Science.gov

Sample records for lactobacillus casei dn-114

  1. Modulation of Lactobacillus casei in ileal and fecal samples from healthy volunteers after consumption of a fermented milk containing Lactobacillus casei DN-114 001Rif.

    PubMed

    Rochet, Violaine; Rigottier-Gois, Lionel; Levenez, Florence; Cadiou, Julie; Marteau, Philippe; Bresson, Jean-Louis; Goupil-Feillerat, Nathalie; Doré, Joël

    2008-08-01

    Lactobacillus casei DN-114 001 is a probiotic strain able to interact with the immune system and to interfere with gastrointestinal pathogens. The derived strain DN-114 001Rif was studied during its transit through the upper and distal intestine of human volunteers. Seven volunteers participated in the study, which involved intestinal intubation to sample ileal contents and collection of fecal samples, with a wash-out period of 8 days between the 2 steps. The retrieval of the probiotic was analyzed in the ileum every 2 h for 8 h following the ingestion of one dose of the test product and in the feces prior to, during, and after daily consumption of the test product for 8 days. Persistence of the probiotic amplifiable DNA was assessed using temporal temperature gradient gel electrophoresis and real-time PCR. Fluorescent in situ hybridization allowed analysis of the composition of the dominant digestive microbiota. The ingestion of L. casei DN-114 001Rif led to a significant and transient increase of its amplifiable DNA in ileal and fecal samples. This is related to a high stability in the composition of dominant groups of the gut microbiota. Data from ileal samples are scarce and our study confirms the potentiality for interaction between probiotics and the human immune system. PMID:18772928

  2. Effects of orally administered Lactobacillus casei DN-114 001 on the composition or activities of the dominant faecal microbiota in healthy humans.

    PubMed

    Rochet, Violaine; Rigottier-Gois, Lionel; Sutren, Malène; Krementscki, Marie-Noëlle; Andrieux, Claude; Furet, Jean-Pierre; Tailliez, Patrick; Levenez, Florence; Mogenet, Agnès; Bresson, Jean-Louis; Méance, Séverine; Cayuela, Chantal; Leplingard, Antony; Doré, Joël

    2006-02-01

    The composition and activities of the faecal microbiota in twelve healthy subjects analysed in a single open study were monitored before (1-week baseline step), during (10 d supplementation step) and after (10 d follow-up step) the ingestion of a fermented milk containing Lactobacillus casei DN-114 001. Fluorescent in situ hybridisation with group-specific DNA probes, real-time PCR using L. paracasei group-specific primers and temporal temperature gradient gel electrophoresis (TTGE) using group-specific primers were carried out, together with bacterial enzyme activity and metabolite analyses to monitor the structure and activities of the faecal microbiota. L. casei DNA was detected in the faeces of all of the subjects by TTGE after 10 d supplementation. Its quantification by real-time PCR showed a 1000-fold increase during the test step compared with initial levels. No major modification in either the dominant members of the faecal microbiota or their activities was observed during the trial. In conclusion, the short-term consumption of a milk product containing L. casei DN-114 001 was accompanied by a high, transient increase in the quantity of this strain in the faeces of all of the subjects without markedly affecting biochemical or bacteriological factors. PMID:16469162

  3. Effects of Probiotic Lactobacillus Casei DN-114 001 in Prevention of Radiation-Induced Diarrhea: Results From Multicenter, Randomized, Placebo-Controlled Nutritional Trial

    SciTech Connect

    Giralt, Jordi Regadera, Jose Perez; Verges, Ramona; Romero, Jesus; Fuente, Isabel de la; Biete, Albert; Villoria, Jesus; Cobo, Jose Maria; Guarner, Francisco

    2008-07-15

    Purpose: To determine whether a probiotic drink containing Lactobacillus casei DN-114 001 reduces the incidence of radiation-induced diarrhea in patients with gynecologic cancer. Methods and Materials: Patients who were undergoing pelvic radiotherapy (45-50 Gy, conventional fractionation) for either cervical carcinoma (radiotherapy and weekly cisplatin) or endometrial adenocarcinoma (postoperative radiotherapy) were randomly assigned to a probiotic drink or placebo, in a double-blind fashion. The probiotic drink consisted of liquid yogurt containing L. casei DN-114 001 at 10{sup 8} CFU/g. The patients recorded the daily the number of bowel movements and scored the stool consistency using the Bristol scale. Diarrhea was graded weekly according the Common Toxicity Criteria system. The primary endpoint was to reduce the incidence of diarrhea, defined by a Common Toxicity Criteria Grade of 2 or greater or the need for loperamide. Results: A total of 85 patients were enrolled. Grade 2 or greater diarrhea and/or the use of loperamide was observed in 24 of 41 patients in the placebo group and 30 of 44 in the probiotic group (p = 0.568). No differences were found in the median time to the presentation of the primary endpoint. Probiotic intervention had a significant effect on stool consistency (p = 0.04). The median time for patients to present with Bristol scale stools of Type 6 or greater was 14 days for patients receiving the probiotic drink vs. 10 days for those receiving placebo. Conclusion: Nutritional intervention with the probiotic drink containing L. casei DN-114 001 does not reduce the incidence of radiation-induced diarrhea as defined by a Common Toxicity Criteria Grade 2 or greater. However, it had a significant effect on stool consistency as measured by the Bristol scale.

  4. Diet supplemented with yoghurt or milk fermented by Lactobacillus casei DN-114 001 stimulates growth and brush-border enzyme activities in mouse small intestine.

    PubMed

    Thoreux, K; Balas, D; Bouley, C; Senegas-Balas, F

    1998-01-01

    The nutritional benefits of lactic acid bacteria in fermented dairy products have been well documented, especially in terms of weight gain and feed efficiency, but not in terms of small intestine adaptation. The effects of a diet supplemented (30% wt/wt) with milk fermented either by Lactobacillus casei DN-114 001 or yoghurt for 3 or 15 days were investigated in the small intestine of mice by morphometry, kinetic analysis and determination of brush-border enzyme activities. Results were compared with those obtained with standard or milk isocaloric diets. Cell proliferation and villous area were significantly increased in the proximal intestine of mice fed the fermented-milk-supplemented diets for 3 days and were associated with hypertrophy and hyperplasia of Paneth and goblet cells. Lactase-specific activity was increased by fermented-milk diets at days 3 and 15, whereas there was no variation in maltase-specific activity. Alkaline phosphatase-specific activity was increased after 3 days of the three tested diets in the whole intestine, and after 15 days in the proximal intestine. Aminopeptidase activity was increased in the distal part of the intestine after 3 days of the 3 diets. Our findings suggest that diets supplemented with fermented milks have a positive effect on the trophicity of the mucosa in the small intestine of mice. PMID:9693207

  5. Lysate of Probiotic Lactobacillus casei DN-114 001 Ameliorates Colitis by Strengthening the Gut Barrier Function and Changing the Gut Microenvironment

    PubMed Central

    Zakostelska, Zuzana; Kverka, Miloslav; Klimesova, Klara; Rossmann, Pavel; Mrazek, Jakub; Kopecny, Jan; Hornova, Michaela; Srutkova, Dagmar; Hudcovic, Tomas; Ridl, Jakub; Tlaskalova-Hogenova, Helena

    2011-01-01

    Background Probiotic bacteria can be used for the prevention and treatment of human inflammatory diseases including inflammatory bowel diseases (IBD). However, the nature of active components and exact mechanisms of this beneficial effects have not been fully elucidated. Our aim was to investigate if lysate of probiotic bacterium L. casei DN-114 001 (Lc) could decrease the severity of intestinal inflammation in a murine model of IBD. Methodology/Principal Findings The preventive effect of oral administration of Lc significantly reduces the severity of acute dextran sulfate sodium (DSS) colitis in BALB/c but not in SCID mice. In order to analyze how this beneficial effect interferes with well-known phases of intestinal inflammation pathogenesis in vivo and in vitro, we evaluated intestinal permeability using the FITC-labeled dextran method and analysed tight junction proteins expression by immunofluorescence and PCR. We also measured CD4+FoxP3+ regulatory T cells proportion by FACS analysis, microbiota composition by pyrosequencing, and local cytokine production by ELISA. Lc leads to a significant protection against increased intestinal permeability and barrier dysfunction shown by preserved ZO-1 expression. We found that the Lc treatment increases the numbers of CD4+FoxP3+ regulatory T cells in mesenteric lymph nodes (MLN), decreases production of pro-inflammatory cytokines TNF-α and IFN-γ, and anti-inflammatory IL-10 in Peyer's patches and large intestine, and changes the gut microbiota composition. Moreover, Lc treatment prevents lipopolysaccharide-induced TNF-α expression in RAW 264.7 cell line by down-regulating the NF-κB signaling pathway. Conclusion/Significance Our study provided evidence that even non-living probiotic bacteria can prevent the development of severe forms of intestinal inflammation by strengthening the integrity of intestinal barrier and modulation of gut microenvironment. PMID:22132181

  6. Genetic transformation of Lactobacillus casei by electroporation.

    PubMed

    Natori, Y; Kano, Y; Imamoto, F

    1990-04-01

    Lactobacillus casei IAM1045 was transformed with a plasmid pAM beta 1-1, a tra deleted derivative of pAM beta 1, by electroporation. Effective transformation was achieved in electroporation buffers of a wide range of pH values, and in all phases of cell growth tested, with highest frequency in the early log phase. Polyethylene glycol increased the transformation frequency, whereas divalent cations such as Mg2+, Ca2+ and Mn2+ at 0.25 mM decreased the frequency by 2 to 3 orders. Highly efficient transformation of approximately 10(-4)/viable cell was achieved under optimal conditions. A plasmid harboring the trpD, C, F, B and A genes from L casei RNL7 was introduced by electroporation into tryptophan auxotrophic L casei JCM1053. The resulting transformant was found to express the trp genes introduced. PMID:2116914

  7. Production and Regeneration of Lactobacillus casei Protoplasts

    PubMed Central

    Lee-Wickner, Lyang-Ja; Chassy, Bruce M.

    1984-01-01

    Methods for the production and regeneration of Lactobacillus casei protoplasts are described. Protoplasts of L. casei strains were obtained by treatment with mutanolysin or with mutanolysin and lysozyme together in a protoplast formation buffer containing 0.02 M HEPES (N-2-hydroxyethylpiperazine-N?-2-ethanesulfonic acid) (pH 7.0), 1 mM MgCl2, 0.5% gelatin, and 0.3 M raffinose. Cells were regenerated on a complex medium supplemented with bovine serum albumin, MgCl2, CaCl2, gelatin, and raffinose. Lengthy digestion with lytic enzymes inhibited the capacity of protoplasts to regenerate. The optimum conditions of protoplast formation varied from strain to strain. Using predetermined optimal conditions it was possible to prepare protoplasts of several L. casei strains and regenerate them with 10 to 40% efficiency. The methods were applicable to other species of lactobacilli as well. Images PMID:16346670

  8. Manufacture of probiotic Minas Frescal cheese with Lactobacillus casei Zhang.

    PubMed

    Dantas, Aline B; Jesus, Vitor F; Silva, Ramon; Almada, Carine N; Esmerino, E A; Cappato, Leandro P; Silva, Marcia C; Raices, Renata S L; Cavalcanti, Rodrigo N; Carvalho, Celio C; Sant'Ana, Anderson S; Bolini, Helena M A; Freitas, Monica Q; Cruz, Adriano G

    2016-01-01

    In this study, the addition of Lactobacillus casei Zhang in the manufacture of Minas Frescal cheese was investigated. Minas Frescal cheeses supplemented with probiotic bacteria (Lactobacillus casei Zhang) were produced by enzymatic coagulation and direct acidification and were subjected to physicochemical (pH, proteolysis, lactic acid, and acetic acid), microbiological (probiotic and lactic bacteria counts), and rheological analyses (uniaxial compression and creep test), instrumental color determination (luminosity, yellow intensity, and red intensity) and sensory acceptance test. The addition of L. casei Zhang resulted in low pH values and high proteolysis indexes during storage (from 5.38 to 4.94 and 0.470 to 0.702, respectively). Additionally, the cheese protocol was not a hurdle for growth of L. casei Zhang, as the population reached 8.16 and 9.02 log cfu/g by means of the direct acidification and enzymatic coagulation protocol, respectively, after 21d of refrigerated storage. The rheology data showed that all samples presented a more viscous-like behavior, which rigidity tended to decrease during storage and lower luminosity values were also observed. Increased consumer acceptance was observed for the control sample produced by direct acidification (7.8), whereas the cheeses containing L. casei Zhang presented lower values for all sensory attributes, especially flavor and overall liking (5.37 and 4.61 for enzymatic coagulation and 5.57 and 4.72 for direct acidification, respectively). Overall, the addition of L. casei Zhang led to changes in all parameters and affected negatively the sensory acceptance. The optimization of L. casei Zhang dosage during the manufacturing of probiotic Minas Frescal cheese should be performed. PMID:26519974

  9. Functional genomics of Lactobacillus casei establishment in the gut

    PubMed Central

    Licandro-Seraut, Hélène; Scornec, Hélène; Pédron, Thierry; Cavin, Jean-François; Sansonetti, Philippe J.

    2014-01-01

    Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis. PMID:25024222

  10. In vitro antagonistic activity of Lactobacillus casei against Helicobacter pylori

    PubMed Central

    Enany, Shymaa; Abdalla, Salah

    2015-01-01

    Helicobacter pylori is one of the most common causes of chronic infections in humans. Curing H. pylori infection is difficult because of the habitat of the organism below the mucus adherent layer of gastric mucosa. Lactobacilli are known as acid-resistant bacteria and can remain in stomach for a long time than any other organism, we aimed in this study to examine the efficacy of Lactobacillus casei as a probiotic against H. pylori in humans. Particularly, L. casei was opted as it is considered to be one of the widely used probiotics in dairy products. One hundred and seven strains of H. pylori were isolated from dyspeptic patients and were tested for their antibiotic susceptibility to metronidazole (MTZ), clarithromycin (CLR), tetracycline (TET), and amoxicillin (AMX) by the disc diffusion method. The strains were examined for their susceptibility toward L. casei - present in fermented milk products - by well diffusion method. It was found that 74.7% strains were resistant to MTZ; 1.8% to MTZ, TET, and CLR; 3.7% to MTZ and CLR; 4.6% to MTZ and TET; and 0.9% were resistant to MTZ, TET, and AMX. The antibacterial activity of L. casei against H. pylori was determined on all the tested H. pylori isolates including antibiotic resistant strains with different patterns. Our study proposed the use of probiotics for the treatment of H. pylori infection as an effective approach. PMID:26691482

  11. Identification of antifungal compounds produced by Lactobacillus casei AST18.

    PubMed

    Li, Hongjuan; Liu, Lu; Zhang, Shuwen; Cui, Wenming; Lv, Jiaping

    2012-08-01

    Lactobacillus casei AST18 was screened as an antifungal lactic acid bacteria which we have reported before. In this research, the antifungal properties of cell-free culture filtrate (CCF) from L. casei AST18 were detected, and the antifungal compounds of CCF were prepared by ultrafiltration, and semi-preparative HPLC, and then determined by GC-MS. CCF was sensitive to pH and heat treatment but it was not affected by the treatment of trypsin and pepsin. Through the treatment of ultrafiltration and semi-preparative HPLC there were two parts of CCF which showed antifungal activities: part 1 and part 4. Lactic acid was identified as the main antifungal compound in part 1. In part 4, three small molecular substances were detected with GC-MS. The three potential antifungal substances were cyclo-(Leu-Pro), 2,6-diphenyl-piperidine, and 5,10-diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a;1',2'-d]pyrazine. The antifungal activity of L. casei AST18 was a synergistic effect of lactic acid and cyclopeptides. PMID:22580887

  12. Functional Analysis of the Lactobacillus casei BL23 Sortases

    PubMed Central

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2012-01-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  13. Functional analysis of the Lactobacillus casei BL23 sortases.

    PubMed

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G; Monedero, Vicente

    2012-12-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The ?-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  14. Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria.

    PubMed

    Tharmaraj, N; Shah, N P

    2003-07-01

    Nineteen bacteriological media were evaluated to assess their suitability to selectively enumerate Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus, bifidobacteria, and propionibacteria. Bacteriological media evaluated included Streptococcus thermophilus agar, pH modified MRS agar, MRS-vancomycine agar, MRS-bile agar, MRS-NaCl agar, MRS-lithium chloride agar, MRS-NNLP (nalidixic acid, neomycin sulfate, lithium chloride and paramomycine sulfate) agar, reinforced clostridial agar, sugar-based (such as maltose, galactose, sorbitol, manitol, esculin) media, sodium lactate agar, arabinose agar, raffinose agar, xylose agar, and L. casei agar. Incubations were carried out under aerobic and anaerobic conditions at 27, 30, 37, 43, and 45 degrees C for 24, 72 h, and 7 to 9 d. S. thermophilus agar and aerobic incubation at 37 degrees C for 24 h were suitable for S. thermophilus. L. delbrueckii ssp. bulgaricus could be enumerated using MRS agar (pH 4.58 or pH 5.20) and under anaerobic incubation at 45 degrees C for 72 h. MRS-vancomycine agar and anaerobic incubation at 43 degrees C for 72 h were suitable to enumerate L. rhamnosus. MRS-vancomycine agar and anaerobic incubation at 37 degrees C for 72 h were selective for L. casei. To estimate the counts of L. casei by subtraction method, counts of L. rhamnosus on MRS-vancomycine agar at 43 degrees C for 72 h under anaerobic incubation could be subtracted from total counts of L. casei and L. rhamnosus enumerated on MRS-vancomycine agar at 37 degrees C for 72 h under anaerobic incubation. L. acidophilus could be enumerated using MRS-agar at 43 degrees C for 72 h or Basal agar-maltose agar at 43 degrees C for 72 h or BA-sorbitol agar at 37 degrees C for 72 h, under anaerobic incubation. Bifidobacteria could be enumerated on MRS-NNLP agar under anaerobic incubation at 37 degrees C for 72 h. Propionibacteria could be enumerated on sodium lactate agar under anaerobic incubation at 30 degrees C for 7 to 9 d. A subtraction method was most suitable for counting propionibacteria in the presence of other lactic acid bacteria from a product. For this method, counts of lactic bacteria at d 3 on sodium lactate agar under anaerobic incubation at 30 degrees C were subtracted from counts at d 7 of lactic bacteria and propionibacteria. PMID:12906045

  15. Lactobacillus casei CRL 431 and Lactobacillus rhamnosus CRL 1224 as biological controls for Aspergillus flavus strains.

    PubMed

    Bueno, Dante J; Silva, Julio O; Oliver, Guillermo; González, Silvia N

    2006-10-01

    The effect of two species of lactobacilli, Lactobacillus casei CRL 431 and Lactobacillus rhamnosus CRL 1224, on growth of different Aspergillus flavus strains was determined. A. flavus strains (Ap, TR2, or CF80) were grown in LAPTg broth at 37 degrees C for 7 days as a single culture and in association with L. casei CRL 431 or L. rhamnosus CRL 1224 at initial inoculum ratios of 1:1, 1:10, and 1:100. In most cases, the mixed cultures had a lower fungal growth and a lower pH than the control cultures. Mycelial dry weight was reduced to 73 and 85% using L. casei CRL 431 and L. rhamnosus CRL 1224, respectively. The pH decrease in mixed cultures when the fungal mycelial dry weight is reduced may play an important role in inhibition. The number of viable bacteria was variably affected by fungal growth. These results indicate that L. casei CRL 431 and L. rhamnosus CRL 1224 may be useful as potential biocontrol agent against A. flavus. PMID:17066943

  16. Comparative Genomic and Functional Analysis of Lactobacillus casei and Lactobacillus rhamnosus Strains Marketed as Probiotics

    PubMed Central

    Douillard, François P.; Ribbera, Angela; Järvinen, Hanna M.; Kant, Ravi; Pietilä, Taija E.; Randazzo, Cinzia; Paulin, Lars; Laine, Pia K.; Caggia, Cinzia; von Ossowski, Ingemar; Reunanen, Justus; Satokari, Reetta; Salminen, Seppo; Palva, Airi

    2013-01-01

    Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities. PMID:23315726

  17. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392.

    PubMed

    Dahroud, Behnaz Dahri; Mokarram, Reza Rezai; Khiabani, Mahmoud Sowti; Hamishehkar, Hamed; Bialvaei, Abed Zahedi; Yousefi, Mehdi; Kafil, Hossein Samadi

    2016-05-01

    l-Lactic acid (L-LA) is one of the microbial products with several applications and its production efficiency is so important. In the present study, we have been exploring application of low intensity ultrasound technology to improve the metabolic activity for l-lactic acid production by Lactobacillus casei in different mediums. L-LA, biomass production and substrate (protein) consumption were measured as parameters of fermentation yield. L-LA and protein contents were determined using the titratable acidity and the biuret method respectively. Spectrophotometry (OD600nm) was used for measuring cell growths. L-LA, biomass production and protein consumption considered as dependent variables, but the amplitude of waves (20%, 40% and 60%), waves duration (15, 30, 45s) and add of peptone (2, 6 and 10g/l) as independent variables. The results showed that L-LA, biomass production and substrate consumption significantly increased (≈25%). Optimum conditions for biomass production was amplitude of 60%, 15s exposure time and 10g/l peptone, while for acid lactic production and substrate consumption was 40%, 30s and 6g/l peptone, respectively. Flowcytometry analysis also showed that sonication led to increasing cell membrane permeability. This observation shows low intensity ultrasound as a potential parameter in the improvement of metabolic activity of L. casei. PMID:26836618

  18. Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei.

    PubMed

    Viana, Rosa; Yebra, María Jesús; Galán, José Luis; Monedero, Vicente; Pérez-Martínez, Gaspar

    2005-01-01

    In lactic acid bacteria, conversion of pyruvic to lactic acid through the activity of lactate dehydrogenase (Ldh) constitutes the final step of the homofermentative pathway. Lactobacillus casei has two characterized genes encoding Ldh activities. The ldhL gene codes for an L-Ldh, which specifically catalyzes the formation of L-lactate, whereas the hicD gene codes for a D-hydroxyisocaproate dehydrogenase (HicDH), which catalyzes the conversion of pyruvate into D-lactate. In L. casei cells fermenting glucose, a mixture of L-/D-lactate with a 97:3% ratio was formed. Inactivation of hicD led to undetectable D-lactate levels after glucose fermentation, while L-lactate levels remained constant. Inactivation of ldhL did not abolish the production of L-lactate, but the lactate final concentration decreased about 25% compared to the wild type, suggesting the presence of at least a second L-Ldh. Moreover, part of the pyruvate flux was rerouted and half of the lactate produced was in the D-isomer form. ldhL inactivation in L. casei showed additional interesting effects. First, the glycolytic flux from pyruvate to lactate was redirected and other fermentation products, including acetate, acetoin, pyruvate, ethanol, diacetyl, mannitol and CO(2), were produced. Second, a lack of carbon catabolite repression of lactose metabolism and N-acetyl-glucosaminidase activity was observed. This second effect could be partly avoided by growing the cells under aeration, since NADH oxidases could account for NAD+ regeneration. PMID:15882939

  19. Complete Genome Sequence of the Probiotic Lactobacillus casei Strain BL23▿

    PubMed Central

    Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Bourand, Alexa; Loux, Valentin; Yebra, Maria Jesus; Monedero, Vicente; Correia, Karine; Jacques, Noémie; Beaufils, Sophie; Poncet, Sandrine; Joyet, Philippe; Milohanic, Eliane; Casarégola, Serge; Auffray, Yanick; Pérez-Martínez, Gaspar; Gibrat, Jean-François; Zagorec, Monique; Francke, Christof; Hartke, Axel; Deutscher, Josef

    2010-01-01

    The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar. PMID:20348264

  20. Cracking Streptococcus thermophilus to stimulate the growth of the probiotic Lactobacillus casei in co-culture.

    PubMed

    Ma, Chengjie; Ma, Aimin; Gong, Guangyu; Liu, Zhenmin; Wu, Zhengjun; Guo, Benheng; Chen, Zhengjun

    2015-10-01

    Lactobacillus casei, a probiotic, and Streptococcus thermophilus, a fast acidifying lactic acid bacterial strain, are both used in the food industry. The aim of this study was to investigate the interaction between L. casei and S. thermophilus in the presence or absence of S. thermophilus-specific bacteriophage during milk fermentation. The acidification capability of L. casei co-cultured with S. thermophilus was significantly higher than that observed for L. casei or S. thermophilus cultured alone. However, the probiotic content (i.e., L. casei cell viability) was low. The fastest acidification and the highest viable L. casei cell count were observed in co-cultures of L. casei and S. thermophilus with S. thermophilus phage. In these co-cultures, S. thermophilus compensated for the slow acid production of L. casei in the early exponential growth phase. Thereafter, phage-induced lysis of the S. thermophilus cells eliminated the competition for nutrients, allowing L. casei to grow well. Additionally, the ruptured S. thermophilus cells released intracellular factors, which further promoted the growth and function of the probiotic bacteria. Crude cellular extract isolated from S. thermophilus also significantly accelerated the growth and propagation of L. casei, supporting the stimulatory role of the phage on this micro-ecosystem. PMID:26093989

  1. Probiotic Properties of Lyophilized Cell Free Extract of Lactobacillus casei

    PubMed Central

    Saadatzadeh, Afrooz; Fazeli, Mohamma Reza; Jamalifar, Hossein; Dinarvand, Rassoul

    2013-01-01

    Background In recent years there have been considerable interests in the use of probiotic live cells for nutritional and therapeutic purposes. This strategy can be concomitant with some limitations such as survival of live cell during the GI-transit and their effective delivery to target tissues upon ingestion. Several attempts have been made to overcome these limitations such as their microencapsulation, spray-drying and lyophilization. Objectives In this study extract of cultured probiotics without cells was evaluated for its antimicrobial effects, antioxidant activity, and its stability. Materials and Methods In this work the potential of lyophilized-cell-free-probiotic-extract (LPE) as a suitable alternative strategy for the preparation of probiotic-products was investigated. The main aim of this study was to find out the antibacterial and antioxidant activity of LPE and also its stability. LPE was obtained by centrifugation and subsequent lyophilization of the collected supernatant from culture media of Lactobacillus casei. An enzymatic reagent-kit was used for detection of its content of lactic acid. Antibacterial test was performed using agar cup-plat-method, the DPPH scavenging -assay was used to determine its antioxidant activity and during a storage course, LPE was under a long-term stability study. Results Results showed that, LPE had more antipathogenic effects, antioxidant activity, and stability during storage-time when compared to fresh probiotic-extract. Conclusions Employing the LPE as a new approach, gives novel concept of probiotic-products in food and medical marketing. PMID:24624202

  2. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children.

    PubMed

    Isolauri, E; Juntunen, M; Rautanen, T; Sillanaukee, P; Koivula, T

    1991-07-01

    To determine the effect of a human Lactobacillus strain (Lactobacillus casei sp strain GG, Gefilac) on recovery from acute diarrhea (82% rotavirus), 71 well-nourished children between 4 and 45 months of age were studied. After oral rehydration, the patients randomly received either Lactobacillus GG-fermented milk product, 125 g (10(10-11) colony-forming units) twice daily (group 1); Lactobacillus GG freeze-dried powder, one dose (10(10-11) colony-forming units) twice daily (group 2); or a placebo, a pasteurized yogurt (group 3) 125 g twice daily; each diet was given for 5 days, in addition to normal full diet otherwise free of fermented dairy products. The mean (SD) duration of diarrhea after commencing the therapy was significantly shorter in group 1 (1.4 [0.8] days) and in group 2 (1.4 [0.8] days) than in group 3 (2.4 [1.1] days); F = 8.70, P less than 0.001. After rehydration, each dietary group maintained a positive weight trend. The urinary lactulose-mannitol recovery ratios (means [95% confidence intervals]) on admission were 0.09 (0.03, 0.24) in group 1, 0.12 (0.07, 0.22) in group 2, and 0.08 (0.04, 0.18) in group 3; no significant alterations in intestinal permeability were observed at retesting after 2 days of realimentation. The result indicates that early nutritional repletion after rehydration causes no mucosal disruption and is beneficial for recovery from diarrhea. It is further suggested that Lactobacillus GG in the form of fermented milk or freeze-dried powder is effective in shortening the course of acute diarrhea. PMID:1905394

  3. Enhancement of host resistance against Listeria infection by Lactobacillus casei: Role of macrophages

    SciTech Connect

    Sato, K.

    1984-05-01

    Among the 10 species of the genus Lactobacillus, L. casei showed the strongest protective action against Listeria monocytogenes infection in mice. The activity of L. casei differed with regard to the dose of administration. The anti-L. monocytogenes resistance in mice intravenously administered 5.5 X 10(7), 2.8 X 10(8), or 1.1 X 10(9) L. casei cells was most manifest at ca. 2, 2 and 13, and 3 to 21 days after its administration, respectively. The growth of L. monocytogenes in the liver of mice injected with L. casei (10(7), 10(8), or 10(9) cells) 48 h after infection was suppressed, particularly when 10(8) or 10(9) L. casei cells were given 2 or 13 days before the induced infection, respectively. This suppression of L. monocytogenes growth was overcome by carrageenan treatment or X-ray irradiation. (/sup 3/H)thymidine incorporation into the liver DNA increased 13 days after administration of L. casei, and augmentation of (/sup 3/H)thymidine incorporation during 6 to 48 h after infection was dependent on the dose of L. casei. Peritoneal macrophage accumulation observed 1 to 5 days after intraperitoneal injection of UV-killed L. monocytogenes was markedly enhanced when the mice were treated with L. casei cells 13 days before macrophage elicitation. Therefore, the enhanced host resistance by L. casei to L. monocytogenes infection may be mediated by macrophages migrating from the blood stream to the reticuloendothelial system in response to L. casei injection before or after L. monocytogenes infection.

  4. LIMITING GALACTOSE REQUIREMENT FOR CITRATE UTILIZATION BY LACTOBACILLUS CASEI IS ANNULLED IN CHEDDAR CHEESE EXTRACT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conditions required for citrate utilization by Lactobacillus casei ATCC334 were identified. Citrate is utilized by this microorganism in modified chemically defined media as an energy source, solely in the presence of limiting concentrations of other more readily metabolized carbon sources (i.e. ga...

  5. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group?

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  6. Comparison of fecundity and offspring immunity in zebrafish fed Lactobacillus rhamnosus CICC 6141 and Lactobacillus casei BL23.

    PubMed

    Qin, Chubin; Xu, Li; Yang, Yalin; He, Suxu; Dai, Yingying; Zhao, Huiying; Zhou, Zhigang

    2014-01-01

    To increase the knowledge of probiotic effects on zebrafish (Danio rerio), we compare the effects of two probiotic strains, Lactobacillus rhamnosus CICC 6141 (a highly adhesive strain) and Lactobacillus casei BL23 (a weakly adhesive strain), on zebrafish reproduction and their offsprings' innate level of immunity to water-borne pathogens. During probiotics treatments from 7 to 28 days, both the Lactobacillus strains, and especially L. casei BL23, significantly increased fecundity in zebrafish: higher rates of egg ovulation, fertilization, and hatching were observed. Increased densities of both small and large vitellogenic follicles, seen in specimens fed either Lactobacillus strain, demonstrated accelerated oocyte maturation. Feeding either strain of Lactobacillus upregulated gene expression of leptin, kiss2, gnrh3, fsh, lh, lhcgr, and paqr8, which were regarded to enhance fecundity and encourage oocyte maturation. Concomitantly, the gene expression of bmp15 and tgfb1 was inhibited, which code for local factors that prevent oocyte maturation. The beneficial effects of the Lactobacillus strains on fecundity diminished after feeding of the probiotics was discontinued, even for the highly adhesive gut Lactobacillus strain. Administering L. rhamnosus CICC 6141 for 28 days was found to affect the innate immunity of offspring derived from their parents, as evinced by a lower level of alkaline phosphatase activity in early larval stages. This study highlights the effects of probiotics both upon the reproductive process and upon the offsprings' immunity during early developmental stages. PMID:24129154

  7. Attenuation of Colitis by Lactobacillus casei BL23 Is Dependent on the Dairy Delivery Matrix

    PubMed Central

    Lee, Bokyung; Yin, Xiaochen; Griffey, Stephen M.

    2015-01-01

    The role of the food delivery matrix in probiotic performance in the intestine is not well understood. Because probiotics are often provided to consumers in dairy products, we investigated the contributions of milk to the health-benefiting performance of Lactobacillus casei BL23 in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis. L. casei BL23 protected against the development of colitis when ingested in milk but not in a nutrient-free buffer simulating consumption as a nutritional supplement. Consumption of (acidified) milk alone also provided some protection against weight loss and intestinal inflammation but was not as effective as L. casei and milk in combination. In contrast, L. casei mutants deficient in DltD (lipoteichoic acid d-alanine transfer protein) or RecA (recombinase A) were unable to protect against DSS-induced colitis, even when consumed in the presence of milk. Mice fed either L. casei or milk contained reduced quantities of colonic proinflammatory cytokines, indicating that the L. casei DltD− and RecA− mutants as well as L. casei BL23 in nutrient-free buffer were effective at modulating immune responses. However, there was not a direct correlation between colitis and quantities of these cytokines at the time of sacrifice. Identification of the cecal microbiota by 16S rRNA gene sequencing showed that L. casei in milk enriched for Comamonadaceae and Bifidobacteriaceae; however, the consumption of neither L. casei nor milk resulted in the restoration of the microbiota to resemble that of healthy animals. These findings strongly indicate that probiotic strain efficacy can be influenced by the food/supplement delivery matrix. PMID:26162873

  8. Draft Genome Sequence of Lactobacillus casei DPC6800, an Isolate with the Potential to Diversify Flavor in Cheese.

    PubMed

    Stefanovic, Ewelina; Casey, Aidan; Cotter, Paul; Cavanagh, Daniel; Fitzgerald, Gerald; McAuliffe, Olivia

    2016-01-01

    Lactobacillus casei is a nonstarter lactic acid bacterium commonly present in various types of cheeses. It is believed that strains of this species have a significant impact on the development of cheese flavor. The draft genome sequence of L. casei DPC6800, isolated from a semi-hard Dutch cheese, is reported. PMID:26941145

  9. Draft Genome Sequence of Lactobacillus casei DPC6800, an Isolate with the Potential to Diversify Flavor in Cheese

    PubMed Central

    Stefanovic, Ewelina; Casey, Aidan; Cotter, Paul; Cavanagh, Daniel; Fitzgerald, Gerald

    2016-01-01

    Lactobacillus casei is a nonstarter lactic acid bacterium commonly present in various types of cheeses. It is believed that strains of this species have a significant impact on the development of cheese flavor. The draft genome sequence of L. casei DPC6800, isolated from a semi-hard Dutch cheese, is reported. PMID:26941145

  10. Proline iminopeptidase PepI overexpressing Lactobacillus casei as an adjunct starter in Edam cheese

    PubMed Central

    Navidghasemizad, Sahar; Takala, Timo M; Alatossava, Tapani; Saris, Per EJ

    2013-01-01

    In this study the growth of genetically modified Lactobacillus casei LAB6, overexpressing proline iminopeptidase PepI and its capacity to increase free proline was investigated during ripening of Edam cheese. The strain successfully survived 12 weeks of ripening period in cheese. The food-grade plasmid pLEB604, carrying the pepI gene, was stable, and PepI enzyme was active in LAB6 cells isolated at different stages of the ripening process. However, HPLC analyses indicated that Lb. casei LAB6 could not increase the amount of free proline in ripened cheese. PMID:23851577

  11. Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution

    PubMed Central

    Cai, Hui; Thompson, Rebecca; Budinich, Mateo F.; Broadbent, Jeff R.

    2009-01-01

    Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

  12. Inhibition of Staphylococcus aureus Invasion into Bovine Mammary Epithelial Cells by Contact with Live Lactobacillus casei

    PubMed Central

    Bouchard, Damien S.; Rault, Lucie; Berkova, Nadia; Le Loir, Yves

    2013-01-01

    Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen. PMID:23183972

  13. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans

    PubMed Central

    Shibasaki, Seiji; Karasaki, Miki; Tafuku, Senji; Aoki, Wataru; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Abstract Candidiasis is a common fungal infection that is prevalent in immunocompromised individuals. In this study, an oral vaccine against Candida albicans was developed by using the molecular display approach. Enolase 1 protein (Eno1p) of C. albicans was expressed on the Lactobacillus casei cell surface by using poly-gamma-glutamic acid synthetase complex A from Bacillus subtilis as an anchoring protein. The Eno1p-displaying L. casei cells were used to immunize mice, which were later challenged with a lethal dose of C. albicans. The data indicated that the vaccine elicited a strong IgG response and increased the survival rate of the vaccinated mice. Furthermore, L. casei acted as a potent adjuvant and induced high antibody titers that were comparable to those induced by strong adjuvants such as the cholera toxin. Overall, the molecular display method can be used to rapidly develop vaccines that can be conveniently administered and require minimal processing. PMID:25853077

  14. Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice.

    PubMed

    Alvarez, S; Herrero, C; Bru, E; Perdigon, G

    2001-11-01

    Pseudomonas aeruginosa is an opportunistic pathogen that rarely causes pulmonary disease in normal hosts but one that is an important cause of acute pneumonia in immunocompromised patients, including neonates, and of chronic pneumonia in patients with cystic fibrosis. The aim of this work was to study the effect of oral administration of Lactobacillus casei and yogurt on prevention of P. aeruginosa lung infection in young mice (3 weeks old). This study demonstrates that oral administration of L. casei or yogurt to young mice enhanced lung clearance of P. aeruginosa and phagocytic activity of alveolar macrophages through a dose-dependent effect. There were, however, no significant differences in white blood cell (WBC) differential counts. Furthermore, it was observed that previous administration of L. casei or yogurt induced a significant increase in IgA and IgM levels in bronchoalveolar lavages (BALs) after a P. aeruginosa infection, although there was no relationship with the serum values. PMID:11726157

  15. Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei.

    PubMed

    Nadal, Inmaculada; Rico, Juan; Pérez-Martínez, Gaspar; Yebra, María J; Monedero, Vicente

    2009-09-01

    The capability of Lactobacillus casei to produce the flavor-related compounds diacetyl and acetoin from whey permeate has been examined by a metabolic engineering approach. An L. casei strain in which the ilvBN genes from Lactococcus lactis, encoding acetohydroxyacid synthase, were expressed from the lactose operon was mutated in the lactate dehydrogenase gene (ldh) and in the pdhC gene, which codes for the E2 subunit of the pyruvate dehydrogenase complex. The introduction of these mutations resulted in an increased capacity to synthesize diacetyl/acetoin from lactose in whey permeate (1,400 mg/l at pH 5.5). The results showed that L. casei can be manipulated to synthesize added-value metabolites from dairy industry by-products. PMID:19609583

  16. PCR method for detection and identification of Lactobacillus casei/paracasei bacteriophages in dairy products.

    PubMed

    Binetti, Ana G; Capra, M Luján; Alvarez, Miguel A; Reinheimer, Jorge A

    2008-05-31

    Bacteriophage infections of starter lactic acid bacteria (LAB) pose a serious risk to the dairy industry. Nowadays, the expanding use of valuable Lactobacillus strains as probiotic starters determines an increase in the frequency of specific bacteriophage infections in dairy plants. This work describes a simple and rapid Polymerase Chain Reaction (PCR) method that detects and identifies bacteriophages infecting Lactobacillus casei/paracasei, the main bacterial species used as probiotic. Based on a highly conserved region of the NTP-binding genes belonging to the replication module of L. casei phages phiA2 and phiAT3 (the only two whose genomes are completely sequenced), a pair of primers was designed to generate a specific fragment. Furthermore, this PCR detection method proved to be a useful tool for monitoring and identifying L. casei/paracasei phages in industrial samples since specific PCR signals were obtained from phage contaminated milk (detection limit: 10(4) PFU/mL milk) and other commercial samples (fermented milks and cheese whey) that include L. casei/paracasei as probiotic starter (detection limit: 10(6) PFU/mL fermented milk). Since this method can detect the above phages in industrial samples and can be easily incorporated into dairy industry routines, it might be readily used to earmark contaminated milk for use in processes that do not involve susceptible starter organisms, or processes which involve phage-deactivating conditions. PMID:18471918

  17. Functional Analysis of the p40 and p75 Proteins from Lactobacillus casei BL23

    PubMed Central

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D. Brent; Monedero, Vicente

    2011-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria PMID:21178363

  18. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23.

    PubMed

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D Brent; Monedero, Vicente

    2010-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria. PMID:21178363

  19. Membrane ATPases and acid tolerance of Actinomyces viscosus and Lactobacillus casei.

    PubMed Central

    Bender, G R; Marquis, R E

    1987-01-01

    Lactobacillus casei ATCC 4646 and Actinomyces viscosus OMZ105E were found to differ markedly in acid tolerance. For example, pH profiles for glycolysis of intact cells in dense suspensions indicated that glycolysis by L. casei had an optimal pH of about 6.0 and that glucose degradation was reduced by 50% at a pH of 4.2. Comparable values for A. viscosus cells were at pHs of about 7.0 and 5.6. The difference in acid tolerance appeared to depend mainly on membrane physiology, and the addition of 40 microM gramicidin to cell suspensions increased the sensitivity of the glycolytic system by as much as 1.5 pH units for L. casei and up to 0.5 pH unit for A. viscosus. L. casei cells were inherently somewhat more resistant to severe acid damage than were A. viscosus cells, in that Mg release from L. casei cells in medium with a pH of 3.0 occurred only after a lag of some 4 h, compared with rapid release from A. viscosus cells. However, the major differences pertinent to the physiology of the organisms appeared to be related to proton-translocating ATPases. Isolated membranes of L. casei had about 3.29 U of ATPase per mg of protein, compared with only about 0.06 U per mg of protein for those of A. viscosus. Moreover, the ATPase of L. casei had a pH optimum for hydrolytic activity of about 5, compared with an optimal pH of about 7 for that of A. viscosus.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2445289

  20. Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A

    PubMed Central

    Vinay-Lara, Elena; Hamilton, Joshua J.; Stahl, Buffy; Broadbent, Jeff R.; Reed, Jennifer L.; Steele, James L.

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  1. Integrative Food-Grade Expression System Based on the Lactose Regulon of Lactobacillus casei

    PubMed Central

    Gosalbes, María José; Esteban, Carlos David; Galán, José Luis; Pérez-Martínez, Gaspar

    2000-01-01

    The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3? end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, ?-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses. PMID:11055930

  2. Lactobacillus casei Low-Temperature, Dairy-Associated Proteome Promotes Persistence in the Mammalian Digestive Tract.

    PubMed

    Lee, Bokyung; Tachon, Sybille; Eigenheer, Richard A; Phinney, Brett S; Marco, Maria L

    2015-08-01

    We found that incubation of probiotic Lactobacillus casei BL23 in milk at 4 °C prior to ingestion increased its survival in the mammalian digestive tract. To investigate the specific molecular adaptations of L. casei to milk, we used tandem mass spectrometry to compare proteins produced by L. casei BL23 at 4 °C in milk to those in exponential and stationary phase cells in laboratory culture medium at either 37 or 4 °C. These comparisons revealed a core of expressed L. casei proteins as well as proteins produced in either a growth-phase or temperature-specific manner. In total, 205 L. casei proteins were uniquely expressed or detected in higher abundance specifically as a result of incubation in milk and included an over-representation of proteins for cell surface modification, fatty acid metabolism, amino acid transport and metabolism, and inorganic ion transport. Genes for DltD (d-alanine transfer protein), FabH (3-oxoacyl-ACP synthase), RecA (recombinase A), and Sod (superoxide dismutase) were targeted for inactivation. The competitive fitness of the mutants was altered in the mouse intestine compared with wild-type cells. These results show that the food matrix can have a profound influence on dietary (probiotic) bacteria and their functional significance in the mammalian gut. PMID:26148687

  3. Identification of a Stimulant for Lactobacillus casei Produced by Streptococcus lactis

    PubMed Central

    Branen, A. L.; Keenan, T. W.

    1970-01-01

    A compound stimulatory to the growth of Lactobacillus casei was isolated from cell extracts of Streptococcus lactis, purified, and characterized. The stimulant was identified as a small peptide with a molecular weight of approximately 4,500 daltons. The purified peptide gave negative tests for nucleic acids, phosphorus, glucosamine, and carbohydrates. Sixteen amino acids were detected in acid hydrolysates of this peptide. Serine, proline, glycine, alanine, leucine, and glutamic acid were present in hydrolysates in greatest abundance. PMID:5485084

  4. Well-controlled proinflammatory cytokine responses of Peyer’s patch cells to probiotic Lactobacillus casei

    PubMed Central

    Chiba, Yukihide; Shida, Kan; Nagata, Satoru; Wada, Mariko; Bian, Lei; Wang, Chongxin; Shimizu, Toshiaki; Yamashiro, Yuichiro; Kiyoshima-Shibata, Junko; Nanno, Msanobu; Nomoto, Koji

    2010-01-01

    In order to clarify the probiotic features of immunomodulation, cytokine production by murine spleen and Peyer’s patch (PP) cells was examined in response to probiotic and pathogenic bacteria. In spleen cells, probiotic Lactobacillus casei induced interleukin (IL)-12 production by CD11b+ cells more strongly than pathogenic Gram-positive and Gram-negative bacteria and effectively promoted the development of T helper (Th) type 1 cells followed by high levels of secretion of interferon (IFN)-γ. Although the levels of IL-12 secreted by PP cells in response to L. casei were lower in comparison with spleen cells, Th1 cells developed as a result of this low-level induction of IL-12. However, IFN-γ secretion by the L. casei-induced Th1 cells stimulated with a specific antigen was down-regulated in PP cells. Development of IL-17-producing Th17 cells was efficiently induced in PP cells by antigen stimulation. Lactobacillus casei slightly, but significantly, inhibited the antigen-induced secretion of IL-17 without a decrease in the proportion of Th17 cells. No bacteria tested induced the development of IL-10-producing, transforming growth factor-β-producing or Foxp3-expressing regulatory T cells, thus suggesting that certain probiotics might regulate proinflammatory responses through as yet unidentified mechanisms in PP cells. These data show probiotic L. casei to have considerable potential to induce IL-12 production and promote Th1 cell development, but the secretion of proinflammatory cytokines such as IL-12 and IL-17 may be well controlled in PP cells. PMID:20636824

  5. Development of an alternative culture medium for the selective enumeration of Lactobacillus casei in fermented milk.

    PubMed

    Colombo, Monique; de Oliveira, Aline Evelyn Zimmermann; de Carvalho, Antonio Fernandes; Nero, Luís Augusto

    2014-05-01

    Monitoring the populations of probiotic strains of the species Lactobacillus casei in food is required by food industries in order to assure that a minimum concentration of these organisms will be ingested by consumers. In this context, Petrifilm™ AC plates can be used along with selective culture media to allow the enumeration of specific groups of lactic acid bacteria. The present study aimed to assess chemical substances as selective agents for Lb. casei in order to propose a selective culture medium to be used with Petrifilm™ AC plates as an alternative protocol for the enumeration of probiotic strains of this species in fermented milk. Twenty-six probiotic and starter cultures (including six strains of Lb. casei) were plated on de Man Rogosa and Sharpe (MRS) agar with distinct concentrations of nalidixic acid, bile, lithium chloride, metronidazole, sodium propionate, and vancomycin. Vancomycin at 10 mg/L demonstrated selective activity for Lb. casei. In addition, 2,3,5-triphenyltetrazolium chlorine was identified as a compound that did not inhibit Lb. casei, and Petrifilm™ AC plates used with MRS and vancomycin at 10 mg/L (MRS-V) demonstrated more colonies of this organism when incubated under anaerobic conditions than aerobic conditions. Acidophilus milk and yoghurt were prepared, added to Lb. casei strains, and stored at 4 °C. Lb. casei populations were monitored using MRS-V and MRTLV by conventional plating and associated with Petrifilm™ AC plates. All correlation indices between counts obtained by conventional plating and Petrifilm™ AC were significant (p < 0.05), but the best performance was observed for growth on MRS-V. The obtained data indicate the efficiency of using MRS-V associated with Petrifilm™ AC plates for the enumeration of Lb. casei strains in fermented milk. However, the selective potential of this culture medium must be evaluated considering the specific strains of Lb. casei and the starter cultures inoculated in the fermented milk that requires monitoring. PMID:24387857

  6. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus casei Expressing Phytases From Bifidobacteria.

