reach almost the same levels as in calves in the first postnatal week. The activity of LDH in blood plasma remains at almost the same level in the first five weeks after birth (between 43.4025 +/- 8.4893 micronmol ml-1 and 46.3792 +/- 14.8952 micronmol ml-1 of plasma); it was at a statistically significantly higher level only in a short period between the 7th and 10th week after birth. The highest values of alkaline phosphatase in blood plasma were recorded at the age of two or three weeks (maximum in the second week 23.9833 +/- 9.0945 micronmol ml-1 of plasma); from the fourth week on, the values of alkaline phosphatase are significantly lower until the end of the test period, ranging betweek 5.3133 +/- 1.6017 micronmol ml-1 and 7.5425 +/- 2.2437 micronmol ml-1 of plasma. Changes conditioned by postnatal development were observed in the development of all the enzymatic activities under study, the greatest changes being observed in alkaline phosphatase. PMID:828994

  16. Measurement of lactate formation from glucose using (6- sup 3 H)- and (6- sup 14 C)glucose in humans

    SciTech Connect

    Virkamaeki, A.P.; Puhakainen, I.; Nurjhan, N.; Gerich, J.E.; Yki-Jaervinen, H. )

    1990-09-01

    To assess the validity of determining the origin of plasma lactate from the ratio of lactate and glucose specific activities (SA) during infusion of labeled glucose, normal subjects received infusions of (6-3H)- and (6-14C)glucose for 4 h after a 12 h fast, and, on another day, cold glucose labeled with both tracers during 4-6 h of hyperinsulinemia (approximately 650 microU/ml). Basally, less lactate was derived from plasma glucose when measured with (6-3H)glucose (27 +/- 2%) than with (6-14C)glucose (40 +/- 2%, P less than 0.001). Insulin did not increase the percent of lactate derived from plasma glucose when measured with (6-3H)glucose (29 +/- 2%) but did increase when measured with (6-14C)glucose (60 +/- 4%). The arterialized blood (A) (3H)lactate SA was 30-40% higher (P less than 0.01) than deep venous blood (V) (3H)lactate SA, whereas A and V (14C)lactate SA were similar. During conversion of alanine to lactate with glutamic-pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) in vitro, 32 +/- 2% of 3H in (3-3H)alanine was found in water and 68 +/- 2% in lactate. During infusion of (6-3H)- and (6-14C)glucose, the ratio of (14C)alanine to lactate SA (0.88 +/- 0.05) was less than the ratio of (3H)alanine to lactate SA (0.31 +/- 0.03, P less than 0.001). In conclusion (1) loss of 3H relative to 14C from position 6 in glucose occurs during lactate formation in extrahepatic tissues possibly due to the GPT reaction (alanine conversion to pyruvate), and (2) even under supraphysiologic hyperinsulinemic conditions not all of plasma lactate originates from plasma glucose.

  17. Luteal 3beta-hydroxysteroid dehydrogenase and 20alpha-hydroxysteroid dehydrogenase activities in the rat corpus luteum of pseudopregnancy: Effect of the deciduoma reaction

    PubMed Central

    Clementi, Marisa A; Deis, Ricardo P; Telleria, Carlos M

    2004-01-01

    Background In the rat, the maintenance of gestation is dependent on progesterone production from the corpora lutea (CL), which are under the control of pituitary, decidual and placental hormones. The luteal metabolism of progesterone during gestation has been amply studied. However, the regulation of progesterone synthesis and degradation during pseudopregnancy (PSP), in which the CL are mainly under the control of pituitary prolactin (PRL), is not well known. The objectives of this investigation were: i) to study the luteal metabolism of progesterone during PSP by measuring the activities of the enzymes 3beta-hydroxysteroid dehydrogenase (3betaHSD), involved in progesterone biosynthesis, and that of 20alpha-hydroxysteroid dehydrogenase (20alphaHSD), involved in progesterone catabolism; and ii) to determine the role of decidualization on progesterone metabolism in PSP. Methods PSP was induced mechanically at 10:00 h on the estrus of 4-day cycling Wistar rats, and the stimulus for decidualization was provided by scratching the uterus on day 4 of PSP. 3betaHSD and 20alphaHSD activities were measured in the CL isolated from ovaries of PSP rats using a spectrophotometric method. Serum concentrations of progesterone, PRL, androstenedione, and estradiol were measured by radioimmunoassay (RIA). Results The PSP stage induced mechanically in cycling rats lasted 11.3 ± 0.09 days (n = 14). Serum progesterone concentration was high until day 10 of PSP, and declined thereafter. Serum PRL concentration was high on the first days of PSP but decreased significantly from days 6 to 9, having minimal values on days 10 and 11. Luteal 3betaHSD activities were elevated until day 6 of PSP, after which they progressively declined, reaching minimal values at the end of PSP. Luteal 20alphaHSD activities were very low until day 9, but abruptly increased at the end of PSP. When the deciduoma was induced by scratching the uterus of pseudopregnant animals on day 4 (PSP+D), PSP was extended to 18 ± 2.2 days (n = 8). In PSP + D rats, serum progesterone and PRL levels, and luteal 3betaHSD activities were higher than in pseudopregnant rats on day 11. Decidualization also prevented the increase in luteal 20alphaHSD activities observed on day 11 of PSP. Administration of the dopaminergic agonist CB154 in PSP + D rats on day 10 of PSP induced a decline in both serum PRL and progesterone on day 11 of PSP, values that were not different from that of pseudopregnant controls. Conclusions We have established that during the final period of PSP a decline in progesterone biosynthesis occurs before the increase in progesterone catabolism. We have also shown that decidualization in pseudopregnant rats extends the life of the CL by prolonging the production of pituitary PRL, and by maintaining high 3betaHSD and low 20alphaHSD activities within the CL leading to sustained production of progesterone. PMID:15140254

  18. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (1996), pp. 154 to 155, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous...

  19. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.

    PubMed

    Bekers, K M; Heijnen, J J; van Gulik, W M

    2015-08-01

    With the current quantitative metabolomics techniques, only whole-cell concentrations of NAD and NADH can be quantified. These measurements cannot provide information on the in vivo redox state of the cells, which is determined by the ratio of the free forms only. In this work we quantified free NAD:NADH ratios in yeast under anaerobic conditions, using alcohol dehydrogenase (ADH) and the lumped reaction of glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase as sensor reactions. We showed that, with an alternative accurate acetaldehyde determination method, based on rapid sampling, instantaneous derivatization with 2,4 diaminophenol hydrazine (DNPH) and quantification with HPLC, the ADH-catalysed oxidation of ethanol to acetaldehyde can be applied as a relatively fast and simple sensor reaction to quantify the free NAD:NADH ratio under anaerobic conditions. We evaluated the applicability of ADH as a sensor reaction in the yeast Saccharomyces cerevisiae, grown in anaerobic glucose-limited chemostats under steady-state and dynamic conditions. The results found in this study showed that the cytosolic redox status (NAD:NADH ratio) of yeast is at least one order of magnitude lower, and is thus much more reduced, under anaerobic conditions compared to aerobic glucose-limited steady-state conditions. The more reduced state of the cytosol under anaerobic conditions has major implications for (central) metabolism. Accurate determination of the free NAD:NADH ratio is therefore of importance for the unravelling of in vivo enzyme kinetics and to judge accurately the thermodynamic reversibility of each redox reaction. PMID:26059529

  20. Infection of central nervous system cells by ecotropic murine leukemia virus in C58 and AKR mice and in in utero-infected CE/J mice predisposes mice to paralytic infection by lactate dehydrogenase-elevating virus.

    PubMed

    Anderson, G W; Palmer, G A; Rowland, R R; Even, C; Plagemann, P G

    1995-01-01

    Certain mouse strains, such as AKR and C58, which possess N-tropic, ecotropic murine leukemia virus (MuLV) proviruses and are homozygous at the Fv-1n locus are specifically susceptible to paralytic infection (age-dependent poliomyelitis [ADPM]) by lactate dehydrogenase-elevating virus (LDV). Our results provide an explanation for this genetic linkage and directly prove that ecotropic MuLV infection of spinal cord cells is responsible for rendering anterior horn neurons susceptible to cytocidal LDV infection, which is the cause of the paralytic disease. Northern (RNA) blot hybridization of total tissue RNA and in situ hybridization of tissue sections demonstrated that only mice harboring central nervous system (CNS) cells that expressed ecotropic MuLV were susceptible to ADPM. Our evidence indicates that the ecotropic MuLV RNA is transcribed in CNS cells from ecotropic MuLV proviruses that have been acquired by infection with exogenous ecotropic MuLV, probably during embryogenesis, the time when germ line proviruses in AKR and C58 mice first become activated. In young mice, MuLV RNA-containing cells were found exclusively in white-matter tracts and therefore were glial cells. An increase in the ADPM susceptibility of the mice with advancing age correlated with the presence of an increased number of ecotropic MuLV RNA-containing cells in the spinal cords which, in turn, correlated with an increase in the number of unmethylated proviruses in the DNA extracted from spinal cords. Studies with AKXD recombinant inbred strains showed that possession of a single replication-competent ecotropic MuLV provirus (emv-11) by Fv-1n/n mice was sufficient to result in ecotropic MuLV infection of CNS cells and ADPM susceptibility. In contrast, no ecotropic MuLV RNA-positive cells were present in the CNSs of mice carrying defective ecotropic MuLV proviruses (emv-3 or emv-13) or in which ecotropic MuLV replication was blocked by the Fv-1n/b or Fv-1b/b phenotype. Such mice were resistant to paralytic LDV infection. In utero infection of CE/J mice, which are devoid of any endogenous ecotropic MuLVs, with the infectious clone of emv-11 (AKR-623) resulted in the infection of CNS cells, and the mice became ADPM susceptible, whereas littermates that had not become infected with ecotropic MuLV remained ADPM resistant. PMID:7983723

  1. Combining Parasite Lactate Dehydrogenase-Based and Histidine-Rich Protein 2-Based Rapid Tests To Improve Specificity for Diagnosis of Malaria Due to Plasmodium knowlesi and Other Plasmodium Species in Sabah, Malaysia

    PubMed Central

    William, Timothy; Barber, Bridget E.; Parameswaran, Uma; Bird, Elspeth; Piera, Kim; Aziz, Ammar; Dhanaraj, Prabakaran; Yeo, Tsin W.; Anstey, Nicholas M.

    2014-01-01

    Plasmodium knowlesi causes severe and fatal malaria in Malaysia. Microscopic misdiagnosis is common and may delay appropriate treatment. P. knowlesi can cross-react with “species-specific” parasite lactate dehydrogenase (pLDH) monoclonal antibodies used in rapid diagnostic tests (RDTs) to detect P. falciparum and P. vivax. At one tertiary-care hospital and two district hospitals in Sabah, we prospectively evaluated two combination RDTs for malaria diagnosis by using both a pan-Plasmodium-pLDH (pan-pLDH)/P. falciparum-specific-pLDH (Pf-pLDH) RDT (OptiMAL-IT) and a non-P. falciparum VOM-pLDH/Pf-HRP2 RDT (CareStart). Differential cross-reactivity among these combinations was hypothesized to differentiate P. knowlesi from other Plasmodium monoinfections. Among 323 patients with PCR-confirmed P. knowlesi (n = 193), P. falciparum (n = 93), and P. vivax (n = 37) monoinfections, the VOM-pLDH individual component had the highest sensitivity for nonsevere (35%; 95% confidence interval [CI], 27 to 43%) and severe (92%; CI, 81 to 100%) P. knowlesi malaria. CareStart demonstrated a P. knowlesi sensitivity of 42% (CI, 34 to 49%) and specificity of 74% (CI, 65 to 82%), a P. vivax sensitivity of 83% (CI, 66 to 93%) and specificity of 71% (CI, 65 to 76%), and a P. falciparum sensitivity of 97% (CI, 90 to 99%) and specificity of 99% (CI, 97 to 100%). OptiMAL-IT demonstrated a P. knowlesi sensitivity of 32% (CI, 25 to 39%) and specificity of 21% (CI, 15 to 29%), a P. vivax sensitivity of 60% (CI, 42 to 75%) and specificity of 97% (CI, 94 to 99%), and a P. falciparum sensitivity of 82% (CI, 72 to 89%) and specificity of 39% (CI, 33 to 46%). The combination of CareStart plus OptiMAL-IT for P. knowlesi using predefined criteria gave a sensitivity of 25% (CI, 19 to 32%) and specificity of 97% (CI, 92 to 99%). Combining two RDT combinations was highly specific for P. knowlesi malaria diagnosis; however, sensitivity was poor. The specificity of pLDH RDTs was decreased for P. vivax and P. falciparum because of P. knowlesi cross-reactivity and cautions against their use alone in areas where P. knowlesi malaria is endemic. Sensitive P. knowlesi-specific RDTs and/or alternative molecular diagnostic tools are needed in areas where P. knowlesi malaria is endemic. PMID:24696029

  2. Combining parasite lactate dehydrogenase-based and histidine-rich protein 2-based rapid tests to improve specificity for diagnosis of malaria Due to Plasmodium knowlesi and other Plasmodium species in Sabah, Malaysia.

    PubMed

    Grigg, Matthew J; William, Timothy; Barber, Bridget E; Parameswaran, Uma; Bird, Elspeth; Piera, Kim; Aziz, Ammar; Dhanaraj, Prabakaran; Yeo, Tsin W; Anstey, Nicholas M

    2014-06-01

    Plasmodium knowlesi causes severe and fatal malaria in Malaysia. Microscopic misdiagnosis is common and may delay appropriate treatment. P. knowlesi can cross-react with "species-specific" parasite lactate dehydrogenase (pLDH) monoclonal antibodies used in rapid diagnostic tests (RDTs) to detect P. falciparum and P. vivax. At one tertiary-care hospital and two district hospitals in Sabah, we prospectively evaluated two combination RDTs for malaria diagnosis by using both a pan-Plasmodium-pLDH (pan-pLDH)/P. falciparum-specific-pLDH (Pf-pLDH) RDT (OptiMAL-IT) and a non-P. falciparum VOM-pLDH/Pf-HRP2 RDT (CareStart). Differential cross-reactivity among these combinations was hypothesized to differentiate P. knowlesi from other Plasmodium monoinfections. Among 323 patients with PCR-confirmed P. knowlesi (n = 193), P. falciparum (n = 93), and P. vivax (n = 37) monoinfections, the VOM-pLDH individual component had the highest sensitivity for nonsevere (35%; 95% confidence interval [CI], 27 to 43%) and severe (92%; CI, 81 to 100%) P. knowlesi malaria. CareStart demonstrated a P. knowlesi sensitivity of 42% (CI, 34 to 49%) and specificity of 74% (CI, 65 to 82%), a P. vivax sensitivity of 83% (CI, 66 to 93%) and specificity of 71% (CI, 65 to 76%), and a P. falciparum sensitivity of 97% (CI, 90 to 99%) and specificity of 99% (CI, 97 to 100%). OptiMAL-IT demonstrated a P. knowlesi sensitivity of 32% (CI, 25 to 39%) and specificity of 21% (CI, 15 to 29%), a P. vivax sensitivity of 60% (CI, 42 to 75%) and specificity of 97% (CI, 94 to 99%), and a P. falciparum sensitivity of 82% (CI, 72 to 89%) and specificity of 39% (CI, 33 to 46%). The combination of CareStart plus OptiMAL-IT for P. knowlesi using predefined criteria gave a sensitivity of 25% (CI, 19 to 32%) and specificity of 97% (CI, 92 to 99%). Combining two RDT combinations was highly specific for P. knowlesi malaria diagnosis; however, sensitivity was poor. The specificity of pLDH RDTs was decreased for P. vivax and P. falciparum because of P. knowlesi cross-reactivity and cautions against their use alone in areas where P. knowlesi malaria is endemic. Sensitive P. knowlesi-specific RDTs and/or alternative molecular diagnostic tools are needed in areas where P. knowlesi malaria is endemic. PMID:24696029

  3. Mechanism of action of butyryl-CoA dehydrogenase: reactions with acetylenic, olefinic, and fluorinated substrate analogues.

    PubMed

    Fendrich, G; Abeles, R H

    1982-12-21

    The acetylenic thio ester (3-pentynoyl)pantetheine irreversibly inactivates butyryl-CoA dehydrogenase from Megasphaera elsdenii. The inactivator becomes covalently attached to the protein (0.61 +/- 0.1 mol of 14C-labeled inactivator/mol of enzyme flavin). No modification of the flavin cofactor is seen. The covalent enzyme-inactivator adduct is labile toward base and neutral hydroxylamine. These treatments release 85 +/- 5% of the incorporated 14C label from the protein. Base-catalyzed hydrolysis of the adduct releases 3-oxopentanoic acid (0.6 mol/mol of incorporated inactivator). Treatment with hydroxylamine leads to formation of a hydroxamic acid on the protein (0.64 +/- 0.09 mol/mol of incorporated inactivator). The covalent adduct can be reduced with sodium borohydride with release of 1,3-pentanediol. Hydrolysis of the protein with 6 N HCl after sodium borohydride reduction yields 2-amino-5-hydroxyvaleric acid and proline. We conclude that the inactivator has reacted with the gamma-carboxyl group of a glutamate residue at the enzyme active site. The inactivation proceeds through enzyme-catalyzed rearrangement of the acetylene to an allene, followed by nucleophilic addition of the carboxyl group to the allene. (3-Chloro-3-butenoyl)pantetheine irreversibly inactivates the enzyme in a fashion similar to the acetylenic thio ester and also modifies a glutamate residue. Butyryl-CoA dehydrogenase catalyzes the isomerization of (3-butenoyl)pantetheine to (2-butenoyl)pantetheine. The enzyme catalyzes the elimination of HF from 3-fluoropropionyl-CoA and (3,3-difluorobutyryl)pantetheine. We suggest, that these results together support an oxidation mechanism for butyryl-CoA dehydrogenase which is initiated by alpha-proton abstraction. PMID:7159554

  4. Crystal structure of (S)-3-hydroxybutyryl-CoA dehydrogenase from Clostridium butyricum and its mutations that enhance reaction kinetics.

    PubMed

    Kim, Eun-Jung; Kim, Jieun; Ahn, Jae-Woo; Kim, Yeo-Jin; Chang, Jeong Ho; Kim, Kyung-Jin

    2014-12-28

    3-Hydroxybutyryl-CoA dehydrogenase is an enzyme that catalyzes the second step in the biosynthesis of n-butanol from acetyl-CoA, in which acetoacetyl-CoA is reduced to 3-hydroxybutyryl-CoA. To understand the molecular mechanisms of n-butanol biosynthesis, we determined the crystal structure of 3-hydroxybutyryl-CoA dehydrogenase from Clostridium butyricum (CbHBD). The monomer structure of CbHBD exhibits a two-domain topology, with N- and C-terminal domains, and the dimerization of the enzyme was mostly constituted at the C-terminal domain. The mode of cofactor binding to CbHBD was elucidated by determining the crystal structure of the enzyme in complex with NAD(+). We also determined the enzyme's structure in complex with its acetoacetyl-CoA substrate, revealing that the adenosine diphosphate moiety was not highly stabilized compared with the remainder of the acetoacetyl-CoA molecule. Using this structural information, we performed a series of sitedirected mutagenesis experiments on the enzyme, such as changing residues located near the substrate-binding site, and finally developed a highly efficient CbHBD K50A/K54A/L232Y triple mutant enzyme that exhibited approximately 5-fold higher enzyme activity than did the wild type. The increased enzyme activity of the mutant was confirmed by enzyme kinetic measurements. The highly efficient mutant enzyme should be useful for increasing the production rate of n-butanol. PMID:25112316

  5. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  6. Lactate Test

    MedlinePlus

    ... services. Advertising & Sponsorship: Policy | Opportunities PLEASE NOTE: Your web browser does not have JavaScript enabled. Unless you enable Javascript , your ability ... CSF Lactate Formal name: Lactate Related tests: Blood Gases , Pyruvate, CSF Analysis , Comprehensive Metabolic Panel , Basic Metabolic Panel , Electrolytes , Emergency ...

  7. Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production

    PubMed Central

    Wang, Yujiao; Lv, Min; Zhang, Yingxin; Xiao, Xieyue; Jiang, Tianyi; Zhang, Wen; Hu, Chunhui; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-01-01

    As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and reconstruction of the lactate utilization system in the P. putida strain, a novel biocatalyst that only exhibited NAD-independent d-lactate dehydrogenase activity was prepared and used in l-2-hydroxy-carboxylates production. Since the side reaction catalyzed by the NAD-independent l-lactate dehydrogenase was eliminated in whole cells of recombinant P. putida KT2440, two important l-2-hydroxy-carboxylates (l-lactate and l-2-hydroxybutyrate) were produced in high yield and high optical purity by kinetic resolution of racemic 2-hydroxy carboxylic acids. The results highlight the promise in biocatalysis by the biotechnologically important organism P. putida KT2440 through genomic analysis and recombination. PMID:25373400

  8. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sulfate with ammonium lactate. (b) The ingredient meets the specifications of the Food Chemicals Codex...) and 1 CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave. NW.... It is prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction...

  9. Importance of glutamate 87 and the substrate α-amine for the reaction catalyzed by D-arginine dehydrogenase.

    PubMed

    Ball, Jacob; Bui, Quan V V; Gannavaram, Swathi; Gadda, Giovanni

    2015-02-15

    Pseudomonas aeruginosa D-arginine dehydrogenase (PaDADH) catalyzes the oxidation of D-arginine to iminoarginine, which is non-enzymatically hydrolyzed to 2-ketoarginine and ammonia. Here, site-directed mutagenesis and pH effects were used to investigate binding and catalysis of zwitterionic and cationic substrates for the enzyme. An unprotonated group with apparent pKa value ⩾7.9 is required for binding D-arginine or D-lysine, but not D-methionine or D-leucine. This group is E87, as suggested by its replacement with leucine. An unprotonated group with pKa of 9.5, which persists in the H48F and E87L variants, is required for amine oxidation with all substrates. Since Y53 and Y249 were previously ruled out, the pKa is assigned to the substrate α-NH3(+) group, which previous QM/MM and Kd pH-profile demonstrated to be protonated for preferred binding to the enzyme. Lack of pH effects on the (D)kred with D-leucine established 9.5 as the intrinsic pKa, and D-leucine as a non-sticky substrate. D-Arginine, D-lysine and D-methionine and their corresponding iminoproducts were significantly stickier than D-leucine, as indicated by apparent pKa values <9.5 in both kcat/Km and kcat. Restricted proton movements in catalysis were established from hollowed kcat pH profiles in wild-type PaDADH with D-lysine and in the H48F and E87L enzymes with D-arginine. PMID:25637657

  10. Reactions of monodithiolene tungsten(VI) sulfido complexes with copper(I) in relation to the structure of the active site of carbon monoxide dehydrogenase.

    PubMed

    Groysman, Stanislav; Majumdar, Amit; Zheng, Shao-Liang; Holm, R H

    2010-02-01

    Reactions directed at the synthesis of structural analogues of the active site of molybdenum-containing carbon monoxide dehydrogenase have been investigated utilizing [WO(2)S(bdt)](2-) (1) and [WOS(2)(bdt)](2-) (2) and sterically hindered [Cu(R)L] or [Cu(SSiR'(3))(2)](-) as reactants. All successful reactions of 2 afford the binuclear W(VI)/Cu(I) products [WO(bdt)(mu(2)-S)(2)Cu(L)](2-/-) with L = carbene (3), Ar*S (4), Ar* (7), SSiR(3) (R = Ph (5), Pr(i) (6)). Similarly, [W(bdt)(OSiPh(3))S(2)](-) leads to [W(bdt)(OSiPh(3))(mu(2)-S)(2)Cu(SAr*)](-) (8). These complexes, with apical oxo and basal dithiolato and sulfido coordination (excluding 8), terminal thiolate ligation at Cu(I) (4-6, 8), and W-(mu(2)-S)-Cu bridging, bear a structural resemblance to the enzyme site. Differences include two bridges instead of one and the absence of basal oxo/hydroxo ligation. Complex 8 differs from the others by utilizing apical and basal sulfido ligands in bridge formation. Related reaction systems based on 1 gave 4 in small yield or product mixtures in which the desired monobridged complex [WO(2)(bdt)(mu(2)-S)Cu(R)](2-) was not detected. Mass spectrometric analysis of the reaction system with L = carbene suggests that any monobridged species forms may converted to the dibridged form by disproportionation. In these experiments, the use of W(VI) preserves the structural integrity of Mo(VI), whose analogues of 1 and 2 have not been isolated. (Ar* = 2,6-bis(2,4,6-triisopropylphenyl)phenyl, bdt = benzene-1,2-dithiolate(2-)). PMID:20030373

  11. Functional role of a distal (3'-phosphate) group of CoA in the recombinant human liver medium-chain acyl-CoA dehydrogenase-catalysed reaction.

