Science.gov

Sample records for lactobacilli inhibit gonococci

  1. Peptide Extracts from Cultures of Certain Lactobacilli Inhibit Helicobacter pylori.

    PubMed

    De Vuyst, Luc; Vincent, Pascal; Makras, Eleftherios; Leroy, Frédéric; Pot, Bruno

    2010-03-01

    Helicobacter pylori inhibition by probiotic lactobacilli has been observed in vitro and in vivo. Carefully selected probiotic Lactobacillus strains could therefore play an important role in the treatment of H. pylori infection and eradication. However, the underlying mechanism for this inhibition is not clear. The aim of this study was to examine if peptide extracts, containing bacteriocins or other antibacterial peptides, from six Lactobacillus cultures (Lactobacillus acidophilus La1, Lactobacillus amylovorus DCE 471, Lactobacillus casei YIT 9029, Lactobacillus gasseri K7, Lactobacillus johnsonii La1, and Lactobacillus rhamnosus GG) contribute to the inhibition of H. pylori. Peptide extracts from cultures of Lact. amylovorus DCE 471 and Lact. johnsonii La1 were most active, reducing the viability of H. pylori ATCC 43504 with more than 2 log units within 4 h of incubation (P < 0.001). The four other extracts were less or not active. When six clinical isolates of H. pylori were tested for their susceptibility towards five inhibitory peptide extracts, similar observations were made. Again, the peptide extracts from Lact. amylovorus DCE 471 and Lact. johnsonii La1 were the most inhibitory, while the three other extracts resulted in a much lower inhibition of H. pylori. Protease-treated extracts were inactive towards H. pylori, confirming the proteinaceous nature of the inhibitory substance. PMID:26780898

  2. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression.

    PubMed

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong; Jonsson, Ann-Beth

    2016-05-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity. PMID:26930708

  3. Inhibition of Giardia intestinalis by Extracellular Factors from Lactobacilli: an In Vitro Study

    PubMed Central

    Pérez, Pablo F.; Minnaard, Jessica; Rouvet, Martine; Knabenhans, Christian; Brassart, Dominique; De Antoni, Graciela L.; Schiffrin, Eduardo J.

    2001-01-01

    The aim of the present work was to evaluate the effect of spent culture supernatants of different strains of lactobacilli on giardia trophozoites. The growth of Giardia intestinalis strain WB, as well as the attachment to the human intestinal epithelial cell line Caco-2, was evaluated by using proliferation and adhesion assays with radiolabeled parasites. In addition, scanning electron microscopy and flow cytometric analysis were performed. The effect of spent culture supernatants from lactobacilli was strain dependent. Lactobacillus johnsonii La1 significantly inhibited the proliferation of G. intestinalis trophozoites. Although the effect was strongly pH dependent, it was not simply due to lactic acid. According to flow cytometric analysis, trophozoites were arrested in G1 phase but neither significant necrosis nor apoptosis could be detected. Bacterial cells or their spent culture supernatants were unable to modify trophozoite attachment to Caco-2 cells. However, trophozoites treated with spent culture supernatants had little, if any, proliferative capacity. These results suggest that La1 produces some substance(s) able to inhibit proliferation of Giardia trophozoites. Partial characterization of the factors involved in the antigiardiasic action showed that they have a low molecular mass and are inactivated by heating. On this basis, it seems worthwhile to explore how colonization of the proximal small bowel with these lactic acid bacteria could interfere with giardiasis in vivo. PMID:11679323

  4. Inhibition of Giardia intestinalis by extracellular factors from Lactobacilli: an in vitro study.

    PubMed

    Pérez, P F; Minnaard, J; Rouvet, M; Knabenhans, C; Brassart, D; De Antoni, G L; Schiffrin, E J

    2001-11-01

    The aim of the present work was to evaluate the effect of spent culture supernatants of different strains of lactobacilli on giardia trophozoites. The growth of Giardia intestinalis strain WB, as well as the attachment to the human intestinal epithelial cell line Caco-2, was evaluated by using proliferation and adhesion assays with radiolabeled parasites. In addition, scanning electron microscopy and flow cytometric analysis were performed. The effect of spent culture supernatants from lactobacilli was strain dependent. Lactobacillus johnsonii La1 significantly inhibited the proliferation of G. intestinalis trophozoites. Although the effect was strongly pH dependent, it was not simply due to lactic acid. According to flow cytometric analysis, trophozoites were arrested in G(1) phase but neither significant necrosis nor apoptosis could be detected. Bacterial cells or their spent culture supernatants were unable to modify trophozoite attachment to Caco-2 cells. However, trophozoites treated with spent culture supernatants had little, if any, proliferative capacity. These results suggest that La1 produces some substance(s) able to inhibit proliferation of Giardia trophozoites. Partial characterization of the factors involved in the antigiardiasic action showed that they have a low molecular mass and are inactivated by heating. On this basis, it seems worthwhile to explore how colonization of the proximal small bowel with these lactic acid bacteria could interfere with giardiasis in vivo. PMID:11679323

  5. Bacteriocins and other bioactive substances of probiotic lactobacilli as biological weapons against Neisseria gonorrhoeae.

    PubMed

    Ruíz, Francisco O; Pascual, Liliana; Giordano, Walter; Barberis, Lucila

    2015-04-01

    In the search of new antimicrobial agents against Neisseria gonorrhoeae, the bacteriocins-producing probiotic lactobacilli deserve special attention. The inhibitory effects of biosubstances such as organic acids, hydrogen peroxide and each bacteriocin-like inhibitory substance (BLIS) L23 and L60 on the growth of different gonococcal strains were investigated. Different non-treated and treated cell-free supernatants of two probiotic lactobacilli containing these metabolites were used. The aims of this work were (i) to evaluate the antimicrobial activity of the biosubstances produced by two probiotic lactobacilli, estimating the proportion in which each of them is responsible for the inhibitory effect, (ii) to define their minimum inhibitory concentrations (MICs) and, (iii) to determine the potential interactions between these biosubstances against N. gonorrhoeae. The main antimicrobial metabolites were the BLIS-es L23 and L60 in comparison with other biosubstances. Proportionally, their contributions to the inhibition on the gonococcal growth were 87.28% and 80.66%, respectively. The MIC values of bacteriocins were promising since these substances, when diluted, showed considerable inhibitory activity for all gonococci. In the interaction between bacteriocins, 100% of synergism was found on the gonococcal growth. In summary, this study indicates that both L23 and L60 could potentially serve to design new bioproducts against N. gonorrhoeae. PMID:25673666

  6. Inhibition of Vaginal Lactobacilli by a Bacteriocin-Like Inhibitor Produced by Enterococcus faecium 62-6: Potential Significance for Bacterial Vaginosis

    PubMed Central

    Kelly, Maureen C.; Mequio, Michael J.

    2003-01-01

    Objective: Bacterial vaginosis (BV) is characterized by a shift in vaginal tract ecology, which includes a decrease in the concentration and/or prevalence of facultative lactobacilli. Currently, mechanisms which could account for the disappearance of lactobacilli are not well understood. The objective of this study was to determine whether vaginal streptococci/enterococci can produce bacteriocin-like inhibitors antagonistic to vaginal lactobacilli. Methods: Seventy strains of vaginal streptococci or enterococci were tested for antagonistic activities against vaginal lactobacilli using the deferred antagonism technique. Results: One strain, Enterococcus faecium 62-6, which strongly inhibited growth of lactobacilli was selected for further characterization. The spectrum of inhibitory activity of strain 62-6 included Gram-positive organisms from the vaginal environment, although native lactobacilli from the same host were resistant to inhibitor action. Following growth inMRSbroth the strain 62-6 inhibitor was shown to be heat- (100℃, 30 minutes), cold- (4℃, less than 114 days) and pH- (4–7) stable. The sensitivity of inhibitor-containing supernatants to pepsin and α-chymotrypsin suggested an essential proteinaceous component. The inhibitor was sensitive to lipase but resistant to lysozyme. Dialysis of inhibitor-containing culture supernatants suggested a molecular mass greater than 12 000 Da. All physicochemical properties were consistent with its classification as a bacteriocin-like inhibitor. Kinetic assays demonstrated a sharp onset of inhibitor production coinciding with a concentration of 62-6 of 107 cfu/ml, suggesting that production may be regulated by quorum sensing. Conclusions: These results may have clinical significance as a novel mechanism to account for the decline of vaginal Lactobacillus populations and contribute to both the establishment and recurrence of BV. PMID:15022875

  7. Interactions of Lactobacilli with Pathogenic Streptococcus pyogenes

    PubMed Central

    Westbroek, Mark L.; Davis, Crystal L.; Fawson, Lena S.; Price, Travis M.

    2010-01-01

    Objective. To determine whether (1) a decreased concentration of Lactobacilli allows S. pyogenes to grow; (2) S. pyogenes is able to grow in the presence of healthy Lactobacillus concentrations; (3) S. pyogenes is capable of inhibiting Lactobacilli. Methods. One hundred fifty patient samples of S. pyogenes were mixed with four different concentrations of L. crispatus and L. jensenii. Colony counts and pH measurements were taken from these concentrations and compared using t-tests and ANOVA statistical analyses. Results. Statistical tests showed no significant difference between the colony counts of S. pyogenes by itself and growth when mixed with Lactobacilli, and no significant difference between the colony counts of S. pyogenes in the four different concentrations of Lactobacilli. Conclusion. The statistical data representing the growth of these two organisms suggests that Lactobacilli did not inhibit the growth of S. pyogenes. Also, S. pyogenes did not inhibit the growth of Lactobacilli. PMID:20508738

  8. HIV Inhibition by Lactobacilli: Easier in a Test Tube Than in Real Life

    PubMed Central

    Linhares, Iara M.

    2015-01-01

    ABSTRACT A lactobacillus-dominant vaginal microbiota has been shown to decrease heterosexual HIV transmission. Nunn et al. now report that a vaginal microbiota dominated by Lactobacillus crispatus is associated with a relative inability of HIV pseudoviral particles to transverse cervicovaginal mucus (CVM) in vitro [mBio 6(5):e01084-15, 2015, doi:10.1128/mBio.01084-15]. The purported inhibitory mechanism is the interaction between carboxyl groups present on HIV and in CVM that occurred only under acidic conditions when carboxyl groups were protonated. L. crispatus produces high levels of lactic acid and results in the lowest vaginal pH when it is the dominant vaginal bacterium. In addition, high levels of lactic acid inhibit the proliferation of other bacteria that might negatively affect CVM structure. The utility of enhancing L. crispatus dominance to inhibit HIV transmission awaits assessment of the influence of ejaculated semen on this property and investigations on the role of Lactobacillus products such as d-lactic acid in this property. PMID:26443461

  9. Inhibition of Shigella sonnei adherence to HT-29 cells by lactobacilli from Chinese fermented food and preliminary characterization of S-layer protein involvement.

    PubMed

    Zhang, Ying-Chun; Zhang, Lan-Wei; Tuo, Yan-Feng; Guo, Chun-Feng; Yi, Hua-Xi; Li, Jing-Yan; Han, Xue; Du, Ming

    2010-10-01

    In this study, seven lactobacilli with a high degree of antagonistic activity against three pathogens and good adherence to HT-29 cells were selected. The ability of these seven lactobacilli to inhibit adhesion of Shigella sonnei to intestinal mucosa was studied on cultured HT-29 cells. Lactobacilli were added simultaneously with, before or after S. sonnei to test for their effectiveness in exclusion, competition and displacement assays, respectively. Lactobacillus paracasei subp. paracasei M5-L, Lactobacillus rhamnosus J10-L and Lactobacillus casei Q8-L all exhibited significant inhibitory activity. In order to elucidate the inhibitory functions of S-layer proteins, the S-layer proteins were removed with 5 M LiCl from the M5-L, J10-L and Q8-L strains. Under such conditions, inhibition activity was decreased in all three strains, as revealed in exclusion, competition and displacement assays. SDS-PAGE analysis confirmed the presence of S-layer proteins with dominant bands of approximately 45 kDa. Further analysis of S-layer proteins revealed that the hydrophobic amino acids accounted for 40.5%, 41.5% and 43.8% of the total amino acid for the M5-L, J10-L and Q8-L strains, respectively. These findings suggest that the M5-L, J10-L and Q8-L strains possess the ability to inhibit S. sonnei adherence to HT-29 cells, and S-layer proteins are involved in this adhesion inhibition. PMID:20600857

  10. Porin polypeptide contributes to surface charge of gonococci.

    PubMed Central

    Swanson, J; Dorward, D; Lubke, L; Kao, D

    1997-01-01

    Each strain of Neisseria gonorrhoeae elaborates a single porin polypeptide, with the porins expressed by different strains comprising two general classes, Por1A and Por1B. In the outer membrane, each porin molecule folds into 16 membrane-spanning beta-strands joined by top- and bottom-loop domains. Por1A and Por1B have similar membrane-spanning regions, but the eight surface-exposed top loops (I to VIII) differ in length and sequence. To determine whether porins, and especially their top loop domains, contribute to bacterial cell surface charge, strain MS11 gonococci that were identical except for expressing a recombinant Por1A, Por1B, or mosaic Por1A-1B polypeptide were compared by whole-cell electrophoresis. These porin variants displayed different electrophoretic mobilities that correlated with the net numbers of charged amino acids within surface-exposed loops of their respective porin polypeptides. The susceptibilities of porin variants to polyanionic sulfated polymers correlated roughly with gonococcal surface charge; those porin variants with diminished surface negativity showed increased sensitivity to the polyanionic sulfated compounds. These observations indicate that porin polypeptides in situ contribute to the surface charge of gonococci, and they suggest that the bacterium's interactions with large sulfated compounds are thereby affected. PMID:9171398

  11. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation.

    PubMed

    Matsubara, Victor Haruo; Wang, Yi; Bandara, H M H N; Mayer, Marcia Pinto Alves; Samaranayake, Lakshman P

    2016-07-01

    We evaluated the inhibitory effects of the probiotic Lactobacillus species on different phases of Candida albicans biofilm development. Quantification of biofilm growth and ultrastructural analyses were performed on C. albicans biofilms treated with Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus planktonic cell suspensions as well as their supernatants. Planktonic lactobacilli induced a significant reduction (p < 0.05) in the number of biofilm cells (25.5-61.8 %) depending on the probiotic strain and the biofilm phase. L. rhamnosus supernatants had no significant effect on the mature biofilm (p > 0.05), but significantly reduced the early stages of Candida biofilm formation (p < 0.01). Microscopic analyses revealed that L. rhamnosus suspensions reduced Candida hyphal differentiation, leading to a predominance of budding growth. All lactobacilli negatively impacted C. albicans yeast-to-hyphae differentiation and biofilm formation. The inhibitory effects of the probiotic Lactobacillus on C. albicans entailed both cell-cell interactions and secretion of exometabolites that may impact on pathogenic attributes associated with C. albicans colonization on host surfaces and yeast filamentation. This study clarifies, for the first time, the mechanics of how Lactobacillus species may antagonize C. albicans host colonization. Our data elucidate the inhibitory mechanisms that define the probiotic candicidal activity of lactobacilli, thus supporting their utility as an adjunctive therapeutic mode against mucosal candidal infections. PMID:27087525

  12. Gonococci causing disseminated gonococcal infection are resistant to the bactericidal action of normal human sera.

    PubMed Central

    Schoolnik, G K; Buchanan, T M; Holmes, K K

    1976-01-01

    The susceptibility of strains of Neisseria gonorrhoeae to the bactericidal action of normal human sera was determined for isolates from patients with disseminated gonococcal infection and uncomplicated gonorrhea. Serum susceptibility was correlated with penicillin susceptibility and auxotype. 38 of 39 strains (97%) of N. gonorrhoeae from Seattle patients with disseminated gonococcal infection were resistant to the complement-dependent bactericidal action of normal human sera. 36 of these were inhibited by less than or equal to mug/ml of penicillin G and required arginine, hypoxanthine, and uracil for growth on chemically defined medium (Arg-Hyx-Ura- auxotype). 12 of 43 isolates from patients with uncomplicated gonorrhea were also of the Arg-Hyx-Ura-auxotype, inhibited by less than or equal to 0.030 mug/ml of penicillin G, and serum resistant. Of the 31 remaining strains of other auxotypes isolated from patients with uncomplicated gonorrhea, 18 (58.1%) were sensitive to normal human sera in titers ranging from 2 to 2,048. The bactericidal action of normal human sera may prevent the dissemination of serum-sensitive gonococci. However, since only a small proportion of individuals infected by serum-resistant strains develop disseminated gonococcal infection, serum resistance appears to be a necessary but not a sufficient virulence factor for dissemination. Host factors such as menstruation and pharyngeal gonococcal infection may favor the dissemination of serum-resistant strains. Since serum-resistant Arg-Hyx-Ura strains are far more frequently isolated from patients with disseminated gonococcal infection than serum-resistant strains of other auxotypes, Arg-Hyx-Ura-strains may possess other virulence factors in addition to serum resistance. PMID:825532

  13. Bacteriophages of lactobacilli.

    PubMed

    Sechaud, L; Cluzel, P J; Rousseau, M; Baumgartner, A; Accolas, J P

    1988-03-01

    Lactobacilli are members of the bacterial flora of lactic starter cultures used to generate lactic acid fermentation in a number of animal or plant products used as human or animals foods. They can be affected by phage outbreaks, which can result in faulty and depreciated products. Two groups of phages specific of Lactobacillus casei have been thoroughly studied. 1. The first group is represented by phage PL-1. This phage behaves as lytic in its usual host L. casei ATCC 27092, but can lysogenize another strain, L. casei ATCC 334. Bacterial receptors of this phage are located in a cell-wall polysaccharide and rhamnose is the main component of the receptors. Ca2+ and adenosine triphosphate (ATP) are indispensable to ensure the injection of the phage DNA into the bacterial cell. The phage DNA is double-stranded, mostly linear, but with cohesive ends which enables it to be circularized. The vegetative growth of PL-1 proceeds according to the classical mode. Cell lysis is produced by an N-acetyl-muramidase at the end of vegetative growth. 2. The second group is represented by the temperate phage phi FSW of L. casei ATCC27139. It has been shown how virulent phages originate from this temperate phage in Japanese dairy plants. The lysogenic state of phi FSW can be altered either by point mutations or by the insertion of a mobile genetic element called ISL 1, which comes from the bacterial chromosome. This is the first transposable element that has been described in lactobacilli. Lysogeny appears to be widespread among lactobacilli since one study showed that 27% of 148 strains studied, representing 15 species, produced phage particles after induction by mitomycin C. Similarly, 23 out of 30 strains of Lactobacillus salivarius are lysogenic and produce, after induction by mitomycin C, temperate phages, killer particles, or defective phages. Temperate phages have also been found in 10 out of 105 strains of Lactobacillus bulgaricus or Lactobacillus lactis after induction by

  14. [Lactobacilli of freshwater fishes].

    PubMed

    Kvasnikov, E I; Kovalenko, N K; Materinskaia, L G

    1977-01-01

    Normal microflora in the intestinal tract of fishes inhabiting fresh-water reservoirs includes lactic bacteria. The number of the bacteria depends on the animal species, the composition of food, the age, and the season. The highest number of these microorganisms (hundreds of millions per gram of the intestinal content) is found in carps. Enterococci are most often encountered in fishes inhabiting ponds: Streptococcus faecalis Andrewes a. Horder, Str. faecium Orla-Jensen, Str. bovis Orla-Jensen. Lactobacilli are more typical of fishes in water reserviors: Lactobacillus plantarum (Orla-Jensen) Bergey et al., L. casei (Orla-Jensen) Hansen a. Lessel, L. casei var. casei, L. casei var. rhamnosus, L. Casei var. alactosus, L. leichmannii (Henneberg) Bergey et al., L. acidophillus (Moro) Hansen a. Mocquot, L. Fermenti Beijerinck, L. cellobiosus Rogosa et al., L. Buchneri (Henneberg) Bergey et al. The content of lactic bacteria varies in water reservoirs; their highest content is found in ooze (tens of thousands per gram). PMID:909475

  15. Fimbriae and lipopolysaccharides are necessary for co-aggregation between Lactobacilli and Escherichia coli.

    PubMed

    Mizuno, Kouhei; Furukawa, Soichi; Usui, Yumi; Ishiba, Madoka; Ogihara, Hirokazu; Morinaga, Yasushi

    2014-01-01

    Cells of Lactobacilli co-aggregated with Escherichia coli K-12 cells to form co-aggregates under mixed-culture conditions at 37 °C for 24 h. Co-aggregation was inhibited by sodium dodecyl sulfate but not by protease. E. coli deletion mutants of fimbriae formation and lipopolysaccharide (LPS) formation did not co-aggregate with Lactobacilli. These results showed that fimbriae and LPS are necessary for co-aggregation between Lactobacilli and E. coli. PMID:25209514

  16. Specificity between Lactobacilli and Hymenopteran Hosts Is the Exception Rather than the Rule

    PubMed Central

    Cannone, Jamie J.; Gutell, Robin R.; Kellner, Katrin; Plowes, Robert M.; Mueller, Ulrich G.

    2013-01-01

    Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice. PMID:23291551

  17. Mechanisms and therapeutic effectiveness of lactobacilli.

    PubMed

    Di Cerbo, Alessandro; Palmieri, Beniamino; Aponte, Maria; Morales-Medina, Julio Cesar; Iannitti, Tommaso

    2016-03-01

    The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword 'Lactobacillus'. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects. PMID:26578541

  18. Mechanisms and therapeutic effectiveness of lactobacilli

    PubMed Central

    Di Cerbo, Alessandro; Palmieri, Beniamino; Aponte, Maria; Morales-Medina, Julio Cesar; Iannitti, Tommaso

    2016-01-01

    The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword ‘Lactobacillus’. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects. PMID:26578541

  19. Disruption of urogenital biofilms by lactobacilli.

    PubMed

    McMillan, Amy; Dell, Melissa; Zellar, Michelle P; Cribby, Sarah; Martz, Sarah; Hong, Emilio; Fu, Jennifer; Abbas, Ahmed; Dang, Thien; Miller, Wayne; Reid, Gregor

    2011-08-01

    The process that changes a relatively sparse vaginal microbiota of healthy women into a dense biofilm of pathogenic and potentially pathogenic bacteria is poorly understood. Likewise, the reverse step whereby an aberrant biofilm is displaced and returns to a healthy lactobacilli dominated microbiota is unclear. In order to study these phenomena, in vitro experiments were performed to examine the structure of biofilms associated with aerobic vaginosis, urinary tract infections, and bacterial vaginosis (BV). Uropathogenic Escherichia coli were able to form relatively thin biofilms within five days (6 μm height), while Atopobium vaginae and Gardnerella vaginalis formed thicker biofilms 12 μm in height within two days. Challenge of E. coli biofilms with lactobacilli did not result in pathogen displacement. However, the resulting thicker lactobacilli infused biofilms, caused significant E. coli killing. E. coli biofilms challenged with secreted products of L. rhamnosus GR-1 caused a marked decrease in cell density, and increased cell death. Similarly challenge of BV biofilms with lactobacilli infiltrated BV biofilms and caused bacterial cell death. Metronidazole produced holes in the biofilm but did not eradicate the organisms. The findings provide some evidence of how lactobacilli probiotics might interfere with an aberrant vaginal microbiota, and strengthen the position that combining probiotics with antimicrobials could better eradicate pathogenic biofilms. PMID:21497071

  20. [Adhesive and hemagglutinating properties of lactobacilli].

    PubMed

    Brilis, V I; Brilene, T A; Lentsner, Kh P; Lentsner, A A

    1982-09-01

    The study of the adhesive and hemagglutinating properties of the strains of different Lactobacillus species isolated from the human digestive tract and sour milk products were carried out. 49 strains of 9 Lactobacillus species were studied; of these, 10 strains had been isolated from saliva, 11 strains from feces, 7 strains from milk and 5 strains from sour cream. 11 collection strains and 2 strains used in the production of lactobacterin served as controls. Adhesion was studied in vitro on human red blood cells used as a model. Red blood cells used in the experiments had been taken from 23 donors aged 25-52 years. Lactobacilli were found to have certain inter and intraspecific differences in their adhesiveness. The adhesiveness of the lactobacilli isolated from human feces was considerably greater than that of the strains isolated from sour milk products and of the collection strains. Only the strains of lactobacilli with low adhesiveness possessed pronounced hemagglutinating properties. PMID:7148229

  1. [A nutrient medium for isolating Lactobacilli].

    PubMed

    Abrosimova, N A; Kushnareva, M V

    1991-01-01

    The composition of and method for preparation of nutrient medium for the isolation of Lactobacilli from biologic material are described. The medium is simple to prepare, consists of only Soviet reagents, this making it available for laboratories in this country. PMID:1710734

  2. Catabolic flexibility of mammalian-associated lactobacilli.

    PubMed

    O'Donnell, Michelle M; O'Toole, Paul W; Ross, Reynolds Paul

    2013-01-01

    Metabolic flexibility may be generally defined as "the capacity for the organism to adapt fuel oxidation to fuel availability". The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus. PMID:23680304

  3. Catabolic flexibility of mammalian-associated lactobacilli

    PubMed Central

    2013-01-01

    Metabolic flexibility may be generally defined as “the capacity for the organism to adapt fuel oxidation to fuel availability”. The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus. PMID:23680304

  4. Divergent signaling pathways regulate IL-12 production induced by different species of Lactobacilli in human dendritic cells.

    PubMed

    Amar, Yacine; Rizzello, Valeria; Cavaliere, Riccardo; Campana, Stefania; De Pasquale, Claudia; Barberi, Chiara; Oliveri, Daniela; Pezzino, Gaetana; Costa, Gregorio; Meddah, Aicha Tirtouil; Ferlazzo, Guido; Bonaccorsi, Irene

    2015-07-01

    Recent studies have indicated that different strains of Lactobacilli differ in their ability to regulate IL-12 production by dendritic cells (DCs), as some strains are stronger inducer of IL-12 while other are not and can even inhibit IL-12 production stimulated by IL-12-inducer Lactobacilli. In this report we demonstrate that Lactobacillus reuteri 5289, as previously described for other strains of L. reuteri, can inhibit DC production of IL-12 induced by Lactobacilllus acidophilus NCFM. Remarkably, L. reuteri 5289 was able to inhibit IL-12 production induced not only by Lactobacilli, as so far reported, but also by bacteria of different genera, including pathogens. We investigated in human DCs the signal transduction pathways involved in the inhibition of IL-12 production induced by L. reuteri 5289, showing that this potential anti-inflammatory activity, which is also accompanied by an elevated IL-10 production, is associated to a prolonged phosphorilation of ERK1/2 MAP kinase pathway. Improved understanding of the immune regulatory mechanisms exerted by Lactobacilli is crucial for a more precise employment of these commensal bacteria as probiotics in human immune-mediated pathologies, such as allergies or inflammatory bowel diseases. PMID:25977118

  5. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model.

    PubMed Central

    Kabir, A M; Aiba, Y; Takagi, A; Kamiya, S; Miwa, T; Koga, Y

    1997-01-01

    BACKGROUND: Helicobacter pylori is a bacterium which causes gastric inflammatory diseases. Oral inoculation of H pylori usually results in only a temporary colonisation without a successful infection in the stomach of conventional mice in which lactobacilli are the predominant indigenous bacteria. AIM: To determine whether lactobacilli exert an inhibitory effect on colonisation by H pylori in the stomach. METHODS: The effects of H pylori on attachment to murine and human gastric epithelial cells and the H pylori mediated release of interleukin-8 (IL-8) by these cells were examined in vitro. Lactobacillus salivarius infected gnotobiotic BALB/c mice and control germ free mice were inoculated orally with H pylori to examine whether L salivarius can inhibit colonisation by H pylori. RESULTS: L salivarius inhibited both the attachment and IL-8 release in vitro. H pylori could not colonise the stomach of L salivarius infected gnotobiotic BALB/c mice, but colonised in large numbers and subsequently caused active gastritis in germ free mice. In addition, L salivarius given after H pylori implantation could eliminate colonisation by H pylori. CONCLUSION: These findings suggest the possibility of lactobacilli being used as probiotic agents against H pylori. Images PMID:9274471

  6. Lactobacilli and azoreductase activity in the murine cecum.

    PubMed Central

    McConnell, M A; Tannock, G W

    1991-01-01

    Azoreductase activity in the ceca of mice lacking lactobacilli as members of the normal microflora (reconstituted-lactobacillus-free [RLF] mice) was compared with that of RLF mice whose gastrointestinal tracts were colonized by strains of Lactobacillus delbrueckii and Lactobacillus fermentum. Azoreductase activity was 31% lower in the ceca of mice colonized by lactobacilli. PMID:1785939

  7. Inhibitory effects of arabitol on caries-associated microbiologic parameters of oral Streptococci and Lactobacilli.

    PubMed

    Loman, Abdullah Al; Ju, Lu-Kwang

    2015-12-01

    The aim of this study was to compare arabitol with its better studied isomer xylitol for their inhibitory effects on cell growth and acid production of oral bacteria. Streptococcus mutans, Streptococcus salivarius and Streptococcus sobrinus were used as representatives of oral streptococci and Lactobacillus acidophilus and Lactobacillus fermentum were used for oral lactobacilli. Growth was followed by measuring the absorbance at 660nm, acid production by pH change. Sensitivity of these oral bacteria to arabitol and xylitol was first compared at 1% (65mM) additive concentration with glucose as sugar substrate. For all bacteria tested, the inhibitory effects of the two polyols were comparable; both were significantly stronger on streptococci (with 20-60% inhibition) than on lactobacilli (with 5-10% inhibition). Effects of arabitol and xylitol were also compared for S. mutans and S. salivarius in media with 1% of different sugar substrates: glucose (55mM), fructose (55mM), galactose (55mM) and sucrose (30mM). Inhibition occurred for all sugars: stronger on glucose and galactose (60-65%) than on fructose and sucrose (40-45%). Inhibition dependency on the arabitol/xylitol concentration from 0.01% (0.65mM) to 2% (130mM) was further determined for S. mutans and S. salivarius. Regardless of the concentration, sugar substrate and bacterial species tested, arabitol showed very similar inhibition effects to its isomer xylitol. PMID:26433188

  8. Isolation of Vaginal Lactobacilli and Characterization of Anti-Candida Activity.

    PubMed

    Parolin, Carola; Marangoni, Antonella; Laghi, Luca; Foschi, Claudio; Ñahui Palomino, Rogers Alberto; Calonghi, Natalia; Cevenini, Roberto; Vitali, Beatrice

    2015-01-01

    Healthy vaginal microbiota is dominated by Lactobacillus spp., which form a critical line of defence against pathogens, including Candida spp. The present study aims to identify vaginal lactobacilli exerting in vitro activity against Candida spp. and to characterize their antifungal mechanisms of action. Lactobacillus strains were isolated from vaginal swabs of healthy premenopausal women. The isolates were taxonomically identified to species level (L. crispatus B1-BC8, L. gasseri BC9-BC14 and L. vaginalis BC15-BC17) by sequencing the 16S rRNA genes. All strains produced hydrogen peroxide and lactate. Fungistatic and fungicidal activities against C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis and C. lusitaniae were evaluated by broth micro-dilution method. The broadest spectrum of activity was observed for L. crispatus BC1, BC4, BC5 and L. vaginalis BC15, demonstrating fungicidal activity against all isolates of C. albicans and C. lusitaniae. Metabolic profiles of lactobacilli supernatants were studied by 1H-NMR analysis. Metabolome was found to be correlated with both taxonomy and activity score. Exclusion, competition and displacement experiments were carried out to investigate the interference exerted by lactobacilli toward the yeast adhesion to HeLa cells. Most Lactobacillus strains significantly reduced C. albicans adhesion through all mechanisms. In particular, L. crispatus BC2, L. gasseri BC10 and L. gasseri BC11 appeared to be the most active strains in reducing pathogen adhesion, as their effects were mediated by both cells and supernatants. Inhibition of histone deacetylases was hypothesised to support the antifungal activity of vaginal lactobacilli. Our results are prerequisites for the development of new therapeutic agents based on probiotics for prophylaxis and adjuvant therapy of Candida infection. PMID:26098675

  9. Isolation of Vaginal Lactobacilli and Characterization of Anti-Candida Activity

    PubMed Central

    Parolin, Carola; Marangoni, Antonella; Laghi, Luca; Foschi, Claudio; Ñahui Palomino, Rogers Alberto; Calonghi, Natalia; Cevenini, Roberto; Vitali, Beatrice

    2015-01-01

    Healthy vaginal microbiota is dominated by Lactobacillus spp., which form a critical line of defence against pathogens, including Candida spp. The present study aims to identify vaginal lactobacilli exerting in vitro activity against Candida spp. and to characterize their antifungal mechanisms of action. Lactobacillus strains were isolated from vaginal swabs of healthy premenopausal women. The isolates were taxonomically identified to species level (L. crispatus B1-BC8, L. gasseri BC9-BC14 and L. vaginalis BC15-BC17) by sequencing the 16S rRNA genes. All strains produced hydrogen peroxide and lactate. Fungistatic and fungicidal activities against C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis and C. lusitaniae were evaluated by broth micro-dilution method. The broadest spectrum of activity was observed for L. crispatus BC1, BC4, BC5 and L. vaginalis BC15, demonstrating fungicidal activity against all isolates of C. albicans and C. lusitaniae. Metabolic profiles of lactobacilli supernatants were studied by 1H-NMR analysis. Metabolome was found to be correlated with both taxonomy and activity score. Exclusion, competition and displacement experiments were carried out to investigate the interference exerted by lactobacilli toward the yeast adhesion to HeLa cells. Most Lactobacillus strains significantly reduced C. albicans adhesion through all mechanisms. In particular, L. crispatus BC2, L. gasseri BC10 and L. gasseri BC11 appeared to be the most active strains in reducing pathogen adhesion, as their effects were mediated by both cells and supernatants. Inhibition of histone deacetylases was hypothesised to support the antifungal activity of vaginal lactobacilli. Our results are prerequisites for the development of new therapeutic agents based on probiotics for prophylaxis and adjuvant therapy of Candida infection. PMID:26098675

  10. Postbiotic activities of lactobacilli-derived factors.

    PubMed

    Cicenia, Alessia; Scirocco, Annunziata; Carabotti, Marilia; Pallotta, Lucia; Marignani, Massimo; Severi, Carola

    2014-01-01

    Probiotics are alive nonpathogenic microorganisms present in the gut microbiota that confer benefits to the host for his health. They act through molecular and cellular mechanisms that contrast pathogen bacteria adhesion, enhance innate immunity, decrease pathogen-induced inflammation, and promote intestinal epithelial cell survival, barrier function, and protective responses. Some of these beneficial effects result to be determined by secreted probiotic-derived factors that recently have been identified as "postbiotic" mediators. They have been reported for several probiotic strains but most available literature concerns Lactobacilli. In this review, we focus on the reported actions of several secretory products of different Lactobacillus species highlighting the available mechanistic data. The identification of soluble factors mediating the beneficial effects of probiotics may present an opportunity not only to understand their fine mechanisms of action, but also to develop effective pharmacological strategies that could integrate the action of treatments with live bacteria. PMID:25291118

  11. Impact of lactobacilli on orally acquired listeriosis

    PubMed Central

    Archambaud, Cristel; Nahori, Marie-Anne; Soubigou, Guillaume; Bécavin, Christophe; Laval, Laure; Lechat, Pierre; Smokvina, Tamara; Langella, Philippe; Lecuit, Marc; Cossart, Pascale

    2012-01-01

    Listeria monocytogenes is a foodborne pathogen that crosses the intestinal barrier and disseminates within the host. Here, we report a unique comprehensive analysis of the impact of two Lactobacillus species, Lactobacillus paracasei CNCM I-3689 and Lactobacillus casei BL23, on L. monocytogenes and orally acquired listeriosis in a gnotobiotic humanized mouse model. We first assessed the effect of treatment with each Lactobacillus on L. monocytogenes counts in host tissues and showed that each decreases L. monocytogenes systemic dissemination in orally inoculated mice. A whole genome intestinal transcriptomic analysis revealed that each Lactobacillus changes expression of a specific subset of genes during infection, with IFN-stimulated genes (ISGs) being the most affected by both lactobacilli. We also examined microRNA (miR) expression and showed that three miRs (miR-192, miR-200b, and miR-215) are repressed during L. monocytogenes infection. Treatment with each Lactobacillus increased miR-192 expression, whereas only L. casei association increased miR-200b and miR-215 expression. Finally, we showed that treatment with each Lactobacillus significantly reshaped the L. monocytogenes transcriptome and up-regulated transcription of L. monocytogenes genes encoding enzymes allowing utilization of intestinal carbon and nitrogen sources in particular genes involved in propanediol and ethanolamine catabolism and cobalamin biosynthesis. Altogether, these data reveal that the modulation of L. monocytogenes infection by treatment with lactobacilli correlates with a decrease in host gene expression, in particular ISGs, miR regulation, and a dramatic reshaping of L. monocytogenes transcriptome. PMID:23012479

  12. Impact of lactobacilli on orally acquired listeriosis.

    PubMed

    Archambaud, Cristel; Nahori, Marie-Anne; Soubigou, Guillaume; Bécavin, Christophe; Laval, Laure; Lechat, Pierre; Smokvina, Tamara; Langella, Philippe; Lecuit, Marc; Cossart, Pascale

    2012-10-01

    Listeria monocytogenes is a foodborne pathogen that crosses the intestinal barrier and disseminates within the host. Here, we report a unique comprehensive analysis of the impact of two Lactobacillus species, Lactobacillus paracasei CNCM I-3689 and Lactobacillus casei BL23, on L. monocytogenes and orally acquired listeriosis in a gnotobiotic humanized mouse model. We first assessed the effect of treatment with each Lactobacillus on L. monocytogenes counts in host tissues and showed that each decreases L. monocytogenes systemic dissemination in orally inoculated mice. A whole genome intestinal transcriptomic analysis revealed that each Lactobacillus changes expression of a specific subset of genes during infection, with IFN-stimulated genes (ISGs) being the most affected by both lactobacilli. We also examined microRNA (miR) expression and showed that three miRs (miR-192, miR-200b, and miR-215) are repressed during L. monocytogenes infection. Treatment with each Lactobacillus increased miR-192 expression, whereas only L. casei association increased miR-200b and miR-215 expression. Finally, we showed that treatment with each Lactobacillus significantly reshaped the L. monocytogenes transcriptome and up-regulated transcription of L. monocytogenes genes encoding enzymes allowing utilization of intestinal carbon and nitrogen sources in particular genes involved in propanediol and ethanolamine catabolism and cobalamin biosynthesis. Altogether, these data reveal that the modulation of L. monocytogenes infection by treatment with lactobacilli correlates with a decrease in host gene expression, in particular ISGs, miR regulation, and a dramatic reshaping of L. monocytogenes transcriptome. PMID:23012479

  13. Lactobacilli-Host mutualism: "learning on the fly"

    PubMed Central

    2014-01-01

    Metazoans establish with microorganisms complex interactions for their mutual benefits. Drosophila, which has already proven useful host model to study several aspects of innate immunity and host-bacteria pathogenic associations has become a powerful model to dissect the mechanisms behind mutualistic host-microbe interactions. Drosophila microbiota is composed of simple and aerotolerant bacterial communities mostly composed of Lactobacillaceae and Acetobactereaceae. Drosophila mono- or poly-associated with lactobacilli strains constitutes a powerful model to dissect the complex interplay between lactobacilli and host biologic traits. Thanks to the genetic tractability of both Drosophila and lactobacilli this association model offers a great opportunity to reveal the underlying molecular mechanisms. Here, we review our current knowledge about how the Drosophila model is helping our understanding of how lactobacilli shapes host biology. PMID:25186369

  14. Isolation and characterization of potential probiotic lactobacilli from pig feces.

    PubMed

    Yun, Ji Hyun; Lee, Ki Beom; Sung, Youn Kyoung; Kim, Eun Bae; Lee, Hong-Gu; Choi, Yun Jaie

    2009-04-01

    This study examined four lactobacilli isolated from pig feces. Two hundred lactic acid bacteria strains were obtained from pig feces using selective culture media (with vancomycin and bromocresol green; termed LAMVAB agar). Microscopy, the catalase test, Gram-staining, and RAPD-PCR analysis were used to group the bacteria into 20 related clusters. Phenotypic analysis using the API 50 CH test and genotypic analysis of 16S rDNA sequences identified these clusters as representing single strains of each of Lactobacillus fermentum, Lactobacillus salivarius, Lactobacillus plantarum, and Lactobacillus reuteri. Bacterial survival under the conditions of low pH (2.0) and high concentration (5.0%, w/v) of bile salt was much better than that of the reference strain (Lactobacillus acidophilus ATCC 33199). The isolated bacteria were quite capable of inhibiting the growth of two pathogens, Escherichia coli K88 and Salmonella typhimurium. The high acid-resistance, bile resistance and antagonism against pathogens, suggest that the four lactic acid bacteria isolated from pig feces could prove useful as piglet probiotics. PMID:18792047

  15. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract.