    PubMed

    García-Mantrana, Izaskun; Monedero, Vicente; Haros, Monika

    2015-09-01

    Plant-based food products can be modified by fermentation to improve flavour and the concentration of some biologically active compounds, but also to increase the mineral availability by eliminating anti-nutrient substances such as phytates. The objective of this study was to develop a fermented soybean drink with improved nutritional quality and source of probiotic bacteria by including as starter for fermentation Lactobacillus casei strains modified to produce phytase enzymes from bifidobacteria. The L. casei strains showed a good adaptation to develop in the soy drink but they needed the addition of external carbohydrates to give rise to an efficient acidification. The strain expressing the Bifidobacterium pseudocatenulatum phytase was able to degrade more than 90 % phytate during product fermentation, whereas expression of Bifidobacterium longum spp. infantis phytase only led to 65 % hydrolysis. In both cases, accumulation of myo-inositol triphosphates was observed. In addition, the hydrolysis of phytate in soy drink fermented with the L. casei strain expressing the B. pseudocatenulatum phytase resulted in phytate/mineral ratios for Fe (0.35) and Zn (2.4), which were below the critical values for reduced mineral bioavailability in humans. This investigation showed the ability of modified L. casei to produce enzymes with technological relevance in the design of new functional foods. PMID:26003176

  7. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase.

    PubMed

    Bogicevic, Biljana; Berthoud, Hélène; Portmann, Reto; Bavan, Tharmatha; Meile, Leo; Irmler, Stefan

    2016-02-01

    In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase (metA). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro. Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE. PMID:26790714

  8. Adjuvant effects of Lactobacillus casei added to a renutrition diet in a malnourished mouse model.

    PubMed

    Gauffin, Cano Paola; Agüero, Graciela; Perdigon, Gabriela

    2002-04-01

    Nutritional deficiencies are associated with impaired immune response, affecting the body's defence mechanisms. It is also known that Lactic Acid Bacteria (LAB) and fermented products such us yogurt have immunopotentiator activity and nutritional properties, and could thus be used as a valuable supplement in a renutrition diet. The aim of this study was to determine, in a non-severe malnutrition model, the effective dose of Lactobacillus casei (L. casei), which when is used as an adjuvant in a renutrition diet, would modulate the mucosal immune system and induce recovery of the integrity of the intestinal barrier. The experiments were performed on groups of malnourished and renourished BALB/c mice. They received after milk renutrition a supplement of different doses and periods of L. casei feeding. We measured body weight; hematologic values and serum proteins. We also characterized small intestine immunoglobulin secreting cells, intraepithelial leukocytes, mastocytes and goblet cells. Structural and ultrastructural studies were performed. Our results suggest that impaired gut barrier and mucosal immune function produced by malnutrition can be reversed by L. casei and that the dose of 10(7) cfu/day/mouse administered during 5 consecutive days was the optimal one for recovery of the gut mucosal immune system. The clinical significance of these findings suggests ways for improving mucosal immunity, and generating protection against enteropathogens in hosts immunosuppressed by malnutrition. PMID:12058380

  9. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx

    PubMed Central

    Zhang, Yong; Guo, Xiao; Guo, Jianlin; He, Qiuwen; Li, He; Song, Yuqin; Zhang, Heping

    2014-01-01

    Gut microbiota mediated low-grade inflammation is involved in the onset of type 2 diabetes (T2DM). In this study, we used a high fat sucrose (HFS) diet-induced pre-insulin resistance and a low dose-STZ HFS rat models to study the effect and mechanism of Lactobacillus casei Zhang in protecting against T2DM onset. Hyperglycemia was favorably suppressed by L. casei Zhang treatment. Moreover, the hyperglycemia was connected with type 1 immune response, high plasma bile acids and urine chloride ion loss. This chloride ion loss was significantly prevented by L. casei via upregulating of chloride ion-dependent genes (ClC1-7, GlyR?1, SLC26A3, SLC26A6, GABAA?1, Bestrophin-3 and CFTR). A shift in the caecal microflora, particularly the reduction of bile acid 7?-dehydroxylating bacteria, and fecal bile acid profiles also occurred. These change coincided with organ chloride influx. Thus, we postulate that the prevention of T2DM onset by L. casei Zhang may be via a microbiota-based bile acid-chloride exchange mechanism. PMID:25133590

  10. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase

    PubMed Central

    Bogicevic, Biljana; Berthoud, Hélène; Portmann, Reto; Bavan, Tharmatha; Meile, Leo; Irmler, Stefan

    2016-01-01

    In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase (metA). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro. Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE. PMID:26790714

  11. Monitoring survival of Lactobacillus casei ATCC 393 in probiotic yogurts using an efficient molecular tool.

    PubMed

    Sidira, Marianthi; Saxami, Georgia; Dimitrellou, Dimitra; Santarmaki, Valentini; Galanis, Alex; Kourkoutas, Yiannis

    2013-05-01

    The aim of the present study was to monitor the survival of the probiotic strain Lactobacillus casei ATCC 393 during refrigerated storage of natural regular yogurts compared with Lactobacillus delbrueckii ssp. bulgaricus. Both free and immobilized cells on supports of high industrial interest, such as fruits and oat pieces, were tested. Microbiological and strain-specific multiplex PCR analysis showed that both free and immobilized Lb. casei ATCC 393 were detected in the novel products at levels required to confer a probiotic effect (at least 6 log cfu/g) for longer periods than required by the dairy industry (≥ 30 d) during storage at 4°C. In contrast, the viable bacterial density of Lb. delbrueckii ssp. bulgaricus decreased to levels <6 log cfu/g after 14 d of cold storage. Of note, the final pH of all products was 4.2 to 4.3. Acid resistance or cold tolerance of Lb. casei ATCC 393 apparently allows for increased survival compared with Lb. delbrueckii ssp. bulgaricus in these yogurt formulations. PMID:23498002

  12. Short communication: Protection of lyophilized milk starter Lactobacillus casei Zhang by glutathione.

    PubMed

    Zhang, Juan; Liu, Qian; Chen, Wei; Du, Guocheng; Chen, Jian

    2016-03-01

    Lyophilization is considered an effective way to preserve the activity of milk starters, such as lactic acid bacteria, in which proper protective agents play key roles. In this study, Lactobacillus casei Zhang, a probiotic bacterium applied as a milk starter in China, was used to investigate the effects of various cryoprotectants according to cell survival rate and physiological characteristics. The result showed a significant survival improvement to 86.6% when glutathione (GSH) was added as an ideal cryoprotectant. Further study revealed that GSH plays a key role on maintaining higher unsaturation ratio of cell membrane and shorter chain length of saturated fatty acids. In this case, the intact cell structure can be obtained. These findings will contribute not only to deepen the understanding of cells during lyophilization but also to improve the industrial performance of certain milk starters such as L. casei Zhang by application of GSH as cryoprotectant. PMID:26723115

  13. Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334

    PubMed Central

    Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcón, Sergio

    2013-01-01

    The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacillus casei ATCC 334 metabolized citrate in complex with Ca2+ and not as free citrate or the Mg2+-citrate complex, thereby identifying Ca2+-citrate as the substrate of the transporter CitH. The pathway was induced in the presence of Ca2+ and citrate during growth and repressed by the presence of glucose and of galactose, most likely by a carbon catabolite repression mechanism. The end products of Ca2+-citrate metabolism by resting cells of Lb. casei were pyruvate, acetate, and acetoin, demonstrating the activity of the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Following pyruvate, the pathway splits into two branches. One branch is the classical citrate fermentation pathway producing acetoin by ?-acetolactate synthase and ?-acetolactate decarboxylase. The other branch yields acetate, for which the route is still obscure. Ca2+-citrate metabolism in a modified MRS medium lacking a carbohydrate did not significantly affect the growth characteristics, and generation of metabolic energy in the form of proton motive force (PMF) was not observed in resting cells. In contrast, carbohydrate/Ca2+-citrate cometabolism resulted in a higher biomass yield in batch culture. However, also with these cells, no generation of PMF was associated with Ca2+-citrate metabolism. It is concluded that citrate metabolism in Lb. casei is beneficial when it counteracts acidification by carbohydrate metabolism in later growth stages. PMID:23709502

  14. Viability of probiotic Lactobacillus casei in yoghurt: defining the best processing step to its addition.

    PubMed

    Bandiera, Nataly Simões; Carneiro, Isadora; da Silva, Alisson Santana; Honjoya, Edson Renato; de Santana, Elsa Helena Walter; Aragon-Alegro, Lina Casale; de Souza, Cínthia Hoch Batista

    2013-03-01

    Probiotics are live microorganisms capable of producing beneficial effects on its host when consumed in adequate amounts. To exert these effects, foods must contain probiotic microorganisms in populations above 10(6) CFU/g or mL throughout its shelf life. One of the strategies to ensure high population of probiotics in fermented milk is to add them during or after the fermentation process separately from the starter cultures. The objective of this study was to investigate the behavior of the probiotic microorganism Lactobacillus casei added to yoghurt in different stages of production. Yoghurts with L. casei were produced at different stages: before addition of starter (Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus), added together with this culture and at the end of fermentation. Yoghurt without probiotic added was produced as a control. The products were stored at 4 degrees C and analyzed after 1, 7, 14 and 21 days of storage. In these periods, the populations ofprobiotic and starter cultures were enumerated and the parameters pH and acidity were analyzed. The results were evaluated using analysis of variance and Tukey's test, both at 5% significance level. L. casei remained viable in populations of more than 10(8) CFU / g during 21 days of storage, which is suitable to define the formulations as probiotics. When the different stages of the addition of probiotics in yoghurts were evaluated there was no statistical difference between the formulations (p < 0.05) for populations of L. casei except for the first day of storage. PMID:24167959

  15. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the human NK-cell activity.

    PubMed

    Takeda, Kazuyoshi; Okumura, Ko

    2007-03-01

    Nine healthy middle-aged and 10 elderly volunteers drank fermented milk containing 4 x 10(10) live cells of Lactobacillus casei strain Shirota daily for 3 wk, and their natural killer (NK) activity and other immunological functions were examined. In the experiments with middle-aged volunteers, NK activity significantly increased (P<0.01) 3 wk after the start of intake, elevated NK cell activity remained for the next 3 wk, and this effect was particularly prominent in the low-NK-activity individuals. In the experiments with elderly volunteers, NK activity significantly decreased (P<0.01) in the control group 3 wk after the start of intake; however, the intake of Lactobacillus casei strain Shirota maintained the NK activity. These results suggest that daily intake of Lactobacillus casei strain Shirota provides a positive effect on NK-cell activity. PMID:17311976

  16. Identification of a Gene Cluster Enabling Lactobacillus casei BL23 To Utilize myo-Inositol? †

    PubMed Central

    Yebra, María Jesús; Zúñiga, Manuel; Beaufils, Sophie; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente

    2007-01-01

    Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23. PMID:17449687

  17. Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.

    PubMed

    Yebra, María Jesús; Zúñiga, Manuel; Beaufils, Sophie; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente

    2007-06-01

    Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23. PMID:17449687

  18. Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using ?-L-fucosidases from Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Carbajo, Rodrigo J; Pineda-Lucena, Antonio; Monedero, Vicente; Yebra, María J

    2013-06-01

    AlfB and AlfC ?-l-fucosidases from Lactobacillus casei were used in transglycosylation reactions, and they showed high efficiency in synthesizing fucosyldisaccharides. AlfB and AlfC activities exclusively produced fucosyl-?-1,3-N-acetylglucosamine and fucosyl-?-1,6-N-acetylglucosamine, respectively. The reaction kinetics showed that AlfB can convert 23% p-nitrophenyl-?-l-fucopyranoside into fucosyl-?-1,3-N-acetylglucosamine and AlfC at up to 56% into fucosyl-?-1,6-N-acetylglucosamine. PMID:23542622

  19. The sim Operon Facilitates the Transport and Metabolism of Sucrose Isomers in Lactobacillus casei ATCC 334?

    PubMed Central

    Thompson, John; Jakubovics, Nicholas; Abraham, Bindu; Hess, Sonja; Pikis, Andreas

    2008-01-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with Mrs of ?50,000 and ?17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the ?50-kDa protein as an NAD+- and metal ion-dependent phospho-?-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-?-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to ?1.5- and ?1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon. PMID:18310337

  20. Isolation and Characterization of a Novel Virulent Phage of Lactobacillus casei ATCC 393.

    PubMed

    Zhang, Xi; Lan, Yu; Jiao, Wenchao; Li, Yijing; Tang, Lijie; Jiang, Yanping; Cui, Wen; Qiao, Xinyuan

    2015-12-01

    A new virulent phage (Lcb) of Lactobacillus casei ATCC 393 was isolated from Chinese sauerkraut. It was specific to L. casei ATCC 393. Electron micrograph revealed that it had an icosahedral head (60.2 ± 0.8 nm in diameter) and a long tail (251 ± 2.6 nm). It belonged to the Siphoviridae family. The genome of phage Lcb was estimated to be approximately 40 kb and did not contain cohesive ends. One-step growth kinetics of its lytic development revealed latent and burst periods of 75 and 45 min, respectively, with a burst size of 16 PFU per infected cell. The phage was able to survive in a pH range between 4 and 11. However, a treatment of 70 °C for 30 min and 75 % ethanol or isopropanol for 20 min was observed to inactivate phage Lcb thoroughly. The presence of both Ca(2+) and Mg(2+) showed a little influence on phage adsorption, but they were indispensable to gain complete lysis and improve plaque formation. The adsorption kinetics were similar on viable or nonviable cells, and high adsorption rates maintained between 10 and 37 °C. The highest adsorption rate was at 30 °C. This study increased the knowledge on phages of L. casei. The characterization of phage Lcb is helpful to establish a basis for adopting effective strategies to control phage attack in industry. PMID:26123178

  1. Characterization and molecular cloning of cryptic plasmids isolated from Lactobacillus casei.

    PubMed Central

    Lee-Wickner, L J; Chassy, B M

    1985-01-01

    Four small cryptic plasmids were isolated from Lactobacillus casei strains, and restriction endonuclease maps of these plasmids were constructed. Three of the small plasmids (pLZ18C, pLZ19E, and pLZ19F1; 6.4, 4.9, and 4.8 kilobase pairs, respectively) were cloned into Escherichia coli K-12 by using pBR322, pACYC184, and pUC8 as vectors. Two of the plasmids, pLZ18C and pLZ19E, were also cloned into Streptococcus sanguis by using pVA1 as the vector. Hybridization by using nick-translated cloned 32P-labeled L. casei plasmid DNA as the probe revealed that none of the cryptic plasmids had appreciable DNA-DNA homology with the large lactose plasmids found in the L. casei strains, with chromosomal DNAs isolated from these strains. Partial homology was detected among several plasmids isolated from different strains, but not among cryptic plasmids isolated from the same strain. Images PMID:3923929

  2. Construction and characterization of three protein-targeting expression system in Lactobacillus casei.

    PubMed

    Lin, Jinzhong; Zou, Yexia; Ma, Chengjie; Liang, Yunxiang; Ge, Xiangyang; Chen, Zhengjun; She, Qunxin

    2016-04-01

    We previously reported that the β-1,4-Mannanase (manB) gene from Bacillus pumilus functions as a good reporter gene in Lactobacillus casei. Two vectors were constructed. One carries the signal peptide of secretion protein Usp45 (SPUsp45) from Lactococcus lactis (pELSH), and the other carries the full-length S-layer protein, SlpA, from L. acidophilus (pELWH). In this work, another vector, pELSPH, was constructed to include the signal peptide of protein SlpA (SPSlpA), and the capacity of all three vectors to drive expression of the manB gene in L. casei was evaluated. The results showed that SPUsp45 is functionally recognized and processed by the L. casei secretion machinery. The SPUsp45-mediated secretion efficiency was ∼87%, and SPSlpA drove the export of secreted ManB with ∼80% efficiency. SPSlpA secretion was highly efficient, and expressed SlpA was anchored to the cell wall by an unknown secretion mechanism. Full-length SlpA drove the cell wall-anchored expression of an SlpA-ManB fusion protein but at a much lower level than that of protein SlpA. PMID:26892019

  3. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    PubMed

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ? 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications. PMID:26566892

  4. Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model.

    PubMed

    Okubo, Hirofumi; Sakoda, Hideyuki; Kushiyama, Akifumi; Fujishiro, Midori; Nakatsu, Yusuke; Fukushima, Toshiaki; Matsunaga, Yasuka; Kamata, Hideaki; Asahara, Takashi; Yoshida, Yasuto; Chonan, Osamu; Iwashita, Misaki; Nishimura, Fusanori; Asano, Tomoichiro

    2013-12-01

    Gut microbiota alterations are associated with various disorders. In this study, gut microbiota changes were investigated in a methionine-choline-deficient (MCD) diet-induced nonalcoholic steatohepatitis (NASH) rodent model, and the effects of administering Lactobacillus casei strain Shirota (LcS) on the development of NASH were also investigated. Mice were divided into three groups, given the normal chow diet (NCD), MCD diet, or the MCD diet plus daily oral administration of LcS for 6 wk. Gut microbiota analyses for the three groups revealed that lactic acid bacteria such as Bifidobacterium and Lactobacillus in feces were markedly reduced by the MCD diet. Interestingly, oral administration of LcS to MCD diet-fed mice increased not only the L. casei subgroup but also other lactic acid bacteria. Subsequently, NASH development was evaluated based on hepatic histochemical findings, serum parameters, and various mRNA and/or protein expression levels. LcS intervention markedly suppressed MCD-diet-induced NASH development, with reduced serum lipopolysaccharide concentrations, suppression of inflammation and fibrosis in the liver, and reduced colon inflammation. Therefore, reduced populations of lactic acid bacteria in the colon may be involved in the pathogenesis of MCD diet-induced NASH, suggesting normalization of gut microbiota to be effective for treating NASH. PMID:24113768

  5. Predictive modelling of Lactobacillus casei KN291 survival in fermented soy beverage.

    PubMed

    Zieli?ska, Dorota; Dorota, Zieli?ska; Ko?o?yn-Krajewska, Danuta; Danuta, Ko?o?yn-Krajewska; Goryl, Antoni; Antoni, Goryl; Motyl, Ilona

    2014-02-01

    The aim of the study was to construct and verify predictive growth and survival models of a potentially probiotic bacteria in fermented soy beverage. The research material included natural soy beverage (Polgrunt, Poland) and the strain of lactic acid bacteria (LAB) - Lactobacillus casei KN291. To construct predictive models for the growth and survival of L. casei KN291 bacteria in the fermented soy beverage we design an experiment which allowed the collection of CFU data. Fermented soy beverage samples were stored at various temperature conditions (5, 10, 15, and 20°C) for 28 days. On the basis of obtained data concerning the survival of L. casei KN291 bacteria in soy beverage at different temperature and time conditions, two non-linear models (r(2)= 0.68-0.93) and two surface models (r(2)=0.76-0.79) were constructed; these models described the behaviour of the bacteria in the product to a satisfactory extent. Verification of the surface models was carried out utilizing the validation data - at 7°C during 28 days. It was found that applied models were well fitted and charged with small systematic errors, which is evidenced by accuracy factor - Af, bias factor - Bf and mean squared error - MSE. The constructed microbiological growth and survival models of L. casei KN291 in fermented soy beverage enable the estimation of products shelf life period, which in this case is defined by the requirement for the level of the bacteria to be above 10(6) CFU/cm(3). The constructed models may be useful as a tool for the manufacture of probiotic foods to estimate of their shelf life period. PMID:24500482

  6. Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23.

    PubMed

    Revilla-Guarinos, Ainhoa; Gebhard, Susanne; Alcántara, Cristina; Staron, Anna; Mascher, Thorsten; Zúñiga, Manuel

    2013-05-01

    Two-component systems (TCS) are major signal transduction pathways that allow bacteria to detect and respond to environmental and intracellular changes. A group of TCS has been shown to be involved in the response against antimicrobial peptides (AMPs). These TCS are characterized by the possession of intramembrane-sensing histidine kinases, and they are usually associated with ABC transporters of the peptide-7 exporter family (Pep7E). Lactobacillus casei BL23 encodes two TCS belonging to this group (TCS09 and TCS12) that are located next to two ABC transporters (ABC09 and ABC12), as well as a third Pep7E ABC transporter not genetically associated with any TCS (orphan ABC). This study addressed the involvement of modules TCS09/ABC09 and TCS12/ABC12 in AMP resistance. Results showed that both systems contribute to L. casei resistance to AMPs, and that each TCS constitutes a functional unit with its corresponding ABC transporter. Analysis of transcriptional levels showed that module 09 is required for the induction of ABC09 expression in response to nisin. In contrast, module 12 controls a wider regulon that encompasses the orphan ABC, the dlt operon (d-alanylation of teichoid acids), and the mprF gene (l-lysinylation of phospholipids), thereby controlling properties of the cell envelope. Furthermore, the characterization of a dltA mutant showed that Dlt plays a major role in AMP resistance in L. casei. This is the first report on the regulation of the response of L. casei to AMPs, giving insight into its ability to adapt to the challenging environments that it encounters as a probiotic microorganism. PMID:23455349

  7. Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine.

    PubMed

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J

    2012-07-01

    UDP-sugars are used as glycosyl donors in many enzymatic glycosylation processes. In bacteria UDP-N-acetylglucosamine (UDP-GlcNAc) is synthesized from fructose-6-phosphate by four successive reactions catalyzed by three enzymes: Glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM), and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). In this work several metabolic engineering strategies, aimed to increment UDP-GlcNAc biosynthesis, were applied in the probiotic bacterium Lactobacillus casei strain BL23. This strain does not produce exopolysaccharides, therefore it could be a suitable host for the production of oligosaccharides. The genes glmS, glmM, and glmU coding for GlmS, GlmM, and GlmU activities in L. casei BL23, respectively, were identified, cloned and shown to be functional by homologous over-expression. The recombinant L. casei strain over-expressing simultaneously the genes glmM and glmS showed a 3.47 times increase in GlmS activity and 6.43 times increase in GlmM activity with respect to the control strain. Remarkably, these incremented activities resulted in about fourfold increase of the UDP-GlcNAc pool. In L. casei BL23 wild type strain transcriptional analyses showed that glmM and glmU are constitutively transcribed. By contrast, glmS transcription is down-regulated with a 21-fold decrease of glmS mRNA in cells cultured with N-acetylglucosamine as the sole carbon source compared to cells cultured with glucose. Our results revealed for the first time that GlmS, GlmM, and GlmU are responsible for UDP-GlcNAc biosynthesis in lactobacilli. PMID:22383248

  8. LACTOBACILLUS CASEI METABOLIC POTENTIAL TO UTILIZE CITRATE AS AN ENERGY SOURCE IN RIPENING CHEESE: A BIOINFORMATICS APPROACH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research describes a unique PCAC for Lactobacillus casei. Additionally, it describes the citric acid catabolism end-product by this non-starter lactic acid bacteria during growth, and under conditions similar to those present in ripening cheese. It provides insights on pathways preferably util...

  9. Acid stress suggests different determinants for polystyrene and HeLa cell adhesion in Lactobacillus casei.

    PubMed

    Haddaji, N; Khouadja, S; Fdhila, K; Krifi, B; Ben Ismail, M; Lagha, R; Bakir, K; Bakhrouf, A

    2015-07-01

    Adhesion has been regarded as one of the basic features of probiotics. The aim of this study was to investigate the influence of acid stress on the functional properties, such as hydrophobicity, adhesion to HeLa cells, and composition of membrane fatty acids, of Lactobacillus probiotics strains. Two strains of Lactobacillus casei were used. Adhesion on polystyrene, hydrophobicity, epithelial cells adhesion, and fatty acids analysis were evaluated. Our results showed that the membrane properties such as hydrophobicity and fatty acid composition of stressed strains were significantly changed with different pH values. However, we found that acid stress caused a change in the proportions of unsaturated and saturated fatty acid. The ratio of saturated fatty acid to unsaturated fatty acids observed in acid-stressed Lactobacillus casei cells was significantly higher than the ration in control cells. In addition, we observed a significant decrease in the adhesion ability of these strains to HeLa cells and to a polystyrene surface at low pH. The present finding could first add new insight about the acid stress adaptation and, thus, enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. Second, no relationship was observed between changes in membrane composition and fluidity induced by acid treatment and adhesion to biotic and abiotic surfaces. In fact, the decrease of cell surface hydrophobicity and the adhesion ability to abiotic surface and the increase of the capacity of adhesion to biotic surface demonstrate that adhesive characteristics will have little relevance in probiotic strain-screening procedures. PMID:25981066

  10. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread.

    PubMed

    García-Mantrana, Izaskun; Yebra, María J; Haros, Monika; Monedero, Vicente

    2016-01-01

    Phytases are enzymes capable of sequentially dephosphorylating phytic acid to products of lower chelating capacity and higher solubility, abolishing its inhibitory effect on intestinal mineral absorption. Genetic constructions were made for expressing two phytases from bifidobacteria in Lactobacillus casei under the control of a nisin-inducible promoter. L. casei was able of producing, exporting and anchoring to the cell wall the phytase of Bifidobacterium pseudocatenulatum. The phytase from Bifidobacterium longum spp. infantis was also produced, although at low levels. L. casei expressing any of these phytases completely degraded phytic acid (2mM) to lower myo-inositol phosphates when grown in MRS medium. Owing to the general absence of phytase activity in lactobacilli and to the high phytate content of whole grains, the constructed L. casei strains were applied as starter in a bread making process using whole-grain flour. L. casei developed in sourdoughs by fermenting the existing carbohydrates giving place to an acidification. In this food model system the contribution of L. casei strains expressing phytases to phytate hydrolysis was low, and the phytate degradation was mainly produced by activation of the cereal endogenous phytase as a consequence of the drop in pH. This work shows the capacity of lactobacilli to be modified in order to produce enzymes with relevance in food technology processes. The ability of these strains in reducing the phytate content in fermented food products must be evaluated in further models. PMID:26384212

  11. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei.

    PubMed

    Serata, Masaki; Iino, Tohru; Yasuda, Emi; Sako, Tomoyuki

    2012-04-01

    The Lactobacillus casei strain Shirota used in this study has in the genome four putative thioredoxin genes designated trxA1, trxA2, trxA3 and trxA4, and one putative thioredoxin reductase gene designated trxB. To elucidate the roles of the thioredoxins and the thioredoxin reductase against oxidative stress in L. casei, we constructed gene disruption mutants, in which each of the genes trxA1, trxA2 and trxB, or both trxA1 and trxA2 were disrupted, and we characterized their growth and response to oxidative stresses. In aerobic conditions, the trxA1 (MS108) and the trxA2 (MS109) mutants had moderate growth defects, and the trxA1 trxA2 double mutant (MS110) had a severe growth defect, which was characterized by elongation of doubling time and a lower final turbidity level. Furthermore, the trxB mutant (MS111), which is defective in thioredoxin reductase, lost the ability to grow under aerobic conditions, although it grew partially under anaerobic conditions. The growth of these mutants, however, could be substantially restored by the addition of dithiothreitol or reduced glutathione. In addition, MS110 and MS111 were more sensitive to hydrogen peroxide and disulfide stress than the wild-type. In particular, the stress sensitivity of MS111 was significantly increased. On the other hand, transcription of all these genes was only weakly affected by these oxidative stresses. Taken together, these results suggest that the thioredoxin-thioredoxin reductase system is the major thiol/disulfide redox system and is essential to allow the facultative anaerobe L. casei to grow under aerobic conditions. PMID:22301908

  12. Multilocus Sequence Typing of Lactobacillus casei Reveals a Clonal Population Structure with Low Levels of Homologous Recombination? †

    PubMed Central

    Diancourt, Laure; Passet, Virginie; Chervaux, Christian; Garault, Peggy; Smokvina, Tamara; Brisse, Sylvain

    2007-01-01

    Robust genotyping methods for Lactobacillus casei are needed for strain tracking and collection management, as well as for population biology research. A collection of 52 strains initially labeled L. casei or Lactobacillus paracasei was first subjected to rplB gene sequencing together with reference strains of Lactobacillus zeae, Lactobacillus rhamnosus, and other species. Phylogenetic analysis showed that all 52 strains belonged to a single compact L. casei-L. paracasei sequence cluster, together with strain CIP107868 (= ATCC 334) but clearly distinct from L. rhamnosus and from a cluster with L. zeae and CIP103137T (= ATCC 393T). The strains were genotyped using amplified fragment length polymorphism, multilocus sequence typing based on internal portions of the seven housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA, and recG, and tandem repeat variation (multilocus variable-number tandem repeats analysis [MLVA] using nine loci). Very high concordance was found between the three methods. Although amounts of nucleotide variation were low for the seven genes (? ranging from 0.0038 to 0.0109), 3 to 12 alleles were distinguished, resulting in 31 sequence types. One sequence type (ST1) was frequent (17 strains), but most others were represented by a single strain. Attempts to subtype ST1 strains by MLVA, ribotyping, clustered regularly interspaced short palindromic repeat characterization, and single nucleotide repeat variation were unsuccessful. We found clear evidence for homologous recombination during the diversification of L. casei clones, including a putative intragenic import of DNA into one strain. Nucleotides were estimated to change four times more frequently by recombination than by mutation. However, statistical congruence between individual gene trees was retained, indicating that recombination is not frequent enough to disrupt the phylogenetic signal. The developed multilocus sequence typing scheme should be useful for future studies of L. casei strain diversity and evolution. PMID:17704267

  13. Distinct adhesion of probiotic strain Lactobacillus casei ATCC 393 to rat intestinal mucosa.

    PubMed

    Saxami, Georgia; Ypsilantis, Petros; Sidira, Marianthi; Simopoulos, Constantinos; Kourkoutas, Yiannis; Galanis, Alex

    2012-08-01

    Adhesion to the intestine represents a critical parameter for probiotic action. In this study, the adhesion ability of Lactobacillus casei ATCC 393 to the gastrointestinal tract of Wistar rats was examined after single and daily administration of fermented milk containing either free or immobilized cells on apple pieces. The adhesion of the probiotic cells at the large intestine (cecum and colon) was recorded at levels ≥6 logCFU/g (suggested minimum levels for conferring a probiotic effect) following daily administration for 7 days by combining microbiological and strain-specific multiplex PCR analysis. Single dose administration resulted in slightly reduced counts (5 logCFU/g), while they were lower at the small intestine (duodenum, jejunum, ileum) (≤3 logCFU/g), indicating that adhesion was a targeted process. Of note, the levels of L. casei ATCC 393 were enhanced in the cecal and colon fluids both at single and daily administration of immobilized cells (6 and 7 logCFU/g, respectively). The adhesion of the GI tract was transient and thus daily consumption of probiotic products containing the specific strain is suggested as an important prerequisite for retaining its levels at an effective concentration. PMID:22554894

  14. Effect of immobilized Lactobacillus casei on volatile compounds of heat treated probiotic dry-fermented sausages.

    PubMed

    Sidira, Marianthi; Kandylis, Panagiotis; Kanellaki, Maria; Kourkoutas, Yiannis

    2015-07-01

    The effect of the amount of immobilized Lactobacillus casei ATCC 393 on wheat grains on the generation of volatile compounds during the production of heat treated probiotic dry-fermented sausages was investigated. For comparison reasons, sausages containing free L. casei cells or no starter culture as well as a similar commercial product were also included in the study. Samples ripened for 8 days and heat treated to 70-72°C for 8-10 min were subjected to Solid Phase Microextraction (SPME) Gas Chromatography/Mass Spectrometry (GC/MS) analysis. The starter culture affected significantly the production of volatile compounds. The highest content of esters and alcohols was observed in the sample containing 30 g of immobilized cells/kg of stuffing mixture, while the highest concentration of organic acids was observed in the sausages with no starter culture. In contrast, the commercial product contained the lowest concentration of volatiles. Principal component analysis of the semi-quantitative data revealed that the volatile composition was affected primarily by the nature and concentration of the starter culture. PMID:25704702

  15. Shotgun phage display of Lactobacillus casei BL23 against collagen and fibronectin.

    PubMed

    Munoz-Provencio, Diego; Monedero, Vicente

    2011-02-01

    Lactobacilli are normal constituents of the intestinal microbiota, and some strains show the capacity to bind to extracellular matrix proteins and components of the mucosal layer, which represents an adaptation to persist in this niche. A shotgun phage-display library of Lactobacillus casei BL23 was constructed and screened for peptides able to bind to fibronectin and collagen. Clones showing binding to these proteins were isolated, which encoded overlapping fragments of a putative transcriptional regulator (LCABL_29260), a hypothetical protein exclusively found in the L. casei/rhamnosus group (LCABL_01820), and a putative phage-related endolysin (LCABL_13470). The construction of different glutathione S-transferase (GST) fusions confirmed the binding activity and demonstrated that the three identified proteins could interact with fibronectin, fibrinogen, and collagen. The results illustrate the utility of phage display for the isolation of putative adhesins in lactobacilli. However, it remains to be determined whether the primary function of these proteins actually is adhesion to mucosal surfaces. PMID:21364304

  16. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Rubio-Del-Campo, Antonio; Yebra, María J

    2012-01-01

    UDP-N-acetylglucosamine (UDP-GlcNAc) is an important sugar nucleotide used as a precursor of cell wall components in bacteria, and as a substrate in the synthesis of oligosaccharides in eukaryotes. In bacteria UDP-GlcNAc is synthesized from the glycolytic intermediate D-fructose-6-phosphate (fructose-6P) by four successive reactions catalyzed by three enzymes: glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM) and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). We have previously reported a metabolic engineering strategy in Lactobacillus casei directed to increase the intracellular levels of UDP-GlcNAc by homologous overexpression of the genes glmS, glmM and glmU. One of the most remarkable features regarding the production of UDP-GlcNAc in L. casei was to find multiple regulation points on its biosynthetic pathway: (1) regulation by the NagB enzyme, (2) glmS RNA specific degradation through the possible participation of a glmS riboswitch mechanism, (3) regulation of the GlmU activity probably by end product inhibition and (4) transcription of glmU. PMID:22825354

  17. Identification of Surface Proteins from Lactobacillus casei BL23 Able to Bind Fibronectin and Collagen.

    PubMed

    Muñoz-Provencio, Diego; Pérez-Martínez, Gaspar; Monedero, Vicente

    2011-03-01

    Strains of lactobacilli show the capacity to attach to extracellular matrix proteins. Cell-wall fractions of Lactobacillus casei BL23 enriched in fibronectin, and collagen-binding proteins were isolated. Mass spectrometry analysis of their protein content revealed the presence of stress-related proteins (GroEL, ClpL), translational elongation factors (EF-Tu, EF-G), oligopeptide solute-binding proteins, and the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The latter two enzymes were expressed in Escherichia coli and purified as glutathione-S-transferase (GST) fusion proteins, and their in vitro binding activity to fibronectin and collagen was confirmed. These results reinforce the idea that lactobacilli display on their surfaces a variety of moonlighting proteins that can be important in their adaptation to survive at intestinal mucosal sites and in the interaction with host cells. PMID:26781495

  18. Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.

    PubMed

    Matsuki, Takahiro; Pédron, Thierry; Regnault, Béatrice; Mulet, Céline; Hara, Taeko; Sansonetti, Philippe J

    2013-01-01

    In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA) were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut. PMID:23646174

  19. Expression of cbsA Encoding the Collagen-Binding S-Protein of Lactobacillus crispatus JCM5810 in Lactobacillus casei ATCC 393T

    PubMed Central

    Martínez, Beatriz; Sillanpää, Jouko; Smit, Egbert; Korhonen, Timo K.; Pouwels, Peter H.

    2000-01-01

    The cbsA gene encoding the collagen-binding S-layer protein of Lactobacillus crispatus JCM5810 was expressed in L. casei ATCC 393T. The S-protein was not retained on the surface of the recombinant bacteria but was secreted into the medium. By translational fusion of CbsA to the cell wall sorting signal of the proteinase, PrtP, of L. casei, CbsA was presented at the surface, rendering the transformants able to bind to immobilized collagens. PMID:11073938

  20. The effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei on gastropathic consequences in diabetic rats.

    PubMed

    Yadav, Hariom; Jain, Shalini; Sinha, P R

    2008-03-01

    In the present study, the effects of oral administration of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei on gastropathic consequences in streptozotocin-induced diabetic rats were evaluated, and effects were compared with skim milk- and control dahi-fed groups. The feeding of probiotic dahi did not change the blood glucose levels in chronic hyperglycemic conditions. The rate of charcoal transit was significantly higher in probiotic dahi-fed animals than in those of the diabetic control group (P < .05). Moreover, the oral administration of probiotic dahi significantly increased counts of lactobacilli adherent to epithelial walls and free in the lumen of the small and large intestine, while decreasing attached as well as free coliform counts (P < .05). In addition, probiotic dahi reversed the decrease in total lactobacilli and increase in total coliforms in fecal samples of diabetic animals. It was also shown that oral ingestion of probiotic dahi reduced the oxidative stress marker thiobarbituric acid-reactive species in intestinal tissues and glycosylation of hemoglobin (P < .05). All the effects were predominantly higher in the probiotic dahi-fed group than the skim milk- and control dahi-fed groups. The results indicate that probiotic dahi may be used as a therapeutic regimen to diminish the gastropathic consequences of diabetes. PMID:18361739

  1. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-01

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. PMID:21807435

  2. A Novel Lactobacillus casei LP1 Producing 1,4-Dihydroxy-2-Naphthoic Acid, a Bifidogenic Growth Stimulator

    PubMed Central

    Kang, Jo-Eun; Kim, Tae-Jung; Moon, Gi-Seong

    2015-01-01

    1,4-Dihydroxy-2-naphthoic acid (DHNA) is a bifidogenic growth stimulator (BGS) and could be a functional food ingredient since bifidobacteria are beneficial for human health. For that reason, lactic acid bacteria producing DHNA have been screened. A lactic acid bacterium LP1 strain isolated from a natural cheese was confirmed to produce DHNA, analyzed by a HPLC method. The strain was identified as Lactobacillus casei by 16S rRNA gene sequence analysis. The cell-free supernatant of fermented whey produced by L. casei LP1 presented the BGS activity for three bifidobacterial strains such as Bifidobacterium longum subsp. infantis KCTC 3127, Bifidobacterium bifidum KCTC 3202, and Bifidobacterium breve KCTC 3220 which were human-originated. To the best of our knowledge, a L. casei strain which can produce DHNA was firstly identified in this study. PMID:25866754

  3. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase

    PubMed Central

    Alvarez-Sieiro, Patricia; Martin, Maria Cruz; Redruello, Begoña; del Rio, Beatriz; Ladero, Victor; Palanski, Brad A.; Khosla, Chaitan; Fernandez, Maria; Alvarez, Miguel A.

    2015-01-01

    Prolyl endopeptidases (PEP), a family of serine proteases with the ability to hydrolyze the peptide bond on the carboxyl side of an internal proline residue, are able to degrade immunotoxic peptides responsible for celiac disease (CD), such as a 33-residue gluten peptide (33-mer). Oral administration of PEP has been suggested as a potential therapeutic approach for CD, although delivery of the enzyme to the small intestine requires intrinsic gastric stability or advanced formulation technologies. We have engineered two food-grade Lactobacillus casei strains to deliver PEP in an in vitro model of small intestine environment. One strain secretes PEP into the extracellular medium, whereas the other retains PEP in the intracellular environment. The strain that secretes PEP into the extracellular medium is the most effective to degrade the 33-mer and is resistant to simulated gastrointestinal stress. Our results suggest that in a future, after more studies and clinical trials, an engineered food-grade Lactobacillus strain may be useful as a vector for in situ production of PEP in the upper small intestine of CD patients. PMID:24752841

  4. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase.

    PubMed

    Alvarez-Sieiro, Patricia; Martin, Maria Cruz; Redruello, Begoña; Del Rio, Beatriz; Ladero, Victor; Palanski, Brad A; Khosla, Chaitan; Fernandez, Maria; Alvarez, Miguel A

    2014-08-01

    Prolyl endopeptidases (PEP) (EC 3.4.21.26), a family of serine proteases with the ability to hydrolyze the peptide bond on the carboxyl side of an internal proline residue, are able to degrade immunotoxic peptides responsible for celiac disease (CD), such as a 33-residue gluten peptide (33-mer). Oral administration of PEP has been suggested as a potential therapeutic approach for CD, although delivery of the enzyme to the small intestine requires intrinsic gastric stability or advanced formulation technologies. We have engineered two food-grade Lactobacillus casei strains to deliver PEP in an in vitro model of small intestine environment. One strain secretes PEP into the extracellular medium, whereas the other retains PEP in the intracellular environment. The strain that secretes PEP into the extracellular medium is the most effective to degrade the 33-mer and is resistant to simulated gastrointestinal stress. Our results suggest that in the future, after more studies and clinical trials, an engineered food-grade Lactobacillus strain may be useful as a vector for in situ production of PEP in the upper small intestine of CD patients. PMID:24752841

  5. Impact of lactose starvation on the physiology of Lactobacillus casei GCRL163 in the presence or absence of tween 80.

    PubMed

    Al-Naseri, Ali; Bowman, John P; Wilson, Richard; Nilsson, Rolf E; Britz, Margaret L

    2013-11-01

    The global proteomic response of the nonstarter lactic acid bacteria Lactobacillus casei strain GCRL163 under carbohydrate depletion was investigated to understand aspects of its survival following cessation of fermentation. The proteome of L. casei GCRL163 was analyzed quantitatively after growth in modified MRS (with and without Tween 80) with different levels of lactose (0% lactose, starvation; 0.2% lactose, growth limiting; 1% lactose, non-growth-limited control) using gel-free proteomics. Results revealed that carbohydrate starvation lead to suppression of lactose and galactose catabolic pathways as well as pathways for nucleotide and protein synthesis. Enzymes of the glycolysis/gluconeogenesis pathway, amino acid synthesis, and pyruvate and citrate metabolism become more abundant as well as other carbohydrate catabolic pathways, suggesting increased optimization of intermediary metabolism and scavenging. Tween 80 did not affect growth yield; however, proteins related to fatty acid biosynthesis were repressed in the presence of Tween 80. The data suggest that L. casei adeptly switches to a scavenging mode, using both citrate and Tween 80, and efficiently adjusts energetic requirements when carbohydrate starved and thus can sustain survival for weeks to months. Explaining the adaptation of L. casei during lactose starvation will assist efforts to maintain viability of L. casei and extend its utility as a beneficial dietary adjunct and fermentation processing aid. PMID:24066708

  6. Effect of Lactobacillus casei on the Production of Pro-Inflammatory Markers in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Zarfeshani, A; Khaza'ai, H; Mohd Ali, R; Hambali, Z; Wahle, K W J; Mutalib, M S A

    2011-12-01

    It has been demonstrated that probiotic supplementation has positive effects in several murine models of disease through influences on host immune responses. This study examined the effect of Lactobacillus casei strain Shirota (L. casei Shirota) on the blood glucose, C-reactive protein (CRP), Interleukin-6 (IL-6), Interleukin-4 (IL-4), and body weight among STZ-induced diabetic rats. Diabetes mellitus was induced by streptozotocin (STZ, 50 mg/kg BW) in male Sprague-Dawley rats. Streptozotocin caused a significant increase in the blood glucose levels, CRP, and IL-6. L. casei Shirota supplementation lowered the CRP and IL-6 levels but had no significant effect on the blood glucose levels, body weight, or IL-4. Inflammation was determined histologically. The presence of the innate immune cells was not detectable in the liver of L. casei Shirota-treated hyperglycemic rats. The probiotic L. casei Shirota significantly lowered blood levels of pro-inflammatory cytokines (IL-6, CRP) and neutrophils in diabetic rats, showing a lower risk of diabetes mellitus and its complications. PMID:26781677

  7. Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Yebra, María J

    2011-07-20

    UDP-sugars are widely used as substrates in the synthesis of oligosaccharides catalyzed by glycosyltransferases. In the present work a metabolic engineering strategy aimed to direct the carbon flux towards UDP-glucose and UDP-galactose biosynthesis was successfully applied in Lactobacillus casei. The galU gene coding for UDP-glucose pyrophosphorylase (GalU) enzyme in L. casei BL23 was cloned under control of the inducible nisA promoter and it was shown to be functional by homologous overexpression. Notably, about an 80-fold increase in GalU activity resulted in approximately a 9-fold increase of UDP-glucose and a 4-fold increase of UDP-galactose. This suggested that the endogenous UDP-galactose 4-epimerase (GalE) activity, which inter-converts both UDP-sugars, is not sufficient to maintain the UDP-glucose/UDP-galactose ratio. The L. casei galE gene coding for GalE was cloned downstream of galU and the resulting plasmid was transformed in L. casei. The new recombinant strain showed about a 4-fold increase of GalE activity, however this increment did not affect that ratio, suggesting that GalE has higher affinity for UDP-galactose than for UDP-glucose. The L. casei strains constructed here that accumulate high intracellular levels of UDP-sugars would be adequate hosts for the production of oligosaccharides. PMID:21663774

  8. Utilization of natural fucosylated oligosaccharides by three novel alpha-L-fucosidases from a probiotic Lactobacillus casei strain.

    PubMed

    Rodríguez-Díaz, Jesús; Monedero, Vicente; Yebra, María J

    2011-01-01

    Three putative ?-L-fucosidases encoded in the Lactobacillus casei BL23 genome were cloned and purified. The proteins displayed different abilities to hydrolyze natural fucosyloligosaccharides like 2'-fucosyllactose, H antigen disaccharide, H antigen type II trisaccharide, and 3'-, 4'-, and 6'-fucosyl-GlcNAc. This indicated a possible role in the utilization of oligosaccharides present in human milk and intestinal mucosa. PMID:21097595

  9. Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2015-08-01

    The aim of the current study was to investigate the effect of varying sodium chloride concentrations (0-5%) on viability and membrane integrity of three probiotic bacteria, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum, using conventional technique and flow cytometry. Double staining of cells by carboxyfluorescein diacetate (cFDA) and propidium iodide (PI) enabled to evaluate the effect of NaCl on cell esterase activity and membrane integrity. Observations from conventional culture technique were compared with findings from flow cytometric analysis on the metabolic activities of the cells and a correlation was observed between culturability and dye extrusion ability of L. casei and B. longum. However, a certain population of L. acidophilus was viable as per the plate count method but its efflux activity was compromised. Esterase activity of most bacteria reduced significantly (P < 0.05) during one week storage at NaCl concentrations greater than 3.5%. The study revealed that L. casei was least affected by higher NaCl concentrations among the three probiotic bacteria, as opposed to B. longum where the cF extrusion performance was greatly reduced during 1 wk storage. The metabolic activity and salt resistance of L. casei was found to be highest among the bacteria studied. PMID:25846931

  10. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    SciTech Connect

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

  11. Antimicrobial Activity of Intraurethrally Administered Probiotic Lactobacillus casei in a Murine Model of Escherichia coli Urinary Tract Infection

    PubMed Central

    Asahara, Takashi; Nomoto, Koji; Watanuki, Masaaki; Yokokura, Teruo

    2001-01-01

    The antimicrobial activity of the intraurethrally administered probiotic Lactobacillus casei strain Shirota against Escherichia coli in a murine urinary tract infection (UTI) model was examined. UTI was induced by intraurethral administration of Escherichia coli strain HU-1 (a clinical isolate from a UTI patient, positive for type 1 and P fimbriae), at a dose of 1 × 106 to 2 × 106 CFU in 20 μl of saline, into a C3H/HeN mouse bladder which had been traumatized with 0.1 N HCl followed immediately by neutralization with 0.1 N NaOH 24 h before the challenge infection. Chronic infection with the pathogen at 106 CFU in the urinary tract (bladder and kidneys) was maintained for more than 3 weeks after the challenge, and the number of polymorphonuclear leukocytes and myeloperoxidase activity in the urine were markedly elevated during the infection period. A single administration of L. casei Shirota at a dose of 108 CFU 24 h before the challenge infection dramatically inhibited E. coli growth and inflammatory responses in the urinary tract. Multiple daily treatments with L. casei Shirota during the postinfection period also showed antimicrobial activity in this UTI model. A heat-killed preparation of L. casei Shirota exerted significant antimicrobial effects not only with a single pretreatment (100 μg/mouse) but also with multiple daily treatments during the postinfection period. The other Lactobacillus strains tested, i.e., L. fermentum ATCC 14931T, L. jensenii ATCC 25258T, L. plantarum ATCC 14917T, and L. reuteri JCM 1112T, had no significant antimicrobial activity. Taken together, these results suggest that the probiotic L. casei strain Shirota is a potent therapeutic agent for UTI. PMID:11353622

  12. Therapeutic effects of Lactobacillus casei Qian treatment in activated carbon-induced constipated mice.

    PubMed

    Zhao, Xin; Suo, Hua-Yi; Qian, Yu; Li, Gui-Jie; Liu, Zhen-Hu; Li, Jian

    2015-08-01

    In the present study, the therapeutic effects of Lactobacillus casei Qian (LC-Qian), the key microorganism in Tibetan yak yoghurt, on activated carbon-induced constipation were determined in vivo. ICR mice were treated with LC-Qian for nine days by oral administration. The body weight, defecation status, gastrointestinal transit and defecation time of mice were assessed, and the serum levels of motilin (MTL), gastrin (Gas), endothelin (ET), somatostatin (SS), acetylcholinesterase (AChE), substance P (SP) and vasoactive intestinal peptide (VIP) were further evaluated. Bisacodyl was used as the positive control. The time until the first black stool defecation following carbon intake of the normal, control, 100 mg/kg bisacodyl-treated, Lactobacillus bulgaricus (LB)-treated, LC-Qian (L)-and LC-Qian (H)-treated mice was 93, 231, 121, 194, 172 and 157 min, respectively. Following treatment with LC-Qian, the gastrointestinal transit was increased to 52.4% [LC-Qian (L)] and 65.8% [LC-Qian (H)], while that in the group treated with the common lactic acid bacteria of LB was 40.3%. The MTL, Gas, ET, AChE, SP and VIP serum levels were significantly increased and levels of SS were reduced in mice following LC-Qian treatment compared with those in the control mice (P<0.05). Reverse transcription quantitative polymerase chain reaction indicated that LC-Qian raised the c-Kit, GDNF as well as SCF mRNA expression levels and reduced the TRPV1 and NOS expression levels in tissue of the small intestine in mice. These results suggested that lactic acid bacteria prevent constipation in mice, among which LC-Qian was the most effective. PMID:25955533

  13. Lactobacillus casei Abundance Is Associated with Profound Shifts in the Infant Gut Microbiome

    PubMed Central

    Fujimura, Kei E.; Liu, Jane T.; McKean, Michelle; Boushey, Homer A.; Segal, Mark R.; Brodie, Eoin L.; Cabana, Michael D.; Lynch, Susan V.