    PubMed Central

    Peterson, K L; Srivastava, D K

    1997-01-01

    The X-ray crystallographic structure of medium-chain acyl-CoA dehydrogenase (MCAD)-octenoyl-CoA complex reveals that the 3'-phosphate group of CoA is confined to the exterior of the protein structure [approx. 15 A (1.5 nm) away from the enzyme active site], and is fully exposed to the outside solvent environment. To ascertain whether such a distal (3'-phosphate) fragment of CoA plays any significant role in the enzyme catalysis, we investigated the recombinant human liver MCAD (HMCAD)-catalysed reaction by using normal (phospho) and 3'-phosphate-truncated (dephospho) forms of octanoyl-CoA and butyryl-CoA substrates. The steady-state kinetic data revealed that deletion of the 3'-phosphate group from octanoyl-CoA substrate increased the turnover rate of the enzyme to about one-quarter, whereas that from butyryl-CoA substrate decreased the turnover rate of the enzyme to about one-fifth; the Km values of both these substrates were increased by 5-10-fold on deletion of the 3'-phosphate group from the corresponding acyl-CoA substrates. The transient kinetics for the reductive half-reaction, oxidative half-reaction and the dissociation 'off-rate' (of the reaction product from the oxidized enzyme site) were all found to be affected by deletions of the 3'-phosphate group from octanoyl-CoA and butyryl-CoA substrates. A cumulative account of these results reveals that, although the 3'-phosphate group of acyl-CoA substrates might seem 'useless' on the basis of the structural data, it has an essential functional role during HMCAD catalysis. PMID:9271097

  12. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction

    PubMed Central

    Zhang, Jinrui; Pierick, Angela ten; van Rossum, Harmen M.; Maleki Seifar, Reza; Ras, Cor; Daran, Jean-Marc; Heijnen, Joseph J.; Aljoscha Wahl, S.

    2015-01-01

    Eukaryotic metabolism is organised in complex networks of enzyme catalysed reactions which are distributed over different organelles. To quantify the compartmentalised reactions, quantitative measurements of relevant physiological variables in different compartments are needed, especially of cofactors. NADP(H) are critical components in cellular redox metabolism. Currently, available metabolite measurement methods allow whole cell measurements. Here a metabolite sensor based on a fast equilibrium reaction is introduced to monitor the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae: . The cytosolic NADPH/NADP ratio was determined by measuring the shikimate and dehydroshikimate concentrations (by GC-MS/MS). The cytosolic NADPH/NADP ratio was determined under batch and chemostat (aerobic, glucose-limited, D = 0.1 h−1) conditions, to be 22.0 ± 2.6 and 15.6 ± 0.6, respectively. These ratios were much higher than the whole cell NADPH/NADP ratio (1.05 ± 0.08). In response to a glucose pulse, the cytosolic NADPH/NADP ratio first increased very rapidly and restored the steady state ratio after 3 minutes. In contrast to this dynamic observation, the whole cell NADPH/NADP ratio remained nearly constant. The novel cytosol NADPH/NADP measurements provide new insights into the thermodynamic driving forces for NADP(H)-dependent reactions, like amino acid synthesis, product pathways like fatty acid production or the mevalonate pathway. PMID:26243542

  13. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... conversion is essential to begin the series of chemical reactions that produce energy for cells. The pyruvate dehydrogenase ... E3, each of which performs part of the chemical reaction that converts pyruvate to acetyl-CoA. In addition, ...

  14. The mechanisms of reductive carboxylation reactions. Carbon dioxide or bicarbonate as substrate of nicotinamide-adenine dinucleotide phosphate-linked isocitrate dehydrogenase and `malic' enzyme

    PubMed Central

    Dalziel, K.; Londesborough, J. C.

    1968-01-01

    1. A simple kinetic method was devised to show whether dissolved CO2 or HCO3– ion is the substrate in enzyme-catalysed carboxylation reactions. 2. The time-course of the reductive carboxylation of 2-oxoglutarate by NADPH, catalysed by isocitrate dehydrogenase, was studied by a sensitive fluorimetric method at pH7·3 and pH6·4, with large concentrations of substrate and coenzyme and small carbon dioxide concentrations. 3. Reaction was initiated by the addition of carbon dioxide in one of three forms: (i) as the dissolved gas in equilibrium with bicarbonate; (ii) as unbuffered bicarbonate solution; (iii) as the gas or as an unbuffered solution of the gas in water. Different progress curves were obtained in the three cases. 4. The results show that dissolved CO2 is the primary substrate of the enzyme, and that HCO3– ion is at best a very poor substrate. The progress curves are in quantitative agreement with this conclusion and with the known rates of the reversible hydration of CO2 under the conditions of the experiments. The effects of carbonic anhydrase confirm the conclusions. 5. Similar experiments on the reductive carboxylation of pyruvate catalysed by the `malic' enzyme show that dissolved CO2 is the primary substrate of this enzyme also. 6. The results are discussed in relation to the mechanisms of these enzymes, and the effects of pH on the reactions. 7. The advantages of the method and its possible applications to other enzymes involved in carbon dioxide metabolism are discussed. PMID:4387225

  15. Lactate metabolism in the fetal rabbit lung

    SciTech Connect

    Engle, M.J.; Brown, D.J.; Dooley, M.

    1986-05-01

    Lactate is frequently overlooked as a potential substrate for the fetal lung, even though it is present in the fetal circulation in concentrations as high as 8 mM. These high concentrations, coupled with the relatively low levels of glucose in the fetal blood, may indicate that lactate can substitute for glucose in pulmonary energy generation and phospholipid synthesis. A series of experiments was therefore undertaken in order to investigate the role of lactate in perinatal pulmonary development. Explants from 30 day gestation fetal rabbit lungs were incubated in Krebs-Ringer bicarbonate buffer supplemented with 3 mM (U-/sup 14/C)-glucose and varying levels of lactate. In the absence of medium lactate, fetal rabbit lung explants were capable of producing lactate at a rate of approximately 200 etamoles/mg protein/hour. The addition of lactate to the bathing medium immediately reduced net lactate production and above 4 mM, fetal rabbit lung explants became net utilizers of lactate. Media lactate concentrations of 2.5 mM, 5 mM and 10 mM also decreased glucose incorporation into total tissue disaturated phosphatidylcholine by approximately 20%, 35%, and 45%, respectively. Glucose incorporation into surfactant phosphatidylcholine was also reduced by approximately 50%, when lactate was present in the incubation medium at a concentration of 5 mM. Additional experiments also revealed that fetal lung lactate dehydrogenase activity was almost twice that found in the adult rabbit lung. These data indicate that lactate may be an important carbon source for the developing lung and could be a significant component in the manufacture of surfactant phosphatidylcholine during late gestation.

  16. Glycolysis and the significance of lactate in traumatic brain injury

    PubMed Central

    Carpenter, Keri L. H.; Jalloh, Ibrahim; Hutchinson, Peter J.

    2015-01-01

    In traumatic brain injury (TBI) patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well-recognized, and are associated statistically with unfavorable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolized via glycolysis (Embden-Meyerhof-Parnas pathway) to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate's association with unfavorable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilization of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labeled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labeling in glutamine consistent with lactate utilization via the TCA cycle. This suggests that where neurons are too damaged to utilize the lactate produced from glucose by astrocytes, i.e., uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining the association between high lactate and poor outcome. Recently, an intravenous exogenous lactate supplementation study in TBI patients revealed evidence for a beneficial effect judged by surrogate endpoints. Here we review the current state of knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better clinical outcome. PMID:25904838

  17. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

    PubMed

    Gannavaram, Swathi; Sirin, Sarah; Sherman, Woody; Gadda, Giovanni

    2014-10-21

    The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the α-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ≤4 Å from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ∼10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms. PMID:25243743

  18. Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction

    PubMed Central

    Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping

    2008-01-01

    Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into α-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca2+, which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118–124 and residues 284–287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca2+ in the pseudo-Michaelis complex or with NADPH, AKG, and Ca2+ in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes. PMID:18552125

  19. Evaluation of NAD(P)-Dependent Dehydrogenase Activities in Neutrophilic Granulocytes by the Bioluminescent Method.

    PubMed

    Savchenko, A A

    2015-09-01

    Bioluminescent method for measurements of the neutrophilic NAD(P)-dependent dehydrogenases (lactate dehydrogenase, NAD-dependent malate dehydrogenase, NADP-dependent decarboxylating malate dehydrogenase, NAD-dependent isocitrate dehydrogenase, and glucose- 6-phosphate dehydrogenase) is developed. The sensitivity of the method allows minimization of the volume of biological material for measurements to 104 neutrophils per analysis. The method is tried in patients with diffuse purulent peritonitis. Low levels of NADPH synthesis enzymes and high levels of enzymes determining the substrate flow by the Krebs cycle found in these patients can lead to attenuation of functional activity of cells. PMID:26468025

  20. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    DOEpatents

    Miller, Matthew; Suominen, Pirkko; Aristidou, Aristos; Hause, Benjamin Matthew; Van Hoek, Pim; Dundon, Catherine Asleson

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  1. The primary pathway for lactate oxidation in Desulfovibrio vulgaris

    PubMed Central

    Vita, Nicolas; Valette, Odile; Brasseur, Gaël; Lignon, Sabrina; Denis, Yann; Ansaldi, Mireille; Dolla, Alain; Pieulle, Laetitia

    2015-01-01

    The ability to respire sulfate linked to lactate oxidation is a key metabolic signature of the Desulfovibrio genus. Lactate oxidation by these incomplete oxidizers generates reductants through lactate dehydrogenase (LDH) and pyruvate-ferredoxin oxidoreductase (PFOR), with the latter catalyzing pyruvate conversion into acetyl-CoA. Acetyl-CoA is the source of substrate-level phosphorylation through the production of ATP. Here, we show that these crucial steps are performed by enzymes encoded by a nonacistronic transcriptional unit named now as operon luo (for lactate utilization operon). Using a combination of genetic and biochemical techniques, we assigned a physiological role to the operon genes DVU3027-28 and DVU3032-33. The growth of mutant Δ26-28 was highly disrupted on D-lactate, whereas the growth of mutant Δ32-33 was slower on L-lactate, which could be related to a decrease in the activity of D-lactate or L-lactate oxidase in the corresponding mutants. The DVU3027-28 and DVU3032-33 genes thus encode functional D-LDH and L-LDH enzymes, respectively. Scanning of the genome for lactate utilization revealed several lactate permease and dehydrogenase homologs. However, transcriptional compensation was not observed in any of the mutants except for lactate permease. Although there is a high degree of redundancy for lactate oxidase, it is not functionally efficient in LDH mutants. This result could be related to the identification of several operon enzymes, including LDHs, in the PFOR activity bands, suggesting the occurrence of a lactate-oxidizing supermolecular structure that can optimize the performance of lactate utilization in Desulfovibrio species. PMID:26167158

  2. The primary pathway for lactate oxidation in Desulfovibrio vulgaris.

    PubMed

    Vita, Nicolas; Valette, Odile; Brasseur, Gaël; Lignon, Sabrina; Denis, Yann; Ansaldi, Mireille; Dolla, Alain; Pieulle, Laetitia

    2015-01-01

    The ability to respire sulfate linked to lactate oxidation is a key metabolic signature of the Desulfovibrio genus. Lactate oxidation by these incomplete oxidizers generates reductants through lactate dehydrogenase (LDH) and pyruvate-ferredoxin oxidoreductase (PFOR), with the latter catalyzing pyruvate conversion into acetyl-CoA. Acetyl-CoA is the source of substrate-level phosphorylation through the production of ATP. Here, we show that these crucial steps are performed by enzymes encoded by a nonacistronic transcriptional unit named now as operon luo (for lactate utilization operon). Using a combination of genetic and biochemical techniques, we assigned a physiological role to the operon genes DVU3027-28 and DVU3032-33. The growth of mutant Δ26-28 was highly disrupted on D-lactate, whereas the growth of mutant Δ32-33 was slower on L-lactate, which could be related to a decrease in the activity of D-lactate or L-lactate oxidase in the corresponding mutants. The DVU3027-28 and DVU3032-33 genes thus encode functional D-LDH and L-LDH enzymes, respectively. Scanning of the genome for lactate utilization revealed several lactate permease and dehydrogenase homologs. However, transcriptional compensation was not observed in any of the mutants except for lactate permease. Although there is a high degree of redundancy for lactate oxidase, it is not functionally efficient in LDH mutants. This result could be related to the identification of several operon enzymes, including LDHs, in the PFOR activity bands, suggesting the occurrence of a lactate-oxidizing supermolecular structure that can optimize the performance of lactate utilization in Desulfovibrio species. PMID:26167158

  3. Anaerobic Formation of d-Lactate and Partial Purification and Characterization of a Pyruvate Reductase from Chlamydomonas reinhardtii1

    PubMed Central

    Husic, Diane W.; Tolbert, N. E.

    1985-01-01

    d-Lactate accumulation in Chlamydomonas reinhardtii was dependent on anaerobic conditions. As much as 50% of the 14C after 2 minutes of photosynthetic 14CO2 fixation moved into d-lactate from sugar phosphates if the cells became anaerobic for short time periods. No lactate accumulated in the dark until the O2 concentration decreased to less than 0.1%. Lactate was determined to be of the d-configuration using stereospecific lactate dehydrogenases. d-Lactate produced anaerobically by algae grown on 5% CO2 was only slowly metabolized aerobically in the light or dark, and in the dark, only a trace of the lactate was excreted. A pyruvate reductase (d-lactate: diphosphopyridine nucleotide oxidoreductase, EC 1.1.1.28) was partially purified 47-fold from Chlamydomonas. Because this enzyme catalyzes an essentially irreversible reaction in the direction of pyruvate reduction, it is considered to be a pyruvate reductase. The reductase activity in extracts of Chlamydomonas was 30 micromoles per hour per milligram chlorophyll. For the partially purified enzyme, the apparent Km (pyruvate) was 0.5 millimolar, and the pH optimum was 7.0. Studies with cycloheximide and chloramphenicol indicated that the enzyme was constitutive in aerobic cells. Potassium phosphate stimulated the reductase, and high salt and dithiothreitol were required for stability. The enzyme demonstrated substrate inhibition and was inhibited by ATP. Pyruvate reductase was separated from a hydroxypyruvate reductase by gel filtration chromatography, indicating the presence of separate reductases for these two substrates in Chlamydomonas. PMID:16664230

  4. Comprehensive review on lactate metabolism in human health.

    PubMed

    Adeva-Andany, M; López-Ojén, M; Funcasta-Calderón, R; Ameneiros-Rodríguez, E; Donapetry-García, C; Vila-Altesor, M; Rodríguez-Seijas, J

    2014-07-01

    Metabolic pathways involved in lactate metabolism are important to understand the physiological response to exercise and the pathogenesis of prevalent diseases such as diabetes and cancer. Monocarboxylate transporters are being investigated as potential targets for diagnosis and therapy of these and other disorders. Glucose and alanine produce pyruvate which is reduced to lactate by lactate dehydrogenase in the cytoplasm without oxygen consumption. Lactate removal takes place via its oxidation to pyruvate by lactate dehydrogenase. Pyruvate may be either oxidized to carbon dioxide producing energy or transformed into glucose. Pyruvate oxidation requires oxygen supply and the cooperation of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. Congenital or acquired deficiency on gluconeogenesis or pyruvate oxidation, including tissue hypoxia, may induce lactate accumulation. Both obese individuals and patients with diabetes show elevated plasma lactate concentration compared to healthy subjects, but there is no conclusive evidence of hyperlactatemia causing insulin resistance. Available evidence suggests an association between defective mitochondrial oxidative capacity in the pancreatic β-cells and diminished insulin secretion that may trigger the development of diabetes in patients already affected with insulin resistance. Several mutations in the mitochondrial DNA are associated with diabetes mellitus, although the pathogenesis remains unsettled. Mitochondrial DNA mutations have been detected in a number of human cancers. d-lactate is a lactate enantiomer normally formed during glycolysis. Excess d-lactate is generated in diabetes, particularly during diabetic ketoacidosis. d-lactic acidosis is typically associated with small bowel resection. PMID:24929216

  5. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-30

    Shewanella oneidensis MR-1 is a facultative anaerobe growing by coupling organic matter oxidation to reduction of wide range of electron acceptors. Here we quantitatively assessed lactate and pyruvate metabolism of these bacteria under three distinct conditions: electron acceptor limited growth on lactate with O2 and fumarate, and pyruvate fermentation, which does not sustain growth but allows cells to survive for prolonged period. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of all ATP needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute much to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, and TCA cycle did not contribute significantly to substrate oxidation. Pyruvate dehydrogenase reaction was not involved in lactate metabolism under O2 limitation, however was important for anaerobic growth probably supplying reducing equivalents for biosynthesis. Unexpectedly, obtained results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination between substrate-level phosphorylation and a respiratory process, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). Based on involved enzymes localization we hypothesize that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  6. [Energy reactions in the skeletal muscles of rats after short-term space flight on Kosmos-1514].

    PubMed

    Mailian, E S; Chabdarova, R N; Korzun, E I

    1988-01-01

    Ten hours after the 5-day space flight on Cosmos-1514 rats were examined for oxidative phosphorylation in mitochondria isolated from the posterior femoral muscles as well as for Krebs cycle enzymes and glycolysis in the mitochondrial and cytoplasmic fractions of the muscles. The mitochondrial respiration rate in various metabolic states was similar in flight rats and vivarium controls. After flight calculated parameters of energy efficacy of respiration as well as activity of malate dehydrogenase, isocitrate dehydrogenase and total lactate dehydrogenase remained unchanged. Unlike the flight rats, the synchronous controls showed signs of the stress-reaction: uncoupling of oxidative phosphorylation and oxalacetate inhibition of succinate dehydrogenase. Comparison of these findings with those from prolonged space flights indicates that inhibition of oxidative metabolism and glycolysis in mixed muscles which was demonstrated in the 20-day space flight does not develop immediately after launch but occurs within the time interval between mission days 6 and 18. PMID:3047495

  7. Efficient Production of Pyruvate from DL-Lactate by the Lactate-Utilizing Strain Pseudomonas stutzeri SDM

    PubMed Central

    Gao, Chao; Qiu, Jianhua; Ma, Cuiqing; Xu, Ping

    2012-01-01

    Background The platform chemical lactate is currently produced mainly through the fermentation of sugars presented in biomass. Besides the synthesis of biodegradable polylactate, lactate is also viewed as a feedstock for the green chemistry of the future. Pyruvate, another important platform chemical, can be produced from lactate through biocatalysis. Methodology/Principal Findings It was established that whole cells of Pseudomonas stutzeri SDM catalyze lactate oxidation with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) through the inherent electron transfer chain. Unlike the lactate oxidation processes observed in previous reports, the mechanism underlying lactate oxidation described in the present study excluded the costliness of the cofactor regeneration step and production of the byproduct hydrogen peroxide. Conclusions/Significance Biocatalysis conditions were optimized by using the cheap dl-lactate as the substrate and whole cells of the lactate-utilizing P. stutzeri SDM as catalyst. Under optimal conditions, the biocatalytic process produced pyruvate at a high concentration (48.4 g l−1) and a high yield (98%). The bioconversion system provides a promising alternative for the green production of pyruvate. PMID:22792404

  8. Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells.

    PubMed

    Bunik, Victoria I; Artiukhov, Artem; Kazantsev, Alexey; Goncalves, Renata; Daloso, Danilo; Oppermann, Henry; Kulakovskaya, Elena; Lukashev, Nikolay; Fernie, Alisdair; Brand, Martin; Gaunitz, Frank

    2015-11-24

    The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 μM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 μM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition. PMID:26503465

  9. Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells

    PubMed Central

    Bunik, Victoria I.; Artiukhov, Artem; Kazantsev, Alexey; Goncalves, Renata; Daloso, Danilo; Oppermann, Henry; Kulakovskaya, Elena; Lukashev, Nikolay; Fernie, Alisdair; Brand, Martin; Gaunitz, Frank

    2015-01-01

    The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 μM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 μM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition. PMID:26503465

  10. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    SciTech Connect

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.; Kakar, S. N.; Stevens, F. J.; Donnelly, M. I.; Nebraska Wesleyan Univ.

    1995-09-10

    Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the native enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the mutant malate dehydrogenase. However, when expressed in a strain of E. coli unable to ferment glucose, the mutant enzyme restored growth and produced lactic acid as the sole fermentation product.

  11. Utilization of D-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans.

    PubMed

    Sheng, Binbin; Xu, Jing; Zhang, Yingxin; Jiang, Tianyi; Deng, Sisi; Kong, Jian; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2015-06-15

    d-Lactate was identified as one of the few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, the strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with high activity toward d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity toward d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate-oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase. PMID:25862219

  12. Utilization of d-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans

    PubMed Central

    Sheng, Binbin; Xu, Jing; Zhang, Yingxin; Jiang, Tianyi; Deng, Sisi; Kong, Jian; Ma, Cuiqing; Xu, Ping

    2015-01-01

    d-Lactate was identified as one of the few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, the strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with high activity toward d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity toward d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate-oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase. PMID:25862219

  13. Hematite nanoparticles larger than 90 nm show no sign of toxicity in terms of lactate dehydrogenase release, nitric oxide generation, apoptosis, and comet assay in murine alveolar macrophages and human lung epithelial cells.

    PubMed

    Freyria, Francesca Stefania; Bonelli, Barbara; Tomatis, Maura; Ghiazza, Mara; Gazzano, Elena; Ghigo, Dario; Garrone, Edoardo; Fubini, Bice

    2012-04-16

    Three hematite samples were synthesized by precipitation from a FeCl₃ solution under controlled pH and temperature conditions in different morphology and dimensions: (i) microsized (average diameter 1.2 μm); (ii) submicrosized (250 nm); and (iii) nanosized (90 nm). To gain insight into reactions potentially occurring in vivo at the particle-lung interface following dust inhalation, several physicochemical features relevant to pathogenicity were measured (free radical generation in cell-free tests, metal release, and antioxidant depletion), and cellular toxicity assays on human lung epithelial cells (A549) and murine alveolar macrophages (MH-S) were carried out (LDH release, apoptosis detection, DNA damage, and nitric oxide synthesis). The decrease in particles size, from 1.2 μm to 90 nm, only caused a slight increase in structural defects (disorder of the hematite phase and the presence of surface ferrous ions) without enhancing surface reactivity or cellular responses in the concentration range between 20 and 100 μg cm⁻². PMID:22324577

  14. Structure and Function of Plasmodium falciparum malate dehydrogenase: Role of Critical Amino Acids in C-substrate Binding Procket

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our lab have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal g...

  15. Analysis of Quaternary Structure of a [LDH-like] Malate Dehydrogenase of Plasmodium falciparum with Oligomeric Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-Malate dehydrogenase (PfMDH) from Plasmodium falciparum, the causative agent for the most severe form of malaria, has shown remarkable similarities to L-lactate dehydrogenase (PfLDH). PfMDH is more closely related to [LDH-like] MDHs characterized in archea and other prokaryotes. Initial sequence a...

  16. Thermostable amperometric lactate biosensor with Clostridium thermocellum L-LDH for the measurement of blood lactate.