    PubMed

    Sengupta, Ranjita; Altermann, Eric; Anderson, Rachel C; McNabb, Warren C; Moughan, Paul J; Roy, Nicole C

    2013-01-01

    Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health. PMID:23576850

  16. The Role of Cell Surface Architecture of Lactobacilli in Host-Microbe Interactions in the Gastrointestinal Tract

    PubMed Central

    Altermann, Eric; Anderson, Rachel C.; McNabb, Warren C.; Moughan, Paul J.; Roy, Nicole C.

    2013-01-01

    Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health. PMID:23576850

  17. Inhibitory effect of sodium fluoride and chlorhexidine on the growth of oral lactobacilli.

    PubMed

    del Carmen Ahumada Ostengo, María; Wiese, Birgitt; Nader-Macias, María Elena

    2005-02-01

    The accumulation of microorganisms in dental plaque is related to the etiology of caries and periodontal disease, with a high prevalence worldwide. The prophylactic measures include the use of chemical agents as NaF and chlorhexidine. Lactic acid bacteria are members of the normal microbiota of the oral cavity being discussed with regard to their beneficial or detrimental effect in this environment. The present study was performed to determine the growth of some species of Lactobacillus at different concentrations of NaF and chlorhexidine. The strains were isolated from both caries-free and caries patients. Their growth parameters were evaluated by the application of the Gompertz model to the experimental data of optical density as a measurement of growth. The degree of inhibition of the growth of all of the lactobacilli studied was different, depending on each particular strain. NaF at 1 mmol x L(-1) inhibited between 5% and 46%, at 5 mmol x L(-1) between 13% and 65%, and at 20 mmol x L(-1) between 57% and 84%. CHX at higher concentrations (197 and 98 mmol x L(-1) showed a complete inhibition of some of the strains. The significance of the results was evaluated by the application of a multivariate analysis and also compared with the inhibition of pathogenic Streptococcus mutans and with lactobacilli strains from collection cultures. PMID:16091771

  18. Metabolism of Oligosaccharides and Starch in Lactobacilli: A Review

    PubMed Central

    Gänzle, Michael G.; Follador, Rainer

    2012-01-01

    Oligosaccharides, compounds that are composed of 2–10 monosaccharide residues, are major carbohydrate sources in habitats populated by lactobacilli. Moreover, oligosaccharide metabolism is essential for ecological fitness of lactobacilli. Disaccharide metabolism by lactobacilli is well understood; however, few data on the metabolism of higher oligosaccharides are available. Research on the ecology of intestinal microbiota as well as the commercial application of prebiotics has shifted the interest from (digestible) disaccharides to (indigestible) higher oligosaccharides. This review provides an overview on oligosaccharide metabolism in lactobacilli. Emphasis is placed on maltodextrins, isomalto-oligosaccharides, fructo-oligosaccharides, galacto-oligosaccharides, and raffinose-family oligosaccharides. Starch is also considered. Metabolism is discussed on the basis of metabolic studies related to oligosaccharide metabolism, information on the cellular location and substrate specificity of carbohydrate transport systems, glycosyl hydrolases and phosphorylases, and the presence of metabolic genes in genomes of 38 strains of lactobacilli. Metabolic pathways for disaccharide metabolism often also enable the metabolism of tri- and tetrasaccharides. However, with the exception of amylase and levansucrase, metabolic enzymes for oligosaccharide conversion are intracellular and oligosaccharide metabolism is limited by transport. This general restriction to intracellular glycosyl hydrolases differentiates lactobacilli from other bacteria that adapted to intestinal habitats, particularly Bifidobacterium spp. PMID:23055996

  19. Hydrogen Peroxide Producing Lactobacilli in Women with Cervical Neoplasia

    PubMed Central

    Kim, Ki Min; Kim, Chol Hong; Kim, Seok Mo; Oh, Jong Seok

    2006-01-01

    Purpose It is well known that human papillomavirus (HPV) is the main cause of cervical neoplasia, and hydrogen peroxide-producing lactobacilli are the most important microorganisms for maintaining the balance of the vaginal ecosystem. The purpose of our study was to investigate the relationship of hydrogen peroxide-producing lactobacilli, cervical neoplasia and high-risk HPV. Materials and Methods We enrolled 1138 women with abnormal cervical smears or cervicograms who were referred to the department of Obstetrics and Gynecology at Chonnam National University Medical School. In all of them, 1,138 vaginal swabs were collected for the qualitative assay of hydrogen peroxide producing lactobacilli and 150 cervical swabs were used for the HPV hybrid capture II test without regard to the subjects' pregnancy status. In the non-pregnant women, 880 cervical biopsies and/or loop electrosurgical excision procedures were performed for making the histological diagnosis. Results There was no significant difference not only between the distribution of H2O2 producing lactobacilli and the cervical histology, but also between the distribution of H2O2 producing lactobacilli and the positivity for high-risk HPV. Conclusions Both cervical neoplasia and high-risk HPV may not be influenced by the existence of hydrogen peroxide producing lactobacilli in the vagina. PMID:19771268

  20. Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions.

    PubMed

    Jiang, Q; Stamatova, I; Kari, K; Meurman, J H

    2015-01-01

    Clinical studies have shown that probiotics positively affect oral health by decreasing gum bleeding and/or reducing salivary counts of certain oral pathogens. Our aim was to investigate the inhibitory effect of six probiotic lactobacilli against opportunistic oral Candida species. Sugar utilisation by both lactobacilli and Candida was also assessed. Agar overlay assay was utilised to study growth inhibition of Candida albicans, Candida glabrata and Candida krusei by Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Lactobacillus reuteri SD2112, Lactobacillus brevis CD2, Lactobacillus bulgaricus LB86 and L. bulgaricus LB Lact. The inhibitory effect was measured at pH 5.5, 6.4, and 7.2, respectively, and in the presence of five different carbohydrates in growth medium (glucose, fructose, lactose, sucrose, and sorbitol). Growth and final pH values were measured at two-hour time points to 24 h. L. rhamnosus GG showed the strongest inhibitory activity in fructose and glucose medium against C. albicans, followed by L. casei Shirota, L. reuteri SD2112 and L. brevis CD2. None of the lactobacilli tested affected the growth of C. krusei. Only L. rhamnosus GG produced slight inhibitory effect on C. glabrata. The lower pH values led to larger inhibition zones. Sugar fermentation profiles varied between the strains. L. casei Shirota grew in the presence of all sugars tested, whereas L. brevis CD2 could utilise only glucose and fructose. All Candida species metabolised the available sugars but the most rapid growth was observed with C. glabrata. The results suggest that commercially available probiotics differ in their inhibitory activity and carbohydrate utilisation; the above properties are modified by different pH values and sugars with more pronounced inhibition at lower pH. PMID:25380800

  1. Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells

    PubMed Central

    Saroj, Sunil D.; Maudsdotter, Lisa; Tavares, Raquel; Jonsson, Ann-Beth

    2016-01-01

    Streptococcus pyogenes [Group A streptococcus (GAS)], a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of S. pyogenes S165. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS). Conditioned medium (CM) from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics. PMID:27524981

  2. Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells.

    PubMed

    Saroj, Sunil D; Maudsdotter, Lisa; Tavares, Raquel; Jonsson, Ann-Beth

    2016-01-01

    Streptococcus pyogenes [Group A streptococcus (GAS)], a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of S. pyogenes S165. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS). Conditioned medium (CM) from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics. PMID:27524981

  3. Importance of lactobacilli in food and feed biotechnology.

    PubMed

    Giraffa, Giorgio; Chanishvili, Nina; Widyastuti, Yantyati

    2010-01-01

    The genus Lactobacillus is a heterogeneous group of lactic acid bacteria (LAB) with important implications in food fermentation. The ability to colonize a variety of habitats is a direct consequence of the wide metabolic versatility of this group of LAB. Consequently, lactobacilli have been used for decades in food preservation, as starters for dairy products, fermented vegetables, fish and sausages as well as silage inoculants. Lactobacilli have also been proposed as probiotics and microbial cell factories for the production of nutraceuticals. However, a wide range of applications of lactobacilli in food biotechnology remains potential, whereas a number of important strains still need to be discovered and characterized. This article provides an overview of the taxonomy of lactobacilli and describes four of the most significant case studies on the application of this group of LAB in food and feed biotechnology, including their use as probiotics, dairy starters, silage inoculants, and microbial cell factories. The importance of access to and exchange of biological material within and between different strain collections as a crucial step in expanding the range of different biotechnological applications of lactobacilli is also emphasized. PMID:20302928

  4. Gene expression of lactobacilli in murine forestomach biofilms

    PubMed Central

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-01-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62–82% of rRNA reads), followed by Clostridiales (8–31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans. PMID:24702817

  5. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  6. Lactobacilli Antagonize the Growth, Motility, and Adherence of Brachyspira pilosicoli: a Potential Intervention against Avian Intestinal Spirochetosis ▿

    PubMed Central

    Mappley, Luke J.; Tchórzewska, Monika A.; Cooley, William A.; Woodward, Martin J.; La Ragione, Roberto M.

    2011-01-01

    Avian intestinal spirochetosis (AIS) results from the colonization of the ceca and colorectum of poultry by pathogenic Brachyspira species. The number of cases of AIS has increased since the 2006 European Union ban on the use of antibiotic growth promoters, which, together with emerging antimicrobial resistance in Brachyspira, has driven renewed interest in alternative intervention strategies. Probiotics have been reported as protecting livestock against infection with common enteric pathogens, and here we investigate which aspects of the biology of Brachyspira they antagonize in order to identify possible interventions against AIS. The cell-free supernatants (CFS) of two Lactobacillus strains, Lactobacillus reuteri LM1 and Lactobacillus salivarius LM2, suppressed the growth of Brachyspira pilosicoli B2904 in a pH-dependent manner. In in vitro adherence and invasion assays with HT29-16E three-dimensional (3D) cells and in a novel avian cecal in vitro organ culture (IVOC) model, the adherence and invasion of B. pilosicoli in epithelial cells were reduced significantly by the presence of lactobacilli (P < 0.001). In addition, live and heat-inactivated lactobacilli inhibited the motility of B. pilosicoli, and electron microscopic observations indicated that contact between the lactobacilli and Brachyspira was crucial in inhibiting both adherence and motility. These data suggest that motility is essential for B. pilosicoli to adhere to and invade the gut epithelium and that any interference of motility may be a useful tool for the development of control strategies. PMID:21666022

  7. Lactobacilli Inactivate Chlamydia trachomatis through Lactic Acid but Not H2O2

    PubMed Central

    Gong, Zheng; Luna, Yesmin; Yu, Ping; Fan, Huizhou

    2014-01-01

    Lactobacillus species dominate the microbiome in the lower genital tract of most reproductive-age women. Producing lactic acid and H2O2, lactobacilli are believed to play an important role in prevention of colonization by and growth of pathogens. However, to date, there have been no reported studies characterizing how lactobacilli interact with Chlamydia trachomatis, a leading sexually transmitted bacterium. In this report, we demonstrate inactivation of C. trachomatis infectivity by culture media conditioned by Lactobacillus crispatus, L. gasseri and L. jensenii, known to be dominating organisms in the human vaginal microbiome. Lactobacillus still cultures produced lactic acid, leading to time- and concentration-dependent killing of C. trachomatis. Neutralization of the acidic media completely reversed chlamydia killing. Addition of lactic acid into Lactobacillus-unconditioned growth medium recapitulated the chlamydiacidal activity of conditioned media. The H2O2 concentrations in the still cultures were found to be comparable to those reported for the cervicovaginal fluid, but insufficient to inactivate chlamydiae. Aeration of Lactobacillus cultures by shaking markedly induced H2O2 production, but strongly inhibited Lactobacillus growth and lactic acid production, and thus severely affected acidification, leading to significantly reduced chlamydiacidal efficiency. These observations indicate lactobacilli inactivate chlamydiae primarily through maintaining acidity in a relatively hypoxic environment in the vaginal lumen with limited H2O2, which is consistent with the notion that women with higher vaginal pH are more prone to sexually transmitted C. trachomatis infection. In addition to lactic acid, formic acid and acetic acid also exhibited potent chlamydiacidal activities. Taken together, our findings imply that lowering the vaginal pH through engineering of the vaginal microbiome and other means will make women less susceptible to C. trachomatis infection. PMID

  8. Lactobacilli isolated from the stomach of conventional mice.

    PubMed Central

    Roach, S; Savage, D C; Tannock, G W

    1977-01-01

    Twenty strains of lactobacilli isolated from the stomach of conventional mice were tested for their ability to ferment or hydrolyze substrates that may be present in the stomach habitat. The lactobacilli could be placed in four groups (A to D) depending on their ability to ferment N-acetylglucosamine, dextrin, cellobiose, gum arabic, and xylan. The majority of the isolates belonged to groups A and D. Group A strains did not resemble previously described Lactobacillus species, but group D strains were identified as L. leichmannii. A representative group A isolate colonized the surface of the nonsecretory epithelium of the stomach of gnotobiotic mice; a group D isolate did not. Images PMID:879776

  9. Growth of Facultatively Heterofermentative Lactobacilli on Starter Cell Suspensions

    PubMed Central

    Rapposch, S.; Eliskases-Lechner, F.; Ginzinger, W.

    1999-01-01

    The growth of facultatively heterofermentative lactobacilli (FHL) on cell suspensions of the homofermentative Lactobacillus helveticus was investigated. Osmotic lysis of L. helveticus led to a significant increase of ribose. It decreased steadily in parallel with the growth of FHL, strongly suggesting that the bacteria used ribose as a growth substrate. PMID:10584024

  10. Adhesive Properties and Acid-Forming Activity of Lactobacilli and Streptococci Under Inhibitory Substances, Such as Nitrates.

    PubMed

    Hakobyan, L; Harutyunyan, K; Harutyunyan, N; Melik-Andreasyan, G; Trchounian, A

    2016-06-01

    One of the main requirements for probiotics is their ability to survive during passage through gastrointestinal tract and to maintain their activity at different adverse conditions. The aim of the study was to look for the strains of lactobacilli and streptococci with high adhesive properties even affected by inhibitory substances, such as nitrates (NO3 (-)). To study the adhesion properties hemagglutination reaction of bacterial cells with red blood cells of different animals and humans was used. The acid formation ability of bacteria was determined by the method of titration after 7 days of incubation in the sterile milk. These properties were investigated at different concentrations of NO3 (-). The high concentration (mostly ≥2.0 %) NO3 (-) inhibited the growth of both lactobacilli and streptococci, but compared with streptococcal cultures lactobacilli, especially Lactobacillus acidophilus Ep 317/402, have shown more stability and higher adhesive properties. In addition, the concentrations of NO3 (-) of 0.5-2.0 % decreased the acid-forming activity of the strains, but even under these conditions they coagulated milk and, in comparison to control, formed low acidity in milk. Thus, the L. acidophilus Ep 317/402 with high adhesive properties has demonstrated a higher activity of NO3 (-) transformation. PMID:26942420

  11. Characterization and in vitro properties of oral lactobacilli in breastfed infants

    PubMed Central

    2013-01-01

    Background Lactobacillus species can contribute positively to general and oral health and are frequently acquired by breastfeeding in infancy. The present study aimed to identify oral lactobacilli in breast and formula-fed 4 month-old infants and to evaluate potential probiotic properties of the dominant Lactobacillus species detected. Saliva and oral swab samples were collected from 133 infants who were enrolled in a longitudinal study (n=240) examining the effect of a new infant formula on child growth and development. Saliva was cultured and Lactobacillus isolates were identified from 16S rRNA gene sequences. Five L. gasseri isolates that differed in 16S rRNA sequence were tested for their ability to inhibit growth of selected oral bacteria and for adhesion to oral tissues. Oral swab samples were analyzed by qPCR for Lactobacillus gasseri. Results 43 (32.3%) infants were breastfed and 90 (67.7%) were formula-fed with either a standard formula (43 out of 90) or formula supplemented with a milk fat globule membrane (MFGM) fraction (47 out of 90). Lactobacilli were cultured from saliva of 34.1% breastfed infants, but only in 4.7% of the standard and 9.3% of the MFGM supplemented formula-fed infants. L. gasseri was the most prevalent (88% of Lactobacillus positive infants) of six Lactobacillus species detected. L. gasseri isolates inhibited Streptococcus mutans binding to saliva-coated hydroxyapatite, and inhibited growth of S. mutans, Streptococcus sobrinus, Actinomyces naeslundii, Actinomyces oris, Candida albicans and Fusobacterium nucleatum in a concentration dependent fashion. L. gasseri isolates bound to parotid and submandibular saliva, salivary gp340 and MUC7, and purified MFGM, and adhered to epithelial cells. L. gasseri was detected by qPCR in 29.7% of the oral swabs. Breastfed infants had significantly higher mean DNA levels of L. gasseri (2.14 pg/uL) than infants fed the standard (0.363 pg/uL) or MFGM (0.697 pg/uL) formula. Conclusions Lactobacilli

  12. Antibiotic resistances of intestinal lactobacilli isolated from wild boars.

    PubMed

    Klose, Viviana; Bayer, Katharina; Kern, Corinna; Goelß, Florian; Fibi, Silvia; Wegl, Gertrude

    2014-01-10

    Acquired antibiotic resistances have been reported in lactobacilli of various animal and food sources, but there are no data from wild boar. The objective was a preliminary examination of the antibiotic resistance prevalence of intrinsically vancomycin-resistant lactobacilli isolated from wild boar intestines and analysis of the genetic determinants implicated. Out of three wild boars, 121 lactobacilli were recovered and grouped according to their whole cell protein patterns. Initial phenotypic screening revealed that all were susceptible to erythromycin (2 μg/ml), but 30 were resistant to tetracycline (32 μg/ml). Based on Randomly Amplified Polymorphic DNA-PCR clustering, 64 strains were selected as representative genotypes for identification and minimum inhibitory concentration (MIC) determination. Partial 16S rRNA gene sequencing identified four species: (i) L. mucosae (n=57), (ii) L. reuteri (n=47), (iii) L. fermentum (n=12), and (iv) L. murinus (n=5). Most heterofermentative strains displayed low MICs for ampicillin (AMP), chloramphenicol (CHL), streptomycin (STR), kanamycin (KAN), gentamicin (GEN), erythromycin (ERY), quinupristin/dalfopristin (Q/D), and clindamycin (CLI). Atypical MICs were found mainly in L. mucosae and L. reuteri for TET, KAN, STR, AMP and CHL, but except the TET MICs of L. mucosae mostly at low level. L. murinus strains revealed atypical MICs for aminoglycosides, and/or CHL, AMP, CLI. PCR screening detected tet(W) in 12 and tet(M) in one of heterofermentative strains, as well as the aph(3')-III kanamycin gene in L. murinus. This is the first report showing acquired antibiotic resistance determinants in intestinal lactobacilli of wild boar origin. PMID:24326231

  13. Genes and Molecules of Lactobacilli Supporting Probiotic Action

    PubMed Central

    Lebeer, Sarah; Vanderleyden, Jos; De Keersmaecker, Sigrid C. J.

    2008-01-01

    Summary: Lactobacilli have been crucial for the production of fermented products for centuries. They are also members of the mutualistic microbiota present in the human gastrointestinal and urogenital tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities. Many human intervention studies demonstrating health effects have been published. However, as not all studies resulted in positive outcomes, scientific interest arose regarding the precise mechanisms of action of probiotics. Many reported mechanistic studies have addressed mainly the host responses, with less attention being focused on the specificities of the bacterial partners, notwithstanding the completion of Lactobacillus genome sequencing projects, and increasing possibilities of genomics-based and dedicated mutant analyses. In this emerging and highly interdisciplinary field, microbiologists are facing the challenge of molecular characterization of probiotic traits. This review addresses the advances in the understanding of the probiotic-host interaction with a focus on the molecular microbiology of lactobacilli. Insight into the molecules and genes involved should contribute to a more judicious application of probiotic lactobacilli and to improved screening of novel potential probiotics. PMID:19052326

  14. Enhanced growth of lactobacilli in soymilk upon immobilization on agrowastes.

    PubMed

    Teh, Sue-Siang; Ahmad, Rosma; Wan-Abdullah, Wan-Nadiah; Liong, Min-Tze

    2010-04-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. The objective of this study was to evaluate the effects of agrowastes from durian (Durio zibethinus), cempedak (Artocarpus champeden), and mangosteen (Garcinia mangostana) as immobilizers for lactobacilli grown in soymilk. Rinds from the agrowastes were separated from the skin, dried, and ground (150 microm) to form powders and used as immobilizers. Scanning electron microscopy revealed that lactobacilli cells were attached and bound to the surface of the immobilizers. Immobilized cells of Lactobacillus acidophilus FTDC 1331, L. acidophilus FTDC 2631, L. acidophilus FTDC 2333, L. acidophilus FTDC 1733, and L. bulgaricus FTCC 0411 were inoculated into soymilk, stored at room temperature (25 degrees C) and growth properties were evaluated over 168 h. Soymilk inoculated with nonimmobilized cells was used as the control. Utilization of substrates, concentrations of lactic and acetic acids, and changes in pH were evaluated in soymilk over 186 h. Immobilized lactobacilli showed significantly better growth (P < 0.05) compared to the control, accompanied by higher production of lactic and acetic acids in soymilk. Soymilk containing immobilized cells showed greater reduction of soy sugars such as stachyose, raffinose, sucrose, fructose, and glucose compared to the control (P < 0.05). PMID:20492305

  15. Molecular characterization of lactobacilli isolated from fermented idli batter

    PubMed Central

    Agaliya, Perumal Jayaprabha; Jeevaratnam, Kadirvelu

    2013-01-01

    Lactic acid bacteria are non pathogenic organism widely distributed in nature typically involved in a large number of spontaneous food fermentation. The purpose of this study was to characterize the bacteriocinogenic lactobacilli from fermented idli batter which can find application in biopreservation and biomedicine. Eight most promising lactobacilli were chosen from twenty two isolates based on their spectrum of activity against other lactic acid bacteria and pathogens. The eight lactobacilli were characterized based on the various classical phenotypic tests, physiological tests and biochemical tests including various carbohydrate utilization profiles. All isolates were homo fermentative, catalase, and gelatin negative. Molecular characterization was performed by RAPD, 16S rRNA analysis, 16S ARDRA, and Multiplex PCR for species identification. RAPD was carried out using the primer R2 and M13. Five different clusters were obtained based on RAPD indicating strain level variation. 16S rRNA analysis showed 99 to 100% homology towards Lactobacillus plantarum. The restriction digestion pattern was similar for all the isolates with the restriction enzyme AluI. The subspecies were identified by performing Multiplex PCR using species specific primer. Among the five clusters, three clusters were clearly identified as Lactobacillus plantarum subsp. plantarum, Lactobacillus pentosus, and Lactobacillus plantarum subsp. argentoratensis. PMID:24688512

  16. A Genomic View of Lactobacilli and Pediococci Demonstrates that Phylogeny Matches Ecology and Physiology

    PubMed Central

    Zheng, Jinshui; Ruan, Lifang; Sun, Ming

    2015-01-01

    Lactobacilli are used widely in food, feed, and health applications. The taxonomy of the genus Lactobacillus, however, is confounded by the apparent lack of physiological markers for phylogenetic groups of lactobacilli and the unclear relationships between the diverse phylogenetic groups. This study used the core and pan-genomes of 174 type strains of Lactobacillus and Pediococcus to establish phylogenetic relationships and to identify metabolic properties differentiating phylogenetic groups. The core genome phylogenetic tree separated homofermentative lactobacilli and pediococci from heterofermentative lactobacilli. Aldolase and phosphofructokinase were generally present in homofermentative but not in heterofermentative lactobacilli; a two-domain alcohol dehydrogenase and mannitol dehydrogenase were present in most heterofermentative lactobacilli but absent in most homofermentative organisms. Other genes were predominantly present in homofermentative lactobacilli (pyruvate formate lyase) or heterofermentative lactobacilli (lactaldehyde dehydrogenase and glycerol dehydratase). Cluster analysis of the phylogenomic tree and the average nucleotide identity grouped the genus Lactobacillus sensu lato into 24 phylogenetic groups, including pediococci, with stable intra- and intergroup relationships. Individual groups may be differentiated by characteristic metabolic properties. The link between phylogeny and physiology that is proposed in this study facilitates future studies on the ecology, physiology, and industrial applications of lactobacilli. PMID:26253671

  17. Characterisation of probiotic properties in human vaginal lactobacilli strains

    PubMed Central

    Hütt, Pirje; Lapp, Eleri; Štšepetova, Jelena; Smidt, Imbi; Taelma, Heleri; Borovkova, Natalja; Oopkaup, Helen; Ahelik, Ave; Rööp, Tiiu; Hoidmets, Dagmar; Samuel, Külli; Salumets, Andres; Mändar, Reet

    2016-01-01

    Background Vaginal lactobacilli offer protection against recurrent urinary infections, bacterial vaginosis, and vaginal candidiasis. Objective To characterise the isolated vaginal lactobacilli strains for their probiotic properties and to compare their probiotic potential. Methods The Lactobacillus strains were isolated from vaginal samples by conventional culturing and identified by sequencing of the 16S rDNA fragment. Several functional properties were detected (production of hydrogen peroxide and lactic acid; antagonistic activity against Escherichia coli, Candida albicans, Candida glabrata, and Gardnerella vaginalis; auto-aggregation and adhesiveness) as well as safety (haemolytic activity, antibiotic susceptibility, presence of transferrable resistance genes). Results A total of 135 vaginal lactobacilli strains of three species, Lactobacillus crispatus (56%), Lactobacillus jensenii (26%), and Lactobacillus gasseri (18%) were characterised using several functional and safety tests. Most of L. crispatus (89%) and L. jensenii (86%) strains produced H2O2. The best lactic acid producers were L. gasseri (18.2±2.2 mg/ml) compared to L. crispatus (15.6±2.8 mg/ml) and L. jensenii (11.6±2.6 mg/ml) (p<0.0001; p<0.0001, respectively). L. crispatus strains showed significantly higher anti-E. coli activity compared to L. jensenii. L. gasseri strains expressed significantly lower anticandidal activity compared to L. crispatus and L. jensenii (p<0.0001). There was no significant difference between the species in antagonistic activity against G. vaginalis. Nearly a third of the strains were able to auto-aggregate while all the tested strains showed a good ability to adhere to HeLa cells. None of the tested lactobacilli caused haemolysis. Although phenotypical resistance was not found to ampicillin, chloramphenicol, erythromycin, gentamycin, tetracycline, and vancomycin, the erm(B), tet(M), and tet(K) were detected in some strains. All strains were resistant to metronidazole

  18. Oral Lactobacilli and Dental Caries: A Model for Niche Adaptation in Humans.

    PubMed

    Caufield, P W; Schön, C N; Saraithong, P; Li, Y; Argimón, S

    2015-09-01

    Lactobacilli have been associated with dental caries for over a century. Here, we review the pertinent literature along with findings from our own study to formulate a working hypothesis about the natural history and role of lactobacilli. Unlike most indigenous microbes that stably colonize a host, lactobacilli appear to be planktonic, opportunistic settlers that can gather and multiply only in certain restrictive niches of the host, at least within the oral cavity. We postulate that the following essential requirements are necessary for sustained colonization of lactobacilli in humans: 1) a stagnant, retentive niche that is mostly anaerobic; 2) a low pH milieu; and 3) ready access to carbohydrates. Three sites on the human body meet these specifications: caries lesions, the stomach, and the vagina. Only a handful of Lactobacillus species is found in caries lesions, but they are largely absent in caries-free children. Lactobacilli present in caries lesions represent both a major contributor to caries progression and a major reservoir to the gastrointestinal (GI) tract. We extend the assertion from other investigators that lactobacilli found in the GI tract originate in the oral cavity by proposing that lactobacilli in the oral cavity arise from caries lesions. This, in turn, leads us to reflect on the health implications of the lactobacilli in the mouth and downstream GI and to ponder whether these or any of the Lactobacillus species are truly indigenous to the human GI tract or the oral cavity. PMID:25758458

  19. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response.

    PubMed

    Younes, Jessica A; Reid, Gregor; van der Mei, Henny C; Busscher, Henk J

    2016-06-01

    ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm. PMID:27060097

  20. Identification and characterisation of vaginal lactobacilli from South African women

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV), which is highly prevalent in the African population, is one of the most common vaginal syndromes affecting women in their reproductive age placing them at increased risk for sexually transmitted diseases including infection by human immunodeficiency virus-1. The vaginal microbiota of a healthy woman is often dominated by the species belonging to the genus Lactobacillus namely L. crispatus, L. gasseri, L. jensenii and L. iners, which have been extensively studied in European populations, albeit less so in South African women. In this study, we have therefore identified the vaginal Lactobacillus species in a group of 40 African women from Soweto, a township on the outskirts of Johannesburg, South Africa. Methods Identification was done by cultivating the lactobacilli on Rogosa agar, de Man-Rogosa-Sharpe (MRS) and Blood agar plates with 5% horse blood followed by sequencing of the 16S ribosomal DNA. BV was diagnosed on the basis of Nugent scores. Since some of the previous studies have shown that the lack of vaginal hydrogen peroxide (H2O2) producing lactobacilli is associated with bacterial vaginosis, the Lactobacillus isolates were also characterised for their production of H2O2. Results Cultivable Lactobacillus species were identified in 19 out of 21 women without BV, in three out of five women with intermediate microbiota and in eight out of 14 women with BV. We observed that L. crispatus, L. iners, L. jensenii, L. gasseri and L. vaginalis were the predominant species. The presence of L. crispatus was associated with normal vaginal microbiota (P = 0.024). High level of H2O2 producing lactobacilli were more often isolated from women with normal microbiota than from the women with BV, although not to a statistically significant degree (P = 0.064). Conclusion The vaginal Lactobacillus species isolated from the cohort of South African women are similar to those identified in European populations. In accordance with the other

  1. Gonococcal pilus vaccine. Studies of antigenicity and inhibition of attachment.

    PubMed Central

    Tramont, E C; Sadoff, J C; Boslego, J W; Ciak, J; McChesney, D; Brinton, C C; Wood, S; Takafuji, E

    1981-01-01

    A gonococcal pilus vaccine or placebo was injected subcutaneously or intramuscularly into 71 human volunteers. The vaccine was found to be safe. The principal adverse reaction was a complaint of a sore arm, which was caused, at least in part, to the volume of material injected. 6 of 64 (9%) volunteers receiving the larger doses also complained of malaise. The vaccine was found to be antigenic. All of the volunteers developed an immunoglobulin class-specific antibody response as measured by a solid phase radioimmunoassay. The antibody was capable of blocking the attachment of gonococci to epithelial cells. A slight antibody response was also demonstrated to gonococcal lipopolysaccharide but the antibody responsible for blocking attachment of gonococci was directed entirely at the pilus protein. The stimulated antibodies were shown to crossreact with isolated pili of heterologous gonococcal strains and to block the attachment of heterologous gonococci. Absorption of immune sera by a heterologous pilus reduced the inhibition of attachment antibodies to pre-immune level, suggesting that the immune response was directed at a common pilus determinant. PMID:6116723

  2. Natural antimicrobials subtilosin and lauramide arginine ethyl ester synergize with conventional antibiotics clindamycin and metronidazole against biofilms of Gardnerella vaginalis but not against biofilms of healthy vaginal lactobacilli.

    PubMed

    Algburi, Ammar; Volski, Anna; Chikindas, Michael L

    2015-07-01

    The purpose of this study was to evaluate the ability of clindamycin and metronidazole to synergize with natural antimicrobials against biofilms of bacterial vaginosis (BV)-associated Gardnerella vaginalis. Minimum bactericidal concentrations for biofilm cells (MBCs-B) were determined for each antimicrobial. The MBCs-B of lauramide arginine ethyl ester (LAE), subtilosin, clindamycin and metronidazole were 50, 69.5, 20 and 500 μg mL(-1), respectively. A checkerboard assay and isobologram were used to analyze the type of interactions between these antimicrobials. The combination of metronidazole with natural antimicrobials did not inhibit planktonic lactobacilli. Clindamycin with either LAE or with subtilosin was inhibitory for planktonic but not for biofilm-associated lactobacilli. All tested antimicrobial combinations were inhibitory for BV-associated Mobiluncus curtisii and Peptostreptococcus anaerobius. LAE and subtilosin synergized with clindamycin and metronidazole against biofilms of G. vaginalis but not biofilm-associated vaginal lactobacilli. The biofilms of BV-associated pathogens can be controlled by synergistically acting combinations of conventional antibiotics and natural antimicrobials which will help better management of current antibiotics, especially considering robust bacterial resistance. Our findings create a foundation for a new strategy in the effective control of vaginal infections. PMID:25838136

  3. Vaginal lactobacilli as potential probiotics against Candida SPP.

    PubMed

    Gil, Natalia F; Martinez, Rafael C R; Gomes, Bruna C; Nomizo, Auro; De Martinis, Elaine C P

    2010-01-01

    Urogenital infections affect millions of people every year worldwide. The treatment of these diseases usually requires the use of antimicrobial agents, and more recently, the use of probiotic lactic acid bacteria (LAB) cultures for the management of vaginal infections has been extensively studied. In this work, 11 vaginal lactobacilli isolates, previously obtained from healthy patients, were studied to screen microorganisms with probiotic properties against Candida spp. The LAB were tested for their ability of auto-aggregation, co-aggregation with C. albicans, C. glabrata, C. krusei, and C. tropicalis, adhesion to Caco-2 epithelial cells and production of lactic acid and hydrogen peroxide (H2O2). All lactobacilli isolates tested were able to auto-aggregate (ranging from 25.3% to 75.4% assessed at 4 hours of incubation) and to co-aggregate with the four Candida species into different degrees; among them L. crispatus showed the highest scores of co-aggregation. The highest amount of lactic acid was produced by L. salivarius (13.9 g/l), followed by L. johnsonii (6.5 g/l), L. acidophilus (5.5 g/l), and L. jensenii (5.4 g/l). All isolates produced H2O2, but the highest levels (3 - 10 mg/l) were observed for L. acidophilus, L. crispatus, L. gasseri, L. johnsonii, and L. vaginalis. Only L. agilis, L. jensenii, L. johnsonii and L. ruminus were able to adhere to epithelial Caco-2 cells. Among the isolates evaluated, L agilis, L. jensenii, L. johnsonii, and L. ruminus exhibited simultaneously several desirable properties as potential probiotic strains justifying future studies to evaluate their technological properties in different pharmaceutical preparations for human use. PMID:24031455

  4. Vaginal lactobacilli as potential probiotics against Candida SPP.

    PubMed Central

    Gil1, Natalia F.; Martinez, Rafael C.R.; Gomes, Bruna C.; Nomizo, Auro; De Martinis, Elaine C. P.