    2010-01-01

    Colonization of the infant gut by microorganisms over the first year of life is crucial for development of a balanced immune response. Early alterations in the gastrointestinal microbiota of neonates has been linked with subsequent development of asthma and atopy in older children. Here we describe high-resolution culture-independent analysis of stool samples from 6-month old infants fed daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG) or placebo in a double-blind, randomized Trial of Infant Probiotic Supplementation (TIPS). Bacterial community composition was examined using a high-density microarray, the 16S rRNA PhyloChip, and the microbial assemblages of infants with either high or low LGG abundance were compared. Communities with high abundance of LGG exhibited promotion of phylogenetically clustered taxa including a number of other known probiotic species, and were significantly more even in their distribution of community members. Ecologically, these aspects are characteristic of communities that are more resistant to perturbation and outgrowth of pathogens. PhyloChip analysis also permitted identification of taxa negatively correlated with LGG abundance that have previously been associated with atopy, as well as those positively correlated that may prove useful alternative targets for investigation as alternative probiotic species. From these findings we hypothesize that a key mechanism for the protective effect of LGG supplementation on subsequent development of allergic disease is through promotion of a stable, even, and functionally redundant infant gastrointestinal community. PMID:20090909

  14. Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome.

    PubMed

    Cox, Michael J; Huang, Yvonne J; Fujimura, Kei E; Liu, Jane T; McKean, Michelle; Boushey, Homer A; Segal, Mark R; Brodie, Eoin L; Cabana, Michael D; Lynch, Susan V

    2010-01-01

    Colonization of the infant gut by microorganisms over the first year of life is crucial for development of a balanced immune response. Early alterations in the gastrointestinal microbiota of neonates has been linked with subsequent development of asthma and atopy in older children. Here we describe high-resolution culture-independent analysis of stool samples from 6-month old infants fed daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG) or placebo in a double-blind, randomized Trial of Infant Probiotic Supplementation (TIPS). Bacterial community composition was examined using a high-density microarray, the 16S rRNA PhyloChip, and the microbial assemblages of infants with either high or low LGG abundance were compared. Communities with high abundance of LGG exhibited promotion of phylogenetically clustered taxa including a number of other known probiotic species, and were significantly more even in their distribution of community members. Ecologically, these aspects are characteristic of communities that are more resistant to perturbation and outgrowth of pathogens. PhyloChip analysis also permitted identification of taxa negatively correlated with LGG abundance that have previously been associated with atopy, as well as those positively correlated that may prove useful alternative targets for investigation as alternative probiotic species. From these findings we hypothesize that a key mechanism for the protective effect of LGG supplementation on subsequent development of allergic disease is through promotion of a stable, even, and functionally redundant infant gastrointestinal community. PMID:20090909

  15. Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3.

    PubMed

    Sharma, Deepansh; Singh Saharan, Baljeet

    2014-01-01

    Lactic acid bacteria (LAB) are ubiquitous and well-known commensal bacteria in the human and animal microflora. LAB are extensively studied and used in a variety of industrial and food fermentations. They are widely used for humans and animals as adjuvants, probiotic formulation, and dietary supplements and in other food fermentation applications. In the present investigation, LAB were isolated from raw milk samples collected from local dairy farms of Haryana, India. Further, the isolates were screened for simultaneous production of biosurfactants and bacteriocins. Biosurfactant produced was found to be a mixture of lipid and sugar similar to glycolipids. The bacteriocin obtained was found to be heat stable (5?min at 100°C). Further, DNA of the strain was extracted and amplified by the 16S rRNA sequencing using universal primers. The isolate Lactobacillus casei MRTL3 was found to be a potent biosurfactant and bacteriocin producer. It seems to have huge potential for food industry as a biopreservative and/or food ingredient. PMID:24669225

  16. Carbon Source Requirements for Exopolysaccharide Production by Lactobacillus casei CG11 and Partial Structure Analysis of the Polymer

    PubMed Central

    Cerning, J.; Renard, C. M. G. C.; Thibault, J. F.; Bouillanne, C.; Landon, M.; Desmazeaud, M.; Topisirovic, L.

    1994-01-01

    Exopolysaccharide production by Lactobacillus casei CG11 was studied in basal minimum medium containing various carbon sources (galactose, glucose, lactose, sucrose, maltose, melibiose) at concentrations of 2, 5, 10, and 20 g/liter. L. casei CG11 produced exopolysaccharides in basal minimum medium containing each of the sugars tested; lactose and galactose were the poorest carbon sources, and glucose was by far the most efficient carbon source. Sugar concentrations had a marked effect on polymer yield. Plasmid-cured Muc- derivatives grew better in the presence of glucose and attained slightly higher populations than the wild-type strain. The values obtained with lactose were considerably lower for both growth and exopolysaccharide yield. The level of specific polymer production per cell obtained with glucose was distinctively lower for Muc- derivatives than for the Muc+ strain. The polymer produced by L. casei CG11 in the presence of glucose was different from that formed in the presence of lactose. The polysaccharide produced by L. casei CG11 in basal minimum medium containing 20 g of glucose per liter had an intrinsic viscosity of 1.13 dl/g. It was rich in glucose (76%), which was present mostly as 2- or 3-linked residues along with some 2,3 doubly substituted glucose units, and in rhamnose (21%), which was present as 2-linked or terminal rhamnose; traces of mannose and galactose were also present. PMID:16349427

  17. A murine oral model for Mycobacterium avium subsp. paratuberculosis infection and immunomodulation with Lactobacillus casei ATCC 334

    PubMed Central

    Cooney, Meagan A.; Steele, James L.; Steinberg, Howard; Talaat, Adel M.

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) the causative agent of Johne's disease, is one of the most serious infectious diseases in dairy cattle worldwide. Due to the chronic nature of this disease and no feasible control strategy, it is essential to have an efficient animal model which is representative of the natural route of infection as well as a viable treatment option. In this report, we evaluated the effect of different doses of M. paratuberculosis in their ability to colonize murine tissues following oral delivery and the ability of Lactobacillus casei ATCC 334, a nascent probiotic, to combat paratuberculosis. Oral inoculation of mice was able to establish paratuberculosis in a dose-dependent manner. Two consecutive doses of approximately 109 CFU per mouse resulted in a disseminated infection, whereas lower doses were not efficient to establish infection. All inoculated mice were colonized with M. paratuberculosis, maintained infection for up to 24 weeks post infection and generated immune responses that reflect M. paratuberculosis infection in cattle. Notably, oral administration of L. casei ATCC 334 did not reduce the level of M. paratuberculosis colonization in treated animals. Interestingly, cytokine responses and histology indicated a trend for the immunomodulation and reduction of pathology in animals receiving L. casei ATCC 334 treatment. Overall, a reproducible oral model of paratuberculosis in mice was established that could be used for future vaccine experiments. Although the L. casei ATCC 334 was not a promising candidate for controlling paratuberculosis, we established a protocol to screen other probiotic candidates. PMID:24551602

  18. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation

    PubMed Central

    2012-01-01

    Background The broad ecological distribution of L. casei makes it an insightful subject for research on genome evolution and lifestyle adaptation. To explore evolutionary mechanisms that determine genomic diversity of L. casei, we performed comparative analysis of 17 L. casei genomes representing strains collected from dairy, plant, and human sources. Results Differences in L. casei genome inventory revealed an open pan-genome comprised of 1,715 core and 4,220 accessory genes. Extrapolation of pan-genome data indicates L. casei has a supragenome approximately 3.2 times larger than the average genome of individual strains. Evidence suggests horizontal gene transfer from other bacterial species, particularly lactobacilli, has been important in adaptation of L. casei to new habitats and lifestyles, but evolution of dairy niche specialists also appears to involve gene decay. Conclusions Genome diversity in L. casei has evolved through gene acquisition and decay. Acquisition of foreign genomic islands likely confers a fitness benefit in specific habitats, notably plant-associated niches. Loss of unnecessary ancestral traits in strains collected from bacterial-ripened cheeses supports the hypothesis that gene decay contributes to enhanced fitness in that niche. This study gives the first evidence for a L. casei supragenome and provides valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible and industrially important lactic acid bacterium. Additionally, our data confirm the Distributed Genome Hypothesis extends to non-pathogenic, ecologically flexible species like L. casei. PMID:23035691

  19. Genomic and Functional Characterization of the Unusual pLOCK 0919 Plasmid Harboring the spaCBA Pili Cluster in Lactobacillus casei LOCK 0919

    PubMed Central

    Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Bagińska, Anna; Grynberg, Marcin; Nowak, Adriana; Cukrowska, Bożena; Kozakova, Hana; Bardowski, Jacek

    2016-01-01

    Here, we report the extensive bioinformatic and functional analyses of the unusual pLOCK 0919, a plasmid originating from the probiotic Lactobacillus casei LOCK 0919 strain. This plasmid is atypical because it harbors the spaCBA-srtC gene cluster encoding SpaCBA pili. We show that all other spaCBA-srtC sequences of the Lactobacillus genus that have been previously described and deposited in GenBank are present in the chromosomal DNA. Another important observation for pLOCK 0919 is that the spaCBA-srtC gene cluster and its surrounding genes are highly similar to the respective DNA region that is present in the most well-known and active SpaCBA pili producer, the probiotic Lactobacillus rhamnosus GG strain. Our results demonstrate that the spaCBA-srtC clusters of pLOCK 0919 and L. rhamnosus GG are genealogically similar, located in DNA regions that are rich in transposase genes and are poorly conserved among the publicly available sequences of Lactobacillus sp. In contrast to chromosomally localized pilus gene clusters from L. casei and Lactobacillus paracasei, the plasmidic spaC of L. casei LOCK 0919 is expressed and undergoes a slight glucose-induced repression. Moreover, results of series of in vitro tests demonstrate that L. casei LOCK 0919 has an adhesion potential, which is largely determined by the presence of the pLOCK 0919 plasmid. In particular, the plasmid occurrence positively influenced the hydrophobicity and aggregation abilities of L. casei LOCK 0919. Moreover, in vivo studies indicate that among the three Lactobacillus strains used to colonize the gastrointestinal tract of germ-free mice, already after 2 days of colonization, L. casei LOCK 0919 became the dominant strain and persisted there for at least 48 days. PMID:26637469

  20. Genomic and Functional Characterization of the Unusual pLOCK 0919 Plasmid Harboring the spaCBA Pili Cluster in Lactobacillus casei LOCK 0919.

    PubMed

    Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Bagińska, Anna; Grynberg, Marcin; Nowak, Adriana; Cukrowska, Bożena; Kozakova, Hana; Bardowski, Jacek

    2016-01-01

    Here, we report the extensive bioinformatic and functional analyses of the unusual pLOCK 0919, a plasmid originating from the probiotic Lactobacillus casei LOCK 0919 strain. This plasmid is atypical because it harbors the spaCBA-srtC gene cluster encoding SpaCBA pili. We show that all other spaCBA-srtC sequences of the Lactobacillus genus that have been previously described and deposited in GenBank are present in the chromosomal DNA. Another important observation for pLOCK 0919 is that the spaCBA-srtC gene cluster and its surrounding genes are highly similar to the respective DNA region that is present in the most well-known and active SpaCBA pili producer, the probiotic Lactobacillus rhamnosus GG strain. Our results demonstrate that the spaCBA-srtC clusters of pLOCK 0919 and L. rhamnosus GG are genealogically similar, located in DNA regions that are rich in transposase genes and are poorly conserved among the publicly available sequences of Lactobacillus sp. In contrast to chromosomally localized pilus gene clusters from L. casei and Lactobacillus paracasei, the plasmidic spaC of L. casei LOCK 0919 is expressed and undergoes a slight glucose-induced repression. Moreover, results of series of in vitro tests demonstrate that L. casei LOCK 0919 has an adhesion potential, which is largely determined by the presence of the pLOCK 0919 plasmid. In particular, the plasmid occurrence positively influenced the hydrophobicity and aggregation abilities of L. casei LOCK 0919. Moreover, in vivo studies indicate that among the three Lactobacillus strains used to colonize the gastrointestinal tract of germ-free mice, already after 2 days of colonization, L. casei LOCK 0919 became the dominant strain and persisted there for at least 48 days. PMID:26637469

  1. Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia, China

    PubMed Central

    Ya, Tuo; Zhang, Qijin; Chu, Fuliang; Merritt, Justin; Bilige, Menhe; Sun, Tiansong; Du, Ruiting; Zhang, Heping

    2008-01-01

    Background There is increasing evidence to suggest an immunomodulation function both within the intestines and systemically upon consuming probiotic species. We recently isolated a novel LAB, Lactobacillus caseiZhang (LcZhang) from koumiss. LcZhang exhibited favorable probiotic properties, such as acid resistance, bile resistance, gastrointestinal (GI) colonization ability, etc. In order to examine the immunomodulatory qualities of LcZhang, we administered LcZhang to healthy mice with varying doses of either live or heat-killed LcZhang and measured various parameters of the host immune response. Results The study was performed in four separate experiments via oral administration of live and heat-killed LcZhang to BALB/c mice for several consecutive days. We investigated the immunomodulating capacity of LcZhang in vivo by analyzing the profile of cytokines, T cell subpopulations, and immunoglobulin concentrations induced in blood serum and intestinal fluid in BALB/c mice. Only live bacteria elicited a wide range of immune responses, which include the increased production of interferon-γ (IFN-γ), and depression of tumor necrosis factor-α (TNF-α) levels. In addition, interleukin-2 (IL-2) and IL-2 receptor gene transcription increased significantly, but the proportion of T cell subsets appeared to be unaffected. We also observed that LcZhang was capable of inducing gut mucosal responses by enhancing the production of secretory Immunoglobulin A (sIgA) as well influencing the systemic immunity via the cytokines released to the circulating blood. Conclusion The present work shows that the dose-dependent administration of LcZhang is capable of influencing immune responses, implying that it may be a valuable strain for probiotic use in humans. PMID:19019236

  2. Survival of Lactobacillus casei strain Shirota in the intestines of healthy Chinese adults.

    PubMed

    Wang, Ran; Chen, Shanbin; Jin, Junhua; Ren, Fazheng; Li, Yang; Qiao, Zhenxing; Wang, Yue; Zhao, Liang

    2015-05-01

    Lactobacillus casei strain Shirota (LcS) is a widely used probiotic strain with health benefits. In this study, the survival of LcS in the intestines of healthy Chinese adults was assessed and the effects of LcS on stool consistency, stool SCFAs and intestinal microbiota evaluated. Subjects consumed 100 mL per day of a probiotic beverage containing 1.0 × 10(8) CFU/mL of LcS for 14 days. LcS were enumerated using a culture method and the colony identity confirmed by ELISA. Fourteen days after ingestion, the amount of LcS recovered from fecal samples was between 6.86 ± 0.80 and 7.17 ± 0.57 Log10 CFU/g of feces (mean ± SD). The intestinal microbiotas were analyzed by denaturing gradient gel electrophoresis. Principal component analysis showed that consuming LcS significantly changed fecal microbiota profiles. According to redundancy analysis, the amounts of 25 bacterial strains were significantly correlated with LcS intake (P < 0.05), 11 of them positively and fourteen negatively. Concentrations of acetic acid and propionic acid in feces were significantly lower during the ingestion period than during the baseline period (P < 0.05). These results confirm that LcS can survive passage through the gastrointestinal tract of Chinese people; however, they were found to have little ability to persist once their consumption had ceased. Furthermore, consumption of probiotic beverages containing LcS can modulate the composition of the intestinal microbiota on a long-term basis, resulting in decreased concentrations of SCFAs in the gut. PMID:25707300

  3. Adjuvant effects for oral immunization provided by recombinant Lactobacillus casei secreting biologically active murine interleukin-1{beta}.

    PubMed

    Kajikawa, Akinobu; Masuda, Kazuya; Katoh, Mitsunori; Igimi, Shizunobu

    2010-01-01

    Vaccine delivery systems using lactic acid bacteria are under development, but their efficiency is insufficient. Autologous cytokines, such as interleukin-1beta (IL-1beta), are potential adjuvants for mucosal vaccines and can be provided by recombinant lactic acid bacteria. The aim of this study was the construction and evaluation of recombinant Lactobacillus casei producing IL-1beta as an adjuvant delivery agent. The recombinant strain was constructed using an expression/secretion vector plasmid, including a mature IL-1beta gene from mouse. The biological activity of the cytokine was confirmed by IL-8 production from Caco-2 cells. In response to the recombinant L. casei secreting IL-1beta, expression of IL-6 was detected in vivo using a ligated-intestinal-loop assay. The release of IL-6 from Peyer's patch cells was also detected in vitro. Intragastric immunization with heat-killed Salmonella enterica serovar Enteritidis (SE) in combination with IL-1beta-secreting lactobacilli resulted in relatively high SE-specific antibody production. In this study, it was demonstrated that recombinant L. casei secreting bioactive murine IL-1beta provided adjuvant effects for intragastric immunization. PMID:19923575

  4. Microbial counts, fermentation products, and aerobic stability of whole crop corn and a total mixed ration ensiled with and without inoculation of Lactobacillus casei or Lactobacillus buchneri.

    PubMed

    Nishino, N; Wada, H; Yoshida, M; Shiota, H

    2004-08-01

    Whole crop corn (DM 29.2%) and a total mixed ration (TMR, DM 56.8%) containing wet brewers grains, alfalfa hay, dried beet pulp, cracked corn, soybean meal, and molasses at a ratio of 5:1:1:1:1:1 on fresh weight basis, were ensiled with and without Lactobacillus casei or Lactobacillus buchneri in laboratory silos. The effects of inoculation on microbial counts, fermentation products, and aerobic stability were determined after 10 and 60 d. Untreated corn silage was well preserved with high lactic acid content, whereas large numbers of remaining yeasts resulted in low stability on exposure to air. Inoculation with L. casei suppressed heterolactic fermentation, but no improvements were found in aerobic stability. The addition of L. buchneri markedly enhanced the aerobic stability, while not affecting the DM loss and NH3-N production. Large amounts of ethanol were found when the TMR was ensiled, and the content of ethanol overwhelmed that of lactic acid in untreated silage. This fermentation was related to high yeast populations and accounted for a large loss of DM found in the initial 10 d. The ethanol production decreased when inoculated with L. casei and L. buchneri, but the effects diminished at 60 d of ensiling. Inoculation with L. buchneri lowered the yeasts in TMR silage from the beginning of storage; however, the populations decreased to undetectable levels when stored for 60 d, regardless of inoculation. No heating was observed in TMR silage during aerobic deterioration test for 7 d. This stability was achieved even when a high population of yeasts remained and was not affected by either inoculation or ensiling period. The results indicate that inoculation with L. buchneri can inhibit yeast growth and improve aerobic stability of corn and TMR silage; however, high stability of TMR silage can be obtained even when no treatments were made and high population (>10(5) cfu/g) of yeasts were detected. PMID:15328280

  5. Analysis of the peptidoglycan hydrolase complement of Lactobacillus casei and characterization of the major ?-D-glutamyl-L-lysyl-endopeptidase.

    PubMed

    Regulski, Krzysztof; Courtin, Pascal; Meyrand, Mickael; Claes, Ingmar J J; Lebeer, Sarah; Vanderleyden, Jos; Hols, Pascal; Guillot, Alain; Chapot-Chartier, Marie-Pierre

    2012-01-01

    Peptidoglycan (PG) is the major component of Gram positive bacteria cell wall and is essential for bacterial integrity and shape. Bacteria synthesize PG hydrolases (PGHs) which are able to cleave bonds in their own PG and play major roles in PG remodelling required for bacterial growth and division. Our aim was to identify the main PGHs in Lactobacillus casei BL23, a lactic acid bacterium with probiotic properties.The PGH complement was first identified in silico by amino acid sequence similarity searches of the BL23 genome sequence. Thirteen PGHs were detected with different predicted hydrolytic specificities. Transcription of the genes was confirmed by RT-PCR. A proteomic analysis combining the use of SDS-PAGE and LC-MS/MS revealed the main seven PGHs synthesized during growth of L. casei BL23. Among these PGHs, LCABL_02770 (renamed Lc-p75) was identified as the major one. This protein is the homolog of p75 (Msp1) major secreted protein of Lactobacillus rhamnosus GG, which was shown to promote survival and growth of intestinal epithelial cells. We identified its hydrolytic specificity on PG and showed that it is a ?-D-glutamyl-L-lysyl-endopeptidase. It has a marked specificity towards PG tetrapeptide chains versus tripeptide chains and for oligomers rather than monomers. Immunofluorescence experiments demonstrated that Lc-p75 localizes at cell septa in agreement with its role in daughter cell separation. It is also secreted under an active form as detected in zymogram. Comparison of the muropeptide profiles of wild type and Lc-p75-negative mutant revealed a decrease of the amount of disaccharide-dipeptide in the mutant PG in agreement with Lc-p75 activity. As a conclusion, Lc-p75 is the major L. casei BL23 PGH with endopeptidase specificity and a key role in daughter cell separation. Further studies will aim at investigating the role of Lc-p75 in the anti-inflammatory potential of L. casei BL23. PMID:22384208

  6. Malic Enzyme and Malolactic Enzyme Pathways Are Functionally Linked but Independently Regulated in Lactobacillus casei BL23

    PubMed Central

    Landete, José María; Ferrer, Sergi; Monedero, Vicente

    2013-01-01

    Lactobacillus casei is the only lactic acid bacterium in which two pathways for l-malate degradation have been described: the malolactic enzyme (MLE) and the malic enzyme (ME) pathways. Whereas the ME pathway enables L. casei to grow on l-malate, MLE does not support growth. The mle gene cluster consists of three genes encoding MLE (mleS), the putative l-malate transporter MleT, and the putative regulator MleR. The mae gene cluster consists of four genes encoding ME (maeE), the putative transporter MaeP, and the two-component system MaeKR. Since both pathways compete for the same substrate, we sought to determine whether they are coordinately regulated and their role in l-malate utilization as a carbon source. Transcriptional analyses revealed that the mle and mae genes are independently regulated and showed that MleR acts as an activator and requires internalization of l-malate to induce the expression of mle genes. Notwithstanding, both l-malate transporters were required for maximal l-malate uptake, although only an mleT mutation caused a growth defect on l-malate, indicating its crucial role in l-malate metabolism. However, inactivation of MLE resulted in higher growth rates and higher final optical densities on l-malate. The limited growth on l-malate of the wild-type strain was correlated to a rapid degradation of the available l-malate to l-lactate, which cannot be further metabolized. Taken together, our results indicate that L. casei l-malate metabolism is not optimized for utilization of l-malate as a carbon source but for deacidification of the medium by conversion of l-malate into l-lactate via MLE. PMID:23835171

  7. Heterologous Expression of Mannanase and Developing a New Reporter Gene System in Lactobacillus casei and Escherichia coli

    PubMed Central

    Lin, Jinzhong; Zou, Yexia; Ma, Chengjie; She, Qunxin; Liang, Yunxiang; Chen, Zhengjun; Ge, Xiangyang

    2015-01-01

    Reporter gene systems are useful for studying bacterial molecular biology, including the regulation of gene expression and the histochemical analysis of protein products. Here, two genes, β-1,4-mannanase (manB) from Bacillus pumilus and β-glucuronidase (gusA) from Escherichia coli K12, were cloned into the expression vector pELX1. The expression patterns of these reporter genes in Lactobacillus casei were investigated by measuring their enzymatic activities and estimating their recombinant protein yields using western blot analysis. Whereas mannanase activity was positively correlated with the accumulation of ManB during growth, GusA activity was not; western blot analysis indicated that while the amount of GusA protein increased during later growth stages, GusA activity gradually decreased, indicating that the enzyme was inactive during cell growth. A similar trend was observed in E. coli JM109. We chose to use the more stable mannanase gene as the reporter to test secretion expression in L. casei. Two pELX1-based secretion vectors were constructed: one carried the signal peptide of the unknown secretion protein Usp45 from Lactococcus lactis (pELSH), and the other contained the full-length SlpA protein from the S-layer of L. acidophilus (pELWH). The secretion of ManB was detected in the supernatant of the pELSH-ManB transformants and in the S-layer of the cell surface of the pELWH-ManB transformants. This is the first report demonstrating that the B. pumilus manB gene is a useful reporter gene in L. casei and E.coli. PMID:26562012

  8. Heterologous Expression of Mannanase and Developing a New Reporter Gene System in Lactobacillus casei and Escherichia coli.

    PubMed

    Lin, Jinzhong; Zou, Yexia; Ma, Chengjie; She, Qunxin; Liang, Yunxiang; Chen, Zhengjun; Ge, Xiangyang

    2015-01-01

    Reporter gene systems are useful for studying bacterial molecular biology, including the regulation of gene expression and the histochemical analysis of protein products. Here, two genes, ?-1,4-mannanase (manB) from Bacillus pumilus and ?-glucuronidase (gusA) from Escherichia coli K12, were cloned into the expression vector pELX1. The expression patterns of these reporter genes in Lactobacillus casei were investigated by measuring their enzymatic activities and estimating their recombinant protein yields using western blot analysis. Whereas mannanase activity was positively correlated with the accumulation of ManB during growth, GusA activity was not; western blot analysis indicated that while the amount of GusA protein increased during later growth stages, GusA activity gradually decreased, indicating that the enzyme was inactive during cell growth. A similar trend was observed in E. coli JM109. We chose to use the more stable mannanase gene as the reporter to test secretion expression in L. casei. Two pELX1-based secretion vectors were constructed: one carried the signal peptide of the unknown secretion protein Usp45 from Lactococcus lactis (pELSH), and the other contained the full-length SlpA protein from the S-layer of L. acidophilus (pELWH). The secretion of ManB was detected in the supernatant of the pELSH-ManB transformants and in the S-layer of the cell surface of the pELWH-ManB transformants. This is the first report demonstrating that the B. pumilus manB gene is a useful reporter gene in L. casei and E.coli. PMID:26562012

  9. Differential expression of cro, the lysogenic cycle repressor determinant of bacteriophage A2, in Lactobacillus casei and Escherichia coli.

    PubMed

    Escobedo, Susana; Rodríguez, Isabel; García, Pilar; Suárez, Juan E; Carrasco, Begoña

    2014-04-01

    Expression of bacteriophage A2-encoded cro in Escherichia coli gives rise to two co-linear polypeptides, Cro and Cro*, which were proposed to form a regulatory tandem to modulate the frequency with which the phage would choose between the lytic and the lysogenic cycles. In this communication, it is reported that Cro is the canonical product of the gene cro while Cro* results from a -1 ribosome frameshift during translation and is twelve amino acids shorter than Cro. However, frameshifting was not observed during phage development in Lactobacillus casei. Furthermore, wild type phages and cro-frameshifting negative mutants present the same phenotype, thus corroborating that only the canonical form of Cro is needed to produce a viable phage progeny. PMID:24457071

  10. Beneficial effect of butyrate, Lactobacillus casei and L-carnitine combination in preference to each in experimental colitis

    PubMed Central

    Moeinian, Mahsa; Ghasemi-Niri, Seyedeh Farnaz; Mozaffari, Shilan; Abdolghaffari, Amir Hossein; Baeeri, Maryam; Navaea-Nigjeh, Mona; Abdollahi, Mohammad

    2014-01-01

    AIM: To investigate the beneficial effect of the combination of butyrate, Lactobacillus casei, and L-carnitine in a rat colitis model. METHODS: Rats were divided into seven groups. Four groups received oral butyrate, L-carnitine, Lactobacillus casei and the combination of three agents for 10 consecutive days. The remaining groups included negative and positive controls and a sham group. Macroscopic, histopathological examinations, and biomarkers such as tumor necrosis factor-alpha (TNF-α) and interlukin-1β (IL-1β), myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), and ferric reduced ability of plasma (FRAP) were determined in the colon. RESULTS: The combination therapy exhibited a significant beneficial effect in alleviation of colitis compared to controls. Overall changes in reduction of TNF-α (114.66 ± 18.26 vs 171.78 ± 9.48 pg/mg protein, P < 0.05), IL-1β (24.9 ± 1.07 vs 33.06 ± 2.16 pg/mg protein, P < 0.05), TBARS (0.2 ± 0.03 vs 0.49 ± 0.04 μg/mg protein, P < 0.01), MPO (15.32 ± 0.4 vs 27.24 ± 3.84 U/mg protein, P < 0.05), and elevation of FRAP (23.46 ± 1.2 vs 15.02 ± 2.37 μmol/L, P < 0.05) support the preference of the combination therapy in comparison to controls. Although the monotherapies were also effective in improvement of colitis markers, the combination therapy was much better in improvement of colon oxidative stress markers including FRAP, TBARS, and MPO. CONCLUSION: The present combination is a suitable mixture in control of experimental colitis and should be trialed in the clinical setting. PMID:25152589

  11. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells.

    PubMed

    Tiptiri-Kourpeti, Angeliki; Spyridopoulou, Katerina; Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  12. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells

    PubMed Central

    Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E.; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S.; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  13. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus

    PubMed Central

    Nancib, Aicha; Nancib, Nabil; Boubendir, Abdelhafid; Boudrant, Joseph

    2015-01-01

    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained. PMID:26413076

  14. Transposon Mutagenesis of Probiotic Lactobacillus casei Identifies asnH, an Asparagine Synthetase Gene Involved in Its Immune-Activating Capacity

    PubMed Central

    Ito, Masahiro; Kim, Yun-Gi; Tsuji, Hirokazu; Takahashi, Takuya; Kiwaki, Mayumi; Nomoto, Koji; Danbara, Hirofumi; Okada, Nobuhiko

    2014-01-01

    Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139. PMID:24416179

  15. Four weeks supplementation with Lactobacillus paracasei subsp. paracasei L. casei W8® shows modest effect on triacylglycerol in young healthy adults.

    PubMed

    Bjerg, A T; Kristensen, M; Ritz, C; Stark, K D; Holst, J J; Leser, T D; Wellejus, A; Astrup, A

    2015-03-01

    The microbiota has been shown to have the potential to affect appetite and blood lipids positively in animal studies. We investigated if four weeks supplementation with Lactobacillus paracasei subsp. paracasei L. casei W8® (L. casei W8) had an effect on subjective appetite sensation, ad libitum energy intake, glucagon-like peptide 1 (GLP-1), glucose and insulin response in humans. Secondarily, we explored potential effects on blood lipids, fatty acids and stearoyl-CoA desaturase-1 (SCD1) activity in humans as well as SCD1 expression in piglets given L. casei W8 for two weeks. 64 healthy participants completed the double-blinded, randomised, controlled, parallel four weeks study with supplementation of L. casei W8 (1010 cfu) or placebo capsules. A meal test was conducted before and after the intervention, where subjective appetite, ad libitum energy intake, GLP-1, glucose and insulin response were measured. Additionally fasting blood lipids and fatty acids concentrations were measured. Sixteen piglets were randomised into two groups: L. casei W8 (1010 cfu/day) as top dressing on morning fed or no treatment. After two weeks piglets were sacrificed and tissue from ileum, jejunum and skeletal muscle were sampled for mRNA analyses of SCD1 expression. Compared to placebo, L. casei W8 did not affect appetite, ad libitum energy intake, GLP-1, glucose and insulin response and total, high-density or low-density lipoprotein cholesterol levels after four weeks intervention. Triacylglycerol decreased in the L. casei W8 group compared to placebo at week 4 (P=0.03). The C16:1n-7/C16:0 ratio, reflecting SCD1 activity, tended to decrease when having L. casei W8 (P=0.06) compared to placebo. Muscle SCD1 expression decreased in piglets supplemented with L. casei W8 compared to control. In conclusion, supplementation with L. casei W8 did not affect appetite parameters, glucose or insulin responses; but appear to be able to lower triacylglycerol levels, possibly by reducing its production. PMID:25245572

  16. The Antimicrobial Effect of Lactobacillus Casei Culture Supernatant Against Multiple Drug Resistant Clinical Isolates of Shigella Sonnei and Shigella Flexneri in Vitro

    PubMed Central

    Mirnejad, Reza; Vahdati, Ali Reza; Rashidiani, Jamal; Erfani, Mohammad; Piranfar, Vahhab

    2013-01-01

    Backgrounds Shigellosis remains an important public health problem in developing countries with S. sonnei and S. flexneri in US, Europe and in Asian countries being of importance. Objectives This study evaluates the protective effect of Lactobacillus casei cell-free culture supernatants (CFCS) against multiple drug resistance (MDR) clinical samples of Shigella sonnei and Shigella flexneri in vitro. Materials and Methods S. sonnei and S .flexneri was identified by common microbiological and serological methods. Antibiogram with 18 antibiotics were tested for 34 positive cultures by disc diffusion method. The Samples showed considerable resistance to antibiotics. Antimicrobial effects of CFCS were tested against S. sonnei and S. flexneri by agar-well assay and broth micro dilution methods. In addition, the antimicrobial activity remained active treatment after adjust pH 7, adding Proteinase K and heating for L. casei. Results The results implicate that L. casei strongly inhibits the development of pathogen samples. In contrast, via the disc diffusion method 4 out of 18 antibiogram have shown complete resistance against the pathogen samples. In addition, the natures of antimicrobial properties have been tested in different conditions such as various pH, temperature and presence of proteinase K. The MIC50 (minimum inhibitory concentration) and MIC90 of CFCS of L. casei were determined, for S. sonnei were 2.25 and 10.5, for S .flexneri were 5.25 and 5.25 respectively. The results have shown a significant resistance pattern by these four antibiotics in this case. Conclusions The data indicates that. L. casei highly resistant against to antibiotics, heat, Proteinase K and so many activities against MDR Shigella pathogenic strains . L. casei is the best probiotics candidate. PMID:23682323

  17. Comparative genome analysis of Lactobacillus casei strains isolated from Actimel and Yakult products reveals marked similarities and points to a common origin

    PubMed Central

    Douillard, François P; Kant, Ravi; Ritari, Jarmo; Paulin, Lars; Palva, Airi; Vos, Willem M

    2013-01-01

    Summary The members of the Lactobacillus genus are widely used in the food and feed industry and show a remarkable ecological adaptability. Several Lactobacillus strains have been marketed as probiotics as they possess health-promoting properties for the host. In the present study, we used two complementary next-generation sequencing technologies to deduce the genome sequences of two Lactobacillus casei strains LcA and LcY, which were isolated from the products Actimel and Yakult, commercialized as probiotics. The LcA and LcY draft genomes have, respectively, an estimated size of 3067 and 3082?Mb and a G+C content of 46.3%. Both strains are close to identical to each other and differ by no more than minor chromosomal re-arrangements, substitutions, insertions and deletions, as evident from the verified presence of one insertion-deletion (InDel) and only 29 single-nucleotide polymorphisms (SNPs). In terms of coding capacity, LcA and LcY are predicted to encode a comparable exoproteome, indicating that LcA and LcY are likely to establish similar interactions with human intestinal cells. Moreover, both L.?casei?LcA and LcY harboured a 59.6?kb plasmid that shared high similarities with plasmids found in other L.?casei strains, such as W56 and BD-II. Further analysis revealed that the L.?casei plasmids constitute a good evolution marker within the L.?casei species. The plasmids of the LcA and LcY strains are almost identical, as testified by the presence of only three verified SNPs, and share a 3.5?kb region encoding a remnant of a lactose PTS system that is absent from the plasmids of W56 and BD-II but conserved in another smaller L.?casei plasmid (pLC2W). Our observations imply that the results obtained in animal and human experiments performed with the Actimel and Yakult strains can be compared with each other as these strains share a very recent common ancestor. Funding Information The present work was supported by the Center of Excellence in Microbial Food Safety Research (Academy of Finland, Grant 141140), Grant ERC 250172 – Microbes Inside from the European Research Council and Grants 137389 and 141130 from the Academy of Finland. F.P.D. was funded by a postdoctoral research fellowship (Academy of Finland, Grant 252123). PMID:23815335

  18. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    PubMed Central

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  19. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection. PMID:26825016

  20. Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production

    PubMed Central

    Dong, H; Rowland, I; Tuohy, K M; Thomas, L V; Yaqoob, P

    2010-01-01

    Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8+ and CD56+ subsets in the absence of any other stimulus. LcS also induced production of interleukin (IL)-1?, IL-6, tumour necrosis factor (TNF)-?, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1? production but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-? and IL-12 production. Monocyte depletion reduced significantly the impact of LcS on lymphocyte activation, cytokine production and natural killer (NK) cell activity. In conclusion, LcS activated cytotoxic lymphocytes preferentially in both the innate and specific immune systems, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both proinflammatory and anti-inflammatory cytokine production in the absence of LPS, but in some cases inhibited LPS-induced cytokine production. Monocytes play an important role in LcS-induced immunological responses. PMID:20456417

  1. Enhancement of L-lactic acid production in Lactobacillus casei from Jerusalem artichoke tubers by kinetic optimization and citrate metabolism.

    PubMed

    Ge, Xiang-Yang; Qian, He; Zhang, Wei-Guo

    2010-01-01

    Efficient L-lactic acid production from Jerusalem artichoke tubers by Lactobacillus casei G-02 using simultaneous saccharification and fermentation (SSF) in fed-batch culture is demonstrated. The kinetic analysis in the SSF signified that the inulinase activity was subjected to product inhibition, while the fermentation activity of G-02 was subjected to substrate inhibition. It was also found that the intracellularly NOX activity was enhanced by the citrate metabolism, which increased the carbon flux of Embden-Meyerhof-Parnas (EMP) pathway dramatically, and resulted more ATP production. As a result, when the SSF was carried out at 40 degrees after the initial hydrolysis of 1 h with supplemented sodium citrate of 10g/L, L-lactic acid concentration of 141.5 g/L was obtained in 30 h with a volumetric productivity of 4.7 g/L/h. The conversion efficiency and product yield were 93.6% of the theoretical lactic acid yield and 52.4 g lactic acid/100 g Jerusalem artichoke flour, respectively. Such a high concentration of lactic acid with high productivity from Jerusalem artichoke has not been reported previously, and hence G-02 could be a potential candidate for economical production of L-lactic acid from Jerusalem artichoke at a commercial scale. PMID:20134240

  2. Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study

    PubMed Central

    Lemesch, Sandra; Trajanoski, Slave; Bashir, Mina; Horvath, Angela; Tawdrous, Monika; Stojakovic, Tatjana; Fauler, Günter; Fickert, Peter; Högenauer, Christoph; Klymiuk, Ingeborg; Stiegler, Philipp; Lamprecht, Manfred; Pieber, Thomas R.; Tripolt, Norbert J.; Sourij, Harald

    2015-01-01

    Metabolic syndrome is associated with disturbances in gut microbiota composition. We aimed to investigate the effect of Lactobacillus casei Shirota (LcS) on gut microbiota composition, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects with metabolic syndrome received either LcS for 12 weeks (n = 13) or no LcS (n = 15). Data were compared to healthy controls (n = 16). Gut microbiota composition was characterised from stool using 454 pyrosequencing of 16S rRNA genes. Serum bile acids were quantified by tandem mass spectrometry. Zonulin and calprotectin were measured in serum and stool by ELISA. Bacteroidetes/Firmicutes ratio was significantly higher in healthy controls compared to metabolic syndrome but was not influenced by LcS. LcS supplementation led to enrichment of Parabacteroides. Zonulin and calprotectin were increased in metabolic syndrome stool samples but not influenced by LcS supplementation. Serum bile acids were similar to controls and not influenced by LcS supplementation. Metabolic syndrome is associated with a higher Bacteroidetes/Firmicutes ratio and gut barrier dysfunction but LcS was not able to change this. LcS administration was associated with subtle microbiota changes at genus level. Trial Registration ClinicalTrials.gov NCT01182844 PMID:26509793

  3. Industrial Whey Utilization as a Medium Supplement for Biphasic Growth and Bacteriocin Production by Probiotic Lactobacillus casei LA-1.

    PubMed

    Kumar, Mukesh; Jain, Alok Kumar; Ghosh, Moushumi; Ganguli, Abhijit

    2012-09-01

    The ability of probiotic Lactobacillus casei LA-1 for bacteriocin production using industrial by-products, such as whey, as supplement in growth medium has been demonstrated for the first time. Whey was investigated as a sole carbon source in cooperation with other components to substitute expensive nutrients as MRS for economical bacteriocin production. Industrial whey-supplemented MRS medium was then selected as to determine the effect of four variables (temperature, initial pH, incubation time, and whey concentration) by response surface methodology on bacteriocin production. Statistical analysis of results showed that two variables have a significant effect on bacteriocin production. Response surface data showed maximum bacteriocin production of 6,132.33 AU/mL at an initial pH of 7.12, temperature 34.29 °C, and whey concentration 13.74 g/L. The production of bacteriocin started during the exponential growth phase, reaching maximum values at stationary phase, and a biphasic growth and production pattern was observed. Our current work demonstrates that this approach of utilization of whey as substitution in costly medium as MRS has great promise for cost reduction in industry for the production of novel biological metabolic product that can be utilized as a food preservative. PMID:26782046

  4. A2 cro, the lysogenic cycle repressor, specifically binds to the genetic switch region of Lactobacillus casei bacteriophage A2.

    PubMed

    Ladero, V; García, P; Alonso, J C; Suárez, J E

    1999-09-15

    Lysogenic induction of temperate bacteriophage A2 of Lactobacillus casei is controlled by the action of its cI and cro products at the phage operator region. Three 20-bp inverted repeated DNA segments (subsites O1, O2, and O3) and the two divergent (PL and PR) promoters were mapped within the 153-bp operator region. The A2-encoded Cro product is shown to be the functional homolog of lambda Cro. The binding of Cro to the three operator subsites is noncooperative and yields two discrete protein-DNA complexes of retarded migration in mobility shift assays. The Kapp value for the Cro-PL-PR DNA complex was estimated to be 6 nM. Cro shows a slightly higher affinity for O3 than for O1 and O2 subsites. The O3 subsite overlaps the -35 hexamer of the PL promoter, which directs cI expression. A Cro mutant protein, devoid of the last 12 residues (Cro*), allowed the assignment of the DNA-binding domain to the NH2 end of Cro. The C end enhances its affinity for the DNA and probably stabilizes bending induced by Cro. PMID:10489355

  5. The Extracellular Wall-Bound ?-N-Acetylglucosaminidase from Lactobacillus casei Is Involved in the Metabolism of the Human Milk Oligosaccharide Lacto-N-Triose.

    PubMed

    Bidart, Gonzalo N; Rodríguez-Díaz, Jesús; Yebra, María J

    2015-01-01

    Human milk oligosaccharides (HMOs) are considered to play a key role in establishing and maintaining the infant gut microbiota. Lacto-N-triose forms part of both type 1 and type 2 HMOs and also of the glycan moieties of glycoproteins. Upstream of the previously characterized gene cluster involved in lacto-N-biose and galacto-N-biose metabolism from Lactobacillus casei BL23, there are two genes, bnaG and manA, encoding a ?-N-acetylglucosaminidase precursor and a mannose-6-phosphate isomerase, respectively. In this work, we show that L. casei is able to grow in the presence of lacto-N-triose as a carbon source. Inactivation of bnaG abolished the growth of L. casei on this oligosaccharide, demonstrating that BnaG is involved in its metabolism. Interestingly, whole cells of a bnaG mutant were totally devoid of ?-N-acetylglucosaminidase activity, suggesting that BnaG is an extracellular wall-attached enzyme. In addition to hydrolyzing lacto-N-triose into N-acetylglucosamine and lactose, the purified BnaG enzyme also catalyzed the hydrolysis of 3'-N-acetylglucosaminyl-mannose and 3'-N-acetylgalactosaminyl-galactose. L. casei can be cultured in the presence of 3'-N-acetylglucosaminyl-mannose as a carbon source, but, curiously, the bnaG mutant strain was not impaired in its utilization. These results indicate that the assimilation of 3'-N-acetylglucosaminyl-mannose is independent of BnaG. Enzyme activity and growth analysis with a manA-knockout mutant showed that ManA is involved in the utilization of the mannose moiety of 3'-N-acetylglucosaminyl-mannose. Here we describe the physiological role of a ?-N-acetylglucosaminidase in lactobacilli, and it supports the metabolic adaptation of L. casei to the N-acetylglucosaminide-rich gut niche. PMID:26546429

  6. Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis.

    PubMed

    Dieterle, Maria Eugenia; Bowman, Charles; Batthyany, Carlos; Lanzarotti, Esteban; Turjanski, Adrián; Hatfull, Graham; Piuri, Mariana

    2014-11-01

    Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection. PMID:25217012

  7. Exposing the Secrets of Two Well-Known Lactobacillus casei Phages, J-1 and PL-1, by Genomic and Structural Analysis

    PubMed Central

    Dieterle, Maria Eugenia; Bowman, Charles; Batthyany, Carlos; Lanzarotti, Esteban; Turjanski, Adrián; Hatfull, Graham

    2014-01-01

    Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection. PMID:25217012

  8. Lactobacillus casei Zhang modulate cytokine and Toll-like receptor expression and beneficially regulate PolyI:C-induced immune responses in RAW264.7 macrophages.

    PubMed

    Wang, Yuzhen; Xie, Jiming; Wang, Na; Li, Yunxu; Sun, Xiaolin; Zhang, Yong; Zhang, Heping

    2012-10-15

    Lactobacilli are frequently used as probiotics due to their health-benefiting effects. Lactobacillus casei Zhang (LcZ), exhibiting favorite probiotic properties, was isolated from koumiss. In this study, we assessed the immunomodulating effects of LcZ on cytokine and toll-like receptor expression in RAW264.7 macrophages. Our results showed that live LcZ promoted the production of nitric oxide (NO), tumor necrosis factor (TNF)-?, interleukin (IL)-6 and interferon (IFN)-?. The transcription of inducible nitric oxide synthase (iNOS) was also enhanced by viable LcZ. The immunostimulating effects of live LcZ were significantly attenuated in heat-killed LcZ. Live LcZ promoted TLR2 mRNA transcription, while heat-killed LcZ enhanced the transcription of TLR2, TLR3, TLR4 and TLR9. Furthermore, Live LcZ significantly suppressed polyinosinic:polycytidylic acid (PolyI:C)-stimulated NO, iNOS and TNF-? expression while enhancing the expression of IFN-?. We found that PolyI:C-induced IRF-3 reporter gene activity was significantly up-regulated by Live LcZ. These results suggest that Lactobacillus casei Zhang keep the innate immune system alert by increasing the transcription of toll-like receptors and enhancing the production of pro-inflammatory mediators and type I IFN in macrophages. The synergistic effect of live LcZ with PolyI:C on IFN-? expression is associated with increased activities of IRF-3. Lactobacillus casei Zhang has the potential to be used as an adjuvant against viral infections. PMID:23062198

  9. A 1H n.m.r. study of the role of the glutamate moiety in the binding of methotrexate to Lactobacillus casei dihydrofolate reductase.