    PubMed

    Ozkan, Melek; Erhan, Elif; Terzi, Ozlem; Tan, Ibrahim; Ozöner, Seyda Korkut

    2009-10-15

    The gene for Clostridium thermocellum L-lactate dehydrogenase enzyme was cloned into pGEX-4T-2 purification vector to supply a source for a thermostable enzyme in order to produce a stable lactate biosensor working at relatively high temperatures. The purified thermostable enzyme (t-LDH) was then immobilized on a gold electrode via polymerization of polygluteraldehyde and pyrrol resulting in a conductive co-polymer. t-LDH working electrode (t-LDHE) was used for determination of lactate in CHES buffer. Amperometric response of the produced electrodes was measured as a function of lactate concentration, at a fixed bias voltage of 200 mV in a three-electrode system. The linear range and sensitivity of the biosensor was investigated at various temperatures in the range of 25-60 degrees C. The sensitivity t-LDHE increased with increasing the temperature and reached its highest value at 60 degrees C. The calculated value was nearly 70 times higher as compared to the sensitivity value of the same electrode tested at 25 degrees C. The sensing parameters of t-LDHE were compared with the electrodes produced by commercially available rabbit muscle LDH (m-LDH). The sensitivity of t-LDHE was nearly 8 times higher than that of m-LDHE. t-LDHE was found to retain its activity for a week incubation at refrigerator (+5 degrees C), while m-LDHE lost its activity in this period. t-LDHE was also tested in the presence of human blood serum. The results showed that the current increased with increasing concentrations of lactate in the human blood serum and the biosensor is more sensitive to serum lactate as well as the commercial lactate dissolved in serum as compared to the commercial lactate dissolved in CHES buffer. PMID:19635378

  17. Combination of International Scoring System 3, High Lactate Dehydrogenase, and t(4;14) and/or del(17p) Identifies Patients With Multiple Myeloma (MM) Treated With Front-Line Autologous Stem-Cell Transplantation at High Risk of Early MM Progression–Related Death

    PubMed Central

    Moreau, Philippe; Cavo, Michele; Sonneveld, Pieter; Rosinol, Laura; Attal, Michel; Pezzi, Annalisa; Goldschmidt, Hartmut; Lahuerta, Juan Jose; Marit, Gerald; Palumbo, Antonio; van der Holt, Bronno; Bladé, Joan; Petrucci, Maria Teresa; Neben, Kai; san Miguel, Jesus; Patriarca, Francesca; Lokhorst, Henk; Zamagni, Elena; Hulin, Cyrille; Gutierrez, Norma; Facon, Thierry; Caillot, Denis; Benboubker, Lotfi; Harousseau, Jean-Luc; Leleu, Xavier; Avet-Loiseau, Hervé; Mary, Jean-Yves

    2014-01-01

    Purpose To construct and validate among patients with multiple myeloma (MM) who were treated with intensive therapy a prognostic index of early MM progression–related death. Patients and Methods Patient-level data from the Intergroupe Francophone du Myélome (IFM) 2005-01 trial (N = 482) were used to construct the prognostic index. The event was MM progression–related death within 2 years from treatment initiation. The index was validated using data from three other trials: the Gruppo Italiano Malattie Ematologiche dell' Adulto (GIMEMA) 26866138-MMY-3006 trial (N = 480), the Programa para el Estudio de la Terapéutica en Hemopatía Maligna (PETHEMA)–GEMMENOS65 trial (N = 390), and the Hemato-Oncologie voor Volwassenen Nederland (HOVON) –65/German-Speaking Myeloma Multicenter Group (GMMG) –HD4 trial (N = 827). Results The risk of early MM progression–related death was related to three independent prognostic variables: lactate dehydrogenase (LDH) higher than than normal, International Staging System 3 (ISS3), and adverse cytogenetics [t(4;14) and/or del(17p)]. These three variables enabled the definition of an ordinal prognostic classification composed of four scores (0 to 3). Patients with a score of 3, defined by the presence of t(4;14) and/or del(17p) in addition to ISS3 and/or high LDH, comprised 5% (20 of 387 patients) to 8% (94 of 1,139 patients) of the patients in the learning and validation samples, respectively, and they had a very poor prognosis. When applied to the population of 855 patients who had received bortezomib-based induction therapy in the four trials, the prognostic classification was also able to segregate patients into four categories, with a very poor prognosis attributed to patients with a score of 3. Conclusion Our model allows the simple definition of a subgroup of MM patients at high risk of early MM progression–related death despite the use of the most modern and effective strategies. PMID:24888806

  18. RNA silencing of lactate dehydrogenase gene in Rhizopus oryzae

    PubMed Central

    Gheinani, Ali Hashemi; Jahromi, Neda Haghayegh; Feuk-Lagerstedt, Elisabeth; Taherzadeh, Mohammad J

    2011-01-01

    Rhizopus oryzae is a filamentous fungus, belonging to the order Mucorales. It can ferment a wide range of carbohydrates hydrolyzed from lignocellulosic materials and even cellobiose to produce ethanol. However, R. oryzae also produces lactic acid as a major metabolite, which reduces the yield of ethanol. In this study, we show that significant reduction of lactic acid production could be achieved by short (25nt) synthetic siRNAs targeting the ldhA gene. The average yield of lactic acid production by R. oryzae during the batch fermentation process, where glucose had been used as a sole carbon source, diminished from 0.07gm/gm in wild type to 0.01gm/gm in silenced samples. In contrast, the average yield of ethanol production increased from 0.39gm/gm in wild type to 0.45gm/gm in silenced samples. These results show 85.7% (gm/gm) reduction in lactic acid production as compared with the wild type R. oryzae, while an increase of 15.4% (gm/gm) in ethanol yield. PMID:21769297

  19. The Partial Purification and Characterization of Lactate Dehydrogenase.

    ERIC Educational Resources Information Center

    Wolf, Edward C.

    1988-01-01

    Offers several advantages over other possibilities as the enzyme of choice for a student's first exposure to a purification scheme. Uses equipment and materials normally found in biochemistry laboratories. Incorporates several important biochemical techniques including spectrophotometry, chromatography, centrifugation, and electrophoresis. (MVL)

  20. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    ERIC Educational Resources Information Center

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to…

  1. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    ERIC Educational Resources Information Center

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to

  2. [Autoimmune hemolytic anemia with normal serum lactate dehydrogenase level].

    PubMed

    Mizuno, Hideaki; Hangaishi, Akira; Saika, Makoto; Morioka, Takehiko; Ando, Yayoi; Kida, Michiko; Usuki, Kensuke

    2015-11-01

    We herein report two cases of AIHA (autoimmune hemolytic anemia), a 25-year-old woman and a 77-year-old man, who presented with normal serum LDH values. Though in these two cases, low hemoglobin and haptoglobin, high total bilirubin and positive direct Coombs' test results led to the diagnosis of AIHA, both patients had normal LDH levels (218 and 187 IU/l). Both cases were successfully treated with prednisone. In the diagnosis of AIHA, elevated LDH is usually used as a marker of hemolysis. However, medical records of 24 AIHA patients collected in our institute from January 2001 to August 2012 revealed LDH levels to have been normal in 25% of these cases. This report indicates the importance of obtaining complete information about the blood testing of patients and taking these data into account when considering the diagnosis of AIHA. PMID:26666722

  3. BACTERIAL EXPRESSION, PURIFICATION, AND CHARACTERIZATION OF ARABIDOPSIS THALIANA PYRUVATE DEHYDROGENASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pyruvate dehydrogenase complex (PDC) is a very large multi-component structure that catalyzes decarboxylation of pyruvate, yielding CO2, NADH, and acetyl-CoA as products. The decarboxylation reaction is catalyzed by pyruvate dehydrogenase (E1). The PDC occupies a key position in intermediary met...

  4. Lactation and reproduction*

    PubMed Central

    Thomson, A. M.; Hytten, F. E.; Black, A. E.

    1975-01-01

    The authors review the literature on the effect of lactation on fertility in the absence of contraception and on the effects of contraceptive measures on lactation. They examine data from several countries on the intervals between births and on the return of menstruation and ovulation after childbirth, comparing lactating with nonlactating women. They conclude that lactation is an inefficient contraceptive for the individual, but that in populations sustained lactation is associated with reduced fertility. Possible physiological mechanisms causing lactation amenorrhoea are discussed. Though much of the literature on the effect of contraceptives on lactation is inadequate, there is general agreement that the estrogen component of hormonal preparations has an adverse effect on lactation, but that progestins alone do not. Many questions remain. Is this effect seen in established lactation, or only in the puerperal period? Is it a direct pharmacological effect, or are pill-users the mothers least motivated to maintain breast-feeding? Does a close relationship exist between hormones given and lactation performance? The authors comment on some of the technical deficiencies of previous studies in this field and discuss practical possibilities of, and limitations to, obtaining adequate scientific information in the future. PMID:1084804

  5. Multiple retinoid dehydrogenases in testes cytosol from alcohol dehydrogenase negative or positive deermice.

    PubMed

    Posch, K C; Napoli, J L

    1992-05-28

    Retinoic acid syntheses from retinol by cytosol from testes of alcohol dehydrogenase negative or positive deermice were similar in specific activity and in their insensitivity to 1 M ethanol or 100 mM 4-methylpyrazole. Anion-exchange followed by size-exclusion chromatography revealed multiple and similarly migrating peaks in each cytosol that had both retinol and retinal dehydrogenase activities. Thus, the effects of ethanol on testes cannot be caused by direct inhibition of cytosolic retinoic acid synthesis because retinoid dehydrogenases distinct from mouse class A2 alcohol dehydrogenases, which corresponds to human class I, occurred in testes and they were not inhibited by ethanol. These data also demonstrate the occurrence of multiple cytosolic retinoic acid synthesis activities and indicate that the two reactions of cytosolic retinoic acid synthesis, retinol and retinal dehydrogenation, may be catalyzed by enzymes that occur as complexes. PMID:1599517

  6. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  7. Metabolic control analysis of L-lactate synthesis pathway in Rhizopus oryzae As 3.2686.

    PubMed

    Ke, Wei; Chang, Shu; Chen, Xiaoju; Luo, Shuizhong; Jiang, Shaotong; Yang, Peizhou; Wu, Xuefeng; Zheng, Zhi

    2015-11-01

    The relationship between the metabolic flux and the activities of the pyruvate branching enzymes of Rhizopus oryzae As 3.2686 during L-lactate fermentation was investigated using the perturbation method of aeration. The control coefficients for five enzymes, pyruvate dehydrogenase (PDH), pyruvate carboxylase (PC), pyruvate decarboxylase (PDC), lactate dehydrogenase (LDH), and alcohol dehydrogenase (ADH), were calculated. Our results indicated significant correlations between PDH and PC, PDC and LDH, PDC and ADH, LDH and ADH, and PDC and PC. It also appeared that PDH, PC, and LDH strongly controlled the L-lactate flux; PDH and ADH strongly controlled the ethanol flux; while PDH and PC strongly controlled the acetyl coenzyme A flux and the oxaloacetate flux. Further, the flux control coefficient curves indicated that the control of the system gradually transferred from PDC to PC during the steady state. Therefore, PC was the key rate-limiting enzyme that controls the flux distribution. PMID:26288952

  8. Water recycling in lactation.

    PubMed

    Baverstock, P; Green, B

    1975-02-21

    During lactation, female rodents, dingoes, and kangaroos consume urine and feces excreted by the young. Studies with tritiated water as a tracer for native water showed that roughly one-third of the water secreted as milk was returned to the mother. The results are cogent to studies of water balance of lactation and to current methods used for estimating milk production. PMID:1167701

  9. Physiology of lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The breast changes in size, shape, and function during puberty, pregnancy, and lactation. The physiology of lactation is reviewed here. The breast is composed of fat and connective tissue that supports a tubuloalveolar structure. During development, anatomic changes involving new lobule formation an...

  10. Lactate Racemization as a Rescue Pathway for Supplying d-Lactate to the Cell Wall Biosynthesis Machinery in Lactobacillus plantarum

    PubMed Central

    Goffin, Philippe; Deghorain, Marie; Mainardi, Jean-Luc; Tytgat, Isabelle; Champomier-Vergès, Marie-Christine; Kleerebezem, Michiel; Hols, Pascal

    2005-01-01

    Lactobacillus plantarum is a lactic acid bacterium that produces d- and l-lactate using stereospecific NAD-dependent lactate dehydrogenases (LdhD and LdhL, respectively). However, reduction of glycolytic pyruvate by LdhD is not the only pathway for d-lactate production since a mutant defective in this activity still produces both lactate isomers (T. Ferain, J. N. Hobbs, Jr., J. Richardson, N. Bernard, D. Garmyn, P. Hols, N. E. Allen, and J. Delcour, J. Bacteriol. 178:5431-5437, 1996). Production of d-lactate in this species has been shown to be connected to cell wall biosynthesis through its incorporation as the last residue of the muramoyl-pentadepsipeptide peptidoglycan precursor. This particular feature leads to natural resistance to high concentrations of vancomycin. In the present study, we show that L. plantarum possesses two pathways for d-lactate production: the LdhD enzyme and a lactate racemase, whose expression requires l-lactate. We report the cloning of a six-gene operon, which is involved in lactate racemization activity and is positively regulated by l-lactate. Deletion of this operon in an L. plantarum strain that is devoid of LdhD activity leads to the exclusive production of l-lactate. As a consequence, peptidoglycan biosynthesis is affected, and growth of this mutant is d-lactate dependent. We also show that the growth defect can be partially restored by expression of the d-alanyl-d-alanine-forming Ddl ligase from Lactococcus lactis, or by supplementation with various d-2-hydroxy acids but not d-2-amino acids, leading to variable vancomycin resistance levels. This suggests that L. plantarum is unable to efficiently synthesize peptidoglycan precursors ending in d-alanine and that the cell wall biosynthesis machinery in this species is specifically dedicated to the production of peptidoglycan precursors ending in d-lactate. In this context, the lactate racemase could thus provide the bacterium with a rescue pathway for d-lactate production upon inactivation or inhibition of the LdhD enzyme. PMID:16166538

  11. Evidences of Basal Lactate Production in the Main White Adipose Tissue Sites of Rats. Effects of Sex and a Cafeteria Diet

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Sabater, David; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Female and male adult Wistar rats were fed standard chow or a simplified cafeteria diet for one month. Then, the rats were killed and the white adipose tissue (WAT) in four sites: perigonadal, retroperitoneal, mesenteric and subcutaneous (inguinal) were sampled and frozen. The complete WAT weight in each site was measured. Gene expression analysis of key lipid and glucose metabolism enzymes were analyzed, as well as tissue and plasma lactate and the activity of lactate dehydrogenase. Lactate gradients between WAT and plasma were estimated. The influence of sex and diet (and indirectly WAT mass) on lactate levels and their relationships with lactate dehydrogenase activity and gene expressions were also measured. A main conclusion is the high production of lactate by WAT, practically irrespective of site, diet or sex. Lactate production is a direct correlate of lactate dehydrogenase activity in the tissue. Furthermore, lactate dehydrogenase activity is again directly correlated with the expression of the genes Ldha and Ldhb for this enzyme. In sum, the ability to produce lactate by WAT is not directly dependent of WAT metabolic state. We postulate that, in WAT, a main function of the lactate dehydrogenase path may be that of converting excess available glucose to 3C fragments, as a way to limit tissue self-utilization as substrate, to help control glycaemia and/or providing short chain substrates for use as energy source elsewhere. More information must be gathered before a conclusive role of WAT in the control of glycaemia, and the full existence of a renewed glucose-lactate-fatty acid cycle is definitely established. PMID:25741703

  12. Catalytic mechanism of human UDP-glucose 6-dehydrogenase: in situ proton NMR studies reveal that the C-5 hydrogen of UDP-glucose is not exchanged with bulk water during the enzymatic reaction.

    PubMed

    Eixelsberger, Thomas; Brecker, Lothar; Nidetzky, Bernd

    2012-07-15

    Human UDP-glucose 6-dehydrogenase (hUGDH) catalyzes the biosynthetic oxidation of UDP-glucose into UDP-glucuronic acid. The catalytic reaction proceeds in two NAD(+)-dependent steps via covalent thiohemiacetal and thioester enzyme intermediates. Formation of the thiohemiacetal adduct occurs through attack of Cys(276) on C-6 of the UDP-gluco-hexodialdose produced in the first oxidation step. Because previous studies of the related enzyme from bovine liver had suggested loss of the C-5 hydrogen from UDP-gluco-hexodialdose due to keto-enol tautomerism, we examined incorporation of solvent deuterium into product(s) of UDP-glucose oxidation by hUGDH. We used wild-type enzyme and a slow-reacting Glu(161)?Gln mutant that accumulates the thioester adduct at steady state. In situ proton NMR measurements showed that UDP-glucuronic acid was the sole detectable product of both enzymatic transformations. The product contained no deuterium at C-5 within the detection limit (?2%). The results are consistent with the proposed mechanistic idea for hUGDH that incipient UDP-gluco-hexodialdose is immediately trapped by thiohemiacetal adduct formation. PMID:22525098

  13. An Acetaldehyde Dehydrogenase from Germinating Seeds 1

    PubMed Central

    Oppenheim, Ariella; Castelfranco, Paul A.

    1967-01-01

    An acetaldehyde dehydrogenase from germinating peanut cotyledons has been purified and its properties have been studied. At the highest purification achieved the preparation is free of alcohol dehydrogenase activity. The enzyme is specific toward diphosphopyridine nucleotide, and can oxidize a variety of aldehydes. The highest reaction rate is obtained with acetaldehyde, which is oxidized to acetate. All the attempts to demonstrate the formation of an energy-rich acetyl derivative during the course of the reaction failed. The enzyme is inhibited by aldol; it is sensitive toward sulfhydryl reagents, including arsenite. Reduced glutathione stabilizes the enzyme, while cysteine, mercaptoethanol, and coenzyme A are inhibitory. Acetaldehyde dehydrogenase is activated by phosphate and inhibited by fatty acyl-CoA derivatives. It appears to be activated by the substrate, as was deduced from the shape of the plot of reaction velocity against acetaldehyde. These properties suggest that the enzyme is an allosteric protein. The plot of reaction velocity against substrate concentration is anomalous. The shape of this plot seems to reflect the presence of 2 different enzymatic activities, one with extremely high apparent affinity for acetaldehyde. The 2 activities may reflect 2 conformational states of a single enzyme or 2 separate enzymes. Experiments with tissue slices indicate that the reaction catalyzed by this enzyme is a step in the oxidation of ethanol to acetyl-CoA. This enzyme may also participate in the oxidation of pyruvate to acetyl-CoA in certain tissues. PMID:16656475

  14. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    PubMed

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  15. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    PubMed Central

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  16. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGESBeta

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  17. Reference values of blood parameters in beef cattle of different ages and stages of lactation.

    PubMed Central

    Doornenbal, H; Tong, A K; Murray, N L

    1988-01-01

    Reference (normal) values for 12 blood serum components were determined for 48 Shorthorn cows (2-10 years old) and their 48 calves, 357 crossbred cows (12-14 years old), 36 feedlot bulls and 36 feedlot steers. In addition, hemoglobin, hematocrit, triiodothyronine, thyroxine and cortisol levels were determined for the crossbred cows, and feedlot bulls and steers. Reference values were tabulated according to sex, age and stage of lactation. Serum concentrations of urea, total protein and bilirubin, and serum activity of aspartate aminotransferase and lactate dehydrogenase increased with age (P less than 0.05), while calcium, phosphorus and alkaline phosphatase decreased with age (P less than 0.05) from birth to the age of ten years. The Shorthorn cows had the highest levels of glucose at parturition (P less than 0.05) with decreasing levels during lactation. Creatinine concentration decreased during lactation and increased during postweaning. Both lactate dehydrogenase and aspartate aminotransferase levels increased (P less than 0.05) during lactation. Urea and uric acid were present at higher concentrations in lactating than nonlactating cows (P less than 0.05). The values reported, based on a wide age range and large number of cattle, could serve as clinical guides and a basis for further research. PMID:3349406

  18. Lactate: Friend or Foe.

    PubMed

    Hall, Mederic M; Rajasekaran, Sathish; Thomsen, Timothy W; Peterson, Andrew R

    2016-03-01

    Lactic acid has played an important role in the traditional theory of muscle fatigue and limitation of endurance exercise performance. It has been called a waste product of anaerobic metabolism and has been believed to be responsible for the uncomfortable "burn" of intense exercise and directly responsible for the metabolic acidosis of exercise, leading to decreased muscle contractility and ultimately cessation of exercise. Although this premise has been commonly taught, it is not supported by the scientific literature and has led to a great deal of confusion among the sports medicine and exercise science communities. This review will provide the sports medicine clinician with an understanding of contemporary lactate theories, including lactate's role in energy production, its contributions to metabolic acidosis, and its function as an energy substrate for a variety of tissues. Lactate threshold concepts will also be discussed, including a practical approach to understanding prediction of performance and monitoring of training progress based on these parameters. PMID:26972271

  19. Function of arginase in lactating mammary gland.

    PubMed

    Yip, M C; Knox, W E

    1972-05-01

    The potential for a considerable formation of ornithine exists in lactating mammary gland because of its arginase content. Late in lactation arginase reaches an activity in the gland higher than that present in any rat tissue except liver. Occurrence of the urea cycle can be excluded since two enzymes for the further reaction of ornithine in the cycle, carbamoyl phosphate synthetase I and ornithine carbamoyltransferase, are both absent from this tissue. Instead, carbamoyl phosphate synthetase II appears early in lactation, associated with accumulation of aspartate carbamoyltransferase and DNA, consistent with the proposed role of these enzymes in pyrimidine synthesis. The facts require another physiological role for arginase apart from its known function in the urea cycle. Significant activity of ornithine aminotransferase develops in mammary gland in close parallel with the arginase. By this reaction, ornithine can be converted into glutamic semialdehyde and subsequently into proline. The enzymic composition of the lactating mammary gland is therefore appropriate for the major conversion of arginine into proline that is known to occur in the intact gland. PMID:4672804

  20. Contraception in lactating women.

    PubMed

    Díaz, S; Croxatto, H B

    1993-12-01

    Lactating women need contraception after first menses, supplementation or 6 months postpartum, or before, according to personal or programmatic reasons. Non-hormonal methods have no influence on lactation and are the first choice. Intrauterine devices (IUDs) inserted during amenorrhea are safe and show good continuation rates. Progestin-only methods do not affect breast-feeding and should be used after 6 weeks to prevent transference of orally active steroids to the newborn. Progesterone rings and Nestorone implants are effective new methods, that use orally inactive steroids. PMID:8286695

  1. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    PubMed

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. PMID:26221781

  2. Properties of Alanine Dehydrogenase and Aspartase from Propionibacterium freudenreichii subsp. shermanii

    PubMed Central

    Crow, Vaughan L.

    1987-01-01

    During lactate fermentation by Propionibacterium freudenreichii subsp. shermanii ATCC 9614, the only amino acid metabolized was aspartate. After lactate exhaustion, alanine was one of the two amino acids to be metabolized. For every 3 mol of alanine metabolized, 2 mol of propionate, 1 mol each of acetate and CO2, and 3 mol of ammonia were formed. The specific activity of alanine dehydrogenase was 0.08 U/mg of protein during lactate fermentation, and it increased to 0.9 U/mg of protein after lactate exhaustion. Alanine dehydrogenase and aspartase, key enzymes in the metabolism of alanine and aspartate, respectively, were partially purified, and some of their properties were studied. Alanine dehydrogenase had a pH optimum of 9.2 to 9.6 and high Km values for both NAD+ (1 to 4 mM) and alanine (7 to 20 mM). Activity was inhibited by low concentrations of pyruvate and NADH. The pH optimum of aspartase decreased from ∼7.5 to ∼6.4 when the MgCl2 and aspartate concentrations were decreased. Plots of aspartate concentration versus activity showed either hyperbolic or sigmoidal kinetics (interaction coefficient, up to a value of 3.1), depending on pH and MgCl2 concentration. MgCl2 was either an activator or an inhibitor, depending on pH and its concentration. Aspartase activity was inhibited by low concentrations of fumarate. The properties of alanine dehydrogenase and aspartase are consistent with the finding that aspartate is metabolized during lactate fermentation, while alanine is only fermented after lactate exhaustion and then at a slow rate. PMID:16347414

  3. Lactate does not activate NF-κB in oxidative tumor cells

    PubMed Central

    Van Hée, Vincent F.; Pérez-Escuredo, Jhudit; Cacace, Andrea; Copetti, Tamara; Sonveaux, Pierre

    2015-01-01

    The lactate anion is currently emerging as an oncometabolite. Lactate, produced and exported by glycolytic and glutaminolytic cells in tumors, can be recycled as an oxidative fuel by oxidative tumors cells. Independently of hypoxia, it can also activate transcription factor hypoxia-inducible factor-1 (HIF-1) in tumor and endothelial cells, promoting angiogenesis. These protumoral activities of lactate depend on lactate uptake, a process primarily facilitated by the inward, passive lactate-proton symporter monocarboxylate transporter 1 (MCT1); the conversion of lactate and NAD+ to pyruvate, NADH and H+ by lactate dehydrogenase-1 (LDH-1); and a competition between pyruvate and α-ketoglutarate that inhibits prolylhydroxylases (PHDs). Endothelial cells do not primarily use lactate as an oxidative fuel but, rather, as a signaling agent. In addition to HIF-1, lactate can indeed activate transcription factor nuclear factor-κB (NF-κB) in these cells, through a mechanism not only depending on PHD inhibition but also on NADH alimenting NAD(P)H oxidases to generate reactive oxygen species (ROS). While NF-κB activity in endothelial cells promotes angiogenesis, NF-κB activation in tumor cells is known to stimulate tumor progression by conferring resistance to apoptosis, stemness, pro-angiogenic and metastatic capabilities. In this study, we therefore tested whether exogenous lactate could activate NF-κB in oxidative tumor cells equipped for lactate signaling. We report that, precisely because they are oxidative, HeLa and SiHa human tumor cells do not activate NF-κB in response to lactate. Indeed, while lactate-derived pyruvate is well-known to inhibit PHDs in these cells, we found that NADH aliments oxidative phosphorylation (OXPHOS) in mitochondria rather than NAD(P)H oxidases in the cytosol. These data were confirmed using oxidative human Cal27 and MCF7 tumor cells. This new information positions the malate-aspartate shuttle as a key player in the oxidative metabolism of lactate: similar to glycolysis that aliments OXPHOS with pyruvate produced by pyruvate kinase and NADH produced by glyceraldehyde-3-phosphate dehydrogenase (GAPDH), oxidative lactate metabolism aliments OXPHOS in oxidative tumor cells with pyruvate and NADH produced by LDH1. PMID:26528183

  4. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress.

    PubMed

    Martin, Erica; Rosenthal, Robert E; Fiskum, Gary

    The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO(2). This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-L-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-L-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration. PMID:15562436

  5. Elevated plasma citrulline: look for dihydrolipoamide dehydrogenase deficiency.

    PubMed

    Haviv, Ruby; Zeharia, Avraham; Belaiche, Corinne; Haimi Cohen, Yishai; Saada, Ann

    2014-02-01

    The E3 subunit of the pyruvate dehydrogenase complex (dihydrolipoamide dehydrogenase/dihydrolipoyl dehydrogenase/DLD/lipoamide dehydrogenase/LAD), is a mitochondrial matrix enzyme and also a part of the branched-chain ketoacid dehydrogenase and alpha-ketoglutarate dehydrogenase complexes. DLD deficiency (MIM #246900), is relatively frequent in the Ashkenazi Jewish population but occurs in other populations as well. Early diagnosis is important to prevent episodes of metabolic decompensation, liver failure, and encephalopathy. The clinical presentations are varied and may include Reye-like syndrome, hepatic failure, myopathy, and myoglobinuria. Laboratory markers, such as elevated urinary alpha-ketoglutarate, blood pyruvate, lactate, and ammonia, are mostly nonspecific and not always present, making the diagnosis difficult. Since we observed elevated plasma citrulline levels in a number of confirmed cases, we retrospectively examined the value of citrulline as a biochemical marker for DLD deficiency. Data was gathered from the files of 17 pediatric patients with DLD deficiency, confirmed by enzymatic and genetic analysis. The control group included 19 patients in whom urea cycle defects were ruled out but DLD deficiency was suspected. Seven of the DLD-deficient patients presented with elevated plasma citrulline levels (median value 205 μM, range 59-282 μM) (normal range 1-45 μM) while none in the control patient group. In five patients, elevated citrulline was associated with elevated plasma glutamine and metabolic acidosis. Interestingly, elevated plasma citrulline was associated with the common G229C mutation. In conclusion, we suggest that elevated plasma citrulline in the absence of urea cycle defects warrants an investigation for DLD deficiency. PMID:23995961

  6. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  7. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  8. Postpartum Exercise and Lactation.