    2010-01-01

    Urogenital infections affect millions of people every year worldwide. The treatment of these diseases usually requires the use of antimicrobial agents, and more recently, the use of probiotic lactic acid bacteria (LAB) cultures for the management of vaginal infections has been extensively studied. In this work, 11 vaginal lactobacilli isolates, previously obtained from healthy patients, were studied to screen microorganisms with probiotic properties against Candida spp. The LAB were tested for their ability of auto-aggregation, co-aggregation with C. albicans, C. glabrata, C. krusei, and C. tropicalis, adhesion to Caco-2 epithelial cells and production of lactic acid and hydrogen peroxide (H2O2). All lactobacilli isolates tested were able to auto-aggregate (ranging from 25.3% to 75.4% assessed at 4 hours of incubation) and to co-aggregate with the four Candida species into different degrees; among them L. crispatus showed the highest scores of co-aggregation. The highest amount of lactic acid was produced by L. salivarius (13.9 g/l), followed by L. johnsonii (6.5 g/l), L. acidophilus (5.5 g/l), and L. jensenii (5.4 g/l). All isolates produced H2O2, but the highest levels (3 – 10 mg/l) were observed for L. acidophilus, L. crispatus, L. gasseri, L. johnsonii, and L. vaginalis. Only L. agilis, L. jensenii, L. johnsonii and L. ruminus were able to adhere to epithelial Caco-2 cells. Among the isolates evaluated, L agilis, L. jensenii, L. johnsonii, and L. ruminus exhibited simultaneously several desirable properties as potential probiotic strains justifying future studies to evaluate their technological properties in different pharmaceutical preparations for human use. PMID:24031455

  5. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera

    PubMed Central

    Sun, Zhihong; Harris, Hugh M. B.; McCann, Angela; Guo, Chenyi; Argimón, Silvia; Zhang, Wenyi; Yang, Xianwei; Jeffery, Ian B; Cooney, Jakki C.; Kagawa, Todd F.; Liu, Wenjun; Song, Yuqin; Salvetti, Elisa; Wrobel, Agnieszka; Rasinkangas, Pia; Parkhill, Julian; Rea, Mary C.; O'Sullivan, Orla; Ritari, Jarmo; Douillard, François P.; Paul Ross, R.; Yang, Ruifu; Briner, Alexandra E.; Felis, Giovanna E.; de Vos, Willem M.; Barrangou, Rodolphe; Klaenhammer, Todd R.; Caufield, Page W.; Cui, Yujun; Zhang, Heping; O'Toole, Paul W.

    2015-01-01

    Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species. PMID:26415554

  6. The influence of lactobacilli on the competitive exclusion of paratyphoid salmonellae in chickens.

    PubMed

    Soerjadi, A S; Stehman, S M; Snoeyenbos, G H; Weinack, O M; Smyser, C F

    1981-01-01

    The competitive exclusion of salmonellae by native gut microflora was investigated by treating chicks with various avian lactobacilli. The evaluation of protection was based on the number of salmonellae adhering to the mucosa of the crop and the cecum, enumeration of salmonellae in fecal droppings, and enrichment of cloacal swabs and fecal droppings using both individual and seeder bird tests. Lactobacilli reduced the number of salmonellae adhering to the crop mucosa by 1 to 2 logs. Treatment with lactobacilli did not lower the number of chickens shedding salmonellae or reduce the number of salmonellae adhering to the mucosa of the cecum. Lactobacilli as a single bacterial treatment played a minor role in protecting the crop, but no protection of the cecum was demonstrated. PMID:7039590

  7. Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis

    PubMed Central

    CHEN, Chih-YU; CHUNG, Ying-CHIEN

    2012-01-01

    Dental caries is still a major oral health problem in most industrialized countries. The development of dental caries primarily involves Lactobacilli spp. and Streptococcus mutans. Although antibacterial ingredients are used against oral bacteria to reduce dental caries, some reports that show partial antibacterial ingredients could result in side effects. Objectives The main objective is to test the antibacterial effect of water-soluble chitosan while the evaluation of the mouthwash appears as a secondary aim. Material and Methods The chitosan was obtained from the Application Chemistry Company (Taiwan). The authors investigated the antibacterial effects of water-soluble chitosan against oral bacteria at different temperatures (25-37ºC) and pH values (pH 5-8), and evaluated the antibacterial activities of a self-made water-soluble chitosan-containing mouthwash by in vitro and in vivo experiments, and analyzed the acute toxicity of the mouthwashes. The acute toxicity was analyzed with the pollen tube growth (PTG) test. The growth inhibition values against the logarithmic scale of the test concentrations produced a concentrationresponse curve. The IC50 value was calculated by interpolation from the data. Results The effect of the pH variation (5-8) on the antibacterial activity of water-soluble chitosan against tested oral bacteria was not significant. The maximal antibacterial activity of water-soluble chitosan occurred at 37ºC. The minimum bactericidal concentration (MBC) of water-soluble chitosan on Streptococcus mutans and Lactobacilli brevis were 400 µg/mL and 500 µg/mL, respectively. Only 5 s of contact between water-soluble chitosan and oral bacteria attained at least 99.60% antibacterial activity at a concentration of 500 µg/mL. The water-soluble chitosan-containin g mouthwash significantly demonstrated antibacterial activity that was similar to that of commercial mouthwashes (>99.91%) in both in vitro and in vivo experiments. In addition, the alcohol

  8. In situ gastrointestinal protection against anthrax edema toxin by single-chain antibody fragment producing lactobacilli

    PubMed Central

    2011-01-01

    Background Anthrax is caused by the bacterium Bacillus anthracis and is regarded as one of the most prominent bioterrorism threats. Anthrax toxicity is induced by the tripartite toxin complex, composed of the receptor-binding anthrax protective antigen and the two enzymatic subunits, lethal factor and edema factor. Recombinant lactobacilli have previously been used to deliver antibody fragments directed against surface epitopes of a variety of pathogens, including Streptococcus mutans, Porphyromonas gingivalis, and rotavirus. Here, we addressed whether or not anthrax toxins could be targeted and neutralised in the gastrointestinal tract by lactobacilli producing recombinant antibody fragments as a model system for toxin neutralisation in the gastrointestinal lumen. Results The neutralising anti-PA scFv, 1H, was expressed in L. paracasei as a secreted protein, a cell wall-anchored protein or both secreted and wall-anchored protein. Cell wall display on lactobacilli and PA binding of the anchored constructs was confirmed by flow cytometry analysis. Binding of secreted or attached scFv produced by lactobacilli to PA were verified by ELISA. Both construct were able to protect macrophages in an in vitro cytotoxicity assay. Finally, lactobacilli producing the cell wall attached scFv were able to neutralise the activity of anthrax edema toxin in the GI tract of mice, in vivo. Conclusion We have developed lactobacilli expressing a neutralising scFv fragment against the PA antigen of the anthrax toxin, which can provide protection against anthrax toxins both in vitro and in vivo. Utilising engineered lactobacilli therapeutically for neutralising toxins in the gastrointestinal tract can potential be expanded to provide protection against a range of additional gastrointestinal pathogens. The ability of lactobacilli to colonise the gastrointestinal tract may allow the system to be used both prophylactically and therapeutically. PMID:22185669

  9. Analysis of Vaginal Lactobacilli from Healthy and Infected Brazilian Women▿ †

    PubMed Central

    Martinez, Rafael C. R.; Franceschini, Sílvio A.; Patta, Maristela C.; Quintana, Silvana M.; Nunes, Álvaro C.; Moreira, João L. S.; Anukam, Kingsley C.; Reid, Gregor; De Martinis, Elaine C. P.

    2008-01-01

    Culture-dependent PCR-amplified rRNA gene restriction analysis and culture-independent (PCR-denaturing gradient gel electrophoresis) methodologies were used to examine vaginal lactobacilli from Brazilian women who were healthy or had been diagnosed with vulvovaginal candidiasis (VVC) or bacterial vaginosis. Only Lactobacillus crispatus was detected accordingly by both methods, and H2O2-producing lactobacilli were not associated with protection against VVC. PMID:18502927

  10. Effects of lactobacilli on yeast-catalyzed ethanol fermentations.

    PubMed Central

    Narendranath, N V; Hynes, S H; Thomas, K C; Ingledew, W M

    1997-01-01

    Normal-gravity (22 to 24 degrees Plato) wheat mashes were inoculated with five industrially important strains of lactobacilli at approximately 10(5), approximately 10(6), approximately 10(7), approximately 10(8), and approximately 10(9) CFU/ml in order to study the effects of the lactobacilli on yeast growth and ethanol productivity. Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus #3, Lactobacillus rhamnosus, and Lactobacillus fermentum were used. Controls with yeast cells but no bacterial inoculation and additional treatments with bacteria alone inoculated at approximately 10(7) CFU/ml of mash were included. Decreased ethanol yields were due to the diversion of carbohydrates for bacterial growth and the production of lactic acid. As higher numbers of the bacteria were produced (depending on the strain), 1 to 1.5% (wt/vol) lactic acid resulted in the case of homofermentative organisms. L. fermentum, a heterofermentative organism, produced only 0.5% (wt/vol) lactic acid. When L. plantarum, L. rhamnosus, and L. fermentum were inoculated at approximately 10(6) CFU/ml, an approximately 2% decrease in the final ethanol concentration was observed. Smaller initial numbers (only 10(5) CFU/ml) of L. paracasei or Lactobacillus #3 were sufficient to cause more than 2% decreases in the final ethanol concentrations measured compared to the control. Such effects after an inoculation of only 10(5) CFU/ml may have been due to the higher tolerance to ethanol of the latter two bacteria, to the more rapid adaptation (shorter lag phase) of these two industrial organisms to fermentation conditions, and/or to their more rapid growth and metabolism. When up to 10(9) CFU of bacteria/ml was present in mash, approximately 3.8 to 7.6% reductions in ethanol concentration occurred depending on the strain. Production of lactic acid and a suspected competition with yeast cells for essential growth factors in the fermenting medium were the major reasons for reductions in yeast

  11. Fatty acid composition and freeze-thaw resistance in lactobacilli.

    PubMed

    Gomez Zavaglia, A; Disalvo, E A; De Antoni, G L

    2000-05-01

    The fatty acid composition and freeze-thaw resistance of eight strains of thermophilic lactobacilli were studied. Seven of these contained the same polar and neutral lipids, the five major components making up 90% of the cellular fatty acid pool being 14:0, 16:0, 16:1, 18:1 and C19 cyclopropane (cyc19:0). Strain comparison by means of cluster analysis based on the fatty acid ratios using the overlap coefficient revealed two well defined clusters. One was formed by three strains of species Lactobacillus delbrueckii subsp. lactis and Lb. delbrueckii subsp. delbrueckii, the other included five strains of the species Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus and Lb. helveticus. Resistance of strains with a high content of unsaturated fatty acids (66-70%) decreased with increasing cyc19:0 concentrations. In contrast, in strains with a low concentration of unsaturated fatty acids (42-49%), increasing cyc19:0 levels were associated with increased freeze-thaw resistance. PMID:10840678

  12. Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin.

    PubMed

    McLaughlin, Heather P; Motherway, Mary O'Connell; Lakshminarayanan, Bhuvaneswari; Stanton, Catherine; Paul Ross, R; Brulc, Jennifer; Menon, Ravi; O'Toole, Paul W; van Sinderen, Douwe

    2015-06-16

    Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients. PMID:25817019

  13. Impact of oral Lactobacillus acidophilus gavage on rooster seminal and cloacal Lactobacilli concentrations.

    PubMed

    Kiess, A S; Hirai, J H; Triplett, M D; Parker, H M; McDaniel, C D

    2016-08-01

    The use of antibiotics in poultry is being heavily scrutinized, therefore alternatives such as probiotics are being investigated. Lactobacilli spp. are a commonly used bacteria in formulating probiotics, and the addition of Lactobacilli to broiler diets has demonstrated increased growth rates, stimulated immune systems, and reduced pathogen loads in the gastro-intestinal tract ( GI: ) tract. However, previous research has shown that when rooster semen is directly exposed to Lactobacillus acidophilus (L. acidophilus) sperm quality is reduced. Therefore, the objective of the current study was to determine if oral administration of L. acidophilus increases the concentration of Lactobacilli in semen as well as the cloaca. A total of 30 roosters were used: 15 roosters were gavaged with 1X PBS (Control) and 15 roosters were gavaged with 10(7) cfu/mL of L. acidophilus (Treated). All roosters were gavaged for 14 consecutive days. Semen was collected on a 3 d interval, and cloacal swabs were collected on a 2 d interval, beginning on the first day prior to oral administration. Semen and cloacal swabs were serial diluted, and 100 μL of each dilution was then plated on Man, Rogosa, Sharpe ( MRS: ) agar plates. All plates were incubated for 48 h at 37°C under anaerobic conditions and counted. All Lactobacilli counts were first log transformed, then log transformed (day 0) pre-counts were subtracted from the log transformed day counts providing log differences for the analysis. Seminal Lactobacilli counts were not altered by treatments. However, the main effect of treatment (P = 0.026) for cloacal counts indicated that roosters gavaged with Lactobacilli yielded higher counts than the controls. Additionally, cloaca samples also demonstrated a treatment by day interaction trend (P = 0.082), where Lactobacilli was higher in the L. acidophilus gavaged roosters than the controls only on days 3, 5, 13, and 15. In conclusion, the addition of L. acidophilus to the male breeder diet

  14. Ecology of Lactobacilli in the Oral Cavity: A Review of Literature

    PubMed Central

    Badet, C; Thebaud, N.B

    2008-01-01

    Lactobacilli appear in the oral cavity during the first years of a child’s life. Their presence depends on numerous factors such as the presence of ecological niches e.g. natural anfractuosities of the teeth. A strong correlation has been established between the saliva Lactobacillus count and dental caries, the higher the DMF index, the higher the number of children harbouring a high Lactobacillus count. Among children, the presence of lactobacilli in coronal caries is incontestable. Among adults, lactobacilli are found in root caries. Since 1999, taxonomical revisions make it difficult to interpret the results obtained in the numerous previous studies carried out on the identification of oral lactobacilli, but whatever the sampling method or the identification technique, the carious site or the age of sampled subjects, most species belong to the Lactobacillus casei group. This is important because if a specific correlation can be found between few species of lactobacilli and caries a better understanding of their properties could allow the development of new tools for prevention. PMID:19088910

  15. Simplified sampling methods for estimating levels of lactobacilli in saliva in dental clinical practice.

    PubMed

    Gabre, P; Martinsson, T; Gahnberg, L

    1999-08-01

    The aim of the present study was to evaluate whether estimation of lactobacilli was possible with simplified saliva sampling methods. Dentocult LB (Orion Diagnostica AB, Trosa, Sweden) was used to estimate the number of lactobacilli in saliva sampled by 3 different methods from 96 individuals: (i) Collecting and pouring stimulated saliva over a Dentocult dip-slide; (ii) direct licking of the Dentocult LB dip-slide; (iii) contaminating a wooden spatula with saliva and pressing against the Dentocult dip-slide. The first method was in accordance with the manufacturer's instructions and selected as the 'gold standard'; the other 2 methods were compared with this result. The 2 simplified methods for estimating levels of lactobacilli in saliva showed good reliability and specificity. Sensitivity, defined as the ability to detect individuals with a high number of lactabacilli in saliva, was sufficient for the licking method (85%), but significantly reduced for the wooden spatula method (52%). PMID:10540926

  16. Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli.

    PubMed

    Donaghy, J; Kelly, P F; McKay, A M

    1998-08-01

    The production of feruloyl esterase activity by Bacillus spp. and lactobacilli can be detected in an agarplate assay. The assay involves the substitution of the main carbon source in specific agar with ethyl ferulate. A number of Bacillus spp., predominantly B. subtilis strains, were found to exhibit feruloyl esterase activity by this method. Of the examined lactobacilli, Lb. fermentum (NCFB 1751) showed the highest level of ferulic acid esterase activity. The enzyme was released from harvested cells by sonication and showed pH and temperature optima of 6.5 and 30 degrees C respectively. PMID:9763694

  17. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR.

    PubMed

    Castillo, Marisol; Martín-Orúe, Susana M; Manzanilla, Edgar G; Badiola, Ignacio; Martín, Marga; Gasa, Josep

    2006-04-16

    Jejunum digesta samples were taken from weaning pigs in order to evaluate real-time PCR (qPCR) as a method for quantifying pig gut bacteria. Total bacteria, lactobacilli and enterobacteria were quantified by qPCR and the results were compared with those obtained with traditional methods: 4',6-diamidino-2-phenylindole (DAPI staining) for total bacteria, selective culture for lactobacilli and enterobacteria. Real-time PCR showed higher values in terms of 16S rRNA gene copies than DAPI counts or CFU. Despite the differences, the lactobacilli:enterobacteria ratio was similar between methods (2.5 +/- 0.58 for qPCR and 3.1 +/- 0.71 for selective culture, P = 0.39). Possible reasons for the higher PCR counts are discussed considering both an overestimation with PCR by quantification of dead bacteria or free DNA and also an underestimation with conventional methods. Inherent differences in the pre-treatment of the samples could partially explain the discrepancies observed. Regardless of the numerical differences between methods, values obtained by qPCR and traditional methods showed a significant correlation for lactobacilli and total bacteria. In the light of these results, real-time PCR seems a valid method to quantify microbial shifts in the gastrointestinal tract. PMID:16384658

  18. Impact of two probiotic Lactobacillus strains feeding on fecal lactobacilli and weight gains in chicken.

    PubMed

    Lan, Pham Thi Ngoc; Binh, Le Thanh; Benno, Yoshimi

    2003-02-01

    Two probiotic strains, Lactobacillus agilis JCM 1048 and L. salivarius subsp. salicinius JCM 1230 isolated from chicken intestine, exhibited probiotic characteristics that can be applied for chicken production. After 7 days of probiotic feeding (FD7), the count of intestinal lactobacilli in the probiotic group (group P, n=10) was significantly (p<0.05) higher than that in the control group (group C, n=9). After 40 days of probiotic feeding (FD40), the lactobacilli and enterococci counts were stable but the Enterobacteriaceae number was significantly reduced (p<0.05). A total of 163 isolated lactobacilli were identified as the L. acidophilus/gallinarum group (49.7%), L. agilis (30.7%), L. salivarius (9.2%), L. reuteri (9.2%), and Lactobacillus spp. (1.2%). The probiotic lactobacilli positively affected the Lactobacillus biota in chickens at FD7, with a significant increase in the number (p<0.05) of L. agilis and group P. The viable counts of each Lactobacillus species at FD40, however, showed no differences between two groups. An increasing incidence of L. agilis was also noted with probiotic feeding. The probiotic effect of two strains resulted in significantly increased weight gains (10.7%) of group P in comparison with group C at FD40 (p<0.01). PMID:12682864

  19. Development of a Lactobacillus Specific T-RFLP Method to Determine Lactobacilli Diversity in Complex Samples

    PubMed Central

    Chen, Long; Teasdale, Matt T.; Kaczmarczyk, Melissa M.; Freund, Gregory G.; Miller, Michael J.

    2012-01-01

    Terminal restriction fragment length polymorphism (T-RFLP) analysis has been widely used for studying microbial communities. However, most T-RFLP assays use 16S rDNA as the target and are unable to accurately characterize a microbial subpopulation. In this study, we developed a novel T-RFLP protocol based on Lactobacillus hsp60 to rapidly characterize and compare lactobacilli composition. The theoretical terminal restriction fragment (TRF) profiles were calculated from 769 Lactobacillus hsp60 sequences from online databases. In silico digestion with restriction endonucleases AluI and TacI on hsp60 amplicons generated 83 distinct TRF patterns, of which, 70 were species specific. To validate the assay, five previously sequenced lactobacilli were cultured independently, mixed at known concentrations and subjected to analysis by T-RFLP. All five strains generated the predicted TRFs and a qualitative consistent relationship was revealed. We performed the T-RFLP protocol on fecal samples from mice fed 6 different diets (n=4). Principal component analysis and agglomerative hierarchical clustering revealed that the lactobacilli community was strongly connected to dietary supplementation. Our study demonstrates the potential for using Lactobacillus specific T-RFLP to characterize lactobacilli communities in complex samples. PMID:22981747

  20. Sample handling factors affecting the enumeration of lactobacilli and cellulolytic bacteria in equine feces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives were to compare media types and evaluate the effects of fecal storage time and temperature on the enumeration of cellulolytic bacteria and lactobacilli from horses. Fecal samples were collected from horses (n = 3) and transported to the lab (CO2, 37 ºC, 0.5 h). The samples were assign...

  1. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal grains are often included in equine diets. Sugars and starch in grains can be digested and absorbed in the small intestine, but a high proportion of grain in the diet can allow starch to reach the hindgut, disturbing the microbial ecology. Streptococci and lactobacilli both catabolize starch ...

  2. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...

  3. Lactobacilli isolated from vaginal vault of dairy and meat cows during progesteronic stage of estrous cycle.

    PubMed

    Rodríguez, C; Cofré, J V; Sánchez, M; Fernández, P; Boggiano, G; Castro, E

    2011-02-01

    Lactobacilli have been barely studied in cows. We proposed isolate and characterize lactic acid bacteria from dairy cows as compared to those raised for meat production and elucidate the presence of strains with evident probiotic employment's potential. For this, isolation and quantification of LAB mainly lactobacilli were realized from vaginal cattle samples in MRS medium. Each selected microorganism was then briefly characterized. The MATH method was employed using hexadecane, xilene an toluene as solvent. According to the hydrophobic characteristics, strains were classified into three categories: high (71-100%), medium (36-70%) and low (0-35%). Hydrogen peroxide qualitative production was studies too, lactobacilli were streaked onto an MRS agar plate containing 5 mg of 3,3',5,5'-tetramethylbenzidine and 0.20 mg of horseradish peroxidase. Twenty-one sampled cows (78%) were positive for lactic acid microflora, 12 belonging to the dairy group and 17 of the meat group. Total LAB counting including dairy and meat cows were log 2,41 CFU/ml. Of overall identified strains, an 83% corresponded to lactobacilli. Most strains belonged to the heterofermentative facultative group (75%), with L. plantarum as the most frequent specie. The highest proportion of isolated vaginal strains (69%) had low hydrophobicity, the LAB with highest hydrophobic characteristics (3 strains) were found only in meat cows. In the qualitative evaluation of H(2)O(2) production, a positive reaction was observed in 13 of 29 strains (45%). The role of lactobacilli in vaginal microbiota is limited, and therefore the present work is interesting in incorporate knowledge of normal microflora of progesteronic healthy cows, in this case in production animals. The isolation and characterization data obtained are consistent in consider the study of particular strains with great potential in the development of a probiotic for production cows. PMID:21145403

  4. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells

    PubMed Central

    Johansson, Maria A.; Björkander, Sophia; Mata Forsberg, Manuel; Qazi, Khaleda Rahman; Salvany Celades, Maria; Bittmann, Julia; Eberl, Matthias; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation. PMID:27462316

  5. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells.

    PubMed

    Johansson, Maria A; Björkander, Sophia; Mata Forsberg, Manuel; Qazi, Khaleda Rahman; Salvany Celades, Maria; Bittmann, Julia; Eberl, Matthias; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4(+) and CD8(+) T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation. PMID:27462316

  6. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    PubMed

    Xing, Jiali; Wang, Gang; Zhang, Qiuxiang; Liu, Xiaoming; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Wei

    2015-01-01

    Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA) assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs) of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS), reducing power (RP), and inhibition of linoleic acid peroxidation (ILAP). Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs. PMID:25789875

  7. Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods

    PubMed Central

    Xing, Jiali; Wang, Gang; Zhang, Qiuxiang; Liu, Xiaoming; Gu, Zhennan; Zhang, Hao; Chen, Yong Q.; Chen, Wei

    2015-01-01

    Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA) assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs) of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS), reducing power (RP), and inhibition of linoleic acid peroxidation (ILAP). Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs. PMID:25789875

  8. Lactobacilli Modulate Hypoxia-Inducible Factor (HIF)-1 Regulatory Pathway in Triple Negative Breast Cancer Cell Line

    PubMed Central

    Abedin-Do, Atieh; Mirfakhraie, Reza; Shirzad, Mahdieh; Ghafouri-Fard, Soudeh; Motevaseli, Elahe

    2016-01-01

    Objective Hypoxia-Inducible Factor (HIF)-1 plays an essential role in the body’s response to low oxygen concentrations and regulates expression of several genes implicated in homeostasis, vascularization, anaerobic metabolism as well as immunological responses. Increased levels of HIF-1α are associated with increased proliferation and more aggressive breast tumor development. Lactobacilli have been shown to exert anti-cancer effects on several malignancies including breast cancer. However, the exact mechanism of such effect is not clear yet. The aim of this study was to analyze the expression of selected genes from HIF pathway in a triple negative breast cancer cell line (expressing no estrogen and progesterone receptors as well as HER-2/Neu), MDA-MB-231, following treatment with two lactobacilli culture supernatants. Materials and Methods In this experimental study, we analyzed the expression of HIF-1α, SLC2A1, VHL, HSP90, XBP1 and SHARP1 genes from HIF pathway in MDA-MB-231 cells, before and after treatment with Lactobacillus crispatus and Lactobacillus rhamnosus culture supernatants (LCS and LRS, respectively) by means of quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results Both LRS and LCS had cytotoxic effects on MDA-MB-231 cells, while the former type was more cytotoxic. LRS dramatically down-regulated expression levels of the HIF-1α, HSP90 and SLC2A1 in the MDA-MB-231 cells. LCS had similar effect on the expression of HSP90, to what was observed in the LRS treatment. The expression level of tumor suppressor genes VHL and SHARP1 were also decreased in LCS treated cells. Conclusion Although both LCS and LRS had cytotoxic effects on the MDA-MB-231 cells, it is proposed that LRS could be more appropriate for pathway directed treatment modalities, as it did not decrease expression of tumor suppressor genes involved in HIF pathway. Down-regulation of HIF pathway mediated oncogenes by LRS suggests that the cytotoxic effects of this

  9. Gas chromatography analysis of cellular fatty acids and neutral monosaccharides in the identification of lactobacilli.

    PubMed Central

    Rizzo, A F; Korkeala, H; Mononen, I

    1987-01-01

    Cellular fatty acids and monosaccharides in a group of 14 lactobacilli were analyzed by gas chromatography and the identity of the components was confirmed by gas chromatography-mass spectrometry. From the same bacterial sample, both monosaccharides and fatty acids were liberated by methanolysis, and in certain experiments, fatty acids alone were released by basic hydrolysis. The results indicate that basic hydrolysis gave more comprehensive information about the fatty acids, but the analysis of monosaccharides was found to be much more useful in distinguishing between different species of lactobacilli. The method described allowed differentiation of 11 of 14 Lactobacillus species, and even single colonies isolated from agar plates could be used for analysis without subculturing. PMID:3435147

  10. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli.

    PubMed

    Nagpal, Ravinder; Kaur, Anmol

    2011-01-01

    In the present study, five Lactobacillus strains were evaluated for their viability in presence of different prebiotics viz. inulin, oligofructose, lactulose, raftilose, and honey. The viability of lactobacilli was observed before and after 5 weeks of refrigerated storage. The doubling time varied from 5.2 hrs to 9.6 hrs. The lowest doubling time was for Lactobacillus plantarum M5 followed by L. plantarum Ch1 with inulin. Viability of lactobacilli was greatest with inulin. The growth and viability in presence of prebiotics were found to be strain-specific. Hence, it could be concluded that the addition of prebiotics have a significant effect on probiotics, and hence, a combination of suitable Lactobacillus strain(s) with a specific prebiotic could be a viable probiotic-based functional food approach in administering the beneficial bacteria in-vivo. PMID:21888588

  11. In Vitro Adhesion and Platelet Aggregation Properties of Bacteremia-Associated Lactobacilli

    PubMed Central

    Kirjavainen, Pirkka V.; Tuomola, Elina M.; Crittenden, Ross G.; Ouwehand, Arthur C.; Harty, Derek W. S.; Morris, Leone F.; Rautelin, Hilpi; Playne, Martin J.; Donohue, Diana C.; Salminen, Seppo J.

    1999-01-01

    Eight bacteremia-associated Lactobacillus strains were evaluated in vitro for the ability to adhere to human intestinal mucosa and to aggregate platelets. Adherence varied significantly among the strains, and platelet aggregation was induced by three strains. In conclusion, strong binding ability does not appear to be a prerequisite for the involvement of lactobacilli in bacteremia or to their ability to aggregate platelets. PMID:10225937

  12. Lactobacilli and Bifidobacteria in Human Breast Milk: Influence of Antibiotherapy and Other Host and Clinical Factors

    PubMed Central

    Soto, Ana; Martín, Virginia; Jiménez, Esther; Mader, Isabelle; Rodríguez, Juan M.; Fernández, Leonides

    2014-01-01

    ABSTRACT Objective: The objective of this work was to study the lactobacilli and bifidobacteria population in human milk of healthy women, and to investigate the influence that several factors (including antibioteraphy during pregnancy and lactation, country and date of birth, delivery mode, or infant age) may exert on such population. Methods: A total of 160 women living in Germany or Austria provided the breast milk samples. Initially, 66 samples were randomly selected and cultured on MRS-Cys agar plates. Then, the presence of DNA from the genera Lactobacillus and Bifidobacterium, and from most of the Lactobacillus and Bifidobacterium species that were isolated, was assessed by qualitative polymerase chain reaction (PCR) using genus- and species-specific primers. Results: Lactobacilli and bifidobacteria could be isolated from the milk of 27 (40.91%) and 7 (10.61%), respectively, of the 66 cultured samples. On the contrary, Lactobacillus and Bifidobacterium sequences were detected by PCR in 108 (67.50%) and 41 (25.62%), respectively, of the 160 samples analyzed. The Lactobacillus species most frequently isolated and detected was L salivarius (35.00%), followed by L fermentum (25.00%) and L gasseri (21.88%), whereas B breve (13.75%) was the bifidobacterial species most commonly recovered and whose DNA was most regularly found. The number of lactobacilli- or bifidobacteria-positive samples was significantly lower in women who had received antibiotherapy during pregnancy or lactation. Conclusions: Our results suggest that either the presence of lactobacilli and/or bifidobacteria or their DNA may constitute good markers of a healthy human milk microbiota that has not been altered by the use of antibiotics. PMID:24590211

  13. Not only osmoprotectant: betaine increased lactate dehydrogenase activity and L-lactate production in lactobacilli.

    PubMed

    Zou, Huibin; Wu, Zaiqiang; Xian, Mo; Liu, Hui; Cheng, Tao; Cao, Yujin

    2013-11-01

    Lactobacilli are commonly used for industrial production of polymer-grade L-lactic acid. The present study tested the Tween 80 alternative betaine in L-lactate production by several industrial lactobacilli. In flask fermentation of Lactobacillus casei, Lactobacillus buchneri, Lactobacillus lactis and Lactobacillus rhamnosus, the betaine addition (2g/l) had similar osmoprotectant effect with Tween 80 but had increased the lactate dehydrogenase activities and L-lactate production than Tween 80 control. In fed-batch fermentation of L. casei, betaine supplementation improved the L-lactic acid titer to 190 g/l, the yield to 95.5% (g L-lactic acid/g glucose), the productivity to 2.6g/lh, and the optical purity to 97.0%. The results demonstrated that supplementation of Tween 80 alternative - betaine in the fermentation medium is feasible for industrial l-lactic acid fermentation by lactobacilli, which will improve the lactate production but will not increase the process costs and modify any process conditions. PMID:24035452

  14. Probiotic lactobacilli: a potential prophylactic treatment for reducing pesticide absorption in humans and wildlife.

    PubMed

    Trinder, M; Bisanz, J E; Burton, J P; Reid, G

    2015-01-01

    Numerous pesticides are used in agriculture, gardening, and wildlife-control. Despite their intended toxicity to pests, these compounds can also cause harm to wildlife and humans due to their ability to potentially bioaccumulate, leach into soils, and persist in the environment. Humans and animals are commonly exposed to these compounds through agricultural practices and consumption of contaminated foods and water. Pesticides can cause a range of adverse effects in humans ranging from minor irritation, to endocrine or nervous system disruption, cancer, or even death. A convenient and cost-effective method to reduce unavoidable pesticide absorption in humans and wildlife could be the use of probiotic lactobacilli. Lactobacillus is a genus of Gram-positive gut commensal bacteria used in the production of functional foods, such as yoghurt, cheese, sauerkraut and pickles, as well as silage for animal feed. Preliminary in vitro experiments suggested that lactobacilli are able to degrade some pesticides. Probiotic Lactobacillus rhamnosus GR-1-supplemented yoghurt reduced the bioaccumulation of mercury and arsenic in pregnant women and children. A similar study is warranted to test if this approach can reduce pesticide absorption in vivo, given that the lactobacilli can also attenuate reactive oxygen production, enhance gastrointestinal barrier function, reduce inflammation, and modulate host xenobiotic metabolism. PMID:26123785

  15. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    PubMed

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology). PMID:24666842

  16. Characterization of tetracycline resistance lactobacilli isolated from swine intestines at western area of Taiwan.

    PubMed

    Chang, Yi-Chih; Tsai, Chen-Yen; Lin, Chuen-Fu; Wang, Yu-Chih; Wang, I-Kuan; Chung, Tung-Ching

    2011-10-01

    To investigate the frequency of tetracycline resistance (Tet-R) lactobacilli in pig intestines, a total of 256 pig colons were analyzed and found to contain typical colonies of Tet-R lactic acid bacteria in every sample, ranging from 3.2 × 10(3) to 6.6 × 10(5) CFU/cm(2). From these samples, a total of 159 isolates of Tet-R lactobacilli were obtained and identified as belonging to 11 species, including Lactobacillus reuteri, Lactobacillus amylovorus, Lactobacillus salivarius, Lactobacillus plantarum, Lactobacillus ruminis, Lactobacillus kefiri, Lactobacillus fermentum, Lactobacillus sakei, Lactobacillus coryniformis, Lactobacillus parabuchneri and Lactobacillus letivazi. Based on the EFSA (2008) breakpoints, all isolates, after MIC analysis, were qualified as Tet-R, from which the significant high Tet-R MIC(50) and MIC(90) values indicated an ecological distribution of Tet-R lactobacilli mostly with high resistance potency in pig colons. PCR-detection identified 5 tet genes in these isolates, the most predominant one being tet (W), followed by tet (M), (L), (K), and (Q). Their detection rates were 82.0%, 22.5%, 14.4%, 8.1% and 0.9%, respectively. Noteworthily, isolates of the same species carrying identical tet gene(s) usually had a wide different MIC values. Furthermore, strain-subtyping of these isolates by REP-PCR demonstrated a notable genotypic biodiversity % (average = 62%). PMID:21906691

  17. Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food.

    PubMed

    Zhang, Yingchun; Zhang, Lanwei; Du, Ming; Yi, Huaxi; Guo, Chunfeng; Tuo, Yanfeng; Han, Xue; Li, Jingyan; Zhang, Lili; Yang, Lin

    2011-12-20

    Four lactobacilli strains (Lactobacillus paracasei subp. paracasei M5-L, Lactobacillus rhamnosus J10-L, Lactobacillus casei Q8-L and L. rhamnosus GG (LGG), were systematically assessed for the production of antimicrobial substances active towards Shigella sonnei, Escherichia coli and Salmonella typhimurium. Agar-well assay showed that the four lactobacilli strains displayed strong antibacterial activity towards S. sonnei. The nature of antimicrobial substances was also investigated and shown to be dependent on the production of organic acids, in particular the lactic acid. Time-kill assay showed that the viability of the S. sonnei was decreased by 2.7-3.6logCFU/ml after contact with CFCS (cell-free culture supernatants) of four lactobacilli for 2h, which confirmed the result of the agar-well assay. Further analysis of the organic acid composition in the CFCS revealed that the content of lactic acid range from 227 to 293mM. In addition, the aggregations properties, adherence properties and tolerance to simulated gastrointestinal conditions were also investigated in vitro tests. The result suggested that the M5-L, J10-L and Q8-L strains possess desirable antimicrobial activity towards S. sonnei and probiotic properties as LGG and could be potentially used as novel probiotic strains in the food industry. PMID:21466951

  18. Characterization of the Intestinal Lactobacilli Community following Galactooligosaccharides and Polydextrose Supplementation in the Neonatal Piglet

    PubMed Central

    Hoeflinger, Jennifer L.; Kashtanov, Dimitri O.; Cox, Stephen B.; Dowd, Scot E.; Jouni, Zeina E.; Donovan, Sharon M.; Miller, Michael J.