    PubMed Central

    Antonjuk, D. J.; Birdsall, B.; Cheung, H. T.; Clore, G. M.; Feeney, J.; Gronenborn, A.; Roberts, G. C.; Tran, T. Q.

    1984-01-01

    The binding of a series of amide derivatives of methotrexate to Lactobacillus casei dihydrofolate reductase has been studied by inhibition constant measurements and by 1H n.m.r. spectroscopy. Amide modification of the alpha-carboxylate of methotrexate was found to prevent interaction of the gamma-carboxylate with the imidazole of His 28. Estimates of the contributions to the binding energy from the alpha-carboxylate-Arg 57 and gamma-carboxylate-His 28 interactions have been made from a combination of inhibition and n.m.r. data. PMID:6423020

  10. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress.

    PubMed

    Kato-Kataoka, A; Nishida, K; Takada, M; Suda, K; Kawai, M; Shimizu, K; Kushiro, A; Hoshi, R; Watanabe, O; Igarashi, T; Miyazaki, K; Kuwano, Y; Rokutan, K

    2016-03-11

    This pilot study investigated the effects of the probiotic Lactobacillus casei strain Shirota (LcS) on psychological, physiological, and physical stress responses in medical students undertaking an authorised nationwide examination for promotion. In a double-blind, placebo-controlled trial, 24 and 23 healthy medical students consumed a fermented milk containing LcS and a placebo milk, respectively, once a day for 8 weeks until the day before the examination. Psychophysical state, salivary cortisol, faecal serotonin, and plasma L-tryptophan were analysed on 5 different sampling days (8 weeks before, 2 weeks before, 1 day before, immediately after, and 2 weeks after the examination). Physical symptoms were also recorded in a diary by subjects during the intervention period for 8 weeks. In association with a significant elevation of anxiety at 1 day before the examination, salivary cortisol and plasma L-tryptophan levels were significantly increased in only the placebo group (P<0.05). Two weeks after the examination, the LcS group had significantly higher faecal serotonin levels (P<0.05) than the placebo group. Moreover, the rate of subjects experiencing common abdominal and cold symptoms and total number of days experiencing these physical symptoms per subject were significantly lower in the LcS group than in the placebo group during the pre-examination period at 5-6 weeks (each P<0.05) and 7-8 weeks (each P<0.01) during the intervention period. Our results suggest that the daily consumption of fermented milk containing LcS may exert beneficial effects preventing the onset of physical symptoms in healthy subjects exposed to stressful situations. PMID:26689231

  11. Large-scale purification and characterization of dihydrofolate reductase from a methotrexate-resistant strain of Lactobacillus casei.

    PubMed Central

    Dann, J G; Ostler, G; Bjur, R A; King, R W; Scudder, P; Turner, P C; Roberts, G C; Burgen, A S

    1976-01-01

    Dihydrofolate reductase has been purified from a methotrexate-resistant strain of Lactobacillus casei NCB 6375. By careful attention to growth conditions, up to 2.5 g of enzyme is obtained from a 400 litre culture. The purification procedure, involving poly-ethyleneimine treatment, DEAE-cellulose chromatography and affinity chromatography on methotrexate-aminohexyl-Sepharose, operates on the gram scale, with overall yields of 50-60%. Elution of the affinity column by reverse (upward) flow was used, as it led to recovery of the enzyme in a much smaller volume. The enzyme obtained appears to be more than 98% pure, as judged by gel electrophoresis, isoelectric focusing, and gel filtration. It has a mol.wt. of approx. 17900 and a turnover number of 4s-1 (50mM-triethanolamine/400mM-KCl, pH 7.2, 25 degrees C) with dihydrofolate and NADPH as substrates. The turnover number for folate is 0.02s-1. Michaelis constants for a variety of substrates have been measured by using a new fluorimetric assay (0.36 muM-dihydrofolate; 0.78 muM-NADPH), and binding constants determined by using the quenching of protein fluorescence (dihydrofolate, 2.25 X 10(6)M-1; NADPH, greater than 10(8)M-1). The pH/activity profile shows a single maximum at pH 7.3; at this pH, marked activation by 0.5M-NaCl is observed. PMID:10886

  12. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase.

    PubMed

    De Boeck, Reinout; Sarmiento-Rubiano, Luz Adriana; Nadal, Inmaculada; Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-02-01

    Sorbitol is a sugar alcohol largely used in the food industry as a low-calorie sweetener. We have previously described a sorbitol-producing Lactobacillus casei (strain BL232) in which the gutF gene, encoding a sorbitol-6-phosphate dehydrogenase, was expressed from the lactose operon. Here, a complete deletion of the ldh1 gene, encoding the main L-lactate dehydrogenase, was performed in strain BL232. In a resting cell system with glucose, the new strain, named BL251, accumulated sorbitol in the medium that was rapidly metabolized after glucose exhaustion. Reutilization of produced sorbitol was prevented by deleting the gutB gene of the phosphoenolpyruvate: sorbitol phosphotransferase system (PTS(Gut)) in BL251. These results showed that the PTS(Gut) did not mediate sorbitol excretion from the cells, but it was responsible for uptake and reutilization of the synthesized sorbitol. A further improvement in sorbitol production was achieved by inactivation of the mtlD gene, encoding a mannitol-1-phosphate dehydrogenase. The new strain BL300 (lac::gutF Deltaldh1 DeltagutB mtlD) showed an increase in sorbitol production whereas no mannitol synthesis was detected, avoiding thus a polyol mixture. This strain was able to convert lactose, the main sugar from milk, into sorbitol, either using a resting cell system or in growing cells under pH control. A conversion rate of 9.4% of lactose into sorbitol was obtained using an optimized fed-batch system and whey permeate, a waste product of the dairy industry, as substrate. PMID:19784641

  13. Co-immunization of cattle with a vaccine against babesiosis and Lactobacillus casei increases specific IgG1 levels to Babesia bovis and B. bigemina.

    PubMed

    Bautista-Garfias, Carlos Ramón; Lozano, Astrid Rodríguez; Martínez, Carmen Rojas; Martínez, Jesús Antonio Álvarez; Millán, Julio Vicente Figueroa; García, Gustavo Román Reyes; Castañeda-Arriola, Roberto; Aguilar-Figueroa, Blanca Rosa

    2015-10-01

    The effect of Lactobacillus casei administered along with a live attenuated vaccine vs. bovine babesiosis (VAC) on induction of IgG1 and IgG2 antibodies to Babesia bovis and Babesia bigemina was assessed by the indirect fluorescent antibody test (IFAT) in bovines of an endemic babesiosis area before (day 0) and after vaccination (days 15 and 30). We previously reported that L. casei increases the efficiency of VAC under controlled conditions and under extreme conditions in the field; however, the levels of IgG1 and IgG2 antibodies to B. bovis and B. bigemina are not known in vaccinated animals. Twenty-one dairy cows were allocated into three groups (seven animals per group): unvaccinated, vaccinated with VAC and vaccinated simultaneously with VAC and L. casei (VAC-LC). All animals were kept in a babesiosis endemic area at Tlalixcoyan, Veracruz. At days 15 and 30 after vaccination, the average levels of IgG1 to B. bovis and to B. bigemina were significantly higher in VAC-LC group than levels observed in VAC and control groups (P<0.01). Levels of IgG2 were similar in VAC and VAC-LC groups but higher than in the control group (P<0.01). When tested in in vitro cultures of B. bovis, sera from VAC-LC group significantly inhibited parasite growth as compared with the sera of the other two groups. It is suggested that the efficiency improvement of VAC, in part, is due to the L. casei boost of IgG1 over IgG2 antibodies to B. bovis and B. bigemina when the bacteria is co-inoculated with this vaccine. PMID:25936971

  14. Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway.

    PubMed

    Landete, José María; García-Haro, Luisa; Blasco, Amalia; Manzanares, Paloma; Berbegal, Carmen; Monedero, Vicente; Zúñiga, Manuel

    2010-01-01

    Lactobacillus casei can metabolize L-malic acid via malolactic enzyme (malolactic fermentation [MLF]) or malic enzyme (ME). Whereas utilization of L-malic acid via MLF does not support growth, the ME pathway enables L. casei to grow on L-malic acid. In this work, we have identified in the genomes of L. casei strains BL23 and ATCC 334 a cluster consisting of two diverging operons, maePE and maeKR, encoding a putative malate transporter (maeP), an ME (maeE), and a two-component (TC) system belonging to the citrate family (maeK and maeR). Homologous clusters were identified in Enterococcus faecalis, Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus uberis. Our results show that ME is essential for L-malic acid utilization in L. casei. Furthermore, deletion of either the gene encoding the histidine kinase or the response regulator of the TC system resulted in the loss of the ability to grow on L-malic acid, thus indicating that the cognate TC system regulates and is essential for the expression of ME. Transcriptional analyses showed that expression of maeE is induced in the presence of L-malic acid and repressed by glucose, whereas TC system expression was induced by L-malic acid and was not repressed by glucose. DNase I footprinting analysis showed that MaeR binds specifically to a set of direct repeats [5'-TTATT(A/T)AA-3'] in the mae promoter region. The location of the repeats strongly suggests that MaeR activates the expression of the diverging operons maePE and maeKR where the first one is also subjected to carbon catabolite repression. PMID:19897756

  15. Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice

    PubMed Central

    2009-01-01

    Background Porcine rotavirus infection is a significant cause of morbidity and mortality in the swine industry necessitating the development of effective vaccines for the prevention of infection. Immune responses associated with protection are primarily mucosal in nature and induction of mucosal immunity is important for preventing porcine rotavirus infection. Results Lactobacillus casei expressing the major protective antigen VP4 of porcine rotavirus (pPG612.1-VP4) or VP4-LTB (heat-labile toxin B subunit from Echerichia coli) (pPG612.1-VP4-LTB) fusion protein was used to immunize mice orally. The expression of recombinant pPG612.1-VP4 and pPG612.1-VP4-LTB was confirmed by SDS-PAGE and Western blot analysis and surface-displayed expression on L. casei was verified by immunofluorescence. Mice orally immunized with recombinant protein-expressing L. casei produced high levels of serum immunoglobulin G (IgG) and mucosal IgA. The IgA titters from mice immunized with pPG612.1-VP4-LTB were higher than titters from pPG612.1-VP4-immunized mice. The induced antibodies demonstrated neutralizing effects on RV infection. Conclusion These results demonstrated that VP4 administered in the context of an L. casei expression system is an effective method for stimulating mucosal immunity and that LTB served to further stimulate mucosal immunity suggesting that this strategy can be adapted for use in pigs. PMID:19958557

  16. The effect of a commercial probiotic drink containing Lactobacillus casei strain Shirota on oral health in healthy dentate people

    PubMed Central

    Sutula, Justyna; Coulthwaite, Lisa Ann; Thomas, Linda Valerie; Verran, Joanna

    2013-01-01

    Background In the past decade, the use of probiotic-containing products has been explored as a potential alternative in oral health therapy. A widely available probiotic drink, Yakult, was evaluated for oral health applications in this longitudinal study. Selected oral health parameters, such as levels and composition of salivary and tongue plaque microbiota and of malodorous gases, in dentate healthy individuals were investigated for changes. The persistence of the probiotic strain in the oral cavity was monitored throughout the study period. Methods A three-phase study (7 weeks) was designed to investigate simultaneously the effect of 4-week consumption of the probiotic-containing milk drink Yakult on the microbiota of saliva and dorsum tongue coating in healthy dentate people (n = 22) and levels of volatile sulphur compounds (VSCs) in morning breath. Study phases comprised one baseline visit, at which ‘control’ levels of oral parameters were obtained prior to the probiotic product consumption; a 4-week period of daily consumption of one 65 ml bottle of Yakult, each bottle containing a minimum of 6.5×109 viable cells of Lactobacillus casei strain Shirota (LcS); and a 2-week washout period. The microbial viability and composition of saliva and tongue dorsum coating were assessed using a range of solid media. The presence of LcS in the oral cavity was investigated using a novel selective medium, ‘LcS Select’. Portable sulphur monitors Halimeter® and OralChromaTM were used to measure levels of VSCs in morning breath. Results Utilization of the LcS Select medium revealed a significant (p < 0.05) but temporary and consumption-dependent presence of LcS in saliva and tongue plaque samples from healthy dentate individuals (n = 19) during the probiotic intervention phase. LcS was undetectable with culture after 2 weeks of ceasing its consumption. Morning breath scores measured with Halimeter and OralChroma were not significantly affected throughout the trial, except in a small number of individual cases where Halimeter scores were significantly reduced during the probiotic intervention period. Natural fluctuations in resident acidogenic populations, and numbers of Candida and anaerobic species, including malodourous Gram-negative anaerobes, were unaffected. Conclusion While no broad ecological changes in the mouth were induced by consumption of Yakult in healthy dentate individuals, findings of this study confirm the temporary and intake-dependent presence of LcS. Future studies could focus on subjects at greater risk of oral infection, where ill-defined microbiota (e.g. an increased presence of periopathogens) or clinically diagnosed halitosis might be significantly affected by consumption of this probiotic. PMID:24179468

  17. The anti-obesity effects of Lactobacillus casei strain Shirota versus Orlistat on high fat diet-induced obese rats

    PubMed Central

    Karimi, Golgis; Sabran, Mohd Redzwan; Jamaluddin, Rosita; Parvaneh, Kolsoom; Mohtarrudin, Norhafizah; Ahmad, Zuraini; Khazaai, Huzwah; Khodavandi, Alireza

    2015-01-01

    Background Obesity and overweight are major public health problems. Various factors, such as daily nutritional habits, physical inactivity, and genetic, are related to the prevalence of obesity. Recently, it was revealed that the gut microflora may also play an important role in weight management. Thus, this study aimed to determine the anti-obesity effects of Lactobacillus casei strain Shirota (LcS) compared with those of orlistat in an animal model fed a high-fat diet (HFD). Design Thirty-two male Sprague-Dawley rats were assigned to four groups fed various diets as follows: a standard diet group, HFD group, HFD supplemented with LcS (108109 colony-forming units (HFD-LcS) group, and HFD group treated with Orlistat (10 mg/kg body weight)). After 15 weeks, the weights of organs, body weight, body fat mass and serological biomarkers were measured. In addition, histological analysis of the liver and adipose tissue was performed. Results Body weight, body mass index, fat mass, leptin and glucose levels were lower, and high-density lipoprotein and adiponectin levels were higher in the HFD-LcS and HFD-orlistat groups than in the HFD group. In addition a significant difference in body fat mass was observed between HFD-LcS group with HFD-orlistat group (19.19±5.76 g vs. 30.19±7.98 g). Although the interleukin-6 level was significantly decreased in the HFD-LcS and HFD-orlistat groups compared with the HFD group, no significant change was observed in other inflammatory biomarkers. Conclusion The results of the present study show that LcS supplementation improves body weight management and the levels of some related biomarkers. In addition, LcS supplementation showed a better result in fat mass and alanine aminotransferase reduction than Orlistat. Further studies are needed to elucidate the anti-obesity effects of LcS, with a longer period of supplementation. PMID:26699936

  18. Probiotic supplementation with Lactobacillus casei (Actimel) induces a Th1 response in an animal model of antiphospholipid syndrome.

    PubMed

    Amital, Howard; Gilburd, B; Shoenfeld, Yehuda

    2007-09-01

    Probiotic fermented milk products have the capacity to modulate many immunological mechanisms. Several attempts have been made to alter the progression of various atopic and inflammatory disorders in which the immune system plays a major role. We studied this issue in an animal model of the antiphospholipid syndrome (APS) by supplementing the animals' daily intake with a probiotic mixture. We studied the effects of nutritional supplementation of a commercial product that consists of 10(8)/ml Lactobacillus casei (Actimel) on Balb/c mice that were immunized with beta-2- glycoprotein (beta2GPI) in order to induce a familiar murine model of APS. As controls, we used similar animals that were fed with either yogurt or sham solution as a supplement. We analyzed the effect of Actimel on the concentrations of interleukin (IL)-10 interferon gamma (IFNgamma) as well as the extent of the primary T cell response to beta2GPI, and the levels of autoantibodies to beta2GPI determined by ELISA. Two weeks after priming (in the hind footpad) of Balb/c mice with beta2GPI, we analyzed the cytokine profile of the animals by measuring the concentration of IL-10 and IFNgamma in the supernatants of lymphocytes that were extracted from the popliteal lymph nodes. Following stimulation with 10 microg/mL of beta2GPI, we noticed significant (P < 0.05) suppression of IL-10 production by the stimulated lymphocytes in the animals fed with Actimel and yogurt in comparison to sham solution (73.42 +/- 29.4, 84.7 +/- 8, 196 +/- 41.62 pg/mL, respectively). Both dairy products enhanced the secretion of IFNgamma from 657 +/- 47.09 pg/mL to 896 +/- 78.1, and 933 +/- 76.7 (P < 0.01), respectively; similarly they also accelerated by a mild degree the level of the T cell primary response to beta2GPI measured by [3H]thymidine incorporation. The level of autoantibodies to beta2GPI was suppressed in mice fed with actimel and yogurt in a significant manner (P < 0.05). Actimel as well as yogurt confer an immunological impact on Balb/c mice immunized with beta2GPI. Actimel was able not only to enhance IFNgamma secretion but also to inhibit IL-10 production. PMID:17911481

  19. Lactobacillus casei Ferments the N-Acetylglucosamine Moiety of Fucosyl-?-1,3-N-Acetylglucosamine and Excretes l-Fucose

    PubMed Central

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio

    2012-01-01

    We have previously characterized from Lactobacillus casei BL23 three ?-l-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-?-1,3-N-acetylglucosamine (Fuc-?-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the l-fucose moiety during growth on Fuc-?-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the ?-l-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-?-1,3-GlcNAc. This proves that AlfB is involved in Fuc-?-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-?-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an ?-l-fucosidase in lactic acid bacteria and the utilization of Fuc-?-1,3-GlcNAc as a carbon source for bacteria. PMID:22544237

  20. Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-?-1,3-N-acetylglucosamine and excretes L-fucose.

    PubMed

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J

    2012-07-01

    We have previously characterized from Lactobacillus casei BL23 three ?-L-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-?-1,3-N-acetylglucosamine (Fuc-?-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the L-fucose moiety during growth on Fuc-?-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the ?-L-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-?-1,3-GlcNAc. This proves that AlfB is involved in Fuc-?-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-?-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an ?-L-fucosidase in lactic acid bacteria and the utilization of Fuc-?-1,3-GlcNAc as a carbon source for bacteria. PMID:22544237

  1. Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch.

    PubMed

    Narita, Junya; Okano, Kenji; Kitao, Tomoe; Ishida, Saori; Sewaki, Tomomitsu; Sung, Moon-Hee; Fukuda, Hideki; Kondo, Akihiko

    2006-01-01

    We developed a new cell surface engineering system based on the PgsA anchor protein from Bacillus subtilis. In this system, the N terminus of the target protein was fused to the PgsA protein and the resulting fusion protein was expressed on the cell surface. Using this new system, we constructed a novel starch-degrading strain of Lactobacillus casei by genetically displaying alpha-amylase from the Streptococcus bovis strain 148 with a FLAG peptide tag (AmyAF). Localization of the PgsA-AmyA-FLAG fusion protein on the cell surface was confirmed by immunofluorescence microscopy and flow cytometric analysis. The lactic acid bacteria which displayed AmyAF showed significantly elevated hydrolytic activity toward soluble starch. By fermentation using AmyAF-displaying L. casei cells, 50 g/liter of soluble starch was reduced to 13.7 g/liter, and 21.8 g/liter of lactic acid was produced within about 24 h. The yield in terms of grams of lactic acid produced per gram of carbohydrate utilized was 0.60 g per g of carbohydrate consumed at 24 h. Since AmyA was immobilized on the cells, cells were recovered after fermentation and used repeatedly. During repeated utilization of cells, the lactic acid yield was improved to 0.81 g per g of carbohydrate consumed at 72 h. These results indicate that efficient simultaneous saccharification and fermentation from soluble starch to lactic acid were carried out by recombinant L. casei cells with cell surface display of AmyA. PMID:16391053

  2. Nasal immunization of mice with Lactobacillus casei expressing the Pneumococcal Surface Protein A: induction of antibodies, complement deposition and partial protection against Streptococcus pneumoniae challenge.

    PubMed

    Campos, Ivana B; Darrieux, Michelle; Ferreira, Daniela M; Miyaji, Eliane N; Silva, Débora A; Arêas, Ana Paula M; Aires, Karina A; Leite, Luciana C C; Ho, Paulo L; Oliveira, Maria Leonor S

    2008-04-01

    Strategies for the development of new vaccines against Streptococcus pneumoniae infections try to overcome problems such as serotype coverage and high costs, present in currently available vaccines. Formulations based on protein candidates that can induce protection in animal models have been pointed as good alternatives. Among them, the Pneumococcal Surface Protein A (PspA) plays an important role during systemic infection at least in part through the inhibition of complement deposition on the pneumococcal surface, a mechanism of evasion from the immune system. Antigen delivery systems based on live recombinant lactic acid bacteria (LAB) represents a promising strategy for mucosal vaccination, since they are generally regarded as safe bacteria able to elicit both systemic and mucosal immune responses. In this work, the N-terminal region of clade 1 PspA was constitutively expressed in Lactobacillus casei and the recombinant bacteria was tested as a mucosal vaccine in mice. Nasal immunization with L. casei-PspA 1 induced anti-PspA antibodies that were able to bind to pneumococcal strains carrying both clade 1 and clade 2 PspAs and to induce complement deposition on the surface of the bacteria. In addition, an increase in survival of immunized mice after a systemic challenge with a virulent pneumococcal strain was observed. PMID:18403234

  3. Modulation of Lactobacillus casei bacteriophage A2 lytic/lysogenic cycles by binding of Gp25 to the early lytic mRNA.

    PubMed

    Carrasco, Begoña; Escobedo, Susana; Alonso, Juan C; Suárez, Juan E

    2016-01-01

    The genetic switch of Lactobacillus casei bacteriophage A2 is regulated by the CI protein, which represses the early lytic promoter PR and Cro that abolishes expression from the lysogenic promoter PL . Lysogens contain equivalent cI and cro-gp25 mRNA concentrations, i.e., CI only partially represses PR , predicting a lytic cycle dominance. However, A2 generates stable lysogens. This may be due to Gp25 binding to the cro-gp25 mRNA between the ribosomal binding site and the cro start codon, which abolishes its translation. Upon lytic cycle induction, CI is partially degraded, cro-gp25 mRNA levels increase, and Cro accumulates, launching viral progeny production. The concomitant concentration increase of Gp25 restricts cro mRNA translation, which, together with the low but detectable levels of CI late during the lytic cycle, promotes reentry of part of the cell population into the lysogenic cycle, thus explaining the low proportion of L.?casei lysogens that become lysed (??1%). A2 shares its genetic switch structure with many other Firmicutes phages. The data presented may constitute a model of how these phages make the decision for lysis versus lysogeny. PMID:26417647

  4. A prospective uncontrolled trial of fermented milk drink containing viable Lactobacillus casei strain Shirota in the treatment of HTLV-1 associated myelopathy/tropical spastic paraparesis.

    PubMed

    Matsuzaki, Toshio; Saito, Mineki; Usuku, Koichiro; Nose, Hirohisa; Izumo, Shuji; Arimura, Kimiyoshi; Osame, Mitsuhiro

    2005-10-15

    Ten patients with human T-cell lymphotropic virus type-1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) were treated in an uncontrolled preliminary trial by oral administration of viable Lactobacillus casei strain Shirota (LcS) containing fermented milk. HTLV-1 provirus load, motor function, neurological findings, and immunological parameters were evaluated after 4 weeks. Although LcS did not change the frequencies or absolute numbers of all the examined cell surface phenotypes of peripheral blood mononuclear cells, NK cell activity was significantly increased after 4 weeks of oral administration of LcS preparation. Improvements in spasticity (modified Ashworth Scale scores) and urinary symptoms were also seen after LcS treatment. No adverse effect was observed in all the 10 patients throughout the study period. Our results indicated that LcS may be a safe and beneficial agent for the treatment of HAM/TSP; therefore randomized controlled studies are warranted. PMID:15961107

  5. Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells.

    PubMed

    Varyukhina, Svetlana; Freitas, Miguel; Bardin, Sabine; Robillard, Emilie; Tavan, Emmanuelle; Sapin, Catherine; Grill, Jean-Pierre; Trugnan, Germain

    2012-03-01

    Rotaviruses attach to intestinal cells in a process that requires glycan recognition. Some bacteria from the gut microflora have been shown to modify cell-surface glycans. In this study, human intestinal cultured cells were incubated with bacteria-derived soluble factors and infected with rotavirus. Results show that only bacterial soluble factors that increase cell-surface galactose namely, those of Bacteroides thetaiotaomicron and Lactobacillus casei were able to efficiently block rotavirus infections. Increasing cell-surface galactose using galactosyltransferase resulted in a similar blockage of rotavirus infections. These results indicate that manipulation of cell-surface intestinal glycans by bacterial soluble factors can prevent rotavirus infection in a species-specific manner, and should now be considered a potential therapeutic approach against rotavirus infection. PMID:22079149

  6. In Vitro Effects of 2.5% Titanium Tetrafluoride on Streptococcus Mutans and Lactobacillus Casei in Dentin Followed by Self-Etching Adhesive Systems.

    PubMed

    Bridi, Enrico Coser; Amaral Flávia Lucisano Botelho; França Fabiana Mantovani Gomes; Turssi Cecilia Pedroso; Florio, Flávia Martão; Basting, Roberta Tarkany

    2015-12-01

    The aim was to evaluate the effect of a 2.5% titanium tetrafluoride (TiF4) solution followed by self-etching adhesives against Streptococcus mutans/Sm and Lactobacillus casei/Lc. Four cylindrical-shaped cavities were performed on each dentin surface of 40 third molars and contaminated with Sm or Lc. Each one of the four cavities received one of the following treatments (n = 10): 1) control; 2) TiF4; 3) Clearfil SE Bond/CSE or Adper EasyOne/AEO; 4) TiF4 followed by CSE or AED. ANOVA was applied to data. The TiF4 solution showed an antimicrobial effect, although the TiF4 used for dentin pretreatment before CSE or AEO showed no influence on antimicrobial effect. PMID:26767239

  7. Mucosal Vaccination with Recombinant Lactobacillus casei-Displayed CTA1-Conjugated Consensus Matrix Protein-2 (sM2) Induces Broad Protection against Divergent Influenza Subtypes in BALB/c Mice

    PubMed Central

    Chowdhury, Mohammed Y. E.; Li, Rui; Kim, Jae-Hoon; Park, Min-Eun; Kim, Tae-Hwan; Pathinayake, Prabuddha; Weeratunga, Prasanna; Song, Man Ki; Son, Hwa-Young; Hong, Seung-Pyo; Sung, Moon-Hee; Lee, Jong-Soo; Kim, Chul-Joong

    2014-01-01

    To develop a safe and effective mucosal vaccine against pathogenic influenza viruses, we constructed recombinant Lactobacillus casei strains that express conserved matrix protein 2 with (pgsA-CTA1-sM2/L. casei) or without (pgsA-sM2/L. casei) cholera toxin subunit A1 (CTA1) on the surface. The surface localization of the fusion protein was verified by cellular fractionation analyses, flow cytometry and immunofluorescence microscopy. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA. However, the conjugation of cholera toxin subunit A1 induced more potent mucosal, humoral and cell-mediated immune responses. In a challenge test with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird /Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant pgsA-CTA1-sM2/L. casei provided better protection against lethal challenges than pgsA-sM2/L. casei, pgsA/L. casei and PBS in mice. These results indicate that mucosal immunization with recombinant L. casei expressing CTA1-conjugated sM2 protein on its surface is an effective means of eliciting protective immune responses against diverse influenza subtypes. PMID:24714362

  8. Use of Pistacia terebinthus resin as immobilization support for Lactobacillus casei cells and application in selected dairy products.

    PubMed

    Schoina, Vasiliki; Terpou, Antonia; Angelika-Ioanna, Gialleli; Koutinas, Athanasios; Kanellaki, Maria; Bosnea, Loulouda

    2015-09-01

    Resin from Pistacia terebinthus tree was used for the immobilization of L. casei ATCC 393 cells. The encapsulated L. casei cells biocatalysts were added as adjuncts during yogurt production at 45 °C and probiotic viability was assessed during storage at 4 °C. For comparison reasons yogurt with free L. casei cells were prepared. The effect of encapsulated bacteria as adjuncts in yogurt on pH, lactic acid, lactose and other physicochemical parameters were studied for 60 storage days at 4 °C. Samples were also tested for the microbiological and organoleptic characteristics during storage at 4 °C. Encapsulation matrix seems to sustain the viability of embedded L. casei cells at levels more than 7 logcfug(-1) after 60 days of storage at 4 °C. Furthermore, the absence of pathogens such as Salmonella, Staphylococci, Enterobacteriaceae and coliforms in the produced yogurts is noteworthy where spoilage microorganisms such as yeasts and molds seem to affect yogurt quality only in absence of Pistacia terebinthus resin. The effect of the resin on production of aroma-related compounds responsible for yogurt flavor was also studied using the solid phase microextraction gas chromatography/mass spectrometry technique. Alpha and beta- pinene were the major aroma compounds detected in produced yogurts (over 60 % of total aromatic compounds detected). Yogurts with immobilized cells on P.terebintus resin had a fine aroma and taste characteristic of the resin. PMID:26344983

  9. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed Central

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and nature of the limiting carbohydrate in continuous culture, varying over a 10-fold range, whereas the cell wall H-polysaccharide remained constant. PMID:6401290

  10. High-Dose Probiotic Supplementation Containing Lactobacillus casei for 7 Days Does Not Enhance Salivary Antimicrobial Protein Responses to Exertional Heat Stress Compared With Placebo.

    PubMed

    Gill, Samantha Kirsty; Teixeira, Ana Maria; Rosado, Fatima; Cox, Martin; Costa, Ricardo Jose

    2016-04-01

    The study aimed to determine whether high-dose probiotic supplementation containing Lactobacillus casei (L. casei) for 7 consecutive days enhances salivary antimicrobial protein (S-AMP) responses to exertional-heat stress (EHS). Eight endurance-trained male volunteers (age 26 ± 6 years, nude body mass 70.2 ± 8.8 kg, height 1.75 ± 0.05 m, VO2max 59 ± 5 ml·kg-1·min-1 [M ± SD]) completed a blinded randomized and counterbalanced crossover design. Oral supplementation of the probiotic beverage (PRO; L. casei . 1011 colony-forming units·day-1) or placebo (PLA) was consumed for 7 consecutive days before 2 hr running exercise at 60% VO2max in hot ambient conditions (34.0° C and 32% RH). Body mass and unstimulated saliva and venous blood samples were collected at baseline (7 days before EHS), pre-EHS, post-EHS (1 hr, 2 hr, and 4 hr), and at 24 hr. Saliva samples were analyzed for salivary (S) IgA, α-amylase, lysozyme, and cortisol. Plasma samples were analyzed for plasma osmolality. Body mass and plasma osmolality did not differ between trials. Saliva flow rate remained relatively constant throughout the experimental design in PRO (overall M ± SD = 601 ± 284 μl/min) and PLA (557 ± 296 μl/min). PRO did not induce significant changes in resting S-AMP responses compared with PLA (p > .05). Increases in S-IgA, S-α-amylase, and S-cortisol responses, but not S-lysozyme responses, were observed after EHS (p < .05). No main effects of trial or Time x Trial interaction were observed for S-AMP and S-cortisol responses. Supplementation of a probiotic beverage containing L. casei for 7 days before EHS does not provide any further oral-respiratory mucosal immune protection, with respect to S-AMP, over PLA. PMID:26479711

  11. The Effect of Lactobacillus casei 32G on the Mouse Cecum Microbiota and Innate Immune Response Is Dose and Time Dependent.

    PubMed

    Aktas, Busra; De Wolfe, Travis J; Tandee, Kanokwan; Safdar, Nasia; Darien, Benjamin J; Steele, James L

    2015-01-01

    Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-?) in a manner consistent with an anti-inflammatory response. PMID:26714177

  12. The Effect of Lactobacillus casei 32G on the Mouse Cecum Microbiota and Innate Immune Response Is Dose and Time Dependent

    PubMed Central

    Aktas, Busra; De Wolfe, Travis J.; Tandee, Kanokwan; Safdar, Nasia; Darien, Benjamin J.; Steele, James L.

    2015-01-01

    Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-α) in a manner consistent with an anti-inflammatory response. PMID:26714177

  13. A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei.

    PubMed

    Bidart, Gonzalo N; Rodríguez-Díaz, Jesús; Monedero, Vicente; Yebra, María J

    2014-08-01

    The probiotic Lactobacillus casei catabolizes galacto-N-biose (GNB) and lacto-N-biose (LNB) by using a transport system and metabolic routes different from those of Bifidobacterium. L. casei contains a gene cluster, gnbREFGBCDA, involved in the metabolism of GNB, LNB and also N-acetylgalactosamine. Inactivation of gnbC (EIIC) or ptsI (Enzyme I) of the phosphoenolpyruvate?:?sugar phosphotransferase system (PTS) prevented the growth on those three carbohydrates, indicating that they are transported and phosphorylated by the same PTS(Gnb) . Enzyme activities and growth analysis with knockout mutants showed that GnbG (phospho-?-galactosidase) hydrolyses both disaccharides. However, GnbF (N-acetylgalactosamine-6P deacetylase) and GnbE (galactosamine-6P isomerase/deaminase) are involved in GNB but not in LNB fermentation. The utilization of LNB depends on nagA (N-acetylglucosamine-6P deacetylase), showing that the N-acetylhexosamine moieties of GNB and LNB follow different catabolic routes. A lacAB mutant (galactose-6P isomerase) was impaired in GNB and LNB utilization, indicating that their galactose moiety is channelled through the tagatose-6P pathway. Transcriptional analysis showed that the gnb operon is regulated by substrate-specific induction mediated by the transcriptional repressor GnbR, which binds to a 26 bp DNA region containing inverted repeats exhibiting a 2T/2A conserved core. The data represent the first characterization of novel metabolic pathways for human milk oligosaccharides and glycoconjugate structures in Firmicutes. PMID:24942885

  14. Utilization of d-Ribitol by Lactobacillus casei BL23 Requires a Mannose-Type Phosphotransferase System and Three Catabolic Enzymes

    PubMed Central

    Bourand, A.; Yebra, M. J.; Boël, G.; Mazé, A.

    2013-01-01

    Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment d-ribitol (also called d-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates d-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in d-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented d-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a d-ribitol-5-phosphate (d-ribitol-5-P) 2-dehydrogenase, a d-ribulose-5-P 3-epimerase, a d-ribose-5-P isomerase, and a d-xylulose-5-P phosphoketolase. In the first catabolic step, the protein d-ribitol-5-P 2-dehydrogenase uses NAD+ to oxidize d-ribitol-5-P formed during PTS-catalyzed transport to d-ribulose-5-P, which, in turn, is converted to d-xylulose-5-P by the enzyme d-ribulose-5-P 3-epimerase. Finally, the resulting d-xylulose-5-P is split by d-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate d-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as d-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation. PMID:23564164

  15. Effect of a fermented milk combining Lactobacillus acidophilus CL1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: A randomized, double-blind, placebo-controlled trial

    PubMed Central

    Beausoleil, Mélanie; Fortier, Nadia; Guénette, Stéphanie; L’Ecuyer, Amélie; Savoie, Michel; Franco, Martin; Lachaîne, Jean; Weiss, Karl

    2007-01-01

    BACKGROUND: Antibiotic-associated diarrhea is an important problem in hospitalized patients. The use of probiotics is gaining interest in the scientific community as a potential measure to prevent this complication. The main objective of the present study was to assess the efficacy and safety of a fermented milk combining Lactobacillus acidophilus and Lactobacillus casei that is widely available in Canada, in the prevention of antibiotic-associated diarrhea. METHODS: In this double-blind, randomized study, hospitalized patients were randomly assigned to receive either a lactobacilli-fermented milk or a placebo on a daily basis. RESULTS: Among 89 randomized patients, antibiotic-associated diarrhea occurred in seven of 44 patients (15.9%) in the lactobacilli group and in 16 of 45 patients (35.6%) in the placebo group (OR 0.34, 95% CI 0.125 to 0.944; P=0.05). The median hospitalization duration was eight days in the lactobacilli group, compared with 10 days in the placebo group (P=0.09). Overall, the lactobacilli-fermented milk was well tolerated. CONCLUSION: The daily administration of a lactobacilli-fermented milk was safe and effective in the prevention of antibiotic-associated diarrhea in hospitalized patients. PMID:18026577

  16. Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile

    SciTech Connect

    Ntamere, A.S.; Taron, D.J.; Neuhaus, F.C.

    1987-04-01

    D-Alanyl-lipoteichoic acid (D-alanyl-LTA) from Lactobacillus casei ATCC 7469 contains a poly(glycerophosphate) moiety that is acylated with D-alanyl ester residues. The physiological function of these residues is not well understood. Five mutant strains of this organism that are deficient in the esters of this amphiphile were isolated and characterized. When compared with the parent, strains AN-1 and AN-4 incorporated less than 10% of D-(/sup 14/C)alanine into LTA, whereas AN-2, AN-3, and AN-5 incorporated 50%. The synthesis of D-(/sup 14/C)alanyl-lipophilic LTA was virtually absent in the first group and was approximately 30% in the second group. The mutant strains synthesized and selected the glycolipid anchor for LTA assembly. In addition, all of the strains synthesized the poly(glycerophosphate) moiety of LTA to the same extent as did the parent or to a greater extent. It was concluded that the membranes from the mutant strains AN-1 and AN-4 are defective for D-alanylation of LTA even though acceptor LTA is present. Mutant strains AN-2 and AN-3 appear to be partially deficient in the amount of the D-alanine-activating enzyme. Aberrant morphology and defective cell separation appear to result from this deficiency in D-alanyl ester content.

  17. Improvement of atopic dermatitis-like skin lesions by IL-4 inhibition of P14 protein isolated from Lactobacillus casei in NC/Nga mice.

    PubMed

    Kim, Min-Soo; Kim, Jin-Eung; Yoon, Yeo-Sang; Kim, Tai Hoon; Seo, Jae-Gu; Chung, Myung-Jun; Yum, Do-Young

    2015-09-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease, with a complex etiology encompassing immunologic responses. AD is frequently associated with elevated serum immunoglobulin (Ig) E levels and is exacerbated by a variety of environmental factors, which contribute to its pathogenesis. However, the etiology of AD remains unknown. Recently, reports have documented the role of lactic acid bacteria (LAB) in the treatment and prevention of AD in humans and mice. The LAB, Lactobacillus casei (LC), is frequently used in the treatment of AD. To identify the active component of LC, we screened fractions obtained from the ion exchange chromatography of LC extracts. Using this approach, we identified the candidate protein, P14. We examined whether the P14 protein has anti-atopic properties, using both in vitro and in vivo models. Our results showed that the P14 protein selectively downregulated serum IgE and interleukin-4 cytokine levels, as well as the AD index and scratching score in AD-like NC/Nga mice. In addition, histological examination was also effective in mice. These results suggest that the P14 protein has potential therapeutic effects and that it may also serve as an effective immunomodulatory agent for treating patients with AD. PMID:25687448

  18. Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: selective isolation from faeces and identification using monoclonal antibodies.

    PubMed

    Yuki, N; Watanabe, K; Mike, A; Tagami, Y; Tanaka, R; Ohwaki, M; Morotomi, M

    1999-04-01

    Lactobacillus casei strain Shirota (LCS) is a probiotic bacterium used in the production of fermented milk products and lactic acid bacteria preparations. To investigate the survival of LCS in the gastrointestinal tract, we have developed a selective medium and specific monoclonal antibodies to isolate and identify this strain. Selective LLV agar medium was prepared by modifying LBS medium, a selective medium for lactobacilli, through the replacement of glucose with lactitol as a carbon source and vancomycin as a selective antibiotic. Culture in LLV agar medium followed by ELISA using monoclonal antibodies specific for LCS was able to detect the organism in faeces. Using this method, we studied the faecal recovery of LCS in individuals who drank 125 ml of fermented milk which contained 10(10) live LCS for 3 days. The mean recovery was about 10(7) live bacteria per gram of faeces, indicating that LCS survived transit through the gastrointestinal tract after ingestion of the fermented milk. PMID:10375134

  19. Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA.

    PubMed

    Fujimoto, Junji; Matsuki, Takahiro; Sasamoto, Masae; Tomii, Yasuaki; Watanabe, Koichi

    2008-08-15

    Lactobacillus casei strain Shirota (LcS) has been used in the production of fermented milk products for many years and is one of the most intensively studied probiotics. To evaluate the ability of LcS to proliferate in human intestines after it has been ingested, we developed a PCR-based method to identify and quantify LcS using an LcS-specific primer set (pLcS) derived from a randomly amplified polymorphic DNA (RAPD) analysis. We confirmed the high specificity of the pLcS primer set in 167 bacterial strains (57 strains of L. casei and 110 other strains of bacteria commonly isolated from human feces). The method's ability to identify LcS matched that of an ELISA using a monoclonal antibody and a RAPD analysis in a representative sample of colonies cultured from human feces. The detection limit of quantitative PCR (qPCR) using pLcS was 10(4.6) per gram of feces. The number of LcS in feces detected with qPCR was highly and significantly correlated with the number of LcS added to fecal samples within the range of 10(4.6) to 10(9.6) per gram feces (r(2)=0.999, P<0.001). After 14 healthy subjects ingested 10(11.0) CFU of LcS daily for 7 days, 10(9.1+/-0.5) LcS g(-1) (mean+/-S.D.) was detected in the fecal samples of all subjects by qPCR, and 10(8.0+/-0.9) CFU g(-1) was detected by culture; these values were significantly different (P<0.001, paired t-test). After the subjects stopped ingesting LcS, fecal LcS counts obtained with both methods decreased daily. The values produced by the 2 methods might have differed because of an overestimation in the PCR analysis due to the presence of dead LcS cells or an underestimation in the culture system due to the use of selective culture media; however, dead LcS cells can also be beneficial as immunomodulators. We confirmed that qPCR with an LcS-specific primer set was a rapid and accurate method for determining the total amount of LcS in feces including dead or less active cells which could not be detected by culture method. PMID:18573558

  20. A Novel Type of Peptidoglycan-binding Domain Highly Specific for Amidated d-Asp Cross-bridge, Identified in Lactobacillus casei Bacteriophage Endolysins*

    PubMed Central

    Regulski, Krzysztof; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre

    2013-01-01

    Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a ?-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4?d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4?l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4?d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3?3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4?3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG. PMID:23733182

  1. Lactobacillus casei-01 Facilitates the Ameliorative Effects of Proanthocyanidins Extracted from Lotus Seedpod on Learning and Memory Impairment in Scopolamine-Induced Amnesia Mice

    PubMed Central

    Xiao, Juan; Li, Shuyi; Sui, Yong; Wu, Qian; Li, Xiaopeng; Xie, Bijun; Zhang, Mingwei; Sun, Zhida

    2014-01-01

    Learning and memory abilities are associated with alterations in gut function. The two-way proanthocyanidins-microbiota interaction in vivo enhances the physiological activities of proanthocyanidins and promotes the regulation of gut function. Proanthocyanidins extracted from lotus seedpod (LSPC) have shown the memory-enhancing ability. However, there has been no literature about whether Lactobacillus casei-01 (LC) enhances the ameliorative effects of LSPC on learning and memory abilities. In this study, learning and memory abilities of scopolamine-induced amnesia mice were evaluated by Y-maze test after 20-day administration of LC (109 cfu/kg body weight (BW)), LSPC (low dose was 60 mg/kg BW (L-LSPC) and high dose was 90 mg/kg BW (H-LSPC)), or LSPC and LC combinations (L-LSPC+LC and H-LSPC+LC). Alterations in antioxidant defense ability and oxidative damage of brain, serum and colon, and brain cholinergic system were investigated as the possible mechanisms. As a result, the error times of H-LSPC+LC group were reduced by 41.59% and 68.75% relative to those of H-LSPC and LC groups respectively. LSPC and LC combinations ameliorated scopolamine-induced memory impairment by improving total antioxidant capacity (TAOC) level, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) activities of brain, serum and colon, suppressing malondialdehyde (MDA) level of brain, serum and colon, and inhibiting brain acetylcholinesterase (AchE), myeloperoxidase, total nitric oxide synthase and neural nitric oxide synthase (nNOS) activities, and nNOS mRNA level. Moreover, LC facilitated the ameliorative effects of H-LSPC on GSH-Px activity of colon, TAOC level, GSH-Px activity and ratio of T-SOD to MDA of brain and serum, and the inhibitory effects of H-LSPC on serum MDA level, brain nNOS mRNA level and AchE activity. These results indicated that LC promoted the memory-enhancing effect of LSPC in scopolamine-induced amnesia mice. PMID:25396737

  2. Structural comparison of complexes of methotrexate analogues with Lactobacillus casei dihydrofolate reductase by two-dimensional /sup 1/H NMR at 500 MHz

    SciTech Connect

    Hammond, S.J.; Birdsall, B.; Feeney, J.; Searle, M.S.; Roberts, G.C.K.; Cheung, H.T.A.

    1987-12-29

    The authors have used two-dimensional (2D) NMR methods to examine complexes of Lactobacillus casei dihydrofolate reductase and methotrexate (MTX) analogues having structural modifications of the benzoyl ring and also the glutamic acid moiety. Assignments of the /sup 1/H signals in the spectra of the various complexes were made by comparison of their 2D spectra with those complexes containing methotrexate where we have previously assigned resonances from 32 of the 162 amino acid residues. In the complexes formed with the dihalomethotrexate analogues, the glutamic acid and pteridine ring moieties were shown to bind to the enzyme in a manner similar to that found in the methotrexate-enzyme complex. Perturbations in /sup 1/H chemical shifts of protons in Phe-49, Leu-54, and Leu-27 and the methotrexate H7 and NMe protons were observed in the different complexes and were accounted for by changes in orientation of the benzoyl ring in the various complexes. Binding of oxidized or reduced coenzyme to the binary complexes did not result in different shifts for Leu-27, Leu-54, or Leu-19 protons, and thus, the orientation of the benzoyl ring of the methotrexate analogues is not perturbed greatly by the presence of either oxidized or reduced coenzyme. In the complex with the ..gamma..-monoamide analog, the /sup 1/H signals of assigned residues in the protein had almost identical shifts with the corresponding protons in the methotrexate-enzyme complex for all residues except His-28 and, to a lesser extent, Leu-27. This indicates that while the His-28 interaction with the MTX ..gamma..-CO/sub 2//sup -/ is no longer present in this complex with the ..gamma..-amide, there has not been a major change in the overall structure of the two complexes. This behavior contrasts to that of the ..cap alpha..-amide complex where /sup 1/H signals from protons in several amino acid residues are different compared with their values in the complex formed with methotrexate.

  3. Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged.

    PubMed

    Nagata, Satoru; Asahara, Takashi; Ohta, Toshihisa; Yamada, Toshihiko; Kondo, Shigemi; Bian, Lei; Wang, Chongxin; Yamashiro, Yuichiro; Nomoto, Koji

    2011-08-01

    For conducting effective risk management in long-stay elderly people at a health service facility, we performed an open case-controlled study to evaluate the effect of the intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota (LcS-fermented milk) on norovirus gastroenteritis occurring in the winter season during the intake period. A total of seventy-seven elderly people (mean age 84 years) were enrolled in the study. During a 1-month period, there was no significant difference in the incidence of norovirus gastroenteritis between the LcS-fermented milk-administered (n 39) and the non-administered (n 38) groups; however, the mean duration of fever of >37°C after the onset of gastroenteritis was 1·5 (SD 1·7) d in the former and 2·9 (SD 2·3) d in the latter group, showing a significant shortening in the former group (P < 0·05). RT-quantitative PCR analysis targeting ribosomal RNA showed both Bifidobacterium and Lactobacillus to be significantly dominant, whereas Enterobacteriaceae decreased in faecal samples from the administered group (n 10, mean age 83 years), with a significant increase in faecal acetic acid concentration. Continuous intake of LcS-fermented milk could positively contribute to the alleviation of fever caused by norovirus gastroenteritis by correcting the imbalance of the intestinal microflora peculiar to the elderly, although such consumption could not protect them from the disease. PMID:21521545

  4. Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients.