    PubMed

    Bane, Susan M

    2015-12-01

    Many women who are breastfeeding also want to participate in exercise, but have concerns about the safety of their newborn. The following chapter reviews issues related to postpartum exercise and lactation. The goals of the chapter are to help clinicians understand the benefits of exercise, examine the impact of postpartum exercise on breastfeeding, and provide practical recommendations for exercise during the postpartum period in women who are breastfeeding. PMID:26398298

  9. L-lactate transport in Ehrlich ascites-tumour cells.

    PubMed Central

    Spencer, T L; Lehninger, A L

    1976-01-01

    Ehrlich ascites-tumour cells were investigated with regard to their stability to transport L-lactate by measuring either the distribution of [14C]lactate or concomitant H+ ion movements. The movement of lactate was dependent on the pH difference across the cell membrane and was electroneutral, as evidenced by an observed 1:1 antiport for OH- ions or 1:1 symport with H+ ions. 2. Kinetic experiments showed that lactate transport was saturable, with an apparent Km of approx. 4.68 mM and a Vmax. as high as 680 nmol/min per mg of protein at pH 6.2 and 37 degrees C. 3. Lactate transport exhibited a high temperature dependence (activation energy = 139 kJ/mol). 4. Lactate transport was inhibited competitively by (a) a variety of other substituted monocarboxylic acids (e.g. pyruvate, Ki = 6.3 mM), which were themselves transported, (b) the non-transportable analogues alpha-cyano-4-hydroxycinnamate (Ki = 0.5 mM), alpha-cyano-3-hydroxycinnamate (Ki = 2mM) and DL-p-hydroxyphenyl-lactate (Ki = 3.6 mM) and (c) the thiol-group reagent mersalyl (Ki = 125 muM). 5. Transport of simple monocarboxylic acids, including acetate and propionate, was insensitive to these inhibitors; they presumably cross the membrane by means of a different mechanism. 6. Experiments using saturating amounts of mersalyl as an "inhibitor stop" allowed measurements of the initial rates of net influx and of net efflux of [14C]lactate. Influx and efflux of lactate were judged to be symmetrical reactions in that they exhibited similar concentration dependence. 7. It is concluded that lactate transport in Ehrlich ascites-tumour cells is mediated by a carrier capable of transporting a number of other substituted monocarboxylic acids, but not unsubstituted short-chain aliphatic acids. PMID:7237

  10. Docosahexaenoic acid and lactation.

    PubMed

    Jensen, Craig L; Lapillonne, Alexandre

    2009-01-01

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina and brain and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews data addressing the impact of different DHA intakes by lactating women on infant and maternal outcomes to determine if available data are sufficient to estimate optimal breast milk DHA content and estimate dietary reference intakes (DRIs) for DHA by breast-feeding mothers. Results of published observational studies and interventional trials assessing the impact of maternal DHA intake (or breast milk DHA content) on infant visual function, neurodevelopment, and immunologic status were reviewed. Studies related to the potential impact of DHA intake on depression or cognitive function of lactating women also were reviewed. Although only a limited number of studies are available in the current medical literature, and study results have not been consistent, better infant neurodevelopment and/or visual function have been reported with higher vs. lower levels of breast milk DHA. The effect of DHA intake on the incidence or severity of depression in lactating women is not clear. Increasing breast milk DHA content above that typically found in the US, by increasing maternal DHA intake, may confer neurodevelopmental benefits to the recipient breast-fed infant. However, current data are insufficient to permit determination of specific DRIs during this period. PMID:19632101

  11. Methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum and methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (combined) from Clostridium thermoaceticum

    SciTech Connect

    Ljungdahl, L.G.; O'Brien, W.E.; Moore, M.R.; Liu, M.T.

    1980-01-01

    Methylenetetrahydrofolate dehydrogenase is widely distributed and has been found in every cell type investigated. The NAD-specific enzyme has been purified to homogeneity from Clostridium formicoaceticum and the NADP-specific enzyme has been obtained from Clostridium thermoaceticum. Other sources of the NADP-specific enzyme are Streptococcus species, Escherichia coli, Clostridium cylindrosporum, Salmonella typhimurium, yeast, liver from various animals, calf thymus, and plants. The NAD-specific enzyme has been demonstrated in Acetobacterium woodii, some methane bacteria, and in Ehrlich ascites tumor cells. Of considerable interest are the observations that in porcine and ovine livers, as well as in yeast, methylenetetrahydrofolate dehydrogenase purified to homogeneity also contains methylenetetrahydrofolate cyclohydrolase and formyltetrahydrofolate synthetase activities. Now it appears that the purified methylenetetrahydrofolate dehydrogenase from C. thermoaceticum also has cyclohydrolase but not synthetase activity. Methylenetetrahydrofolate dehydrogenase has been discussed previously in this series, as has methenyltetrahydrofolate cyclohydrolase. In C. formicoaceticum and C. thermoaceticum these tetrahydrofolate-dependent enzymes participate in a sequence of metabolic reactions by which carbon dioxide is reduced to the methyl group of 5-methyltetrahydrofolate which in turn is utilized for the synthesis of acetate. This pathway provides the mechanism for disposing of reducing equivalents generated in glycolysis.

  12. Flavensomycin, an Inhibitor of Enzyme Reactions Involving Hydrogen Transfer

    PubMed Central

    Gottlieb, David; Inoue, Yukio

    1967-01-01

    The antifungal antibiotic flavensomycin inhibited the oxidation of amino acids and of glucose by Penicillium oxalicum. The compound inhibited l-amino acid oxidase (EC 1.4.3.2) activity for l-leucine and l-phenylalanine, and also d-amino acid oxidase (EC 1.4.3.3) in the oxidation for dl-alanine. The addition of flavin adenine dinucleotide, which is a cofactor for this enzyme, antagonized the action of the antibiotic. Glucose oxidase (EC 1.1.3.4) was also inhibited. The antibiotic inhibited the reduced nicotinamide adenine dinucleotide (NADH2) cytochrome c reductase (EC 1.6.2.1) as well as the much slower nonenzymatic reduction of this cytochrome by the nucleotide. Reduced cytochrome c was also oxidized nonenzymatically by flavensomycin. The antibiotic completely inhibited the action of rabbit muscle lactic dehydrogenase (EC 1.1.1.27) in promoting the reduction of pyruvate by NADH2 but only slightly affected the reverse reaction. Alcohol dehydrogenase (EC 1.1.1.1) was also similarly inhibited. Flavensomycin prevented the reduction of nicotinamide adenine dinucleotide phosphate by isocitrate in the presence of isocitrate dehydrogenase (EC 1.1.1.42). The hexokinase (EC 2.7.1.1)-catalyzed phosphorylation of glucose, in which the adenosine triphosphate acts as a phosphate donor, was only slightly affected. Flavensomycin also inhibited the action of yeast lactate dehydrogenase (EC 1.1.2.3) on the reduction of cytochrome c. High concentrations of cytochrome c were antagonistic to this reaction. The results point to an interference with enzymatically controlled hydrogen or electron transfer as the mechanism of the antifungal activity of flavensomycin. PMID:4383133

  13. Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis

    PubMed Central

    Doherty, Joanne R.; Yang, Chunying; Scott, Kristen E. N.; Cameron, Michael D.; Fallahi, Mohammad; Li, Weimin; Hall, Mark A.; Amelio, Antonio L.; Mishra, Jitendra K.; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J.; Lu, Yunqi; Dang, Chi. V.; Kumar, K. Ganesh; Butler, Andrew A.; Bannister, Thomas D.; Hooper, Andrea T.; Unsal-Kacmaz, Keziban; Roush, William R.; Cleveland, John L.

    2014-01-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1, and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, and reductions in glucose transport, and in levels of ATP, NADPH and glutathione. Reductions in glutathione then lead to increases in hydrogen peroxide, mitochondrial damage and, ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  14. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis.

    PubMed

    Doherty, Joanne R; Yang, Chunying; Scott, Kristen E N; Cameron, Michael D; Fallahi, Mohammad; Li, Weimin; Hall, Mark A; Amelio, Antonio L; Mishra, Jitendra K; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J; Lu, Yunqi; Dang, Chi V; Kumar, K Ganesh; Butler, Andrew A; Bannister, Thomas D; Hooper, Andrea T; Unsal-Kacmaz, Keziban; Roush, William R; Cleveland, John L

    2014-02-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here, we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1 and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, reductions in glucose transport, and in levels of ATP, NADPH, and ultimately, glutathione (GSH). Reductions in GSH then lead to increases in hydrogen peroxide, mitochondrial damage, and ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  15. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    PubMed Central

    Ueshima, Sakuko; Muramatsu, Hisashi; Nakajima, Takanori; Yamamoto, Hiroaki; Kato, Shin-ichiro; Misono, Haruo; Nagata, Shinji

    2010-01-01

    The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3) were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienyl)serine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2. PMID:21048868

  16. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study

    SciTech Connect

    Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel; Conjard-Duplany, Agnes

    2010-01-01

    As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

  17. Assessment of toxicity using dehydrogenases activity and mathematical modeling.

    PubMed

    Matyja, Konrad; Małachowska-Jutsz, Anna; Mazur, Anna K; Grabas, Kazimierz

    2016-07-01

    Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times. PMID:27021434

  18. Lactate Regulates Rat Male Germ Cell Function through Reactive Oxygen Species

    PubMed Central

    Galardo, María Noel; Regueira, Mariana; Riera, María Fernanda; Pellizzari, Eliana Herminia; Cigorraga, Selva Beatriz; Meroni, Silvina Beatriz

    2014-01-01

    Besides giving structural support, Sertoli cells regulate the fate of germ cells by supplying a variety of factors. These factors include hormones, several pro- and anti-apoptotic agents and also energetic substrates. Lactate is one of the compounds produced by Sertoli cells, which is utilized as an energetic substrate by germ cells, particularly spermatocytes and spermatids. Beyond its function as an energy source, some studies have proposed a role of lactate in the regulation of gene expression not strictly related to the energetic state of the cells. The general hypothesis that motivated this investigation was that lactate affects male germ cell function, far beyond its well-known role as energetic substrate. To evaluate this hypothesis we investigated: 1) if lactate was able to regulate germ cell gene expression and if reactive oxygen species (ROS) participated in this regulation, 2) if different signal transduction pathways were modified by the production of ROS in response to lactate and 3) possible mechanisms that may be involved in lactate stimulation of ROS production. In order to achieve these goals, cultures of germ cells obtained from male 30-day old rats were exposed to 10 or 20 mM lactate. Increases in lactate dehydrogenase (LDH) C and monocarboxylate transporter (MCT)2 expression, in Akt and p38-MAPK phosphorylation levels and in ROS production were observed. These effects were impaired in the presence of a ROS scavenger. Lactate stimulated ROS production was also inhibited by a LDH inhibitor or a NAD(P)H oxidase (NOX) inhibitor. NOX4 expression was identified in male germ cells. The results obtained herein are consistent with a scenario where lactate, taken up by germ cells, becomes oxidized to pyruvate with the resultant increase in NADH, which is a substrate for NOX4. ROS, products of NOX4 activity, may act as second messengers regulating signal transduction pathways and gene expression. PMID:24498241

  19. Substrate-specificity of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by TOL plasmid pWW0. Metabolic and mechanistic implications.

    PubMed Central

    Shaw, J P; Schwager, F; Harayama, S

    1992-01-01

    The substrate-specificities of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, encoded by TOL plasmid pWW0 of Pseudomonas putida mt-2, were determined. The rates of benzyl alcohol dehydrogenase-catalysed oxidation of substituted benzyl alcohols and reduction of substituted benzaldehydes were independent of the electronic nature of the substituents at positions 3 and 4. Substitutions at position 2 of benzyl alcohol affected the reactivity of benzyl alcohol dehydrogenase: the velocity of the benzyl alcohol dehydrogenase-catalysed oxidation was lower for compounds possessing electron-withdrawing substitutions. In the reverse reaction of benzyl alcohol dehydrogenase, none of the substitutions tested influenced the apparent kcat. values. The rates of benzaldehyde dehydrogenase-catalysed oxidation of substituted benzaldehydes were influenced by the electronic nature of the substitutions: electron-withdrawing groups at positions 3 and 4 favoured the oxidation of benzaldehydes. Substitution at position 2 of benzaldehyde greatly diminished the benzaldehyde dehydrogenase-catalysed oxidation. Substitution at position 2 with electron-donating groups essentially abolished reactivity, and only substitutions that were strongly electron-withdrawing, such as nitro and fluoro groups, permitted enzyme-catalysed oxidation. The influence of the electronic nature and the position of substitutions on the aromatic ring of the substrate on the velocity of the catalysed reactions provided some indications concerning the transition state during the oxidation of the substrates, and on the rate-limiting steps of the enzymes. Pseudomonas putida mt-2 containing TOL plasmid pWW0 cannot grow on toluene derivatives substituted at position 2, nor can it grow on 2-substituted benzyl alcohols or aldehydes. One of the reasons for this may be the substrate-specificities of the benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase. PMID:1590768

  20. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.

    PubMed

    Wallström, Sabá V; Florez-Sarasa, Igor; Araújo, Wagner L; Escobar, Matthew A; Geisler, Daniela A; Aidemark, Mari; Lager, Ida; Fernie, Alisdair R; Ribas-Carbó, Miquel; Rasmusson, Allan G

    2014-05-01

    The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)⁺ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins. PMID:24486764

  1. Suppression of NDA-Type Alternative Mitochondrial NAD(P)H Dehydrogenases in Arabidopsis thaliana Modifies Growth and Metabolism, but not High Light Stimulation of Mitochondrial Electron Transport

    PubMed Central

    Wallström, Sabá V.; Florez-Sarasa, Igor; Araújo, Wagner L.; Escobar, Matthew A.; Geisler, Daniela A.; Aidemark, Mari; Lager, Ida; Fernie, Alisdair R.; Ribas-Carbó, Miquel; Rasmusson, Allan G.

    2014-01-01

    The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)+ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins. PMID:24486764

  2. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals previously uncharacterized machinery for lactate utilization

    SciTech Connect

    Pinchuk, Grigoriy E.; Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Osterman, Andrei L.; Dervyn, Etienne; Geydebrekht, Oleg V.; Reed, Samantha B.; Romine, Margaret F.; Collart, Frank R.; Scott, J.; Fredrickson, Jim K.; Beliaev, Alex S.

    2009-02-24

    The ability to utilize lactate as a sole source of carbon and energy is one of the key metabolic signatures of Shewanellae, a diverse group of dissimilatory metal reducing bacteria commonly found in aquatic and sedimentary environments. Nonetheless, homology searches failed to recognize orthologs of previously described bacterial D- or L-lactate oxidizing enzymes (Escherichia coli genes dld and lldD) in any of the 13 analyzed genomes of Shewanella spp. Using comparative genomic techniques, we identified a conserved chromosomal gene cluster in Shewanella oneidensis MR-1 (locus tag: SO1522-SO1518) containing lactate permease and candidate genes for both D- and L-lactate dehydrogenase enzymes. The predicted D-LDH gene (dldD, SO1521) is a distant homolog of FAD-dependent lactate dehydrogenase from yeast, whereas the predicted L-LDH is encoded by three genes with previously unknown functions (lldEGF, SO1520-19-18). Through a combination of genetic and biochemical techniques, we experimentally confirmed the predicted physiological role of these novel genes in S. oneidensis MR-1 and carried out successful functional validation studies in Escherichia coli and Bacillus subtilis. We conclusively showed that dldD and lldEFG encode fully functional D-and L-LDH enzymes, which catalyze the oxidation of the respective lactate stereoisomers to pyruvate. Notably, the S. oneidensis MR-1 LldEFG enzyme is the first described example of a multi-subunit lactate oxidase. Comparative analysis of >400 bacterial species revealed the presence of LldEFG and Dld in a broad range of diverse species accentuating the potential importance of these previously unknown proteins in microbial metabolism.

  3. Migraine in pregnancy and lactation.

    PubMed

    David, Paru S; Kling, Juliana M; Starling, Amaal J

    2014-04-01

    Migraine headache is a significant health problem affecting women more than men. In women, the hormonal fluctuations seen during pregnancy and lactation can affect migraine frequency and magnitude. Understanding the evaluation of headache in pregnancy is important, especially given the increased risk of secondary headache conditions. Pregnancy and lactation can complicate treatment options for women with migraine because of the risk of certain medications to the fetus. This review includes details of the workup and then provides treatment options for migraine during pregnancy and lactation. PMID:24604057

  4. Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release.

    PubMed

    Zhang, Xiaomeng; Ding, Shushu; Cao, Sumei; Zhu, Anwei; Shi, Guoyue

    2016-06-15

    Selective and sensitive detection of extracellular lactate is of fundamental significance for studying the metabolic alterations in tumor progression. Here we report the rational design and synthesis of a quantum-dot-hydrogel-based fluorescent probe for biosensing and bioimaging the extracellular lactate. By surface engineering the destabilized quantum dot sol with Nile Blue, the destabilized Nile-Blue-functionalized quantum dot sol cannot only self-assemble forming quantum dot hydrogel but also monitor lactate in the presence of nicotinamide adenine dinucleotide cofactor and lactate dehydrogenase through fluorescence resonance energy transfer. Notably, the surface engineered quantum dot hydrogel show high selectivity toward lactate over common metal ions, amino acids and other small molecules that widely coexist in biological system. Moreover, the destabilized Nile-Blue-functionalized quantum dots can encapsulate isolated cancer cells when self-assembled into a hydrogel and thus specifically detect and image the extracellular lactate metabolism. By virtue of these properties, the functionalized quantum dot hydrogel was further successfully applied to monitor the effect of metabolic agents. PMID:26852200

  5. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    MedlinePlus

    ... mutations in the dihydropyrimidine dehydrogenase gene interpreted by analysis of the three-dimensional protein structure. Biochem J. ... R, Nicolai J, Ylstra B, Rubio-Gozalbo ME. Analysis of severely affected patients with dihydropyrimidine dehydrogenase deficiency ...

  6. Genetics Home Reference: succinic semialdehyde dehydrogenase deficiency

    MedlinePlus

    ... People with this condition can also have problems controlling eye movements. Less common features of succinic semialdehyde ... or management of succinic semialdehyde dehydrogenase deficiency: Gene Review: Gene Review: Succinic Semialdehyde Dehydrogenase Deficiency Genetic Testing ...

  7. Fermentation and alternative respiration compensate for NADH dehydrogenase deficiency in a prokaryotic model of DJ-1-associated Parkinsonism.

    PubMed

    Messaoudi, Nadia; Gautier, Valérie; Dairou, Julien; Mihoub, Mouhad; Lelandais, Gaëlle; Bouloc, Philippe; Landoulsi, Ahmed; Richarme, Gilbert

    2015-11-01

    YajL is the closest prokaryotic homologue of Parkinson's disease-associated DJ-1, a protein of undefined function involved in the oxidative stress response. We reported recently that YajL and DJ-1 protect cells against oxidative stress-induced protein aggregation by acting as covalent chaperones for the thiol proteome, including the NuoG subunit of NADH dehydrogenase 1, and that NADH dehydrogenase 1 activity is negligible in the yajL mutant. We report here that this mutant compensates for low NADH dehydrogenase activity by utilizing NADH-independent alternative dehydrogenases, including pyruvate oxidase PoxB and d-amino acid dehydrogenase DadA, and mixed acid aerobic fermentations characterized by acetate, lactate, succinate and ethanol excretion. The yajL mutant has a low adenylate energy charge favouring glycolytic flux, and a high NADH/NAD ratio favouring fermentations over pyruvate dehydrogenase and the Krebs cycle. DNA array analysis showed upregulation of genes involved in glycolytic and pentose phosphate pathways and alternative respiratory pathways. Moreover, the yajL mutant preferentially catabolized pyruvate-forming amino acids over Krebs cycle-related amino acids, and thus the yajL mutant utilizes pyruvate-centred respiro-fermentative metabolism to compensate for the NADH dehydrogenase 1 defect and constitutes an interesting model for studying eukaryotic respiratory complex I deficiencies, especially those associated with Alzheimer's and Parkinson's diseases. PMID:26377309

  8. l-Lactate Production from Biodiesel-Derived Crude Glycerol by Metabolically Engineered Enterococcus faecalis: Cytotoxic Evaluation of Biodiesel Waste and Development of a Glycerol-Inducible Gene Expression System

    PubMed Central

    2015-01-01

    Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD+ ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h−1 (1.6 g liter−1 h−1). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. PMID:25576618

  9. L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system.

    PubMed

    Doi, Yuki

    2015-03-01

    Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD(+) ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h(-1) (1.6 g liter(-1) h(-1)). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. PMID:25576618

  10. Cadmium chloride inhibits lactate gluconeogenesis in isolated human renal proximal tubules: a cellular metabolomic approach with 13C-NMR.

    PubMed

    Faiz, Hassan; Conjard-Duplany, Agnès; Boghossian, Michelle; Martin, Guy; Baverel, Gabriel; Ferrier, Bernard

    2011-09-01

    As part of a study on cadmium nephrotoxicity, we studied the effect of cadmium chloride (CdCl2) in isolated human renal proximal tubules metabolizing the physiological substrate lactate. Dose-effect experiments showed that 10-500 μM CdCl2 reduced lactate removal, glucose production and the cellular levels of ATP, coenzyme A, acetyl-coenzyme A and of reduced glutathione in a dose-dependent manner. After incubation with 5 mM L: -[1-(13)C]-, or L: -[2-(13)C]-, or L: -[3-(13)C] lactate or 5 mM L: -lactate plus 25 mM NaH(13)CO3 as substrates, substrate utilization and product formation were measured by both enzymatic and carbon 13 NMR methods. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism previously validated showed that 100 μM CdCl2 caused an inhibition of flux through lactate dehydrogenase and alanine aminotransferase and through the entire gluconeogenic pathway; fluxes were diminished by 19% (lactate dehydrogenase), 28% (alanine aminotransferase), 28% (pyruvate carboxylase), 42% (phosphoenolpyruvate carboxykinase), and 52% (glucose-6-phosphatase). Such effects occurred without altering the oxidation of the lactate carbons or fluxes through enzymes of the tricarboxylic acid cycle despite a large fall of the cellular ATP level, a marker of the energy status and of the viability of the renal cells. These results that were observed at clinically relevant tissue concentrations of cadmium provide a biochemical basis for a better understanding of the cellular mechanism of cadmium-induced renal proximal tubulopathy in humans chronically exposed to cadmium. PMID:21153630

  11. Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa

    PubMed Central

    Gao, Chao; Hu, Chunhui; Zheng, Zhaojuan; Jiang, Tianyi; Dou, Peipei; Zhang, Wen; Che, Bin; Wang, Yujiao; Lv, Min

    2012-01-01

    NAD-independent l-lactate dehydrogenase (l-iLDH) and NAD-independent d-lactate dehydrogenase (d-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an l-iLDH), and lldE (encoding a d-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses d-iLDH and l-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldRM, lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. l-Lactate and d-lactate interfered with the DNA-binding activity of LldR. Thus, l-iLDH and d-iLDH were expressed when the operon was induced in the presence of l-lactate or d-lactate. PMID:22408166

  12. Towards an effective biosensor for monitoring AD leachate: a knockout E. coli mutant that cannot catabolise lactate.

    PubMed

    Sweeney, Joseph; Murphy, Cormac D; McDonnell, Kevin

    2015-12-01

    Development of a biosensor for the convenient measurement of acetate and propionate concentrations in a two-phase anaerobic digestor (AD) requires a bacterium that will be unresponsive to the other organic acids present in the leachate, of which lactate is the most abundant. Successive gene knockouts of E.coli W3110 D-lactate dehydrogenase (dld), L-lactate dehydrogenase (lldD), glycolate oxidase (glcD) and a suspected L-lactate dehdrogenase (ykgF) were performed. The resulting quadruple mutant (IMD Wldgy) was incapable of growth on D- and L-lactate, whereas the wild type grew readily on these substrates. Furthermore, the O2 consumption rates of acetate-grown IMD Wldgy cell suspensions supplied with either acetate (0.1mM) or a synthetic leachate including acetate (0.1mM) and DL-lactate (1mM) were identical (2.79 and 2.70mgl(-1)min(-1), respectively). This was in marked contrast to similar experiments with the wild type which gave initial O2 consumption rates of 2.00, 2.36 and 2.97mgl(-1)min(-1) when cell suspensions were supplied with acetate (0.1mM), acetate (0.1mM) plus D-lactate (1mM) or acetate (0.1mM) plus L-lactate (1mM), respectively. The knockout strain provides a platform for the design of a biosensor that can accessibly monitor acetate and propionate concentrations in AD leachate via O2-uptake measurements. PMID:26272093

  13. FDH: an Aldehyde Dehydrogenase Fusion Enzyme in Folate Metabolism

    PubMed Central

    Krupenko, Sergey A.