    2015-01-01

    Recently, prebiotic supplementation of infant formula has become common practice; however the impact on the intestinal microbiota has not been completely elucidated. In this study, neonatal piglets were randomized to: formula (FORM, n = 8), formula supplemented with 2 g/L each galactooligosaccharides (GOS) and polydextrose (PDX, F+GP, n = 9) or a sow-reared (SOW, n = 12) reference group for 19 days. The ileal (IL) and ascending colon (AC) microbiota were characterized using culture-dependent and -independent methods. 16S amplicon sequencing identified no differences at the genera level in the IL. Interestingly, six genera in the AC were significantly different between FORM and F+GP (P<0.05): Lactobacillus, Ruminococcus, Parabacteroides, Oscillospira, Hydrogenoanaerobacterium and Catabacter. In particular, the relative abundance of AC Lactobacillus was higher (P = 0.04) in F+GP as compared to FORM. Culture-dependent analysis of the IL and AC lactobacilli communities of FORM and F+GP revealed a Lactobacillus spp. composition similar to 16S amplicon sequencing. Additional analysis demonstrated individual Lactobacillus isolates were unable to ferment PDX. Conversely, a majority of lactobacilli isolates could ferment GOS, regardless of piglet diet. In addition, the ability of lactobacilli isolates to ferment the longer chain GOS fragments (DP 3 or greater), which are expected to be present in the distal intestine, was not different between FORM and F+GP. In conclusion, prebiotic supplementation of formula impacted the AC microbiota; however, direct utilization of GOS or PDX does not lead to an increase in Lactobacillus spp. PMID:26275147

  19. pH gradient and distribution of streptococci, lactobacilli, prevotellae, and fusobacteria in carious dentine

    PubMed Central

    Nguyen, Ky-Anh T.; Browne, Gina V.; Simonian, Mary; Hunter, Neil

    2013-01-01

    Objectives Caries process comprises acidogenic and aciduric bacteria that are responsible for lowering the pH and subsequent destruction of hydroxyapatite matrix in enamel and dentine. The aim of this study was to identify the correlation between the pH gradient of a carious lesion and proportion and distribution of four bacterial genera; lactobacilli, streptococci, prevotellae, and fusobacteria with regard to total load of bacteria. Materials and methods A total of 25 teeth with extensive dentinal caries were sampled in sequential layers. Using quantitative real-time PCR of 16S rRNA gene, we quantified the total load of bacteria as well as the proportion of the abovementioned genera following pH measurement of each sample with a fine microelectrode. Results We demonstrated the presence of a pH gradient across the lesion with a strong association between the quantity of lactobacilli and the lowest pH range (pH 4.5–5.0; p = 0.003). Streptococci had a tendency to occupy the most superficial aspect of the carious lesion but showed no correlation to any pH value. Prevotellae showed clear preference for the pH range 5.5–6.0 (p = 0.042). The total representation of these four genera did not reach more than one quarter of the total bacterial load in most carious samples. Conclusion We revealed differential colonization behavior of bacteria with respect to pH gradient and a lower than expected abundance of lactobacilli and streptococci in established carious lesions. The data indicate the numerical importance of relatively unexplored taxa within the lesion of dentinal caries. Clinical relevance The gradient nature of pH in the lesion as well as colonization difference of examined bacterial taxa with reference to pH provides a new insight in regard to conservative caries management. PMID:23771212

  20. Characterizing Diversity of Lactobacilli Associated with Severe Early Childhood Caries: A Study Protocol

    PubMed Central

    Argimón, Silvia; Schön, Catherine N.; Saraithong, Prakaimuk; Caufield, Page W.

    2015-01-01

    Lactobacilli have been consistently associated with dental caries for decades; however, knowledge of this group of bacteria in the etiology of the disease is limited to quantitative elucidation. Nowadays, explicit identification of oral Lactobacillus species is possible, despite their taxonomic complexity. Here we describe a combined approach involving both cultivation and genetic methods to ascertain and characterize the diversity and abundance of the Lactobacillus population in the oral cavities of children with severe early childhood caries (S-ECC). Eighty 3- to 6-year-old children (40 S-ECC and 40 caries free) who were seeking dental care at the Pediatric Dental Clinic of Bellevue Hospital in New York City were invited to participate in this study. Clinical data on socio-demographic information and oral health behavior were obtained from the primary caregiver. The data included a detailed dental examination, children’s medical history, and a questionnaire survey. Combined non-stimulated saliva and supra-gingival plaque samples were collected from each child and cultivated on selective media for quantitative measures of lactobacilli levels. The procedure for Lactobacillus species screening will include the random selection of 50 colonies per plate, extraction of DNA from each colony, and genotyping by arbitrarily primed polymerase chain reaction (AP-PCR). Each unique Lactobacillus AP-PCR genotype will be selected for taxonomic assessment by 16S rRNA gene sequencing analysis. Lactobacillus species will be identified by comparing the 16S rRNA sequences with the Ribosomal Database and the Human Oral Microbiome Database. Meanwhile, the same set of clinical samples will be independently subjected to genomic DNA isolation, 16S rRNA amplification with Lactobacillus genus-specific primers, sequencing, and taxonomic identification, both at genus and species levels with a customized pipeline. The distribution and phylogenetic differences of these Lactobacillus species

  1. Lactobacilli, bifidobacteria and E. coli nissle induce pro- and anti-inflammatory cytokines in peripheral blood mononuclear cells

    PubMed Central

    Helwig, Ulf; Lammers, Karen M; Rizzello, Fernando; Brigidi, Patricia; Rohleder, Verena; Caramelli, Elisabetta; Gionchetti, Paolo; Schrezenmeir, Juergen; Foelsch, Ulrich R; Schreiber, Stefan; Campieri, Massimo

    2006-01-01

    AIM: To investigate whether the stimulation of peripheral blood mononuclear cells (PBMNC) with the cell debris and cell extraction of different probiotic strains is similar or species specific. METHODS: Three strains of bifidobacteria, 4 strains of lactobacilli, and E. coli nissle were sonicated and centrifuged in order to divide them into cell extract and cell debris. PBMNC were separated by density gradient and incubated for 36 h with either the cell debris or the cell extract of single strains of probiotic bacteria in doses from 102 to 108 CFU/mL. Cell supernatants were taken and interleukin (IL)-10, IL-1β, and tumor necosis factor (TNF)-α were determined by ELISA. RESULTS: Depending on the species super-family, the strains had different stimulation patterns. Except for both L. casei strains, the cell extract of bifidobacteria and lactobacilli had less stimulating capacity than cell debris, whereas the cell extract of E. coli nissle had similar stimulating properties to that of the cell debris of the strain and significantly more stimulating capacity than that of bifidobacteria and lactobacilli. The cell debris of bifidobacteria stimulated more cytokine release than the cell debris of lactobacilli. The cell debris of lactobacilli did not have a stimulating capacity when lower concentrations were used. Neither cell extraction nor cell debris had an inhibitory effect on the production of the tested cytokines by stimulated PBMNC. CONCLUSION: The incubation of probiotic strains, which have been used in clinical trials for inflammatory diseases, with immunocompetent cells leads to different species specific reactions. High IL-10 response to cell debris of bifidobacteria and E. coli nissle can be found. This corresponds to positive effects of bifidobacteria and E. coli nissle in clinical trials for inflammatory bowel disease compared to negative outcomes obtained with lactobacilli. PMID:17009396

  2. Effects of Polyunsaturated Fatty Acids in Growth Medium on Lipid Composition and on Physicochemical Surface Properties of Lactobacilli

    PubMed Central

    Kankaanpää, P.; Yang, B.; Kallio, H.; Isolauri, E.; Salminen, S.

    2004-01-01

    Most probiotic lactobacilli adhere to intestinal surfaces, a phenomenon influenced by free polyunsaturated fatty acids (PUFA). The present study investigated whether free linoleic acid, γ-linolenic acid, arachidonic acid, α-linolenic acid, or docosahexaenoic acid in the growth medium alters the fatty acid composition of lactobacilli and their physical characteristics. The most abundant bacterial fatty acids identified were oleic, vaccenic, and dihydrosterculic acids. PUFA, especially conjugated linoleic acid (CLA) isomers and γ-linolenic, eicosapentaenoic, docosahexaenoic, and α-linolenic acids, also were identified in lactobacilli. When lactobacilli were cultured in MRS broth supplemented with various free PUFA, the incorporation of a given PUFA into bacterial fatty acids was clearly observed. Moreover, PUFA supplementation also resulted in PUFA-dependent changes in the proportions of other fatty acids; major interconversions were seen in octadecanoic acids (18:1), their methylenated derivatives (19:cyc), and CLA. Intermittent changes in eicosapentaenoic acid proportions also were noted. These results were paralleled by minor changes in the hydrophilic or hydrophobic characteristics of lactobacilli, suggesting that PUFA interfere with microbial adhesion to intestinal surfaces through other mechanisms. In conclusion, we have demonstrated that free PUFA in the growth medium induce changes in bacterial fatty acids in relation to the regulation of the degree of fatty acid unsaturation, cyclization, and proportions of CLA and PUFA containing 20 to 22 carbons. The potential role of lactobacilli as regulators of PUFA absorption may represent another means by which probiotics could redirect the delicate balance of inflammatory mediators derived from PUFA within the inflamed intestine. PMID:14711634

  3. [Comparative study of effects of Escherichia coli M-17 exometabolites and fructooligosaccharides on the growth and antagonistic activity of Lactobacilli].

    PubMed

    Vakkhitov, T Ia; Dobrolezh, O V; Petrov, L N; Verbitskaia, N B; Zadaura, E Iu

    2001-01-01

    Facts concerning the evaluation of the influence of E. coli M17 exometabolites and fructooligosaccharides (FOS) on the growth and antagonistic activity of lactobacilli are presented. As revealed by these facts, preparation "Aktoflor" accelerates the growth of lactobacillary cultures, increases the final yield of biomass and antagonistic activity. E. coli M17 exometabolites contained in "Aktoflor" have been shown to be more active in comparison with FOS. The character of their influence on lactobacilli is discussed and the conclusion is made that the restoration and maintenance of eubiosis is greatly determined by the pool of metabolites excreted by the bacteria. PMID:11550569

  4. Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.

    PubMed

    Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline

    2008-03-01

    The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains. PMID:18388993

  5. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion

    PubMed Central

    Arroyo-López, Francisco N.; Blanquet-Diot, Stéphanie; Denis, Sylvain; Thévenot, Jonathan; Chalancon, Sandrine; Alric, Monique; Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Jiménez-Díaz, Rufino; Garrido-Fernández, Antonio

    2014-01-01

    The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933) and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, L. pentosus TOMC-LAB2, and L. pentosus TOMC-LAB4) during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum) resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens. PMID:25352842

  6. Suppression of salivary Streptococcus mutans and lactobacilli by topical caries preventive agents.

    PubMed

    Juric, H; Dukic, W; Jankovic, B; Karlovic, Z; Pavelic, B

    2003-12-01

    Reduction of cariogenic bacteria, especially salivary Streptococcus mutans and lactobacilli is a valuable clinical procedure that in many ways alleviates implementation of targeted caries preventive procedures in the entire population. The aim of this study was to investigate the caries preventive values of certain preventive procedures in in vivo conditions. Four groups of subjects, each with 18 children aged from 4-5 and 10-12 years (n = 72) were treated with different caries preventive agent (aminfluoride solution, Proxyt paste, chewing gum containing xylitol and fluoride and chlorhexidine solution). During a period of two months five control measurements for number of salivary Streptococcus mutans (SM) and lactobacilli (LB) were performed. At the end of the study the best result in the reduction of the bacteria was achieved by the application of Proxyt paste and daily use of chewing gum (p < 0.001). In patients treated with this preventive procedure the number of SM was reduced by 1 class and LB to < 10(4) CFU/ml saliva after two months of study. The results obtained indicate that professional teeth cleaning and use of chewing gum with xylitol and fluorides on daily basis can be very effective protocol for cariogenic bacteria reduction and in the individual caries prevention. PMID:14768786

  7. Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2

    PubMed Central

    Schlee, M; Harder, J; Köten, B; Stange, E F; Wehkamp, J; Fellermann, K

    2008-01-01

    Recent evidence suggests that probiotic bacteria may stabilize gut barrier function via induction of anti-microbial peptides such as defensins. This study aimed to elucidate the induction mechanism of the human beta defensin-2 (hBD-2) gene by different probiotic lactobacillus strains. The expression of hBD-2 mRNA peaked at 6 h of incubation upon treatment of Caco-2 cells and increased with higher dosage of various probiotic bacteria. Deletion of nuclear factor (NF)-κB and activator protein-1 (AP-1) binding sites on the hBD-2 promoter resulted in a complete abrogation of promoter activation by probiotics. As revealed by the use of specific mitogen-activated protein kinase (MAPK) inhibitors the hBD-2 induction was dependent on the MAPK extracellular regulated kinase (ERK 1/2), p38 and c-Jun N-terminal kinase (JNK), although to varying degrees. Several Lactobacillus strains and VSL#3, a probiotic cocktail of four lactobacilli, three bifidum and one streptococcus species, induced the secretion of the hBD-2 peptide into the culture media as shown by enzyme-linked immunosorbent assay (ELISA). Thus, the present study suggests that lactobacilli and the VSL#3 bacterial mixture strengthen intestinal barrier functions through the up-regulation of hBD-2 via induction of proinflammatory pathways including NF-κB and AP-1 as well as MAPKs. PMID:18190603

  8. Development and evaluation of a biochemical scheme for identification of endocervical lactobacilli.

    PubMed Central

    Fagnant, J E; Sanders, C C; Sanders, W E

    1982-01-01

    A biochemical scheme for the species identification of endocervical lactobacilli was developed and evaluated with 10 isolates obtained from the American Type Culture Collection (ATCC) and 106 endocervical isolates obtained from women reporting to a local venereal disease clinic and a local hospital clinic. The scheme consisted of two stages. Stage I included six tests and was tested and modified with results obtained with ATCC strains. From the modified stage I, stage II was developed. Tests to be performed in this stage were determined from expected characteristics of lactobacilli. Stage II was also tested with the ATCC strains. Of the 106 endocervical isolates, 78 (74%) were identified with the two-stage scheme as developed with the ATCC strains. Unexpected results were obtained in one or both stages with the other 28 isolates. For 10 isolates, the final species identified were not previously expected to be recovered. A "best-fit" method was used to determine the most likely identification of the remaining 18 isolates. In a few instances, the use of a third stage was necessary to reach an identification. The final identification scheme, although complicated in appearance, generated a species identification with a total of 12 tests with a range of 7 to 10 tests per isolate. PMID:7153342

  9. Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli.

    PubMed

    Caglar, E; Kavaloglu, S C; Kuscu, O O; Sandalli, N; Holgerson, P L; Twetman, S

    2007-12-01

    The aim was to evaluate the effect of xylitol and probiotic chewing gums on salivary mutans streptococci (MS) and lactobacilli (LB). The material consisted of 80 healthy young adults (21-24 years) who volunteered after informed consent. They were assigned by random into one of four parallel study groups: A, probiotic gum group; B, xylitol gum group; C, probiotic + xylitol gum group; and D, placebo gum group. The gums were taken three times daily after meals, and the intervention period was 3 weeks. The probiotic gums contained two strains of Lactobacilli reuteri (ATCC 55730 at a dose of 1 x 10(8) CFU/gum and ATCC PTA 5289 at a dose of 1 x 10(8) CFU/gum), and each pellet of the xylitol gum contained approximately 1.0 g xylitol as single sweetener. Pretreatment and posttreatment samples of stimulated whole saliva were collected and quantified for MS and LB with chair-side kits. A statistically significant reduction (p < 0.05) of salivary MS was displayed in group A and B after the intervention when compared with baseline. A similar but nonsignificant tendency was seen in group C. No alterations of salivary LB was demonstrated in any group. In conclusion, daily chewing on gums containing probiotic bacteria or xylitol reduced the levels of salivary MS in a significant way. However, a combination of probiotic and xylitol gums did not seem to enhance this effect. PMID:17574481

  10. Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli.

    PubMed

    Teixeira, Januana S; McNeill, Victoria; Gänzle, Michael G

    2012-09-01

    Raffinose family oligosaccharides (RFOs) in food are considered anti-nutritional factors. This study elucidated the role of α-galactosidase (α-Gal), levansucrase, and sucrose phosphorylase for conversion of RFOs by lactobacilli. Quantification of gene expression by reverse-transcriptase quantitative PCR revealed that expression of levansucrase and sucrose phosphorylase by Lactobacillus reuteri is increased more than 100 fold when sucrose or raffinose are available. Fava bean (Vicia faba) or field pea (Pisum sativum) flours were fermented with α-Gal positive L. reuteri or α-Gal negative Lactobacillus sanfranciscensis. Isogenic strains lacking levansucrase activity, a L. reuteri ftfA mutant and a L. sanfranciscensis levS mutant, were used for comparison. During growth in pulse flours, L. sanfranciscensis accumulated melibiose and α-galactooligosaccharides (α-GOSs); the levansucrase-negative strain did not grow. L. reuteri metabolized raffinose, stachyose, and verbascose by levansucrase activity and accumulated α-GOSs as metabolic intermediates. Oligosaccharide metabolism in the levansucrase-negative mutant was slower, and accumulation of α-GOSs was not observed. The use of sorghum sourdough fermented with L. reuteri LTH5448 and bean flour in gluten-free baking converted RFOs to α-GOSs by levansucrase and invertase activities. In conclusion, the elucidation of the role levansucrase in RFO metabolism by lactobacilli allowed the conversion or hydrolysis of RFOs in food fermentations. PMID:22608234

  11. Synthesis and immunestimulating activity of lactobacilli-originated polysaccharide-polymeric microparticle conjugates.

    PubMed

    Nagahama, Koji; Kumano, Takayuki; Nakata, Tsubasa; Tsuji, Hirokazu; Moriyama, Kaoru; Shida, Kan; Nomoto, Koji; Chiba, Katsuyoshi; Koumoto, Kazuya; Matsui, Jun

    2015-02-01

    The design and synthesis of biomaterials capable of activating the immune system are of interest in immunology-related fields because of their ability to tune up the immune defenses of the host. Lactobacilli are a major constituent of normal human indigenous flora, and some specific strains are known to activate the immune system of the host as probiotics. In this study, we first fabricated novel biohybrid materials in which lactobacilli (L. casei strain Shirota, LcS)-originated polysaccharide-peptidoglycan complexes (PS-PGs) are conjugated with polymeric microparticles (MPs). PS-PGs conjugated onto polymeric MPs surfaces bound its specific antibody, suggesting that PS-PGs kept their original molecular recognition ability. The PS-PGs-based hybrid MPs with an appropriate density of conjugated PS-PGs effectively induced high levels of IL-12 production from macrophages without cytotoxicity. These results suggest that LcS-originated PS-PGs could be available bio-originated materials for developing novel biomaterials capable of activating the immune system in a safe manner. PMID:25574583

  12. Isolation and preliminary probiotic selection of lactobacilli from koumiss in Inner Mongolia.

    PubMed

    Wu, Rina; Wang, Liping; Wang, Jicheng; Li, Haiping; Menghe, Bilige; Wu, Junrui; Guo, Mingruo; Zhang, Heping

    2009-06-01

    From 16 samples of traditional fermented koumiss collected in Inner Mongolia Autonomous Region of China, forty-eight lactobacilli strains were isolated and phenotypically characterized by their abilities to ferment different carbohydrates and by additional biochemical tests. The dominant lactobacilli species were identified as L. casei (17 strains), L. helveticus (10 strains) and L. plantarum (8 strains), with a lower frequency of isolation for L. coryniformis subsp. coryniformis (5 strains), L. paracasei (3 strains), L. kefiranofaciens (2 strains), L. curvatus (1 strain), L. fermentum (1 strain) and W. kandleri (1 strain). The pH values of all these samples were ranging from 3.37 to 3.94. In isolates, L. casei Zhang, L. helveticus ZL12-1, and L. plantarum BX6-6 were selected as potentially probiotic strains through the preliminary tests including resistance to low acid, abilities to grow in MRS with bile salts, antimicrobial activities and the viabilities during prolonged cold storage in fermented milk. Moreover 16S rDNA was conducted to confirm the identification. PMID:19219898

  13. Utilisation of steviol glycosides from Stevia rebaudiana (Bertoni) by lactobacilli and bifidobacteria in in vitro conditions.

    PubMed

    Kunová, Gabriela; Rada, Vojtěch; Vidaillac, Adrien; Lisova, Ivana

    2014-05-01

    In the current study, eight strains of bifidobacteria and seven strains of lactobacilli were tested for their ability to grow in the presence of rebaudioside A and steviol glycosides from the sweetener Natusweet M001 originating from herb Stevia rebaudiana (Bertoni). Stevia is gaining popularity as a natural, non-caloric sugar substitute, and recently, it was allowed as a food additive by European Union too. Utilisation of steviol glycosides by intestinal microbiota suggests that they might have potential prebiotic effect. Based on the evaluation of bacterial density and pH values in our in vitro study, it was found that lactobacilli and bifidobacteria tested were able to utilise steviol glycosides as a carbon source only to a very limited extent. All strains tested showed significantly lower change in the absorbance A540 (P < 0.05) and pH decrease of the growth media as compared with the positive controls (medium containing glucose as a carbon source and de Man Rogosa Sharpe broth). We concluded that a suggested prebiotic effect was not confirmed either in the case of rebaudioside A or in the case of the sweetener Natusweet M001 containing a mixture of steviol glycosides. PMID:24249153

  14. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds.

    PubMed

    Makras, Lefteris; Triantafyllou, Vagelis; Fayol-Messaoudi, Domitille; Adriany, Tom; Zoumpopoulou, Georgia; Tsakalidou, Effie; Servin, Alain; De Vuyst, Luc

    2006-04-01

    Six Lactobacillus strains including commercial probiotic ones (L. acidophilus IBB 801, L. amylovorus DCE 471, L. casei Shirota, L. johnsonii La1, L. plantarum ACA-DC 287 and L. rhamnosus GG) were investigated, through batch fermentations under controlled conditions, for their capacity to inhibit Salmonella enterica serovar Typhimurium SL1344. All lactobacilli displayed strong antibacterial activity toward this Gram-negative pathogen and significantly inhibited invasion of the pathogen into cultured human enterocyte-like Caco-2/TC7 cells. By studying the production kinetics of antibacterial activity and applying the appropriate acid and pH control samples during a killing assay, we were able to distinguish between the effect of lactic acid and other inhibitory compounds produced. The antibacterial activity of L. acidophilus IBB 801, L. amylovorus DCE 471, L. casei Shirota and L. rhamnosus GG was solely due to the production of lactic acid. The antibacterial activity of L. johnsonii La1 and L. plantarum ACA-DC 287 was due to the production of lactic acid and (an) unknown inhibitory substance(s). The latter was (were) only active in the presence of lactic acid. In addition, the lactic acid produced was responsible for significant inhibitory activity upon invasion of Salmonella into Caco-2/TC7 cells. PMID:16266797

  15. Yeast fermentation affected by homo- and hetero-fermentative Lactobacilli isolated from fuel ethanol distilleries with sugarcane products as substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...

  16. Differential Targeting of the E-Cadherin/β-Catenin Complex by Gram-Positive Probiotic Lactobacilli Improves Epithelial Barrier Function

    PubMed Central

    Hummel, Stephanie; Veltman, Katharina; Cichon, Christoph; Sonnenborn, Ulrich

    2012-01-01

    The intestinal ecosystem is balanced by dynamic interactions between resident and incoming microbes, the gastrointestinal barrier, and the mucosal immune system. However, in the context of inflammatory bowel diseases (IBD), where the integrity of the gastrointestinal barrier is compromised, resident microbes contribute to the development and perpetuation of inflammation and disease. Probiotic bacteria have been shown to exert beneficial effects, e.g., enhancing epithelial barrier integrity. However, the mechanisms underlying these beneficial effects are only poorly understood. Here, we comparatively investigated the effects of four probiotic lactobacilli, namely, Lactobacillus acidophilus, L. fermentum, L. gasseri, and L. rhamnosus, in a T84 cell epithelial barrier model. Results of DNA microarray experiments indicating that lactobacilli modulate the regulation of genes encoding in particular adherence junction proteins such as E-cadherin and β-catenin were confirmed by quantitative reverse transcription-PCR (qRT-PCR). Furthermore, we show that epithelial barrier function is modulated by Gram-positive probiotic lactobacilli via their effect on adherence junction protein expression and complex formation. In addition, incubation with lactobacilli differentially influences the phosphorylation of adherence junction proteins and the abundance of protein kinase C (PKC) isoforms such as PKCδ that thereby positively modulates epithelial barrier function. Further insight into the underlying molecular mechanisms triggered by these probiotics might also foster the development of novel strategies for the treatment of gastrointestinal diseases (e.g., IBD). PMID:22179242

  17. Effect of Aloe vera juice on growth and activities of Lactobacilli in-vitro.

    PubMed

    Nagpal, Ravinder; Kaur, Varinder; Kumar, Manoj; Marotta, Francesco

    2012-12-01

    In present investigation, different concentrations of Aloe vera juice incorporated into the growth media of Lactobacilli were tested to observe the effect on growth and activities of these bacteria. From the results obtained, it was observed that aloe vera juice at a concentration of 5% v/v was effective in promoting the growth of L. acidophilus, L. plantarum and L. casei, as evident from the fall in pH and increased acidity, as well as from the improved generation time. At 15 to 25% concentration, growth was unaffected as compared to the controls; however, concentration higher than 25%v/v discouraged the growth. Overall, it was concluded that Aloe vera juice or gel at a particular concentration could possibly be used in combination with probiotic Lactobacillus strain(s) as a combinational therapy for gastrointestinal disorders and cardiovascular diseases. PMID:23762993

  18. Nutritionally enhanced fermented sausages as a vehicle for potential probiotic lactobacilli delivery.

    PubMed

    Rubio, Raquel; Jofré, Anna; Aymerich, Teresa; Guàrdia, Maria Dolors; Garriga, Margarita

    2014-02-01

    The suitability of three potential probiotic lactobacilli strains (Lactobacillus casei CTC1677, L. casei CTC1678 and Lactobacillus rhamnosus CTC1679), previously isolated from infants' faeces and characterized, and three commercial probiotic strains (Lactobacillus plantarum 299v, L. rhamnosus GG and L. casei Shirota) was assessed during the manufacture of low-acid fermented sausages (fuets) with reduced Na(+) and fat content. The inoculated strains were successfully monitored by RAPD-PCR during the process. L. rhamnosus CTC1679 was the only strain able to grow and dominate (levels ca. 10(8)CFU/g) the endogenous lactic acid bacteria population in two independent trials, throughout the ripening process. Thus, fuet containing L. rhamnosus CTC1679 as a starter culture could be a suitable vehicle for putative probiotic bacteria delivery. All the final products recorded a satisfactory overall sensory quality without any noticeable off-flavour, and with the characteristic sensory properties of low-acid fermented sausages. PMID:24211552

  19. Oral treatment of chickens with lactobacilli influences elicitation of immune responses.

    PubMed

    Brisbin, Jennifer T; Gong, Joshua; Orouji, Shahriar; Esufali, Jessica; Mallick, Amirul I; Parvizi, Payvand; Shewen, Patricia E; Sharif, Shayan

    2011-09-01

    Commensal microbes in the intestine are in constant interaction with host cells and play a role in shaping the immune system. Lactobacillus acidophilus, Lactobacillus reuteri, and Lactobacillus salivarius are members of the chicken intestinal microbiota and have been shown to induce different cytokine profiles in mononuclear cells in vitro. The objective of the present study was to examine the effects of these bacteria individually or in combination on the induction of antibody- and cell-mediated immune responses in vivo. The birds received lactobacilli weekly via oral gavage starting on day of hatch and subsequently, at 14 and 21 days, were immunized with sheep red blood cells (SRBC), keyhole limpet hemocyanin (KLH), Newcastle disease virus vaccine, and infectious bursal disease virus vaccine. Antibody responses in serum were measured weekly for 4 weeks beginning on the day of primary immunization. The cell-mediated immune response was evaluated at 21 days postimmunization by measurement of gamma interferon (IFN-γ) production in splenocytes stimulated with inactivated vaccine antigens. L. salivarius-treated birds had significantly more serum antibody to SRBC and KLH than birds that were not treated with probiotics. L. salivarius-treated birds also had decreased cell-mediated immune responses to recall antigen stimulation. L. reuteri treatment did not significantly affect the systemic immune response, while L. acidophilus treatment increased the antibody response to KLH. These results indicate that systemic antibody- and cell-mediated immune responses can be modulated by oral treatment with lactobacilli but that these bacteria may vary in their ability to modulate the immune response. PMID:21734067

  20. Hydrogen-peroxide producing lactobacilli are associated with lower levels of vaginal IL1β, independent of bacterial vaginosis

    PubMed Central

    Mitchell, Caroline; Fredricks, David; Agnew, Kathy; Hitti, Jane

    2015-01-01

    Background The presence of hydrogen peroxide (H2O2)-producing lactobacilli in the vagina is associated with decreased rates of preterm birth and HIV acquisition. We hypothesize that this is due to immunomodulatory effects of these species. Methods Concentrations of IL1β, IL6, IL8, secretory leukocyte protease inhibitor (SLPI) and human beta defensin 2 (HBD2) were quantified from vaginal swabs from 4 groups of women: women with and without bacterial vaginosis (BV) by Nugent score, further stratified by detection of H2O2-producing lactobacilli by semi-quantitative culture. Ten quantitative PCR assays characterized presence and quantity of select Lactobacillus and BV-associated species in each group. Levels of immune markers and bacteria were compared between the four groups using ANOVA, Kruskal-Wallis, Mann Whitney U or chi-square tests. Results Swabs from 110 women from four groups were included: 26 had a normal Nugent score (BV−), and no H2O2-producing lactobacilli detected(H2O2−), 47 were BV−, H2O2+, 27 BV+, H2O2− and 10 BV+, H2O2+. The groups were similar in age, marital status and reproductive history, but not ethnicity: the BV−, H2O2− group had more Caucasian participants(p = 0.02). In women with and without BV, IL1β was lower in the H2O2+ groups. HBD2 was lowest in BV+ H2O2− women and highest in BV−, H2O2−. SLPI was lower in women with BV, and did not differ by the presence of H2O2–producing lactobacilli. In regression analysis higher quantities of L. crispatus were associated with lower quantities of IL1β. Detection and quantity of BV-associated species by qPCR was significantly different between women with and without BV, but not between women with and without H2O2-producing lactobacilli within those groups. Conclusions The presence of H2O2-producing lactobacilli is associated with lower levels of some vaginal pro-inflammatory cytokines, even in women with BV. PMID:26222747

  1. Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli.

    PubMed

    Bauer, Rolene; du Toit, Maret; Kossmann, Jens

    2010-01-31

    Lactic acid bacteria belonging to the genus Lactobacillus are known to convert glycerol into 3-hydroxypropionaldehyde (3-HPA) during anaerobic glycerol fermentation. Wine quality can be gravely compromised by the accumulation of 3-HPA, due to its spontaneous conversion to acrolein under wine making conditions. Acrolein is not only a dangerous substance for the living cell, but has been implicated in the development of unpleasant bitterness in beverages. This study evaluates the effect of individual environmental parameters on 3-HPA production by Lactobacillus reuteri DSMZ 20016, which only proved possible under conditions that allow accumulation well below the threshold concentration affecting cell viability. 3-HPA production was optimal at pH 6 and in the presence of 300 mM glycerol. Production increased with an increase in cell concentration up to an OD(600) of 50, whereas higher cell concentrations inhibited accumulation. Data presented in this study suggest that 3-HPA plays a role in regulating its own production through quorum sensing. Glycerol dehydratase possessing bacterial strains isolated from South African red wine, L. pentosus and L. brevis, tested positive for 3-HPA accumulation. 3-HPA is normally intracellularly reduced to 1,3-propanediol. This is the first study demonstrating the ability of wine lactobacilli to accumulate 3-HPA in the fermentation media. Recommendations are made on preventing the formation of acrolein and its precursor 3-HPA in wine. PMID:19897270

  2. Presence of lactobacilli in the intestinal content of freshwater fish from a river and from a farm with a recirculation system.

    PubMed

    Bucio, Adolfo; Hartemink, Ralf; Schrama, Johan W; Verreth, Johan; Rombouts, Frans M

    2006-08-01

    Lactobacilli are Gram-positive and catalase negative rods commonly found in lactic acid fermented foods and in the gastrointestinal tract of mammals and birds. Few studies have described lactobacilli in freshwater fish. We analysed the presence of lactobacilli in the intestines of young and adult freshwater fish inhabiting a river environment and from fish reared in an aquaculture unit with a water recirculation system. Various species of lactobacilli were present in relatively high number in the intestines of edible fresh water fish from the river, especially in the warm season but in low numbers in the cold season. Lactobacilli were scarcely found in the intestines of edible farmed fish reared in a recirculation system in warm water. Lactobacilli are reported for the first time from the intestines of wild European eel, perch, rudd, ruffe, bleak, silver bream, chub, somnul and farmed African catfish. The two first fishes, and the last one are highly valuable species for fisheries and aquaculture. Additionally, improved methods for storage and bacteriological analysis of fish intestinal content are described. The natural presence of lactic acid bacteria in fish may be of great interest in producing fermented fish products worldwide. PMID:16943040

  3. Comparison of contact angles and adhesion to hexadecane of urogenital, dairy, and poultry lactobacilli: effect of serial culture passages.

    PubMed Central

    Reid, G; Cuperus, P L; Bruce, A W; van der Mei, H C; Tomeczek, L; Khoury, A H; Busscher, H J

    1992-01-01

    The aim of this study was to examine the hydrophobicities of 23 urogenital, dairy, poultry, and American Type Culture Collection isolates of lactobacilli and to determine the effect on hydrophobicity of serially passaging the strains in liquid medium. To this end, strains were grown after isolation and identification and then serially passaged up to 20 times. Hydrophobicity was assessed through contact angle measurements on lawns of cells by using water, formamide, methylene iodide, 1-bromonaphthalene, and hexadecane as wetting agents and through measurement of their partitioning in a hexadecane-water system. The hydrophobicities of these strains varied widely, with Lactobacillus casei strains being predominantly hydrophilic and L. acidophilus strains being mostly hydrophobic. For some isolates, serial passaging was accompanied by a clear loss of hydrophobic surface properties, whereas for other strains, cultures became heterogeneous in that some cells had already lost their hydrophobic surface properties while others were still hydrophobic. Adhesion of this collection of lactobacilli to hexadecane droplets in microbial adhesion to hexadecane (MATH) tests was driven by their aversion to water rather than by their affinity for hexadecane, as concluded from the fact that hexadecane contact angles were zero for all strains. Furthermore, adhesion of the lactobacilli to hexadecane in MATH tests occurred only when the water contact angle on the cells was above 60 degrees. Images PMID:1622224

  4. Molecular Detection of Two Potential Probiotic Lactobacilli Strains and Evaluation of Their Performance as Starter Adjuncts in Yogurt Production.

    PubMed

    Saxami, Georgia; Papadopoulou, Olga S; Chorianopoulos, Nikos; Kourkoutas, Yiannis; Tassou, Chrysoula C; Galanis, Alex

    2016-01-01

    A molecular method for efficient and accurate detection and identification of two potential probiotic lactobacilli strains isolated from fermented olives, namely Lactobacillus pentosus B281 and Lb. plantarum B282, was developed in the present study. Random Amplified Polymorphic DNA (RAPD) analysis was performed, and strain specific primers were designed and applied in a multiplex polymerase chain reaction (PCR) assay. The specificity of the assay was tested and successfully confirmed in 27 and 22 lactobacilli strains for Lb. pentosus B281 and Lb. plantarum B282, respectively. Moreover, the two strains were used as starter cultures in yogurt production. Cell enumeration followed by multiplex PCR analysis demonstrated that the two strains were present in yogurt samples at levels ≥6 log CFU/g even after 35 days of storage at 4 °C. Microbiological analysis showed that lactobacilli and streptococci were present within usual levels, whereas enterobacteriaceae and yeast/mold counts were not detected as expected. Although the pH values of the novel products were slightly lower than the control ones, the yogurt containing the probiotic cultures scored similar values compared to the control in a series of sensory tests. Overall, these results demonstrated the possible use of the two strains as starter adjuncts in the production of yogurt with potential probiotic properties. PMID:27153065

  5. Molecular Detection of Two Potential Probiotic Lactobacilli Strains and Evaluation of Their Performance as Starter Adjuncts in Yogurt Production

    PubMed Central

    Saxami, Georgia; Papadopoulou, Olga S.; Chorianopoulos, Nikos; Kourkoutas, Yiannis; Tassou, Chrysoula C.; Galanis, Alex

    2016-01-01

    A molecular method for efficient and accurate detection and identification of two potential probiotic lactobacilli strains isolated from fermented olives, namely Lactobacillus pentosus B281 and Lb. plantarum B282, was developed in the present study. Random Amplified Polymorphic DNA (RAPD) analysis was performed, and strain specific primers were designed and applied in a multiplex polymerase chain reaction (PCR) assay. The specificity of the assay was tested and successfully confirmed in 27 and 22 lactobacilli strains for Lb. pentosus B281 and Lb. plantarum B282, respectively. Moreover, the two strains were used as starter cultures in yogurt production. Cell enumeration followed by multiplex PCR analysis demonstrated that the two strains were present in yogurt samples at levels ≥6 log CFU/g even after 35 days of storage at 4 °C. Microbiological analysis showed that lactobacilli and streptococci were present within usual levels, whereas enterobacteriaceae and yeast/mold counts were not detected as expected. Although the pH values of the novel products were slightly lower than the control ones, the yogurt containing the probiotic cultures scored similar values compared to the control in a series of sensory tests. Overall, these results demonstrated the possible use of the two strains as starter adjuncts in the production of yogurt with potential probiotic properties. PMID:27153065

  6. The Antibacterial Effect of Ethanol Extract of Polish Propolis on Mutans Streptococci and Lactobacilli Isolated from Saliva

    PubMed Central

    Dziedzic, Arkadiusz; Kubina, Robert; Wojtyczka, Robert D.; Kabała-Dzik, Agata; Tanasiewicz, Marta; Morawiec, Tadeusz

    2013-01-01

    Dental caries occurrence is caused by the colonization of oral microorganisms and accumulation of extracellular polysaccharides synthesized by Streptococcus mutans with the synergistic influence of Lactobacillus spp. bacteria. The aim of this study was to determine ex vivo the antibacterial properties of ethanol extract of propolis (EEP), collected in Poland, against the main cariogenic bacteria: salivary mutans streptococci and lactobacilli. The isolation of mutans streptococci group bacteria (MS) and Lactobacillus spp. (LB) from stimulated saliva was performed by in-office CRT bacteria dip slide test. The broth diffusion method and AlamarBlue assay were used to evaluate the antimicrobial activity of EEP, with the estimation of its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The biochemical composition of propolis components was assessed. The mean MIC and MBC values of EEP, in concentrations ranging from 25 mg/mL to 0.025 mg/mL, for the MS and LB were found to be 1.10 mg/mL versus 0.7 mg/mL and 9.01 mg/mL versus 5.91 mg/mL, respectively. The exposure to an extract of Polish propolis affected mutans streptococci and Lactobacillus spp. viability, exhibiting an antibacterial efficacy on mutans streptococci group bacteria and lactobacilli saliva residents, while lactobacilli were more susceptible to EEP. Antibacterial measures containing propolis could be the local agents acting against cariogenic bacteria. PMID:23606887

  7. A new lactobacilli in vivo expression system for the production and delivery of heterologous proteins at mucosal surfaces.