    TOXLINE Toxicology Bibliographic Information

    Almeida CC; Lorena SL; Pavan CR; Akasaka HM; Mesquita MA

    2012-04-01

    BACKGROUND: The efficacy of some probiotic strains for the management of lactose intolerance remains to be established.AIM: To evaluate the effects of a 4-week consumption of a probiotic product containing Lactobacillus casei Shirota and Bifidobacterium breve Yakult (10(7)-10(9) CFU of each strain) on symptoms and breath hydrogen exhalation after a lactose load in lactose-intolerant patients and whether the beneficial results persisted after probiotic discontinuation.METHODS: Twenty-seven patients with lactose maldigestion and intolerance participated in this study, which comprised 4 hydrogen breath tests: baseline condition (20 g lactose), after lactase ingestion (9000 FCC units), at the end of 4-week probiotic supplementation, and a follow-up test performed 3 months after probiotic discontinuation. For each test, the area under the breath hydrogen concentration vs time curve (AUC(180 min)) was calculated, and symptom scores were recorded.RESULTS: The probiotic combination significantly reduced symptom scores (P < .01) and breath hydrogen AUC (P = .04) compared with the baseline condition. The comparison with the lactase test showed that symptom scores were similar (P > .05), despite the significantly higher (P = .01) AUC values after probiotic use. In the follow-up test, symptom scores and breath hydrogen AUC values remained similar to those found at the end of probiotic intervention.CONCLUSION: Four-week consumption of a probiotic combination of L casei Shirota and B breve Yakult seems to improve symptoms and decrease hydrogen production intake in lactose-intolerant patients. These effects may persist for at least 3 months after suspension of probiotic consumption.

  5. Influence of a probiotic Lactobacillus casei strain on the colonisation with potential pathogenic streptococci and Staphylococcus aureus in the nasopharyngeal space of healthy men with a low baseline NK cell activity.

    PubMed

    Franz, Charles M A P; Huch, Melanie; Seifert, Stephanie; Kramlich, Jeannette; Bub, Achim; Cho, Gyu-Sung; Watzl, Bernhard

    2015-08-01

    The effect of a daily intake of the probiotic strain Lactobacillus casei Shirota (LcS) on the colonisation of pathogens, specifically streptococci and Staphylococcus aureus, in the nose and throat of healthy human volunteers with low natural killer cell activity, was investigated in a randomised and controlled intervention study. The study consisted of a 2-week run-in phase, followed by a 4-week intervention phase. The probiotic treatment group received a fermented milk drink with LcS, while the placebo group received an equally composed milk drink without the probiotic additive. To isolate potential pathogenic streptococci and Staph. aureus, samples from the pharynx, as well as of both middle nasal meati, were taken, once after the run-in phase and once at the end of the intervention phase. Isolated bacteria were identified as either Staph. aureus and α- or β-haemolytic streptococci in a polyphasic taxonomical approach based on phenotypic tests, amplified ribosomal DNA restriction analysis genotyping, and 16S rRNA gene sequencing of representative strains. Salivary secretory immunoglobulin A (SIgA) was used as marker of protective mucosal immunity to evaluate whether LcS treatment influenced SIgA production. No statistically significant effect could be determined for intervention with LcS on the incidence of Staph. aureus in the nasal space, Staph. aureus in the pharyngeal space or for β-haemolytic streptococci and Streptococcus pneumoniae in the pharyngeal space. Thus, the intervention did not influence the nasopharyngeal colonisation with Gram-positive potential pathogens. Production of salivary SIgA as a potential means of microbiota modulation was also not affected. PMID:25416927

  6. Effects of biosurfactant produced by Lactobacillus casei on gtfB, gtfC, and ftf gene expression level in S. mutans by real-time RT-PCR

    PubMed Central

    Savabi, Omid; Kazemi, Mohammad; Kamali, Sara; Salehi, Ahmad Reza; Eslami, Gilda; Tahmourespour, Arezoo; Salehi, Rasoul

    2014-01-01

    Background: The Streptococci are the pioneer strains in plaque formation and Streptococcus mutans are the main etiological agent of dental plaque and caries. In general, biofilm formation is a step-wise process, which begins by adhesion of planktonic cells to the surfaces. Evidences show that expression of glucosyltransferase B and C (gtfB and gtfC) and fructosyltransferase (ftf) genes play critical role in initial adhesion of S. mutans to the tooth surface which results in formation of dental plaques and consequently caries and other periodontal disease. Materials and Methods: The aim of this study was to determine the effect of biosurfactants produced by a probiotic strain; Lactobacillus casei (ATCC39392) on gene expression profile of gftB/C and tft of S. mutans (ATCC35668) using quantitative real-time PCR. Results: The application of the prepared biosurfactant caused dramatic down regulation of all the three genes under study. The reduction in gene expression was statistically highly significant (for gtfB, P > 0.0002; for gtfC, P > 0.0063, and for ftf, P > 0.0057). Conclusion: Considerable downregulation of all three genes in the presence of the prepared biosurfactant comparing to untreated controls is indicative of successful inhibition of influential genes in bacterial adhesion phenomena. In view of the importance of glucosyltransferase gene products for S.mutans attachment to the tooth surface which is the initial important step in biofilm production and dental caries, further research in this field may lead to an applicable alternative for successful with least adverse side effects in dental caries prevention. PMID:25538917

  7. Effect of the administration of a fermented milk containing Lactobacillus casei DN-114001 on intestinal microbiota and gut associated immune cells of nursing mice and after weaning until immune maturity

    PubMed Central

    de Moreno de LeBlanc, Alejandra; Dogi, Cecilia A; Galdeano, Carolina Maldonado; Carmuega, Esteban; Weill, Ricardo; Perdigón, Gabriela

    2008-01-01

    Background Microbial colonization of the intestine after birth is an important step for the development of the gut immune system. The acquisition of passive immunity through breast-feeding may influence the pattern of bacterial colonization in the newborn. The aim of this work was to evaluate the effect of the administration of a probiotic fermented milk (PFM) containing yogurt starter cultures and the probiotic bacteria strain Lactobacillus casei DN-114001 to mothers during nursing or their offspring, on the intestinal bacterial population and on parameters of the gut immune system. Results Fifteen mice of each group were sacrificed at ages 12, 21, 28 and 45 days. Large intestines were taken for determination of intestinal microbiota, and small intestines for the study of secretory-IgA (S-IgA) in fluid and the study of IgA+ cells, macrophages, dendritic cells and goblet cells on tissue samples. The consumption of the PFM either by the mother during nursing or by the offspring after weaning modified the development of bifidobacteria population in the large intestine of the mice. These modifications were accompanied with a decrease of enterobacteria population. The administration of this PFM to the mothers improved their own immune system and this also affected their offspring. Offspring from mice that received PFM increased S-IgA in intestinal fluids, which mainly originated from their mother's immune system. A decrease in the number of macrophages, dendritic cells and IgA+ cells during the suckling period in offspring fed with PFM was observed; this could be related with the improvement of the immunity of the mothers, which passively protect their babies. At day 45, the mice reach maturity of their own immune system and the effects of the PFM was the stimulation of their mucosal immunity. Conclusion The present work shows the beneficial effect of the administration of a PFM not only to the mothers during the suckling period but also to their offspring after weaning and until adulthood. This effect positively improved the intestinal microbiota that are related with a modulation of the gut immune response, which was demonstrated with the stimulation of the IgA + cells, macrophages and dendritic cells. PMID:18554392

  8. Effect of supplementation of fermented milk drink containing probiotic Lactobacillus casei Shirota on the concentrations of aflatoxin biomarkers among employees of Universiti Putra Malaysia: a randomised, double-blind, cross-over, placebo-controlled study.

    PubMed

    Mohd Redzwan, Sabran; Abd Mutalib, Mohd Sokhini; Wang, Jia-Sheng; Ahmad, Zuraini; Kang, Min-Su; Abdul Rahman, Nurul 'Aqilah; Nikbakht Nasrabadi, Elham; Jamaluddin, Rosita

    2016-01-14

    Human exposure to aflatoxin is through the diet, and probiotics are able to bind aflatoxin and prevent its absorption in the small intestine. This study aimed to determine the effectiveness of a fermented milk drink containing Lactobacillus casei Shirota (LcS) (probiotic drink) to prevent aflatoxin absorption and reduce serum aflatoxin B1-lysine adduct (AFB1-lys) and urinary aflatoxin M1 concentrations. The present study was a randomised, double-blind, cross-over, placebo-controlled study with two 4-week intervention phases. In all, seventy-one subjects recruited from the screening stage were divided into two groups--the Yellow group and the Blue group. In the 1st phase, one group received probiotic drinks twice a day and the other group received placebo drinks. Blood and urine samples were collected at baseline, 2nd and 4th week of the intervention. After a 2-week wash-out period, the treatments were switched between the groups, and blood and urine samples were collected at the 6th, 8th and 10th week (2nd phase) of the intervention. No significant differences in aflatoxin biomarker concentrations were observed during the intervention. A within-group analysis was further carried out. Aflatoxin biomarker concentrations were not significantly different in the Yellow group. Nevertheless, ANOVA for repeated measurements indicated that AFB1-lys concentrations were significantly different (P=0·035) with the probiotic intervention in the Blue group. The 2nd week AFB1-lys concentrations (5·14 (SD 2·15) pg/mg albumin (ALB)) were significantly reduced (P=0·048) compared with the baseline (6·24 (SD 3·42) pg/mg ALB). Besides, the 4th week AFB1-lys concentrations were significantly lower (P<0·05) with probiotic supplementation than with the placebo. Based on these findings, a longer intervention study is warranted to investigate the effects of continuous LcS consumption to prevent dietary aflatoxin exposure. PMID:26490018

  9. Stable integration and expression of heterologous genes in several lactobacilli using an integration vector constructed from the integrase and attP sequences of phage ?AT3 isolated from Lactobacillus casei ATCC 393.

    PubMed

    Lin, Chao-Fen; Lo, Ta-Chun; Kuo, Yang-Cheng; Lin, Thy-Hou

    2013-04-01

    An integration vector capable of stably integrating and maintaining in the chromosomes of several lactobacilli over hundreds of generations has been constructed. The major integration machinery used is based on the ?AT3 integrase (int) and attP sequences determined previously. A novel core sequence located at the 3' end of the tRNA(leu) gene is identified in Lactobacillus fermentum ATCC 14931 as the integration target by the integration vector though most of such sequences found in other lactobacilli are similar to that determined previously. Due to the lack of an appropriate attB site in Lactococcus lactis MG1363, the integration vector is found to be unable to integrate into the chromosome of the strain. However, such integration can be successfully restored by cotransforming the integration vector with a replicative one harboring both attB and erythromycin resistance sequences into the strain. Furthermore, the integration vector constructed carries a promoter region of placT from the chromosome of Lactobacillus rhamnosus TCELL-1 which is used to express green fluorescence and luminance protein genes in the lactobacilli studied. PMID:23064454

  10. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Ye, Fei; Liu, Cunxia; Liu, Hongfeng; Wang, Maopeng; Li, Yi; Sun, Yang; Li, Xiao; Tian, Mingyao; Jin, Ningyi

    2014-12-01

    This study aims to evaluate the functional and probiotic characteristics of eight indigenous Lactobacillus strains in vitro. The selected lactobacilli include strains of Lactobacillus casei subsp. casei, Lactobacillus salivarius subsp. salicinius, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus rhamnosus. All strains tolerated both pH 2 for 3 h and 1% bile salt for 24 h. The strains CICC 23174 and CGMCC 1.557 were the most adhesive strains producing the highest quantity of EPS. Although a wide variation in the ability of the eight strains to deplete cholesterol and nitrite, antagonize pathogens, scavenge free radical, and stimulate innate immune response were observed, the strains CICC 23174 and CGMCC 1.557 showed the widest range of these useful traits. Taken together, the strains CICC 23174 and CGMCC 1.557 exhibited the best probiotic properties with the potential for use in the production of probiotic fermented foods. PMID:25046742

  11. Distribution Dynamics of Recombinant Lactobacillus in the Gastrointestinal Tract of Neonatal Rats

    PubMed Central

    Bao, Sujin; Zhu, Libin; Zhuang, Qiang; Wang, Lucia; Xu, Pin-Xian; Itoh, Keiji; Holzman, Ian R.; Lin, Jing

    2013-01-01

    One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates. PMID:23544119

  12. Distribution dynamics of recombinant Lactobacillus in the gastrointestinal tract of neonatal rats.

    PubMed

    Bao, Sujin; Zhu, Libin; Zhuang, Qiang; Wang, Lucia; Xu, Pin-Xian; Itoh, Keiji; Holzman, Ian R; Lin, Jing

    2013-01-01

    One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates. PMID:23544119

  13. Performance in nondairy drinks of probiotic L. casei strains usually employed in dairy products.

    PubMed

    Céspedes, Mario; Cárdenas, Pamela; Staffolani, Martín; Ciappini, María C; Vinderola, Gabriel

    2013-05-01

    The increase in vegetarianism as dietary habit and the increased allergy episodes against dairy proteins fuel the demand for probiotics in nondairy products. Lactose intolerance and the cholesterol content of dairy products can also be considered two additional reasons why some consumers are looking for probiotics in other foods. We aimed at determining cell viability in nondairy drinks and resistance to simulated gastric digestion of commercial probiotic lactobacilli commonly used in dairy products. Lactobacillus casei LC-01 and L. casei BGP 93 were added to different commercial nondairy drinks and viability and resistance to simulated gastric digestion (pH 2.5, 90 min, 37 °C) were monitored along storage (5 and 20 °C). For both strains, at least one nondairy drink was found to offer cell counts around 7 log orders until the end of the storage period. Changes in resistance to simulated gastric digestion were observed as well. Commercial probiotic cultures of L. casei can be added to commercial fruit juices after a carefull selection of the product that warrants cell viability. The resistance to simulated gastric digestion is an easy-to-apply in vitro tool that may contribute to product characterization and may help in the choice of the food matrix when no changes in cell viability are observed along storage. Sensorial evaluation is mandatory before marketing since the product type and storage conditions might influence the sensorial properties of the product due to the possibility of growth and lactic acid production by probiotic bacteria. PMID:23527588

  14. Anti-Inflammatory Activity of Lactobacillus on Carrageenan-Induced Paw Edema in Male Wistar Rats

    PubMed Central

    Amdekar, Sarika; Roy, Purabi; Singh, Vinod; Kumar, Avnish; Singh, Rambir; Sharma, Poonam

    2012-01-01

    Introduction. Lactobacillus casei and Lactobacillus acidophilus were used to assess the anti-inflammatory properties in carrageenan induced acute inflammatory model. Materials and Methods. Diclofenac sodium was used as standard drug at concentration of 150?mg/kg of body weight. Culture of Lactobacillus??2 × 107?CFU/ml was given orally. Edema was induced with 1% carrageenan to all the groups after one hour of the oral treatments. Paw thickness was checked at t = 1, 2, 3, 4, 5, and 24 hours. Stair climbing score and motility score were assessed at t = 24 hours. Cytokines assay for IL-6, IL-10, and TNF-? was performed on serum samples. Results. Lactobacillus showed a statistically significant decrease in paw thickness at P < 0.001. L. acidophilus and L. casei decreased by 32% and 28% in paw thickness. They both significantly increased the stair climbing and motility score. Lactobacillus treatment significantly downregulated IL-6 and TNF-? while upregulated IL-10 at P < 0.0001. Conclusion. L. casei and L. acidophilus significantly decreased the inflammatory reactions induced by carrageenan. This study has also proposed that Lactobacillus ameliorated the inflammatory reaction by downregulating the proinflammatory cytokines pathway. PMID:22518342

  15. Molecular identification of Lactobacillus spp. associated with puba, a Brazilian fermented cassava food

    PubMed Central

    Crispim, S.M.; Nascimento, A.M.A.; Costa, P.S.; Moreira, J.L.S.; Nunes, A.C.; Nicoli, J.R.; Lima, F.L.; Mota, V.T.; Nardi, R.M.D.

    2013-01-01

    Puba or carimã is a Brazilian staple food obtained by spontaneous submerged fermentation of cassava roots. A total of 116 lactobacilli and three cocci isolates from 20 commercial puba samples were recovered on de Man, Rogosa and Sharpe agar (MRS); they were characterized for their antagonistic activity against foodborne pathogens and identified taxonomically by classical and molecular methods. In all samples, lactic acid bacteria were recovered as the dominant microbiota (7.86 ± 0.41 log10 CFU/g). 16S–23S rRNA ARDRA pattern assigned 116 isolates to the Lactobacillus genus, represented by the species Lactobacillus fermentum (59 isolates), Lactobacillus delbrueckii (18 isolates), Lactobacillus casei (9 isolates), Lactobacillus reuteri (6 isolates), Lactobacillus brevis (3 isolates), Lactobacillus gasseri (2 isolates), Lactobacillus nagelii (1 isolate), and Lactobacillus plantarum group (18 isolates). recA gene-multiplex PCR analysis revealed that L. plantarum group isolates belonged to Lactobacillus plantarum (15 isolates) and Lactobacillus paraplantarum (3 isolates). Genomic diversity was investigated by molecular typing with rep (repetitive sequence)-based PCR using the primer ERIC2 (enterobacterial repetitive intergenic consensus). The Lactobacillus isolates exhibited genetic heterogeneity and species-specific fingerprint patterns. All the isolates showed antagonistic activity against the foodborne pathogenic bacteria tested. This antibacterial effect was attributed to acid production, except in the cases of three isolates that apparently produced bacteriocin-like inhibitory substances. This study provides the first insight into the genetic diversity of Lactobacillus spp. of puba. PMID:24159278

  16. Antimicrobial effects of GL13K peptide coatings on S. mutans and L. casei

    NASA Astrophysics Data System (ADS)

    Schnitt, Rebecca Ann

    Background: Enamel breakdown around orthodontic brackets, so-called "white spot lesions", is the most common complication of orthodontic treatment. White spot lesions are caused by bacteria such as Streptococci and Lactobacilli, whose acidic byproducts cause demineralization of enamel crystals. Aims: The aim of this project was to develop an antimicrobial peptide coating for titanium alloy that is capable of killing acidogenic bacteria, specifically Streptococcus mutans and Lactobacillus casei. The long-term goal is to create an antimicrobial-coated orthodontic bracket with the ability to reduce or prevent the formation of white spot lesions in orthodontic patients thereby improving clinical outcomes. Methods: First, an alkaline etching method with NaOH was established to allow effective coating of titanium discs with GL13K, an antimicrobial peptide derived from human saliva. Coatings were verified by contact angle measures, and treated discs were characterized using scanning electron microscopy. Secondly, GL13K coatings were tested against hydrolytic, proteolytic and mechanical challenges to ensure robust coatings. Third, a series of qualitative and quantitative microbiology experiments were performed to determine the effects of GL13K--L and GL13K--D on S. mutans and L. casei, both in solution and coated on titanium. Results: GL13K-coated discs were stable after two weeks of challenges. GL13K--D was effective at killing S. mutans in vitro at low doses. GL13K--D also demonstrated a bactericidal effect on L. casei, however, in contrast to S. mutans, the effect on L. casei was not statistically significant. Conclusion: GL13K--D is a promising candidate for antimicrobial therapy with possible applications for prevention of white spot lesions in orthodontics.

  17. Characterization of Selected Lactobacillus Strains for Use as Probiotics.

    PubMed

    Song, Minyu; Yun, Bohyun; Moon, Jae-Hak; Park, Dong-June; Lim, Kwangsei; Oh, Sejong

    2015-01-01

    The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products. PMID:26761878

  18. Characterization of Selected Lactobacillus Strains for Use as Probiotics

    PubMed Central

    Song, Minyu; Yun, Bohyun; Moon, Jae-Hak; Park, Dong-June; Lim, Kwangsei; Oh, Sejong

    2015-01-01

    The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products. PMID:26761878

  19. Lactobacillus species: taxonomic complexity and controversial susceptibilities.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M

    2015-05-15

    The genus Lactobacillus is a taxonomically complex and is composed of over 170 species that cannot be easily differentiated phenotypically and often require molecular identification. Although they are part of the normal human gastrointestinal and vaginal flora, they can also be occasional human pathogens. They are extensively used in a variety of commercial products including probiotics. Their antimicrobial susceptibilities are poorly defined in part because of their taxonomic complexity and are compounded by the different methods recommended by Clinical Laboratory Standards Institute and International Dairy Foundation. Their use as probiotics for prevention of Clostridium difficile infection is prevalent among consumers worldwide but raises the question of will the use of any concurrent antibiotic effect their ability to survive. Lactobacillus species are generally acid resistant and are able to survive ingestion. They are generally resistant to metronidazole, aminoglycosides and ciprofloxacin with L. acidophilus being susceptible to penicillin and vancomycin, whereas L. rhamnosus and L. casei are resistant to metronidazole and vancomycin. PMID:25922408

  20. Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei.

    PubMed

    Mercanti, Diego J; Rousseau, Geneviève M; Capra, María L; Quiberoni, Andrea; Tremblay, Denise M; Labrie, Simon J; Moineau, Sylvain

    2015-01-01

    Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts. PMID:26475105

  1. Effect of recombinant lactobacillus expressing canine GM-CSF on immune function in dogs.

    PubMed

    Chung, Jin Young; Sung, Eui Jae; Cho, Chun Gyu; Seo, Kyoung Won; Lee, Jong-Soo; Bhang, Dong Ha; Lee, Hee Woo; Hwang, Cheol Yong; Lee, Wan Kyu; Youn, Hwa Young; Kim, Chul Joong

    2009-11-01

    Many Lactobacillus strains have been promoted as good probiotics for the prevention and treatment of diseases. We engineered recombinant Lactobacillus casei, producing biologically active canine granulocyte macrophage colony stimulating factor (cGM-CSF), and investigated its possibility as a good probiotic agent for dogs. Expression of the cGM-CSF protein in the recombinant Lactobacillus was confirmed by SDS-PAGE and Western blotting methods. For the in vivo study, 18 Beagle puppies of 7 weeks of age were divided into three groups; the control group was fed only on a regular diet and the two treatment groups were fed on a diet supplemented with either 1 x 10(9) colony forming units (CFU)/day of L. casei or L. casei expressing cGM-CSF protein for 7 weeks. Body weight was measured, and fecal and blood samples were collected from the dogs during the experiment for the measurement of hematology, fecal immunoglobulin (Ig)A and IgG, circulating IgA and IgG, and canine corona virus (CCV)-specific IgG. There were no differences in body weights among the groups, but monocyte counts in hematology and serum IgA were higher in the group receiving L. casei expressing cGMCSF than in the other two groups. After the administration of CCV vaccine, CCV-specific IgG in serum increased more in the group supplemented with L. casei expressing cGM-CSF than the other two groups. This study shows that a dietary L. casei expressing cGM-CSF enhances specific immune functions at both the mucosal and systemic levels in puppies. PMID:19996694

  2. Probiotic features of two oral Lactobacillus isolates

    PubMed Central

    Zavisic, Gordana; Petricevic, Sasa; Radulovic, Zeljka; Begovic, Jelena; Golic, Natasa; Topisirovic, Ljubisa; Strahinic, Ivana

    2012-01-01

    In this study, we checked lactobacilli strains of human origin for their potential as probiotic. Samples were collected from oral mucosa of 16 healthy individuals, out of which twenty isolates were obtained and two of them were selected and identified as Lactobacillus plantarum (G1) and L. casei (G3). Both isolates exhibited antagonistic action towards pathogenic microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Salmonella abony, and Clostridium sporogenes, but not on the growth of Candida albicans. The bacteriocin activity against Staphylococcus aureus ATCC 6358-P was shown only by L. plantarum G1. Moreover, the isolates G1 and G3 showed good viability in the acid gastric environment and in the gut environment containing bovine bile salts. The viability of G1 and G3 isolates in the gastrointestinal tract, and the adhesion to the intestinal mucosa were also confirmed in vivo. The biochemical tests of blood samples revealed lower levels of serum triglycerides and cholesterol, as well as reduced activity of alkaline phosphatase in all lactobacilli-treated Wistar rats, compared to control ones. No toxicity for NMRI Ham mice was observed. According to our experimental results, these findings imply that L. plantarum G1 and L. casei G3 could be characterized as potential probiotics. PMID:24031847

  3. Clinical characteristics of bacteraemia caused by Lactobacillus spp. and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2000-2014.

    PubMed

    Lee, Meng-Rui; Tsai, Chia-Jung; Liang, Sheng-Kai; Lin, Ching-Kai; Huang, Yu-Tsung; Hsueh, Po-Ren

    2015-10-01

    The clinical characteristics of 89 patients with Lactobacillus bacteraemia treated at a university-affiliated hospital in northern Taiwan during 2000-2014 were retrospectively evaluated. Lactobacillus spp. were identified by 16S rRNA sequencing analysis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antimicrobial susceptibilities of the isolates were determined by broth microdilution. The most commonly isolated species was Lactobacillus salivarius (n = 21), followed by Lactobacillus paracasei (n = 16) and Lactobacillus fermentum (n = 13). Excluding three isolates with lower 16S rRNA sequence similarity, MALDI-TOF/MS provided correct identification for 84.9% (73/86) of Lactobacillus isolates. Concordant identification was lowest for Lactobacillus casei (11%). The main infection foci were intra-abdominal infection (49%) and catheter-related bloodstream infection (17%). Only one-half of the patients received adequate antibiotic treatment during the bacteraemic episode. The majority of patients with Lactobacillus bacteraemia were immunocompromised. The 7-day and in-hospital mortality rates were 21% and 62%, respectively, and underlying malignancy was associated with a higher in-hospital mortality rate (odds ratio = 2.666). There were no significant differences in mortality (7-day, 14-day, 30-day and in-hospital) among patients with bacteraemia due to different Lactobacillus spp. Minimum inhibitory concentrations were highest for glycopeptides, cephalosporins and fluoroquinolones and were lowest for carbapenems and aminopenicillins. Lactobacillus bacteraemia was associated with a high mortality rate, and patient outcome was associated with underlying malignancy. MALDI-TOF/MS was able to accurately identify 84.9% of the Lactobacillus isolates, and L. salivarius was the predominant pathogen. The accuracy rate for identification of Lactobacillus spp. by MALDI-TOF/MS was lowest for L. casei. PMID:26298673

  4. Fructooligosaccharides metabolism and effect on bacteriocin production in Lactobacillus strains isolated from ensiled corn and molasses.

    PubMed

    Muñoz, M; Mosquera, A; Alméciga-Díaz, C J; Melendez, A P; Sánchez, O F

    2012-06-01

    Fructo- (FOS) and galacto-oligosaccharides have been used to promote the growth of probiotics, mainly those from Lactobacillus genus. However, only few reports have evaluated the effect of prebiotics on bacteriocins activity and production. In this work, we characterized the effect of FOS supplementation on the growth, lactic and acetic acids production, and antimicrobial activity of crude extracts obtained from Lactobacillus strains isolated from ensiled corn and molasses. Seven out of 28 isolated Lactobacillus, belonging to Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus brevis, showed antimicrobial activity against Listeria innocua. Among them, the strain L. plantarum LE5 showed antimicrobial activity against Listeria monocytogenes and Enteroccocus faecalis; while the L. plantarum LE27 strain showed antimicrobial effect against L. monocytogenes, E. faecalis, Escherichia coli and Salmonella enteritidis. This antimicrobial activity in most of the cases was obtained only after FOS supplementation. In summary, these results show the feasibility to increase the antimicrobial activity of Lactobacillus bacteriocins by supplementing the growth medium with FOS. PMID:22342961

  5. Divergence in codon usage of Lactobacillus species.

    PubMed Central

    Pouwels, P H; Leunissen, J A

    1994-01-01

    We have analyzed codon usage patterns of 70 sequenced genes from different Lactobacillus species. Codon usage in lactobacilli is highly biased. Both inter-species and intra-species heterogeneity of codon usage bias was observed. Codon usage in L. acidophilus is similar to that in L. helveticus, but dissimilar to that in L. bulgaricus, L. casei, L. pentosus and L. plantarum. Codon usage in the latter three organisms is not significantly different, but is different from that in L. bulgaricus. Inter-species differences in codon usage can, at least in part, be explained by differences in mutational drift. L. bulgaricus shows GC drift, whereas all other species show AT drift. L. acidophilus and L. helveticus rarely use NNG in family-box (a set of synonymous) codons, in contrast to all other species. This result may be explained by assuming that L. acidophilus and L. helveticus, but not other species examined, use a single tRNA species for translation of family-box codons. Differences in expression level of genes are positively correlated with codon usage bias. Highly expressed genes show highly biased codon usage, whereas weakly expressed genes show much less biased codon usage. Codon usage patterns at the 5'-end of Lactobacillus genes is not significantly different from that of entire genes. The GC content of codons 2-6 is significantly reduced compared with that of the remainder of the gene. The possible implications of a reduced GC content for the control of translation efficiency are discussed. PMID:8152923

  6. Evaluation in vitro of the antagonistic substances produced by Lactobacillus spp. isolated from chickens

    PubMed Central

    Lima, Edna T.; Andreatti Filho, Raphael L.; Okamoto, Adriano S.; Noujaim, José C.; Barros, Mércia R.; Crocci, Adalberto J.

    2007-01-01

    To determine the inhibitory capacity of lactic acid bacteria due to the action of antagonistic substances, we tested 474 isolates of Lactobacillus from the crop and cecum of chickens against gram-positive and gram-negative indicator microorganisms by the spot-on-the-lawn and well-diffusion antagonism methods. Of the 474 isolates, 265 demonstrated antimicrobial activity against the indicator microorganisms. Isolates identified as L. reuteri, L. salivarius, or Lactobacillus spp. inhibited Enterococcus faecalis, E. faecium, Listeria monocytogenes, and Salmonella spp. but not L. casei, L. delbrueckii, L. fermentum, or L. helveticus by the well-diffusion simultaneous antagonism method under anaerobic incubation conditions. The antagonistic substances produced by some of the Lactobacillus isolates were inactivated after treatment by proteolytic enzymes, which suggested that the substances could be antimicrobial peptides or bacteriocins. PMID:17479773

  7. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    PubMed

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106. PMID:22021580

  8. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS).

    PubMed

    Koh, Ji Hoon; Choi, Seung Hye; Park, Seung Won; Choi, Nag-Jin; Kim, Younghoon; Kim, Sae Hun

    2013-10-01

    Synbiotics, the combination of prebiotics and probiotics, has been shown to produce synergistic effects that promote gastrointestinal well-being of host. Tagatose is a low calorie food ingredient with putative health-promoting benefits. Herein, we investigated its synbiotic impact on the viability of Lactobacillus casei 01 and Lactobacillus rhamnosus strain GG and the potential mechanism involved. Tagatose, as a synbiotic substrate, enhanced the growth of L. casei 01 and L. rhamnosus strain GG compared to other prebiotics. Other gut-indigenous such as Clostridium spp. readily utilized fructooligosaccharide (FOS), the most widely used functional prebiotics, but not tagatose. Additionally, tagatose enhanced probiotic functions of L. casei 01 and L. rhamnosus strain GG by reinforcing their attachment on HT-29 intestine epithelial cells and enhancing their cholesterol-lowering activities. Whole transcriptome study and quantitative real-time polymerase chain reaction (qRT-PCR) test showed that the presence of tagatose in L. rhamnosus strain GG caused induction of a large number of genes associated with carbohydrate metabolism including the phosphotransferase system (PTS). Collectively, these results indicate the tagatose enhanced the growth of L. casei 01 and L. rhamnosus strain GG and their probiotic activities by activating tagatose-associated PTS networks. Importantly, this study highlights the potential application of tagatose and L. casei 01 and/or L. rhamnosus strain GG as a synbiotic partner in functional dairy foods (i.e. yogurt and cheese) and therapeutic dietary supplements. PMID:23764214

  9. Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef.

    PubMed

    Kato, Y; Sakala, R M; Hayashidani, H; Kiuchi, A; Kaneuchi, C; Ogawa, M

    2000-05-01

    Lactobacillus algidus sp. nov. is described on the basis of 40 strains isolated as one of the predominant bacteria from five specimens of vacuum-packaged beef collected from different meat shops and stored at 2 degrees C for 3 weeks. These strains were quite uniform in the overall characteristics examined. They are facultatively anaerobic, psychrophilic, Gram-positive, non-spore-forming, non-motile, lactic acid-homofermentative rods. The cells occurred singly and in pairs on agar media and in rather long chains in broth media. They differed in several cultural and biochemical characteristics from the authentic meso-diaminopimelic acid-positive or psychrophilic lactic acid bacteria in the genera Lactobacillus, Carnobacterium and Brochothrix. The SDS-PAGE whole-cell protein pattern was clearly distinctive. DNA-DNA hybridization and phylogenetic analysis of 16S rDNA also failed to associate these strains closely with any of the validly described organisms used. The phylogenetic analysis showed that these strains are rather remotely but most closely related to Lactobacillus mali (93% sequence similarity), which belongs to the Lactobacillus casei/Pediococcus group. Therefore, these strains should be included in the genus Lactobacillus and considered to represent a new species, Lactobacillus algidus sp. nov. The type strain is M6A9T (= JCM 10491T). PMID:10843056

  10. Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid.

    PubMed

    Ogawa, M; Shimizu, K; Nomoto, K; Tanaka, R; Hamabata, T; Yamasaki, S; Takeda, T; Takeda, Y

    2001-08-15

    The inhibiting characteristics of lactic acid bacteria on Shiga toxin-producing Escherichia coli (STEC) O157:H7 (three strains, clinically isolated) was investigated by using a batch fermentation system. The species such as Lactobacillus casei strain Shirota or L. acidophilus YIT 0070 exert growth inhibitory and bactericidal activities on STEC. The pH value and undissociated lactic acid (U-LA) concentration of the culture medium of STEC cocultured with L. casei or L. acidophilus dramatically lowered or increased, respectively [corrected], when compared with those of the control culture. The cytotoxic properties of U-LA on STEC strain 89020087 analyzed in vitro was divided into two phases, i.e., the bacteriostatic phase (between 3.2 to 62 mM) and the bactericidal phase (over 62 mM). These data suggest that the bactericidal effect of Lactobacillus on STEC depends on its lactic acid production and pH reductive effect. PMID:11545213

  11. Importance of Molecular Methods to Determine Whether a Probiotic is the Source of Lactobacillus Bacteremia.

    PubMed

    Aroutcheva, Alla; Auclair, Julie; Frappier, Martin; Millette, Mathieu; Lolans, Karen; de Montigny, Danielle; Carrière, Serge; Sokalski, Stephen; Trick, William E; Weinstein, Robert A

    2016-03-01

    There has been an increasing interest in the use of probiotic products for the prevention of Clostridium difficile infection (CDI). Bio-K+(®) is a commercial probiotic product comprising three strains of lactobacilli-Lactobacillus acidophilus CL1285(®), Lact. casei LBC80R(®) and Lact. rhamnosus CLR2(®)-that have been applied to prevent CDI. Generally considered as safe, lactobacilli have potential to cause bacteremia, endocarditis and other infections. The source of Lactobacillus bacteremia can be normal human flora or lactobacilli-containing probiotic. The aim of this study was to assess whether probiotic lactobacilli caused bacteremia and to show the value of molecular identification and typing techniques to determine probiotic and patient strain relatedness. We report an episode of Lactobacillus bacteremia in a 69-year-old man admitted to a hospital with severe congestive heart failure. During his hospitalization, he required long-term antibiotic therapy. Additionally, the patient received Bio-K+(®) probiotic as part of a quality improvement project to prevent CDI. Subsequently, Lactobacillus bacteremia occurred. Two independent blinded laboratory evaluations, using pulse field gel electrophoresis, 16S rRNA gene sequencing and DNA fingerprint analysis (rep-PCR), were performed to determine whether the recovered Lact. acidophilus originated from the probiotic product. Ultimately, the patient strain was identified as Lact. casei and both laboratories found no genetic relation between the patient's strain and any of the probiotic lactobacilli. This clinical case of lactobacillus bacteremia in the setting of probiotic exposure demonstrates the value of using discriminatory molecular methods to clearly determine whether there were a link between the patient's isolate and the probiotic strains. PMID:26915093

  12. Phytase activity from Lactobacillus spp. in calcium-fortified soymilk.

    PubMed

    Tang, Anne Lise; Wilcox, Gisela; Walker, Karen Z; Shah, Nagandra P; Ashton, John F; Stojanovska, Lily

    2010-08-01

    The presence of phytate in calcium-fortified soymilk may interfere with mineral absorption. Certain lactic acid bacteria (LAB) produce the enzyme phytase that degrades phytates and therefore may potentially improve mineral bioavailability and absorption. This study investigates the phytase activity and phytate degradation potential of 7 strains of LAB including: Lactobacillus acidophilus ATCC4962, ATCC33200, ATCC4356, ATCC4161, L. casei ASCC290, L. plantarum ASCC276, and L. fermentum VRI-003. Activity of these bacteria was examined both in screening media and in calcium-fortified soymilk supplemented with potassium phytate. Most strains produced phytase under both conditions with L. acidophilus ATCC4161 showing the highest activity. Phytase activity in fortified soymilk fermented with L. acidophilus ATCC4962 and L. acidophilus ATCC4161 increased by 85% and 91%, respectively, between 12 h and 24 h of fermentation. All strains expressed peak phytase activity at approximately pH 5. However, no phytate degradation could be observed. PMID:20722939

  13. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-? and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection. PMID:26340935

  14. Absence of cholic acid 7 alpha-dehydroxylase activity in the strains of Lactobacillus and Bifidobacterium.

    PubMed

    Takahashi, T; Morotomi, M

    1994-11-01

    To investigate the presence of 7 alpha-dehydroxylase activity on bile acids in the bacterial strains of fermented milk products, 46 strains of Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus gasseri, Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium longum, Lactococcus lactis spp. lactis, and Streptococcus salivarius spp. thermophilus were tested for their ability to produce deoxycholic acid from cholic acid. The production of deoxycholic acid was quantitatively measured by radiochromatographic analysis in anaerobically prepared washed whole resting cells and by HPLC analysis in growing cultures. Resting whole cells from a positive control strain, Eubacterium lentum-like strain c-25, converted 81.7% of .2 mM cholic acid to deoxycholic acid and 3.7% to 7-keto-deoxycholic acid, when the cell suspension was incubated anaerobically at a concentration of 2 mg of protein/ml for 4 h at pH 7.3. However, none of the test strains investigated in this study was able to transform cholic acid under the same conditions. In growing cultures, 91.5% of 150 micrograms/ml of cholic acid was transformed to deoxycholic acid and 1.1% to 7-keto-deoxycholic acid by E. lentum-like c-25 after a 7-d anaerobic incubation. None of the test strains showed production of either deoxycholic acid or 7-keto-deoxycholic acid as growing cultures. PMID:7814703

  15. Bioactivity characterization of Lactobacillus strains isolated from dairy products.

    PubMed

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Khosroushahi, Ahmad Yari

    2015-10-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  16. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    PubMed Central

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  17. Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries

    PubMed Central

    Byun, Roy; Nadkarni, Mangala A.; Chhour, Kim-Ly; Martin, F. Elizabeth; Jacques, Nicholas A.; Hunter, Neil

    2004-01-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion. PMID:15243071

  18. Labeling quality and molecular characterization studies of products containing Lactobacillus spp. strains.

    PubMed

    Blandino, Giovanna; Fazio, Davide; Petronio, Giulio Petronio; Inturri, Rosanna; Tempera, Gianna; Furneri, Pio Maria

    2016-03-01

    The objective of the study was to characterize at species level by phenotypic and different molecular methods the strains of Lactobacillus spp. used as constituents of five oral and four vaginal products. Susceptibilities to representative antibiotics were evaluated. In addition, total viable counts at mid and 3 months to deadline of shelf life, in the different formulations and the presence of eventual contaminant microorganisms were investigated.In all oral products the molecular characterization at species level of the strains of Lactobacillus spp. confirmed the strains stated on the label, except for one strain cited on the label as Lactobacillus casei, that our study characterized as Lactobacillus paracasei. In oral products total viable cell content complied with content claimed on the label. In three out four vaginal products (one product claimed "bacillo di Döderlein"), molecular characterization complied with the bacterial name stated on the label. Two vaginal products reported viable counts on the label that were confirmed by our study. The other vaginal products, which did not report bacterial counts on the label, showed a similar decrease of viable counts at different dates to deadline compared to the others. From all the tested products, contaminant microorganisms and acquired resistance to representative antibiotics by the probiotic strains were not detected. PMID:26667227

  19. Accumulation of Polyphosphate in Lactobacillus spp. and Its Involvement in Stress Resistance

    PubMed Central

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel

    2014-01-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  20. Accumulation of polyphosphate in Lactobacillus spp. and its involvement in stress resistance.

    PubMed

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel; Monedero, Vicente

    2014-03-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  1. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. PMID:26709174

  2. The potential of the endolysin Lysdb from Lactobacillus delbrueckii phage for combating Staphylococcus aureus during cheese manufacture from raw milk.

    PubMed

    Guo, Tingting; Xin, YongPing; Zhang, Chenchen; Ouyang, Xudong; Kong, Jian

    2016-04-01

    Phage endolysins have received increased attention in recent times as potential antibacterial agents and the biopreservatives in food production processes. Staphylococcus aureus is one of the most common pathogens in bacterial food poisoning outbreaks. In this study, the endolysin Lysdb, one of the two-component cell lysis cassette of Lactobacillus delbrueckii phage phiLdb, was shown to possess a muramidase domain and catalytic sites with homology to Chalaropsis-type lysozymes. Peptidoglycan hydrolytic bond specificity determination revealed that Lysdb was able to cleave the 6-O-acetylated peptidoglycans present in the cell walls of S. aureus. Turbidity reduction assays demonstrated that Lysdb could effectively lyse the S. aureus live cells under acidic and mesothermal conditions. To further evaluate the ability of Lysdb as a potential antibacterial agent against S. aureus in cheese manufacture, Lactobacillus casei BL23 was engineered to constitutively deliver active Lysdb to challenge S. aureus in lab-scale cheese making from raw milk. Compared with the raw milk, the viable counts of S. aureus were reduced by 10(5)-fold in the cheese inoculated with the engineered L. casei strain during the fermentation process, and the pathogenic bacterial numbers remained at a low level (10(4) CFU/g) after 6 weeks of ripening at 10 °C. Taken together, all results indicated that the Lysdb has the function as an effective tool for combating S. aureus during cheese manufacture from raw milk. PMID:26621799

  3. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera

    PubMed Central

    Alsterfjord, Magnus; Nilson, Bo; Butler, Èile; Vásquez, Alejandra

    2014-01-01

    We previously discovered a symbiotic lactic acid bacterial (LAB) microbiota in the honey stomach of the honeybee Apis mellifera. The microbiota was composed of several phylotypes of Bifidobacterium and Lactobacillus. 16S rRNA gene sequence analyses and phenotypic and genetic characteristics revealed that the phylotypes isolated represent seven novel species. One grouped with Lactobacillus kunkeei and the others belong to the Lactobacillus buchneri and Lactobacillus delbrueckiisubgroups of Lactobacillus. We propose the names Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov. for these novel species, with the respective type strains being Fhon13NT ( = DSM 26257T = CCUG 63287T), Bin4NT ( = DSM 26254T = CCUG 63291T), Hon2NT ( = DSM 26255T = CCUG 63289T), Hma8NT ( = DSM 26256T = CCUG 63629T), Hma2NT ( = DSM 26263T = CCUG 63633T), Bma5NT ( = DSM 26265T = CCUG 63301T) and Biut2NT ( = DSM 26262T = CCUG 63631T). PMID:24944337

  4. Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2013-12-01

    Three Gram-stain-positive bacterial strains, 11050(T), 7-19(T) and 11102(T), were isolated from traditional pickle and sourdough in Heilongjiang Province, China. These bacteria were characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain 11050(T) belonged to the Lactobacillus plantarum species group and shared 98.0-98.4?% 16S rRNA gene sequence similarities and 84.7-88.9?% dnaK gene sequence similarities with type strains of Lactobacillus plantarum subsp. plantarum, Lactobacillus plantarum subsp. argentoratensis, Lactobacillus pentosus, Lactobacillus paraplantarum, Lactobacillus fabifermentans and Lactobacillus xiangfangensis and had 75.9-80.7?% pheS gene sequence similarities and 90.7-92.5?% rpoA gene sequence similarities with Lactobacillus plantarum subsp. plantarum LMG 6907(T), Lactobacillus plantarum subsp. argentoratensis LMG 9205, Lactobacillus pentosus LMG 10755(T), Lactobacillus paraplantarum LMG 16673(T), Lactobacillus fabifermentans LMG 24284(T) and Lactobacillus xiangfangensis 3.1.1(T), respectively. Strain 7-19(T) was phylogenetically related to Lactobacillus thailandensis, Lactobacillus pantheris and Lactobacillus sharpeae, having 94.1-96.7?% 16S rRNA gene sequence similarities, 71.5-82.3?% pheS gene sequence similarities and 71.2-83.4?% rpoA gene sequence similarities with type strains of Lactobacillus thailandensis, Lactobacillus pantheris and Lactobacillus sharpeae, respectively. Strain 11102(T) was phylogenetically related to Lactobacillus oligofermentans, Lactobacillus suebicus, Lactobacillus vaccinostercus and Lactobacillus hokkaidonensis. Strain 11102(T) had 99.2?% 16S rRNA gene sequence similarity, 81.3?% pheS gene sequence similarity and 96.1?% rpoA gene sequence similarity with Lactobacillus oligofermentans LMG 22743(T), respectively. Strain 11102(T) shared 96.0-96.8?% 16S rRNA gene sequence similarities, 73.3-81.0?% pheS gene sequence similarities and 74.6-76.9?% rpoA gene sequence similarities with type strains of Lactobacillus suebicus, Lactobacillus vaccinostercus and Lactobacillus hokkaidonensis, respectively. Based upon the data from polyphasic characterization obtained in the present study, three novel species, Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., are proposed and the type strains are 11050(T) (?=?LMG 27194(T)?=?CCUG 62991(T)), 7-19(T) (?=?LMG 27191(T)?=?NCIMB 14832(T)?=?CCUG 62990(T)) and 11102(T) (?=?LMG 27192(T)?=?NCIMB 14833(T)), respectively. PMID:23950151

  5. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa

    PubMed Central

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-01-01

    Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. Materials and Methods: A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. Results: The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Conclusions: Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections. PMID:26034539

  6. Examination of the technological properties of newly isolated strains of the genus Lactobacillus and possibilities for their application in the composition of starters

    PubMed Central

    Denkova, Rositsa; Ilieva, Svetla; Denkova, Zapryana; Georgieva, Ljubka; Krastanov, Albert

    2014-01-01

    The ability of four Lactobacillus strains – Lactobacillus brevis LBRZ7 (isolated from fermented cabbage), Lactobacillus plantarum LBRZ12 (isolated from fermented cabbage), Lactobacillus fermentum LBRH9 (of human origin) and Lactobacillus casei ssp. rhamnosus LBRC11 (isolated from home-made cheese) – to grow in flour/water environment and to accumulate high concentrations of viable cells was examined. Two starters for sourdough were created for lab-scale production of wheat bread: a two-strain starter and a four-strain starter. Wheat bread with improved properties – greater loaf volume, enhanced flavour and softer and brighter crumb – was obtained from the 7% four-strain starter sourdough. The addition of sourdough in the production of wheat bread affected positively the technological and organoleptic characteristics of the final bread by inhibiting the growth of wild yeasts and mold and Bacillus spores without the addition of preservatives. The inclusion of 15% of the four-strain starter sourdough in the bread-making process led to enhanced safety and longer shelf life of the baked bread. PMID:26019534

  7. Lactobacillus Adhesion to Mucus

    PubMed Central

    Tassell, Maxwell L. Van; Miller, Michael J.