    2009-01-01

    FDH (10-formyltetrahydrofolate dehydrogenase, Aldh1L1, EC 1.5.1.6) converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate and CO2 in a NADP+-dependent reaction. It is a tetramer of four identical 902 amino acid residue subunits. The protein subunit is a product of a natural fusion of three unrelated genes and consists of three distinct domains. The N-terminal domain of FDH (residues 1–310) carries the folate binding site and shares sequence homology and structural topology with other enzymes utilizing 10-formyl-THF as a substrate. In vitro it functions as 10-formyl-THF hydrolase, and evidence indicate that this activity is a part of the overall FDH mechanism. The C-terminal domain of FDH (residues 400–902) originated from an aldehyde dehydrogenase-related gene and is capable of oxidation of short-chain aldehydes to corresponding acids. Similar to class 1 and 2 aldehyde dehydrogenases, this domain exists as a tetramer and defines the oligomeric structure of the full-length enzyme. The two catalytic domains are connected by an intermediate linker (residues 311–399), which is a structural and functional homolog of carrier proteins possessing a 4′-phosphopantetheine prosthetic group. In the FDH mechanism, the intermediate linker domain transfers a formyl, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. The overall FDH mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. In this mechanism, one domain provides the folate binding site and a hydrolase catalytic center to remove the formyl group from the folate substrate, another provides a transfer vehicle between catalytic centers and the third one contributes the dehydrogenase machinery further oxidizing formyl to CO2. PMID:18848533

  14. Nutritional aspects of human lactation*

    PubMed Central

    Thomson, A. M.; Black, A. E.

    1975-01-01

    This paper reviews the literature on the incidence and duration of breast-feeding in various countries, the volume and composition of breast milk, the health and nutrition of breast-fed babies as judged by growth and morbidity, maternal nutritional requirements during lactation, and the effect of prolonged lactation on maternal health. It appears that lactation can be as well sustained by impoverished as by affluent mothers, and that even in communities where malnutrition is common the average growth of infants is satisfactory up to the age of about 3 months on a diet of breast milk alone. Breast milk appears to have specific anti-infective properties, but prolonged breast-feeding will not prevent infections among older infants reared in a poor environment. The authors believe that breast-feeding is the best form of nutrition for the young infant and deplore its decline in modern industrial societies. The recommendations of various FAO/WHO Expert Groups on nutritional intakes during lactation are summarized. The need for an increased daily energy intake of 4.2 MJ (1 000 kcal) is questioned, and an increase of 2.5 MJ (600 kcal) is suggested. Data on the effect of prolonged lactation on the health of the mother are scanty; body weight appears to be maintained even among poorly nourished mothers. The authors stress the need for well-planned and technically adequate studies of the material and psychological factors involved in breast feeding. PMID:816479

  15. Deficiency of dihydrolipoyl dehydrogenase (a component of the pyruvate and alpha-ketoglutarate dehydrogenase complexes): a cause of congenital chronic lactic acidosis in infancy.

    PubMed

    Robinson, B H; Taylor, J; Sherwood, W G

    1977-12-01

    A male child died at 7 months of age with progressive neurologic deterioration and persistent metabolic acidosis. Investigations during life showed this child to have elevated blood pyruvate, lactate, and alpha-ketoglutarate as well as elevation of branched chain amino acids and occasional hypoglycemia. Cofactor therapy using either thiamine-HCl (2 g/kg/24 hr) or thiamine tetrahydrofurfuryl disulfide had no measurable effect on the clinical or biochemical status of the patient. Tissue taken postmortem showed normal levels of key gluconeogenic enzymes but a deficiency in the activity of pyruvate dehydrogenase in all tissues tested (liver, brain, kidney, skeletal muscle, and heart). Examination of the individual activities of pyruvate dehydrogenase complex showed pyruvate decarboxylase (E1) to be normal in liver and other tissues. Dihydrolipoyl dehydrogenase (E3), on the other hand, was deficient in all tissues tested. alpha-Ketoglutarate dehydrogenase complex, which depends of E3 for its total activity, was also deficient in all tissues tested. The absence of this enzyme id discussed in relation to the clinical and biochemical status of the patient. PMID:413089

  16. Antipsychotics in pregnancy and lactation

    PubMed Central

    Babu, Girish N.; Desai, Geetha; Chandra, Prabha S.

    2015-01-01

    Research on psychotropic medications during pregnancy and lactation is limited as often involves complex ethical issues. Information on safety of psychotropic drugs during these critical phases is either inconclusive or undetermined. Many women with severe mental illness have unplanned pregnancies and require antipsychotic medication during pregnancy and lactation. Multiple issues have to be considered while choosing safe treatments for pregnant and lactating women and the best approach is to individualize the treatment. Medication should be guided primarily by its safety data and by the psychiatric history of the patient. Important issues to be kept in mind include pre-pregnancy counseling for all women, including planning pregnancies; folate supplementation, discussion with patient and family regarding options, and active liaison with obstetricians, ultrasonologists and pediatricians. Whenever possible, non-pharmacological approaches should be used in addition. PMID:26330648

  17. Reduction of d-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene.

    PubMed

    Jin, Qing; Li, Ling; Moon, Jin Seok; Cho, Seung Kee; Kim, Yu Jin; Lee, Soo Jin; Han, Nam Soo

    2016-05-01

    The d-form of lactate, which causes metabolic stress upon excessive dietary intake, is mainly produced by Leuconostoc sp., the predominant species in sauerkraut. To shift the metabolic flux of d-lactate from pyruvate to l-lactate, we expressed the l-lactate dehydrogenase (ldhL) gene in Leuconostoc mesenteroides ATCC 8293. The ldhL gene from Lactobacillus plantarum was introduced into L. mesenteroides using the shuttle vectors pLeuCM and pLeuCM42. To elevate the expression level of ldhL in L. mesenteroides, the nucleotides for pyruvate kinase promoter were fused to ldhL and cloned into above vectors to construct pLC18pkL and pLC42pkL. As results, introduction of pLC42pkL in L. mesenteroides significantly improved both l-LDH activity and l-lactate productivity during fermentation, decreasing the d-/l-lactate ratio. When used as a starter culture for sauerkraut fermentation, recombinant L. mesenteroides harboring pLC42pkL increased l-lactate concentration and decreased d-lactate concentration compared to the wild type strain. We newly developed a recombinant L. mesenteroides which has high l-lactate dehydrogenase activity and applied this strain to minimize the harmful effect of d-lactate during the sauerkraut fermentation. To the best of our knowledge, we demonstrate for the first time the effective use of recombinant Leuconostoc sp. for quality improvement of fermented foods. PMID:26472127

  18. L-lactate utilization by dairy goats

    SciTech Connect

    Rodriguez, N.R.

    1984-01-01

    Three Toggenberg goats were used to investigate utilization of L-lactate as substrate for lipogenesis and gluconeogenesis. Objectives were: (1) to determine the extent lactate could be used for body and milk fat synthesis; (2) to estimate contribution of lactate to glucose synthesis; (3) to assess differences in these measurements during early lactation, mid-lactation and the dry period; and (4) to observe differences in labeling of glycerol and free fatty acid (FFA) fractions in body and milk fat 7 days post-infusion of isotopes. Goats were fed in metabolism crates a 70% concentrate ration in hourly increments to meet individual requirements. After a pulse dose, U-/sup 14/C-lactate (34 uCi/hr) and 6-/sup 3/H-Glucose (100 uCi/hr) was infused via jugular cannula for 8 hours. Blood an milk were sampled hourly beginning 3 and 3.5 hours, respectively, after the pulse dose. Body fat was biopsied after the infusion (Day 0) and one week post-infusion (Day 7). Plasma glucose and lactate concentrations were greater in early 70.4 and 7.7 mg/dl, respectively) compared to mid-lactation (50.8 and 5.9 gm/dl). Mid-lactation and dry period values were similar. Glucose turnover differed for early and mid-lactation and the dry period (141, 86, and 70 mmol/hr, respectively). Percentage of glucose derived from lactate tended to decrease through lactation into the dry period (28% vs 10%). Plasma lactate turnover was greater during lactation as opposed to the dry period (124 and 35 mmol/hr). During early lactation a greater proportion of lactate was incorporated into glucose than during either mid-lactation or the dry period.

  19. The Occurrence of Glycolate Dehydrogenase and Glycolate Oxidase in Green Plants

    PubMed Central

    Frederick, Sue Ellen; Gruber, Peter J.; Tolbert, N. E.

    1973-01-01

    Homogenates of various lower land plants, aquatic angiosperms, and green algae were assayed for glycolate oxidase, a peroxisomal enzyme present in green leaves of higher plants, and for glycolate dehydrogenase, a functionally analogous enzyme characteristic of certain green algae. Green tissues of all lower land plants examined (including mosses, liverworts, ferns, and fern allies), as well as three freshwater aquatic angiosperms, contained an enzyme resembling glycolate oxidase, in that it oxidized l- but not d-lactate in addition to glycolate, and was insensitive to 2 mm cyanide. Many of the green algae (including Chlorella vulgaris, previously claimed to have glycolate oxidase) contained an enzyme resembling glycolate dehydrogenase, in that it oxidized d- but not l-lactate, and was inhibited by 2 mm cyanide. Other green algae had activity characteristic of glycolate oxidase and, accordingly, showed a substantial glycolate-dependent O2 uptake. It is pointed out that this distribution pattern of glycolate oxidase and glycolate dehydrogenase among the green plants may have phylogenetic significance. Activities of catalase, a marker enzyme for peroxisomes, were also determined and were generally lower in the algae than in the land plants or aquatic angiosperms. Among the algae, however, there were no consistent correlations between levels of catalase and the type of enzyme which oxidized glycolate. PMID:16658555

  20. Boosting D-lactate production in engineered cyanobacteria using sterilized anaerobic digestion effluents.

    PubMed

    Hollinshead, Whitney D; Varman, Arul M; You, Le; Hembree, Zachary; Tang, Yinjie J

    2014-10-01

    Anaerobic digestion (AD) is an environmentally friendly approach to waste treatment, which can generate N and P-rich effluents that can be used as nutrient sources for microalgal cultivations. Modifications of AD processes to inhibit methanogenesis leads to the accumulation of acetic acid, a carbon source that can promote microalgal biosynthesis. This study tested different AD effluents from municipal wastes on their effect on D-lactate production by an engineered Synechocystis sp. PCC 6803 (carrying a novel lactate dehydrogenase). The results indicate that: (1) AD effluents can be supplemented into the modified BG-11 culture medium (up to 1:4 volume ratio) to reduce N and P cost; (2) acetate-rich AD effluents enhance D-lactate synthesis by ∼ 40% (1.2g/L of D-lactate in 20 days); and (3) neutral or acidic medium had a deleterious effect on lactate secretion and biomass growth by the engineered strain. This study demonstrates the advantages and guidelines in employing wastewater for photomixotrophic biosynthesis using engineered microalgae. PMID:25084044

  1. Human GLUD2 Glutamate Dehydrogenase Is Expressed in Neural and Testicular Supporting Cells*

    PubMed Central

    Spanaki, Cleanthe; Zaganas, Ioannis; Kleopa, Kleopas A.; Plaitakis, Andreas

    2010-01-01

    Mammalian glutamate dehydrogenase (GDH) is an allosterically regulated enzyme that is expressed widely. Its activity is potently inhibited by GTP and thought to be controlled by the need of the cell for ATP. In addition to this housekeeping human (h) GDH1, humans have acquired (via a duplication event) a highly homologous isoenzyme (hGDH2) that is resistant to GTP. Although transcripts of GLUD2, the gene encoding hGDH2, have been detected in human neural and testicular tissues, data on the endogenous protein are lacking. Here, we developed an antibody specific for hGDH2 and used it to study human tissues. Western blot analyses revealed, to our surprise, that endogenous hGDH2 is more densely expressed in testis than in brain. At the subcellular level, hGDH2 localized to mitochondria. Study of testicular tissue using immunocytochemical and immunofluorescence methods revealed that the Sertoli cells were strongly labeled by our anti-hGDH2 antibody. In human cerebral cortex, a robust labeling of astrocytes was detected, with neurons showing faint hGDH2 immunoreactivity. Astrocytes and Sertoli cells are known to support neurons and germ cells, respectively, providing them with lactate that largely derives from the tricarboxylic acid cycle via conversion of glutamate to α-ketoglutarate (GDH reaction). As hGDH2 is not subject to GTP control, the enzyme is able to metabolize glutamate even when the tricarboxylic acid cycle generates GTP amounts sufficient to inactivate the housekeeping hGDH1 protein. Hence, the selective expression of hGDH2 by astrocytes and Sertoli cells may provide a significant biological advantage by facilitating metabolic recycling processes essential to the supportive role of these cells. PMID:20194501

  2. The Crystal Structure of a Ternary Complex of Betaine Aldehyde Dehydrogenase from Pseudomonas aeruginosa Provides New Insight Into the Reaction Mechansim and Shows A Novel Binding Mode of the 2'-Phosphate of NADP+ and A Novel Cation Binding Site

    SciTech Connect

    Gonzalez-Segura, L.; Rudino-Pinera, E; Munoz-Clares, R; Horjales, E

    2009-01-01

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is in an intrasubunit cavity that we found to be present in all known ALDH structures. The othersingle bondnot described before for any ALDH but most likely present in most of themsingle bondis located in between the dimeric unit, helping structure a region involved in coenzyme binding and catalysis. This may explain the effects of K+ ions on the activity and stability of PaBADH.

  3. Inducing Lactation: Breastfeeding for Adoptive Moms

    MedlinePlus

    ... Español Text Size Email Print Share Inducing Lactation: Breastfeeding for Adoptive Moms Page Content Article Body A growing number of adoptive mothers are interested in breastfeeding their babies through induced lactation. Prescription Medications No ...

  4. Breast disorders in pregnant and lactating women.

    PubMed

    Faguy, Kathryn

    2015-01-01

    The breast undergoes extensive changes during pregnancy and lactation that can create diagnostic challenges. This article reviews the anatomy of the breast, breast changes associated with pregnancy and lactation, and breast imaging techniques for pregnant and lactating women. Various benign breast conditions in this patient population also are discussed, such as lactating adenomas, galactoceles, and granulomatous mastitis. Finally, pregnancy-associated breast cancer is presented, including its epidemiology, diagnosis, staging, treatment, and prognosis. PMID:25835417

  5. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to 155, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous lactate. 184.1311 Section 184.1311 Food... GRAS § 184.1311 Ferrous lactate. (a) Ferrous lactate (iron (II) lactate, C6H10FeO6, CAS Reg. No....

  6. Imaging Pregnant and Lactating Patients.

    PubMed

    Tirada, Nikki; Dreizin, David; Khati, Nadia J; Akin, Esma A; Zeman, Robert K

    2015-10-01

    As use of imaging in the evaluation of pregnant and lactating patients continues to increase, misperceptions of radiation and safety risks have proliferated, which has led to often unwarranted concerns among patients and clinicians. When radiologic examinations are appropriately used, the benefits derived from the information gained usually outweigh the risks. This review describes appropriateness and safety issues, estimated doses for imaging examinations that use iodizing radiation (ie, radiography, computed tomography, nuclear scintigraphy, and fluoroscopically guided interventional radiology), radiation risks to the mother and conceptus during various stages of pregnancy, and use of iodinated or gadolinium-based contrast agents and radiotracers in pregnant and lactating women. Maternal radiation risk must be weighed with the potential consequences of missing a life-threatening diagnosis such as pulmonary embolus. Fetal risks (ie, spontaneous abortion, teratogenesis, or carcinogenesis) vary with gestational age and imaging modality and should be considered in the context of the potential benefit of medically necessary diagnostic imaging. When feasible and medically indicated, modalities that do not use ionizing radiation (eg, magnetic resonance imaging) are preferred in pregnant and lactating patients. Radiologists should strive to minimize risks of radiation to the mother and fetus, counsel patients effectively, and promote a realistic understanding of risks related to imaging during pregnancy and lactation. PMID:26466183

  7. Glutamate dehydrogenases: the why and how of coenzyme specificity.

    PubMed

    Engel, Paul C

    2014-01-01

    NAD(+) and NADP(+), chemically similar and with almost identical standard oxidation-reduction potentials, nevertheless have distinct roles, NAD(+) serving catabolism and ATP generation whereas NADPH is the biosynthetic reductant. Separating these roles requires strict specificity for one or the other coenzyme for most dehydrogenases. In many organisms this holds also for glutamate dehydrogenases (GDH), NAD(+)-dependent for glutamate oxidation, NADP(+)-dependent for fixing ammonia. In higher animals, however, GDH has dual specificity. It has been suggested that GDH in mitochondria reacts only with NADP(H), the NAD(+) reaction being an in vitro artefact. However, contrary evidence suggests mitochondrial GDH not only reacts with NAD(+) but maintains equilibrium using the same pool as accessed by β-hydroxybutyrate dehydrogenase. Another complication is the presence of an energy-linked dehydrogenase driving NADP(+) reduction by NADH, maintaining the coenzyme pools at different oxidation-reduction potentials. Its coexistence with GDH makes possible a futile cycle, control of which is not yet properly explained. Structural studies show NAD(+)-dependent, NADP(+)-dependent and dual-specificity GDHs are closely related and a few site-directed mutations can reverse specificity. Specificity for NAD(+) or for NADP(+) has probably emerged repeatedly during evolution, using different structural solutions on different occasions. In various GDHs the P7 position in the coenzyme-binding domain plays a key role. However, whereas in other dehydrogenases an acidic P7 residue usually hydrogen bonds to the 2'- and 3'-hydroxyls, dictating NAD(+) specificity, among GDHs, depending on detailed conformation of surrounding residues, an acidic P7 may permit binding of NAD(+) only, NADP(+) only, or in higher animals both. PMID:23761034

  8. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  9. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) and 1 CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave. NW... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous lactate. 184.1311 Section 184.1311 Food... Specific Substances Affirmed as GRAS § 184.1311 Ferrous lactate. (a) Ferrous lactate (iron (II)...

  10. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is...

  11. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS...

  12. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS...

  13. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  14. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  15. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  16. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance...

  17. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of...

  18. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  19. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS...

  20. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  1. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferrous lactate. 582.5311 Section 582.5311 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This...

  2. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) and 1 CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave. NW... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous lactate. 184.1311 Section 184.1311 Food... Specific Substances Affirmed as GRAS § 184.1311 Ferrous lactate. (a) Ferrous lactate (iron (II)...

  3. The origin and evolution of lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of mammary glands are the defining morphological feature of mammals, and a successful lactation is crucial to mammalian reproductive strategies. Among mammalian species, the nature of lactation and the composition of milk vary greatly. The evolution of lactation and its diversity amon...

  4. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    PubMed Central

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  5. PHYLOGENY AND EVOLUTION OF ALDEHYDE DEHYDROGENASE-HOMOLOGOUS FOLATE ENZYMES

    PubMed Central

    Strickland, Kyle C.; Holmes, Roger S.; Oleinik, Natalia V.; Krupenko, Natalia I.; Krupenko, Sergey A.

    2011-01-01

    Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP+-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO2 in an NADP+-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago. PMID:21215736

  6. Reaction of phosphoenolpyruvate carboxylase with (Z)-3-bromophosphoenolpyruvate and (Z)-3-fluorophosphoenolpyruvate

    SciTech Connect

    Diaz, E.; O'Laughlin, J.T.; O'Leary, M.H.

    1988-02-23

    (Z)-3-Bromophosphoenolpyruvate inactivates phosphoenolpyruvate carboxylase from maize in the presence of HCO/sub 3//sup -/ and either Mg/sup 2 +/ or Mn/sup 2 +/. The inactivation rate follows saturation kinetics. Inactivation is slower in the presence of phospholactate or epoxymaleate, both of which are inhibitors of the enzyme, or dithiothreitol. Inactivation is completely prevented by the presence of lactate dehydrogenase and NADH, and 3-bromolactate is formed during this treatment. If the reaction is conducted by using HC/sup 18/O/sub 3//sup -/, the inorganic phosphate produced contains /sup 18/O. This and other evidence indicate that phosphoenolpyruvate carboxylase catalyzes conversion of bromophosphoenolpyruvate into bromopyruvate by way of the usual carboxyphosphate-enolate intermediate, and bromopyruvate is the species responsible for enzyme inactivation. (Z)-3-fluorophosphoenolpyruvate is transformed by the enzyme into a 6:1 mixture of 3-fluoropyruvate and 3-fluorooxalacetate, presumably by the same mechanism. The enzyme is not inactivated during this treatment.

  7. Testicular lactate content is compromised in men with Klinefelter Syndrome.

    PubMed

    Alves, Marco G; Martins, Ana D; Jarak, Ivana; Barros, Alberto; Silva, Joaquina; Sousa, Mário; Oliveira, Pedro F

    2016-03-01

    Klinefelter syndrome (KS) is the most common genetic cause of human infertility, but the mechanism(s) responsible for its phenotype remain largely unknown. KS is associated with alterations in body composition and with a higher risk of developing metabolic diseases. We therefore hypothesized that KS men seeking fertility treatment possess an altered testicular metabolism profile that may hamper the nutritional support of spermatogenesis. Testicular biopsies from control (46, XY) (n = 6) and KS (47, XXY) (n = 6) individuals were collected and analyzed by proton high-resolution magic-angle spinning nuclear magnetic resonance spectroscopy. The mRNA and protein expression of crucial glycolysis-associated enzymes and transporters were evaluated in parallel by quantitative PCR and Western blot, respectively. Our data revealed altered regulation of glucose transporters (GLUT1 and GLUT3); phosphofructokinase 1, liver isoform (PFKL); and lactate dehydrogenase A (LDHA) expression in the testis of KS patients. Moreover, we detected a severe reduction in lactate and creatine accumulation within testicular tissue from KS men. The aberrant levels of the biomarkers detected in testicular biopsies of KS men may therefore be associated with the infertility phenotypes presented by these men. Mol. Reprod. Dev. 83: 208-216, 2016. © 2015 Wiley Periodicals, Inc. PMID:26676340

  8. Bienzymatic Sequential Reaction on Microgel Particles and Their Cofactor Dependent Applications.

    PubMed

    Dubey, Nidhi C; Tripathi, Bijay P; Müller, Martin; Stamm, Manfred; Ionov, Leonid

    2016-05-01

    We report, the preparation and characterization of bioconjugates, wherein enzymes pyruvate kinase (Pk) and l-lactic dehydrogenase (Ldh) were covalently bound to poly(N-isopropylacrylamide)-poly(ethylenimine) (PNIPAm-PEI) microgel support using glutaraldehyde (GA) as the cross-linker. The effects of different arrangements of enzymes on the microgels were investigated for the enzymatic behavior and to obtain maximum Pk-Ldh sequential reaction. The dual enzyme bioconjugates prepared by simultaneous addition of both the enzymes immobilized on the same microgel particles (PL), and PiLi, that is, dual enzyme bioconjugate obtained by combining single-enzyme bioconjugates (immobilized pyruvate kinase (Pi) and immobilized lactate dehydrogenase (Li)), were used to study the effect of the assembly of dual enzymes systems on the microgels. The kinetic parameters (Km, kcat), reaction parameters (temperature, pH), stability (thermal and storage), and cofactor dependent applications were studied for the dual enzymes conjugates. The kinetic results indicated an improved turn over number (kcat) for PL, while the kcat and catalytic efficiency was significantly decreased in case of PiLi. For cofactor dependent application, in which the ability of ADP monitoring and ATP synthesis by the conjugates were studied, the activity of PL was found to be nearly 2-fold better than that of PiLi. These results indicated that the influence of spacing between the enzymes is an important factor in optimization of multienzyme immobilization on the support. PMID:27010819

  9. Purification and preliminary characterization of alcohol dehydrogenase from Aspergillus nidulans.

    PubMed Central

    Creaser, E H; Porter, R L; Britt, K A; Pateman, J A; Doy, C H

    1985-01-01

    Aspergillus alcohol dehydrogenase is produced in response to growth in the presence of a wide variety of inducers, of which the most effective are short-chain alcohols and ketones, e.g. butan-2-one and propan-2-ol. The enzyme can be readily extracted from fresh or freeze-dried cells and purified to homogeneity on Blue Sepharose in a single step by using specific elution with NAD+ and pyrazole. The pure enzyme has Mr 290 000 by electrophoresis or gel filtration; it is a homopolymer with subunit Mr 37 500 by electrophoresis in sodium dodecyl sulphate; its amino acid composition corresponds to Mr 37 900, and the native enzyme contains one zinc atom per subunit. The enzyme is NAD-specific and has a wide substrate activity in the forward and reverse reactions; its activity profile is not identical with those of other alcohol dehydrogenases. PMID:3156582

  10. Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers.

    PubMed

    Zhang, Rongzhen; Xu, Yan; Xiao, Rong

    2015-12-01

    Alcohol dehydrogenases/reductases predominantly catalyze the asymmetric biosynthesis of optically pure stereoisomers because of their unique chiral constitutions. The enantioselectivities of alcohol dehydrogenases/reductases are substrate- and cofactor-dependent, and therefore they usually catalyze specific reactions with high enantioselectivity under physiological conditions; this may not be suitable for asymmetric biosynthesis with non-natural substrates or non-natural cofactors, and under nonphysiological conditions. It is therefore necessary to modify alcohol dehydrogenases/reductases using various redesigning tools such as directed evolution and rational design, and their combinations, as well as engineering enzyme modules for more efficient production of "non-natural" products. In this article, progress in these aspects of alcohol dehydrogenase/reductase design is reviewed, and future challenges are discussed. PMID:26320091

  11. Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system.