    PubMed

    Allain, Thibault; Mansour, Nahla M; Bahr, May M A; Martin, Rebeca; Florent, Isabelle; Langella, Philippe; Bermúdez-Humarán, Luis G

    2016-07-01

    Food-grade lactic acid bacteria, such as lactobacilli, represent good candidates for the development of mucosal vectors. Indeed, they are generally recognized as safe microorganisms and some strains display beneficial effects (probiotics). In this study, we described a new lactobacilli in vivo expression (LIVE) system for the production and delivery of therapeutic molecules at mucosal surfaces. The versatility and functionality of this system was successfully validated in several lactobacilli species; furthermore, we assessed in vivo LIVE system in two different mouse models of human pathologies: (i) a model of therapy against intestinal inflammation (inflammatory bowel diseases) and (ii) a model of vaccination against dental caries. We demonstrated that Lactobacillus gasseri expressing the anti-inflammatory cytokine IL-10 under LIVE system efficiently delivered the recombinant protein at mucosal surfaces and display anti-inflammatory effects. In the vaccination model against caries, LIVE system allowed the heterologous expression of Streptococcus mutans antigen GbpB by L. gasseri, leading to a stimulation of the host immune response. PMID:27190148

  8. Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment

    PubMed Central

    Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J.

    2014-01-01

    Lactobacilli are found in a wide variety of habitats. Four species, Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii, are common and abundant in the human vagina and absent from other habitats. These may be adapted to the vagina and possess characteristics enabling them to thrive in that environment. Furthermore, stable codominance of multiple Lactobacillus species in a single community is infrequently observed. Thus, it is possible that individual vaginal Lactobacillus species possess unique characteristics that confer to them host-specific competitive advantages. We performed comparative functional genomic analyses of representatives of 25 species of Lactobacillus, searching for habitat-specific traits in the genomes of the vaginal lactobacilli. We found that the genomes of the vaginal species were significantly smaller and had significantly lower GC content than those of the nonvaginal species. No protein families were found to be specific to the vaginal species analyzed, but some were either over- or underrepresented relative to nonvaginal species. We also found that within the vaginal species, each genome coded for species-specific protein families. Our results suggest that even though the vaginal species show no general signatures of adaptation to the vaginal environment, each species has specific and perhaps unique ways of interacting with its environment, be it the host or other microbes in the community. These findings will serve as a foundation for further exploring the role of lactobacilli in the ecological dynamics of vaginal microbial communities and their ultimate impact on host health. PMID:24488312

  9. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    PubMed Central

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  10. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli.

    PubMed

    Johnson, Brant R; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  11. Antibiotic susceptibility and heterogeneity in technological traits of lactobacilli isolated from Algerian goat's milk.

    PubMed

    Bousmaha-Marroki, Leila; Marroki, Ahmed

    2015-08-01

    The objective of this study was to identify and study the heterogeneity of technological traits of lactobacilli from goat's milk of Algeria and to evaluate in vitro their safety aspect. Using API50 CHL system and 16S rDNA sequencing, 51 % of strains were assigned as Lactobacillus plantarum, 34 % as L. pentosus, 7 % as L. rhamnosus and 8 % as L. fermentum. A large variability was noted for the acidifying capacity in skim milk after 6, 12 and 24 h of incubation. All strains expressed aminopeptidase activity against alanine-ρ-NA and leucine-ρ-NA at different levels. All strains were resistant to vancomycin and most of strains showed more susceptibility to β-lactam antibiotic. High susceptibility toward the inhibitors of protein synthesis was also observed. Minimum inhibitory concentrations data obtained revealed that isolates were susceptible to penicillin and chloramphenicol, and resistant to gentamicin and vancomycin. Minimum inhibitory concentrations distribution of other antibiotics showed variability. The analysis of graphical representation of principal component analysis of technological properties of L. plantarum and L. pentosus strains showed diversity among the isolates. Finally, eight L. plantarum (LAM1, LAM3, LAM21, LAM25, LAM35, LF15, LAM34, and LAM35), four L. pentosus (LAM38, LAM39, LF9 and LF16) and two L. rhamnosus (LF3 and LF10) strains, could be good candidates as adjunct culture in dairy product in Algeria. PMID:26243893

  12. Effect of traditional leafy vegetables on the growth of lactobacilli and bifidobacteria.

    PubMed

    Kassim, Muhammad Arshad; Baijnath, Himansu; Odhav, Bharti

    2014-12-01

    Traditional leafy vegetables, apart from being a staple in the diet of most of sub-Saharan Africa, are an essential part of traditional medicine and are used daily by traditional healers in the region to treat a wide variety of ailments. In this study, a batch culture technique was used to investigate whether 25 infusions from 22 traditional leafy vegetables stimulated the growth of Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus reuteri and Bifidobacterium longum in pure culture. High performance liquid chromatography was used to determine the inulin content of the infusions. Sonchus oleraceus stimulated all four strains and Taraxacum officinale stimulated three strains. In total, 18 plants stimulated at least one of the four probiotic strains. The inulin content of the infusions varied between 2.5% and 3.6%, with Asparagus sprengeri containing the highest percentage. These results indicate that traditional leafy vegetables do stimulate the growth of the selected lactobacilli and bifidobacteria in pure culture and contain inulin. These infusions can now be tested for prebiotic potential using mixed culture systems or human hosts. PMID:25088723

  13. Sweet potatoes as a basic component in developing a medium for the cultivation of lactobacilli.

    PubMed

    Hayek, Saeed A; Shahbazi, Aboghasem; Awaisheh, Saddam S; Shah, Nagendra P; Ibrahim, Salam A

    2013-01-01

    A sweet potato medium (SPM) was formed with extract from baked sweet potatoes supplemented with 0, 4, or 8 g/L of each nitrogen source (beef extract, yeast extract, and proteose peptone #3) to form SPM1, SPM2, and SPM3 respectively. Lactobacilli MRS was used as control medium. Ten Lactobacillus strains containing an average of 2.34 ± 0.29 log CFU/mL were inoculated individually into batches of MRS, SPM1, SPM2, and SPM3. The growth patterns for the tested Lactobacillus strains growing in SPM2 and SPM3 were found to be similar to that in MRS. The average final population after 24 h of incubation in MRS, SPM2, and SPM3 reached 10.41 ± 0.35, 10.59 ± 0.27, and 10.72 ± 0.19 log CFU/mL respectively. SPM2 and SPM3 maintained higher pH values throughout the incubation period than MRS. These findings indicate that SPM2 can be a suitable medium for the growth of Lactobacillus and can provide an alternative at low-cost. PMID:24200801

  14. Antagonistic activity of probiotic lactobacilli against human enteropathogenic bacteria in homemade tvorog curd cheese from Azerbaijan

    PubMed Central

    Masoumikia, Reza; Ganbarov, Khudaverdi

    2015-01-01

    Introduction: Human health is deemed to be maintained by the crosstalk among the body and probiotic bacteria. Disruptions in this composition are associated with the pathogenesis of numerous diseases. Through modernization, traditional foods consumption has been abandoned and native food starters have been substituted with industrial products. Hence, we aimed to isolate and evaluate probiotic bacteria from traditional fermented foods which can be used as probiotics as well as starter cultures in food industry and in medicine against antibiotic resistant pathogenes. To this end, an intact village was recognized in the Republic of Azerbaijan with traditional dairy products, yielding a variety of potential probiotics. Methods: In this study, tvorog as a traditional dairy product from Dashkasan, Ismailli and khachmaz regions in Azerbaijan was characterized for the isolation of Lactobacilli with probiotic potentiality. The bacteria were tested for the resistance to the acid, bile, and the antagonistic effect of human pathogenic bacteria. The isolates were identified by 16s rDNA sequencing with a blast to the databank. Results: Three species with higher homology to the L. planetarium, L. rhamnosus, and L. casei with high probiotic potentiality and antibacterial effects were isolated. Conclusion: Homemade tvorog curd cheese in Azerbaijan harbor a variety of probiotics with industrial applications as well as potentiality to be preserved in a biobank for the future medicinal applications especially against antibiotic resistant pathogenes. PMID:26457253

  15. Group-specific comparison of four lactobacilli isolated from human sources using differential blast analysis.

    PubMed

    Altermann, Eric; Klaenhammer, Todd R

    2011-08-01

    Lactic acid bacteria (LAB) have been used in fermentation processes for centuries. More recent applications including the use of LAB as probiotics have significantly increased industrial interest. Here we present a comparative genomic analysis of four completely sequenced Lactobacillus strains, isolated from the human gastrointestinal tract, versus 25 lactic acid bacterial genomes present in the public database at the time of analysis. Lactobacillus acidophilus NCFM, Lactobacillus johnsonii NCC533, Lactobacillus gasseri ATCC33323, and Lactobacillus plantarum WCFS1are all considered probiotic and widely used in industrial applications. Using Differential Blast Analysis (DBA), each genome was compared to the respective remaining three other Lactobacillus and 25 other LAB genomes. DBA highlighted strain-specific genes that were not represented in any other LAB used in this analysis and also identified group-specific genes shared within lactobacilli. Initial comparative analyses highlighted a significant number of genes involved in cell adhesion, stress responses, DNA repair and modification, and metabolic capabilities. Furthermore, the range of the recently identified potential autonomous units (PAUs) was broadened significantly, indicating the possibility of distinct families within this genetic element. Based on in silico results obtained for the model organism L. acidophilus NCFM, DBA proved to be a valuable tool to identify new key genetic regions for functional genomics and also suggested re-classification of previously annotated genes. PMID:21484153

  16. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  17. Effects of typified propolis on mutans streptococci and lactobacilli: a randomized clinical trial

    PubMed Central

    Anauate Netto, Camillo; Marcucci, Maria Cristina; Paulino, Niraldo; Anido-Anido, Andrea; Amore, Ricardo; de Mendonça, Sergio; Borelli Neto, Laurindo; Bretz, Walter Antonio

    2014-01-01

    Objective The aim of this study was to determine in a randomized, double-blind, placebo-controlled clinical trial the effects of typified propolis and chlorhexidine rinses on salivary levels of mutans streptococci (MS) and lactobacilli (LACT). Methods One hundred patients were screened for salivary levels of MS >100,000 CFUs/mL of saliva. All patients presented with at least one cavitated decayed surface. Sixty patients met entry criteria. Subjects were adults 18–55 years old. After restoration of cavitated lesions patients were randomized to 3 experimental groups: 1) PROP-alcohol-free 2% typified propolis rinse (n = 20); 2) CHX- 0.12% chlorhexidine rinse; 3) PL-placebo mouthrinse. Patients rinsed unsupervised 15 mL of respective rinses twice a day for 1 min for 28 days. Patients were assessed for the salivary levels of MS (Dentocult SM) and LACT (Dentocult LB) at baseline, 7-day, 14-day, and at 28-day visits (experimental effects) and at 45-day visit (residual effects). General linear models were employed to analyze the data. Results PROP was superior to CHX at 14-day and 28-day visits in suppressing the salivary levels of MS (p < .05). PROP was superior to PL at all visits (p < .01). The residual effects of PROP in suppressing the salivary levels of MS could still be observed at the 45-day visit, where significant differences between PROP and CHX (p < .05), were demonstrated. PROP was significantly superior than CHX in suppressing the levels of salivary LACT at the 28-day visit (p < .05). Conclusion Typified propolis rinse was effective in suppressing cariogenic infections in caries-active patients when compared to existing and placebo therapies. PMID:24494174

  18. Metabolites produced by probiotic Lactobacilli rapidly increase glucose uptake by Caco-2 cells

    PubMed Central

    2010-01-01

    Background Although probiotic bacteria and their metabolites alter enterocyte gene expression, rapid, non-genomic responses have not been examined. The present study measured accumulation of tracer (2 μM) glucose by Caco-2 cells after exposure for 10 min or less to a chemically defined medium (CDM) with different monosaccharides before and after anaerobic culture of probiotic Lactobacilli. Results Growth of L. acidophilus was supported by CDM with 110 mM glucose, fructose, and mannose, but not with arabinose, ribose, and xylose or the sugar-free CDM. Glucose accumulation was reduced when Caco-2 cells were exposed for 10 min to sterile CDM with glucose (by 92%), mannose (by 90%), fructose (by 55%), and ribose (by 16%), but not with arabinose and xylose. Exposure of Caco-2 cells for 10 min to bacteria-free supernatants prepared after exponential (48 h) and stationary (72 h) growth phases of L. acidophilus cultured in CDM with 110 mM fructose increased glucose accumulation by 83% and 45%, respectively; exposure to a suspension of the bacteria had no effect. The increase in glucose accumulation was diminished by heat-denaturing the supernatant, indicating the response of Caco-2 cells is triggered by as yet unknown heat labile bacterial metabolites, not by a reduction in CDM components that decrease glucose uptake. Supernatants prepared after anaerobic culture of L. gasseri, L. amylovorus, L. gallinarum, and L. johnsonii in the CDM with fructose increased glucose accumulation by 83%, 32%, 27%, and 14%, respectively. Conclusion The rapid, non-genomic upregulation of SGLT1 by bacterial metabolites is a heretofore unrecognized interaction between probiotics and the intestinal epithelium. PMID:20089192

  19. The effect of polydextrose and probiotic lactobacilli in a Clostridium difficile–infected human colonic model

    PubMed Central

    Forssten, Sofia D.; Röytiö, Henna; Hibberd, Ashley A.; Ouwehand, Arthur C.

    2015-01-01

    Background Clostridium difficile is a natural resident of the intestinal microbiota; however, it becomes harmful when the normal intestinal microbiota is disrupted, and overgrowth and toxin production occurs. The toxins can cause bloating and diarrhoea, which may cause severe disease and have the potential to cause outbreaks in hospitals and other healthcare settings. Normally, antibiotic agents are used for treatment, although for some of the patients, these treatments provide only a temporary relief with a recurrence of C. difficile–associated diarrhoea. Objective The effects of polydextrose (PDX), Lactobacillus acidophilus NCFM, and L. paracasei Lpc-37 on the growth of C. difficile were investigated in an in vitro model of infected human large intestine. Design The semi-continuous colonic model is composed of four connected vessels inoculated with human faecal microbes and spiked with pathogenic C. difficile (DSM 1296). PDX in two concentrations (2 and 4%), NCFM, and Lpc-37 were fed to the system during the 2-day simulation, and the growth of C. difficile and several other microbial groups were monitored using quantitative polymerase chain reaction (qPCR) and 16S rDNA sequencing. Results The microbial community structure of the simulation samples was closely grouped according to treatment, and the largest shifts in the microbial composition were seen with PDX. The microbial diversity decreased significantly with 4% PDX, and the OTU containing C. difficile was significantly (p<0.01) decreased when compared to control and lactobacilli treatments. The mean numbers of C. difficile also decreased as detected by qPCR, although the reduction did not reach statistical significance. Conclusions The treatments influenced the colonic microbiota, and a trend for reduced numbers of C. difficile as well as alterations of several microbial groups could be detected. This suggests that PDX may be able to modulate the composition and/or function of the colonic microbiota in

  20. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens

    PubMed Central

    2014-01-01

    Background Biosurfactants (BS) are amphiphilic compounds produced by microbes, either on the cell surface or secreted extracellularly. BS exhibit strong antimicrobial and anti-adhesive properties, making them good candidates for applications used to combat infections. In this study, our goal was to assess the in vitro antimicrobial, anti-adhesive and anti-biofilm abilities of BS produced by Lactobacillus jensenii and Lactobacillus rhamnosus against clinical Multidrug Resistant (MDR) strains of Acinetobacter baumannii, Escherichia coli, and Staphylococcus aureus (MRSA). Cell-bound BS from both L. jensenii and L. rhamnosus were extracted and isolated. The surface activities of crude BS samples were evaluated using an oil spreading assay. The antimicrobial, anti-adhesive and anti-biofilm activities of both BS against the above mentioned MDR pathogens were determined. Results Surface activities for both BS ranged from 6.25 to 25 mg/ml with clear zones observed between 7 and 11 cm. BS of both L. jensenii and L. rhamnosus showed antimicrobial activities against A. baumannii, E. coli and S. aureus at 25-50 mg/ml. Anti-adhesive and anti-biofilm activities were also observed for the aforementioned pathogens between 25 and 50 mg/ml. Finally, analysis by electron microscope indicated that the BS caused membrane damage for A. baumannii and pronounced cell wall damage in S. aureus. Conclusion Our results indicate that BS isolated from two Lactobacilli strains has antibacterial properties against MDR strains of A. baumannii, E. coli and MRSA. Both BS also displayed anti-adhesive and anti-biofilm abilities against A. baumannii, E. coli and S. aureus. Together, these capabilities may open up possibilities for BS as an alternative therapeutic approach for the prevention and/or treatment of hospital-acquired infections. PMID:25124936

  1. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines

    PubMed Central

    2011-01-01

    Food-grade Lactic Acid Bacteria (LAB) have been safely consumed for centuries by humans in fermented foods. Thus, they are good candidates to develop novel oral vectors, constituting attractive alternatives to attenuated pathogens, for mucosal delivery strategies. Herein, this review summarizes our research, up until now, on the use of LAB as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Most of our work has been based on the model LAB Lactococcus lactis, for which we have developed efficient genetic tools, including expression signals and host strains, for the heterologous expression of therapeutic proteins such as antigens, cytokines and enzymes. Resulting recombinant lactococci strains have been tested successfully for their prophylactic and therapeutic effects in different animal models: i) against human papillomavirus type 16 (HPV-16)-induced tumors in mice, ii) to partially prevent a bovine β-lactoglobulin (BLG)-allergic reaction in mice and iii) to regulate body weight and food consumption in obese mice. Strikingly, all of these tools have been successfully transposed to the Lactobacillus genus, in recent years, within our laboratory. Notably, anti-oxidative Lactobacillus casei strains were constructed and tested in two chemically-induced colitis models. In parallel, we also developed a strategy based on the use of L. lactis to deliver DNA at the mucosal level, and were able to show that L. lactis is able to modulate the host response through DNA delivery. Today, we consider that all of our consistent data, together with those obtained by other groups, demonstrate and reinforce the interest of using LAB, particularly lactococci and lactobacilli strains, to develop novel therapeutic protein mucosal delivery vectors which should be tested now in human clinical trials. PMID:21995317

  2. Accelerated ripening of Caciocavallo Pugliese cheese with attenuated adjuncts of selected nonstarter lactobacilli.

    PubMed

    Di Cagno, R; De Pasquale, I; De Angelis, M; Gobbetti, M

    2012-09-01

    The nonstarter lactic acid bacteria Lactobacillus plantarum CC3M8, Lactobacillus paracasei CC3M35, and Lactobacillus casei LC01, previously isolated from aged Caciocavallo Pugliese cheese or used in cheesemaking, were used as adjunct cultures (AC) or attenuated (by sonication treatment) adjunct cultures (AAC) for the manufacture of Caciocavallo Pugliese cheese on an industrial scale. Preliminary studies on the kinetics of growth and acidification and activities of several enzymes of AAC were characterized in vitro. As shown by the fluorescence determination of live versus dead or damaged cells and other phenotype features, attenuation resulted in a portion of the cells being damaged and a portion of the cells being capable of growing with time. Compared with the control cheese (without adjunct cultures) and the cheese with AAC, the addition of AC resulted in a lower pH after manufacture, which altered the gross composition of the cheese. As shown by plate count and confirmed by random amplification of polymorphic DNA-PCR, the 3 species of nonstarter lactobacilli persisted during ripening but the number of cultivable cells varied between AC and AAC. Slight differences were found between cheeses regarding primary proteolysis. The major differences between cheeses were the accumulation of free amino acids and the activity levels of several enzymes, which were highest in the Caciocavallo Pugliese cheeses made with the addition of AAC. As shown by triangle test, the sensory properties of the cheese made with AAC at 45 d did not differ from those of the control Caciocavallo Pugliese cheese at 60 d of ripening. In contrast, the cheese made with AC at 45 d differed from both the Caciocavallo Pugliese cheese without adjuncts and the cheese made with AAC. Attenuated adjunct cultures are suitable for accelerating the ripening of Caciocavallo Pugliese cheese without modifying the main features of the traditional cheese. PMID:22916882

  3. Potent effects of, and mechanisms for, modification of crosstalk between macrophages and adipocytes by lactobacilli.

    PubMed

    Miyazawa, Kenji; He, Fang; Yoda, Kazutoyo; Hiramatsu, Masaru

    2012-12-01

    The murine macrophage-like cell line J774.1 was treated with heat-killed cells of Lactobacillus GG (LGG) and L. gasseri TMC0356 (TMC 0356). Interleukin (IL)-6, IL-12, and tumor necrosis factor-α were profiled from the J774.1 cells using enzyme-linked immunosorbent assay methods. The conditioned medium from cultured J774.1 cells was transferred to the preadipocyte cell line 3T3-L1 (which is a mouse embryonic fibroblast-adipose-like cell line). Growth and differentiation of 3T3-L1 cells were monitored by analyzing lipid accumulation and expression of peroxisome proliferator-activated receptor (PPAR)-γ mRNA. The medium conditioned by 3T3-L1 cells was added to J774.1 cells and the cytokines in the supernatant analyzed. Compared with that of cells exposed to a PBS-conditioned medium, lipid accumulation in 3T3-L1 cells was significantly suppressed in a dose-dependent manner by each medium that had been conditioned with LGG and TMC0356. PPAR-γ mRNA expression in 3T3-L1 cells was also significantly downregulated (P < 0.01, P < 0.05, respectively). The conditioned medium of 3T3-L1 adipose phenotype significantly stimulated production of IL-6 and IL-12 in J774.1 cells treated with LGG and TMC0356. These results suggest that lactobacilli may suppress differentiation of preadipocytes through macrophage activation and alter the immune responses of macrophages to adipose cells. PMID:23017059

  4. Changes in Candida spp., mutans streptococci and lactobacilli following treatment of early childhood caries: a 1-year follow-up.

    PubMed

    Klinke, T; Urban, M; Lück, C; Hannig, C; Kuhn, M; Krämer, N

    2014-01-01

    Early childhood caries (ECC) is closely related to high numbers of mutans streptococci, lactobacilli and Candida albicans. Oral colonization of these microorganisms was monitored in a prospective clinical study in order to investigate the effect of comprehensive treatment under general anesthesia and the sustainability of microbial changes. Saliva samples were collected from 50 healthy infants with ECC before and in regular intervals up to 12 months after treatment. Microorganisms were detected by cultivation on selective agars (CRT® bacteria and Sabouraud/CandiSelect™) and scored. Additionally, plaque on upper front teeth and the dmft were recorded. Parents were repeatedly interviewed regarding the children's diet and oral hygiene, accompanied by corresponding advice. Plaque frequency and the numbers of mutans streptococci, lactobacilli and yeasts were significantly reduced as a result of treatment (p < 0.0001, Wilcoxon test). Nevertheless, this effect was not permanent. An ordinal regression model on the follow-up period revealed that the odds for bacteria and yeasts to reach a higher score increased linearly over time (p < 0.01) with an odds ratio of 2.244 per year. One third (34%) of the children developed new dentinal lesions within 1 year postoperatively. High scores of lactobacilli before treatment predicted caries relapse (p < 0.05). Nutritional and oral hygiene habits changed only slightly despite advising. Elimination and restoration of ECC lesions under general anesthesia proved to be an effective procedure in reducing cariogenic bacteria and yeasts. A satisfactory and sustainable success, however, could be achieved neither regarding microbiologic parameters nor with respect to the relapse rate. More suitable strategies are needed. PMID:24216710

  5. In Vitro Evaluation of the Probiotic Potential of Halotolerant Lactobacilli Isolated from a Ripened Tropical Mexican Cheese.

    PubMed

    Melgar-Lalanne, Guiomar; Rivera-Espinoza, Yadira; Reyes Méndez, Ana Itzel; Hernández-Sánchez, Humberto

    2013-12-01

    Three halotolerant lactobacilli (Lactobacillus plantarum, L. pentosus, and L. acidipiscis) isolated from a ripened Mexican tropical cheese (double cream Chiapas cheese) were evaluated as potential probiotics and compared with two commercial probiotic strains (L. casei Shirota and L. plantarum 299v) from human origin. All the strains survived the in vitro gastrointestinal simulation from the oral cavity to the ileum. During the stomach simulation, all the strains survived in satiety conditions (60 min, pH 3.0, 3 g/L pepsin, 150 rpm) and only L. pentosus could not survive under fasting conditions (60 min, pH 2.0, 3 g/L pepsin, 150 rpm). All the strains showed a strong hydrophilic character with low n-hexadecane and a variable chloroform affinity. L. plantarum showed a mucin adhesion rate similar to that of L. plantarum 299v and L. casei Shirota, while L. pentosus and L. acidipiscis had a lower mucin adhesion. The isolated halotolerant lactobacilli exhibited similar antimicrobial activity against some gram-positive and gram-negative pathogens in comparison with the two commercial strains. In addition, the proteinaceous character of the antimicrobial agents against the most pathogenic strains was demonstrated. The compounds showed a low molecular weight (less than 10 kDa). Besides, L. plantarum and L. acidipiscis were able to produce the enzyme β-galactosidase. Finally, L. pentosus was able to deconjugate taurocholic, taurodeoxycholic, glycocholic, and glycodeoxycholic acids better than the two commercial strains analyzed. All these results suggest that the halotolerant lactobacilli isolated from this ripened Mexican cheese could be potentially probiotic. This is the first time that halotolerant lactic acid bacteria have been shown to have probiotic properties. PMID:26783070

  6. Lactobacilli as effectors of host functions: no influence on the activities of enzymes in enterocytes of mice.

    PubMed Central

    Whitt, D D; Savage, D C

    1987-01-01

    Preparations of lactobacilli are often used as dietary supplements to improve the growth and efficiency in utilizing food of animals of commercial value. We tested in an experimental model whether the effects of lactobacilli on growth of and food utilization by animals may be due to alteration of the activities of absorptive enzymes in the small bowel. Germfree mice housed in isolators under tightly controlled conditions were monoassociated with one of four strains of indigenous Lactobacillus spp. From 1 to 5 weeks later, the activity of alkaline phosphatase was assayed in homogenates of segments of the upper small intestines of the associated animals and of matched germfree controls. The specific activity of the enzyme was the same in the mice in the two groups. In other experiments, epithelial cells were isolated from the upper small intestines of mice associated with eight Lactobacillus strains (octa-associated) and from those of matched germfree mice and assayed for alkaline phosphatase, phosphodiesterase, and thymidine kinase activities. The epithelial cells were harvested sequentially from the tips of the villi toward the crypts of Lieberkühn of the intestines. In all preparations, mice of both types yielded an equivalent mass (wet weight) of cells. The protein content of the cells reflected the mass. The activities of the microvillous membrane enzymes alkaline phosphatase and phosphodiesterase and the cytosol enzyme thymidine kinase were the same whether or not the animals contained the bacteria. Therefore, any effects on animal growth and food utilization observed when lactobacilli are used as dietary supplements may not be due to a direct alteration by the bacteria of the absorptive enzymes of the host animal.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:3032101

  7. Screening of Probiotic Activities of Lactobacilli Strains Isolated from Traditional Tibetan Qula, A Raw Yak Milk Cheese.

    PubMed

    Zhang, Bei; Wang, Yanping; Tan, Zhongfang; Li, Zongwei; Jiao, Zhen; Huang, Qunce

    2016-10-01

    In this study, 69 lactobacilli isolated from Tibetan Qula, a raw yak milk cheese, were screened for their potential use as probiotics. The isolates were tested in terms of: Their ability to survive at pH 2.0, pH 3.0, and in the presence of 0.3% bile salts; tolerance of simulated gastric and intestinal juices; antimicrobial activity; sensitivity against 11 specific antibiotics; and their cell surface hydrophobicity. The results show that out of the 69 strains, 29 strains (42%) had survival rates above 90% after 2 h of incubation at pH values of 2.0 or 3.0. Of these 29 strains, 21 strains showed a tolerance for 0.3% bile salt. Incubation of these 21 isolates in simulated gastrointestinal fluid for 3 h revealed survival rates above 90%; the survival rate for 20 of these isolates remained above 90% after 4 h of incubation in simulated intestinal fluid. The viable counts of bacteria after incubation in simulated gastric fluid for 3 h and simulated intestinal fluid for 4 h were both significantly different compared with the counts at 0 h (p<0.001). Further screening performed on the above 20 isolates indicated that all 20 lactobacilli strains exhibited inhibitory activity against Micrococcus luteus ATCC 4698, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 19115, and Salmonella enterica ATCC 43971. Moreover, all of the strains were resistant to vancomycin and streptomycin. Of the 20 strains, three were resistant to all 11 elected antibiotics (ciprofloxacin, erythromycin, tetracycline, penicillin G, ampicillin, streptomycin, polymyxin B, vancomycin, chloramphenicol, rifampicin, and gentamicin) in this study, and five were sensitive to more than half of the antibiotics. Additionally, the cell surface hydrophobicity of seven of the 20 lactobacilli strains was above 70%, including strains Lactobacillus casei 1,133 (92%), Lactobacillus plantarum 1086-1 (82%), Lactobacillus casei 1089 (81%), Lactobacillus casei 1138 (79%), Lactobacillus buchneri 1059 (78

  8. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation

    PubMed Central

    Cassard, Lydie; Lalanne, Ana Inés; Garault, Peggy; Cotillard, Aurélie; Chervaux, Christian; Wels, Michiel; Smokvina, Tamara

    2016-01-01

    Abstract Introduction The microbiota controls a variety of biological functions, including immunity, and alterations of the microbiota in early life are associated with a higher risk of developing allergies later in life. Several probiotic bacteria, and particularly lactic acid bacteria, were described to reduce both the induction of allergic responses and allergic manifestations. Although specific probiotic strains were used in these studies, their protective effects on allergic responses also might be common for all lactobacilli. Methods To determine whether allergic effector cells inhibition is a common feature of lactobacilli or whether it varies among lactobacilli strains, we compared the ability of 40 strains of the same Lactobacillus paracasei species to inhibit IgE‐dependent mouse mast cell and human basophil activation. Results We uncovered a marked heterogeneity in the inhibitory properties of the 40 Lactobacillus strains tested. These segregated into three to four clusters depending on the intensity of inhibition. Some strains inhibited both mouse mast cell and human basophil activation, others strains inhibited only one cell type and another group induced no inhibition of activation for either cell type. Conclusions Individual Lactobacillus strains of the same species differentially inhibit IgE‐dependent activation of mouse mast cells and human basophils, two cell types that are critical in the onset of allergic manifestations. Although we failed to identify specific bacterial genes associated with inhibition by gene‐trait matching analysis, our findings demonstrate the complexity of the interactions between the microbiota and the host. These results suggest that some L. paracasei strains might be more beneficial in allergies than others strains and provide the bases for a rational screening of lactic acid bacteria strains as next‐generation probiotics in the field of allergy. PMID:27621812

  9. A correlative study of the levels of salivary Streptococcus mutans, lactobacilli and Actinomyces with dental caries experience in subjects with mixed and permanent dentition

    PubMed Central

    Chokshi, Achala; Mahesh, Pushpalatha; Sharada, P; Chokshi, Krunal; Anupriya, S; Ashwini, BK

    2016-01-01

    Purpose: The aim of the study was to estimate the salivary levels of Streptococcus mutans, Lactobacilli and Actinomyces and to correlate it with dental caries experience in mixed and permanent dentition. Materials and Methods: The sample size comprised 110 subjects. The decayed, missing and filled teeth (DMFT) index of all the individuals participating in the study was calculated. Saliva samples were collected from patients and samples were inoculated on specific culture media and incubated for a period of 48 h. Based on colony characteristics, S. mutans, Lactobacilli and Actinomyces were identified. Results: A positive correlation exists between DMFT and S. mutans, Lactobacilli and Actinomyces in mixed dentition and permanent dentition group samples (P < 0.001). Conclusion: The conclusion from the results obtained was that S. Mutans, lactobacilli and Actinomyces which are the components of the normal microbial flora of the oral cavity play an important role in the pathogenesis of dental caries and increased number of microorganisms is associated with an increased caries frequency. PMID:27194858

  10. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis.

    PubMed

    Merriman, Joseph A; Nemeth, Kimberly A; Schlievert, Patrick M

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  11. Phenotypic and genotypic screening of human-originated lactobacilli for vitamin B12 production potential: process validation by micro-assay and UFLC.

    PubMed

    Bhushan, Bharat; Tomar, S K; Mandal, Surajit

    2016-08-01

    Vitamin B12 (B12) production is a strain specific, rare and hidden functional attribute of lactobacilli and a cogent protocol for selection of such isolates from the herd of lactobacilli is required. The present study included isolation of lactobacilli from human samples (milk and fecal), screening them by a polyphasic (three-phase) methodology for probable B12 production potential and validating the screening protocol by exploring selected strains for in vitro vitamin production (two-phase fermentation) and quantification [micro-assay and ultra fast liquid chromatography (UFLC)]. Fifty-nine Lactobacillus strains were recovered from tested biological samples. Contrary to screening inapplicabilities of first [growth potential (GP) in B12-free medium] and second phases (GP in B12-free and cobalt chloride-supplemented conditions), third phase (cbiK gene detection on genomic DNA) alone was revealed as a validated strategy for selection of two probable B12-producing lactobacilli. Microbiological assay confirmed production and bioavailability of produced vitamin, while UFLC testing validated the results by precisely quantifying the cyanocobalamin (industrially produced bio-available form of B12) in cell extracts of both possible B12 producers [BHM10 (10.91 ± 1.55 μg/l) and BCF20 (23.90 ± 1.73 μg/l)] and positive standard [Lactobacillus reuteri DSM20016 (20.03 ± 4.17 μg/l)]. Moreover, this study generates a novel report for genomic detection, partial amplification and sequencing of cbiK gene in Lactobacillus plantarum species (both BHM10 and BCF20). In conclusion, contrary to first two phases, cbiK gene detection strategy successfully selects B12-producing strains from a group of human-originated lactobacilli and can be used in the future for similar screening studies. PMID:27234139

  12. In vitro screening of potential probiotic activities of selected lactobacilli isolated from unpasteurized milk products for incorporation into soft cheese.

    PubMed

    Coeuret, Valérie; Gueguen, Micheline; Vernoux, Jean Paul

    2004-11-01

    The aim was to select potentially probiotic lactobacilli from 88 strains isolated from unpasteurized milk and cheese products, and to incorporate these bacteria in a viable state into a soft cheese, without changing its quality. The survival of these bacteria was assessed in acidic and bile conditions, after freezing at -80 degrees C. Four strains from unpasteurized Camembert--two Lactobacillus plantarum strains and two Lb. paracasei/casei strains--were identified and typed by PCR and PFGE and were found to display potentially probiotic characteristics in addition to resistance to low pH and bile. These characteristics were resistance to lysozyme, adhesion to CACO-2 cells, antimicrobial effects against common foodborne pathogens (Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, innocuity following the ingestion of high doses by mice and appropriate antibiotic susceptibility profiles. The potential of Lb. plantarum strain UCMA 3037 for incorporation into a soft cheese (Pont-l'Eveque registered designation of origin (RDO)) was investigated. This strain grew well and survived in sufficient numbers (more than 10(7) cfu/g throughout the shelf-life of the product) in the cheese. This strain did not change the quality score of the product until the best before date (75 days after manufacture). Thus, unpasteurized Camembert is a natural source of potentially probiotic lactobacilli, which could be used as an additive in the development of potentially probiotic soft cheeses. Further work is required to demonstrate the persistence and efficacy of these strains in the human host upon ingestion. PMID:15605712

  13. Lactobacilli regulate Staphylococcus aureus 161:2-induced pro-inflammatory T-cell responses in vitro.

    PubMed

    Haileselassie, Yeneneh; Johansson, Maria A; Zimmer, Christine L; Björkander, Sophia; Petursdottir, Dagbjort H; Dicksved, Johan; Petersson, Mikael; Persson, Jan-Olov; Fernandez, Carmen; Roos, Stefan; Holmlund, Ulrika; Sverremark-Ekström, Eva

    2013-01-01

    There seems to be a correlation between early gut microbiota composition and postnatal immune development. Alteration in the microbial composition early in life has been associated with immune mediated diseases, such as autoimmunity and allergy. We have previously observed associations between the presence of lactobacilli and Staphylococcus (S.) aureus in the early-life gut microbiota, cytokine responses and allergy development in children. Consistent with the objective to understand how bacteria modulate the cytokine response of intestinal epithelial cell (IEC) lines and immune cells, we exposed IEC lines (HT29, SW480) to UV-killed bacteria and/or culture supernatants (-sn) from seven Lactobacillus strains and three S. aureus strains, while peripheral blood mononuclear cells (PBMC) and cord blood mononuclear cells (CBMC) from healthy donors were stimulated by bacteria-sn or with bacteria conditioned IEC-sn. Although the overall IEC response to bacterial exposure was characterized by limited sets of cytokine and chemokine production, S. aureus 161:2-sn induced an inflammatory response in the IEC, characterized by CXCL1/GROα and CXCL8/IL-8 production, partly in a MyD88-dependent manner. UV-killed bacteria did not induce a response in the IEC line, and a combination of both UV-killed bacteria and the bacteria-sn had no additive effect to that of the supernatant alone. In PBMC, most of the Lactobacillus-sn and S. aureus-sn strains were able to induce a wide array of cytokines, but only S. aureus-sn induced the T-cell associated cytokines IL-2, IL-17 and IFN-γ, independently of IEC-produced factors, and induced up regulation of CTLA-4 expression and IL-10 production by T-regulatory cells. Notably, S. aureus-sn-induced T-cell production of IFN- γ and IL-17 was down regulated by the simultaneous presence of any of the different Lactobacillus strains, while the IEC CXCL8/IL-8 response was unaltered. Thus these studies present a possible role for lactobacilli in

  14. Lactobacilli Regulate Staphylococcus aureus 161:2-Induced Pro-Inflammatory T-Cell Responses In Vitro

    PubMed Central

    Haileselassie, Yeneneh; Johansson, Maria A.; Zimmer, Christine L.; Björkander, Sophia; Petursdottir, Dagbjort H.; Dicksved, Johan; Petersson, Mikael; Persson, Jan-Olov; Fernandez, Carmen; Roos, Stefan

    2013-01-01

    There seems to be a correlation between early gut microbiota composition and postnatal immune development. Alteration in the microbial composition early in life has been associated with immune mediated diseases, such as autoimmunity and allergy. We have previously observed associations between the presence of lactobacilli and Staphylococcus (S.) aureus in the early-life gut microbiota, cytokine responses and allergy development in children. Consistent with the objective to understand how bacteria modulate the cytokine response of intestinal epithelial cell (IEC) lines and immune cells, we exposed IEC lines (HT29, SW480) to UV-killed bacteria and/or culture supernatants (-sn) from seven Lactobacillus strains and three S. aureus strains, while peripheral blood mononuclear cells (PBMC) and cord blood mononuclear cells (CBMC) from healthy donors were stimulated by bacteria-sn or with bacteria conditioned IEC-sn. Although the overall IEC response to bacterial exposure was characterized by limited sets of cytokine and chemokine production, S. aureus 161:2-sn induced an inflammatory response in the IEC, characterized by CXCL1/GROα and CXCL8/IL-8 production, partly in a MyD88-dependent manner. UV-killed bacteria did not induce a response in the IEC line, and a combination of both UV-killed bacteria and the bacteria-sn had no additive effect to that of the supernatant alone. In PBMC, most of the Lactobacillus-sn and S. aureus-sn strains were able to induce a wide array of cytokines, but only S. aureus-sn induced the T-cell associated cytokines IL-2, IL-17 and IFN-γ, independently of IEC-produced factors, and induced up regulation of CTLA-4 expression and IL-10 production by T-regulatory cells. Notably, S. aureus-sn-induced T-cell production of IFN- γ and IL-17 was down regulated by the simultaneous presence of any of the different Lactobacillus strains, while the IEC CXCL8/IL-8 response was unaltered. Thus these studies present a possible role for lactobacilli in

  15. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production.