    2011-01-01

    Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host. PMID:22254114

  8. Coexpression and Secretion of Endoglucanase and Phytase Genes in Lactobacillus reuteri

    PubMed Central

    Wang, Lei; Yang, Yuxin; Cai, Bei; Cao, Pinghua; Yang, Mingming; Chen, Yulin

    2014-01-01

    A multifunctional transgenic Lactobacillus with probiotic characteristics and an ability to degrade β-glucan and phytic acid (phytate) was engineered to improve nutrient utilization, increase production performance and decrease digestive diseases in broiler chickens. The Bacillus subtilis WL001 endoglucanase gene (celW) and Aspergillus fumigatus WL002 phytase gene (phyW) mature peptide (phyWM) were cloned into an expression vector with the lactate dehydrogenase promoter of Lactobacillus casei and the secretion signal peptide of the Lactococcus lactis usp45 gene. This construct was then transformed into Lactobacillus reuteri XC1 that had been isolated from the gastrointestinal tract of broilers. Heterologous enzyme production and feed effectiveness of this genetically modified L. reuteri strain were investigated and evaluated. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that the molecular mass of phyWM and celW was approximately 48.2 and 55 kDa, respectively, consistent with their predicted molecular weights. Endoglucanase and phytase activities in the extracellular fraction of the transformed L. reuteri culture were 0.68 and 0.42 U/mL, respectively. Transformed L. reuteri improved the feed conversion ratio of broilers from 21 to 42 days of age and over the whole feeding period. However, there was no effect on body weight gain and feed intake of chicks. Transformed L. reuteri supplementation improved levels of ash, calcium and phosphorus in tibiae at day 21 and of phosphorus at day 42. In addition, populations of Escherichia coli, Veillonella spp. and Bacteroides vulgatus were decreased, while populations of Bifidobacterium genus and Lactobacillus spp. were increased in the cecum at day 21. PMID:25050780

  9. CASEI Project (Consultation and Administration Specialists in Early Intervention) Final Report.

    ERIC Educational Resources Information Center

    Ostrosky, Michaelene M.

    This final report describes the activities and accomplishments of the Consultation and Administration Specialists in Early Intervention Project (CASEI). This federally funded project was developed to provide cross-disciplinary preservice training for early intervention (EI) specialists in Illinois. Students were recruited from a broad range of…

  10. DNA probe for lactobacillus delbrueckii

    SciTech Connect

    Delley, M.; Mollet, B.; Hottinger, H. )

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  11. Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk.

    PubMed

    Salazar, N; Prieto, A; Leal, J A; Mayo, B; Bada-Gancedo, J C; de los Reyes-Gavilán, C G; Ruas-Madiedo, P

    2009-09-01

    This work reports on the physicochemical characterization of 21 exopolysaccharides (EPS) produced by Lactobacillus and Bifidobacterium strains isolated from human intestinal microbiota, as well as the growth and metabolic activity of the EPS-producing strains in milk. The strains belong to the species Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus vaginalis, Bifidobacterium animalis, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum. The molar mass distribution of EPS fractions showed 2 peaks of different sizes, which is a feature shared with some EPS from bacteria of food origin. In general, we detected an association between the EPS size distribution and the EPS-producing species, although because of the low numbers of human bacterial EPS tested, we could not conclusively establish a correlation. The main monosaccharide components of the EPS under study were glucose, galactose, and rhamnose, which are the same as those found in food polymers; however, the rhamnose and glucose ratios was generally higher than the galactose ratio in our human bacterial EPS. All EPS-producing strains were able to grow and acidify milk; most lactobacilli produced lactic acid as the main metabolite. The lactic acid-to-acetic acid ratio in bifidobacteria was 0.7, close to the theoretical ratio, indicating that the EPS-producing strains did not produce an excessive amount of acetic acid, which could adversely affect the sensory properties of fermented milks. With respect to their viscosity-intensifying ability, L. plantarum H2 and L. rhamnosus E41 and E43R were able to increase the viscosity of stirred, fermented milks to a similar extent as the EPS-producing Streptococcus thermophilus strain used as a positive control. Therefore, these human EPS-producing bacteria could be used as adjuncts in mixed cultures for the formulation of functional foods if probiotic characteristics could be demonstrated. This is the first article reporting the physicochemical characteristics of EPS isolated from human intestinal microbiota. PMID:19700676

  12. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  13. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains.

    PubMed

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  14. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  15. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer

    PubMed Central

    Matsumoto, S; Hara, T; Nagaoka, M; Mike, A; Mitsuyama, K; Sako, T; Yamamoto, M; Kado, S; Takada, T

    2009-01-01

    Interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signals play key roles in the pathogenesis of inflammatory bowel disease (IBD). We previously described that both intact cells and a cell wall-derived polysaccharide–peptidoglycan complex (PSPG) in a strain of lactobacillus [Lactobacillus casei Shirota (LcS)] inhibited IL-6 production in lipopolysaccharide (LPS)-stimulated lamina propria mononuclear cells (LPMCs) isolated from murine IBD. Diets with LcS improve murine IBD by suppression of IL-6 synthesis in LPMCs. Moreover, LcS supplementation with fermented milk ameliorates disease activity in patients with active ulcerative colitis. Here, we focused on the specific roles of PSPG in LcS concerning their anti-inflammatory actions. PSPG derived from LcS, and no other strain of lactobacilli, inhibited IL-6 production in LPS-stimulated murine IBD LPMCs. Purified PSPG-I from LcS inhibited IL-6 synthesis in LPS-stimulated murine IBD LPMCs through the inhibition of nuclear factor-?B. The anti-IL-6 action of LcS PSPG was abrogated by masking with monoclonal anti-PSPG-I. Furthermore, PSPG-I-negative L. casei strains (PSPG-I-negative mutant LcS: LC?PSPG-I, L. casei ATCC 334) did not inhibit IL-6 production. Finally, we confirmed the effects of PSPG-I on LcS in the models of both IBD and colitis-associated cancer (CAC). In the IBD model, ingestion of LcS improved ileitis and inhibited activation of IL-6/STAT3 signaling, while ingestion of the LC?PSPG-I strain did not. In the CAC model, treatment with LcS, but not the LC?PSPG-I strain, showed tumour-suppressive effects with an inhibition of IL-6 production in the colonic mucosa. These results suggested that a specific polysaccharide component in an L. casei strain plays a crucial role in its anti-inflammatory actions in chronic intestinal inflammatory disorders. PMID:19740306

  16. Probiotics Lactobacillus rhamnosus GG, Lactobacillus acidophilus suppresses DMH-induced procarcinogenic fecal enzymes and preneoplastic aberrant crypt foci in early colon carcinogenesis in Sprague Dawley rats.

    PubMed

    Verma, Angela; Shukla, Geeta

    2013-01-01

    Diet makes an important contribution to colorectal cancer (CRC) risk implying risks for CRC are potentially reducible. Therefore, the probiotics have been suggested as the prophylactic measure in colon cancer. In this study, different probiotics were used to compare their protective potential against 1,2 dimethylhydrazine dihydrochloride (DMH)-induced chemical colon carcinogenesis in Sprague Dawley rats. Animals belonging to different probiotic groups were fed orally with 1 × 10(9) lactobacilli daily for 1 week, and then a weekly injection of DMH was given intraperitoneally for 6 wks with daily administration of probiotic. Lactobacillus GG and L.acidophilus + DMH-treated animals had maximum percent reduction in ACF counts. A significant decrease (P < 0.05) in fecal nitroreductase activity was observed in L.casei + DMH and L.plantarum + DMH-treated rats whereas ?-glucuronidase activity decreased in L.GG + DMH and L.acidophilus + DMH-treated rats. Animals treated with Bifidobacterium bifidum + DMH had significant decreased ?-glucosidase activity. However, not much difference was observed in the colon morphology of animals belonging to various probiotic + DMH-treated rats compared with DMH-treated alone. The results indicated that probiotics, L.GG, and L.acidophilus can be used as the better prophylactic agents for experimental colon carcinogenesis. PMID:23368917

  17. Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis

    PubMed Central

    Delgado, Susana; Leite, Analy M. O.; Ruas-Madiedo, Patricia; Mayo, Baltasar

    2015-01-01

    This work characterizes a set of lactobacilli strains isolated from the stomach of healthy humans that might serve as probiotic cultures. Ten different strains were recognized by rep-PCR and PFGE fingerprinting among 19 isolates from gastric biopsies and stomach juice samples. These strains belonged to five species, Lactobacillus gasseri (3), Lactobacillus reuteri (2), Lactobacillus vaginalis (2), Lactobacillus fermentum (2) and Lactobacillus casei (1). All ten strains were subjected to a series of in vitro tests to assess their functional and technological properties, including acid resistance, bile tolerance, adhesion to epithelial gastric cells, production of antimicrobial compounds, inhibition of Helicobacter pylori, antioxidative activity, antibiotic resistance, carbohydrate fermentation, glycosidic activities, and ability to grow in milk. As expected, given their origin, all strains showed good resistance to low pH (3.0), with small reductions in counts after 90 min exposition to this pH. Species- and strain-specific differences were detected in terms of the production of antimicrobials, antagonistic effects toward H. pylori, antioxidative activity and adhesion to gastric epithelial cells. None of the strains showed atypical resistance to a series of 16 antibiotics of clinical and veterinary importance. Two L. reuteri strains were deemed as the most appropriate candidates to be used as potential probiotics against microbial gastric disorders; these showed good survival under gastrointestinal conditions reproduced in vitro, along with strong anti-Helicobacter and antioxidative activities. The two L. reuteri strains further displayed appropriated technological traits for their inclusion as adjunct functional cultures in fermented dairy products. PMID:25642213

  18. Intervention of Acidophilus-casei dahi and wheat bran against molecular alteration in colon carcinogenesis.

    PubMed

    Kumar, Arvind; Singh, Nikhlesh Kumar; Sinha, Pushpalata Rabindra; Kumar, Raj

    2010-01-01

    An in vivo trial was conducted on seventy five rats allocated to three groups, first group was DMH control group, second group was Wheat bran-DMH group (WB-DMH) in which wheat bran was given along with DMH (1,2-dimethylhydrazine) injection, third group was Wheat bran-DMH-Ac Dahi group in which both wheat bran and Acidophilus-casei dahi (a probiotic microorganisms fermented dairy product) was given along with DMH injections. Animals received subcutaneous injections of DMH at a dose rate of 20 mg/kg body weight, once weekly for 15 weeks. The rats were dissected at 40th week of experiment and comet assay was done in colonic cells to assess the DNA damage. The c-myc and cox-2 expression was studied in rat tumour. A significant reduction in DNA damage (48.2%) was observed in WB-DMH-Ac Dahi group as compared to DMH control group (87.8%). The c-myc and cox-2 mRNA level was found highest in DMH control group as compared to WB-DMH and WB-DMH-Ac Dahi group. The results of present study show the enhanced protective potential of Acidophilus-casei and wheat bran against DMH induced molecular alteration in colonic cells during carcinogenesis. PMID:19642015

  19. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19.

    PubMed

    Kiran, G Seghal; Sabu, A; Selvin, Joseph

    2010-08-01

    The surfactants are emerging as potential nanoparticle stabilizing agents, however, the synthetic surfactants are not economically viable as well as they are not environmentally friendly. Therefore, the biosurfactants are emerging as a green alternate for the synthesis and stabilization of nanoparticles. In this report, a glycolipid biosurfactant was produced from sponge-associated marine Brevibacterium casei MSA19 under solid state fermentation using the agro-industrial and industrial waste as substrate. The production was optimized with factors such as oil seed cake as substrate, glucose as carbon source, beef extract as nitrogen source, FeSO(4).7H(2)O as metal, 2% NaCl, pH 7.0 and 30 degrees C. Based on the biochemical composition, TLC chromatogram, FT-IR and GC-MS analysis, the surface active compound produced by the strain MSA19 was elucidated as a glycolipid derivative. The emulsification index of the biosurfactant produced by B. casei MSA19 was invariably high over the synthetic surfactants such as SDS, Tween20 and Tween80. The purified surfactant concentration in the extract was 18 g/L. It was found that the nano-scale silver can be synthesized in reverse micelles using the glycolipid as stabilizer. The silver nanoparticles synthesized in this study were uniform and stable for 2 months. Therefore, the biosurfactant-mediated nanoparticles synthesis can be considered as "green" stabilizer of nanoparticles. PMID:20600381

  20. Genome Sequence of Lactobacillus versmoldensis KCTC 3814

    PubMed Central

    Kim, Dae-Soo; Choi, Sang-Haeng; Kim, Dong-Wook; Kim, Ryong Nam; Nam, Seong-Hyeuk; Kang, Aram; Kim, Aeri; Park, Hong-Seog

    2011-01-01

    Lactobacillus versmoldensis KCTC 3814 was isolated from raw fermented poultry salami. The species was present in high numbers and frequently dominated the lactic acid bacteria (LAB) populations of the products. Here, we announce the draft genome sequence of Lactobacillus versmoldensis KCTC 3814, isolated from poultry salami, and describe major findings from its annotation. PMID:21914893

  1. Genome Sequence of Lactobacillus suebicus KCTC 3549

    PubMed Central

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Dae-Soo; Kim, Aeri; Park, Hong-Seog

    2011-01-01

    Lactobacillus suebicus is important in the generation of particular flavors and in other ripening processes associated with apple mash. Here, we present the draft genome sequence of the type strain Lactobacillus suebicus KCTC 3549 (2,656,936 bp, with a G+C content of 39.0%), which consists of 143 large contigs (>100 bp). PMID:21914862

  2. Genome sequence of Lactobacillus suebicus KCTC 3549.

    PubMed

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Dae-Soo; Kim, Aeri; Park, Hong-Seog

    2011-10-01

    Lactobacillus suebicus is important in the generation of particular flavors and in other ripening processes associated with apple mash. Here, we present the draft genome sequence of the type strain Lactobacillus suebicus KCTC 3549 (2,656,936 bp, with a G+C content of 39.0%), which consists of 143 large contigs (>100 bp). PMID:21914862

  3. Isolation and basic characterization of a ?-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture

    PubMed Central

    Michlmayr, H.; Schümann, C.; da Silva, N.M. Barreira Braz; Kulbe, K.D.; del Hierro, A.M.

    2011-01-01

    Aims To study glycosidase activities of a Lactobacillus brevis strain and to isolate an intracellular ?-glucosidase from this strain. Methods and Results Lactic acid bacteria isolated from a commercially available starter culture preparation for MLF were tested for ?-glycosidase activities. A strain of L .brevis showing high intracellular ?-d-glucosidase, ?-d-xylosidase and ?-l-arabinosidase activities was selected for purification and characterization of its ?-glucosidase. The pure glucosidase from L. brevis has also side activites of xylosidase, arabinosidase and cellobiosidase. It is a homo-tetramer of 330 kDa and has an isoelectric point at pH 3.5.The Km for p-nitrophenyl-?-d-glucopyranoside and p-nitrophenyl-?-d-xylopyranoside is 0.22 mM and 1.14 mM, respectively. The ?-glucosidase activity was strongly inhibited by gluconic acid ?-lactone, partially by glucose and gluconate, but not by fructose. Ethanol and methanol were found to increase the activity up to two fold. The free enzyme was stable at pH 7.0 (t1/2 = 50 d) but not at pH 4.0 (t1/2 = 4 d). Conclusions The ?-glucosidase from L. brevis is widely different to that characterized from Lactobacillus casei (Coulon et al. 1998) and Lactobacillus plantarum (Sestelo et al. 2004). The high tolerance to fructose and ethanol, the low inhibitory effect of glucose on the enzyme activity and the good long-term stability could be of great interest for the release of aroma compounds during winemaking. Significance and Impact of the study Although the release of aroma compounds by LAB has been demonstrated by several authors, little information exists on the responsible enzymes. This study contains the first characterization of an intracellular ?-glucosidase isolated from a wine related strain of L. brevis. PMID:19702863

  4. Oxygen-Dependent Regulation of the Expression of the Catalase Gene katA of Lactobacillus sakei LTH677

    PubMed Central

    Hertel, Christian; Schmidt, Gudrun; Fischer, Marc; Oellers, Katja; Hammes, Walter P.

    1998-01-01

    The catalase gene katA of Lactobacillus sakei LTH677 was cloned and expressed in Escherichia coli UM2, Lactobacillus casei LK1, and Lactobacillus curvatus LTH1432. The last host is a catalase-deficient plasmid-cured derivative of a starter organism used in meat fermentation. The regulation of katA expression was found to be the same in L. sakei LTH677 and the recombinant strains. The addition of H2O2 to anaerobic cultures, as well as a switch to aerobic conditions, resulted in a strong increase in KatA activity. The expression was investigated in more detail with L. sakei LTH677 and L. curvatus LTH4002. The recombinant strain LTH4002 did not accumulate H2O2 under glucose-limited aerobic conditions and remained viable in the stationary phase. Under inductive conditions, the katA-specific mRNA and the apoenzyme were synthesized de novo. Deletion derivatives of the katA promoter were produced, and the regulatory response was investigated by fusion to the β-glucuronidase reporter gene gusA and expression in L. sakei LTH677. The fact that gene expression was subject to induction was confirmed at the level of transcription and protein synthesis. A small putative regulatory sequence of at least 25 bp was identified located upstream of the −35 site. Competition experiments performed with L. sakei LTH677 harboring the fusion constructs consisting of the katA promoter and gusA revealed that an activator protein is involved in the transcriptional induction of katA. PMID:9546173

  5. Gut Balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals

    PubMed Central

    West, Nicholas P.; Pyne, David B.; Cripps, Allan; Christophersen, Claus T.; Conlon, Michael A.; Fricker, Peter A.

    2012-01-01

    Synbiotic supplements, which contain multiple functional ingredients, may enhance the immune system more than the use of individual ingredients alone. A double blind active controlled parallel trial over a 21 day exercise training period was conducted to evaluate the effect of Gut BalanceTM, which contains Lactobacillus paracasei subsp paracasei (L. casei 431®), Bifidobacterium animalis ssp lactis (BB-12®), Lactobacillus acidophilus (LA-5®), Lactobacillus rhamnosus (LGG®), two prebiotics (raftiline and raftilose) and bovine whey derived lactoferrin and immunoglobulins with acacia gum on fecal microbiota, short chain fatty acids (SCFA), gut permeability, salivary lactoferrin and serum cytokines. All subjects randomized were included in the analysis. There was a 9-fold (1.2-fold to 64-fold; 95% confidence intervals p = 0.03) greater increase in fecal L. paracasei numbers with Gut BalanceTM compared with acacia gum supplementation. Gut BalanceTM was associated with a 50% (-12% to 72%; p = 0.02) smaller increase in the concentration of serum IL-16 in comparison to acacia gum from pre- to post-study. No substantial effects of either supplement were evident in fecal SCFA concentrations, measures of mucosal immunity or GI permeability. Clinical studies are now required to determine whether Gut BalanceTM may exert beneficial GI health effects by increasing the recovery of fecal L. paracasei. Both supplements had little effect on immunity. Twenty-two healthy physically active male subjects (mean age = 33.9 ± 6.5 y) were randomly allocated to either daily prebiotic or synbiotic supplementation for 21 day. Saliva, blood, urine and fecal samples were collected pre-, mid- and post-intervention. Participants recorded patterns of physical activity on a self-reported questionnaire. PMID:22572834

  6. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    PubMed

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture. PMID:26685674

  7. Lactobacillus: host-microbe relationships.

    PubMed

    O'Callaghan, John; O'Toole, Paul W

    2013-01-01

    Lactobacilli are a subdominant component of the human intestinal microbiota that are also found in other body sites, certain foods, and nutrient-rich niches in the free environment. They represent the types of microorganisms that mammalian immune systems have learned not to react to, which is recognized as a potential driving force in the evolution of the human immune system. Co-evolution of lactobacilli and animals provides a rational basis to postulate an association with health benefits. To further complicate a description of their host interactions, lactobacilli may rarely cause opportunistic infections in compromised subjects. In this review, we focus primarily on human-Lactobacillus interactions. We overview the microbiological complexity of this extraordinarily diverse genus, we describe where lactobacilli are found in or on humans, what responses their presence elicits, and what microbial interaction and effector molecules have been identified. The rare cases of Lactobacillus septicaemia are explained in terms of the host impairment required for such an outcome. We discuss possibilities for exploitation of lactobacilli for therapeutic delivery and mucosal vaccination. PMID:22102141

  8. Treatment of textile dyeing wastewater by biomass of Lactobacillus: Lactobacillus 12 and Lactobacillus rhamnosus.

    PubMed

    Sayilgan, Emine; Cakmakci, Ozgur

    2013-03-01

    The main purpose of this study was to investigate the effectiveness of Lactobacillus 12 and Lactobacillus rhamnosus as both cells and biomasses for the removal of dye from real textile dyeing wastewater. The removal experiments were conducted according to the Box-Behnken experimental design, and the regression equations for the removal of dye were determined by the Minitab 14 program. The optimum variables were found to be 10 g/L biomass concentration for biomasses, 3 for initial pH of the solution, and 20 °C for temperature with an observed dye removal efficiency of about 60 and 80 % with L. 12 and L. rhamnosus biomasses, respectively. Scanning electron microscopy and Fourier transform infrared spectroscopy images also showed that the biomass characteristics studied were favored by the sorption of the dye from the textile industry wastewater. Consequently, these biomasses may be considered as good biosorbents due to their effective yields and the lower cost of the removal of dyes from the effluents of the textile dyeing house. PMID:22684899

  9. Gene replacement in Lactobacillus helveticus.

    PubMed Central

    Bhowmik, T; Fernández, L; Steele, J L

    1993-01-01

    An efficient method for gene replacement in Lactobacillus helveticus CNRZ32 was developed by utilizing pSA3 as an integration vector. This plasmid is stably maintained in CNRZ32 at 37 degrees C but is unstable at 45 degrees C. This method consisted of a two-step gene-targeting technique: (i) chromosomal integration of a plasmid carrying an internal deletion in the gene of interest via homologous recombination and (ii) excision of the vector and the wild-type gene via homologous recombination, resulting in gene replacement. By using this procedure, the chromosomal X-prolyl dipeptidyl aminopeptidase gene (pepXP) of CNRZ32 was successfully inactivated. Images PMID:8104928

  10. Lactobacillus

    MedlinePLUS

    ... is also used for high cholesterol, lactose intolerance, Lyme disease, hives, and to boost the immune system. Women ... prematurely. High cholesterol. Sensitivity to milk (lactose-intolerance). Lyme disease. Hives. Fever blisters. Canker sores. Acne. Cancer. Boosting ...

  11. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T). PMID:19126714

  12. Improvement of protein production in lactic acid bacteria using 5'-untranslated leader sequence of slpA from Lactobacillus acidophilus. Improvement in protein production using UTLS.

    PubMed

    Narita, Junya; Ishida, Saori; Okano, Kenji; Kimura, Sakurako; Fukuda, Hideki; Kondo, Akihiko

    2006-11-01

    The 5'-untranslated leader sequence (UTLS) of the slpA gene from Lactobacillus acidophilus contributes to mRNA stabilization by producing a 5' stem and loop structure, and a high-level expression system for the lactic acid bacteria was developed using the UTLS in this study. A plasmid, which expresses alpha-amylase under the control of the ldh promoter, was constructed by integrating the core promoter sequence with the UTLS. The role of the UTLS in increasing the copies of the alpha-amylase mRNA was proved by measuring alpha-amylase activity in the culture supernatant and the relative expression of alpha-amylase mRNA was determined by the quantitative real-time PCR analysis. Moreover, several expression systems were constructed by combining the core promoter sequence with the UTLS or with the partially deleted UTLS and the expression level was evaluated. The use of the UTLS led to the success in improving alpha-amylase expression in the two strains of Lactobacillus casei and Lactococcus lactis. The current study showed that the improvement in protein production using the UTLS could be applied to the expression system in the lactic acid bacteria. PMID:16733730

  13. Lactobacillus helveticus: the proteolytic system.

    PubMed

    Griffiths, M W; Tellez, A M

    2013-01-01

    Lactobacillus helveticus is one of the species of lactic acid bacteria (LAB) most commonly used in the production of fermented milk beverages and some types of hard cheese. The versatile nature of this bacterium is based on its highly efficient proteolytic system consisting of cell-envelope proteinases (CEPs), transport system and intracellular peptidases. Besides use of L. helveticus in cheese processing, the production of fermented milk preparations with health promoting properties has become an important industrial application. Studies have shown that fermented dairy products are able to decrease blood pressure, stimulate the immune system, promote calcium absorption, and exert an anti-virulent effect against pathogens. These beneficial effects are produced by a variety of peptides released during the hydrolysis of milk proteins by the proteolytic system of L. helveticus, which provides the bacterium with its nutritional requirements for growth. In recent years, studies have focused on understanding the factors that affect the kinetics of milk protein hydrolysis by specific strains and have concentrated on the effect of pH, temperature, growth phase, and matrix composition on the bacterial enzymatic system. This review focuses on the role of the proteolytic system of L. helveticus in the production of bioactive compounds formed during fermentation of dairy products. Taking advantage of the powerful proteolytic system of this bacterium opens up future opportunities to search for novel food-derived compounds with potential health promoting properties. PMID:23467265

  14. Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol.

    PubMed

    Verma, Tuhina; Singh, Neha

    2013-03-01

    Chromate and pentachlorophenol are major pollutants discharged through tanneries. Three bacteria resistant to high Cr(6+) and PCP concentrations simultaneously were isolated. The TVS-3 strain was tolerant to highest 850?mg l(-1) Cr(6+) and 1000?mg l(-1) PCP concentration and concomitantly reduced 69% Cr(6+) and degraded 72% PCP within 168?h at pH 7.5, 35?±?1°C temperature, was selected and identified as Brevibacterium casei. At 168?h of growth, bacterium showed maximum PCP utilization of 720?mg l(-1) and released 900?mg l(-1) chloride ion. The bacterium exhibited remarkable ability to significantly reduce Cr(6+) and degrade PCP in presence of other metals, between 100-120?rpm aeration and over broad pH (6.5-10.0) and temperature (30-40°C) range. Maximum 78% Cr(6+) reduction and 82% PCP degradation was observed at pH 8.0, 35?±?1°C within 168?h of incubation, 120?rpm and initial concentration of 850?mg l(-1) Cr(6+) and 1000?mg l(-1) PCP. This is the first study reporting 78% Cr(6+) reduction and 82% PCP degradation simultaneously by single native bacteria under wide growth conditions utilizing PCP as sole carbon source. This bacterium may potentially be useful for simultaneous bioremediation of Cr(6+) and PCP containing wastes in the environment. PMID:22733606

  15. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain. PMID:26410554

  16. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization.

    PubMed

    Kozakova, Hana; Schwarzer, Martin; Tuckova, Ludmila; Srutkova, Dagmar; Czarnowska, Elzbieta; Rosiak, Ilona; Hudcovic, Tomas; Schabussova, Irma; Hermanova, Petra; Zakostelska, Zuzana; Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Baginska, Anna; Tlaskalova-Hogenova, Helena; Cukrowska, Bozena

    2016-03-01

    Increasing numbers of clinical trials and animal experiments have shown that probiotic bacteria are promising tools for allergy prevention. Here, we analyzed the immunomodulatory properties of three selected lactobacillus strains and the impact of their mixture on allergic sensitization to Bet v 1 using a gnotobiotic mouse model. We showed that Lactobacillus (L.) rhamnosus LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919 are recognized via Toll-like receptor 2 (TLR2) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) receptors and stimulate bone marrow-derived dendritic cells to produce cytokines in species- and strain-dependent manners. Colonization of germ-free (GF) mice with a mixture of all three strains (Lmix) improved the intestinal barrier by strengthening the apical junctional complexes of enterocytes and restoring the structures of microfilaments extending into the terminal web. Mice colonized with Lmix and sensitized to the Bet v 1 allergen showed significantly lower levels of allergen-specific IgE, IgG1 and IgG2a and an elevated total IgA level in the sera and intestinal lavages as well as an increased transforming growth factor (TGF)-? level compared with the sensitized GF mice. Splenocytes and mesenteric lymph node cells from the Lmix-colonized mice showed the significant upregulation of TGF-? after in vitro stimulation with Bet v 1. Our results show that Lmix colonization improved the gut epithelial barrier and reduced allergic sensitization to Bet v 1. Furthermore, these findings were accompanied by the increased production of circulating and secretory IgA and the regulatory cytokine TGF-?. Thus, this mixture of three lactobacillus strains shows potential for use in the prevention of increased gut permeability and the onset of allergies in humans. PMID:25942514

  17. Screening of Probiotic Activities of Forty-Seven Strains of Lactobacillus spp. by In Vitro Techniques and Evaluation of the Colonization Ability of Five Selected Strains in Humans

    PubMed Central

    Jacobsen, C. N.; Rosenfeldt Nielsen, V.; Hayford, A. E.; Møller, P. L.; Michaelsen, K. F.; Pærregaard, A.; Sandström, B.; Tvede, M.; Jakobsen, M.

    1999-01-01

    The probiotic potential of 47 selected strains of Lactobacillus spp. was investigated. The strains were examined for resistance to pH 2.5 and 0.3% oxgall, adhesion to Caco-2 cells, and antimicrobial activities against enteric pathogenic bacteria in model systems. From the results obtained in vitro, five strains, Lactobacillus rhamnosus 19070-2, L. reuteri DSM 12246, L. rhamnosus LGG, L. delbrueckii subsp. lactis CHCC 2329, and L. casei subsp. alactus CHCC 3137, were selected for in vivo studies. The daily consumption by 12 healthy volunteers of two doses of 1010 freeze-dried bacteria of the selected strains for 18 days was followed by a washout period of 17 days. Fecal samples were taken at days 0 and 18 and during the washout period at days 5 and 11. Lactobacillus isolates were initially identified by API 50CHL and internal transcribed spacer PCR, and their identities were confirmed by restriction enzyme analysis in combination with pulsed-field gel electrophoresis. Among the tested strains, L. rhamnosus 19070-2, L. reuteri DSM 12246, and L. rhamnosus LGG were identified most frequently in fecal samples; they were found in 10, 8, and 7 of the 12 samples tested during the intervention period, respectively, whereas reisolations were less frequent in the washout period. The bacteria were reisolated in concentrations from 105 to 108 cells/g of feces. Survival and reisolation of the bacteria in vivo appeared to be linked to pH tolerance, adhesion, and antimicrobial properties in vitro. PMID:10543808

  18. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization

    PubMed Central

    Kozakova, Hana; Schwarzer, Martin; Tuckova, Ludmila; Srutkova, Dagmar; Czarnowska, Elzbieta; Rosiak, Ilona; Hudcovic, Tomas; Schabussova, Irma; Hermanova, Petra; Zakostelska, Zuzana; Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Baginska, Anna; Tlaskalova-Hogenova, Helena; Cukrowska, Bozena

    2016-01-01

    Increasing numbers of clinical trials and animal experiments have shown that probiotic bacteria are promising tools for allergy prevention. Here, we analyzed the immunomodulatory properties of three selected lactobacillus strains and the impact of their mixture on allergic sensitization to Bet v 1 using a gnotobiotic mouse model. We showed that Lactobacillus (L.) rhamnosus LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919 are recognized via Toll-like receptor 2 (TLR2) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) receptors and stimulate bone marrow-derived dendritic cells to produce cytokines in species- and strain-dependent manners. Colonization of germ-free (GF) mice with a mixture of all three strains (Lmix) improved the intestinal barrier by strengthening the apical junctional complexes of enterocytes and restoring the structures of microfilaments extending into the terminal web. Mice colonized with Lmix and sensitized to the Bet v 1 allergen showed significantly lower levels of allergen-specific IgE, IgG1 and IgG2a and an elevated total IgA level in the sera and intestinal lavages as well as an increased transforming growth factor (TGF)-β level compared with the sensitized GF mice. Splenocytes and mesenteric lymph node cells from the Lmix-colonized mice showed the significant upregulation of TGF-β after in vitro stimulation with Bet v 1. Our results show that Lmix colonization improved the gut epithelial barrier and reduced allergic sensitization to Bet v 1. Furthermore, these findings were accompanied by the increased production of circulating and secretory IgA and the regulatory cytokine TGF-β. Thus, this mixture of three lactobacillus strains shows potential for use in the prevention of increased gut permeability and the onset of allergies in humans. PMID:25942514

  19. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice

    PubMed Central

    2011-01-01

    Background Diarrheal infections caused by Salmonella, are one of the major causes of childhood morbidity and mortality in developing countries. Salmonella causes various diseases that range from mild gastroenteritis to enteric fever, depending on the serovar involved, infective dose, species, age and immune status of the host. Probiotics are proposed as an attractive alternative possibility in the prevention against this pathogen infection. Previously we demonstrated that continuous Lactobacillus casei CRL 431 administration to BALB/c mice before and after challenge with Salmonella enterica serovar Typhimurium (S. Typhimurium) decreased the severity of Salmonella infection. The aim of the present work was to deep into the knowledge about how this probiotic bacterium exerts its effect, by assessing its impact on the expression and secretion of pro-inflammatory (TNFα, IFNγ) and anti-inflammatory (IL-10) cytokines in the inductor and effector sites of the gut immune response, and analyzing toll-like receptor (TLR2, TLR4, TLR5 and TLR9) expressions in both healthy and infected mice. Results Probiotic administration to healthy mice increased the expression of TLR2, TLR4 and TLR9 and improved the production and secretion of TNFα, IFNγ and IL-10 in the inductor sites of the gut immune response (Peyer's patches). Post infection, the continuous probiotic administration, before and after Salmonella challenge, protected the host by modulating the inflammatory response, mainly in the immune effector site of the gut, decreasing TNFα and increasing IFNγ, IL-6 and IL-10 production in the lamina propria of the small intestine. Conclusions The oral administration of L. casei CRL 431 induces variations in the cytokine profile and in the TLRs expression previous and also after the challenge with S. Typhimurium. These changes show some of the immune mechanisms implicated in the protective effect of this probiotic strain against S. Typhimurium, providing an alternative way to reduce the severity of the infection. PMID:21813005

  20. CD4 detected from Lactobacillus helps understand the interaction between Lactobacillus and HIV.

    PubMed

    Su, Yan; Zhang, Baojiang; Su, Lingling

    2013-06-12

    Human immunodeficiency virus (HIV) preferentially infects and destroys CD4+ cells and leads to a gradual decline in the number of CD4 cells. Despite evidence that probiotics increase CD4+ T lymphocytes in patients with HIV/acquired immunodeficiency syndrome (AIDS) and lower the risk of HIV transmission, little is known about the detailed mechanism underlying these effects. In this study, we investigated the cell surface protein of Lactobacillus and its role in blocking HIV-1 transmission by lactobacilli. Using reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and flow cytometry (fluorescence-activated cell sorting, FACS), we detected the CD4 receptor on the surface of Lactobacillus. Monoclonal antibody (mAb) for the CD4 receptor could partially inhibit HIV-1 binding to Lactobacillus. In addition, Lactobacillus could decrease HIV-1 pseudovirus infection of TZM-bl cells in vitro by 60-70%. Our data suggest that Lactobacillus can use this receptor to bind HIV and block HIV infection. This may in turn increase the CD4 T lymphocyte count in patients with HIV. These data provide direct evidence that Lactobacillus expresses the CD4 receptor and utilizes it to block HIV transmission. PMID:23318049

  1. Genome sequence of Lactobacillus crispatus ST1.

    PubMed

    Ojala, Teija; Kuparinen, Veera; Koskinen, J Patrik; Alatalo, Edward; Holm, Liisa; Auvinen, Petri; Edelman, Sanna; Westerlund-Wikström, Benita; Korhonen, Timo K; Paulin, Lars; Kankainen, Matti

    2010-07-01

    Lactobacillus crispatus is a common member of the beneficial microbiota present in the vertebrate gastrointestinal and human genitourinary tracts. Here, we report the genome sequence of L. crispatus ST1, a chicken isolate displaying strong adherence to vaginal epithelial cells. PMID:20435723

  2. Draft Genome Sequence of Lactobacillus plantarum 2025.

    PubMed

    Karlyshev, Andrey V; Khlebnikov, Valentin C; Kosarev, Igor V; Abramov, Vyacheslav M

    2016-01-01

    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain. PMID:26744375

  3. Draft Genome Sequence of Lactobacillus plantarum 2025

    PubMed Central

    Khlebnikov, Valentin C.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2016-01-01

    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain. PMID:26744375

  4. Vibrio casei sp. nov., isolated from the surfaces of two French red smear soft cheeses.

    PubMed

    Bleicher, Anne; Neuhaus, Klaus; Scherer, Siegfried

    2010-08-01

    Three Gram-negative, rod-shaped, catalase- and oxidase-positive, facultatively anaerobic and motile bacteria, strains WS 4538, WS 4539T and WS 4540, were isolated from the surfaces of two fully ripened French red smear soft cheeses. Based on 16S rRNA gene sequence similarity, all three strains were shown to belong to the genus Vibrio. They are most closely related to Vibrio rumoiensis S-1T (96.3% similarity) and Vibrio litoralis MANO22DT (95.9%). DNA-DNA hybridization confirmed that all three isolates belong to the same species and clearly separated strain WS 4539T from V. rumoiensis DSM 19141T (38-42% relatedness) and V. litoralis DSM 17657(T) (28-37%). In contrast to their nearest relatives, the strains exhibited beta-galactosidase and aesculin hydrolase activities. A 14 bp insertion in the 16S rRNA gene sequence forms an elongated structure at helix 10 in the rRNA molecule and provides a tool for PCR-based identification of the novel species. Partial sequences of the housekeeping genes atpA, recA, rpoA and pyrH supported the conclusion that the three isolates constitute a separate species within the genus Vibrio. The name Vibrio casei sp. nov. is proposed for the novel taxon. Strain WS 4539T (=DSM 22364T =LMG 25240T; DNA G+C content 41.8 mol%) is the type strain and WS 4540 (=DSM 22378 =LMG 25241) is a reference strain. PMID:19749036

  5. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, Stephen K. (Golden, CO); Zhang, Min (Lakewood, CO); Franden, Mary Ann (Littleton, CO); Mc Millan, James D. (Boulder, CO); Finkelstein, Mark (Fort Collins, CO)

    1998-01-01

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid.

  6. Biofilm formation by vaginal Lactobacillus in vivo.

    PubMed

    Ventolini, G; Mitchell, E; Salazar, M

    2015-05-01

    Biofilm formation by nonpathogenic bacteria is responsible for their stable maintenance in vivo ecosystems as it promotes long-term permanence on the host's vaginal mucosa. Biofilm formation by Lactobacilli has been reported in vitro but not in vivo. We hypothesize the presence of biofilm formation in vivo could be also documented by microscope photographs (MP) of wet mounts obtained from uninfected vaginal samples satisfying rigorous scientific identification criteria. We analyzed 400 MP from our database, and we were able to determine that 12 MP from 6 different patients contained clues of the formation of biofilm by Lactobacilli. The most probable lactobacillus involved is presumed to be Lactobacillus jensenii. The documentation of biofilm formation by vaginal Lactobacilli at fresh wet mount preparation is significant and has several important clinical preventive and therapeutic implications. PMID:25725906

  7. Effect of milk fermented with a Lactobacillus helveticus R389(+) proteolytic strain on the immune system and on the growth of 4T1 breast cancer cells in mice.

    PubMed

    Rachid, Mirta; Matar, Chantal; Duarte, Jairo; Perdigon, Gabriela

    2006-07-01

    Previous studies on a murine model have demonstrated that the administration of Lactobacillus helveticus and Lactobacillus casei inhibits the development of fibrosarcoma and colon carcinoma, respectively. The aim of this work was to study the beneficial effects of the consumption of milk fermented by L. helveticus on a murine model for mammary carcinoma. Female BALB/c mice were challenged by a single subcutaneous injection of tumoral cells (American Type Culture Collection 4T1) in the left mammary gland. Prior to tumour injection, mice were fed for two, five or seven consecutive days with fermented milk. The following factors were monitored for 2 months: rate of tumour development, histological studies, apoptosis, phagocytic index, peritoneal macrophages, determination of beta-glucuronidase enzyme in peritoneal macrophages, determination of gamma-interferon (INFgamma) and tumour necrosis factor-alpha (TNF-alpha) in blood serum, determination of CD4+, CD8+, interleukin-6 (IL-6), IL-10, TNF-alpha and INFgamma by immunoperoxidase, and measurement of beta-glucuronidase activity in intestinal fluid. The administration of L. helveticus delayed the development of the tumour in all cases, a 2- or 7-day feeding period being most effective. This work demonstrates that milk fermented with L. helveticus decreases the growth rate of mammary tumours. The effect was mediated by increased apoptosis and decreased production of pro-inflammatory cytokines, in particular IL-6, implicated in oestrogen synthesis. PMID:16831211

  8. The S-layer protein of Lactobacillus acidophilus ATCC 4356: identification and characterisation of domains responsible for S-protein assembly and cell wall binding.

    PubMed

    Smit, E; Oling, F; Demel, R; Martinez, B; Pouwels, P H

    2001-01-12

    Lactobacillus acidophilus, like many other bacteria, harbors a surface layer consisting of a protein (S(A)-protein) of 43 kDa. S(A)-protein could be readily extracted and crystallized in vitro into large crystalline patches on lipid monolayers with a net negative charge but not on lipids with a net neutral charge. Reconstruction of the S-layer from crystals grown on dioleoylphosphatidylserine indicated an oblique lattice with unit cell dimensions (a=118 A; b=53 A, and gamma=102 degrees ) resembling those determined for the S-layer of Lactobacillus helveticus ATCC 12046. Sequence comparison of S(A)-protein with S-proteins from L. helveticus, Lactobacillus crispatus and the S-proteins encoded by the silent S-protein genes from L. acidophilus and L. crispatus suggested the presence of two domains, one comprising the N-terminal two-thirds (SAN), and another made up of the C-terminal one-third (SAC) of S(A)-protein. The sequence of the N-terminal domains is variable, while that of the C-terminal domain is highly conserved in the S-proteins of these organisms and contains a tandem repeat. Proteolytic digestion of S(A)-protein showed that SAN was protease-resistant, suggesting a compact structure. SAC was rapidly degraded by proteases and therefore probably has a more accessible structure. DNA sequences encoding SAN or Green Fluorescent Protein fused to SAC (GFP-SAC) were efficiently expressed in Escherichia coli. Purified SAN could crystallize into mono and multi-layered crystals with the same lattice parameters as those found for authentic S(A)-protein. A calculated S(A)-protein minus SAN density-difference map revealed the probable location, in projection, of the SAC domain, which is missing from the truncated SAN peptide. The GFP-SAC fusion product was shown to bind to the surface of L. acidophilus, L. helveticus and L. crispatus cells from which the S-layer had been removed, but not to non-stripped cells or to Lactobacillus casei. PMID:11124903

  9. Genome Sequence of Lactobacillus cypricasei KCTC 13900 ▿

    PubMed Central

    Kim, Dae-Soo; Choi, Sang-Haeng; Kim, Dong-Wook; Kim, Ryong Nam; Nam, Seong-Hyeuk; Kang, Aram; Kim, Aeri; Park, Hong-Seog

    2011-01-01

    Lactobacillus cypricasei KCTC 13900 is important in the generation of particular flavors and in other ripening processes associated with specific cheeses. Here, we announce the draft genome sequence of Lactobacillus cypricasei KCTC 13900, isolated from cheeses, and describe major findings from its annotation. PMID:21742864

  10. Draft Genome Sequence of the Lactobacillus mucosae Strain Marseille

    PubMed Central

    Drissi, Fatima; Merhej, Vicky; Blanc-Tailleur, Caroline

    2015-01-01

    Lactobacillus mucosae strain Marseille, isolated from stool samples of a child suffering from a malnutrition disorder called Kwashiorkor, produces bacteriocin and seems to have specific carbohydrate and lipid metabolisms different from those of other Lactobacillus organisms. The draft genome sequence of this strain is presented here. PMID:26227603

  11. Bacteriocin PJ4 active against enteric pathogen produced by Lactobacillus helveticus PJ4 isolated from gut microflora of wistar rat (Rattus norvegicus): partial purification and characterization of bacteriocin.

    PubMed

    Jena, Prasant Kumar; Trivedi, Disha; Chaudhary, Harshita; Sahoo, Tapasa Kumar; Seshadri, Sriram

    2013-04-01

    The increase of multidrug-resistant pathogens and the restriction on the use antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are small antimicrobial peptides produced by numerous bacteria. Much interest has been focused on bacteriocins because they exhibit inhibitory activity against pathogens. Lactic acid bacteria possess the ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this study, an antibacterial substance (bacteriocin PJ4) produced by Lactobacillus helveticus PJ4, isolated from rat gut microflora, was identified as bacteriocin. It was effective against wide assay of both Gram-positive and Gram-negative bacteria involved in various diseases, including Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus. The antimicrobial peptide was relatively heat-resistant and also active over a wide pH range of 2-10. It has been partially purified to homogeneity using ammonium sulfate precipitation and size exclusion chromatography and checked on reverse-phase high-performance liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of bacteriocin PJ4 purified through size exclusion chromatography resolved ~6.5 kDa protein with bacteriocin activity. The peptide is inactivated by proteolytic enzymes, trypsin, and lipase but not when treated with catalase, α-amylase, and pepsin. It showed a bactericidal mode of action against the indicator strains E. coli MTCC443, Lactobacillus casei MTCC1423, and E. faecalis DT48. Such characteristics indicate that this bacteriocin may be a potential candidate for alternative agents to control important pathogens. PMID:23371780

  12. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface

    PubMed Central

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günayd?n, Gökçe; Lin, Yin; Martín, M. Cruz; Álvarez, Miguel A.; Hammarström, Lennart

    2015-01-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23. PMID:26092449

  13. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs)

    PubMed Central

    Naderi, Atiyeh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Imani Fooladi, Abbas Ali; Abdollahpour Alitappeh, Meghdad; Saffarian, Parvaneh

    2014-01-01

    Objective(s): Urinary tract infection (UTI) caused by bacteria is one of the most frequent infections in human population. Inappropriate use of antibiotics, often leads to appearance of drug resistance in bacteria. However, use of probiotic bacteria has been suggested as a partial replacement. This study was aimed to assess the antagonistic effects of Lactobacillus standard strains against bacteria isolated from UTI infections. Materials and Methods: Among 600 samples; those with ?10,000 cfu/ml were selected as UTI positive samples. Enterococcus sp., Klebsiella pneumoniae, Enterobacter sp., and Escherichia coli were found the most prevalent UTI causative agents. All isolates were screened for multi drug resistance and subjected to the antimicrobial effects of three Lactobacillus strains by using microplate technique and the MICs amounts were determined. In order to verify the origin of antibiotic resistance of isolates, plasmid curing using ethidium bromide and acridine orange was carried out. Results: No antagonistic activity in Lactobacilli suspension was detected against test on Enterococcus and Enterobacter strains and K. pneumoniae, which were resistant to most antibiotics. However, an inhibitory effect was observed for E. coli which were resistant to 8-9 antibiotics. In addition, L. casei was determined to be the most effective probiotic. Results from replica plating suggested one of the plasmids could be related to the gene responsible for ampicillin resistance. Conclusion: Treatment of E. coli with probiotic suspension was not effective on inhibition of the plasmid carrying hypothetical ampicillin resistant gene. Moreover, the plasmid profiles obtained from probiotic-treated isolates were identical to untreated isolates. PMID:24847423

  14. Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS.

    PubMed

    Cai, Ruopeng; Jiang, Yanlong; Yang, Wei; Yang, Wentao; Shi, Shaohua; Shi, Chunwei; Hu, Jingtao; Gu, Wei; Ye, Liping; Zhou, Fangyu; Gong, Qinglong; Han, Wenyu; Yang, Guilian; Wang, Chunfeng

    2016-02-28

    Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surfacedisplayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1β, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA. PMID:26608167

  15. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface.

    PubMed

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günaydın, Gökçe; Lin, Yin; Martín, M Cruz; Álvarez, Miguel A; Hammarström, Lennart; Marcotte, Harold

    2015-09-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23. PMID:26092449

  16. Dominance of Lactobacillus acidophilus in the Facultative Jejunal Lactobacillus Microbiota of Fistulated Beagles

    PubMed Central

    Tang, Yurui; Manninen, Titta J. K.

    2012-01-01

    Lactobacilli were isolated from jejunal chyme from five fistulated beagles. Cultivable lactobacilli varied from 104 to 108 CFU/ml. Seventy-four isolates were identified by partial 16S rRNA gene sequencing and differentiated by repetitive element PCR (Rep-PCR), Lactobacillus acidophilus was dominant, and nearly 80% of 54 isolates shared the same DNA fingerprint pattern. PMID:22843523

  17. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1

    PubMed Central

    Leonard, Michael T.; Valladares, Ricardo B.; Ardissone, Alexandria; Gonzalez, Claudio F.; Lorca, Graciela L.