    PubMed Central

    Lascelles, J; Burke, K A

    1978-01-01

    Membrane fractions with L-lactate dehydrogenase, sn-glycerol-3-phosphate (G3P) dehydrogenase, and nitrate reductase activities were prepared from Staphylococcus aureus wild-type and hem mutant strains. These preparations reduced ferric to ferrous iron with L-lactate or G3P as the source of reductant, using ferrozine to trap the ferrous iron. Reduction of ferric iron was insensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) with either L-lactate or G3P as reductant, but oxalate and dicumarol inhibited reduction with L-lactate as substrate. The membranes had L-lactate- and G3P-nitrate reductase activities, which were inhibited by azide and by HQNO. Reduction of ferric iron under anaerobic conditions was inhibited by nitrate with preparations from the wild-type strain. This effect of nitrate was abolished by blocking electron transport to the nitrate reductase system with azide or HQNO. Nitrate did not inhibit reduction of ferric iron in heme-depleted membranes from the hem mutant unless hemin was added to restore L-lactate- and G3P-nitrate reductase activity. We conclude that reduced components of the electron transport chain that precede cytochrome b serve as the source of reductant for ferric iron and that these components are oxidized preferentially by a functional nitrate reductase system. PMID:207671

  12. Haptoglobin therapy for acute favism: a Japanese boy with glucose-6-phosphate dehydrogenase Guadalajara.

    PubMed

    Ohga, S; Higashi, E; Nomura, A; Matsuzaki, A; Hirono, A; Miwa, S; Fujii, H; Ueda, K

    1995-02-01

    We report the case of a 2-year-old Japanese boy with acute favism who was treated with human haptoglobin products. He had been exhibiting chronic nonspherocytic haemolytic anaemia until the diagnosis of glucose-6-phosphate dehydrogenase (G6PD) deficiency when 14 months old. He suffered a favic crisis at 24 months of age, when the administration of haptoglobin was effective for relieving bilirubinaemia and haemoglobinuria. Serum-free Hb rapidly decreased to normal levels despite the sustained level of serum lactate dehydrogenase. His G6PD gene was G6PD Guadalajara. This is the first application of haptoglobin therapy for acute favism and the first reported case of Japanese G6PD deficiency with typical favic crisis. Haptoglobin treatment might be helpful for managing the haemolytic crisis in the disease. PMID:7873396

  13. Pyruvate dehydrogenase deficiency and epilepsy.

    PubMed

    Prasad, Chitra; Rupar, Tony; Prasad, Asuri N

    2011-11-01

    The pyruvate dehydrogenase complex (PDHc) is a mitochondrial matrix multienzyme complex that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the conversion of pyruvate into acetyl-CoA. PDHc deficiency is one of the commoner metabolic disorders of lactic acidosis presenting with neurological phenotypes that vary with age and gender. In this mini-review, we postulate mechanisms of epilepsy in the setting of PDHc deficiency using two illustrative cases (one with pyruvate dehydrogenase complex E1-alpha polypeptide (PDHA1) deficiency and the second one with pyruvate dehydrogenase complex E1-beta subunit (PDHB) deficiency (a rare subtype of PDHc deficiency)) and a selected review of published case series. PDHc plays a critical role in the pathway of carbohydrate metabolism and energy production. In severe deficiency states the resulting energy deficit impacts on brain development in utero resulting in structural brain anomalies and epilepsy. Milder deficiency states present with variable manifestations that include cognitive delay, ataxia, and seizures. Epileptogenesis in PDHc deficiency is linked to energy failure, development of structural brain anomalies and abnormal neurotransmitter metabolism. The use of the ketogenic diet bypasses the metabolic block, by providing a direct source of acetyl-CoA, leading to amelioration of some symptoms. Genetic counseling is essential as PDHA1 deficiency (commonest defect) is X-linked although females can be affected due to unfavorable lyonization, while PDHB and PDH phosphatase (PDP) deficiencies (much rarer defects) are of autosomal recessive inheritance. Research is in progress for looking into animal models to better understand pathogenesis and management of this challenging disorder. PMID:21908116

  14. Characterization of retinaldehyde dehydrogenase 3

    PubMed Central

    Graham, CarolineE.; Brocklehurst, Keith; Pickersgill, RichardW.; Warren, MartinJ.

    2005-01-01

    RALDH3 (retinal dehydrogenase 3) was characterized by kinetic and binding studies, protein engineering, homology modelling, ligand docking and electrostatic-potential calculations. The major recognition determinant of an RALDH3 substrate was shown to be an eight-carbon chain bonded to the aldehyde group whose kinetic influence (kcat/Km at pH8.5) decreases when shortened or lengthened. Surprisingly, the ?-ionone ring of all-trans-retinal is not a major recognition site. The dissociation constants (Kd) of the complexes of RALDH3 with octanal, NAD+ and NADH were determined by intrinsic tryptophan fluorescence. The similarity of the Kd values for the complexes with NAD+ and with octanal suggests a random kinetic mechanism for RALDH3, in contrast with the ordered sequential mechanism often associated with aldehyde dehydrogenase enzymes. Inhibition of RALDH3 by tri-iodothyronine binding in competition with NAD+, predicted by the modelling, was established kinetically and by immunoprecipitation. Mechanistic implications of the kinetically influential ionizations with macroscopic pKa values of 5.0 and 7.5 revealed by the pH-dependence of kcat are discussed. Analogies with data for non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans, together with the present modelled structure of the thioacyl RALDH3, suggest (a) that kcat characterizes deacylation of this intermediate for specific substrates and (b) the assignment of the pKa of the major ionization (approximating to 7.5) to the perturbed carboxy group of Glu280 whose conjugate base is envisaged as supplying general base catalysis to attack of a water molecule. The macroscopic pKa of the minor ionization (5.0) is considered to approximate to that of the carboxy group of Glu488. PMID:16241904

  15. Dissolution Dynamic Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by NMR.

    PubMed

    Balzan, Riccardo; Fernandes, Laetitia; Comment, Arnaud; Pidial, Laetitia; Tavitian, Bertrand; Vasos, Paul R

    2016-01-01

    The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer. The high NMR signal obtained can be used to monitor chemical reactions in real time. The downside of hyperpolarized NMR resides in the limited time window available for signal acquisition, which is usually on the order of the nuclear spin longitudinal relaxation time constant, T1, or, in favorable cases, on the order of the relaxation time constant associated with the singlet-state of coupled nuclei, TLLS. Cellular uptake of endogenous molecules and metabolic rates can provide essential information on tumor development and drug response. Numerous previous hyperpolarized NMR studies have demonstrated the relevancy of pyruvate as a metabolic substrate for monitoring enzymatic activity in vivo. This work provides a detailed description of the experimental setup and methods required for the study of enzymatic reactions, in particular the pyruvate-to-lactate conversion rate in presence of lactate dehydrogenase (LDH), by hyperpolarized NMR. PMID:26967906

  16. Isocitrate dehydrogenase mutations in leukemia

    PubMed Central

    McKenney, Anna Sophia; Levine, Ross L.

    2013-01-01

    Recent genome-wide discovery studies have identified a spectrum of mutations in different malignancies and have led to the elucidation of novel pathways that contribute to oncogenic transformation. The discovery of mutations in the genes encoding isocitrate dehydrogenase (IDH) has uncovered a critical role for altered metabolism in oncogenesis, and the neomorphic, oncogenic function of IDH mutations affects several epigenetic and gene regulatory pathways. Here we discuss the relevance of IDH mutations to leukemia pathogenesis, therapy, and outcome and how mutations in IDH1 and IDH2 affect the leukemia epigenome, hematopoietic differentiation, and clinical outcome. PMID:23999441

  17. Cellobiose dehydrogenase in cellulose degradation

    SciTech Connect

    Eriksson, L.; Igarashi, Kiyohiko; Samejima, Masahiro

    1996-10-01

    Cellobiose dehydrogenase is produced by a variety of fungi. Although it was already discovered during the 70`s, it`s role in cellulose and lignin degradation is yet ambiguous. The enzyme contains both heme and FAD as prosthetic groups, and seems to have a domain specifically designed to bind the enzyme to cellulose. It`s affinity to amorphous cellulose is higher than to crystalline cellulose. We will report on the binding behavior of the enzyme, its usefulness in elucidation of cellulose structures and also, possibilities for applications such as its use in measuring individual and synergistic mechanisms for cellulose degradation by endo- and exo-glucanases.

  18. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria

    PubMed Central

    Watanabe, Seiya; Sueda, Rui; Fukumori, Fumiyasu; Watanabe, Yasuo

    2015-01-01

    Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(P)H-dependent dehydrogenases (synthases), which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti) plasmid. In addition to the reverse oxidative reaction(s), the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated) oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation). We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A), and exhibited dehydrogenase (but not oxidase) activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by “subunit-exchange”. To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase. PMID:26382958

  19. Short communication: Amino acid supplementation and stage of lactation alter apparent utilization of nutrients by blood neutrophils from lactating dairy cows in vitro.

    PubMed

    Garcia, M; Elsasser, T H; Juengst, L; Qu, Y; Bequette, B J; Moyes, K M

    2016-05-01

    Glutamine is the preferred AA used by polymorphonuclear leukocytes (PMN) during the inflammatory response. However, the effect of other AA on bovine PMN response during inflammation and how this is altered by stage of lactation has not been fully elucidated. The objective of this study was to determine the effect of additional AA supplementation (pool of AA excluding Gln) on AA profiles, gene expression, and inflammatory function of PMN from dairy cows in early and mid lactation in vitro. We used 18 Holstein cows for this study. Polymorphonuclear leukocytes were isolated. Working solutions of AA (0 or 4 mM) and LPS (0 or 50μg/mL) were added to cell populations suspended in RPMI and incubated for 2h at 37°C. We used a subset of samples for gene and protein expression. Concentrations of AA in medium were determined using gas chromatography-mass spectrometry with norleucine as an internal standard. Apparent AA and glucose utilization were calculated by subtracting the concentration after from that of before incubation. Data were analyzed as a randomized block design. Challenge with LPS increased the expression of proinflammatory genes and AA supplementation decreased both the expression of some proinflammatory genes and the media concentrations of tumor necrosis factor-α. Neither stage of lactation, LPS challenge, nor AA supplementation altered the chemotactic or phagocytic abilities of PMN in vitro. Polymorphonuclear leukocytes supplemented with AA had greater concentrations and apparent utilization of most of the supplemented AA, whereas the unsupplemented group had greater apparent utilization of glucose. Alanine was not provided in the media but was present in spent media, and Ile, Gly, and Pro were greater in spent media than in media before incubation indicating synthesis of these AA. Regarding expression of genes involved in nutrient metabolism, the expression of G6PD, coding for the enzyme glucose 6-phosphate dehydrogenase, was increased and that of PDHA1, coding for the enzyme pyruvate dehydrogenase α 1, tended to increase with AA supplementation. Due to the lower concentration of tumor necrosis factor-α in media coupled with a downregulation of several proinflammatory genes, we concluded that AA, rather than Gln, alter the inflammatory response of bovine blood PMN. Independent from Gln, blood PMN from cows in early lactation may use certain AA as their primary carbon source for energy than cows in later lactation. Evaluating cows during the early postpartum period will provide additional information on the effect of stage of lactation and nutrient supplementation on PMN function. PMID:26971158

  20. Effects of alpha-adrenergic stimulation on the regulation of the pyruvate dehydrogenase complex in the perfused rat liver

    SciTech Connect

    Fisher, R.A.; Tanabe, S.; Buxton, D.B.; Olson, M.S.

    1985-08-05

    The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of UCO2 from infused (1- UC) pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Results show that alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.

  1. Genetics Home Reference: 2-methylbutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase deficiency 2-methylbutyryl glycinuria SBCADD short/branched-chain acyl-CoA dehydrogenase deficiency Related Information How are ... F. Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new ...

  2. MECHANISTIC ANALYSIS OF PYRUVATE DEHYDROGENASE KINASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyruvate dehydrogenase kinase (PDK) is the primary regulator of flux through the mitochondrial pyruvate dehydrogenase complex. The PDK is a member of the ATPase/kinase superfamily. Member proteins of this family are characterized by four signature sequences in the catalytic domain (N-, D-, F-, and G...

  3. Enzymic studies on the biosynthesis of amino acids from lactate by Peptostreptococcus elsdenii

    PubMed Central

    Somerville, H. J.

    1968-01-01

    Cell-free extracts of Peptostreptococcus elsdenii, a strict anaerobe from the rumen, were examined for enzymes catalysing the steps in the biosynthesis from lactate of alanine, serine, aspartate and glutamate. Extracts contain the enzymes necessary for the formation of alanine from lactate via pyruvate. The presence of enzymes catalysing the interconversion of phosphoglycerate and phosphohydroxypyruvate, the transamination of the latter to phosphoserine and the cleavage of phosphoserine to serine and inorganic phosphate was demonstrated, suggesting that serine is formed via these intermediates. `Malic' enzyme, malate dehydrogenase and glutamate–oxaloacetate transaminase are present in extracts and could account for aspartate formation. The extracts catalyse all of the steps of the tricarboxylic acid pathway leading from oxaloacetate plus acetate to glutamate. Together with substantive data from previous radioactive tracer studies the results provide strong evidence that these four amino acids are synthesized in this strict anaerobe by pathways closely similar to those operating in aerobic and facultatively aerobic organisms. PMID:5690537

  4. Evaluation of lactate dehydrogenase activity as an index of cervical malignancy.

    PubMed

    Gerolymatos, A; Fotiou, S; Tserkezoglou, A; Somarakis, M; Katsilieris, J; Kotsalis, N; Aravantinos, D

    1991-01-01

    The diagnostic accuracy of an investigational test for cervix cancer screening is studied. The method involves a vaginal tampon that changes colour in relation to LDH activity and can detect preinvasive and invasive cervical lesions. The test was applied in 50 women with CIN, 50 women with histologically proved cervical cancer and in 500 women with no history of malignancy. The test was positive in 54% of CINs and 86% of cervix cancer patients, while it was not specific in 16% and 4% respectively. Among 268 healthy controls the test results were negative in 77.99% and false positive in 12.31%. The test can be performed any day of the menstrual cycle apart from the time of menstruation. It can also be performed, without any serious problem of misinterpretation in women suffering from myomas, vaginal relaxation or menstrual disorders. On the contrary, the test should be avoided if vaginitis or cervicitis are present, since false positive conclusions might be drawn. The test results suggest that the sensitivity of this method was 77% and the specificity 86% if we exclude the benign conditions that influence or possibly influence the colour indication of the tampon. PMID:1809580

  5. Relationship between polymorphisms in lactate dehydrogenase B gene and milk characteristics in beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450s are a group of heme-containing monooxygenases necessary for the oxidative metabolism of foreign biological substances. Our goal was to determine the frequency of single nucleotide polymorphism (SNP) 994 in the CYP3A28 sequence of three breed types of cattle. The distribution of geno...

  6. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  7. Inhibition of Rhizopus Lactate Dehydrogenase by Fructose 1,6-bisphosphate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of the filamentous fungus Rhizopus is of significant value because of the organism’s industrial importance, clinical detriment, and agricultural problems. Yet, research has yielded very few advances that allow site directed integration of DNA used for transformation. This is because plas...

  8. Serum Lactate Dehydrogenase in Non-Hodgkin's Lymphoma: A Prognostic Indicator.

    PubMed

    Yadav, Charu; Ahmad, Afzal; D'Souza, Benedicta; Agarwal, Ashish; Nandini, M; Ashok Prabhu, K; D'Souza, Vivian

    2016-04-01

    Non-Hodgkin's lymphoma constitutes a group of disorders originating from the malignant transformation of lymphocytes and involving either the lymph nodes or extranodal sites. NHL commonly presents in the sixth to seventh decade of life with a male preponderance (50-75 %). Recent studies have shown importance of serum LDH in prognosis of NHL. Authors report a case of a 63 year old male presenting with complaints of fever and backache for past 4 months. General and systemic examination revealed bilateral axillary lymphadenopathy and splenomegaly respectively. Serum LDH level was highly elevated (3441 U/l). Excisional axillary and bone marrow biopsy were done before oncology referral. Complete workup revealed diffuse Non-Hodgkin's lymphoma with bone marrow infiltration. Patient died because of acute renal failure due to NHL and DM 2 (Type 2 diabetes mellitus). PMID:27069334

  9. Salivary Lactate Dehydrogenase (LDH)- A Novel Technique in Oral Cancer Detection and Diagnosis

    PubMed Central

    Kannabiran, Jayanthi; Rao, Mahesh Dathu

    2016-01-01

    Introduction Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy which is a major cause for cancer morbidity and mortality worldwide. Early diagnosis and intervention improves the overall survival rate. Aim The current study was done to evaluate the accuracy of salivary LDH as a potential biomarker for diagnosis of OSCC and to correlate the levels of salivary LDH with the histological differentiation of the tumour. Materials and Methods Thirty patients visiting the outpatient department diagnosed clinically and histologically with OSCC were selected for the study with a control group of 20 patients. Unstimulated salivary samples collected from the selected patients were centrifuged and processed. Readings of enzyme activity in the salivary samples was established through auto analysis using International Federation of Clinical Chemistry (IFCC) method. Levels of the enzyme activity in both the control and the study group were compared and statistically analysed using student t-test. The three subgroups were also compared and statistically analysed. Results The results showed a mean value of 497.00 with a SD of 51.75 among the control group and a mean value of 1225.40 with a SD of 221.79 among the cases with a p-value of 0.0001 which was statistically significant. Furthermore, when the LDH values for the various grades of OSCC were compared, the mean values were 1049.07, 1309.50 and 1586.20 respectively, for well differentiated, moderately differentiated and poorly differentiated carcinoma. Conclusion The p-value thus obtained revealed LDH values which were significantly higher in patients with OSCC and furthermore the levels significantly correlated with the histopathological grade of the tumour. PMID:27042582

  10. Lactate dehydrogenase and caspase activity in nasopharyngeal secretions are predictors of bronchiolitis severity

    PubMed Central

    Mehta, Reena; Scheffler, Margaret; Tapia, Lorena; Aideyan, Letisha; Patel, Kirtida D; Jewell, Alan M; Avadhanula, Vasanthi; Mei, Minghua; Garofalo, Roberto P; Piedra, Pedro A

    2014-01-01

    Background Bronchiolitis is the leading cause of hospitalization in infants. Biomarkers of disease severity might help in clinical management. Objective To determine the clinical predictiveness of NW-LDH, NW-caspase 3/7, and NW-LDH/NW-caspase 3/7 ratio in bronchiolitis. Methods Previously healthy children less than 24months of age with bronchiolitis were recruited from the Texas Children's emergency room and intensive care unit from October 2010 to April 2011. Demographic, clinical information, and NW samples were obtained at enrollment. NW samples were analyzed for respiratory viruses, caspase 3/7, and LDH. Results A viral pathogen was detected in 916% of 131 children, with the most common being respiratory syncytial virus and human rhinovirus. A single infection was found in 618% of subjects and co-infection in 298%. Children admitted to ICU had significantly higher NW-LDH than children sent home from the ER or admitted to the general floor (P=002). Children infected with RSV had the highest NW-LDH concentration (P=003) compared with other viral infections. NW-LDH and NW-caspase were significantly correlated (r=077, P<00001). The univariate models showed NW-LDH and NW-LDH/NW- caspase 3/7 ratio were directly associated with hospitalization. Mutivariate regression analyses suggested a complex interaction between the biomarkers, demographics, and disposition. Conclusions NW-LDH, NW-caspase 3/7 and NW-LDH/NW-caspase 3/7 ratio and their interactions with demographic factors are predictive of bronchiolitis severity and can help distinguish children requiring ICU-level care from those admitted to the general floor, or discharged home from the emergency center. PMID:25132512

  11. Effect of a Marathon Run on Serum Lipoproteins, Creatine Kinase, and Lactate Dehydrogenase in Recreational Runners

    ERIC Educational Resources Information Center

    Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A.

    2005-01-01

    The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride

  12. Effect of a Marathon Run on Serum Lipoproteins, Creatine Kinase, and Lactate Dehydrogenase in Recreational Runners

    ERIC Educational Resources Information Center

    Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A.

    2005-01-01

    The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride…

  13. Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

    SciTech Connect

    Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Reed, Jennifer L.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of wide range of electron acceptors. Here, we quantitatively assessed lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor limited growth on lactate with O2; lactate with fumarate; and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensible for growth, respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the TCA cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under O2 limitation but was required for anaerobic growth likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as electron donor and electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by recently described new type of oxidative NAD(P)H independent D-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by proton motive force generation.

  14. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions.

    PubMed

    Pinchuk, Grigoriy E; Geydebrekht, Oleg V; Hill, Eric A; Reed, Jennifer L; Konopka, Allan E; Beliaev, Alexander S; Fredrickson, Jim K

    2011-12-01

    Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force. PMID:21965410

  15. Effects of decreased lactate accumulation after dichloroacetate administration on exercise training–induced mitochondrial adaptations in mouse skeletal muscle

    PubMed Central

    Hoshino, Daisuke; Tamura, Yuki; Masuda, Hiroyuki; Matsunaga, Yutaka; Hatta, Hideo

    2015-01-01

    Recent studies suggested that lactate accumulation can be a signal for mitochondrial biogenesis in skeletal muscle. We investigated whether reductions in lactate concentrations in response to dichloroacetate (DCA), an activator of pyruvate dehydrogenase, attenuate mitochondrial adaptations after exercise training in mice. We first confirmed that DCA administration (200 mg/kg BW by i.p. injection) 10 min before exercise decreased muscle and blood lactate concentrations after high-intensity interval exercise (10 bouts of 1 min treadmill running at 40 m/min with a 1 min rest). At the same time, exercise-induced signal cascades did not change by pre-exercise DCA administration. These results suggested that DCA administration affected only lactate concentrations after exercise. We next examined the effects of acute DCA administration on mRNA expressions involved with mitochondrial biogenesis after same high-intensity interval exercise and the effects of chronic DCA administration on mitochondrial adaptations after high-intensity interval training (increasing intensity from 38 to 43 m/min by the end of training period). Acute DCA administration did not change most of the exercise-induced mRNA upregulation. These data suggest that lactate reductions by DCA administration did not affect transcriptional activation after high-intensity interval exercise. However, chronic DCA administration attenuated, in part, mitochondrial adaptations such as training-induced increasing rates of citrate synthase (P = 0.06), β-hydroxyacyl CoA dehydrogenase activity (P < 0.05), cytochrome c oxidase IV (P < 0.05) and a fatty acid transporter, fatty acid translocase/CD36 (P < 0.05), proteins after exercise training. These results suggest that lactate accumulation during high-intensity interval exercise may be associated with mitochondrial adaptations after chronic exercise training. PMID:26416973

  16. Maternal flaxseed diet during lactation changes adrenal function in adult male rat offspring.

    PubMed

    Figueiredo, Mariana Sarto; da Conceição, Ellen Paula Santos; de Oliveira, Elaine; Lisboa, Patricia Cristina; de Moura, Egberto Gaspar

    2015-10-14

    Flaxseed (Linum usitatissimum L.) has been a focus of interest in the field of functional foods because of its potential health benefits. However, we hypothesised that maternal flaxseed intake during lactation could induce several metabolic dysfunctions in adult offspring. In the present study, we aimed to characterise the adrenal function of adult offspring whose dams were supplemented with whole flaxseed during lactation. At birth, lactating Wistar rats were divided into two groups: rats from dams fed the flaxseed diet (FLAX) with 25% of flaxseed and controls dams. Pups received standard diet after weaning and male offspring were killed at age 180 days old to collect blood and tissues. We evaluated body weight and food intake during development, corticosteronaemia, adrenal catecholamine content, hepatic cholesterol, TAG and glycogen contents, and the protein expression of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), 11-β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and adrenaline β2 receptor at postnatal day 180 (PN180). After weaning, pups from the FLAX group had a higher body weight (+10 %) and food intake (+10%). At PN180, the FLAX offspring exhibited higher serum corticosterone (+48%) and lower adrenal catecholamine ( - 23%) contents, lower glycogen ( - 30%), higher cholesterol (4-fold increase) and TAG (3-fold-increase) contents in the liver, and higher 11β-HSD1 (+62%) protein expression. Although the protein expression of hypothalamic CRH was unaffected, the FLAX offspring had lower protein expression of pituitary ACTH ( - 34%). Therefore, induction of hypercorticosteronaemia by dietary flaxseed during lactation may be due to an increased hepatic activation of 11β-HSD1 and suppression of ACTH. The changes in the liver fat content of the FLAX group are suggestive of steatosis, in which hypercorticosteronaemia may play an important role. Thus, it is recommended that lactating women restrict the intake of flaxseed during lactation. PMID:26337632

  17. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Substrate specificities and inhibition studies.