    PubMed

    Cortés-Zavaleta, O; López-Malo, A; Hernández-Mendoza, A; García, H S

    2014-03-01

    In this study, 13 lactic acid bacteria (LAB) strains (including 5 Lactobacillus casei, 2 Lactobacillus rhamnosus, 2 Lactobacillus fermentum, 1 Lactobacillus acidophilus, 1 Lactobacillus plantarum, 1 Lactobacillus sakei, and 1 Lactobacillus reuteri species) were assessed for both their antifungal activity against four food spoilage molds (Colletotrichum gloeosporioides, Botrytis cinerea, Penicillium expansum, and Aspergillus flavus) and their capability to produce the novel antimicrobial compound 3-phenyllactic acid (PLA). Results demonstrated that all molds were sensitive to varying degrees to the cell-free supernatants (CFS) from LAB fermentations (p<0.05), with growth inhibitions ranging from 2.65% to 66.82%. The inhibition ability of CFS was not affected by a heating treatment (121°C, 20 min); however, it declined markedly when the pH of CFS was adjusted to 6.5. With the exception of L. plantarum NRRL B-4496 and L. acidophilus ATCC-4495, all other LAB strains produced PLA ranging from 0.021 to 0.275 mM. The high minimum inhibitory concentration for commercial PLA (3.01-36.10mM) suggests that it cannot be considered the only compound related with the antifungal potential of studied LAB and that synergistic effects may exist among other metabolism products. PMID:24412414

  16. Effect of lactobacilli administration in the vaginal tract of mice: evaluation of side effects and local immune response by local administration of selected strains.

    PubMed

    Vintiñi, Elisa; Ocaña, Virginia; Elena Nader-Macías, María

    2004-01-01

    Lactobacilli are the predominant microorganisms in the vaginal tract of human and some homeothermic animals. They can maintain the ecological equilibrium of the tract by protecting against pathogenic microorganisms. In the last few years, there has been an increased tendency to use probiotic microorganisms to restore the ecological equilibrium and to protect against infections. This principle has been widely applied to the gastrointestinal tract. More recently, some other studies have reported the application of probiotics in different tracts, for example, the urogenital or respiratory tract. One of the objectives of our group is to design probiotic products for the urogenital tract. With this purpose, lactobacilli were isolated from the human vagina, and later some of them were selected for their probiotic characteristics (production of antagonistic substances or adhesion capability). The application of probiotic products in the vaginal tract has been approached empirically; some pharmaceuticals containing these microorganisms are available in the United States or Europe or are protected under the patent process or intellectual property rights. There are not enough studies in humans or animals to determine whether their administration can produce some type of collateral or adverse effect. Using Balb/c mice as the experimental model, the object of the present work was to study (1) whether intravaginal administration of human lactobacilli can produce colonization of the tract; (2) whether such administration produces some type of adverse or collateral effect; and (3) whether probiotics are able to stimulate the local immune system. Keeping in mind that hormones can affect the colonization or persistence ability of microorganisms, and with the purpose of having all animals at the same point in the sexual cycle, animals were cycled with estradiol 48 h before inoculation with lactobacilli. They were then inoculated im with hormones 48 h before beginning microorganism

  17. Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides.

    PubMed

    Baurhoo, B; Letellier, A; Zhao, X; Ruiz-Feria, C A

    2007-12-01

    Two experiments were conducted to evaluate lignin and mannanoligosaccharides as alternatives to antibiotic growth promoters in broilers. Dietary treatments for the 2 studies were 1) negative control (CTL-, antibiotic free); 2) positive control (CTL+, diet 1 + 11 mg of virginiamycin/kg); 3) mannanoligosaccharide (MOS; diet 1 + BioMos: 0.2% to 21 d and 0.1% thereafter); 4) LL (diet 1 + 1.25% Alcell lignin); and 5) HL (diet 1 + 2.5% Alcell lignin). In experiment 1, each treatment was assigned to 4 pen replicates (52 birds each). Body weight and feed intake were recorded weekly for 38 d. At 28 and 38 d, cecal contents were assayed for lactobacilli and bifidobacteria. Body weight and feed intake did not differ among dietary treatments. At d 38, the lactobacilli population was greatest (P < 0.05) in birds fed MOS, whereas LL-fed birds had greater (P < 0.05) lactobacilli load than those fed CTL+. Bifidobacteria load was greater (P < 0.05) in birds fed MOS or LL compared with those fed CTL+ at both d 28 and 38. However, at d 28 and 38, lactobacilli and bifidobacteria loads were lowest (P < 0.05) in CTL+ or HL-fed birds. In experiment 2, 21-d-old birds from the initial flock were transferred to cages for oral Escherichia coli (O2 and O88 serotypes) challenge (12 birds/treatment). After 3, 6, and 9 d, cecal loads of E. coli were determined. Birds fed HL had a lower E. coli load (P < 0.05) than birds fed CTL- or CTL+ at d 3, and lower than birds fed CTL- at d 6. At d 9, the E. coli load was lower (P < 0.05) in birds fed MOS or HL than in those fed the CTL- or CTL+ diets; LL-fed birds had lower E. coli load than those fed CTL-. Birds fed MOS or LL had a comparative advantage over CTL+ birds in increasing populations of lactobacilli and bifidobacteria and lowering E. coli loads after challenge. PMID:18029796

  18. Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species.

    PubMed

    Vlasova, Anastasia N; Kandasamy, Sukumar; Chattha, Kuldeep S; Rajashekara, Gireesh; Saif, Linda J

    2016-04-01

    Different probiotic strains of Lactobacillus and Bifidobacterium genera possess significant and widely acknowledged health-promoting and immunomodulatory properties. They also provide an affordable means for prevention and treatment of various infectious, allergic and inflammatory conditions as demonstrated in numerous human and animal studies. Despite the ample evidence of protective effects of these probiotics against rotavirus (RV) infection and disease, the precise immune mechanisms of this protection remain largely undefined, because of limited mechanistic research possible in humans and investigated in the majority of animal models. Additionally, while most human clinical probiotic trials are well-standardized using the same strains, uniform dosages, regimens of the probiotic treatments and similar host age, animal studies often lack standardization, have variable experimental designs, and non-uniform and sometime limited selection of experimental variables or observational parameters. This review presents selected data on different probiotic strains of lactobacilli and bifidobacteria and summarizes the knowledge of their immunomodulatory properties and the associated protection against RV disease in diverse host species including neonates. PMID:26809484

  19. Isolation and identification of new lactobacilli from goatling stomach and investigation of reuterin production in Lactobacillus reuteri strains.

    PubMed

    Kiňová Sepová, Hana; Bilková, Andrea

    2013-01-01

    Five new strains of lactobacilli isolated from goatling's stomach were identified by molecular-biological approaches. Profiles of fermentable saccharides, Gram staining, and cell morphology were also determined. They were identified as Lactobacillus reuteri (strains KO4b, KO4m, KO5) and as Lactobacillus plantarum (strains KG1z, KG4). In DNA samples of all newly isolated L. reuteri strains as well as in L. reuteri E (Lreu E; originated from lamb), the part of gldC gene, coding large subunit of glycerol dehydratase, that is necessary for 3-hydroxypropionaldehyde (3-HPA; reuterin) production, was amplified using two designed primer sets. However, the 3-HPA production was revealed only in the strain Lreu E. It produced five- or ten-fold lower amount of 3-HPA in comparison with probiotic L. reuteri ATCC 55730 in aerobic or anaerobic conditions, respectively. Moreover, Lreu E completely lost its production ability after ca. five passages in MRS medium. The co-incubation of Lreu E, but not other L. reuteri isolates, with Escherichia coli re-induced 3-HPA production. In the case of L. reuteri ATCC 55730, the 3-HPA production increased more than four times after co-incubation with E. coli. PMID:22688897

  20. NOD Dendritic Cells Stimulated with Lactobacilli Preferentially Produce IL-10 versus IL-12 and Decrease Diabetes Incidence

    PubMed Central

    Manirarora, Jean N.; Parnell, Sarah A.; Hu, Yoon-Hyeon; Kosiewicz, Michele M.; Alard, Pascale

    2011-01-01

    Dendritic cells (DCs) from NOD mice produced high levels of IL-12 that induce IFNγ-producing T cells involved in diabetes development. We propose to utilize the microorganism ability to induce tolerogenic DCs to abrogate the proinflammatory process and prevent diabetes development. NOD DCs were stimulated with Lactobacilli (nonpathogenic bacteria targeting TLR2) or lipoteichoic acid (LTA) from Staphylococcus aureus (TLR2 agonist). LTA-treated DCs produced much more IL-12 than IL-10 and accelerated diabetes development when transferred into NOD mice. In contrast, stimulation of NOD DCs with L. casei favored the production of IL-10 over IL-12, and their transfer decreased disease incidence which anti-IL-10R antibodies restored. These data indicated that L. casei can induce NOD DCs to develop a more tolerogenic phenotype via production of the anti-inflammatory cytokine, IL-10. Evaluation of the relative production of IL-10 and IL-12 by DCs may be a very useful means of identifying agents that have therapeutic potential. PMID:21716731

  1. Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic lactobacilli.

    PubMed

    Cho, J S; Choi, Y J; Chung, D K

    2000-04-01

    Endoglucanase A from Clostridium thermocellum resistant to pancreatic proteinase was selected out of a range of microbial cellulases expressed in lactobacilli. Two Lactobacillus-E. coli expression vectors, harboring the endoglucanase gene from C. thermocellum under the control of its own promoter (pSD1) and the Lactococcus lactis lac A promoter (pSD2), were constructed separately. Intestinal Lactobacillus strains, L. gasseri and L. johnsonii, were electrotransformed with pSD1 and pSD2, and the stability of each plasmid was evaluated. The endoglucanase activities of 0.722 and 0.759 U/ml were respectively found in culture medium of L. gasseri and L. johnsonii containing pSD1, and of 0.407 U/ml in medium of L. gasseri harboring pSD2. When the probiotic characteristics such as acid-tolerance, bile-salt tolerance, and antibiotic susceptibility were investigated, L. gasseri and L. johnsonii were resistant to low pHs of 2 and 3. Also, L. johnsonii was bile-salt resistant in the presence of 0.5% oxgall and porcine bile extract. L. johnsonii and L. gasseri showed a rather homogeneous resistant pattern against tested antibiotics. Both strains were resistant to amikacin, bacitracin, gentamicin, streptomycin, kanamycin, and colistin. PMID:10688695

  2. Immunomodulatory and antimicrobial efficacy of Lactobacilli against enteropathogenic infection of Salmonella typhi: In-vitro and in-vivo study.

    PubMed

    Mazaya, Basem; Hamzawy, Mohamed A; Khalil, Mahmoud A F; Tawkol, Wael M; Sabit, Hussein

    2015-12-01

    Salmonellosis-induced diarrhea, is one of the commonest cause of childhood mortality in developing countries. Using of probiotics is viewed as a promising means for reducing the pathogenic loads of bacterial infection. The current study aimed to evaluate the potential antimicrobial and immunomodulatory efficacy of isolated lactobacillus strains against the enteropathogenic effect of S. Typhi. Different Lactobacillus strains were isolated from 13 dairy products. Their antimicrobial activities were tested against different bacterial strains. Six groups of CD1 mice were treated for 8 days as follows: group (1) untreated control; group (2) was challenged with single inoculation S. typhi, and groups (3) and (4) were treated with Lactobacillus plantarum (LA5) or Lactobacillus paracsi (LA7) for 7 days, respectively. Groups (5) and (6) were challenged with S. typhi, and then treated with either LA5 or LA 7 for 7 days, respectively. Isolated Lactobacillus showed antimicrobial activity against wide range of bacterial strains. Salmonellosis showed high widal titer, induced significant disturbance of TNF and IL-1β, while sever changes of the histological patterns of the intestinal villi and hepatocytes have been illustrated. LA5 or LA7 succeeded to eradicate typhoid infection, restore the values of inflammatory cytokines to typical levels of control group, and improve histological pictures of intestinal and hepatic tissues. It can be concluded that lactobacilli are promising candidate in protection and eradication against bacterial infection induced by S. Typhi due to its antimicrobial, anti-inflammatory, and immunomodulatory activities. PMID:26303120

  3. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria.

    PubMed

    Amund, O D

    2016-09-01

    Strains of Lactobacillus and Bifidobacterium are considered probiotic because of their associated potential health benefits. Probiotics are commonly administered orally via incorporation into food products. Microorganisms for use as probiotics encounter stress conditions, which include acid, bile, osmotic, oxidative, heat and cold stresses. These can occur during processing and storage and during passage through the gastrointestinal tract, and can affect viability. Probiotic bacteria have to remain viable to confer any health benefits. Therefore, the ability to withstand technological and gastrointestinal stresses is crucial probiotic selection criteria. While the stress tolerance mechanisms of lactobacilli and bifidobacteria are largely understood, the impact of exposure to stressful conditions on the functional properties of surviving probiotic microorganisms is not clear. This review explores the potentially positive and negative relationships between exposure to stress conditions and probiotic functional properties, such as resistance to gastric acid and bile, adhesion and colonization potential, and tolerance to antibiotics. Protective strategies can be employed to combat negative effects of stress on functional properties. However, further research is needed to ascertain synergistic relationships between exposure to stress and probiotic properties. PMID:27461506

  4. Antimicrobial and Safety Properties of Lactobacilli Isolated from two Cameroonian Traditional Fermented Foods.

    PubMed

    Kaktcham, Pierre Marie; Zambou, Ngoufack François; Tchouanguep, Félicité Mbiapo; El-Soda, Morsi; Choudhary, Muhammad Iqbal

    2012-01-01

    Twenty-one Lactobacillus isolates from "Sha'a" (a maize - based fermented beverage) and "Kossam" (traditionally fermented cow milk) were selected in accordance with their antagonistic activities and tested for their bacteriocinogenic potential as well as safety properties. These isolates were preliminarily identified as Lactobacillus plantarum (62%), Lactobacillus rhamnosus (24%), Lactobacillus fermentum (10%) and Lactobacillus coprophilus (4%) based on phenotypic characteristics and rep-PCR genomic fingerprinting. Twelve (57.1%) out of the 21 strains tested were found to be bacteriocin producers, as revealed by the sensitivity of their antimicrobial substances to proteolytic enzymes (Trypsin, Proteinase K) and inhibition of other Lactobacillus spp. These bacteriocinogenic strains showed no positive haemolytic and gelatinase activities and proved to be sensitive to penicillin G, ampicillin, tetracycline, erythromycin, amoxicillin, chloramphenicol, co-trimoxazole and doxycyclin, but resistant to ciprofloxacin and gentamicin. The bacteriocins showed a broad inhibitory activity against Gram-positive and Gram-negative pathogenic bacteria, several of which are classified as especially dangerous by the World Health Organization, as well as Multidrug-resistant strains. These include Staphylococcus aureus, Salmonella enterica subsp. enterica serovare Typhi, Bacillus cereus, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Shigella flexneri. These Lactobacillus strains are promising candidates for use as protective cultures in food fermentation. PMID:22396914

  5. Intestinal removal of free fatty acids from hosts by Lactobacilli for the treatment of obesity.

    PubMed

    Chung, Hea-Jong; Yu, Jae G; Lee, In-Ah; Liu, Ming-Jie; Shen, Yan-Fei; Sharma, Satya P; Jamal, Mohammad A H M; Yoo, Jun-Hyun; Kim, Hyeon-Jin; Hong, Seong-Tshool

    2016-01-01

    Recent findings on the association of gut microbiota with various diseases, including obesity, prompted us to investigate the possibility of using a certain type of gut bacteria as a safe therapeutic for obesity. Lactobacillus mutants with enhanced capacity in absorption of free fatty acids (FFAs) were isolated to show reduced absorption of FFAs by the administered host, attributing to inhibition of body weight gain and body fat accumulation as well as amelioration of blood profiles. Consequently, high throughput screening of natural FFAs-absorbing intestinal microbes led to the isolation of Lactobacillus reuteri JBD30 l. The administration of Lactobacillus JBD30l lowered the concentration of FFAs in the gut fluid content of small intestine, thus reducing intestinal absorption of FFAs whereas promoting fecal excretion of FFAs. Animal data also confirmed that the efficacy of Lactobacillus JBD30l on body weight similar to that of orlistat, an FDA-approved pharmaceutical for long-term use to treat obesity. In a subsequent random, double-blind, placebo-controlled clinical trial (KCT0000452 at Clinical Research Information Service of Korea), there was a statistically significant difference in the percentage change in body weight between the Lactobacillus JBD301 and the placebo group (P = 0.026) as well as in the BMI (P = 0.036) from the 0-week assessment to the 12-week assessment. Our results show that FFA-absorbing Lactobacillus JBD301 effectively reduces dietary fat absorption, providing an ideal treatment for obesity with inherent safety. PMID:27047743

  6. Optimizing Production of Two Potential Probiotic Lactobacilli Strains Isolated from Piglet Feces as Feed Additives for Weaned Piglets.

    PubMed

    Chiang, Ming-Lun; Chen, Hsi-Chia; Chen, Kun-Nan; Lin, Yu-Chun; Lin, Ya-Ting; Chen, Ming-Ju

    2015-08-01

    Two probiotic strains, Lactobacillus johnsonii x-1d-2 and Lactobacillus mucosae x-4w-1, originally isolated from piglet feces, have been demonstrated to possess antimicrobial activities, antibiotic resistances and interleukin-6 induction ability in RAW 267.4 macrophages in our previous study. These characteristics make L. johnsonii x-1d-2 and L. mucosae x-4w-1 good candidates for application in feed probiotics. In this study, soybeal meal, molasses and sodium acetate were selected to optimize the growth medium for cultivation of L. johnsonii x-1d-2 and L. mucosae x-4w-1. These two strains were then freeze-dried and mixed into the basal diet to feed the weaned piglets. The effects of L. johnsonii x-1d-2 and L. mucosae x-4w-1 on the growth performance and fecal microflora of weaned piglets were investigated. The results showed that the bacterial numbers of L. johnsonii x-1d-2 and L. mucosae x-4w-1 reached a maximum of 8.90 and 9.30 log CFU/mL, respectively, when growing in optimal medium consisting of 5.5% (wt/vol) soybean meal, 1.0% (wt/vol) molasses and 1.0% (wt/vol) sodium acetate. The medium cost was 96% lower than the commercial de Man, Rogosa and Sharpe medium. In a further feeding study, the weaned piglets fed basal diet supplemented with freeze-dried probiotic cultures exhibited higher (p<0.05) body weight gain, feed intake, and gain/feed ratio than weaned piglets fed basal diet. Probiotic feeding also increased the numbers of lactobacilli and decreased the numbers of E. coli in the feces of weaned piglets. This study demonstrates that L. johnsonii x-1d-2 and L. mucosae x-4w-1 have high potential to be used as feed additives in the pig industry. PMID:26104525

  7. Optimizing Production of Two Potential Probiotic Lactobacilli Strains Isolated from Piglet Feces as Feed Additives for Weaned Piglets

    PubMed Central

    Chiang, Ming-Lun; Chen, Hsi-Chia; Chen, Kun-Nan; Lin, Yu-Chun; Lin, Ya-Ting; Chen, Ming-Ju

    2015-01-01

    Two probiotic strains, Lactobacillus johnsonii x-1d-2 and Lactobacillus mucosae x-4w-1, originally isolated from piglet feces, have been demonstrated to possess antimicrobial activities, antibiotic resistances and interleukin-6 induction ability in RAW 267.4 macrophages in our previous study. These characteristics make L. johnsonii x-1d-2 and L. mucosae x-4w-1 good candidates for application in feed probiotics. In this study, soybeal meal, molasses and sodium acetate were selected to optimize the growth medium for cultivation of L. johnsonii x-1d-2 and L. mucosae x-4w-1. These two strains were then freeze-dried and mixed into the basal diet to feed the weaned piglets. The effects of L. johnsonii x-1d-2 and L. mucosae x-4w-1 on the growth performance and fecal microflora of weaned piglets were investigated. The results showed that the bacterial numbers of L. johnsonii x-1d-2 and L. mucosae x-4w-1 reached a maximum of 8.90 and 9.30 log CFU/mL, respectively, when growing in optimal medium consisting of 5.5% (wt/vol) soybean meal, 1.0% (wt/vol) molasses and 1.0% (wt/vol) sodium acetate. The medium cost was 96% lower than the commercial de Man, Rogosa and Sharpe medium. In a further feeding study, the weaned piglets fed basal diet supplemented with freeze-dried probiotic cultures exhibited higher (p<0.05) body weight gain, feed intake, and gain/feed ratio than weaned piglets fed basal diet. Probiotic feeding also increased the numbers of lactobacilli and decreased the numbers of E. coli in the feces of weaned piglets. This study demonstrates that L. johnsonii x-1d-2 and L. mucosae x-4w-1 have high potential to be used as feed additives in the pig industry. PMID:26104525

  8. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage.

    PubMed

    Duniere, L; Jin, L; Smiley, B; Qi, M; Rutherford, W; Wang, Y; McAllister, T

    2015-05-01

    Bacterial inoculants can improve the conservation and nutritional quality of silages. Inclusion of the yeast Saccharomyces in the diet of dairy cattle has also been reported to be beneficial. The present study assessed the ability of silage to be used as a means of delivering Saccharomyces strains to ruminants. Two strains of Saccharomyces cerevisiae (strain 1 and 3)and 1 strain of Saccharomyces paradoxus (strain 2) were inoculated (10(3) cfu/g) individually onto corn forage that was ensiled in mini silos for 90 d. Fermentation characteristics, aerobic stability, and nutritive value of silages were determined and real-time quantitative PCR (RT-qPCR) was used to quantify S. cerevisiae, S.paradoxus, total Saccharomyces, fungal, and bacterial populations. Fermentation characteristics of silage inoculated with S1 were similar to control silage. Although strain 3 inoculation increased ash and decreased OM contents of silage (P = 0.017), no differences were observed in nutrient composition or fermentation profiles after 90 d of ensiling. Inoculation with Saccharomyces had no detrimental effect on the aerobic stability of silage. In vitro DM disappearance, gas production, and microbial protein synthesis were not affected by yeast inoculation.Saccharomyces strain 1 was quantified throughout ensiling, whereas strain 2 was detected only immediately after inoculation. Saccharomyces cerevisiae strain 3 was quantified until d 7 and detectable 90 d after ensiling. All inoculants were detected and quantified during aerobic exposure. Inoculation with Saccharomyces did not alter lactobacilli populations. Saccharomycetales were detected by RT-qPCR throughout ensiling in all silages. Both S. cerevisiae and S. paradoxus populations increased during aerobic exposure, demonstrating that the density of these yeast strains would increase between the time that silage was removed from storage and the time it was fed. PMID:26020328

  9. Effects of Three Mastic Gums on the Number of Mutans Streptococci, Lactobacilli and PH of the Saliva

    PubMed Central

    Biria, Mina; Eslami, Gita; Taghipour, Elaheh; Akbarzadeh Baghban, Alireza

    2014-01-01

    Objective: In the recent years, herbal oral hygiene products have gained increasing attention. The aim of this study was to assess the effects of three types of mastic gums on the level of Mutans streptococci, Lactobacilli and pH of the saliva. Materials and Methods: Forty-two students in the age range of 20–30 years were divided into three parallel groups; each of them separately used pure mastic gum, xylitol mastic gum and probiotic mastic gum for three weeks. Number of microorganisms and pH of the saliva were assessed before and after the intervention. The data were analyzed using Wilcoxon Signed Rank, paired-sample-t, Kruskal-Wallis and Tukey’s post-hoc tests and Oneway ANOVA. Results: Level of Mutans streptococci showed a significant reduction compared to its baseline value in all three groups (P<0001 for all). Salivary Lactobacillus count increased in the groups using pure and xylitol mastic gums but decreased in the group using probiotic type, albeit these changes were only significant in the group using probiotic mastic gum (P<0.001). Use of pure and xylitol mastic gums increased the pH of the saliva but not significantly. In the group using probiotic mastic gum, the pH of the saliva decreased significantly (P=0.029). Conclusion: Three weeks use of all mastic gums resulted in a significant drop in the number of Mutans streptococci in the saliva. However, the drop in the saliva pH due to the use of probiotic mastic gum is not in favor of dental health. PMID:25628697

  10. Superoxol and amylase inhibition tests for distinguishing gonococcal and nongonococcal cultures growing on selective media.

    PubMed Central

    Arko, R J; Odugbemi, T

    1984-01-01

    Two inexpensive screening tests were evaluated singly and in tandem for distinguishing Neisseria gonorrhoeae from other oxidase-positive microorganisms growing on selective gonococcal media. In tests of 728 cultures, including 460 N. gonorrhoeae, 4 Neisseria lactamica, 257 Neisseria meningitidis, and 7 Branhamella catarrhalis, both Superoxol (30% H2O2; J. T. Baker Chemical Co., Phillipsburg, N.J.) and amylase inhibition tests were 100% sensitive (positive) for 20-h cultures of N. gonorrhoeae. Singly, the Superoxol test was 92.7% specific for N. gonorrhoeae, compared with a specificity of 82.3% for the amylase inhibition test. By using tandem screening tests to distinguish gonococci, we achieved an overall specificity of 98.6%. Group A meningococci were the primary source of error in the Superoxol test, with 97% (37 of 38) strains producing gonococcal like reactions for catalase. From 5 to 20% of N. meningitidis serogroups X, Y, Z, and Z' and nontypable strains, as well as about 50% of B. catarrhalis and N. lactamica strains, were also strong catalase producers. Images PMID:6205016

  11. Development of γδ T cell subset responses in gnotobiotic pigs infected with human rotaviruses and colonized with probiotic lactobacilli

    PubMed Central

    Wen, Ke; Li, Guohua; Zhang, Wei; Azevedo, Marli SP; Saif, Linda J; Liu, Fangning; Bui, Tammy; Yousef, Ahmed; Yuan, Lijuan

    2011-01-01

    γδ T cell responses are induced by various viral and bacterial infections. Different γδ T cells contribute to activation and regulation of the inflammatory response and to epithelial repair. How γδ T cells respond to rotavirus infection and how the colonization of probiotics influences the γδ T cell response were unknown. In this study, we evaluated by multicolor flow cytometry the frequencies and distribution of total γδ T cells and three major subsets (CD2−CD8−, CD2+CD8− and CD2+CD8+) in ileum, spleen and blood of gnotobiotic (Gn) pigs at early (3–5 days) and late phases (28 days) after rotavirus infection. The Gn pigs were inoculated with the virulent human rotavirus Wa strain and colonized with a mixture of two strains of probiotics Lactobacillus acidophilus and Lactobacillus reuteri. In naive pigs, the highest frequency of total γδ T cells was found in blood, followed by spleen and ileum at the early age (8–10 days old) whereas in older pigs (32 days of age) the highest frequency of total γδ T cells was found in ileum and spleen followed by blood. Rotavirus infection significantly increased frequencies of intestinal total γδ T cells and the putatively regulatory CD2+CD8+ γδ T cell subset and decreased frequencies of the putatively proinflammatory CD8− subsets in ileum, spleen and blood at post-infection days (PID) 3 or 5. The three γδ T cell subsets distributed and responded differently after rotavirus infection and/or lactobacilli colonization. The CD2+CD8+ subset contributed the most to the expansion of total γδ T cells after rotavirus infection in ileum because more than 77% of the total γδ T cells there were CD2+CD8+ cells. There was an additive effect between lactobacilli and rotavirus in inducing total γδ T cell expansion in ileum at PID 5. The overall effect of lactobacilli colonization versus rotavirus infection on frequencies of the CD2+CD8+ γδ T cell subset in ileum was similar; however, rotavirus-infected pigs

  12. Lactobacillus crispatus inhibits the infectivity of Chlamydia trachomatis elementary bodies, in vitro study.

    PubMed

    Nardini, Paola; Ñahui Palomino, Rogers Alberto; Parolin, Carola; Laghi, Luca; Foschi, Claudio; Cevenini, Roberto; Vitali, Beatrice; Marangoni, Antonella

    2016-01-01

    Lactobacillus species dominate the vaginal microbiota of healthy reproductive-age women and protect the genitourinary tract from the attack of several infectious agents. Chlamydia trachomatis, a leading cause of sexually transmitted disease worldwide, can induce severe sequelae, i.e. pelvic inflammatory disease, infertility and ectopic pregnancy. In the present study we investigated the interference of Lactobacillus crispatus, L. gasseri and L. vaginalis, known to be dominant species in the vaginal microbiome, with the infection process of C. trachomatis. Lactobacilli exerted a strong inhibitory effect on Chlamydia infectivity mainly through the action of secreted metabolites in a concentration/pH dependent mode. Short contact times were the most effective in the inhibition, suggesting a protective role of lactobacilli in the early steps of Chlamydia infection. The best anti-Chlamydia profile was shown by L. crispatus species. In order to delineate metabolic profiles related to anti-Chlamydia activity, Lactobacillus supernatants were analysed by (1)H-NMR. Production of lactate and acidification of the vaginal environment seemed to be crucial for the activity, in addition to the consumption of the carbonate source represented by glucose. The main conclusion of this study is that high concentrations of L. crispatus inhibit infectivity of C. trachomatis in vitro. PMID:27354249

  13. Differential Sensitivity of Lactobacillus spp. to Inhibition by Candidate Topical Microbicides.

    PubMed

    Anderson, Robert A; Aroutcheva, Alla; Feathergill, Kenneth A; Anderson, Amillia B

    2009-06-01

    Preclinical evaluation of vaginal microbicides includes screening against lactobacilli. However, there is no consensus regarding the species to be tested. This study was carried out to determine if results with one species would apply to other species, and to evaluate the utility of turbidometry as a screening tool. One current (PPCM; previously designated sulfuric acid-modified mandelic acid, SAMMA) and two former (cellulose sulfate, CS; and polystyrene sulfonate, PSS) candidate microbicides were evaluated. Bacterial growth was measured turbidometrically and by direct cell count. No microbicide affected Lact. gasseri, measured by either method. Apparent inhibition of Lact. jensenii by CS, PSS, and PPCM, and of Lact. crispatus by CS, occurred with turbidometric measurement. This was not substantiated with direct cell count. PSS and PPCM inhibited Lact. crispatus and Lact. acidophilus with both methods. These findings agree with results from vaginal isolates, which included Lact. gasseri, jensenii, acidophillus, crispatus, rhamnosis, casei, and paracasei. We conclude that sensitivities of similar lactobacilli to at least three microbicides are different. A single species is inadequate for screening vaginal products. Turbidometric evaluation is a sensitive, but not specific, screening method. We recommend that this method be used to screen candidate microbicides against several species of prevalent Lactobacillus species as an initial measure of microbicide safety evaluation. PMID:26783129

  14. Lactobacillus crispatus inhibits the infectivity of Chlamydia trachomatis elementary bodies, in vitro study

    PubMed Central

    Nardini, Paola; Ñahui Palomino, Rogers Alberto; Parolin, Carola; Laghi, Luca; Foschi, Claudio; Cevenini, Roberto; Vitali, Beatrice; Marangoni, Antonella

    2016-01-01

    Lactobacillus species dominate the vaginal microbiota of healthy reproductive-age women and protect the genitourinary tract from the attack of several infectious agents. Chlamydia trachomatis, a leading cause of sexually transmitted disease worldwide, can induce severe sequelae, i.e. pelvic inflammatory disease, infertility and ectopic pregnancy. In the present study we investigated the interference of Lactobacillus crispatus, L. gasseri and L. vaginalis, known to be dominant species in the vaginal microbiome, with the infection process of C. trachomatis. Lactobacilli exerted a strong inhibitory effect on Chlamydia infectivity mainly through the action of secreted metabolites in a concentration/pH dependent mode. Short contact times were the most effective in the inhibition, suggesting a protective role of lactobacilli in the early steps of Chlamydia infection. The best anti-Chlamydia profile was shown by L. crispatus species. In order to delineate metabolic profiles related to anti-Chlamydia activity, Lactobacillus supernatants were analysed by 1H-NMR. Production of lactate and acidification of the vaginal environment seemed to be crucial for the activity, in addition to the consumption of the carbonate source represented by glucose. The main conclusion of this study is that high concentrations of L. crispatus inhibit infectivity of C. trachomatis in vitro. PMID:27354249

  15. Inhibition of cultivable bacteria by chlorhexidine treatment of dentin lesions treated with the ART technique.

    PubMed

    Ersin, Nazan Kocatas; Uzel, Atac; Aykut, Arzu; Candan, Umit; Eronat, Cemal

    2006-01-01

    The aim of this study was to examine the changes in the cultivable microflora of carious dentin before and after atraumatic restorative treatment (ART) and investigate the inhibitory effect of chlorhexidine-gluconate-based cavity disinfectant in the microflora. Using a split mouth design, 35 primary molar pairs with class II carious lesions in 35 patients (mean age 7.31+/-0.47 years) were selected. The total viable counts (TVC), Streptococcus mutans and lactobacilli were first measured in the center of the infected demineralized lesion and then from the hard dentine after caries removal by the ART technique. Chlorhexidine-gluconate (2%)-based cavity disinfectant was applied to one of the molar pairs and the other molar received no disinfectant treatment. Thereafter, all of the teeth were restored with glass ionomer cement (GIC). Cavities were reassessed after 6 months and again dentine samples were microbiologically investigated. Removal of carious dentine by ART significantly reduced TVC, S. mutans and lactobacilli. After 6 months, application of chlorhexidine exhibited a greater significant reduction in TVC (p=0.013), and a significant reduction in S. mutans compared to the nondisinfected group (p<0.001). A significant reduction in lactobacilli counts was observed in both groups after 6 months, but the difference between the disinfected and nondisinfected groups was not significant (p=0.056). ART was found to be effective in reducing the cultivable microflora and chlorhexidine-gluconate-based cavity disinfectant might serve as a suitable additional agent in inhibiting the residual bacteria in the dentine. PMID:16508277

  16. Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion.

    PubMed

    Coconnier, M H; Bernet, M F; Kernéis, S; Chauvière, G; Fourniat, J; Servin, A L

    1993-07-01

    Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC) were found to adhere to the brush border of differentiated human intestinal epithelial Caco-2 cells in culture, whereas Yersinia pseudotuberculosis and Listeria monocytogenes adhered to the periphery of undifferentiated Caco-2 cells. All these enterovirulent strains invaded the Caco-2 cells. Using a heat-killed human Lactobacillus acidophilus (strain LB) which strongly adheres both to undifferentiated and differentiated Caco-2 cells, we have studied inhibition of cell association with and invasion within Caco-2 cells by enterovirulent bacteria. Living and heat-killed Lactobacillus acidophilus strain LB inhibited both cell association and invasion of Caco-2 cells by enterovirulent bacteria in a concentration-dependent manner. The mechanism of inhibition of both adhesion and invasion appears to be due to steric hindrance of human enterocytic pathogen receptors by whole-cell lactobacilli rather than to a specific blockade of receptors. PMID:8354463

  17. LC-MS/MS analysis of surface layer proteins as a useful method for the identification of lactobacilli from the Lactobacillus acidophilus group.