    2014-01-01

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model. PMID:24812223

  18. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1.

    PubMed

    Leonard, Michael T; Valladares, Ricardo B; Ardissone, Alexandria; Gonzalez, Claudio F; Lorca, Graciela L; Triplett, Eric W

    2014-01-01

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model. PMID:24812223

  19. Anticandidal activity of cell extracts from 13 probiotic Lactobacillus strains and characterisation of lactic acid and a novel fatty acid derivative from one strain.

    PubMed

    Nyanzi, Richard; Awouafack, Maurice D; Steenkamp, Paul; Jooste, Piet J; Eloff, Jacobus N

    2014-12-01

    This study investigated the anti-Candida activity of methanol extracts from freeze-dried probiotic cells and the isolation of some constituents in the extracts. The MIC values of the probiotic methanol cell extracts against Candida albicans ranged between 1.25 and 5mg/ml after 48 h of incubation. However, Lactococcus latics subsp. lactis strain X and Lactobacillus casei strain B extracts had an MIC of 10mg/ml after 48 h of incubation. The extracts had fungistatic rather than fungicidal activity. These extracts had a much higher antifungal activity than antifungal compounds isolated from the growth medium by many other authors. This indicates that probiotics may also release antifungal compounds in their cells that could contribute to a therapeutic effect. Lactic acid (1) and 6-O-(?-D-glucopyranosyl)-1,6-di-O-pentadecanoyl-?-D-glucopyranose a novel fatty acid derivative (2) were isolated from methanol probiotic extracts and the structure of these compounds were elucidated using NMR (1 and 2D) and mass spectrometry (MS). PMID:24996359

  20. Eruca sativa Might Influence the Growth, Survival under Simulated Gastrointestinal Conditions and Some Biological Features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus Strains

    PubMed Central

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-01-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power. PMID:25275269

  1. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; ?li?ewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 ?M/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 ?M methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 ?M hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. PMID:26404012

  2. Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures

    PubMed Central

    Georgieva, Ralitsa; Yocheva, Lyubomira; Tserovska, Lilia; Zhelezova, Galina; Stefanova, Nina; Atanasova, Akseniya; Danguleva, Antonia; Ivanova, Gergana; Karapetkov, Nikolay; Rumyan, Nevenka; Karaivanova, Elena

    2015-01-01

    Antimicrobial activity and antibiotic susceptibility were tested for 23 Lactobacillus and three Bifidobacterium strains isolated from different ecological niches. Agar-well diffusion method was used to test the antagonistic effect (against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Candida albicans) of acid and neutralized (pH 5.5) lyophilized concentrated supernatants (cell-free supernatant; CFS) and whey (cell-free whey fractions; CFW) from de Man–Rogosa–Sharpe/trypticase-phytone-yeast broth and skim milk. Acid CFS and CFW showed high acidification rate-dependent bacterial inhibition; five strains were active against C. albicans. Neutralized CFS/CFW assays showed six strains active against S. aureus (L. acidophilus L-1, L. brevis 1, L. fermentum 1, B. animalis subsp. lactis L-3), E. coli (L. bulgaricus 6) or B. cereus (L. plantarum 24-4В). Inhibition of two pathogens with neutralized CFS (L. bulgaricus 6, L. helveticus 3, L. plantarum 24-2L, L. fermentum 1)/CFW (L. plantarum 24-5D, L. plantarum 24-4В) was detected. Some strains maintained activity after pH neutralization, indicating presence of active substances. The antibiotics minimum inhibitory concentrations (MICs) were determined by the Epsilometer test method. All strains were susceptible to ampicillin, gentamicin, erythromycin and tetracycline. Four lactobacilli were resistant to one antibiotic (L. rhamnosus Lio 1 to streptomycin) or two antibiotics (L. acidophilus L-1 and L. brevis 1 to kanamycin and clindamycin; L. casei L-4 to clindamycin and chloramphenicol). Vancomycin MICs > 256 μg/mL indicated intrinsic resistance for all heterofermentative lactobacilli. The antimicrobially active strains do not cause concerns about antibiotic resistance transfer and could be used as natural biopreservatives in food and therapeutic formulations. PMID:26019620

  3. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Santillan, Eugenio Felipe; Shanahan, Timothy; Omelon, Christopher; Major, Jonathan; Bennett, Philip

    2015-07-01

    When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analogue, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 to 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 hours. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° to 45°C andconsumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 MPa to 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.

  4. Lactobacillus mixtipabuli sp. nov. isolated from total mixed ration silage.

    PubMed

    Tohno, Masanori; Kitahara, Maki; Irisawa, Tomohiro; Ohmori, Hideyuki; Masuda, Takaharu; Ohkuma, Moriya; Tajima, Kiyoshi

    2015-06-01

    Using a polyphasic taxonomic approach, we investigated three bacterial strains - IWT30T, IWT8 and IWT75 - isolated from total mixed ration silage prepared in Hachimantai, Iwate, Japan. The isolates comprised Gram-stain positive, non-motile, non-spore-forming, catalase-negative, rod-shaped bacteria. Good growth occurred at 15-45 °C and at pH 4.0-7.5. Their major cellular fatty acids were C18:1ω9c and C19:1 cyclo 9,10.The G+C content of genomic DNA of strain IWT30T was 44.6 mol%. Comparative 16S rRNA gene sequence analysis showed that these novel strains belonged to the genus Lactobacillus. These strains shared 100 % 16S rRNA gene sequence similarity and were most closely related to the type strains of Lactobacillus silagei, Lactobacillus odoratitofui, Lactobacillus similis, Lactobacillus collinoides, Lactobacillus paracollinoides and Lactobacillus kimchicus, with sequence similarity values of 99.5, 98.8, 98.7, 97.8, 97.8 and 96.8 %, respectively. The level of DNA-DNA relatedness between these strains and their closest phylogenetic neighbours was less than 30 %. On the basis of additional phylogenetic analysis of pheS and rpoA gene sequences and phenotypic and chemotaxonomic characteristics, we conclude that these three strains represent a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus mixtipabuli sp. nov. The type strain is IWT30T ( = JCM 19805T = DSM 28580T). PMID:25807979

  5. Transmission of Lactobacillus jensenii and Lactobacillus acidophilus from mother to child at time of delivery.

    PubMed Central

    Carlsson, J; Gothefors, L

    1975-01-01

    The presence of Lactobacillus jensenii and Lactobacillus acidophilus has been studied in specimens from the rectum and vagina of the mother, from the mouth of the infant at the time of delivery, and from the mouth and rectum of infants six days of age. L. jensenii could be differentiated from other species of lactobacilli by the following combination of characteristics: production of only D-lactate, hydrolysis of arginine, and fermentation of cellobiose, galactose, and ribose, but not of lactose. L. jensenii and L. acidophilus were common inhabitants of the vagina. In spite of a contamination of the infant's mouth by L. jensenii and L. acidophilus during delivery, neither of these organisms became established in the mouth of the newborn infants. PMID:809467

  6. Viricidal Effects of Lactobacillus and Yeast Fermentation

    PubMed Central

    Gilbert, Jeannine P.; Wooley, Richard E.; Shotts, Emmett B.; Dickens, J. Andra

    1983-01-01

    The survival of selected viruses in Lactobacillus- and yeast-fermented edible waste material was studied to determine the feasibility of using this material as a livestock feed ingredient. Five viruses, including Newcastle disease virus, infectious canine hepatitis virus, a porcine picornavirus, frog virus 3, and bovine virus diarrhea, were inoculated into a mixture of ground food waste (collected from a school lunch program) containing Lactobacillus acidophilus. Mixtures were incubated at 20, 30, and 40°C for 216 h. In a second trial, four viruses, including Newcastle disease virus, infectious canine hepatitis virus, frog virus 3, and a porcine picornavirus, were inoculated into similar edible waste material containing Saccharomyces cerevisiae. Mixtures were incubated at 20 and 30°C for 216 h. Samples were obtained daily for quantitative (trial 1) and qualitative (trial 2) virus isolation. Temperature, pH, and redox potential were monitored. Controlled pH and temperature studies were also done and compared with the inactivation rates in the fermentation processes. In trial 1 (Lactobacillus fermentation), infectious canine hepatitis virus survived the entire test period in the fermentation process but was inactivated below pH 4.5 in the controlled studies. Newcastle disease virus was inactivated by day 8 in the fermentation process and appeared to be primarily heat sensitive and secondarily pH sensitive in the controlled studies. The porcine picornavirus survived the fermentation process for 8 days at 20°C but was inactivated more rapidly at 30 and 40°C. The controlled studies verified these findings. Frog virus 3 was inactivated by day 3 in the fermentation process and appeared to be sensitive to low pH in the controlled studies. Bovine virus diarrhea was rapidly inactivated in the fermentation process (less than 2 h) and was pH and temperature sensitive. In trial 2 (yeast fermentation), infectious hepatitis virus survived the entire test period in the fermentation process. Newcastle disease virus was inactivated by day 7 at 20°C and day 6 at 30°C. The porcine picornavirus was inactivated by day 7 at 30°C but survived the entire test period at 20°C. Frog virus 3 was inactivated by day 3 at 20°C and day 2 at 30°C. PMID:6414372

  7. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  8. Effects of feeding lactobacillus GG on lethal irradiation in mice

    SciTech Connect

    Dong, M.Y.; Chang, T.W.; Gorbach, S.L.

    1987-05-01

    Mice exposed to 1400 rads of total body irradiation experienced 80%-100% mortality in 2 wk. Bacteremia was demonstrated in all dead animals. Feeding Lactobacillus GG strain reduced Pseudomonas bacteremia and prolonged survival time in animals colonized with this organism. In animals not colonized with Pseudomonas, feeding Lactobacillus GG also produced some reduction in early deaths, and there was less Gram-negative bacteremia in these animals compared with controls.

  9. Lactobacillus insicii sp. nov., isolated from fermented raw meat.

    PubMed

    Ehrmann, Matthias A; Kröckel, Lothar; Lick, Sonja; Radmann, Pia; Bantleon, Annegret; Vogel, Rudi F

    2016-01-01

    The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8?% 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4?%), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3?%), Lactobacillus versmoldensis DSM 14857T (96.9?%) and Lactobacillus furfuricola JCM 18764T (97.2?%). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70?% and the DNA G+C content was 36.3?mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T (?=?CECT 8802T?=?DSM 29801T). PMID:26486967

  10. The peptide hydrolase system of Lactobacillus reuteri.

    PubMed

    Rollan, G; Font de Valdez, G F

    2001-11-01

    Peptide hydrolase system of Lactobacillus reuteri CRL 1098, a lactic acid bacteria of sourdough origin, was investigated. This microorganism has a broad range of peptidases consisting of an active aminopeptidase, X-Prolyl-dipeptidylaminopeptidase, dipeptidase and tripeptidase. Aminopeptidase, iminopeptidase and endopeptidase are most likely located in the cytoplasmic fraction showing no detectable association with the cell membrane, while dipeptidase and tripeptidase are mainly associated with the latter fraction. The peptidases are metalloenzymes activated by Co2+ and inhibited by Cu2+, Hg2+, Cd2+ and by metal-complexing reagents. The aminopeptidase activity inhibited by EDTA can be restored by Mn2+ while that of di- and tripeptidase treated with 1,10-phenantroline can be restored by Zn2+ and Co2+, respectively. PMID:11764195

  11. Bile resistance mechanisms in Lactobacillus and Bifidobacterium

    PubMed Central

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  12. Lactobacillus curieae sp. nov., isolated from stinky tofu brine.

    PubMed

    Lei, Xiao; Sun, Guipeng; Xie, Jingli; Wei, Dongzhi

    2013-07-01

    A lactic acid bacterium, strain CCTCC M 2011381(T), isolated from the brine of the traditional Chinese snack, stinky tofu, was studied to determine its taxonomic position. It was a Gram-stain-positive, non-motile, facultatively anaerobic rod-shaped bacterium that did not exhibit catalase activity. The DNA G+C content of the strain was 44.1 % and its peptidoglycan was characterized by the presence of meso-diaminopimelic acid. Levels of 16S rRNA gene sequence similarity between strain CCTCC M 2011381(T) and the most closely related species Lactobacillus senioris JCM 17472(T), Lactobacillus parafarraginis JCM 14109(T) and Lactobacillus diolivorans JCM 12183(T) were 96.5, 96.4 and 96.4 %, respectively. Combined with data from high-resolution genomic markers recA, rpoA and pheS, strain CCTCC M 2011381(T) was classified as representing a novel species. The strain could also be distinguished from other related species of the genus Lactobacillus by its physiological and biochemical characteristics. Based on the phylogenetic, physiological and biochemical data, it is proposed that the new isolate can be classified as representing a novel species of the genus Lactobacillus, for which the name Lactobacillus curieae sp. nov. (type strain CCTCC M 2011381(T) = S1L19(T) = JCM 18524(T)) is proposed. PMID:23223818

  13. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    PubMed Central

    Jones, Mitchell L.; Shah, Divya; Jain, Poonam; Saha, Shyamali; Prakash, Satya

    2014-01-01

    Excess cholesterol is associated with cardiovascular diseases (CVD), an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18 ± 0.55?mg/1010?cfu) in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70 ± 63.33?mg/1010?cfu) of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic. PMID:25295259

  14. Effect of Lactobacillus species on Streptococcus mutans biofilm formation.

    PubMed

    Ahmed, Ayaz; Dachang, Wu; Lei, Zhou; Jianjun, Liu; Juanjuan, Qiu; Yi, Xin

    2014-09-01

    Streptococcus mutans is the primary pathogen responsible for initiating dental caries and decay. The presence of sucrose, stimulates S. mutans to produce insoluble glucans to form oral biofilm also known as dental plaque to initiate caries lesion. The GtfB and LuxS genes of S. mutans are responsible for formation and maturation of biofilm. Lactobacillus species as probiotic can reduces the count of S. mutans. In this study effect of different Lactobacillus species against the formation of S. mutans biofilm was observed. Growing biofilm in the presence of sucrose was detected using 96 well microtiter plate crystal violet assay and biofilm formation by S. mutans in the presence of Lactobacillus was detected. Gene expression of biofilm forming genes (GtfB and LuxS) was quantified through Real-time PCR. All strains of Lactobacillus potently reduced the formation of S. mutans biofilm whereas Lactobacillus acidophilus reduced the genetic expression by 60-80%. Therefore, probiotic Lactobacillus species can be used as an alternative instead of antibiotics to decrease the chance of dental caries by reducing the count of S. mutans and their gene expression to maintain good oral health. PMID:25176247

  15. Whole-Genome Sequencing of Lactobacillus shenzhenensis Strain LY-73T

    PubMed Central

    Lin, Zhe; Liu, Zhaoshan; Yang, Rentao; Zou, Yuanqiang; Wan, Daiwei; Chen, Jing; Guo, Min; Zhao, Jiao; Fang, Chengxiang

    2013-01-01

    Lactobacillus shenzhenensis strain LY-73T is a novel species which was first isolated from fermented goods. Here, we report the draft genome sequence of Lactobacillus shenzhenensis LY-73T. PMID:24265500

  16. Lactobacillus rossii sp. nov., isolated from wheat sourdough.

    PubMed

    Corsetti, Aldo; Settanni, Luca; van Sinderen, Douwe; Felis, Giovanna E; Dellaglio, Franco; Gobbetti, Marco

    2005-01-01

    Screening of sourdough lactic acid bacteria for bacteriocin production resulted in the isolation of a Gram-positive, catalase-negative, non-spore-forming, non-motile rod bacterium (strain CS1T) that could not be associated with any previously described species. Comparative 16S rRNA gene sequence analysis recognized strain CS1T as a distinct member of the genus Lactobacillus. By a species-specific PCR strategy, five additional strains previously isolated from sourdoughs were found to belong to the same species as strain CS1T, as confirmed by 16S rRNA gene sequence analysis. The closest related species were Lactobacillus durianis, Lactobacillus malefermentans and Lactobacillus suebicus, with which strain CS1T shared 93 % sequence similarity. For a further characterization of strain CS1T, physiological (growth temperature, CO2 production, hydrolysis of arginine, isomeric type of lactate, sugar fermentation) and chemotaxonomic (G+C content and peptidoglycan structure) properties were determined. Phenotypic characterization showed that strain CS1T was a member of the obligately heterofermentative group of the genus Lactobacillus. The DNA G+C content was 44.6 mol%. The peptidoglycan was of the A3alpha (L-Lys-L-Ser-L-Ala2) type. Physiological, biochemical and genotypic data, as well as results of DNA-DNA hybridization of genomic DNA with one of the closest phylogenetic relatives, L. durianis (34.3 %), indicated that strain CS1T represents a novel species of the genus Lactobacillus for which the name Lactobacillus rossii sp. nov. is proposed. The type strain of this species is CS1T (=ATCC BAA-822T=DSM 15814T). PMID:15653850

  17. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Franden, M.A.; McMillan, J.D.; Finkelstein, M.

    1998-08-25

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid. 4 figs.

  18. Salivary lactobacillus counts in the prediction of caries activity.

    PubMed

    Crossner, C G

    1981-08-01

    The aim of the study was to investigate the reliability and clinical value for prediction of caries activity of determining the number of lactobacilli in saliva, the salivary secretion rate and the presence of yeasts in the saliva. For this purpose one entire age group of pupils (115 14-year-olds) attending one of the compulsory 9-year comprehensive schools in Orebro was selected for longitudinal examination. Over a period of 64 weeks three clinical recordings were made and seven salivary samples were collected. The correlations between caries activity, caries frequency (DFS), lactobacillus counts, yeasts in saliva, salivary secretion rate and gingivitis were examined. The results showed that in spite of a well-organized dental health service, including adequate preventive measures, a pronounced variation in caries activity remained and thus a means of predicting the onset of caries would be a valuable asset. Statistically significant correlations were found between caries activity on the one hand and caries frequency and lactobacillus counts on the other. The lactobacillus count was found to be a suitable measure in predicting caries activity. It was concluded that the lactobacillus count should be used for caries prediction in healthy, properly treated patients. It is important that there are no areas of microbial retention on the teeth such as open carious lesions, poorly executed restorations, dentures or orthodontic bands. In such situations, the lactobacillus count seems to reflect the frequency of ingested fermentable carbohydrates and thus, indirectly, the risk of initiating carious lesions. PMID:6949671

  19. Genome sequence and analysis of Lactobacillus helveticus

    PubMed Central

    Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

    2013-01-01

    The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

  20. Genome instability in Lactobacillus rhamnosus GG.

    PubMed

    Sybesma, Wilbert; Molenaar, Douwe; van IJcken, Wilfred; Venema, Koen; Kort, Remco

    2013-04-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies. PMID:23354703

  1. Lactobacillus salivarius: bacteriocin and probiotic activity.

    PubMed

    Messaoudi, S; Manai, M; Kergourlay, G; Prévost, H; Connil, N; Chobert, J-M; Dousset, X

    2013-12-01

    Lactic acid bacteria (LAB) antimicrobial peptides typically exhibit antibacterial activity against food-borne pathogens, as well as spoilage bacteria. Therefore, they have attracted the greatest attention as tools for food biopreservation. In some countries LAB are already extensively used as probiotics in food processing and preservation. LAB derived bacteriocins have been utilized as oral, topical antibiotics or disinfectants. Lactobacillus salivarius is a promising probiotic candidate commonly isolated from human, porcine, and avian gastrointestinal tracts (GIT), many of which are producers of unmodified bacteriocins of sub-classes IIa, IIb and IId. It is a well-characterized bacteriocin producer and probiotic organism. Bacteriocins may facilitate the introduction of a producer into an established niche, directly inhibit the invasion of competing strains or pathogens, or modulate the composition of the microbiota and influence the host immune system. This review gives an up-to-date overview of all L. salivarius strains, isolated from different origins, known as bacteriocin producing and/or potential probiotic. PMID:24010610

  2. Antibacterial Sensitivity of Bifidobacterium (Lactobacillus bifidus)

    PubMed Central

    Miller, Lawrence G.; Finegold, Sydney M.

    1967-01-01

    The antibacterial sensitivity patterns of gram-positive, nonsporeforming, anaerobic bacilli variously classed as Lactobacillus bifidus, Actinomyces bifidus, or Bifidobacterium were studied by the plate dilution method. A total of 34 strains, mostly from human feces, was studied. Three species, B. longum, B. adolescentis, and B. bifidum, were represented with 11, 11, and 6 strains, respectively. The other six strains fell into four other species. Most strains of all types resisted 100 ?g/ml or more of neomycin, polymyxin B, and nalidixic acid. They were somewhat less resistant to kanamycin and still less so to streptomycin. All strains were inhibited by less than 1 ?g/ml of penicillin G and erythromycin, by 3.1 units or less per ml of bacitracin, by 3.1 ?g/ml or less of chloramphenicol, and by 6.2 ?g/ml or less of tetracycline and lincomycin. Most strains were inhibited by 3.1 ?g/ml of vancomycin. Results were very variable with cephalothin and nitrofurantoin, with some strains quite resistant. With half of the drugs tested, there were moderate differences in sensitivity between different species. These data are discussed in relation to the effect of antimicrobial agents on bifid bacilli in the normal human fecal flora, in relation to the implications thereof, and in relation to the usefulness of several agents (particularly neomycin, nalidixic acid, and polymyxin B) in selective media for Bifidobacterium. PMID:6020399

  3. Genome Instability in Lactobacillus rhamnosus GG

    PubMed Central

    Molenaar, Douwe; van IJcken, Wilfred; Venema, Koen

    2013-01-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies. PMID:23354703

  4. Health-Promoting Properties of Lactobacillus helveticus

    PubMed Central

    Taverniti, Valentina; Guglielmetti, Simone

    2012-01-01

    Lactobacillus helveticus is an important industrial thermophilic starter that is predominantly employed in the fermentation of milk for the manufacture of several cheeses. In addition to its technological importance, a growing body of scientific evidence shows that strains belonging to the L. helveticus species have health-promoting properties. In this review, we synthesize the results of numerous primary literature papers concerning the ability of L. helveticus strains to positively influence human health. Several in vitro studies showed that L. helveticus possesses many common probiotic properties, such as the ability to survive gastrointestinal transit, adhere to epithelial cells, and antagonize pathogens. In vivo studies in murine models showed that L. helveticus could prevent gastrointestinal infections, enhance protection against pathogens, modulate host immune responses, and affect the composition of the intestinal microbiota. Interventional studies and clinical trials have also demonstrated a number of health-promoting properties of L. helveticus. Finally, several studies suggested that specific enzymatic activities of L. helveticus could indirectly benefit the human host by enhancing the bioavailability of nutrients, removing allergens and other undesired molecules from food, and producing bioactive peptides through the digestion of food proteins. In conclusion, this review demonstrates that in light of the scientific literature presented, L. helveticus can be included among the bacterial species that are generally considered to be probiotic. PMID:23181058

  5. Multireplicon genome architecture of Lactobacillus salivarius.

    PubMed

    Claesson, Marcus J; Li, Yin; Leahy, Sinead; Canchaya, Carlos; van Pijkeren, Jan Peter; Cerdeño-Tárraga, Ana M; Parkhill, Julian; Flynn, Sarah; O'Sullivan, Gerald C; Collins, J Kevin; Higgins, Des; Shanahan, Fergus; Fitzgerald, Gerald F; van Sinderen, Douwe; O'Toole, Paul W

    2006-04-25

    Lactobacillus salivarius subsp. salivarius strain UCC118 is a bacteriocin-producing strain with probiotic characteristics. The 2.13-Mb genome was shown by sequencing to comprise a 1.83 Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids. Megaplasmids previously have not been characterized in lactic acid bacteria or intestinal lactobacilli. Annotation of the genome sequence indicated an intermediate level of auxotrophy compared with other sequenced lactobacilli. No single-copy essential genes were located on the megaplasmid. However, contingency amino acid metabolism genes and carbohydrate utilization genes, including two genes for completion of the pentose phosphate pathway, were megaplasmid encoded. The megaplasmid also harbored genes for the Abp118 bacteriocin, a bile salt hydrolase, a presumptive conjugation locus, and other genes potentially relevant for probiotic properties. Two subspecies of L. salivarius are recognized, salivarius and salicinius, and we detected megaplasmids in both subspecies by pulsed-field gel electrophoresis of sizes ranging from 100 kb to 380 kb. The discovery of megaplasmids of widely varying size in L. salivarius suggests a possible mechanism for genome expansion or contraction to adapt to different environments. PMID:16617113

  6. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity. PMID:26610803

  7. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard

    PubMed Central

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction. PMID:26909087

  8. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard.

    PubMed

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction. PMID:26909087

  9. Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus

    PubMed Central

    De Angelis, Maria; Bottacini, Francesca; Fosso, Bruno; Kelleher, Philip; Calasso, Maria; Di Cagno, Raffaella; Ventura, Marco; Picardi, Ernesto; van Sinderen, Douwe; Gobbetti, Marco

    2014-01-01

    Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches. PMID:25264826

  10. Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the Genus Lactobacillus.

    PubMed

    De Angelis, Maria; Bottacini, Francesca; Fosso, Bruno; Kelleher, Philip; Calasso, Maria; Di Cagno, Raffaella; Ventura, Marco; Picardi, Ernesto; van Sinderen, Douwe; Gobbetti, Marco

    2014-01-01

    Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches. PMID:25264826

  11. Propionic acid production by cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough.

    PubMed

    Zhang, Chonggang; Brandt, Markus J; Schwab, Clarissa; Gänzle, Michael G

    2010-05-01

    Cooperative metabolism of lactobacilli in silage fermentation converts lactate to propionate. This study aimed to determine whether propionate production by Lactobacillus buchneri and Lactobacillus diolivorans can be applied for bread preservation. Propionate formation was observed in cofermentation with L. buchneri and L. diolivorans in modified MRS broth as well as sourdough with low, medium and high ash contents. 48 mM of propionate was formed in sourdough with medium ash content, but only 9 and 28 mM propionate were formed in sourdoughs prepared from white wheat flour or whole wheat flour, respectively. Acetate levels were comparable in all three sourdoughs and ranged from 160 to 175 mM. Sourdough fermented with L. buchneri and L. diolivorans was used in breadmaking and its effect on fungal spoilage was compared to traditional sourdough or propionate addition to straight doughs. Bread slices were inoculated with Aspergillus clavatus, Cladosporium spp., Mortierella spp. or Penicillium roquefortii. The use of 20% experimental sourdough inhibited growth of three of the four moulds for more than 12 days. The use of 10% experimental sourdough deferred growth of two moulds by one day. Bread from traditional sourdough with added acetate had less effect in inhibiting mould growth. In conclusion, cofermentation with L. buchneri and L. diolivorans represents a process to increase antifungal capacities of bread. PMID:20227604

  12. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. PMID:26611169

  13. Acute acalculous cholecystitis complicated with peritonitis caused by Lactobacillus plantarum.

    PubMed

    Tena, Daniel; Martínez, Nora Mariela; Losa, Cristina; Fernández, Cristina; Medina, María José; Sáez-Nieto, Juan Antonio

    2013-08-01

    Lactobacillus spp. rarely causes human disease. We report a case of a 57-year-old man with non-insulin-dependent diabetes and vascular disease admitted to our hospital with severe abdominal pain and fever. Signs of peritonitis were found upon examination. The patient underwent surgery, and a diagnosis of perforated cholecystitis with purulent peritonitis was made intra-operatively. A cholecystectomy was performed, and therapy with imipenem was initiated. Lactobacillus plantarum was isolated from bile and peritoneal fluid cultures 2 days later. The patient recovered well and was discharged on post-operative day 16 after 14 days of treatment with imipenem. To our knowledge, this is the second case reported of acute cholecystitis caused by Lactobacillus spp. This organism should be considered as a cause of biliary infections, especially in patients with underlying diseases. Correct identification is often difficult, but it is very important because these organisms are usually resistant to vancomycin and other antibiotics. PMID:23886436

  14. Vaginal Lactobacillus: biofilm formation in vivo - clinical implications.

    PubMed

    Ventolini, Gary

    2015-01-01

    Vaginal lactobacilli provide protection against intrusive pathogenic bacteria. Some Lactobacillus spp. produce in vitro a thick, protective biofilm. We report in vivo formation of biofilm by vaginal Lactobacillus jensenii. The biofilm formation was captured in fresh wet-mount microscopic samples from asymptomatic patients after treatment for recurrent bacterial vaginitis. In vivo documentation of biofilm formation is in our opinion noteworthy, and has significant clinical implications, among which are the possibility to isolate, grow, and therapeutically utilize lactobacilli to prevent recurrent vaginal infections and preterm labor associated with vaginal microbial pathogens. PMID:25733930

  15. Vaginal Lactobacillus: biofilm formation in vivo – clinical implications

    PubMed Central

    Ventolini, Gary

    2015-01-01

    Vaginal lactobacilli provide protection against intrusive pathogenic bacteria. Some Lactobacillus spp. produce in vitro a thick, protective biofilm. We report in vivo formation of biofilm by vaginal Lactobacillus jensenii. The biofilm formation was captured in fresh wet-mount microscopic samples from asymptomatic patients after treatment for recurrent bacterial vaginitis. In vivo documentation of biofilm formation is in our opinion noteworthy, and has significant clinical implications, among which are the possibility to isolate, grow, and therapeutically utilize lactobacilli to prevent recurrent vaginal infections and preterm labor associated with vaginal microbial pathogens. PMID:25733930

  16. Lactobacillus species shift in distal esophagus of high-fat-diet-fed rats

    PubMed Central

    Zhao, Xin; Liu, Xiao-Wei; Xie, Ning; Wang, Xue-Hong; Cui, Yi; Yang, Jun-Wen; Chen, Lin-Lin; Lu, Fang-Gen

    2011-01-01

    AIM: To analyze the microbiota shift in the distal esophagus of Sprague-Dawley rats fed a high-fat diet. METHODS: Twenty Sprague-Dawley rats were divided into high-fat diet and normal control groups of 10 rats each. The composition of microbiota in the mucosa from the distal esophagus was analyzed based on selective culture. A variety of Lactobacillus species were identified by molecular biological techniques. Bacterial DNA from Lactobacillus colonies was extracted, and 16S rDNA was amplified by PCR using bacterial universal primers. The amplified 16S rDNA products were separated by denaturing gradient gel electrophoresis (DGGE). Every single band was purified from the gel and sent to be sequenced. RESULTS: Based on mucosal bacterial culturing in the distal esophagus, Staphylococcus aureus was absent, and total anaerobes and Lactobacillus species were decreased significantly in the high-fat diet group compared with the normal control group (P < 0.01). Detailed DGGE analysis on the composition of Lactobacillus species in the distal esophagus revealed that Lactobacillus crispatus, Lactobacillus gasseri (L. gasseri) and Lactobacillus reuteri (L. reuteri) comprised the Lactobacillus species in the high-fat diet group, while the composition of Lactobacillus species in the normal control group consisted of L. gasseri, Lactobacillus jensenii and L. reuteri. CONCLUSION: High-fat diet led to a mucosal microflora shift in the distal esophagus in rats, especially the composition of Lactobacillus species. PMID:21912459

  17. Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195.

    PubMed

    Kaplan, Handan; Hutkins, Robert W

    2003-04-01

    Fermentation of fructooligosaccharides (FOS) and other oligosaccharides has been suggested to be an important property for the selection of bacterial strains used as probiotics. However, little information is available on FOS transport and metabolism by lactic acid bacteria and other probiotic bacteria. The objectives of this research were to identify and characterize the FOS transport system of Lactobacillus paracasei 1195. Radiolabeled FOS was synthesized enzymatically from [(3)H]sucrose and purified by column and thin-layer chromatography, yielding three main products: glucose (G) alpha-1,2 linked to two, three, or four fructose (F) units (GF(2), GF(3), and GF(4), respectively). FOS hydrolysis activity was detected only in cell extracts prepared from FOS- or sucrose-grown cells and was absent in cell supernatants, indicating that transport must precede hydrolysis. FOS transport assays revealed that the uptake of GF(2) and GF(3) was rapid, whereas little GF(4) uptake occurred. Competition experiments showed that glucose, fructose, and sucrose reduced FOS uptake but that other mono-, di-, and trisaccharides were less inhibitory. When cells were treated with sodium fluoride, iodoacetic acid, or other metabolic inhibitors, FOS transport rates were reduced by up to 60%; however, ionophores that abolished the proton motive force only slightly decreased FOS transport. In contrast, uptake was inhibited by ortho-vanadate, an inhibitor of ATP-binding cassette transport systems. De-energized cells had low intracellular ATP concentrations and had a reduced capacity to accumulate FOS. These results suggest that FOS transport in L. paracasei 1195 is mediated by an ATP-dependent transport system having specificity for a narrow range of substrates. PMID:12676703

  18. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  19. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.

    PubMed

    Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo

    2013-10-15

    Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. PMID:23987441

  20. In vivo gut transcriptome responses to Lactobacillus rhamnosus GG and Lactobacillus acidophilus in neonatal gnotobiotic piglets

    PubMed Central

    Kumar, Anand; Vlasova, Anastasia N; Liu, Zhe; Chattha, Kuldeep S; Kandasamy, Sukumar; Esseili, Malak; Zhang, Xiaoli; Rajashekara, Gireesh; Saif, Linda J

    2014-01-01

    Probiotics facilitate mucosal repair and maintain gut homeostasis. They are often used in adjunct with rehydration or antibiotic therapy in enteric infections. Lactobacillus spp have been tested in infants for the prevention or treatment of various enteric conditions. However, to aid in rational strain selection for specific treatments, comprehensive studies are required to delineate and compare the specific molecules and pathways involved in a less complex but biologically relevant model (gnotobiotic pigs). Here we elucidated Lactobacillus rhamnosus (LGG) and L. acidophilus (LA) specific effects on gut transcriptome responses in a neonatal gnotobiotic (Gn) pig model to simulate responses in newly colonized infants. Whole genome microarray, followed by biological pathway reconstruction, was used to investigate the host-microbe interactions in duodenum and ileum at early (day 1) and later stages (day 7) of colonization. Both LA and LGG modulated common responses related to host metabolism, gut integrity, and immunity, as well as responses unique to each strain in Gn pigs. Our data indicated that probiotic establishment and beneficial effects in the host are guided by: (1) down-regulation or upregulation of immune function-related genes in the early and later stages of colonization, respectively, and (2) alternations in metabolism of small molecules (vitamins and/or minerals) and macromolecules (carbohydrates, proteins, and lipids). Pathways related to immune modulation and carbohydrate metabolism were more affected by LGG, whereas energy and lipid metabolism-related transcriptome responses were prominently modulated by LA. These findings imply that identification of probiotic strain-specific gut responses could facilitate the rational design of probiotic-based interventions to moderate specific enteric conditions. PMID:24637605

  1. Isolation and Characterization of a Novel CO2-Tolerant Lactobacillus Strain from Crystal Geyser, UT

    NASA Astrophysics Data System (ADS)

    Santillan, E. U.; Major, J. R.; Omelon, C. R.; Shanahan, T. M.; Bennett, P.

    2013-12-01

    Capnophiles are microbes that grow in CO2 enriched environments. Cultured capnophiles generally, grow in 2 to 25% CO2, or 0.02 to 0.25 atm. When CO2 is sequestered in deep saline aquifers, the newly created high CO2 environment may select for capnophlic organisms. In this study, a capnophile was isolated from Crystal Geyser, a CO2 spring along the Little Grand Wash Fault, UT, a site being investigated as an analogue to CO2 sequestration. Crystal Geyser periodically erupts with CO2 charged water, indicating the presence of very high CO2 pressures below the subsurface, similar to sequestration conditions. Biomass was sampled by pumping springwater from approximately 10 m below the surface through filters. Filters were immediately placed in selective media within pressure vessels where they were pressurized to 10 atm in the field. Subsequent recultures produced an isolate, designated CG-1, that is most closely (99%) related to Lactobacillus casei on the strain level. CG-1 grows in tryptic soy broth, in PCO2 ranging from 0 atm to 10 atm, 40 times higher than pressures of previously cultured capnophiles. At 25 atm, growth is inhibited though survival can be as long as 5 days. At 50 atm, survival is poor, with sterilization occurring by 24 hours. Growth is optimal between pH values of 6 to 8, though sluggish if no CO2 is present. Its optimal salinity is 0.25 M NaCl though growth is observed ranging from 0 to 1 M NaCl. Growth is observed between 25o to 45o C, but optimal at 25oC. It consumes long-chained carbon molecules such as glucose, sucrose, and crude oil, and exhibits poor growth when supplied with lactate, acetate, formate, and pyruvate. The organism likely performs lactic acid fermentation as it requires no electron acceptors for growth and produces no acid, gas, and sulfide in triple sugar iron agar slants. CG-1 also expresses a variety of lipids, most notably cyclopropyl C19 (cycC19), or lactobacillic acid, characteristic of organisms belonging to the Lactobacilli. At 1 atm PCO2, CG-1 largely expresses monounsaturated fatty acids. At 10 atm, this changes to an increase saturated fatty acids and cycC19 consistent with a cell size decrease. Transmission electron microscopy reveals the organism as rod shaped at 1 atm. At 10 atm, the organism appears smaller, amorphous, and surrounded by a sheath. However, invaginations present in the cell at this pressure indicate cell division at high PCO2. Isolation of this organism shows that viable microbial populations can exist during CO2 sequestration and these organisms will likely contribute to changes in geochemistry and permeability of saline aquifers, which can affect the overall fate of stored CO2. Furthermore, its tolerance and reliance on CO2 pressures higher than any other known capnophile means this organism should be classified as a new kind of extremeophile, a hyper-capnophile.

  2. Draft Genome Sequence of Lactobacillus rossiae DSM 15814T

    PubMed Central

    Di Cagno, Raffaella; Cattonaro, Federica; Gobbetti, Marco

    2012-01-01

    The draft genome sequence of Lactobacillus rossiae DSM 15814T (CS1, ATCC BAA-88) was determined by a whole-genome shotgun approach. Reads were assembled to a 2.9-Mb draft version. RAST genome annotation evidenced 2,723 predicted coding sequences. Many carbohydrate, amino acid, and amino acid derivative subsystem features were found. PMID:22965087

  3. Lactobacillus plantarum mediated fermentation of Psidium guajava L. fruit extract.

    PubMed

    Bhat, Ravish; Suryanarayana, Lakshminarayana Chikkanayakanahalli; Chandrashekara, Karunakara Alageri; Krishnan, Padma; Kush, Anil; Ravikumar, Puja

    2015-04-01

    Sixteen hour fermentation of the white flesh raw guava Lucknow 49 cultivar using Lactobacillus plantarum NCIM 2912 was taken up for enhancing the antioxidant potential. The fermented guava product with high antioxidant potential, total phenolic content and short and medium chain fatty acids can be used as functional food. PMID:25300190

  4. Functional properties of Lactobacillus strains isolated from kimchi.

    PubMed

    Lee, Heejae; Yoon, Hongsup; Ji, Yosep; Kim, Hannah; Park, Hyunjoon; Lee, Jieun; Shin, Heuynkil; Holzapfel, Wilhelm

    2011-01-31

    The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) from kimchi, a traditional Korean fermented vegetable product generally consumed raw as a side-dish with practically every meal. Twelve mild acid producing facultatively heterofermentative Lactobacillus strains were selected for their potential as starter cultures for fermentation of kimchi, and evaluated for their functional properties. Eleven strains were identified as Lactobacillus sakei and one as Lactobacillus plantarum. The strains identified as L. sakei differed in some physiological features; of particular interest was the fact that 9 of these strains produced L(+) lactic acid from glucose in presence of acetate. All strains were able to survive gastrointestinal conditions simulating stomach and duodenum passage. In addition, they showed higher adherence to HT-29 cells than Lactobacillus rhamnosus GG, a commercial probiotic strain used worldwide. These strains also showed antimicrobial activity against a number of food-borne pathogens. Their ability to lower cholesterol was demonstrated by BSH (bile salt hydrolytic) activity, and cholesterol assimilation tests in vitro. The results suggest the probiotic potential of these strains for use in kimchi fermentation. PMID:21215484

  5. Draft Genome Sequence of Lactobacillus fermentum NB-22

    PubMed Central

    Shkoporov, A. N.; Efimov, B. A.; Pikina, A. P.; Borisova, O. Y.; Gladko, I. A.; Postnikova, E. A.; Lordkipanidze, A. E.; Kafarskaia, L. I.

    2015-01-01

    We announce here a draft genome sequence of Lactobacillus fermentum NB-22, a strain isolated from human vaginal microbiota. The assembled sequence consists of 190 contigs, joined into 137 scaffolds, and the total size is 2.01 Mb. PMID:26272572

  6. Sequence of ornithine decarboxylase from Lactobacillus sp. strain 30a.

    PubMed Central

    Hackert, M L; Carroll, D W; Davidson, L; Kim, S O; Momany, C; Vaaler, G L; Zhang, L

    1994-01-01

    A gene encoding biodegradative ornithine decarboxylase from Lactobacillus sp. strain 30a was isolated from a genomic DNA library and sequenced. Primer extension analysis revealed two transcription initiation sites. The deduced amino acid sequence is compared with the amino acid sequences of five previously reported bacterial decarboxylases, and conserved pyridoxal phosphate motif residues are identified. PMID:7961515

  7. Infectivity of Lactobacillus rhamnosus and Lactobacillus paracasei isolates in a rat model of experimental endocarditis.

    PubMed

    Vankerckhoven, Vanessa; Moreillon, Philippe; Piu, Stéphane; Giddey, Marlyse; Huys, Geert; Vancanneyt, Marc; Goossens, Herman; Entenza, José M

    2007-08-01

    The potential pathogenicity of selected (potentially) probiotic and clinical isolates of Lactobacillus rhamnosus and Lactobacillus paracasei was investigated in a rat model of experimental endocarditis. In addition, adhesion properties of the lactobacilli for fibrinogen, fibronectin, collagen and laminin, as well as the killing activity of the platelet-microbicidal proteins fibrinopeptide A (FP-A) and connective tissue activating peptide 3 (CTAP-3), were assessed. The 90 % infective dose (ID(90)) of the L. rhamnosus endocarditis isolates varied between 10(6) and 10(7) c.f.u., whereas four of the six (potentially) probiotic L. rhamnosus isolates showed an ID(90) that was at least 10-fold higher (10(8) c.f.u.) (P<0.001). In contrast, the two other probiotic L. rhamnosus isolates exhibited an ID(90) (10(6) and 10(7) c.f.u.) comparable to the ID(90) of the clinical isolates of this species investigated (P>0.05). Importantly, these two probiotic isolates shared the same fluorescent amplified fragment length polymorphism cluster type as the clinical isolate showing the lowest ID(90) (10(6) c.f.u.). L. paracasei tended to have a lower infectivity than L. rhamnosus (ID(90) of 10(7) to > or =10(8) c.f.u.). All isolates had comparable bacterial counts in cardiac vegetations (P>0.05). Except for one L. paracasei strain adhering to all substrates, all tested lactobacilli adhered only weakly or not at all. The platelet peptide FP-A did not show any microbicidal activity against the tested lactobacilli, whereas CTAP-3 killed the majority of the isolates. In general, these results indicate that probiotic lactobacilli display a lower infectivity in experimental endocarditis compared with true endocarditis pathogens. However, the difference in infectivity between L. rhamnosus endocarditis and (potentially) probiotic isolates could not be explained by differences in adherence or platelet microbicidal protein susceptibility. Other disease-promoting factors may exist in these organisms and warrant further investigation. PMID:17644707

  8. The Effects of Two Lactobacillus plantarum Strains on Rat Lipid Metabolism Receiving a High Fat Diet

    PubMed Central

    Salaj, Rastislav; Štofilová, Jana; Šoltesová, Alena; Hertelyová, Zdenka; Hijová, Emília; Bertková, Izabela; Strojný, Ladislav; Kružliak, Peter

    2013-01-01

    The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet. Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat. These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance. PMID:24470789

  9. Characterization of Indigenous Lactobacillus Strains for Probiotic Properties

    PubMed Central

    Mojgani, Naheed; Hussaini, Fatimah; Vaseji, Narges

    2015-01-01

    Background: Probiotics are defined as adequate amount of live microorganisms able to confer health benefits on the host. Currently, most commercially available probiotic products in the market belong to genera Lactobacillus. Traditional dairy products are usually rich source of Lactobacillus strains with significant health benefits. In order to evaluate the probiotic potential of these bacteria, it is essential to assess their health benefits, efficacy, and safety. Objectives: The probiotic efficacy of two Lactobacillus strains namely Lactobacillus pentosus LP05 and L. brevis LB32 was evaluated. They were previously isolated from ewes’ milk in a rural area in East Azerbaijan, Iran. Materials and Methods: The selected isolates were tested for certain phenotypic characters and identified to genus and species level by 16S rRNA gene sequencing and species specific primers. Further analysis included acid and bile resistance, antagonistic activity, cholesterol removing ability, survival in simulated gastric and upper intestine contents, aggregation and coaggregation properties. Finally, the adhering ability of the selected Lactobacillus strains to epithelial cells was tested using Caco-2 cell lines. Results: The selected isolates tolerated bile salt concentrations ranging from 0.5% to 3%, however their coefficient of inhibition were varied. Both isolates hydrolyzed bile and grew at pH values of 3, 4, and 5, while isolate LP05 was not able to hydrolyze arginine. Based on 16s rRNA gene sequencing and species-specific primers, the isolates were identified as L. brevis LB32 and L. pentosus LP05. In contrast to simulated gastric conditions, the growth rate of the isolates in alkaline conditions of upper intestine increased significantly with the passage of time reaching its maximum in 24 hours. These 2 isolates inhibited the growth of Listeria monocytogenes, Salmonella enteritidis, Shigella dysenteriae, Staphylococcus aureus, and Streptococcus pneumonia. Furthermore, L. brevis LB32 was able to reduce approximately 86% of cholesterol compared to L. pentosus LP05, which showed only 69% of reduction. Higher aggregation and coaggregation percentage and adherence to Caco-2 cell line was observed in L. pentosus LP05 compared to L. brevis LB32. Conclusions: This research study proved the presence of viable probiotic LAB microflora in the ewe milk with enhanced health benefits. The 2 selected Lactobacillus strains could be exploited in dairy or pharmaceutical industry in future. PMID:25793099

  10. Prospective study of correlates of vaginal Lactobacillus colonization among high-risk HIV-1 seronegative women

    PubMed Central

    Baeten, Jared M.; Hassan, Wisal M.; Chohan, Vrasha; Richardson, Barbra A.; Mandaliya, Kishorchandra; Ndinya-Achola, Jeckoniah O.; Jaoko, Walter; McClelland, R. Scott

    2009-01-01

    Objective Vaginal colonization with Lactobacillus species is characteristic of normal vaginal ecology. The absence of vaginal lactobacilli, particularly hydrogen peroxide (H2O2)-producing isolates, has been associated with symptomatic bacterial vaginosis (BV) and increased risk for HIV-1 acquisition. Identification of factors associated with vaginal Lactobacillus colonization may suggest interventions to improve vaginal health. Methods We conducted a prospective cohort study of correlates of vaginal Lactobacillus colonization among Kenyan HIV-1 seronegative female sex workers. At monthly follow-up visits, vaginal Lactobacillus cultures were obtained. Generalized estimating equations were used to examine demographic, behavioral, and medical correlates of Lactobacillus isolation, including isolation of H2O2-producing strains. Results Lactobacillus cultures were obtained from 1020 women who completed a total of 8896 follow-up visits. Vaginal washing, typically with water alone or with soap and water, was associated with an approximately 40% decreased likelihood of Lactobacillus isolation, including isolation of H2O2-producing strains. Recent antibiotic use, excluding metronidazole and treatments for vaginal candidiasis, reduced Lactobacillus isolation by ~30%. H2O2-producing lactobacilli were significantly less common among women with Trichomonas vaginalis infection and those who were seropositive for herpes simplex virus type 2. In contrast, H2O2-producing lactobacilli were significantly more common among women with concurrent vaginal candidiasis. Conclusions Modifiable biologic and behavioral factors are associated with Lactobacillus colonization in African women. Our results suggest intervention strategies to improve vaginal health in women at high risk for HIV-1. PMID:19329442

  11. Survey of compound microsatellites in multiple Lactobacillus genomes.

    PubMed

    Basharat, Zarrin; Yasmin, Azra

    2015-12-01

    Distinct simple sequence repeats with 2 or more individual microsatellites joined together or lying adjacent to each other are identified as compound microsatellites. Investigation of such composite microsatellites in the genomes of genus Lactobacillus was the aim of this study. In silico inspection of microsatellite clustering in genomes of 14 Lactobacillus species revealed a wealth of compound microsatellites. All of the mined compound microsatellites were imperfect, were composed of variant motifs, and increased in all genomes, with maximum distance (dMAX) increments of 10 to 50. The majority of these repeats were present in the coding regions. A correlation of microsatellite to compound microsatellite density was detected. The difference established in compound microsatellite division among eukaryotes, Escherichia coli, and lactobacilli is suggestive of diverse genomic features and elementary distinction between creation and fixation methods of compound microsatellites among these organisms. PMID:26445296

  12. Should Lactobacillus sporogenes and Bacillus coagulans have a future?

    PubMed

    Drago, L; De Vecchi, E

    2009-08-01

    Probiotics are gaining increasing scientific and commercial interest as functional foods. Their success has led to the development and marketing of a broad range of products based on probiotics. In this context, resolution of the taxonomy of microbial species remains a key point, since different species belonging to the same genus may have different beneficial properties. Lactobacillus sporogenes, which should be correctly classified as Bacillus coagulans, represents the archetypal misidentified probiotic and its inclusion among probiotics has often been a matter of debate. Since this bacterium shows characteristics of both genera Lactobacillus and Bacillus, its taxonomic position between the families lactobacillaceae and bacillaceae has often been discussed.This review summarizes the salient probiotic features of L. sporogenes /B. coagulans by examining currently available information. Although the use of L. sporogenes spores as a probiotic has increased in recent years, clinical evidence of its benefits are limited to only a few studies involving small patient populations. PMID:19622453

  13. Probiotic Properties of Lactobacillus Strains Isolated from Tibetan Kefir Grains

    PubMed Central

    Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying

    2013-01-01

    The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing novel fermented foods. PMID:23894554

  14. Resequencing of the Lactobacillus plantarum Strain WJL Genome.

    PubMed

    Martino, Maria Elena; Bayjanov, Jumamurat R; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; Siezen, Roland; van Hijum, Sacha A F T; Leulier, François

    2015-01-01

    Lactobacillus plantarum strain WJL is a symbiont isolated from the Drosophila melanogaster gut. The genome of L. plantarum WJL, first sequenced in 2013, was resequenced and rescaffolded in this study. A combination of Sanger and Illumina sequencing allowed us to reduce the number of contigs from 102 to 13. This work contributes to a better understanding of the genome and function of this organism. PMID:26607892

  15. Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains.