    PubMed Central

    MacKintosh, R W; Fewson, C A

    1988-01-01

    The apparent Km and maximum velocity values of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus were determined for a range of alcohols and aldehydes and the corresponding turnover numbers and specificity constants were calculated. Benzyl alcohol was the most effective alcohol substrate for benzyl alcohol dehydrogenase. Perillyl alcohol was the second most effective substrate, and was the only non-aromatic alcohol oxidized. The other substrates of benzyl alcohol dehydrogenase were all aromatic in nature, with para-substituted derivatives of benzyl alcohol being better substrates than other derivatives. Coniferyl alcohol and cinnamyl alcohol were also substrates. Benzaldehyde was much the most effective substrate for benzaldehyde dehydrogenase II. Benzaldehydes with a single small substituent group in the meta or para position were better substrates than any other benzaldehyde derivatives. Benzaldehyde dehydrogenase II could also oxidize the aliphatic aldehydes hexan-1-al and octan-1-al, although poorly. Benzaldehyde dehydrogenase II was substrate-inhibited by benzaldehyde when the assay concentration exceeded approx. 10 microM. Benzaldehyde dehydrogenase II, but not benzyl alcohol dehydrogenase, exhibited esterase activity with 4-nitrophenyl acetate as substrate. Both benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II were inhibited by the thiol-blocking reagents iodoacetate, iodoacetamide, 4-chloromercuribenzoate and N-ethylmaleimide. Benzyl alcohol or benzaldehyde respectively protected against these inhibitions. NAD+ also gave some protection. Neither benzyl alcohol dehydrogenase nor benzaldehyde dehydrogenase II was inhibited by the metal-ion-chelating agents EDTA, 2,2'-bipyridyl, pyrazole or 2-phenanthroline. Neither enzyme was inhibited by a range of plausible metabolic inhibitors such as mandelate, phenylglyoxylate, benzoate, succinate, acetyl-CoA, ATP or ADP. Benzaldehyde dehydrogenase II was sensitive to inhibition by several aromatic aldehydes; in particular, ortho-substituted benzaldehydes such as 2-bromo-, 2-chloro- and 2-fluoro-benzaldehydes were potent inhibitors of the enzyme. PMID:3060114

  18. Human liver aldehyde dehydrogenase: coenzyme binding

    SciTech Connect

    Kosley, L.L.; Pietruszko, R.

    1987-05-01

    The binding of (U-/sup 14/C) NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of (U-/sup 14/C) NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction.

  19. A bioluminescence assay for aldehyde dehydrogenase activity.

    PubMed

    Duellman, Sarah J; Valley, Michael P; Kotraiah, Vinayaka; Vidugiriene, Jolanta; Zhou, Wenhui; Bernad, Laurent; Osterman, Jean; Kimball, Joshua J; Meisenheimer, Poncho; Cali, James J

    2013-03-15

    The aldehyde dehydrogenase (ALDH) family of enzymes is critical for cell survival and adaptation to cellular and environmental stress. These enzymes are of interest as therapeutic targets and as biomarkers of stem cells. This article describes a novel, homogeneous bioluminescence assay to study the activity of the ALDH enzymes. The assay is based on a proluciferin-aldehyde substrate that is recognized and utilized by multiple ALDH enzyme isoforms to generate luciferin. A detection reagent is added to inactivate ALDH and generate light from the luciferin product. The luminescent signal is dependent on the ALDH enzyme concentration and the incubation time in the ALDH reaction; moreover, the luminescent signal generated with the detection reagent is stable for greater than 2 h. This assay provides many advantages over standard NADH fluorescence assays. It is more sensitive and the signal stability provided allows convenient assay setup in batch mode-based high-throughput screens. The assay also shows an accurate pharmacological response for a common ALDH inhibitor and is robust, with a large assay window (S/B=64) and Z'=0.75. PMID:23219557

  20. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  1. SAXS fingerprints of aldehyde dehydrogenase oligomers

    PubMed Central

    Tanner, John J.

    2015-01-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren–Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513–5522; Luo et al., J. Mol. Biol. 425 (2013) 3106–3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  2. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers

    PubMed Central

    2015-01-01

    Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC) mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4) and pyruvate dehydrogenase phosphatases (PDP1 and 2). PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases. PMID:26124988

  3. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance

    PubMed Central

    Omlin, Teye; Langevin, Karolanne

    2014-01-01

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 μmol·kg−1·min−1. This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  4. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance.

    PubMed

    Omlin, Teye; Langevin, Karolanne; Weber, Jean-Michel

    2014-10-15

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 μmol·kg(-1)·min(-1). This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  5. Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression

    PubMed Central

    Chaube, Balkrishna; Malvi, Parmanand; Singh, Shivendra Vikram; Mohammad, Naoshad; Meena, Avtar Singh; Bhat, Manoj Kumar

    2015-01-01

    Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma. PMID:26484566

  6. Properties of D(+)-lysopine dehydrogenase from crown gall tumour tissue.

    PubMed

    Otten, L A; Vreugdenhil, D; Schilperoort, R A

    1977-12-01

    D(+)-Lysopine dehydrogenase of an octopine-type Crown Gall tumour has been partially purified and a number of kinetic parameters have been determined. D(+)-Lysopine dehydrogenase catalyzes the reductive condensation of pyruvate and one of at least six different L-amino acids, as well as the reverse reactions, with preferential use of NADP(H) as a cofactor. The optimal pH for both reductive and oxidative reactions has been determined. At pH 6.8, L-lysine has of all the amino acids the lowest Km value, while at the same pH the highest V was found with L-arginine and L-histidine. The isoelectric point of D(+)-lysopine dehydrogenase is about 4.5. PMID:21695

  7. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    PubMed

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD. PMID:26671069

  8. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase.

    PubMed

    Köpke, Michael; Gerth, Monica L; Maddock, Danielle J; Mueller, Alexander P; Liew, FungMin; Simpson, Séan D; Patrick, Wayne M

    2014-06-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h(-1) optical density unit(-1)), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  9. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle

    PubMed Central

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg-1, 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle—regulated by both diet and CB1 receptor activity—through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD. PMID:26671069

  10. Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase

    PubMed Central

    Köpke, Michael; Gerth, Monica L.; Maddock, Danielle J.; Mueller, Alexander P.; Liew, FungMin

    2014-01-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h−1 optical density unit−1), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  11. Purification of yeast isocitrate dehydrogenase

    PubMed Central

    Illingworth, John A.

    1972-01-01

    The NAD-linked isocitrate dehydrogenase from baker's yeast was purified to homogeneity (as judged by gel filtration and polyacrylamide-gel electrophoresis) with an overall yield of 50% by using dilute solutions of the allosteric effector (AMP) to elute the enzyme specifically from CM-cellulose. This method preserves the allosteric properties of the crude enzyme. Although the pure enzyme shows only a single band on electrophoresis in the presence of sodium dodecyl sulphate, two types of subunit are observed in 8m-urea. The isoelectric point of the enzyme rises during purification, and this may reflect the partial loss of an additional low-molecular-weight component. Values are included for the amino acid composition and extinction coefficients of the pure enzyme. PMID:4571176

  12. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue. PMID:27040960

  13. LACTATE AS PREDICTOR OF MORTALITY IN POLYTRAUMA

    PubMed Central

    FREITAS, Andréia Diane; FRANZON, Orli

    2015-01-01

    Background: The lactate is a product of anaerobic metabolism; it can be used as a marker on demand and availability of oxygen. Changes in lactate levels can be effectively used as a marker in resuscitation maneuvers, even in patients with stable vital signs. Aim: To verify the lactate clearance as a predictor of mortality in trauma patients, in need of intensive care. Method: A total of 851 patients were admitted in ICU, in which 146 were victims of multiple trauma; due to the exclusion criteria, were included 117. Results: Patients were 87% male, mean age 32.4 years, motorcycle drivers, Glasgow coma scale between 3-8, affected by cranial trauma, followed by abdominal trauma. Was verified mortality up to 48 h and global mortality, that did not show statistical relationship between lactate clearance and mortality (p=0.928). Conclusion: There is no correlation between admission lactate or lactate clearance and mortality in patients treated with multiple trauma. PMID:26537138

  14. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  15. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    PubMed

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-01

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water. PMID:26685114

  16. Oxamate Improves Glycemic Control and Insulin Sensitivity via Inhibition of Tissue Lactate Production in db/db Mice

    PubMed Central

    Ye, Weiran; Zheng, Yijia; Zhang, Shanshan; Yan, Li; Cheng, Hua; Wu, Muchao

    2016-01-01

    Oxamate (OXA) is a pyruvate analogue that directly inhibits the lactate dehydrogenase (LDH)-catalyzed conversion process of pyruvate into lactate. Earlier and recent studies have shown elevated blood lactate levels among insulin-resistant and type 2 diabetes subjects and that blood lactate levels independently predicted the development of incident diabetes. To explore the potential of OXA in the treatment of diabetes, db/db mice were treated with OXA in vivo. Treatment of OXA (350–750 mg/kg of body weight) for 12 weeks was shown to decrease body weight gain and blood glucose and HbA1c levels and improve insulin secretion, the morphology of pancreatic islets, and insulin sensitivity in db/db mice. Meanwhile, OXA reduced the lactate production of adipose tissue and skeletal muscle and serum lactate levels and decreased serum levels of TG, FFA, CRP, IL-6, and TNF-α in db/db mice. The PCR array showed that OXA downregulated the expression of Tnf, Il6, leptin, Cxcr3, Map2k1, and Ikbkb, and upregulated the expression of Irs2, Nfkbia, and Pde3b in the skeletal muscle of db/db mice. Interestingly, LDH-A expression increased in the islet cells of db/db mice, and both treatment of OXA and pioglitazone decreased LDH-A expression, which might be related to the improvement of insulin secretion. Taken together, increased lactate production of adipose tissue and skeletal muscle may be at least partially responsible for insulin resistance and diabetes in db/db mice. OXA improved glycemic control and insulin sensitivity in db/db mice primarily via inhibition of tissue lactate production. Oxamic acid derivatives may be a potential drug for the treatment of type 2 diabetes. PMID:26938239

  17. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  18. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  19. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium lactate. 184.1207 Section 184.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O,...

  20. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3)...

  1. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium lactate. 184.1207 Section 184.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O, where x is any integer up to...

  2. 21 CFR 184.1207 - Calcium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium lactate. 184.1207 Section 184.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O,...

  3. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3)...

  4. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  5. Cerebral Lactate Metabolism After Traumatic Brain Injury.

    PubMed

    Patet, Camille; Suys, Tamarah; Carteron, Laurent; Oddo, Mauro

    2016-04-01

    Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome. PMID:26898683

  6. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland. PMID:19702690

  7. Regulation of proline oxidase activity by lactate.

    PubMed

    Kowaloff, E M; Phang, J M; Granger, A S; Downing, S J

    1977-12-01

    We found that proline oxidase, the first enzyme of the proline degradative pathway, is inhibited by lactate. The Km of the enzyme for proline increases with increasing concentrations of lactate. Since proline can be a source for gluconeogenesis, regulation of proline degradation by lactate may serve as a mechanism for allocation of metabolic fuel sources. The marked inhibition of proline oxidase at levels of lactate that commonly occur in both genetic and acquired lactic acidosis may cause the previously unexplained hyperprolinemia seen in these metabolic disorders. PMID:271958

  8. Flavocytochrome b2-Based Enzymatic Method of L-Lactate Assay in Food Products

    PubMed Central

    Smutok, Halyna

    2013-01-01

    L-lactate, a key metabolite of the anaerobic glycolytic pathway, plays an important role as a biomarker in medicine, in the nutritional sector and food quality control. For these reasons, there is a need for very specific, sensitive, and simple analytical methods for the accurate L-lactate measuring. A new highly selective enzymatic method for L-lactate determination based on the use of flavocytochrome b2 (EC 1.1.2.3; FC b2) isolated from the recombinant strain of the yeast Hansenula polymorpha has been developed. A proposed enzymatic method exploits an enzymatic oxidation of L-lactate to pyruvate coupled with nitrotetrazolium blue (NTZB) reduction to a colored product, formazan. The maximal absorption peak of the colored product is near λ = 525 nm and the linear range is observed in the interval 0.005–0.14 mM of L-lactate. The main advantages of the proposed method when compared to the LDH-based routine approaches are a higher sensitivity (2.0 μM of L-lactate), simple procedure of analysis, usage of inexpensive, nontoxic reagents, and small amount of the enzyme. Enzymatic oxidation of L-lactate catalyzed by flavocytochrome b2 and coupled with formazan production from nitrotetrazolium blue was shown to be used for L-lactate assay in food samples. A high correlation between results of the proposed method and reference ones proves the possibility to use flavocytochrome b2-catalysed reaction for enzymatic measurement of L-lactate in biotechnology and food chemistry. PMID:24223505

  9. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism.

    PubMed

    Zschocke, J; Ruiter, J P; Brand, J; Lindner, M; Hoffmann, G F; Wanders, R J; Mayatepek, E

    2000-12-01

    We report a novel inborn error of metabolism identified in a child with an unusual neurodegenerative disease. The male patient was born at term and recovered well from a postnatal episode of metabolic decompensation and lactic acidosis. Psychomotor development in the first year of life was only moderately delayed. After 14 mo of age, there was progressive loss of mental and motor skills; at 2 years of age, he was severely retarded with marked restlessness, choreoathetoid movements, absence of directed hand movements, marked hypotonia and little reaction to external stimuli. Notable laboratory findings included marked elevations of urinary 2-methyl-3-hydroxybutyrate and tiglylglycine without elevation of 2-methylacetoacetate, mild elevations of lactate in CSF and blood, and a slightly abnormal acylcarnitine profile. These abnormalities became more apparent after isoleucine challenge. Enzyme studies showed absent activity of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) in the mitochondrial oxidation of 2-methyl branched-chain fatty acids and isoleucine. Under dietary isoleucine restriction, neurologic symptoms stabilized over the next 7 months. PMID:11102558

  10. Orbital Contributions to CO Oxidation in Mo-Cu Carbon Monoxide Dehydrogenase

    PubMed Central

    Stein, Benjamin W.; Kirk, Martin L.

    2014-01-01

    A molecular orbital analysis provides new insight into the mechanism of Mo/Cu carbon monoxide dehydrogenase, and reveals electronic structure contributions to reactivity that are remarkably similar to the structurally related molybdenum hydroxylases. A calculated reaction barrier of ~12 kcal/mol is in excellent agreement with experiment. PMID:24322538

  11. Breastfeeding practices and lactation mastitis.

    PubMed

    Foxman, B; Schwartz, K; Looman, S J

    1994-03-01

    Clinical impression suggests that lactation mastitis is associated with inexperienced nursers, improper nursing techniques, stress and fatigue. A pilot study was conducted to describe the frequency of self-reported breastfeeding practices during the first week post partum among 100 breastfeeding women delivering at a freestanding birthing center or participating in an early discharge program. Nine cases of lactation mastitis were identified from the survey population and an additional 8 from the target population for the survey. Seventeen controls matched by delivery date were identified from survey participants. The frequency of self-reported breastfeeding practices, the presence of fatigue and stress during the week prior to the mastitis date in the case was compared among cases and controls. In the first week post partum, most women fed their babies every 2-3 hr for approx. 20 min a feeding. The cradle or Madonna position was the most frequently used nursing position. Nine percent reported supplementing feedings with formula. Women with mastitis were more likely than controls to report a history of mastitis with a previous child. In the week prior to the mastitis date of the case, women with mastitis were more likely than controls to report breast or nipple pain and cracks or breast fissures. They were less likely to report being able to take a daytime nap. Future studies should focus on the relative importance of and interrelationships among these factors. PMID:8171354

  12. Integration of Metabolic Modeling with Gene Co-expression Reveals Transcriptionally Programmed Reactions Explaining Robustness in Mycobacterium tuberculosis

    PubMed Central

    Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Mittal, Inna; Mobeen, Ahmed; Ramachandran, Srinivasan

    2016-01-01

    Robustness of metabolic networks is accomplished by gene regulation, modularity, re-routing of metabolites and plasticity. Here, we probed robustness against perturbations of biochemical reactions of M. tuberculosis in the form of predicting compensatory trends. In order to investigate the transcriptional programming of genes associated with correlated fluxes, we integrated with gene co-expression network. Knock down of the reactions NADH2r and ATPS responsible for producing the hub metabolites, and Central carbon metabolism had the highest proportion of their associated genes under transcriptional co-expression with genes of their flux correlated reactions. Reciprocal gene expression correlations were observed among compensatory routes, fresh activation of alternative routes and in the multi-copy genes of Cysteine synthase and of Phosphate transporter. Knock down of 46 reactions caused the activation of Isocitrate lyase or Malate synthase or both reactions, which are central to the persistent state of M. tuberculosis. A total of 30 new freshly activated routes including Cytochrome c oxidase, Lactate dehydrogenase, and Glycine cleavage system were predicted, which could be responsible for switching into dormant or persistent state. Thus, our integrated approach of exploring transcriptional programming of flux correlated reactions has the potential to unravel features of system architecture conferring robustness. PMID:27000948

  13. Integration of Metabolic Modeling with Gene Co-expression Reveals Transcriptionally Programmed Reactions Explaining Robustness in Mycobacterium tuberculosis.

    PubMed

    Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Mittal, Inna; Mobeen, Ahmed; Ramachandran, Srinivasan

    2016-01-01

    Robustness of metabolic networks is accomplished by gene regulation, modularity, re-routing of metabolites and plasticity. Here, we probed robustness against perturbations of biochemical reactions of M. tuberculosis in the form of predicting compensatory trends. In order to investigate the transcriptional programming of genes associated with correlated fluxes, we integrated with gene co-expression network. Knock down of the reactions NADH2r and ATPS responsible for producing the hub metabolites, and Central carbon metabolism had the highest proportion of their associated genes under transcriptional co-expression with genes of their flux correlated reactions. Reciprocal gene expression correlations were observed among compensatory routes, fresh activation of alternative routes and in the multi-copy genes of Cysteine synthase and of Phosphate transporter. Knock down of 46 reactions caused the activation of Isocitrate lyase or Malate synthase or both reactions, which are central to the persistent state of M. tuberculosis. A total of 30 new freshly activated routes including Cytochrome c oxidase, Lactate dehydrogenase, and Glycine cleavage system were predicted, which could be responsible for switching into dormant or persistent state. Thus, our integrated approach of exploring transcriptional programming of flux correlated reactions has the potential to unravel features of system architecture conferring robustness. PMID:27000948

  14. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  15. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  16. Genetics Home Reference: phosphoglycerate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase deficiency there is a progressive loss of brain cells leading to a loss of brain tissue (brain ... Serine can be obtained from the diet, but brain cells must produce their own serine because dietary serine ...

  17. Effects of Molybdate, Tungstate, and Selenium Compounds on Formate Dehydrogenase and Other Enzyme Systems in Escherichia coli1

    PubMed Central

    Enoch, Harry G.; Lester, Robert L.

    1972-01-01

    The role of selenium and molybdenum in the metabolism of Escherichia coli was explored by growing cells in a simple salts medium and examining the metabolic consequences of altering the concentration of molybdenum and selenium compounds in the medium. The addition of tungstate increased the molybdate deficiency of this medium, as reflected by lowered levels of enzyme systems previously recognized to require compounds of molybdenum and selenium for their formation [formate-dependent oxygen reduction, formate dehydrogenase (FDH) (EC 1.2.2.1), and nitrate reductase (EC 1.9.6.1)]. The requirement for selenium and molybdenum appears to be unique to the enzymes of formate and nitrate metabolism since molybdate- and selenite-deficient medium had no effect on the level of several dehydrogenase and oxidase systems, for which the electron donors were reduced nicotinamide adenine dinucleotide, succinate, d- or l-lactate, and glycerol. In addition, no effect was observed on the growth rate or cell yield with any carbon source tested (glucose, glycerol, dl-lactate, acetate, succinate, and l-malate) when the medium was deficient in molybdenum and selenium. dl-Selenocystine was about as effective as selenite in stimulating the formation of formate dehydrogenase, whereas dl-selenomethionine was only 1% as effective. In aerobic cells, an amount of FDH was formed such that 3,200 or 3,800 moles of formate were oxidized per min per mole of added selenium (added as dl-selenocystine or selenite, respectively). PMID:4555402

  18. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive...

  19. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive...

  20. Best Prediction of Yields for Long Lactations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactation records of any length now can be processed with the selection index methods known as best prediction (BP). Previous programs were limited to the 305-day standard used since 1935. Best prediction was implemented in 1998 to calculate lactation records in USDA genetic evaluations, replacing t...

  1. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive...

  2. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive...

  3. 21 CFR 73.165 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferrous lactate. 73.165 Section 73.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.165 Ferrous lactate. (a) Identity. The color additive...

  4. Glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Cappellini, M D; Fiorelli, G

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect, being present in more than 400 million people worldwide. The global distribution of this disorder is remarkably similar to that of malaria, lending support to the so-called malaria protection hypothesis. G6PD deficiency is an X-linked, hereditary genetic defect due to mutations in the G6PD gene, which cause functional variants with many biochemical and clinical phenotypes. About 140 mutations have been described: most are single base changes, leading to aminoacid substitutions. The most frequent clinical manifestations of G6PD deficiency are neonatal jaundice, and acute haemolytic anaemia, which is usually triggered by an exogenous agent. Some G6PD variants cause chronic haemolysis, leading to congenital non-spherocytic haemolytic anaemia. The most effective management of G6PD deficiency is to prevent haemolysis by avoiding oxidative stress. Screening programmes for the disorder are undertaken, depending on the prevalence of G6PD deficiency in a particular community. PMID:18177777

  5. Lactation performance of rural Mesoamerindians.

    PubMed

    Villalpando, S F; Butte, N F; Wong, W W; Flores-Huerta, S; Hernandez-Beltran, M J; Smith, E O; Garza, C

    1992-05-01

    Anthropometry, body composition and dietary intake of 30 lactating Otomi Indians of Capulhuac, Mexico, were studied to identify maternal factors which potentially limit lactation and thereby infant growth. Human milk production, milk composition, and maternal dietary intake, body weight, skinfold thicknesses, and body composition were measured at 4 and 6 months postpartum. The 2H2O dose-to-mother method was used to estimate milk production and maternal total body water (TBW). Fat-free mass (FFM) was calculated as TBW/0.73. Body fat was computed as body weight minus FFM. Human milk samples were analyzed for energy, nitrogen, lactose and fat using standard analytical methods. Maternal diet was assessed by three 24-h intake recalls. Mean (SD) milk production was 885 (146) and 869 (150) g/d at 4 and 6 months, respectively. Milk concentrations of protein nitrogen (1.23 (0.17) mg/g) and lactose (66.6 (2.8) mg/g) were comparable to, but the concentrations of fat (22.2 (6.7) mg/g) and energy (0.54 (0.06) kcal/g) were lower than, values observed in economically privileged populations. Maternal height, weight, and BMI were 1.47 (0.06) m, 50.3 (6.0) kg, and 23.4 (3.1) kg/m2, respectively. Maternal TBW, FFM and body fat were 55.8 (4.6)%, 76.4 (6.3)%, and 23.6 (6.4)%, expressed as a percentage of body weight, respectively. Maternal energy and protein intakes averaged 1708 (338) kcal/d and 40 (10) g/d, respectively. Milk production was negatively correlated with maternal body fat (P = 0.006). Energy and fat concentrations in the milk of the Otomi women were positively related to their weight (P = 0.002), BMI (P = 0.05), and body fat (P = 0.004). Energy concentrations in milk were not related to rates of milk production (r = 0.24; P = 0.23). Nor was milk production or composition significantly associated with maternal dietary intake. Lactation performance of these Otomi women correlated significantly with maternal body size and composition, but not current dietary intake. PMID:1600932

  6. Is human lactation a particularly efficient process?

    PubMed

    Frigerio, C; Schutz, Y; Prentice, A; Whitehead, R; Jéquier, E

    1991-09-01

    The recommended dietary allowances of many expert committees (UK DHSS 1979, FAO/WHO/UNU 1985, USA NRC 1989) have set out the extra energy requirements necessary to support lactation on the basis of an efficiency of 80 per cent for human milk production. The metabolic efficiency of milk synthesis can be derived from the measurements of resting energy expenditure in lactating women and in a matched control group of non-pregnant non-lactating women. The results of the present study in Gambian women, as well as a review of human studies on energy expenditure during lactation performed in different countries, suggest an efficiency of human milk synthesis greater than the value currently used by expert committees. We propose that an average figure of 95 per cent would be more appropriate to calculate the energy cost of human lactation. PMID:1959517

  7. Antibodies specific for NADPH-binding region of enzymes possessing dehydrogenase activities.

    PubMed Central

    Katiyar, S S; Porter, J W

    1983-01-01

    The results reported in this paper show the presence of a population of antibodies in rabbit polyclonal antiserum that recognize an antigenic site at the NADPH-binding region of enzymes possessing dehydrogenase activities. Antisera from rabbits immunized with glucose-6-phosphate dehydrogenase or fatty acid synthetase were found to inactivate the enzyme dihydrofolate reductase. The inhibitory effect of this site-specific antibody is a time- and concentration-dependent reaction. This immunoinactivation is prevented by preincubation of the enzyme with NADPH. PMID:6187008

  8. A straightforward radiometric technique for measuring IMP dehydrogenase.

    PubMed

    Cooney, D A; Wilson, Y; McGee, E

    1983-04-15

    [2-3H]Inosinic acid ([2-3H]IMP) has been biosynthesized in good yield from [2-3H]hypoxanthine and PRPP via the action of a partially purified preparation of hypoxanthine/guanine phosphoribosyl transferase from mouse brain. The product was purified in one step by ascending paper chromatography, and used to assess the activity of IMP dehydrogenase. To conduct the assay, tritiated substrate is admixed with enzyme in a final volume of 10 microliters; NAD is present to serve as cofactor for the reaction, and allopurinol to inhibit the oxidation of any hypoxanthine generated as a consequence of side reactions. After an appropriate period of incubation, the 3H2O arising from the oxidation of tritiated IMP via [3H]NAD is isolated by quantitative microdistillation. Performed as described, the assay is facile, sensitive, and accurate, with the capability of detecting the dehydrogenation of as little as 1 pmol of [3H]IMP. Using it, measurements have been made of IMP dehydrogenase in a comprehensive array of mouse organs. Of these, pancreas contained the enzyme at the highest specific activity. PMID:6135372

  9. Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris.