    PubMed

    Podlesny, Marcin; Jarocki, Piotr; Komon, Elwira; Glibowska, Agnieszka; Targonski, Zdzislaw

    2011-04-01

    For precise identification of a Lactobacillus K1 isolate, LC-MS/MS analysis of the putative surface layer protein was performed. The results obtained from LTQ-FT-ICR mass spectrometry confirmed that the analyzed protein spot is the surface layer protein originating from Lb. helveticus species. Moreover, the identified protein has the highest similarity with the surface layer protein from Lb. helveticus R0052. To evaluate the proteomic study, multilocus sequence analysis of selected housekeeping gene sequences was performed. Combination of 16S rRNA sequencing with partial sequences for the genes encoding the RNA polymerase alpha subunit (rpoA), phenylalanyl-tRNA synthase alpha subunit (pheS), translational elongation factor Tu (tuf), and Hsp60 chaperonins (groEL) also allowed to classify the analyzed isolate as Lb. helveticus. Further classification at the strain level was achieved by sequencing of the slp gene. This gene showed 99.8% identity with the corresponding slp gene of Lb. helveticus R0052, which is in good agreement with data obtained by nano-HPLC coupled to an LTQ-FT-ICR mass spectrometer. Finally, LC-MS/ MS analysis of surface layer proteins extracted from three other Lactobacillus strains proved that the proposed method is the appropriate molecular tool for the identification of S-layer-possessing lactobacilli at the species and even strain levels. PMID:21532327

  18. Characterization of a Theta-Type Plasmid from Lactobacillus sakei: a Potential Basis for Low-Copy-Number Vectors in Lactobacilli

    PubMed Central

    Alpert, Carl-Alfred; Crutz-Le Coq, Anne-Marie; Malleret, Christine; Zagorec, Monique

    2003-01-01

    The complete nucleotide sequence of the 13-kb plasmid pRV500, isolated from Lactobacillus sakei RV332, was determined. Sequence analysis enabled the identification of genes coding for a putative type I restriction-modification system, two genes coding for putative recombinases of the integrase family, and a region likely involved in replication. The structural features of this region, comprising a putative ori segment containing 11- and 22-bp repeats and a repA gene coding for a putative initiator protein, indicated that pRV500 belongs to the pUCL287 subfamily of theta-type replicons. A 3.7-kb fragment encompassing this region was fused to an Escherichia coli replicon to produce the shuttle vector pRV566 and was observed to be functional in L. sakei for plasmid replication. The L. sakei replicon alone could not support replication in E. coli. Plasmid pRV500 and its derivative pRV566 were determined to be at very low copy numbers in L. sakei. pRV566 was maintained at a reasonable rate over 20 generations in several lactobacilli, such as Lactobacillus curvatus, Lactobacillus casei, and Lactobacillus plantarum, in addition to L. sakei, making it an interesting basis for developing vectors. Sequence relationships with other plasmids are described and discussed. PMID:12957947

  19. Determination of the in vitro and in vivo antimicrobial activity on salivary Streptococci and Lactobacilli and chemical characterisation of the phenolic content of a Plantago lanceolata infusion.

    PubMed

    Ferrazzano, Gianmaria Fabrizio; Cantile, Tiziana; Roberto, Lia; Ingenito, Aniello; Catania, Maria Rosaria; Roscetto, Emanuela; Palumbo, Giuseppe; Zarrelli, Armando; Pollio, Antonino

    2015-01-01

    Introduction. Plant extracts may be suitable alternative treatments for caries. Aims. To investigate the in vitro and in vivo antimicrobial effects of Plantago lanceolata herbal tea (from flowers and leaves) on cariogenic bacteria and to identify the major constituents of P. lanceolata plant. Materials and Methods. The MIC and MBC against cariogenic bacteria were determined for P. lanceolata tea. Subsequently, a controlled random clinical study was conducted. Group A was instructed to rinse with a P. lanceolata mouth rinse, and Group B received a placebo mouth rinse for seven days. The salivary colonisation by streptococci and lactobacilli was investigated prior to treatment and on the fourth and seventh days. Finally, the P. lanceolata tea was analysed for its polyphenolic content, and major phenolics were identified. Results and Discussion. P. lanceolata teas demonstrate good in vitro antimicrobial activity. The in vivo test showed that Group A subjects presented a significant decrease in streptococci compared to Group B. The phytochemical analysis revealed that flavonoids, coumarins, lipids, cinnamic acids, lignans, and phenolic compounds are present in P. lanceolata infusions. Conclusions. P. lanceolata extract could represent a natural anticariogenic agent via an antimicrobial effect and might be useful as an ancillary measure to control the proliferation of cariogenic flora. PMID:25767805

  20. Determination of the In Vitro and In Vivo Antimicrobial Activity on Salivary Streptococci and Lactobacilli and Chemical Characterisation of the Phenolic Content of a Plantago lanceolata Infusion

    PubMed Central

    Roberto, Lia; Ingenito, Aniello; Roscetto, Emanuela

    2015-01-01

    Introduction. Plant extracts may be suitable alternative treatments for caries. Aims. To investigate the in vitro and in vivo antimicrobial effects of Plantago lanceolata herbal tea (from flowers and leaves) on cariogenic bacteria and to identify the major constituents of P. lanceolata plant. Materials and Methods. The MIC and MBC against cariogenic bacteria were determined for P. lanceolata tea. Subsequently, a controlled random clinical study was conducted. Group A was instructed to rinse with a P. lanceolata mouth rinse, and Group B received a placebo mouth rinse for seven days. The salivary colonisation by streptococci and lactobacilli was investigated prior to treatment and on the fourth and seventh days. Finally, the P. lanceolata tea was analysed for its polyphenolic content, and major phenolics were identified. Results and Discussion. P. lanceolata teas demonstrate good in vitro antimicrobial activity. The in vivo test showed that Group A subjects presented a significant decrease in streptococci compared to Group B. The phytochemical analysis revealed that flavonoids, coumarins, lipids, cinnamic acids, lignans, and phenolic compounds are present in P. lanceolata infusions. Conclusions. P. lanceolata extract could represent a natural anticariogenic agent via an antimicrobial effect and might be useful as an ancillary measure to control the proliferation of cariogenic flora. PMID:25767805

  1. Isolation and characterization of lactobacilli from human faeces and indigenous fermented foods for their potential application as probiotics.

    PubMed

    Mandal, Hemanti; Jariwala, Ruchi; Bagchi, Tamishraha

    2016-04-01

    This study was conducted to select Lactobacillus strains from various sources on the basis of their probiotic attributes, such as acid and bile tolerance, binding to intestinal cells, and antimicrobial activity. Twelve isolates were obtained from human and food sources and were evaluated against standard probiotic Lactobacillus rhamnosus GG (LGG). Isolates were also studied for their antibiotic susceptibility. Isolate Lactobacillus fermentum GPI-6 showed the best survival profile at 0.3% and 1% bile salt, as compared with LGG. Isolates Lactobacillus plantarum GRI-2 and Lactobacillus salivarius GPI-4 showed no reduction in survival rate at pH 2.5. As expected, isolates showed strain-specific differences when comparing various attributes. Isolates GPI-4, GPI-7, and FA-5 showed better adhesion to HT-29, while isolate GPI-4 adhered better to Caco-2 cells than did LGG. However, when studying their ability to compete with Escherichia coli O26:H11, isolates GPI-6 and GPI-7 significantly inhibited E. coli adhesion to both HT-29 and Caco-2 cells compared with LGG. In conclusion, isolates GPI-4, GPI-7, and FA-5 showed excellent binding ability and antagonistic activity and better tolerance to acidic pH (pH 2.5) and to different bile salt concentrations in comparison with LGG, and hence, they could be considered as potential probiotic candidates. PMID:26928011

  2. Impact of non-starter lactobacilli on release of peptides with angiotensin-converting enzyme inhibitory and antioxidant activities during bovine milk fermentation.

    PubMed

    Solieri, Lisa; Rutella, Giuseppina Sefora; Tagliazucchi, Davide

    2015-10-01

    This study aimed at evaluating non-starter lactobacilli (NSLAB) isolated from cheeses for their proteolytic activity and capability to produce fermented milk enriched in angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides. Preliminarily, 34 NSLAB from Parmigiano Reggiano (PR) and 5 from Pecorino Siciliano cheeses were screened based on their capacity to hydrolyze milk proteins. Two NSLAB strains from PR, Lactobacillus casei PRA205 and Lactobacillus rhamnosus PRA331, showed the most proteolytic phenotype and were positively selected to inoculate sterile cow milk. The fermentation process was monitored by measuring viable cell population, kinetic of acidification, consumption of lactose, and synthesis of lactic acid. Milk fermented with Lb. casei PRA205 exhibited higher radical scavenging (1184.83 ± 40.28 mmol/L trolox equivalents) and stronger ACE-inhibitory (IC50 = 54.57 μg/mL) activities than milk fermented with Lb. rhamnosus PRA331 (939.22 ± 82.68 mmol/L trolox equivalents; IC50 = 212.38 μg/mL). Similarly, Lb. casei PRA205 showed the highest production of ACE-inhibitory peptides Val-Pro-Pro and Ile-Pro-Pro, which reached concentrations of 32.88 and 7.52 mg/L after 87 and 96 h of milk fermentation, respectively. This evidence supports Lb. casei PRA205, previously demonstrated to possess characteristics compatible with probiotic properties, as a promising functional culture able to promote health benefits in dairy foods. PMID:26187835

  3. Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of fecal lactobacilli and Clostridium difficile in the elderly.

    PubMed

    Lahtinen, Sampo J; Forssten, Sofia; Aakko, Juhani; Granlund, Linda; Rautonen, Nina; Salminen, Seppo; Viitanen, Matti; Ouwehand, Arthur C

    2012-02-01

    Aging is associated with alterations in the intestinal microbiota and with immunosenescence. Probiotics have the potential to modify a selected part of the intestinal microbiota as well as improve immune functions and may, therefore, be particularly beneficial to elderly consumers. In this randomized, controlled cross-over clinical trial, we assessed the effects of a probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM on the intestinal microbiota and fecal immune markers of 31 elderly volunteers and compared these effects with the administration of the same cheese without probiotics. The probiotic cheese was found to increase the number of L. rhamnosus and L. acidophilus NCFM in the feces, suggesting the survival of the strains during the gastrointestinal transit. Importantly, probiotic cheese administration was associated with a trend towards lower counts of Clostridium difficile in the elderly, as compared with the run-in period with the plain cheese. The effect was statistically significant in the subpopulation of the elderly who harbored C. difficile at the start of the study. The probiotic cheese was not found to significantly alter the levels of the major microbial groups, suggesting that the microbial changes conferred by the probiotic cheese were limited to specific bacterial groups. Despite that the administration of the probiotic cheese to the study population has earlier been shown to significantly improve the innate immunity of the elders, we did not observe measurable changes in the fecal immune IgA concentrations. No increase in fecal calprotectin and β-defensin concentrations suggests that the probiotic treatment did not affect intestinal inflammatory markers. In conclusion, the administration of probiotic cheese containing L. rhamnosus HN001 and L. acidophilus NCFM, was associated with specific changes in the intestinal microbiota, mainly affecting specific subpopulations of intestinal lactobacilli and C

  4. Casein glycomacropeptide in the diet may reduce Escherichia coli attachment to the intestinal mucosa and increase the intestinal lactobacilli of early weaned piglets after an enterotoxigenic E. coli K88 challenge.

    PubMed

    Gustavo Hermes, Rafael; Molist, Francesc; Francisco Pérez, José; Gómez de Segura, Arantza; Ywazaki, Mauro; Davin, Roger; Nofrarías, Miquel; Korhonen, Timo K; Virkola, Ritva; Martín-Orúe, Susana María

    2013-03-28

    Casein glycomacropeptide (CGMP), a glycoprotein originating during cheese manufacture, has shown promising effects by promoting the growth of some beneficial bacteria in vitro, although its activity has not been well explored. The present study was designed to evaluate the effects of CGMP against enterotoxigenic Escherichia coli (ETEC) K88 in vitro (Trial 1) and in vivo (Trial 2). In Trial 1, increasing concentrations of CGMP (0, 0.5, 1.5 or 2.5 mg/ml) were tested regarding its ability to block the attachment of ETEC K88 to ileal mucosa tissues obtained from piglets. Increasing the concentration of CGMP resulted in a gradual decrease in ETEC K88 attachment to the epithelial surface. In Trial 2, seventy-two piglets were distributed in a 2 × 2 factorial combination including or omitting CGMP in the diet (control diet v. CGMP) and challenged or not with ETEC K88 (yes v. no). Inclusion of CGMP increased crude protein, ammonia and isoacid concentrations in colon digesta. CGMP also increased lactobacilli numbers in ileum and colon digesta, and reduced enterobacteria counts in mucosa scrapings and the percentage of villi with E. coli adherence measured by fluorescence in situ hybridisation. The inclusion of CGMP in the diets of challenged animals also prevented the increase of enterobacteria in ileal digesta. We can conclude that CGMP may improve gut health by diminishing the adhesion of ETEC K88 to the intestinal mucosa, by increasing the lactobacilli population in the intestine and by reducing the overgrowth of enterobacteria in the digestive tract of piglets after an ETEC K88 challenge. PMID:22850079

  5. Corrosion inhibiting organic coatings

    SciTech Connect

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  6. The probiotic Bifidobacterium breve B632 inhibited the growth of Enterobacteriaceae within colicky infant microbiota cultures.

    PubMed

    Simone, Marta; Gozzoli, Caterina; Quartieri, Andrea; Mazzola, Giuseppe; Di Gioia, Diana; Amaretti, Alberto; Raimondi, Stefano; Rossi, Maddalena

    2014-01-01

    Infant colic is a common gastrointestinal disorder of newborns, mostly related to imbalances in the composition of gut microbiota and particularly to the presence of gas-producing coliforms and to lower levels of Bifidobacteria and Lactobacilli. Probiotics could help to contain this disturbance, with formulations consisting of Lactobacillus strains being the most utilized. In this work, the probiotic strain Bifidobacterium breve B632 that was specifically selected for its ability to inhibit gas-producing coliforms, was challenged against the Enterobacteriaceae within continuous cultures of microbiota from a 2-month-old colicky infant. As confirmed by RAPD-PCR fingerprinting, B. breve B632 persisted in probiotic-supplemented microbiota cultures, accounting for the 64% of Bifidobacteria at the steady state. The probiotic succeeded in inhibiting coliforms, since FISH and qPCR revealed that the amount of Enterobacteriaceae after 18 h of cultivation was 0.42 and 0.44 magnitude orders lower (P < 0.05) in probiotic-supplemented microbiota cultures than in the control ones. These results support the possibility to move to another level of study, that is, the administration of B. breve B632 to a cohort of colicky newborns, in order to observe the behavior of this strain in vivo and to validate its effect in colic treatment. PMID:25309908

  7. In Vitro Inhibition of 4-Nitroquinoline-1-Oxide Genotoxicity by Probiotic Lactobacillus rhamnosus IMC501.

    PubMed

    Bocci, Alessandro; Sebastiani, Bartolomeo; Trotta, Francesca; Federici, Ermanno; Cenci, Giovanni

    2015-10-28

    Inhibition of 4-nitroquinoline-1-oxide (4-NQO) genotoxicity by a probiotic strain of Lactobacillus rhamnosus (IMC501) was assessed by the prokaryotic short-term bioassay SOSChromotest, using Escherichia coli PQ37 as the target organism. Results showed the ability of strain IMC501 to rapidly and markedly counteract, in vitro, the DNA damage originated by the considered genotoxin. The inhibition was associated with a spectroscopic hypsochromic shift of the original 4-NQO profile and progressive absorbance increase of a new peak. IR-Raman and GC-MS analyses confirmed the disappearance of 4-NQO after contact with the microorganism, showing also the absence of any genotoxic molecule potentially available for metabolic activation (i.e., 4-hydroxyaminoquinoline-1-oxide and 4-nitrosoquinoline-1-oxide). Furthermore, we have shown the presence of the phenyl-quinoline and its isomers as major non-genotoxic conversion products, which led to the hypothesis of a possible pattern of molecular transformation. These findings increase knowledge on lactobacilli physiology and contribute to the further consideration of antigenotoxicity as a nonconventional functional property of particular probiotic strains. PMID:26059518

  8. Effect of ultra-low-dose estriol and lactobacilli vaginal tablets (Gynoflor®) on inflammatory and infectious markers of the vaginal ecosystem in postmenopausal women with breast cancer on aromatase inhibitors.

    PubMed

    Donders, G; Bellen, G; Neven, P; Grob, P; Prasauskas, V; Buchholz, S; Ortmann, O

    2015-10-01

    This study was a detailed microscopic analysis of the changes of vaginal microflora characteristics after application of 0.03 mg estriol-lactobacilli combination on the vaginal ecosystem in postmenopausal breast cancer (BC) survivors on aromatase inhibitors (AI) with severe atrophic vaginitis. A total of 16 BC women on AI applied daily one vaginal tablet of Gynoflor® for 28 days followed by a maintenance therapy of three tablets weekly for 8 weeks. During four follow up visits a smear from the upper lateral vaginal wall was analysed by phase contrast microscopy at 400 times magnification in order to classify the lactobacillary grades(LBG), bacterial vaginosis (BV), aerobic vaginitis (AV), vulvovaginal candidosis (VVC), proportional number of leukocytes and evidence of parabasal cells and epitheliolysis. LBG improved from 81% LBG-III at entry to 88% LBG-I&IIa after 2 weeks of initial therapy, which further improved upon follow up (p < 0.001). Whereas BV was a rare event, AV was frequent and substantially improved during treatment (p < 0.01). While at entry most patients had moderate or severe AV, after maintenance therapy no patient except one had AV. The number of leukocytes dropped dramatically from a score of 1.78 ± 0.70 to 1.06 ± 0.25 which was consistent till the end of the study (p < 0.01). Parabasal cells dropped from a score of 3.4 ± 0.64 at entry to 1.3 ± 0.60 at the final visit (p trend < 0.01). Starting from a low rate of Candida colonisation of 2/14 (14%), a sudden rise to 7/16 (44%) occurred after 2 weeks, to return back to base levels at subsequent visits. The vaginal use of ultra-low dose estriol and lactobacilli results in rapid and enduring improvement of all markers of the vaginal microflora and epithelial vaginal cell quality in women with breast cancer on AI with dyspareunia. Candida may develop soon after its use, but rapidly disappears again upon their prolonged use. Due to its excellent safety profiles and clinical efficacy we recommend

  9. Saccadic Inhibition in Reading

    ERIC Educational Resources Information Center

    Reingold, Eyal M.; Stampe, Dave M.

    2004-01-01

    In 5 experiments, participants read text that was briefly replaced by a transient image for 33 ms at random intervals. A decrease in saccadic frequency, referred to as saccadic inhibition, occurred as early as 60-70 ms following the onset of abrupt changes in visual input. It was demonstrated that the saccadic inhibition was influenced by the…

  10. Strategies Targeting Telomerase Inhibition

    PubMed Central

    Chen, Huaping; Li, Yuanyuan; Tollefsbol, Trygve O.

    2008-01-01

    Telomerase plays a pivotal role in cellular immortality and tumorigenesis. Its activity is normally not detectable in most somatic cells while it is reactivated in the vast majority of cancer cells. Therefore, inhibition of telomerase has been viewed as a promising anticancer approach due to its specificity for cancer cells. Studies so far have shown that telomerase inhibition can inhibit the proliferation of cancer cells or cause apoptosis while it has no effect on most normal cells. Strategies currently being applied to induce telomerase inhibition target virtually all of the major components of the ribonucleoprotein holoenzyme and related cell signal pathways that regulate its activity. These strategies include inhibition of telomerase through targeting at the telomerase reverse transcriptase (TERT) catalytic subunit, the telomerase RNA (TR) component, and associated proteins. Other strategies have been developed to target the proteins associated with telomerase at the telomeric ends of chromosomes such as tankyrase. The specific mechanisms that mediate those inhibition effects include small molecules, antisense RNA, and ribozymes. Although the beneficial evidence of telomerase inhibition is obvious, limitations of strategies remain to be resolved to increase the feasibility of clinical application. This analysis will summarize recent developments of strategies in telomerase inhibition. PMID:18956258

  11. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial.

    PubMed

    van Zanten, Gabriella C; Krych, Lukasz; Röytiö, Henna; Forssten, Sofia; Lahtinen, Sampo J; Abu Al-Soud, Waleed; Sørensen, Søren; Svensson, Birte; Jespersen, Lene; Jakobsen, Mogens

    2014-10-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n = 18) were enrolled in a double-blinded, randomized, and placebo-controlled cross-over study and received synbiotic [Lactobacillus acidophilus NCFM (10(9) CFU) and cellobiose (5 g)] or placebo daily for 3 weeks. Fecal samples were collected and lactobacilli numbers were quantified by qPCR. Furthermore, 454 tag-encoded amplicon pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P < 0.05). No other effects were found on microbiota composition. Remarkably, however, the synbiotic increased concentrations of branched-chain fatty acids, measured by gas chromatography, while short-chain fatty acids were not affected. PMID:25098489

  12. Lectin-Like Molecules of Lactobacillus rhamnosus GG Inhibit Pathogenic Escherichia coli and Salmonella Biofilm Formation

    PubMed Central

    Petrova, Mariya I.; Imholz, Nicole C. E.; Verhoeven, Tine L. A.; Balzarini, Jan; Van Damme, Els J. M.; Schols, Dominique; Vanderleyden, Jos; Lebeer, Sarah

    2016-01-01

    Objectives Increased antibiotic resistance has catalyzed the research on new antibacterial molecules and alternative strategies, such as the application of beneficial bacteria. Since lectin molecules have unique sugar-recognizing capacities, and pathogens are often decorated with sugars that affect their survival and infectivity, we explored whether lectins from the probiotic strain Lactobacillus rhamnosus GG have antipathogenic properties. Methods The genome sequence of L. rhamnosus GG was screened for the presence of lectin-like proteins. Two genes, LGG_RS02780 and LGG_RS02750, encoding for polypeptides with an N-terminal conserved L-type lectin domain were detected and designated Llp1 (lectin-like protein 1) and Llp2. The capacity of Llp1 and Llp2 to inhibit biofilm formation of various pathogens was investigated. Sugar specificity was determined by Sepharose beads assays and glycan array screening. Results The isolated lectin domains of Llp1 and Llp2 possess pronounced inhibitory activity against biofilm formation by various pathogens, including clinical Salmonella species and uropathogenic E. coli, with Llp2 being more active than Llp1. In addition, sugar binding assays with Llp1 and Llp2 indicate specificity for complex glycans. Both proteins are also involved in the adhesion capacity of L. rhamnosus GG to gastrointestinal and vaginal epithelial cells. Conclusions Lectins isolated from or expressed by beneficial lactobacilli could be considered promising bio-active ingredients for improved prophylaxis of urogenital and gastrointestinal infections. PMID:27537843

  13. Methods of Telomerase Inhibition

    PubMed Central

    Andrews, Lucy G.; Tollefsbol, Trygve O.

    2008-01-01

    Summary Telomerase is central to cellular immortality and is a key component of most cancer cells although this enzyme is rarely expressed to significant levels in normal cells. Therefore, the inhibition of telomerase has garnered considerable attention as a possible anticancer approach. Many of the methods applied to telomerase inhibition focus on either of the two major components of the ribonucleoprotein holoenzyme, that is, the telomerase reverse transcriptase (TERT) catalytic subunit or the telomerase RNA (TR) component. Other protocols have been developed to target the proteins, such as tankyrase, that are associated with telomerase at the ends of chromosomes. This chapter summarizes some of these recent advances in telomerase inhibition. PMID:18369812

  14. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    1999-01-01

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  15. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Carolyn

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  16. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    2001-10-09

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  17. AOP description: Acetylcholinesterase inhibition

    EPA Science Inventory

    This adverse outcome pathway (AOP) leverages existing knowledge in the open literature to describe the linkage between inhibition of acetylcholinesterase (AChE) and the subsequent mortality resulting from impacts at cholinergic receptors. The AOP takes a chemical category approa...

  18. Method for inhibiting corrosion

    SciTech Connect

    Wu, Y.; Stapp, P. R.

    1985-12-03

    A composition comprising the reaction adduct or neutralized product resulting from the reaction of a maleic anhydride and an oil containing a polynuclear aromatic compound is provided which, when applied to a metal surface, forms a corrosion-inhibiting film thereon. The composition is particularly useful in the treatment of down-hole metal surfaces in oil and gas wells to inhibit the corrosion of the metal.

  19. Pharmacology of cortical inhibition

    PubMed Central

    Krnjević, K.; Randić, Mirjana; Straughan, D. W.

    1966-01-01

    1. We have studied the effects of various pharmacological agents on the cortical inhibitory process described in the previous two papers (Krnjević, Randić & Straughan, 1966a, b); the drugs were mostly administered directly by iontophoresis from micropipettes and by systemic injection (I.V.). 2. Strychnine given by iontophoresis or by the application of a strong solution to the cortical surface potentiated excitatory effects, but very large iontophoretic doses also depressed neuronal firing. Subconvulsive and even convulsive systemic doses had little or no effect at the cortical level. There was no evidence, with any method of application, that strychnine directly interferes with the inhibitory process. 3. Tetanus toxin, obtained from two different sources and injected into the cortex 12-48 hr previously, also failed to block cortical inhibition selectively. As with strychnine, there was some evidence of increased responses to excitatory inputs. 4. Other convulsant drugs which failed to block cortical inhibition included picrotoxin, pentamethylene tetrazole, thiosemicarbazide, longchain ω-amino acids and morphine. 5. The inhibition was not obviously affected by cholinomimetic agents or by antagonists of ACh. 6. α- and β-antagonists of adrenergic transmission were also ineffective. 7. Cortical inhibition was fully developed in the presence of several general anaesthetics, including ether, Dial, pentobarbitone, Mg and chloralose. A temporary reduction in inhibition which is sometimes observed after systemic doses of pentobarbitone, is probably secondary to a fall in blood pressure. 8. Several central excitants such as amphetamine, caffeine and lobeline also failed to show any specific antagonistic action on cortical inhibition. 9. In view of the possibility that GABA is the chemical agent mediating cortical inhibition, an attempt was made to find a selective antagonist of its depressant action on cortical neurones. None of the agents listed above, nor any other

  20. Protective effects of Lactobacilli, Bifidobacteria and Staphylococci on the infection of cultured HT29 cells with different enterohemorrhagic Escherichia coli serotypes are strain-specific.

    PubMed

    Stöber, Helen; Maier, Eva; Schmidt, Herbert

    2010-11-15

    In this study, we investigated the interaction of 19 benign strains of lactic acid bacteria (LAB), bifidobacteria and staphylococci with enterohemorrhagic Escherichia coli (EHEC) strains of different serotypes and virulence gene spectrum in a HT29 cell culture infection model. As markers of infection, the secretion of interleukin 8 (IL-8) and the activation of the transcription factor NF-κB by the infected cells were determined. With 12 of 19 tested strains, a weak reduction <30% of IL-8 secretion of HT29 cells after co-infection with EHEC O157:H7 strain EDL933 was observed. Six strains reduced the IL-8 secretion up to 60% and the strain B. adolescentis DSMZ 20086 decreased the IL-8 production about 73%. In further co-infection assays with EHEC strains of the serotypes O103:H2, O26:H⁻, 0157:H⁻ and O113:H21, different abilities of the LAB strains to influence the infection with the different EHEC strains were noted. Therefore, the protective anti-inflammatory effect is strain specific for LAB and also depends on the application of EHEC strains with different sero- and virulence types. The differences in efficacy of protective bacteria against certain EHEC strains were unexpected and have not been shown so far. Furthermore, we could show that the inhibitory effects were not attributed to lower adhesion abilities of EHEC to the production of organic acids by the benign bacteria. In addition, viable bacteria are needed to inhibit the IL-8 secretion. Moreover, the NF-κB activation was reduced significantly by all tested LAB strains in co-infection trials, but was not strain-specific. The model described here is useful to screen for basic effects of protective bacteria that are able to counteract EHEC-mediated effects on human cells, and to study the molecular interaction between bacteria as well as between bacteria and human cultured cells. PMID:20920833

  1. Inhibition of enteropathogens adhesion to human enterocyte-like HT-29 cells by a dairy strain of Propionibacterium acidipropionici.

    PubMed

    Zárate, G; Palacios, J M; Villena, J; Zúñiga-Hansen, M E

    2016-06-01

    Adhesion to the host intestinal mucosa is considered relevant for orally delivered probiotics as it prolongs their persistence in the gut and their health promoting effects. Classical propionibacteria are microorganisms of interest due to their role as dairy starters as well as for their functions as probiotics. Propionibacterium acidipropionici Q4, is a dairy strain isolated from a Swiss-type cheese made in Argentina that displays probiotic potential. In the present work we assessed the ability of this strain to adhere to the human enterocyte-like HT-29 cell line and to counteract the adhesion of two common human enteropathogens, such as Escherichia coli C3 and Salmonella Enteritidis 90/390. The results were compared with those obtained with the well-known probiotic Lactobacillus rhamnosus GG. P. acidipropionici Q4 showed a high adhesion capacity, even higher than the reference strain L. rhamnosus GG (42.3±4.4% and 36.2±2.3%, respectively), whereas adhesion of enteropathogens was significantly lower (25.2±2.2% for E. coli and 21.0±3.4% for S. Enteritidis). Propionibacteria as well as lactobacilli were able to inhibit by exclusion and competition the adherence of E. coli C3 and S. Enteritidis 90/390 whereas only L. rhamnosus GG displaced S. Enteritidis from HT-29 intestinal cells. Inhibition of pathogens by propionibacteria was not exerted by antimicrobials or coaggregation but was mainly due to exclusion by cell surface components, such as proteins and carbohydrates. The relevance of cell surface proteins (CSP) for preventing pathogens infection was confirmed by their concentration dependent effect observed for both pathogens: 100 µg/ml of CSP inhibited E. coli attachment almost as untreated propionibacteria, whereas it partially inhibited the attachment of S. Enteritidis. Results suggest that P. acidipropionici Q4 could be considered for the development of propionibacteria containing functional foods helpful in counteracting enteropathogen infection. PMID

  2. Nitric oxide inhibition strategies

    PubMed Central

    Wong, Vivian (Wai Chong); Lerner, Ethan

    2015-01-01

    Nitric oxide is involved in many physiologic processes. There are efforts, described elsewhere in this volume, to deliver nitric oxide to tissues as a therapy. Nitric oxide also contributes to pathophysiologic processes. Inhibiting nitric oxide or its production can thus also be of therapeutic benefit. This article addresses such inhibitory strategies. PMID:26634146

  3. Inhibition of nitrosation.

    PubMed

    Bartsch, H; Pignatelli, B; Calmels, S; Ohshima, H

    1993-01-01

    Humans are exposed through ingestion or inhalation to preformed N-nitroso compounds (NOC) in the environment and through the endogenous nitrosation of amino precursors in the body. Activated macrophages and bacterial strains isolated from human infections can enzymatically produce nitrosating agents and NOC from precursors at neutral pH. As a consequence, endogenous nitrosation may occur at various sites of the body, such as the oral cavity, stomach, urinary bladder, and at other sites of infection or inflammation. Numerous substances to which humans are exposed have been identified and shown to inhibit formation of NOC. Such inhibitors include vitamins C and E, certain phenolic compounds, and complex mixtures such as fruit and vegetable juices or other plant extracts. Nitrosation inhibitors normally destroy the nitrosating agents and, thus, act as competitors for the amino compound that serves as substrate for the nitrosating species. Independently, epidemiological studies have already established that fresh fruits and vegetables that are sources of vitamin C, other vitamins, and polyphenols have a protective effect against cancers at various sites and in particular gastric cancer. This article briefly reviews (a) the chemistry of NOC formation and inhibition; (b) the studies in experimental animals that showed that inhibition of endogenous NOC synthesis leads to a reduction of toxic, mutagenic, and carcinogenic effects; (c) recent studies in humans where the degree of inhibition of endogenous NOC synthesis was directly quantified; and (d) the possible contribution of nitrosation inhibitors to human cancer prevention. PMID:8304939

  4. Zinc Inhibits Hedgehog Autoprocessing

    PubMed Central

    Xie, Jian; Owen, Timothy; Xia, Ke; Singh, Ajay Vikram; Tou, Emiley; Li, Lingyun; Arduini, Brigitte; Li, Hongmin; Wan, Leo Q.; Callahan, Brian; Wang, Chunyu

    2015-01-01

    Zinc is an essential trace element with wide-ranging biological functions, whereas the Hedgehog (Hh) signaling pathway plays crucial roles in both development and disease. Here we show that there is a mechanistic link between zinc and Hh signaling. The upstream activator of Hh signaling, the Hh ligand, originates from Hh autoprocessing, which converts the Hh precursor protein to the Hh ligand. In an in vitro Hh autoprocessing assay we show that zinc inhibits Hh autoprocessing with a Ki of 2 μm. We then demonstrate that zinc inhibits Hh autoprocessing in a cellular environment with experiments in primary rat astrocyte culture. Solution NMR reveals that zinc binds the active site residues of the Hh autoprocessing domain to inhibit autoprocessing, and isothermal titration calorimetry provided the thermodynamics of the binding. In normal physiology, zinc likely acts as a negative regulator of Hh autoprocessing and inhibits the generation of Hh ligand and Hh signaling. In many diseases, zinc deficiency and elevated level of Hh ligand co-exist, including prostate cancer, lung cancer, ovarian cancer, and autism. Our data suggest a causal relationship between zinc deficiency and the overproduction of Hh ligand. PMID:25787080

  5. Substrate inhibition of transketolase.

    PubMed

    Solovjeva, Olga N; Kovina, Marina V; Kochetov, German A

    2016-03-01

    We studied the influence of the acceptor substrate of transketolase on the activity of the enzyme in the presence of reductants. Ribose-5-phosphate in the presence of cyanoborohydride decreased the transketolase catalytic activity. The inhibition is caused by the loss of catalytic function of the coenzyme-thiamine diphosphate. Similar inhibitory effect was observed in the presence of NADPH. This could indicate its possible regulatory role not only towards transketolase, but also towards the pentose phosphate pathway of carbohydrate metabolism overall, taking into account the fact that it inhibits not only transketolase but also another enzyme of the pentose phosphate pathway--glucose 6-phosphate dehydrogenase [Eggleston L.V., Krebs H.A. Regulation of the pentose phosphate cycle, Biochem. J. 138 (1974) 425-435]. PMID:26708478

  6. Drugs that inhibit complement.

    PubMed

    Schrezenmeier, Hubert; Höchsmann, Britta

    2012-02-01

    The complement system is an important part of the innate immune system. Complement plays a crucial role in the pathophysiology of many disorders. Despite the pivotal role of the complement system, an approved targeted inhibitor of a complement factor became available only recently. Eculizumab is a humanized monoclonal antibody that inhibits complement factor C5. It is a targeted, disease modifying, treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was approved be the US FDA and the European Commission in 2007. In this review we will update the experience with eculizumab in PNH and discuss potential use of eculizumab in other disorders (e.g. cold agglutinin disease; atypical HUS) and new approaches to complement inhibition with drugs other than eculizumab. PMID:22169380

  7. Simvastatin Inhibits Airway Hyperreactivity

    PubMed Central

    Zeki, Amir A.; Franzi, Lisa; Last, Jerold; Kenyon, Nicholas J.

    2009-01-01

    Rationale: Statin use has been linked to improved lung health in asthma and chronic obstructive pulmonary disease. We hypothesize that statins inhibit allergic airway inflammation and reduce airway hyperreactivity via a mevalonate-dependent mechanism. Objectives: To determine whether simvastatin attenuates airway inflammation and improves lung physiology by mevalonate pathway inhibition. Methods: BALB/c mice were sensitized to ovalbumin over 4 weeks and exposed to 1% ovalbumin aerosol over 2 weeks. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) was injected intraperitoneally before each ovalbumin exposure. Measurements and Main Results: Simvastatin reduced total lung lavage leukocytes, eosinophils, and macrophages (P < 0.05) in the ovalbumin-exposed mice. Cotreatment with mevalonate, in addition to simvastatin, reversed the antiinflammatory effects seen with simvastatin alone (P < 0.05). Lung lavage IL-4, IL-13, and tumor necrosis factor-α levels were all reduced by treatment with simvastatin (P < 0.05). Simvastatin treatment before methacholine bronchial challenge increased lung compliance and reduced airway hyperreactivity (P = 0.0001). Conclusions: Simvastatin attenuates allergic airway inflammation, inhibits key helper T cell type 1 and 2 chemokines, and improves lung physiology in a mouse model of asthma. The mevalonate pathway appears to modulate allergic airway inflammation, while the beneficial effects of simvastatin on lung compliance and airway hyperreactivity may be independent of the mevalonate pathway. Simvastatin and similar agents that modulate the mevalonate pathway may prove to be treatments for inflammatory airway diseases, such as asthma. PMID:19608720

  8. Beneficial bacteria inhibit cachexia.

    PubMed

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  9. Pharmacological Inhibition of FTO

    PubMed Central

    McMurray, Fiona; Demetriades, Marina; Aik, WeiShen; Merkestein, Myrte; Kramer, Holger; Andrew, Daniel S.; Scudamore, Cheryl L.; Hough, Tertius A.; Wells, Sara; Ashcroft, Frances M.; McDonough, Michael A.; Schofield, Christopher J.; Cox, Roger D.

    2015-01-01

    In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO’s demethylase activity could be therapeutically useful for the treatment of obesity. PMID:25830347

  10. Beneficial bacteria inhibit cachexia

    PubMed Central

    Varian, Bernard J.; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R.; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M.; Mirabal, Sheyla; Erdman, Susan E.

    2016-01-01

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  11. Pharmacological inhibition of FTO.