    PubMed Central

    Soares-Silva, Isabel; Schuller, Dorit; Andrade, Raquel P; Baltazar, Fátima; Cássio, Fernanda; Casal, Margarida

    2003-01-01

    In Saccharomyces cerevisiae the activity for the lactate-proton symporter is dependent on JEN1 gene expression. Pichia pastoris was transformed with an integrative plasmid containing the JEN1 gene. After 24 h of methanol induction, Northern and Western blotting analyses indicated the expression of JEN1 in the transformants. Lactate permease activity was obtained in P. pastoris cells with a V (max) of 2.1 nmol x s(-1) x mg of dry weight(-1). Reconstitution of the lactate permease activity was achieved by fusing plasma membranes of P. pastoris methanol-induced cells with Escherichia coli liposomes containing cytochrome c oxidase, as proton-motive force. These assays in reconstituted heterologous P. pastoris membrane vesicles demonstrate that S. cerevisiae Jen1p is a functional lactate transporter. Moreover, a S. cerevisiae strain deleted in the JEN1 gene was transformed with a centromeric plasmid containing JEN1 under the control of the glyceraldehyde-3-phosphate dehydrogenase constitutive promotor. Constitutive JEN1 expression and lactic acid uptake were observed in cells grown on either glucose and/or acetic acid. The highest V (max) (0.84 nmol x s(-1) x mg of dry weight(-1)) was obtained in acetic acid-grown cells. Thus overexpression of the S. cerevisiae JEN1 gene in both S. cerevisiae and P. pastoris cells resulted in increased activity of lactate transport when compared with the data previously reported in lactic acid-grown cells of native S. cerevisiae strains. Jen1p is the only S. cerevisiae secondary porter characterized so far by heterologous expression in P. pastoris at both the cell and the membrane-vesicle levels. PMID:12962538

  10. Aortic enzymes and lactate in high altitude-raised and cholesterol-fed rabbits.

    PubMed

    Zemplenyi, T; Tidwell, D F; Fronek, K

    1984-08-01

    Fourteen male rabbits born at elevation 4000 ft (first experimental series) were transferred at age of 2 months to elevation 12470 ft and raised there for 18 weeks. Half of the animals remained on a commercial rabbit chow (group H) while the other half was on the same diet supplemented with cholesterol (group C). Eight male rabbits raised at sea level served as controls (group S). Intima-media homogenates from the thoracic aortas were assayed for lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lipoamide dehydrogenase, pyruvate kinase (PK), phosphofructokinase (PFK) and the lysosomal hydrolases beta-glucuronidase and N-acetyl-beta-glucosaminidase (NAGA). Aortic lactate and glucose were also measured. Thirty-two male rabbits (second experimental series) were subdivided into 4 groups. Rabbits were fed a cholesterol-supplemented diet not only at high altitude (8 rabbits matching group C) but also 8 animals raised at sea level. The degree of atherosclerosis in the aortas of these 4 groups was assessed by measuring the aortic cholesterol contents. Plasma cholesterol was also determined. In the aortas of the rabbits of group H the activity of PK was significantly elevated, and the activity of the lysosomal hydrolases significantly decreased compared with aortas of group S rabbits. There was no difference in the other enzyme activities or in the aortic glucose and lactate content of these groups. Cholesterol feeding of the animals of group C resulted in a significantly increased activity of the lysosomal hydrolases as well as of LDH and PK. The lipid analyses (second experimental series) revealed a trend to a lower concentration of aortic cholesterol in the high altitude than in the sea level animals, both fed a cholesterol diet, in spite of the higher plasma cholesterol concentrations in the high altitude animals. The low aortic lysosomal hydrolase activities in the high altitude rabbits are in accord with their comparatively lower susceptibility to experimental atherosclerosis. This metabolic feature may be due to a lower degree of exposure of these aortas to injurious factors, such as infections or lower blood pressure. The elevated activity of PK without increased lactate content in group H animals seems to parallel the well-known general adaptation of the organism to high altitude hypoxia, and does not indicate a metabolic switch toward anaerobic glycolysis. PMID:6236825

  11. Drosophila Alcohol Dehydrogenase Polymorphism and Carbon-13 Fluxes: Opportunities for Epistasis and Natural Selection

    PubMed Central

    Freriksen, A.; de-Ruiter, BLA.; Scharloo, W.; Heinstra, PWH.

    1994-01-01

    The influence of genetic variations in Drosophila alcohol dehydrogenase (ADH) on steady-state metabolic fluxes was studied by means of (13)C NMR spectroscopy. Four pathways were found to be operative during 8 hr of ethanol degradation in third instar larvae of Drosophila. Seven strains differed by 18-25% in the ratio between two major pathway fluxes, i.e., into glutamate-glutamine-proline vs. lactate-alanine-trehalose. In general, Adh genotypes with higher ADH activity exhibit a twofold difference in relative carbon flux from malate into lactate and alanine vs. α,α-trehalose compared to low ADH activity genotypes. Trehalose was degraded by the pentose-phosphate shunt. The pentose-phosphate shunt and malic enzyme could supply NADPH necessary for lipid synthesis from ethanol. Lactate and/or proline synthesis may maintain the NADH/NAD(+) balance during ethanol degradation. After 24 hr the flux into trehalose is increased, while the flux into lipids declines in Adh(F) larvae. In Adh(S) larvae the flux into lipids remains high. This co-ordinated nature of metabolism and the genotype-dependent differences in metabolic fluxes may form the basis for various epistatic interactions and ultimately for variations in organismal fitness. PMID:7982561

  12. Enzymatic characterization of Chlamydomonas reinhardtii glycolate dehydrogenase and its nearest proteobacterial homologue.

    PubMed

    Aboelmy, Mohamed H; Peterhansel, Christoph

    2014-06-01

    Chlamydomonas reinhardtii contains a unique glycolate dehydrogenase (CrGlcDH) for glycolate oxidation in photorespiration that is different in structure from the GlcDH enzymes of heteroptrophic prokaryotes and the glycolate oxidases of higher plants. Here, we purified the recombinantly overexpressed enzyme and characterized its enzymatic properties. CrGlcDH uses D-lactate, but not l-lactate, as an alternative substrate with similar catalytic efficiency compared to glycolate. Other short-chain organic acids are only very slowly oxidized. Only the artificial electron acceptors DCIP and PMS, but neither flavine mono- or dinucleotides nor nicotinamide dinucleotides or cytochrome c, were used as electron acceptors by the recombinant enzyme. The enzyme is sensitive to CuSO4 suggesting function of reactive sulfhydryl groups in catalysis. Accordingly, mutational analysis of a putative Fe-S cluster indicated an important function of this domain in catalysis. Evolutionary sequence analysis confirmed that CrGlcDH belongs to a so far biochemically uncharacterized group of enzymes that is found in chlorophytes and some proteobacteria. The most related proteobacterial homologue was only active with d-lactate, but not glycolate as a substrate. Our results indicate that in the chlorophytes an existing enzyme changed its substrate specificity to support photorespiratory glycolate oxidation. PMID:24681750

  13. Lactate production in the perfused rat liver

    PubMed Central

    Woods, H. F.; Krebs, H. A.

    1971-01-01

    1. In aerobic conditions the isolated perfused liver from well-fed rats rapidly formed lactate from endogenous glycogen until the lactate concentration in the perfusion medium reached about 2mm (i.e. the concentration of lactate in blood in vivo) and then production ceased. Pyruvate was formed in proportion to the lactate, the [lactate]/[pyruvate] ratio remaining between 8 and 15. 2. The addition of 5mm- or 10mm-glucose did not affect lactate production, but 20mm- and 40mm-glucose greatly increased lactate production. This effect of high glucose concentration can be accounted for by the activity of glucokinase. 3. The perfused liver released glucose into the medium until the concentration was about 6mm. When 5mm- or 10mm-glucose was added to the medium much less glucose was released. 4. At high glucose concentrations (40mm) more glucose was taken up than lactate and pyruvate were produced; the excess of glucose was probably converted into glycogen. 5. In anaerobic conditions, livers of well-fed rats produced lactate at relatively high rates (2.5μmol/min per g wet wt.). Glucose was also rapidly released, at an initial rate of 3.2μmol/min per g wet wt. Both lactate and glucose production ceased when the liver glycogen was depleted. 6. Addition of 20mm-glucose increased the rate of anaerobic production of lactate. 7. d-Fructose also increased anaerobic production of lactate. In the presence of 20mm-fructose some glucose was formed anaerobically from fructose. 8. In the perfused liver from starved rats the rate of lactate formation was very low and the increase after addition of glucose and fructose was slight. 9. The glycolytic capacity of the liver from well-fed rats is equivalent to its capacity for fatty acid synthesis and it is pointed out that hepatic glycolysis (producing acetyl-CoA in aerobic conditions) is not primarily an energy-providing process but part of the mechanism converting carbohydrate into fat. PMID:5158899

  14. IMP Dehydrogenase: Structural Schizophrenia and an Unusual Base

    SciTech Connect

    Hedstrom,L.; Gan, L.

    2006-01-01

    Textbooks describe enzymes as relatively rigid templates for the transition state of a chemical reaction, and indeed an enzyme such as chymotrypsin, which catalyzes a relatively simple hydrolysis reaction, is reasonably well described by this model. Inosine monophosphate dehydrogenase (IMPDH) undergoes a remarkable array of conformational transitions in the course of a complicated catalytic cycle, offering a dramatic counterexample to this view. IMPDH displays several other unusual mechanistic features, including an Arg residue that may act as a general base catalyst and a dynamic monovalent cation site. Further, IMPDH appears to be involved in 'moon-lighting' functions that may require additional conformational states. How the balance between conformational states is maintained and how the various conformational states interconvert is only beginning to be understood.

  15. The degradation of l-histidine, imidazolyl-l-lactate and imidazolylpropionate by Pseudomonas testosteroni

    PubMed Central

    Coote, J. G.; Hassall, H.

    1973-01-01

    1. Imidazol-5-ylpropionate and imidazol-5-yl-lactate are degraded by Pseudomonas testosteroni via inducible pathways. 2. Growth on either compound as the sole source of carbon results in the induction of the enzymes for histidine catabolism. 3. The pathway of histidine degradation in this organism, a non-fluorescent Pseudomonad, is shown to be the same as that operating in Pseudomonas fluorescens and Pseudomonas putida. It consists of the successive formation of urocanate, imidazol-4-on-5-ylpropionate, N-formimino-l-glutamate, N-formyl-l-glutamate and glutamate. 4. Whole cells of P. testosteroni accumulate urocanate in the reaction mixture when incubated with imidazolylpropionate, but only after an adaptive lag period which is removed by previous growth on imidazolylpropionate as the source of carbon. 5. Imidazolyl-lactate is oxidized to imidazolylpyruvate, which then gives rise to histidine by specific transamination with l-glutamate. 6. Cells grown on histidine, urocanate or imidazolylpropionate are also able to degrade imidazolyllactate. 7. Mutants lacking urocanase are unable to grow on imidazolylpropionate, imidazolyl-lactate, histidine or urocanate. One with impaired histidase activity cannot utilize histidine or imidazolyl-lactate, but grows normally on imidazolylpropionate or urocanate. A mutant unable to grow on imidazolylpropionate is indistinguishable from the wild-type with respect to growth on histidine, imidazolyl-lactate or urocanate. 8. Thus it is established that imidazolyl-lactate is metabolized via histidine whereas imidazolylpropionate enters the histidine degradation pathway after conversion into urocanate. ImagesPLATE 1 PMID:4146796

  16. A new D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity from Haloferax mediterranei, sequence analysis and heterologous overexpression.

    PubMed

    Domenech, J; Ferrer, J

    2006-11-01

    A gene encoding a new D-2-hydroxyacid dehydrogenase (E.C. 1.1.1.) from the halophilic Archaeon Haloferax mediterranei has been sequenced, cloned and expressed in Escherichia coli cells with the inducible expression plasmid pET3a. The nucleotide sequence analysis showed an open reading frame of 927 bp which encodes a 308 amino acid protein. Multiple amino acid sequence alignments of the D-2-hydroxyacid dehydrogenase from H. mediterranei showed high homology with D-2-hydroxyacid dehydrogenases from different organisms and other enzymes of this family. Analysis of the amino acid sequence showed catalytic residues conserved in hydroxyacid dehydrogenases with d-stereospecificity. In the reductive reaction, the enzyme showed broad substrate specificity, although alpha-ketoisoleucine was the most favourable of all alpha-ketocarboxylic acids tested. Kinetic data revealed that this new D-2-hydroxyacid dehydrogenase from H. mediterranei exhibits dual coenzyme-specificity, using both NADPH and NADH as coenzymes. To date, all D-2-hydroxyacid dehydrogenases have been found to be NADH-dependent. Here, we report the first example of a D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity. PMID:17049749

  17. Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint.

    PubMed

    Ringer, Kerry L; Davis, Edward M; Croteau, Rodney

    2005-03-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (-)-trans-isopiperitenol to (-)-isopiperitenone in peppermint and (-)-trans-carveol to (-)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (-)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (-)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (-)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5'-truncated cDNA encoding the spearmint homolog, (-)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5'-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (-)-trans-isopiperitenol and (-)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13% identity) to the monoterpene reductases of mint involved in (-)-menthol biosynthesis. The isolation of the genes specifying redox enzymes of monoterpene biosynthesis in mint indicates that these genes arose from different ancestors and not by simple duplication and differentiation of a common progenitor, as might have been anticipated based on the common reaction chemistry and structural similarity of the substrate monoterpenes. PMID:15734920

  18. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. PMID:25280628

  19. Etiology and therapeutic approach to elevated lactate

    PubMed Central

    Andersen, Lars W.; Mackenhauer, Julie; Roberts, Jonathan C.; Berg, Katherine M.; Cocchi, Michael N.; Donnino, Michael W.

    2014-01-01

    Lactate levels are commonly evaluated in acutely ill patients. Although most commonly used in the context of evaluating shock, lactate can be elevated for many reasons. While tissue hypoperfusion is probably the most common cause of elevation, many other etiologies or contributing factors exist. Clinicians need to be aware of the many potential causes of lactate elevation as the clinical and prognostic importance of an elevated lactate varies widely by disease state. Moreover, specific therapy may need to be tailored to the underlying cause of elevation. The current review is based on a comprehensive PubMed search and contains an overview of the pathophysiology of lactate elevation followed by an in-depth look at the varied etiologies, including medication-related causes. The strengths and weaknesses of lactate as a diagnostic/prognostic tool and its potential use as a clinical endpoint of resuscitation will be discussed. The review ends with some general recommendations on management of patients with elevated lactate. PMID:24079682

  20. Lactational State Modifies Alcohol Pharmacokinetics in Women

    PubMed Central

    Pepino, Marta Yanina; Steinmeyer, Allison L.; Mennella, Julie A.

    2008-01-01

    Background Given the physiological adaptations of the digestive system during lactation, the present study tested the hypothesis that lactation alters alcohol pharmacokinetics. Methods Lactating women who were exclusively breastfeeding a 2- to 5-month-old infant and 2 control groups of nonlactating women were studied. The first control group consisted of women who were exclusively formula-feeding similarly aged infants, whereas the other consisted of women who had never given birth. A within-subjects design study was conducted such that women drank a 0.4 g/kg dose of alcohol following a 12-hour overnight fast during one test session (fasted condition) or 60 minutes after consuming a standard breakfast during the other (fed condition). Blood alcohol concentration (BAC) levels and mood states were obtained at fixed intervals before and after alcohol consumption. Results Under both conditions, the resultant BAC levels at each time point were significantly lower and the area under the blood alcohol time curve were significantly smaller in lactating women when compared with the 2 groups of nonlactating women. That such changes were due to lactation per se and not due to recent parturient events was suggested by the finding that alcohol pharmacokinetics of nonlactating mothers, who were tested at a similar time postpartum, were no different from women who had never given birth. Despite lower BAC levels in lactating mothers, there were no significant differences among the 3 groups of women in the stimulant effects of alcohol. However, lactating women did differ in the sedative effects of alcohol when compared with nulliparous but not formula-feeding mothers. That is, both groups of parous women felt sedated for shorter periods of time when compared with nulliparous women. Conclusions The systemic availability of alcohol was diminished during lactation. However, the reduced availability of alcohol in lactating women did not result in corresponding changes in the subjective effects of alcohol. PMID:17433009

  1. Lactate as a Biomarker for Sleep

    PubMed Central

    Naylor, Erik; Aillon, Daniel V.; Barrett, Brian S.; Wilson, George S.; Johnson, David A.; Johnson, Donna A.; Harmon, Hans P.; Gabbert, Seth; Petillo, Peter A.

    2012-01-01

    Study Objectives: An ideal biomarker for sleep should change rapidly with sleep onset, remain at a detectably differential level throughout the sleep period, and exhibit a rapid change with waking. Currently, no molecular marker has been identified that exhibits all three properties. This study examined three substances (lactate, glucose, and glutamate) for suitability as a sleep biomarker. Design: Using amperometric biosensor technology in conjunction with electroencephalograph (EEG) and electromyograph (EMG) monitoring, extracellular concentrations of lactate and glucose (Cohort 1) as well as lactate and glutamate (Cohort 2) were recorded over multiple sleep/wake cycles. Patients or Participants: There were 12 C57Bl/6J male mice (3-5 mo old). Interventions: Sleep and waking transitions were identified using EEG recordings. Extracellular concentrations of lactate, glucose, and glutamate were evaluated before and during transition events as well as during extended sleep and during a 6-h sleep deprivation period. Measurements and Results: Rapid and sustained increases in cortical lactate concentration (approximately 15 μM/min) were immediately observed upon waking and during rapid eye movement sleep. Elevated lactate concentration was also maintained throughout a 6-h period of continuous waking. A persistent and sustained decline in lactate concentration was measured during nonrapid eye movement sleep. Glutamate exhibited similar patterns, but with a much slower rise and decline (approximately 0.03 μM/min). Glucose concentration changes did not demonstrate a clear correlation with either sleep or wake. Conclusions: These findings indicate that extracellular lactate concentration is a reliable sleep/wake biomarker and can be used independently of the EEG signal. Citation: Naylor E; Aillon DV; Barrett BS; Wilson GS; Johnson DA; Johnson DA; Harmon HP; Gabbert S; Petillo PA. Lactate as a biomarker for sleep. SLEEP 2012;35(9):1209-1222. PMID:22942499

  2. The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases.

    PubMed

    McMillan, Paul J; Stimmler, Luciana M; Foth, Bernardo J; McFadden, Geoffrey I; Müller, Sylke

    2005-01-01

    The Plasmodium falciparum genome contains genes encoding three alpha-ketoacid dehydrogenase multienzyme complexes (KADHs) that have central metabolic functions. The parasites possess two distinct genes encoding dihydrolipoamide dehydrogenases (LipDH), which are indispensable subunits of KADHs. This situation is reminiscent of that in plants, where two distinct LipDHs are found in mitochondria and chloroplasts, respectively, that are part of the organelle-specific KADHs. In this study, we show by reverse transcription polymerase chain reaction (RT-PCR) that the genes encoding subunits of all three KADHs, including both LipDHs, are transcribed during the erythrocytic development of P. falciparum. Protein expression of mitochondrial LipDH and mitochondrial branched chain alpha-ketoacid dihydrolipoamide transacylase in these parasite stages was confirmed by Western blotting. The localization of the two LipDHs to the parasite's apicoplast and mitochondrion, respectively, was shown by expressing the LipDH N-terminal presequences fused to green fluorescent protein in erythrocytic stages of P. falciparum and by immunofluorescent colocalization with organelle-specific markers. Biochemical characterization of recombinantly expressed mitochondrial LipDH revealed that the protein has kinetic and physicochemical characteristics typical of these flavo disulphide oxidoreductases. We propose that the mitochondrial LipDH is part of the mitochondrial alpha-ketoglutarate dehydrogenase and branched chain alpha-ketoacid dehydrogenase complexes and that the apicoplast LipDH is an integral part of the pyruvate dehydrogenase complex which occurs only in the apicoplast in P. falciparum. PMID:15612914

  3. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120

    PubMed Central

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F.; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants. PMID:26376297

  4. Ethylbenzene Dehydrogenase and Related Molybdenum Enzymes Involved in Oxygen-Independent Alkyl Chain Hydroxylation.

    PubMed

    Heider, Johann; Szaleniec, Maciej; Sünwoldt, Katharina; Boll, Matthias

    2016-01-01

    Ethylbenzene dehydrogenase initiates the anaerobic bacterial degradation of ethylbenzene and propylbenzene. Although the enzyme is currently only known from a few closely related denitrifying bacterial strains affiliated to the Rhodocyclaceae, it clearly marks a universally occurring mechanism used for attacking recalcitrant substrates in the absence of oxygen. Ethylbenzene dehydrogenase belongs to subfamily 2 of the DMSO reductase-type molybdenum enzymes together with paralogous enzymes involved in the oxygen-independent hydroxylation of p-cymene, the isoprenoid side chains of sterols and even possibly n-alkanes; the subfamily also extends to dimethylsulfide dehydrogenases, selenite, chlorate and perchlorate reductases and, most significantly, dissimilatory nitrate reductases. The biochemical, spectroscopic and structural properties of the oxygen-independent hydroxylases among these enzymes are summarized and compared. All of them consist of three subunits, contain a molybdenum-bis-molybdopterin guanine dinucleotide cofactor, five Fe-S clusters and a heme b cofactor of unusual ligation, and are localized in the periplasmic space as soluble enzymes. In the case of ethylbenzene dehydrogenase, it has been determined that the heme b cofactor has a rather high redox potential, which may also be inferred for the paralogous hydroxylases. The known structure of ethylbenzene dehydrogenase allowed the calculation of detailed models of the reaction mechanism based on the density function theory as well as QM-MM (quantum mechanics - molecular mechanics) methods, which yield predictions of mechanistic properties such as kinetic isotope effects that appeared consistent with experimental data. PMID:26960184

  5. Malate dehydrogenase activities are lower in some types of peripheral leucocytes of dogs and cats with type 1 diabetes mellitus.

    PubMed

    Magori, E; Nakamura, M; Inoue, A; Tanaka, A; Sasaki, N; Fukuda, H; Mizutani, H; Sako, T; Kimura, N; Arai, T

    2005-02-01

    The activities of the enzymes in the malate-aspartate shuttle were measured in peripheral leucocytes of spontaneous type 1 diabetic dogs and cats treated with insulin injections. In the diabetic dogs and cats, fasting plasma glucose concentrations were three- or fourfold greater than the control levels in spite of insulin injections and the activities of cytosolic malate dehydrogenase (MDH), one of pivotal enzymes in the malate-aspartate shuttle, were remarkably lower than the controls. Depressed expression of cytosolic MDH mRNA was confirmed by RT-PCR analysis in the diabetic animals. The cytosolic ratio of MDH/lactate dehydrogenase (LDH) activity (M / L ratio) in leucocytes of the diabetic animals was significantly lower than that of normal control animals. The smaller M / L ratio appeared to reflect depression of energy metabolism in the diabetic animals. Intrinsically lower and further decreased MDH activities may be factors that induce insulin resistance observed in diabetic cats. PMID:15500838

  6. Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia.

    PubMed

    Messonnier, L; Freund, H; Féasson, L; Prieur, F; Castells, J; Denis, C; Linossier, M T; Geyssant, A; Lacour, J R

    2001-05-01

    The effects of 4 weeks of endurance training in conditions of normoxia or hypoxia on muscle characteristics and blood lactate responses after a 5-min constant-load exercise (CLE) at 90% of the power corresponding to the maximal oxygen uptake were examined at sea-level in 13 sedentary subjects. Five subjects trained in normobaric hypoxia (HT group, fraction of oxygen in inspired gas = 13.2%), and eight subjects trained in normoxia at the same relative work rates (NT group). The blood lactate recovery curves from the CLE were fitted to a biexponential time function: La(t) = La(0) + A1(1 - e- gamma 1.t) + A2(1 - e- gamma 2.t), where the velocity constants gamma 1 and gamma 2 denote the lactate exchange and removal abilities, respectively, A1 and A2 are concentration parameters that describe the amplitudes of concentration variations in the space represented by the arterial blood, La(t) is the lactate concentration at time t, and La(0) is the lactate concentration at the beginning of recovery from CLE. Before training, the two groups displayed the same muscle characteristics, blood lactate kinetics after CLE, and gamma 1 and gamma 2 values. Training modified their muscle characteristics, blood lactate kinetics and the parameters of the fits in the same direction, and proportions among the HT and the NT subjects. Endurance training increased significantly the capillary density (by 31%), citrate synthase activity (by 48%) and H isozyme proportion of lactate dehydrogenase (by 24%), and gamma 1 (by 68%) and gamma 2 (by 47%) values. It was concluded that (1) endurance training improves the lactate exchange and removal abilities estimated during recovery from exercises performed at the same relative work rate, and (2) training in normobaric hypoxia results in similar effects on