    PubMed

    McMurray, Fiona; Demetriades, Marina; Aik, WeiShen; Merkestein, Myrte; Kramer, Holger; Andrew, Daniel S; Scudamore, Cheryl L; Hough, Tertius A; Wells, Sara; Ashcroft, Frances M; McDonough, Michael A; Schofield, Christopher J; Cox, Roger D

    2015-01-01

    In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO's demethylase activity could be therapeutically useful for the treatment of obesity. PMID:25830347

  12. Biodiversity of spoilage lactobacilli: phenotypic characterisation.

    PubMed

    Sanders, J W; Oomes, S J C M; Membré, J-M; Wegkamp, A; Wels, M

    2015-02-01

    Preventing food spoilage is a challenge for the food industry, especially when applying mild preservation methods and when avoiding the use of preservatives. Therefore, it is essential to explore the boundaries of preservation by better understanding the causative microbes, their phenotypic behaviour and their genetic makeup. Traditionally in food microbiology, single strains or small sets of selected strains are studied. Here a collection of 120 strains of 6 different spoilage related Lactobacillus species and a multitude of sources was prepared and their growth characteristics determined in 384-well plates by optical density measurements (OD) over 20 days, for 20 carbon source-related phenotypic parameters and 25 preservation-related phenotypic parameters. Growth under all conditions was highly strain specific and there was no correlation of phenotypes at the species level. On average Lactobacillus brevis strains were amongst the most robust whereas Lactobacillus fructivorans strains had a much narrower growth range. The biodiversity data allowed the definition of preservation boundaries on the basis of the number of Lactobacillus strains that reached a threshold OD, which is different from current methods that are based on growth ability or growth rate of a few selected strains. Genetic information on these microbes and a correlation study will improve the mechanistic understanding of preservation resistance and this will support the future development of superior screening and preservation methods. PMID:25481060

  13. Inhibition of food intake.

    PubMed

    Young, Andrew

    2005-01-01

    Over 100 publications, principally from five groups, describe an effect of amylin and amylin analogs in inhibition of food intake in animals and humans. The major groups contributing to this area are those of the following: Chance and Balasubramaniam (Balasubramaniam et al., 1991a,b; Chance et al., 1991a,b, 1992a,b, 1993). Morley, Flood, and Edwards (Edwards and Morley, 1992; Flood and Morley, 1992; Macintosh et al., 2000; Morley and Flood, 1991, 1994; Morley et al., 1992, 1993, 1994, 1995, 1996, 1997). Lutz, Geary, and others (Barth et al., 2003; Del Prete et al., 2002; Lutz et al., 1994, 1995a,b, 1996a,b, 1997a,b, 1998a,b,c, 2000a,b, 2001a,b,c, 2003; Mollet et al., 2001, 2003a,b, 2004; Riediger et al., 2002, 2004; Rushing et al., 2000a,b, 2001, 2002). Workers at Amylin Pharmaceuticals Inc., or their collaborators (Bhavsar et al., 1995, 1996, 1997a, 1998; Birkemo et al., 1995; Chapman et al., 2004a,b; Edwards et al., 1998; Feinle et al., 2002; Mack et al., 2003; Riediger et al., 1999; Roth et al., 2004; Watkins et al., 1996; Weyer et al., 2004; Young, 1997; Young and Bhavsar, 1996). Arnelo, Reidelberger, and others (Arnelo et al., 1996a,b, 1997a,b, 1998, 2000; Fruin et al., 1997; Granqvist et al., 1997; Reidelberger et al., 2001, 2002, 2004). The magnitude of amylin inhibition of food intake, and its potency for this effect when delivered peripherally, suggests a physiological role in satiogenesis. Increases in food intake following disruption of amylin signal-signaling (e.g., with amylin receptor blockade, or with amylin gene knock-out mice) further support a role of endogenous amylin to tonically restrict nutrient intake. In addition, synergies with other endogenous satiety agents may be present, and convey greater physiological importance than is conveyed by single signals. The anorectic effect of amylin is consistent with a classic amylin pharmacology. The anorectic effect of peripheral amylin appears principally due to a direct action at the area postrema

  14. Checkpoint inhibition in meningiomas.

    PubMed

    Bi, Wenya Linda; Wu, Winona W; Santagata, Sandro; Reardon, David A; Dunn, Ian F

    2016-06-01

    Meningiomas are increasingly appreciated to share similar features with other intra-axial central nervous system neoplasms as well as systemic cancers. Immune checkpoint inhibition has emerged as a promising therapy in a number of cancers, with durable responses of years in a subset of patients. Several lines of evidence support a role for immune-based therapeutic strategies in the management of meningiomas, especially high-grade subtypes. Meningiomas frequently originate juxtaposed to venous sinuses, where an anatomic conduit for lymphatic drainage resides. Multiple populations of immune cells have been observed in meningiomas. PD-1/PD-L1 mediated immunosuppression has been implicated in high-grade meningiomas, with association between PD-L1 expression with negative prognostic outcome. These data point to the promise of future combinatorial therapeutic strategies in meningioma. PMID:27197540

  15. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions.

    PubMed Central

    Bernet, M F; Brassart, D; Neeser, J R; Servin, A L

    1993-01-01

    Thirteen human bifidobacterial strains were tested for their abilities to adhere to human enterocyte-like Caco-2 cells in culture. The adhering strains were also tested for binding to the mucus produced by the human mucus-secreting HT29-MTX cell line in culture. A high level of calcium-independent adherence was observed for Bifidobacterium breve 4, for Bifidobacterium infantis 1, and for three fresh human isolates from adults. As observed by scanning electron microscopy, adhesion occurs to the apical brush border of the enterocytic Caco-2 cells and to the mucus secreted by the HT29-MTX mucus-secreting cells. The bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage. The adhesion to Caco-2 cells of bifidobacteria did not require calcium and was mediated by a proteinaceous adhesion-promoting factor which was present both in the bacterial whole cells and in the spent supernatant of bifidobacterium culture. This adhesion-promoting factor appeared species specific, as are the adhesion-promoting factors of lactobacilli. We investigated the inhibitory effect of adhering human bifidobacterial strains against intestinal cell monolayer colonization by a variety of diarrheagenic bacteria. B. breve 4, B. infantis 1, and fresh human isolates were shown to inhibit cell association of enterotoxigenic, enteropathogenic, diffusely adhering Escherichia coli and Salmonella typhimurium strains to enterocytic Caco-2 cells in a concentration-dependent manner. Moreover, B. breve 4 and B. infantis 1 strains inhibited, dose dependently, Caco-2 cell invasion by enteropathogenic E. coli, Yersinia pseudotuberculosis, and S. typhimurium strains. Images PMID:8285709

  16. Can Arousal Modulate Response Inhibition?

    ERIC Educational Resources Information Center

    Weinbach, Noam; Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai

    2015-01-01

    The goal of the present study was to examine if and how arousal can modulate response inhibition. Two competing hypotheses can be drawn from previous literature. One holds that alerting cues that elevate arousal should result in an impulsive response and therefore impair response inhibition. The other suggests that alerting enhances processing of…

  17. Protoporphyrinogen Oxidase-Inhibiting Herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protoporphyrinogen oxidase-inhibiting herbicides (also referred to as Protox- or PPO-inhibiting herbicides) were commercialized in the 1960s and their market share reached approximately 10% (total herbicide active ingredient output) in the late 1990’s. The wide-spread adoption of glyphosate-resista...

  18. Inhibition of cellulases by phenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of enzymes by the end products that they make is a well-known phenomenon. Another form of inhibition is manifested by the decrease in hydrolysis of pretreated cellulosic material as the concentration of solid biomass material increases, even though the ratio of enzyme to cellulose is...

  19. Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex.

    PubMed

    Large, Adam M; Vogler, Nathan W; Mielo, Samantha; Oswald, Anne-Marie M

    2016-02-23

    Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features--balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class--suggest mechanisms for olfactory processing that may extend to other sensory cortices. PMID:26858458

  20. Catalase is inhibited by flavonoids.

    PubMed

    Krych, Justyna; Gebicka, Lidia

    2013-07-01

    Catalases, heme enzymes, which catalyze decomposition of hydrogen peroxide to water and molecular oxygen, belong to the antioxidant defense system of the cell. In this work we have shown that catalase from bovine liver is inhibited by flavonoids. The inhibition is, at least partially, due to the formation of hydrogen bonds between catalase and flavonoids. In the presence of some flavonoids the formation of unreactive catalase compound II has been detected. The most potent catalase inhibitors among the tested flavonoids have appeared myricetin, epicatechin gallate and epigallocatechin gallate. The relationship between the degree of enzyme inhibition and molecular structure of flavonoids has been analyzed. PMID:23567286

  1. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice

    PubMed Central

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-01-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori,Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii,JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. PMID:25771812

  2. Current issues in arthrogenous inhibition.

    PubMed Central

    Young, A

    1993-01-01

    Joint disease commonly results in severe weakness of associated muscles. Efforts to restore strength are often unsuccessful, even in the absence of pain. This is because of the underlying inhibition of motoneurones by afferent signals from in and around the affected joint, 'arthrogenous inhibition'. This phenomenon has received scant scientific attention, but several experimental techniques are now available with which it can be studied in man. Animal studies suggest possible neurophysiological mechanisms. Selective atrophy of different muscle fibre types, perhaps implying selective inhibition of different types of motor unit, remains unexplained, however. The severity of arthrogenous inhibition can be temporarily reduced by silencing afferent traffic but none of the techniques is yet generally applicable in practice. An alternative therapeutic approach is to produce involuntary muscle contractions by electrical stimulation. The effectiveness of therapeutic electrical stimulation may depend on the frequency and other characteristics of the stimulus. PMID:8250616

  3. Infrared inhibition of embryonic hearts

    NASA Astrophysics Data System (ADS)

    Wang, Yves T.; Rollins, Andrew M.; Jenkins, Michael W.

    2016-06-01

    Infrared control is a new technique that uses pulsed infrared lasers to thermally alter electrical activity. Originally developed for nerves, we have applied this technology to embryonic hearts using a quail model, previously demonstrating infrared stimulation and, here, infrared inhibition. Infrared inhibition enables repeatable and reversible block, stopping cardiac contractions for several seconds. Normal beating resumes after the laser is turned off. The block can be spatially specific, affecting propagation on the ventricle or initiation on the atrium. Optical mapping showed that the block affects action potentials and not just calcium or contraction. Increased resting intracellular calcium was observed after a 30-s exposure to the inhibition laser, which likely resulted in reduced mechanical function. Further optimization of the laser illumination should reduce potential damage. Stopping cardiac contractions by disrupting electrical activity with infrared inhibition has the potential to be a powerful tool for studying the developing heart.

  4. Inhibition of MMPs by alcohols

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453

  5. Behavioral inhibition and childhood stuttering

    PubMed Central

    Choi, Dahye; Conture, Edward G.; Walden, Tedra A.; Lambert, Warren E.; Tumanova, Victoria

    2013-01-01

    Purpose The purpose of this study was to assess the relation of behavioral inhibition to stuttering and speech/language output in preschool-age children who do (CWS) and do not stutter (CWNS). Method Participants were preschool-age (ages 36 to 68 months), including 26 CWS (22 males) and 28 CWNS (13 males). Participants’ behavioral inhibition (BI) was assessed by measuring the latency to their sixth spontaneous comment during conversation with an unfamiliar experimenter, using methodology developed by Kagan, Reznick, and Gibbons (1989). In addition to these measures of BI, each participant’s stuttered and non-stuttered disfluencies and mean length of utterance (in morphemes) were assessed. Results Among the more salient findings, it was found that (1) there was no significant difference in BI between preschool-age CWS and CWNS as a group, (2) when extremely high versus low inhibited children were selected, there were more CWS with higher BI and fewer CWS with lower BI when compared to their CWNS peers, and (3) more behaviorally inhibited CWS, when compared to less behaviorally inhibited CWS, exhibited more stuttering. Conclusions Findings are taken to suggest that one aspect of temperament (i.e., behavioral inhibition) is exhibited by some preschool-age CWS and that these children stutter more than CWS with lower behavioral inhibition. The present results seem to support continued study of the association between young children’s temperamental characteristics and stuttering, the diagnostic entity (i.e., CWS versus CWNS), as well as stuttering, the behavior (e.g., frequency of stuttered disfluencies). PMID:23773669

  6. Remote inhibition of polymer degradation.

    SciTech Connect

    Clough, Roger Lee; Celina, Mathias Christopher

    2005-08-01

    Polymer degradation has been explored on the basis of synergistic infectious and inhibitive interaction between separate materials. A dual stage chemiluminescence detection system with individually controlled hot stages was applied to probe for interaction effects during polymer degradation in an oxidizing environment. Experimental confirmation was obtained that volatile antioxidants can be transferred over a relatively large distance. The thermal degradation of a polypropylene (PP) sample receiving traces of inhibitive antioxidants from a remote source is delayed. Similarly, volatiles from two stabilized elastomers were also capable of retarding a degradation process remotely. This observation demonstrates inhibitive cross-talk as a novel interactive phenomenon between different polymers and is consequential for understanding general polymer interactions, fundamental degradation processes and long-term aging effects of multiple materials in a single environment.

  7. Post-Stop-Signal Adjustments: Inhibition Improves Subsequent Inhibition

    ERIC Educational Resources Information Center

    Bissett, Patrick G.; Logan, Gordon D.

    2012-01-01

    Performance in the stop-signal paradigm involves a balance between going and stopping, and one way that this balance is struck is through shifting priority away from the go task, slowing responses after a stop signal, and improving the probability of inhibition. In 6 experiments, the authors tested whether there is a corresponding shift in…

  8. Homo economicus belief inhibits trust.

    PubMed

    Xin, Ziqiang; Liu, Guofang

    2013-01-01

    As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners' benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals' homo economicus belief and inhibit their trust. It seems that people's increasing homo economicus belief may serve as one cause of the worldwide decline of trust. PMID:24146907

  9. Homo Economicus Belief Inhibits Trust

    PubMed Central

    Xin, Ziqiang; Liu, Guofang

    2013-01-01

    As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners’ benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals’ homo economicus belief and inhibit their trust. It seems that people’s increasing homo economicus belief may serve as one cause of the worldwide decline of trust. PMID:24146907

  10. Action spectra for photosynthetic inhibition

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S.; Camp, L. B.

    1981-01-01

    The ultraviolet action spectrum for photosynthesis inhibition was determined to fall between that of the general DNA action spectrum and the generalized plant action spectrum. The characteristics of this action spectrum suggest that a combination of pronounced increase in effectiveness with decreasing wavelength, substantial specificity for the UV-B waveband, and very diminished response in the UV-A waveband result in large radiation amplification factors when the action spectra are used as weighting functions. Attempted determination of dose/response relationships for leaf disc inhibition provided inconclusive data from which to deconvolute an action spectrum.

  11. Human Cytomegalovirus Inhibits Erythropoietin Production

    PubMed Central

    Dzabic, Mensur; Bakker, Frank; Davoudi, Belghis; Jeffery, Hannah; Religa, Piotr; Bojakowski, Krzysztof; Yaiw, Koon-Chu; Rahbar, Afsar; Söderberg-Naucler, Cecilia

    2014-01-01

    Anemia is a feature of CKD and a complication of renal transplantation, often caused by impaired production of erythropoietin. The kidney is a target organ for human cytomegalovirus (hCMV) in such patients, but it is not known whether hCMV effects erythropoietin production. We found that kidneys from patients with CKD were positive for hCMV protein and that blood levels of hCMV IgG inversely correlated with red blood cell count. In mice, systemic murine cytomegalovirus infection decreased serum erythropoietin levels. In human erythropoietin-producing cells, hCMV inhibited hypoxia-induced expression of erythropoietin mRNA and protein. hCMV early gene expression was responsible, as ultraviolet-inactivated virus had no effect and valganciclovir treatment showed that late gene expression was nonessential. Hypoxia-induced gene transcription is controlled by the transcription factors hypoxia-inducible transcription factor (HIF)-1α and HIF2α, which are constitutively produced but stable only under low oxygen conditions. We found that hCMV inhibited constitutive production of HIF2α mRNA. HIF2α is thought to be the master regulator of erythropoietin transcription. Single-cell analysis revealed that nuclear accumulation of HIF2α was inhibited in hCMV-infected cells, and the extent of inhibition correlated with hCMV protein expression. Our findings suggest that renal hCMV infection could induce or exacerbate anemia in patients. PMID:24722450

  12. Islam Does Not Inhibit Science.

    ERIC Educational Resources Information Center

    Shanavas, T. O.

    1999-01-01

    Compares the science/religion relationship in both Christian and Islamic countries. Presents Muslim scholars' ideas about the presence of humans on earth. Presents ideas on active nature, Noah's curse, and the age of the universe. Refutes the notion that Islam inhibited science and advocates the belief that Islam promoted science. (YDS)

  13. Infant Predictors of Behavioural Inhibition

    ERIC Educational Resources Information Center

    Moehler, Eva; Kagan, Jerome; Oelkers-Ax, Rieke; Brunner, Romuald; Poustka, Luise; Haffner, Johann; Resch, Franz

    2008-01-01

    Behavioural inhibition in the second year of life is a hypothesized predictor for shyness, social anxiety and depression in later childhood, adolescence and even adulthood. To search for the earliest indicators of this fundamental temperamental trait, this study examined whether behavioural characteristics in early infancy can predict behavioural…

  14. Inhibition Patterns the Whisking Rhythm.

    PubMed

    Sreenivasan, Varun; Petersen, Carl C H

    2016-04-20

    In this issue of Neuron, Deschênes et al. (2016) propose that rhythmic inhibition of whisker motor neurons is a key pattern generator underlying exploratory whisking. The inhibitory premotor neurons located in the brainstem reticular formation are synchronized by breathing-related oscillators. PMID:27100193

  15. Can arousal modulate response inhibition?

    PubMed

    Weinbach, Noam; Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai

    2015-11-01

    The goal of the present study was to examine if and how arousal can modulate response inhibition. Two competing hypotheses can be drawn from previous literature. One holds that alerting cues that elevate arousal should result in an impulsive response and therefore impair response inhibition. The other suggests that alerting enhances processing of salient events and can therefore enhance processing of a cue that indicates to withhold a response and improve response inhibition. In a stop-signal task, participants were required to withhold prepotent responses when a stop signal followed target onset. Abrupt alerting cues preceded the target in one half of the trials. The results showed that alerting improved response inhibition as indicated by shorter stop-signal reaction times following an alerting cue compared with a no-alerting condition. We conclude that modulation of low-level operations can influence what are considered to be higher cognitive functions to achieve optimal goal-directed behavior. However, we stress that such interactions should be treated cautiously as they do not always reflect direct links between lower and higher cognitive mechanisms. PMID:25867610

  16. JNK Inhibition Inhibits Lateral Line Neuromast Hair Cell Development

    PubMed Central

    Cai, Chengfu; Lin, Jinchao; Sun, Shaoyang; He, Yingzi

    2016-01-01

    JNK signaling is known to play a role in regulating cell behaviors such as cell cycle progression, cell proliferation, and apoptosis, and recent studies have suggested important roles for JNK signaling in embryonic development. However, the precise function of JNK signaling in hair cell development remains poorly studied. In this study, we used the small molecule JNK inhibitor SP600125 to examine the effect of JNK signaling abrogation on the development of hair cells in the zebrafish lateral line neuromast. Our results showed that SP600125 reduced the numbers of both hair cells and supporting cells in neuromasts during larval development in a dose-dependent manner. Additionally, JNK inhibition strongly inhibited the proliferation of neuromast cells, which likely explains the decrease in the number of differentiated hair cells in inhibitor-treated larvae. Furthermore, western blot and in situ analysis showed that JNK inhibition induced cell cycle arrest through induction of p21 expression. We also showed that SP600125 induced cell death in developing neuromasts as measured by cleaved caspase-3 immunohistochemistry, and this was accompanied with an induction of p53 gene expression. Together these results indicate that JNK might be an important regulator in the development of hair cells in the lateral line in zebrafish by controlling both cell cycle progression and apoptosis. PMID:26903805

  17. Honokiol inhibits lung tumorigenesis through inhibition of mitochondrial function.

    PubMed

    Pan, Jing; Zhang, Qi; Liu, Qian; Komas, Steven M; Kalyanaraman, Balaraman; Lubet, Ronald A; Wang, Yian; You, Ming

    2014-11-01

    Honokiol is an important bioactive compound found in the bark of Magnolia tree. It is a nonadipogenic PPARγ agonist and capable of inhibiting the growth of a variety of tumor types both in vitro and in xenograft models. However, to fully appreciate the potential chemopreventive activity of honokiol, a less artificial model system is required. To that end, this study examined the chemopreventive efficacy of honokiol in an initiation model of lung squamous cell carcinoma (SCC). This model system uses the carcinogen N-nitroso-trischloroethylurea (NTCU), which is applied topically, reliably triggering the development of SCC within 24 to 26 weeks. Administration of honokiol significantly reduced the percentage of bronchial that exhibit abnormal lung SCC histology from 24.4% bronchial in control to 11.0% bronchial in honokiol-treated group (P = 0.01) while protecting normal bronchial histology (present in 20.5% of bronchial in control group and 38.5% of bronchial in honokiol-treated group. P = 0.004). P63 staining at the SCC site confirmed the lung SCCs phenotype. In vitro studies revealed that honokiol inhibited lung SCC cells proliferation, arrested cells at the G1-S cell-cycle checkpoint, while also leading to increased apoptosis. Our study showed that interfering with mitochondrial respiration is a novel mechanism by which honokiol changed redox status in the mitochondria, triggered apoptosis, and finally leads to the inhibition of lung SCC. This novel mechanism of targeting mitochondrial suggests honokiol as a potential lung SCC chemopreventive agent. PMID:25245764

  18. MMP inhibition in prostate cancer.

    PubMed

    Lokeshwar, B L

    1999-06-30

    Matrix metalloproteinases (MMPs) play a significant role during the development and metastasis of prostate cancer (CaP). CaP cells secrete high levels of MMPs and low levels of endogenous MMP inhibitors (TIMPs), thus creating an excess balance of MMPs. Established CaP cell lines that express high levels of MMPs frequently metastasize to the bone and the lungs. Drugs such as Taxol and alendronate that reduce cell motility and calcium metabolism reduce bony metastasis of xenografted CaP tumors. We tested several synthetic, nontoxic inhibitors of MMPs that can be administered orally, including doxycycline (DC) and chemically modified tetracyclines (CMTs) on CaP cells in vitro and on a rat CaP model in vivo. Among several anti-MMP agents tested, CMT-3 (6-deoxy, 6-demethyl,4-de-dimethylamino tetracycline) showed highest activity against CaP cell invasion and cell proliferation. Micromolar concentration of CMT-3 and DC inhibited both the secretion and activity of MMPs by CaP cells. When tested for in vivo efficacy in the Dunning rat CaP model by daily oral gavage, CMT-3 and DC both reduced the lung metastases (> 50%). CMT-3, but not DC, inhibited tumor incidence (55 +/- 9%) and also reduced the tumor growth rate (27 +/- 9.3%). More significantly, the drugs showed minimum systemic toxicity. Ongoing studies indicate that CMT-3 may inhibit the skeletal metastases of CaP cells and delay the onset of paraplegia due to lumbar metastases. These preclinical studies provide the basis for clinical trials of CMT-3 for the treatment of metastatic disease. PMID:10415736

  19. Behavioral inhibition and obsessive-compulsive disorder.

    PubMed

    Coles, Meredith E; Schofield, Casey A; Pietrefesa, Ashley S

    2006-01-01

    Behavioral inhibition is frequently cited as a vulnerability factor for development of anxiety. However, few studies have examined the unique relationship between behavioral inhibition and obsessive-compulsive disorder (OCD). Therefore, the current study addressed the relationship between behavioral inhibition and OCD in a number of ways. In a large unselected student sample, frequency of current OC symptoms was significantly correlated with retrospective self-reports of total levels of childhood behavioral inhibition. In addition, frequency of current OC symptoms was also significantly correlated with both social and nonsocial components of behavioral inhibition. Further, there was evidence for a unique relationship between behavioral inhibition and OC symptoms beyond the relationship of behavioral inhibition and social anxiety. In addition, results showed that reports of childhood levels of behavioral inhibition significantly predicted levels of OCD symptoms in adulthood. Finally, preliminary evidence suggested that behavioral inhibition may be more strongly associated with some types of OC symptoms than others, and that overprotective parenting may moderate the impact of behavioral inhibition on OC symptoms. The current findings suggest the utility of additional research examining the role of behavioral inhibition in the etiology of OCD. PMID:16621440

  20. Huntingtin inhibits caspase-3 activation

    PubMed Central

    Zhang, Yu; Leavitt, Blair R; van Raamsdonk, Jeremy M; Dragatsis, Ioannis; Goldowitz, Dan; MacDonald, Marcy E; Hayden, Michael R; Friedlander, Robert M

    2006-01-01

    Huntington's disease results from a mutation in the HD gene encoding for the protein huntingtin. The function of huntingtin, although beginning to be elucidated, remains largely unclear. To probe the prosurvival function of huntingtin, we modulate levels of wild-type huntingtin in a number of cellular and in vivo models. Huntingtin depletion resulted in caspase-3 activation, and overexpression of huntingtin resulted in caspase-3 inhibition. Additionally, we demonstrate that huntingtin physically interacts with active caspase-3. Interestingly, mutant huntingtin binds active caspase-3 with a lower affinity and lower inhibitory effect on active caspase-3 than does wild-type huntingtin. Although reduction of huntingtin levels resulted in caspase-3 activation in all conditions examined, the cellular response was cell-type specific. Depletion of huntingtin resulted in either overt cell death, or in increased vulnerability to cell death. These data demonstrate that huntingtin inhibits caspase-3 activity, suggesting a mechanism whereby caspase-mediated huntingtin depletion results in a detrimental amplification cascade leading to further caspase-3 activation, resulting in cell dysfunction and cell death. PMID:17124493

  1. Endogenous endostatin inhibits choroidal neovascularization.

    PubMed

    Marneros, Alexander G; She, Haicheng; Zambarakji, Hadi; Hashizume, Hiroya; Connolly, Edward J; Kim, Ivana; Gragoudas, Evangelos S; Miller, Joan W; Olsen, Bjorn R

    2007-12-01

    Endostatin, a fragment of the basement membrane component collagen XVIII, exhibits antiangiogenic properties in vitro and in vivo when high doses are administered. It is not known whether endogenous endostatin at physiological levels has a protective role as an inhibitor of pathological angiogenesis, such as choroidal neovascularization (CNV) in age-related macular degeneration. Using a laser injury model, we induced CNV in mice lacking collagen XVIII/endostatin and in control mice. CNV lesions in mutant mice were approximately 3-fold larger than in control mice and showed increased vascular leakage. These differences were independent of age-related changes at the choroid-retina interface. Ultrastructural analysis of the choroidal vasculature in mutant mice excluded morphological vascular abnormalities as a cause for the larger CNV lesions. When recombinant endostatin was administered to collagen XVIII/endostatin-deficient mice, CNV lesions were similar to those seen in control mice. In control mice treated with recombinant endostatin, CNV lesions were almost undetectable. These findings demonstrate that endogenous endostatin is an inhibitor of induced angiogenesis and that administration of endostatin potently inhibits CNV growth and vascular leakage. Endostatin may have a regulatory role in the pathogenesis of CNV and could be used therapeutically to inhibit growth and leakage of CNV lesions. PMID:17526870

  2. Mitomycin C Inhibits Ribosomal RNA

    PubMed Central

    Snodgrass, Ryan G.; Collier, Abby C.; Coon, Amy E.; Pritsos, Chris A.

    2010-01-01

    Mitomycin C (MMC) is a commonly used and extensively studied chemotherapeutic agent requiring biological reduction for activity. Damage to nuclear DNA is thought to be its primary mechanism of cell death. Due to a lack of evidence for significant MMC activation in the nucleus and for in vivo studies demonstrating the formation of MMC-DNA adducts, we chose to investigate alternative nucleic acid targets. Real-time reverse transcription-PCR was used to determine changes in mitochondrial gene expression induced by MMC treatment. Although no consistent effects on mitochondrial mRNA expression were observed, complementary results from reverse transcription-PCR experiments and gel-shift and binding assays demonstrated that MMC rapidly decreased the transcript levels of 18S ribosomal RNA in a concentration-dependent manner. Under hypoxic conditions, transcript levels of 18S rRNA decreased by 1.5-fold compared with untreated controls within 30 min. Recovery to base line required several hours, indicating that de novo synthesis of 18S was necessary. Addition of MMC to an in vitro translation reaction significantly decreased protein production in the cell-free system. Functional assays performed using a luciferase reporter construct in vivo determined that protein translation was inhibited, further confirming this mechanism of toxicity. The interaction of MMC with ribosomal RNA and subsequent inhibition of protein translation is consistent with mechanisms proposed for other natural compounds. PMID:20418373

  3. Chrysin Inhibits Lymphangiogenesis in Vitro.

    PubMed

    Prangsaengtong, Orawin; Athikomkulchai, Sirivan; Xu, Jiuxiang; Koizumi, Keiichi; Inujima, Akiko; Shibahara, Naotoshi; Shimada, Yutaka; Tadtong, Sarin; Awale, Suresh

    2016-01-01

    The induction of lymphangiogenesis is an important process to promote cancer growth and cancer metastasis via the lymphatic system. Identifying the compounds that can prevent lymphangiogenesis for cancer therapy is urgently required. Chrysin, 5,7-dihydroxyflavone, a natural flavone extracted from Thai propolis, was used to investigate the effect on the lymphangiogenesis process of TR-LE, rat lymphatic endothelial cells. In this study, maximal nontoxic doses of chrysin on TR-LE cells were selected by performing a proliferation assay. The process of lymphangiogenesis in vitro was determined by cord formation assay, adhesion assay and migration assay. Chrysin at a nontoxic dose (25 μM) significantly inhibited cord formation, cell adhesion and migration of TR-LE cells when compared with the control group. We also found that chrysin significantly induced vascular endothelial growth factor C (VEGF-C) mRNA expression and nitric oxide (NO) production in TR-LE cells which was involved in decreasing the cord formation of TR-LE cells. In conclusion, we report for the first time that chrysin inhibited the process of lymphangiogenesis in an in vitro model. This finding may prove to be a natural compound for anti-lymphangiogenesis that could be developed for use in cancer therapy. PMID:27040620

  4. Behavioral Inhibition: Temperament or Prodrome?

    PubMed Central

    Pérez-Edgar, Koraly E.; Guyer, Amanda E.

    2014-01-01

    Individual differences in temperament emerge in the first months of life. Some infants display a heightened sensitivity to novelty and uncertainty in the world around them, leading a subset to fearfully withdraw from the social environment. Extreme forms of this temperament, Behavioral Inhibition (BI), are associated with increased risk for social anxiety disorder. Indeed, the link is so strong that some suggest that BI is not simply a risk factor for anxiety, but rather a milder form of the disorder. The current overview describes the literature linking BI and anxiety, highlighting the unique biobehavioral profiles evident in each construct. It then highlights specific evidence that may help distinguish the form and function of BI and anxiety. Finally, we briefly discuss unresolved issues that may help inform future work aimed at improving our understanding of individual development and shape therapeutic interventions directed at specific mechanisms of disorder. PMID:25101234

  5. Regulating anxiety with extrasynaptic inhibition

    PubMed Central

    Botta, Paolo; Demmou, Lynda; Kasugai, Yu; Markovic, Milica; Xu, Chun; Fadok, Jonathan P.; Lu, Tingjia; Poe, Michael M.; Xu, Li; Cook, James M.; Rudolph, Uwe; Sah, Pankaj; Ferraguti, Francesco; Lüthi, Andreas

    2015-01-01

    Aversive experiences can lead to complex behavioral adaptations including increased levels of anxiety and fear generalization. The neuronal mechanisms underlying such maladaptive behavioral changes, however, are poorly understood. Here, using a combination of behavioral, physiological and optogenetic approaches in mouse, we identify a specific subpopulation of central amygdala neurons expressing protein kinase C δ (PKCδ) as key elements of the neuronal circuitry controlling anxiety. Moreover, we show that aversive experiences induce anxiety and fear generalization by regulating the activity of PKCδ+ neurons via extrasynaptic inhibition mediated by α5 subunit-containing GABAA receptors. Our findings reveal that the neuronal circuits that mediate fear and anxiety overlap at the level of defined subpopulations of central amygdala neurons and demonstrate that persistent changes in the excitability of a single cell type can orchestrate complex behavioral changes. PMID:26322928

  6. Corrosion inhibition using mercury intensifiers

    SciTech Connect

    Cizek, A.

    1990-03-05

    This patent describes an intensified corrosion inhibitor composition for inhibiting the corrosion of steel in the presence of an acidic medium. It comprises: an effective amount of an acid soluble mercury metal intensifier; and a corrosion inhibitor. This patent also describes a method of treating a subterranean well for enhancement of production within the well, comprising the steps of introducing and positioning within the well a high alloy stec surface exposable to a treatment fluid therewith; introducing into the well and contacting the surface with a treatment fluid comprising an acidic injection medium, an acid corrosion inhibitor, and an intensifier for deposition on or effective treatment contact with the surface, the intensifier comprising an acid soluble mercury metal site circulating the fluid into the well for contact with at least one production zone within the well.

  7. Renin inhibition activity by chitooligosaccharides.

    PubMed

    Park, Pyo-Jam; Ahn, Chang-Bum; Jeon, You-Jin; Je, Jae-Young

    2008-04-01

    Six kinds of chitooligosaccharides (COSs) with different molecular weight (MW) and degree of deacetylation (DD) were prepared using ultrafiltration membrane reactor, and their renin inhibition modes were evaluated. All the COSs showed the renin-inhibitory activities with dose-dependent manner, and 90-COSs had the potent renin-inhibitory activity than that of 50-COSs. Among them, 90-MMWCOS (1000-5000Da) exhibits the highest activity with IC(50) value of 0.51mg/mL and acts as competitive inhibitor with K(i) value of 0.28mg/mL by Lineweaver-Burk and Dixon plots. These results indicated that DD value and MW of COSs are important factors affecting renin-inhibitory activity. PMID:18313296

  8. Well having inhibited microbial growth

    DOEpatents

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  9. Combined autophagy and HDAC inhibition

    PubMed Central

    Mahalingam, Devalingam; Mita, Monica; Sarantopoulos, John; Wood, Leslie; Amaravadi, Ravi K; Davis, Lisa E; Mita, Alain C; Curiel, Tyler J; Espitia, Claudia M; Nawrocki, Steffan T; Giles, Francis J; Carew, Jennifer S

    2014-01-01

    We previously reported that inhibition of autophagy significantly augmented the anticancer activity of the histone deacetylase (HDAC) inhibitor vorinostat (VOR) through a cathepsin D-mediated mechanism. We thus conducted a first-in-human study to investigate the safety, preliminary efficacy, pharmacokinetics (PK), and pharmacodynamics (PD) of the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and VOR in patients with advanced solid tumors. Of 27 patients treated in the study, 24 were considered fully evaluable for study assessments and toxicity. Patients were treated orally with escalating doses of HCQ daily (QD) (d 2 to 21 of a 21-d cycle) in combination with 400 mg VOR QD (d one to 21). Treatment-related adverse events (AE) included grade 1 to 2 nausea, diarrhea, fatigue, weight loss, anemia, and elevated creatinine. Grade 3 fatigue and/or myelosuppression were observed in a minority of patients. Fatigue and gastrointestinal AE were dose-limiting toxicities. Six-hundred milligrams HCQ and 400 mg VOR was established as the maximum tolerated dose and recommended phase II regimen. One patient with renal cell carcinoma had a confirmed durable partial response and 2 patients with colorectal cancer had prolonged stable disease. The addition of HCQ did not significantly impact the PK profile of VOR. Treatment-related increases in the expression of CDKN1A and CTSD were more pronounced in tumor biopsies than peripheral blood mononuclear cells. Based on the safety and preliminary efficacy of this combination, additional clinical studies are currently being planned to further investigate autophagy inhibition as a new approach to increase the efficacy of HDAC inhibitors. PMID:24991835

  10. Isolation, characterization and inhibition by acarbose of the alpha-amylase from Lactobacillus fermentum: comparison with Lb. manihotivorans and Lb. plantarum amylases.

    PubMed

    Talamond, P; Desseaux, V; Moreau, Y; Santimone, M; Marchis-Mouren, G

    2002-11-01

    Extracellular alpha-amylase from Lactobacillus fermentum (FERMENTA) was purified by glycogen precipitation and ion exchange chromatography. The purification was approximately 28-fold with a 27% yield. The FERMENTA molecular mass (106,000 Da) is in the same range as the ones determined for L. amylovorus (AMYLOA), L. plantarum (PLANTAA) and L. manihotivorans (MANIHOA) alpha-amylases. The amino acid composition of FERMENTA differs from the other lactobacilli considered here, but however, indicates that the peptidic sequence contains two equal parts: the N-terminal catalytic part; and the C-terminal repeats. The isoelectric point of FERMENTA, PLANTAA, MANIHOA are approximately the same (3.6). The FERMENTA optimum pH (5.0) is slightly more acidic and the optimum temperature is lower (40 degrees C). Raw starch hydrolysis catalyzed by all three amylases liberates maltotriose and maltotretaose. Maltose is also produced by FERMENTA and MANIHOA. Maltohexaose FERMENTA catalyzed hydrolysis produces maltose and maltotriose. Finally, kinetics of FERMENTA, PLANTAA and MANIHOA using amylose as a substrate and acarbose as an inhibitor, were carried out. Statistical analysis of kinetic data, expressed using a general velocity equation and assuming rapid equilibrium, showed that: (1) in the absence of inhibitor k(cat)/Km are, respectively, 1x10(9), 12.6x10(9) and 3.2x10(9) s(-1) M(-1); and (2) the inhibition of FERMENTA is of the mixed non-competitive type (K(1i)=5.27 microM; L(1i)=1.73 microM) while the inhibition of PLANTAA and MANIHOA is of the uncompetitive type (L(1i)=1.93 microM and 1.52 microM, respectively). Whatever the inhibition type, acarbose is a strong inhibitor of these Lactobacillus amylases. These results indicate that, as found in porcine and barley amylases, Lactobacillus amylases contain in addition to the active site, a soluble carbohydrate (substrate or product) binding site. PMID:12431403