    PubMed

    Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying

    2013-01-01

    The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing novel fermented foods. PMID:23894554

  16. The effect of probiotics (Lactobacillus rhamnosus HN001, Lactobacillus paracasei LPC-37, and Lactobacillus acidophilus NCFM) on the availability of minerals from Dutch-type cheese.

    PubMed

    Aljewicz, Marek; Siemianowska, Ewa; Cichosz, Gra?yna; To?ska, El?bieta

    2014-01-01

    The use of probiotic cultures in the production of Dutch-type cheeses did not lead to significant changes in their chemical composition but it lowered their acidity. The availability of calcium and magnesium analyzed by in vitro enzymatic hydrolysis was 19 and 35%, respectively; the availability of phosphorus was significantly higher, at >90%. The use of probiotic cultures significantly increased the availability of calcium (~2.5%), phosphorus (~6%), and magnesium (~18%). The in vitro method supports accurate determination of the effect of the Lactobacillus spp. cultures on the availability of mineral compounds ingested with Dutch-type cheese. PMID:24913654

  17. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery

    PubMed Central

    Petricevic, Ljubomir; Domig, Konrad J.; Nierscher, Franz Josef; Sandhofer, Michael J.; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery. PMID:24875844

  18. Diet alters probiotic Lactobacillus persistence and function in the intestine.

    PubMed

    Tachon, Sybille; Lee, Bokyung; Marco, Maria L

    2014-09-01

    We investigated the effects of host diet on the intestinal persistence and gene expression of Lactobacillus plantarum WCFS1 in healthy and health-compromised, 2,4,6-trinitrobenzene sulfonic acid (TNBS)-treated mice. Mice fed either a low-fat chow diet (CD) or high fat and sucrose Western diet (WD) received 10(9) L. plantarum WCFS1 cells for five consecutive days. Lactobacillus plantarum persistence was 10- to 100-fold greater in the intestines of WD-fed compared with CD-fed mice. TNBS, an intestinal irritant that induces the development of inflammatory bowel disease-like symptoms, resulted in up to a 10(4) -fold increase in L. plantarum survival in the digestive tract relative to healthy animals. Expression levels of 12 metabolic and gut-inducible L. plantarum genes were differentially affected by diet and TNBS administration. Pyrosequencing of 16S rRNA transcripts from the indigenous intestinal microbiota showed that WD resulted in significant reductions in proportions of metabolically active indigenous Lactobacillus species and increases in the Desulfovibrionaceae family. Feeding L. plantarum WCFS1 resulted in lower levels of colitis and higher concentrations of colonic IL-10 and IL-12 in WD and not CD-fed mice. Interactions between probiotics, nutritional components and the intestinal bacteria should be considered when examining for probiotic-mediated effects and elucidating mechanisms of probiotic function in the mammalian gut. PMID:24118739

  19. Use of Lactobacillus-GG in paediatric Crohn's disease.

    PubMed

    Guandalini, S

    2002-09-01

    The potential role of luminal bacteria in initiating the abnormal immune response seen in inflammatory bowel disease is stressed by many observations. A defect in mucosal barrier function could allow luminal bacterial antigens to initiate the chronic relapsing inflammation in Crohn's disease. The potential role of luminal bacteria in initiating the abnormal immune response seen in inflammatory bowel disease is stressed by many observations. A pilot study to investigate the possible effect of Lactobacillus GG in children with active Crohn's disease was conducted. Four male patients were enrolled, median age 14.5 years (range 10-18). In terms of clinical outcome, the patients showed significant improvement. In three patients on Lactobacillus GG, it was possible to taper the dose of steroids. Thus, although our data are obviously very preliminary, Lactobacillus GG appears to be effective in improving the clinical status of children with Crohn's disease. A multicentre study is currently being carried out in 7 US University centres in a randomized, double-blind, placebo-controlled fashion to establish the efficacy of this probiotic in children with Crohn's disease. PMID:12408443

  20. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery.

    PubMed

    Petricevic, Ljubomir; Domig, Konrad J; Nierscher, Franz Josef; Sandhofer, Michael J; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery. PMID:24875844

  1. Antifungal activity of two Lactobacillus strains with potential probiotic properties.

    PubMed

    Gerbaldo, Gisela A; Barberis, Carla; Pascual, Liliana; Dalcero, Ana; Barberis, Lucila

    2012-07-01

    Aflatoxin (highly toxic and carcinogenic secondary metabolites produced by fungi) contamination is a serious problem worldwide. Modern agriculture and animal production systems need to use high-quality and mycotoxin-free feedstuffs. The use of microorganisms to preserve food has gained importance in recent years due to the demand for reduced use of chemical preservatives by consumers. Lactic acid bacteria are known to produce various antimicrobial compounds that are considered to be important in the biopreservation of food and feed. Lactobacillus rhamnosus L60 and Lactobacillus fermentum L23 are producers of secondary metabolites, such as organic acids, bacteriocins and, in the case of L60, hydrogen peroxide. The antifungal activity of lactobacilli strains was determined by coculture with Aspergillus section Flavi strains by two qualitative and one quantitative methods. Both L23 and L60 completely inhibited the fungal growth of all aflatoxicogenic strains assayed. Aflatoxin B (1) production was reduced 95.7-99.8% with L60 and 27.5-100% with L23. Statistical analysis of the data revealed the influence of L60 and L23 on growth parameters and aflatoxin B (1) production. These results are important given that these aflatoxicogenic fungi are natural contaminants of feed used for animal production, and could be effectively controlled by Lactobacillus L60 and L23 strains with probiotic properties. PMID:22497448

  2. Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains.

    PubMed

    Stoyancheva, Galina; Marzotto, Marta; Dellaglio, Franco; Torriani, Sandra

    2014-09-01

    The human vagina is a complex and dynamic ecosystem containing an abundance of microorganisms. In women of childbearing age, this system is dominated by Lactobacillus spp. In the present work, seventeen newly isolated vaginal strains were identified by 16S rDNA sequencing and were investigated for their antimicrobial properties. Twelve of the isolated Lactobacillus strains showed activity against one or more microorganisms. Six and five of them produced substances that inhibited the growth of two different Klebsiella strains and Staphylococcus aureus, respectively. Two lactobacilli strains were active against an Escherichia coli strain, one isolate was active against an Enterococus faecalis strain and another lactobacilli strain showed antimicrobial activity against a Candida parapsilosis strain. The nature of the active compounds was additionally studied, and the presence of bacteriocin-like substances was proved. The genes related to the bacteriocin production in three of the newly isolated strains were identified and sequenced. The presence of gassericin A operon in the genome of the species Lactobacillus crispatus was described for the first time. The presence of antimicrobial activity contributes to their possible use as potential probiotic strains after further research. PMID:24919535

  3. Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans.

    PubMed

    Köhler, Gerwald A; Assefa, Senait; Reid, Gregor

    2012-01-01

    Candida albicans is the most important Candida species causing vulvovaginal candidiasis (VVC). VVC has significant medical and economical impact on women's health and wellbeing. While current antifungal treatment is reasonably effective, supportive and preventive measures such as application of probiotics are required to reduce the incidence of VVC. We investigated the potential of the probiotics Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 towards control of C. albicans. In vitro experiments demonstrated that lactic acid at low pH plays a major role in suppressing fungal growth. Viability staining following cocultures with lactobacilli revealed that C. albicans cells lost metabolic activity and eventually were killed. Transcriptome analyses showed increased expression of stress-related genes and lower expression of genes involved in fluconazole resistance, which might explain the increased eradication of Candida in a previous clinical study on conjoint probiotic therapy. Our results provide insights on the impact of probiotics on C. albicans survival. PMID:22811591

  4. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. PMID:26026241

  5. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt.

    PubMed

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  6. Effects of Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici on the nematode Caenorhabditis elegans include possible antitumor activity.

    PubMed

    Fasseas, Michael K; Fasseas, Costas; Mountzouris, Konstantinos C; Syntichaki, Popi

    2013-03-01

    This study examined the effects of three lactic acid bacteria (LAB) strains on the nematode Caenorhabditis elegans. Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici were found to inhibit the development and growth of the worm. Compared to Escherichia coli used as the control, L. reuteri and P. acidilactici reduced the lifespan of wild-type and short-lived daf-16 worms. On the contrary, L. salivarius extended the lifespan of daf-16 worms when used live, but reduced it as UV-killed bacteria. The three LAB induced the expression of genes involved in pathogen response and inhibited the growth of tumor-like germ cells, without affecting DAF16 localization or increasing corpse cells. Our results suggest the possible use of C. elegans as a model for studying the antitumor attributes of LAB. The negative effects of these LAB strains on the nematode also indicate their potential use against parasitic nematodes. PMID:22923095

  7. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  8. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  9. Synergistic impact of Lactobacillus fermentum, Lactobacillus plantarum and vincristine on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in mice

    PubMed Central

    ASHA; GAYATHRI, DEVARAJA

    2012-01-01

    Lactobacillus sp. is the most dominant probiotic strain of bacteria. Evidence indicates that the consumption of Lactobacillus sp. reduces the risk of colorectal cancer in animal models. The present study was carried out to determine whether administration of Lactobacillus fermentum/ Lactobacillus plantarum alone or in combination with vincristine have a synergistic impact on the control of colorectal cancer in an animal model. Mice with 1,2 dimethylhydrazine (DMH) hydrochloride-induced colon cancer were fed with L. fermentum and L. plantarum isolated along with vincristine. An increase in body weight, a decrease in ammonia concentration, a decrease in β glucosidase and β glucuronidase enzyme activity and a reduction in the number of crypts in the mice in the pre-carcinogen-induced group was noted when compared to these variables in the post-carcinogen-induced group. The body weight of the mice fed L. fermentum along with vincristine was increased (6.5 g), and was found to be 3.5 times higher compared to that of the control. A marked decrease in the ammonia concentration (240 mg), and β glucosidase (0.0023 IU) and β glucopyranose enzyme activity (0.0027 IU) was observed; 22.59% less ammonia concentration, 73.26% less β glucosidase activity and 56.46% less β glucuronidase enzyme activity was noted when compared to the control. A significant reduction in the number of aberrant crypt foci (ACF) (90%) was observed when compared to the control. Maximum protection was observed in the mice fed the probiotics and vincristine prior to cancer induction. Among the different dietary combinations tested in the present study, L. fermentum and vincristine showed a more extensive reduction in ammonia concentration, β glucosidase, β glucuronidase activity and the number of ACF. PMID:22970015

  10. Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic lactobacilli.

    PubMed

    Cho, J S; Choi, Y J; Chung, D K

    2000-04-01

    Endoglucanase A from Clostridium thermocellum resistant to pancreatic proteinase was selected out of a range of microbial cellulases expressed in lactobacilli. Two Lactobacillus-E. coli expression vectors, harboring the endoglucanase gene from C. thermocellum under the control of its own promoter (pSD1) and the Lactococcus lactis lac A promoter (pSD2), were constructed separately. Intestinal Lactobacillus strains, L. gasseri and L. johnsonii, were electrotransformed with pSD1 and pSD2, and the stability of each plasmid was evaluated. The endoglucanase activities of 0.722 and 0.759 U/ml were respectively found in culture medium of L. gasseri and L. johnsonii containing pSD1, and of 0.407 U/ml in medium of L. gasseri harboring pSD2. When the probiotic characteristics such as acid-tolerance, bile-salt tolerance, and antibiotic susceptibility were investigated, L. gasseri and L. johnsonii were resistant to low pHs of 2 and 3. Also, L. johnsonii was bile-salt resistant in the presence of 0.5% oxgall and porcine bile extract. L. johnsonii and L. gasseri showed a rather homogeneous resistant pattern against tested antibiotics. Both strains were resistant to amikacin, bacitracin, gentamicin, streptomycin, kanamycin, and colistin. PMID:10688695

  11. Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules

    PubMed Central

    Jalali, M.; Abedi, D.; Varshosaz, J.; Najjarzadeh, M.; Mirlohi, M.; Tavakoli, N.

    2012-01-01

    Freeze-drying is a common preservation technology in the pharmaceutical industry. Various studies have investigated the effect of different cryoprotectants on probiotics during freeze-drying. However, information on the effect of cryoprotectants on the stability of some Lactobacillus strains during freeze-drying seems scarce. Therefore, the aim of the present study was to establish production methods for preparation of oral capsule probiotics containing Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. Bulgaricus. It was also of interest to examine the effect of various formulations of cryoprotectant media containing skim milk, trehalose and sodium ascorbate on the survival rate of probiotic bacteria during freeze-drying at various storage temperatures. Without any cryoprotectant, few numbers of microorganisms survived. However, microorganisms tested maintained higher viability after freeze-drying in media containing at least one of the cryoprotectants. Use of skim milk in water resulted in an increased viability after lyophilization. Media with a combination of trehalose and skim milk maintained a higher percentage of live microorganisms, up to 82%. In general, bacteria retained a higher number of viable cells in capsules containing freeze-dried bacteria with sodium ascorbate after three months of storage. After this period, a marked decline was observed in all samples stored at 23°C compared to those stored at 4°C. The maximum survival rate (about 72-76%) was observed with media containing 6% skim milk, 8% trehalose and 4% sodium ascorbate. PMID:23181077

  12. Draft Genome Sequence of Lactobacillus gorillae Strain KZ01T, Isolated from a Western Lowland Gorilla

    PubMed Central

    Tsuchida, Sayaka; Nezuo, Maiko; Tsukahara, Masatoshi; Ogura, Yoshitoshi; Hayashi, Tetsuya

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus gorillae strain KZ01T isolated from a western lowland gorilla (Gorilla gorilla gorilla). This genome sequence will be helpful for the comparative genomics between human and nonhuman primate-associated Lactobacillus. PMID:26472838

  13. A simple identification method for vaginal secretions using relative quantification of Lactobacillus DNA.

    PubMed

    Doi, Masanori; Gamo, Shinsuke; Okiura, Tatsuyuki; Nishimukai, Hiroaki; Asano, Migiwa

    2014-09-01

    In criminal investigations there are some cases in which identifying the presence of vaginal secretions provides crucial evidence in proving sexual assault. However, there are no methods for definitively identifying vaginal secretions. In the present study, we focused on Lactobacillus levels in vaginal secretions and developed a novel identification method for vaginal secretions by relative quantification based on real time PCR. We designed a Lactobacillus conserved region primer pair (LCP) by aligning 16S rRNA gene sequences from major vaginal Lactobacillus species (Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners and Lactobacillus jensenii), and selected the human specific primer pair (HSP) as an endogenous control for relative quantification. As a result, the ΔCt (ΔCt=Ct[LCP]-Ct[HSP]) values of vaginal secretions (11 out of 12 samples) were significantly lower than those of saliva, semen and skin surface samples, and it was possible to discriminate between vaginal secretions and other body fluids. For the one remaining sample, it was confirmed that the predominant species in the microflora was not of the Lactobacillus genus. The ΔCt values in this study were calculated when the total DNA input used from the vaginal secretions was 10pg or more. Additionally, the ΔCt values of samples up to 6-months-old, which were kept at room temperature, remained unchanged. Thus, we concluded in this study that the simple ΔCt method by real time PCR is a useful tool for detecting the presence of vaginal secretions. PMID:24905338

  14. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  15. Genome Sequence of Lactobacillus fabifermentans Strain T30PCM01, Isolated from Fermenting Grape Marc

    PubMed Central

    Treu, Laura; Vendramin, Veronica; Bovo, Barbara; Giacomini, Alessio; Corich, Viviana

    2014-01-01

    Here, we report the draft genome assembly of Lactobacillus fabifermentans strain T30PCM01 isolated from grape marc. Its genome is the largest (3.58 Mbp) among Lactobacillus species and reveals an enormous potential for carbohydrate utilization and transcriptional regulation. PMID:24558238

  16. Draft Genome Sequence of Lactobacillus gorillae Strain KZ01T, Isolated from a Western Lowland Gorilla.

    PubMed

    Tsuchida, Sayaka; Nezuo, Maiko; Tsukahara, Masatoshi; Ogura, Yoshitoshi; Hayashi, Tetsuya; Ushida, Kazunari

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus gorillae strain KZ01(T) isolated from a western lowland gorilla (Gorilla gorilla gorilla). This genome sequence will be helpful for the comparative genomics between human and nonhuman primate-associated Lactobacillus. PMID:26472838

  17. Evaluation of Antibacterial Activity of Lactobacillus Spp. on Selected Food Spoilage Bacteria.

    PubMed

    Sharma, Anurag; Gupta, Piyush; Bhattacharya, Susinjan

    2015-01-01

    This study was done to isolate Lactobacillus species from curd, amla/Indian gooseberry and orange and to assess their antagonistic ability against selected food spoilage bacteria, Escherichia coli, Pseudomonas spp. and Bacillus spp. isolated from natural food sources. In the approaches used, native Lactobacillus spp. were isolated from amla, orange and curd and identified by standard microbiological methods. Their antagonistic affect was tested by disc diffusion tests against three selected test isolates, Escherichia coli, Pseudomonas and Bacillus spp. isolated from tomato, pumpkin, cauliflower, lady's finger, carrot, and milk. There are recent patents also suggesting use of novel strains of Lactobacillus for microbial antagonism. In our present work, the lactobacilli isolated from different food sources showed varied ability to inhibit the growth of test isolates. The growth of test isolates was inhibited by Lactobacillus isolates with one of the Lactobacillus isolate from amla being the most potent inhibitor. PMID:25751004

  18. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. PMID:26143437

  19. Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov.

    PubMed

    Tanasupawat, Somboon; Pakdeeto, Amnat; Thawai, Chitti; Yukphan, Pattaraporn; Okada, Sanae

    2007-02-01

    Eighteen rod-shaped homofermentatives, six heterofermentatives, and a coccal homofermentative lactic acid bacteria were isolated from fermented tea leaves (miang) produced in the northern part of Thailand. The isolates were placed in a monophyletic cluster consisting of Lactobacillus and Pediococcus species. They were divided into seven groups by phenotypic and chemotaxonomic characteristics, DNA-DNA similarity, and 16S rRNA gene sequences. Groups I to VI belonged to Lactobacillus and Group VII to Pediococcus. All of the strains tested produced DL-lactic acid but those in Group IV produced L-lactic acid. The strains tested in Groups I, II and V had meso-diaminopimelic acid in the cell wall. Six strains in Group I were identified as Lactobacillus pantheris; five strains in Group II as Lactobacillus pentosus; and four strains in Group V as Lactobacillus suebicus. Two strains in Group VI showed high DNA-DNA similarity for each other and MCH4-2 was closest to Lactobacillus fermentum CECT 562(T) with 99.5% of 16S rRNA gene sequence similarity. Five strains in Group III are proposed as Lactobacillus thailandensis sp. nov., and MCH5-2(T) (BCC 21235(T)=JCM 13996(T)=NRIC 0671(T)=PCU 272(T)) is the type strain which has 49 mol% G+C of DNA. Two strains in Group IV are proposed as Lactobacillus camelliae sp. nov., and the type strain is MCH3-1(T) (BCC 21233(T)=JCM 13995(T)=NRIC 0672(T)=PCU 273(T)) which has 51.9 mol% G+C of DNA. One strain in Group VII is proposed as Pediococcus siamensis sp. nov., and MCH3-2(T) (BCC 21234(T)=JCM 13997(T)=NRIC 0675(T)=PCU 274(T)) is the type strain which has 42 mol% G+C of DNA. PMID:17429157

  20. Screening of Lactobacillus strains of domestic goose origin against bacterial poultry pathogens for use as probiotics.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2014-10-01

    Lactobacilli are natural inhabitants of human and animal mucous membranes, including the avian gastrointestinal tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities, among which their antagonistic potential against pathogens plays a key role. A study was conducted to evaluate probiotic properties of Lactobacillus strains isolated from feces or cloacae of domestic geese. Among the 104 examined isolates, previously identified to the species level by whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and analysis of 16S-23S regions of rDNA, dominated Lactobacillus salivarius (35%), followed by Lactobacillus johnsonii (18%) and Lactobacillus ingluviei (11%). All lactobacilli were screened for antimicrobial activity toward Salmonella Enteritidis, Escherichia coli, Clostridium perfringens, Staphylococcus aureus, Pasteurella multocida, and Riemerella anatipestifer using the agar slab method and the well diffusion method. Lactobacillus salivarius and Lactobacillus plantarum exhibited particularly strong antagonism toward all of the indicator strains. In the agar slab method, the highest sensitivity to Lactobacillus was observed in R. anatipestifer and P. multocida, and the lowest in E. coli and S. aureus. The ability to produce H₂O₂was exhibited by 92% of isolates, but there was no correlation between the rate of production of this reactive oxygen species and the antimicrobial activity of Lactobacillus sp. All lactobacilli showed resistance to pH 3.0 and 3.5 and to 2% bile. The data demonstrate that Lactobacillus isolates from geese may have probiotic potential in reducing bacterial infections. The antibacterial activity of the selected lactobacilli is mainly due to lactic acid production by these bacteria. The selected Lactobacillus strains that strongly inhibited the growth of pathogenic bacteria, and were also resistant to low pH and bile salts, can potentially restore the balance of intestinal microflora in geese and could offer an alternative to antibiotic therapy. PMID:25104766

  1. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health

    PubMed Central

    Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah

    2015-01-01

    The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies. PMID:25859220

  2. Adhesive and chemokine stimulatory properties of potentially probiotic Lactobacillus strains.

    PubMed

    Vizoso Pinto, María G; Schuster, Tobias; Briviba, Karlis; Watzl, Bernhard; Holzapfel, Wilhelm H; Franz, Charles M A P

    2007-01-01

    Five Lactobacillus plantarum strains and two Lactobacillus johnsonii strains, stemming either from African traditionally fermented milk products or children's feces, were investigated for probiotic properties in vitro. The relationship between the hydrophobic-hydrophilic cell surface and adhesion ability to HT29 intestinal epithelial cells was investigated, and results indicated that especially the L. johnsonii strains, which exhibited both hydrophobic and hydrophilic surface characteristics, adhered well to HT29 cells. Four L. plantarum and two L. johnsonii strains showed high adherence to HT29 cells, generally higher than that of the probiotic control strain Lactobacillus rhamnosus GG. Most strains with high adhesion ability also showed high autoaggregation ability. The two L. johnsonii strains coaggregated well with the intestinal pathogens Listeria monocytogenes Scott A, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Salmonella enterica serovar Typhimurium ATCC 14028. The L. plantarum BFE 1685 and L. johnsonii 6128 strains furthermore inhibited the adhesion of at least two of these intestinal pathogens in coculture with HT29 cells in a strain-dependent way. These two potential probiotic strains also significantly increased interleukin-8 (IL-8) chemokine production by HT29 cells, although modulation of other cytokines, such as IL-1, IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), and transforming growth factor beta (TGF-beta), did not occur. Altogether, our results suggested that L. plantarum BFE 1685 and L. johnsonii BFE 6128 showed good adherence, coaggregated with pathogens, and stimulated chemokine production of intestinal epithelial cells, traits that may be considered promising for their development as probiotic strains. PMID:17265871

  3. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. [Lactobacillus sake; Lactobacillus curvatus; Lactobacillus farciminis; Staphylococcus aureus; Salmonella typimurium

    SciTech Connect

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.

  4. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics.

    PubMed

    Lhomme, Emilie; Orain, Servane; Courcoux, Philippe; Onno, Bernard; Dousset, Xavier

    2015-11-20

    Fourteen bakeries located in different regions of France were selected. These bakers use natural sourdough and organic ingredients. Consequently, different organic sourdoughs used for the manufacture of French bread were studied by the enumeration of lactic acid bacteria (LAB) and 16S rRNA sequencing of the isolates. In addition, after DNA extraction the bacterial diversity was assessed by pyrosequencing of the 16S rDNA V1-V3 region. Although LAB counts showed significant variations (7.6-9.5log10CFU/g) depending on the sourdough studied, their identification through a polyphasic approach revealed a large predominance of Lactobacillus sanfranciscensis in all samples. In ten sourdoughs, both culture and independent methods identified L. sanfranciscensis as the dominant LAB species identified. In the remaining sourdoughs, culture methods identified 30-80% of the LAB as L. sanfranciscensis whereas more than 95% of the reads obtained by pyrosequencing belonged to L. sanfranciscensis. Other sub-dominant species, such as Lactobacillus curvatus, Lactobacillus hammesii, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei, were also identified. Quantification of L. sanfranciscensis by real-time PCR confirmed the predominance of this species ranging from 8.24 to 10.38log10CFU/g. Regarding the acidification characteristics, sourdough and related bread physico-chemical characteristics varied, questioning the involvement of sub-dominant species or L. sanfranciscensis intra-species diversity and/or the role of the baker's practices. PMID:26051957

  5. Lactobacillus plantarum ldhL gene: overexpression and deletion.

    PubMed Central

    Ferain, T; Garmyn, D; Bernard, N; Hols, P; Delcour, J

    1994-01-01

    Lactobacillus plantarum is a lactic acid bacterium that converts pyruvate to L-(+)- and D-(-)-lactate with stereospecific enzymes designated L-(+)- and D-(-)-lactate dehydrogenase (LDH), respectively. A gene (designated ldhL) that encodes L-(+)-lactate dehydrogenase from L. plantarum DG301 was cloned by complementation in Escherichia coli. The nucleotide sequence of the ldhL gene predicted a protein of 320 amino acids closely related to that of Lactobacillus pentosus. A multicopy plasmid bearing the ldhL gene without modification of its expression signals was introduced in L. plantarum. L-LDH activity was increased up to 13-fold through this gene dosage effect. However, this change had hardly any effect on the production of L-(+)- and D-(-)-lactate. A stable chromosomal deletion in the ldhL gene was then constructed in L. plantarum by a two-step homologous recombination process. Inactivation of the gene resulted in the absence of L-LDH activity and in exclusive production of the D isomer of lactate. However, the global concentration of lactate in the culture supernatant remained unchanged. PMID:8300514

  6. Potentially probiotic Lactobacillus strains from traditional Kurdish cheese.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Shahidi, Fakhri; Mortazavi, Seyed Ali; Milani, Elnaz; Eshaghi, Zarrin

    2014-03-01

    In this study, the probiotic potential of Lactobacillus strains isolated from traditional Kurdish cheese was investigated. The Lactobacillus strains were examined for resistance to gastric acidity and bile toxicity, antimicrobial activities, autoaggregation, coaggregation, hydrophobicity, adhesion to Caco-2 cells, and antibiotic susceptibility. The results showed that all strains tested tolerate acid gastric conditions (pH 2.0 and 3.0), and all of them were bile resistant (at 0.3 and 1% concentration). Although no antibacterial activity was detected in vitro assay for the treated (neutralized to pH 6.5 and treated with catalase) cell-free culture supernatant (CFCS) of strains, untreated CFCS showed strong antagonistic activity against two known pathogens bacteria. All strains exhibited a strong autoaggregating phenotype and manifested a high degree of coaggregation with pathogens. On the other hand, majority of studied strains were found sensitive to different antibiotics, such as ampicillin, penicillin, ciprofloxacin, chloramphenicol, erythromycin, rifampicin, and tetracycline, and were resistant to vancomycin and streptomycin. Finally, isolated strains showed good hydrophobicity and adherence to Caco-2 cell line, so they could be exploited for food manufacture. PMID:24676764

  7. Characterization of an intracellular oligopeptidase from Lactobacillus paracasei.

    PubMed Central

    Tobiassen, R O; Sørhaug, T; Stepaniak, L

    1997-01-01

    An intracellular oligopeptidase from Lactobacillus paracasei Lc-01 has been purified to homogeneity by Fast Flow Q Sepharose, hydroxyapatite, and Mono Q chromatography. The molecular mass of the enzyme was determined to be 140 kDa by gel filtration and approximately 30 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and SDS-capillary electrophoresis. The pI of the enzyme was at pH 4.5. The enzyme expressed maximum activity at pH 8.0 and 40 degrees C. Oligopeptidase activity on bradykinin was inhibited strongly by 1,10-phenantroline and EDTA and partly by p-chloromercuribenzoic acid but not by phosphoramidon or phenylmethylsulfonyl fluoride. Marked inhibition by beta-casein fragment 58 to 72 was demonstrated. The enzyme showed neither general aminopeptidase nor caseinolytic activity, and it degraded only oligopeptides between 8 and 13 amino acids. The enzyme readily hydrolyzed the Phe-Ser and Pro-Phe bonds of bradykinin; the Phe-His bond of angiotensin I; the Pro-Gln, Gln-Phe, and Phe-Gly bonds of substance P; and the Pro-Tyr bond of neurotensin. Weak activity toward the Ala-Tyr and Pro-Ser bonds of alpha(s1)-casein fragment 157 to 164, was observed. The N-terminal amino acid sequence of the oligopeptidase showed a high degree of homology to the lactacin B inducer from Lactobacillus acidophilus. PMID:9097425

  8. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli. PMID:26546316

  9. Lactobacillus hokkaidonensis sp. nov., isolated from subarctic timothy grass (Phleum pratense L.) silage.

    PubMed

    Tohno, Masanori; Kitahara, Maki; Uegaki, Ryuichi; Irisawa, Tomohiro; Ohkuma, Moriya; Tajima, Kiyoshi

    2013-07-01

    Four strains of Gram-positive, non-spore-forming, rod-shaped, catalase-negative and non-motile lactic acid bacteria, LOOC260(T), LOOC253, LOOC273 and LOOC279, were isolated from timothy grass (Phleum pratense L.) silage produced in Hokkaido, a subarctic region of Japan. These isolates grew at 4-37 °C, indicating the psychrotolerant nature of these strains. Phylogenetic analysis on the basis of 16S rRNA and pheS gene sequences, as well as biochemical and physiological characteristics, indicated that these four strains were members of the genus Lactobacillus. 16S rRNA gene sequence analysis of strain LOOC260(T) demonstrated that the closest neighbours were the type strains of Lactobacillus suebicus (97.7 %), Lactobacillus oligofermentans (96.7 %) and Lactobacillus vaccinostercus (96.7 %). Strain LOOC260(T) showed low levels of DNA-DNA association with Lactobacillus suebicus JCM 9504(T) (14.7 ± 3.5 %), Lactobacillus oligofermentans JCM 16175(T) (15.1 ± 4.8 %) and Lactobacillus vaccinostercus JCM 1716(T) (10.7 ± 3.0 %). The cell wall contained meso-diaminopimelic acid and the major fatty acids were C18 : 1?9c and C19 : 1 cyclo 9,10. On the basis of phenotypic, physiological and phylogenetic evidence, these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus hokkaidonensis sp. nov. is proposed. The type strain is LOOC260(T) ( = JCM 18461(T) = DSM 26202(T)). PMID:23223820

  10. Lactobacillus reuteri CRL 1098 and Lactobacillus acidophilus CRL 1014 differently reduce in vitro immunotoxic effect induced by Ochratoxin A.

    PubMed

    Mechoud, Mónica A; Juarez, Guillermo E; de Valdez, Graciela Font; Rodriguez, Ana V

    2012-12-01

    Ochratoxin A (OTA) is a widespread mycotoxin contaminating several food products which causes detrimental health effects. The ability of Lactobacillus reuteri CRL 1098 and Lactobacillus acidophilus CRL 1014 to prevent OTA effects on TNF-α and IL-10 production and apoptosis induction in human peripheral blood mononuclear cells (PBMC) was investigated. Membrane rafts participation in these responses was also evaluated. L. reuteri reduced by 29% the OTA inhibition of TNF-α production whereas L. acidophilus increased 8 times the TNF-α production by OTA treated-PBMC. Also, both bacteria reversed apoptosis induced by OTA by 32%. However, neither of the bacteria reversed the OTA inhibition on IL-10 production. On the other hand, the lactobacilli were less effective to reverse OTA effects on disrupted-rafts PBMC. This study shows that two lactobacilli strains can reduce some negative OTA effects, being membrane rafts integrity necessary to obtain better results. Also, the results highlight the potential capacity of some lactobacilli strains usually included in natural dietary components in milk-derived products and cereals feed, to reduce OTA toxicity once ingested by humans or animals. PMID:22975144

  11. Identification, technological and safety characterization of Lactobacillus sakei and Lactobacillus curvatus isolated from Argentinean anchovies (Engraulis anchoita).

    PubMed

    Belfiore, Carolina; Raya, Raúl R; Vignolo, Graciela M

    2013-12-01

    In this study, the identification and characterization of Lactobacillus previously isolated from fresh anchovies (Engraulis anchoita) are investigated. 16S rDNA partial sequencing assigned all the isolates to belong to the Lactobacillus sakei/curvatus group. Fourteen out of 15 isolates were identified as L. sakei by phenotypic traits: they exhibited catalase activity and fermented melibiose, although only 10 of them hydrolyzed arginine. These results were confirmed by multiplex PCR-based restriction enzyme analysis with HindIII and by restriction fragment length polymorphic (RFLP) analysis of the 16S-23S rDNA intergenic spacer region with TaqI. Among identified isolates, four L. sakei strains and the sole L. curvatus strain showing sensitivity to chloramphenicol, erythromycin and tetracycline and exhibiting high tolerance to NaCl (10-18%) were unable to produce neither dextran nor biogenic amines. Based on technological and safety features, L. sakei SACB704 and L. curvatus SACB03a naturally present in fresh anchovies may be promising strains for the development of a starter culture to accelerate and control the fermentation of salt fermented anchovy-based products. PMID:23807916

  12. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    PubMed Central

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  13. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  14. Efficacy of supercritical carbon dioxide for inactivating Lactobacillus plantarum in apple cider

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juice makers have traditionally used thermal pasteurization to prevent deterioration by spoilage bacteria such as Lactobacillus plantarum; however this thermal processing causes adverse effects on product quality such as undesirable taste and destruction of heat sensitive nutrients. For this reason,...

  15. Bacteriophage endolysins expressed in yeast kill strains of Lactobacillus that contaminate fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Species of Lactobacillus are the predominant contaminants that reduce ethanol yields and cause “stuck” fermentations, decreasing the profitability of biofuel production with expen...

  16. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model

    PubMed Central

    Bhandari, Praveen; Prabha, Vijay

    2015-01-01

    Background & objectives: Urogenital infections of bacterial origin have a high incidence among the female population at reproductive age, affecting the fertility. Strains of Escherichia coli can colonize the vagina and replace natural microflora. Lactobacillus the predominant vaginal microorganism in healthy women, maintains the acidic vaginal pH which inhibits pathogenic microorganisms. Studies on Lactobacillus have shown that these can inhibit E. coli growth and vaginal colonization. An alternative therapeutic approach to antimicrobial therapy is to re-establish Lactobacillus in this microbiome through probiotic administration to resurge fertility. Therefore, the aim of the present study was to determine the capability of L. plantarum 2621 strain with probiotic properties, to prevent the vaginal colonization of E. coli causing agglutination of sperms and to evaluate its profertility effect in a murine model. Methods: Screened mice were divided into five groups i.e. control group, E. coli group, Lactobacillus group, prophylactic and therapeutic groups. The control group was infused with 20 µl PBS, E.coli group was administered with 106 cfu/20 µl E. coli, and probiotic group was administered with Lactobacillus (108 cfu/20 µl) for 10 consecutive days. In prophylactic group, the vagina was colonized with 10 consecutive doses of Lactobacillus (108 cfu/20 µl). After 24 h, it was followed by 10 day intravaginal infection with E. coli (106 cfu/20 µl) whereas for the therapeutic group vagina was colonized with (106 cfu/20 µl) E. coli for 10 consecutive days, followed by 10 day intravaginal administration with Lactobacillus after 24 h. Results: Upon mating and completion of gestation period, control, probiotic and the therapeutic groups had litters in contrast to the prophylactic group and the group administered with E. coli. Interpretation & conclusions: Results indicated that Lactobacillus intermitted colonization of pathogenic strains that resulted in reinforcement of natural microflora and resurge fertility. PMID:26261170

  17. The behaviour of whey protein isolate in protecting Lactobacillus plantarum.

    PubMed

    Khem, Sarim; Small, Darryl M; May, Bee K

    2016-01-01

    There is increasing evidence that whey protein isolates (WPI), can be utilised to encapsulate and protect bioactive substances, including lactic acid bacteria, due to their physicochemical properties. However, little is known about what happens in the immediate vicinity of the cells. This study examined the protective behaviour of WPI for two strains of Lactobacillus plantarum, A17 and B21, during spray drying. B21 was found to be more hydrophobic than A17 and required 50% of the amount of WPI to provide comparably high survival (? 90%). We hypothesise that WPI protects the hydrophobic bacteria by initial attachment to the unfolded whey protein due to hydrophobic interactions followed by adhesion to the proteins, resulting in cells being embedded within the walls of the capsules. The encapsulated strains had a moisture content of approximately 5.5% and during storage trials at 20 °C retained viability for at least eight weeks. PMID:26213030

  18. Characterization of a Feruloyl Esterase from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species. PMID:23793626

  19. Identification of Lactobacillus species using tDNA-PCR.

    PubMed

    Baele, Margo; Vaneechoutte, Mario; Verhelst, Rita; Vancanneyt, Marc; Devriese, Luc A; Haesebrouck, Freddy

    2002-08-01

    tDNA intergenic spacer PCR (tDNA-PCR) using consensus primers complementary to the conserved edges of the tRNA genes can amplify the intergenic spacers. Separation of the PCR products with capillary electrophoresis enables discrimination between fragments differing only one basepair in length. This method was applied to a collection of 82 Lactobacillus strains belonging to 37 species in order to evaluate the discriminatory power of this technique within this genus. Twenty-one species could be distinguished to species level on the basis of a unique tDNA fingerprint pattern. The other species grouped by two (e.g. L. fermentum and L. cellobiosus) or three (L. acidophilus, L. gallinarum and L. helveticus). Inclusion of the resulting fingerprints in a numerical database containing fingerprints of numerous other Gram-positive and Gram-negative species makes the identification of unknown strains possible. PMID:12031576

  20. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value and dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.

  1. Stability of Lactobacillus rhamnosus GG in prebiotic edible films.

    PubMed

    Soukoulis, Christos; Behboudi-Jobbehdar, Solmaz; Yonekura, Lina; Parmenter, Christopher; Fisk, Ian D

    2014-09-15

    The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillus rhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG. PMID:24767059

  2. Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages

    PubMed Central

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. PMID:25002431

  3. Crystallographic studies of aspartate racemase from Lactobacillus sakei NBRC 15893.

    PubMed

    Fujii, Tomomi; Yamauchi, Takae; Ishiyama, Makoto; Gogami, Yoshitaka; Oikawa, Tadao; Hata, Yasuo

    2015-08-01

    Aspartate racemase catalyzes the interconversion between L-aspartate and D-aspartate and belongs to the PLP-independent racemases. The enzyme from the lactic acid bacterium Lactobacillus sakei NBRC 15893, isolated from kimoto, is considered to be involved in D-aspartate synthesis during the brewing process of Japanese sake at low temperatures. The enzyme was crystallized at 293?K by the sitting-drop vapour-diffusion method using 25%(v/v) PEG MME 550, 5%(v/v) 2-propanol. The crystal belonged to space group P3121, with unit-cell parameters a = b = 104.68, c = 97.29?Å, and diffracted to 2.6?Å resolution. Structure determination is under way. PMID:26249691

  4. Characterization of Two Virulent Phages of Lactobacillus plantarum

    PubMed Central

    Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea

    2012-01-01

    We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172

  5. Genetic Determinants of Reutericyclin Biosynthesis in Lactobacillus reuteri

    PubMed Central

    Lin, Xiaoxi B.; Lohans, Christopher T.; Duar, Rebbeca; Zheng, Jinshui; Vederas, John C.; Walter, Jens

    2015-01-01

    Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin. PMID:25576609

  6. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    PubMed

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. PMID:24961744

  7. Amylolytic Lactobacillus strains from Bulgarian fermented beverage boza.

    PubMed

    Petrova, Penka; Emanuilova, Milena; Petrov, Kaloyan

    2010-01-01

    The lactic acid fermentation is a worldwide method for cereal processing. Great diversity of fermented foods and drinks is produced with the participation of amylolytic lactic acid bacteria (ALAB). In the present study the ALAB content of the Bulgarian cereal beverage "boza" was investigated. Two strains, Bom 816 and N3, were found to possess significant amylolytic activity. The strains' identification was based on genetic criteria, namely amplified ribosomal DNA restriction analysis (ARDRA) and sequencing of the 16S rDNA. The strain Bom 816 belongs to the species Lactobacillus plantarum and N3 to Lactobacillus pentosus, being the first amylolytic representative of this species. Optimization of the media composition with starch as a sole carbon source was done. The starch hydrolysis was most efficient in medium containing 4 g/l yeast and 8 g/l meat extracts. Thus, L. plantarum Bom 816 consumed 14 g/l starch, while L. pentosus N3 consumed 17 g/l. The highest values of lactic acid reached were 9.5 g/l produced by Bom 816 and 5.5 g/l produced by N3. In the presence of yeast extract L. pentosus N3 formed 0.8-1 g/l succinic acid. Both strains produced mainly cell-bound enzymes with amylase activity, at a pH optimum of 5.5, ranging from 3-4 to 21 U/ml for L. pentosus N3 and from 0.5 to 11.5 U/ml for L. plantarum Bom 816, in dependence of the assay conditions. PMID:20469641

  8. Lactobacillus acidophilus upregulates intestinal NHE3 expression and function

    PubMed Central

    Singh, Varsha; Raheja, Geetu; Borthakur, Alip; Kumar, Anoop; Gill, Ravinder K.; Alakkam, Anas; Malakooti, Jaleh

    2012-01-01

    A major mechanism of electroneutral NaCl absorption in the human ileum and colon involves coupling of Na+/H+ and Cl−/HCO3− exchangers. Disturbances in these mechanisms have been implicated in diarrheal conditions. Probiotics such as Lactobacillus have been indicated to be beneficial in the management of gastrointestinal disorders, including diarrhea. However, the molecular mechanisms underlying antidiarrheal effects of probiotics have not been fully understood. We have previously demonstrated Lactobacillus acidophilus (LA) to stimulate Cl−/HCO3− exchange activity via an increase in the surface levels and expression of the Cl−/HCO3− exchanger DRA in vitro and in vivo. However, the effects of LA on NHE3, the Na+/H+ exchanger involved in the coupled electroneutral NaCl absorption, are not known. Current studies were, therefore, undertaken to investigate the effects of LA on the function and expression of NHE3 and to determine the mechanisms involved. Treatment of Caco2 cells with LA or its conditioned culture supernatant (CS) for 8–24 h resulted in a significant increase in Na+/H+ exchange activity, mRNA, and protein levels of NHE3. LA-CS upregulation of NHE3 function and expression was also observed in SK-CO15 cells, a human colonic adenocarcinoma cell line. Additionally, LA treatment increased NHE3 promoter activity, suggesting involvement of transcriptional mechanisms. In vivo, mice gavaged with live LA showed significant increase in NHE3 mRNA and protein expression in the ileum and colonic regions. In conclusion, LA-induced increase in NHE3 expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of probiotics. PMID:23086913

  9. Lactobacillus sicerae sp. nov., a lactic acid bacterium isolated from Spanish natural cider.

    PubMed

    Puertas, Ana Isabel; Arahal, David R; Ibarburu, Idoia; Elizaquível, Patricia; Aznar, Rosa; Dueñas, M Teresa

    2014-09-01

    Strains CUPV261(T) and CUPV262 were isolated from ropy natural ciders of the Basque Country, Spain, in 2007. Cells are Gram-stain positive, non-spore-forming, motile rods, facultative anaerobes and catalase-negative. The strains are obligately homofermentative (final product dl-lactate) and produce exopolysaccharides from sucrose. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both isolates corresponded to the type strain of Lactobacillus vini (99.1?%), followed by Lactobacillus satsumensis (96.4?%), and Lactobacillus oeni (96.2?%), and for all other established species, 16S rRNA gene sequence similarities were below 96?%. The species delineation of strains CUPV261(T) and CUPV262 was evaluated through RAPD fingerprinting. In addition, a random partial genome pyrosequencing approach was performed on strain CUPV261(T) in order to compare it with the genome sequence of Lactobacillus vini DSM 20605(T) and calculate indexes of average nucleotide identity (ANI) between them. Results permit the conclusion that strains CUPV261(T) and CUPV262 represent a novel species of the genus Lactobacillus, for which the name Lactobacillus sicerae sp. nov. is proposed. The type strain is CUPV261(T) (?=?CECT 8227(T)?=?KCTC 21012(T)). PMID:24899655

  10. Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach

    PubMed Central

    Wilson, Charlotte M.; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M.; O'Toole, Paul W.; Zomer, Aldert

    2014-01-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. PMID:25063664

  11. Genomic fingerprinting of antituberculosis agents-resistant Lactobacillus ruminus SPM0211 using the Microbial Uniprimer kit.

    PubMed

    Kang, Byung Yong; Song, Moon Seok; Kim, Yun A; Park, So Hee; Chung, Myung Jun; Kim, Soo Dong; Baek, Dae Heoun; Kim, Kyungjae; Ha, Nam Joo

    2005-07-01

    A Lactobacillus isolate was collected from the feces of a healthy Korean individual and named as Lactobacillus ruminus SPM0211. It was further characterized by subjecting it to an antibiotic resistance test and genetic analysis. In the antibiotic resistance test, all tested Lactobacillus spp. were classified as "high resistance" for multiple antibiotics, such as isoniazid, ethambutol, cycloserine, and vancomycin. L. ruminus SPM0211 was classified as "high resistance" for streptomycin also, while the other tested Lactobacillus spp. were classified as low resistance. This suggests that the antimicrobial spectra may be a good indicator in the discrimination of this strain among the tested Lactobacillus spp. In a polymerase chain reaction-random amplified polymorphic DNA (PCR-RAPD) analysis using the Microbial Uniprimer kit, L. ruminus SPM0211, and L. suebicus were clustered as a group with a 74.3% similarity level, suggesting that these two species are genetically related. Thus, our data suggest that the PCR-RADP method using the Microbial Uniprimer kit may be valuable in discriminating L. ruminus SPM0211 from other Lactobacillus spp. PMID:16114501

  12. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay

    PubMed Central

    Sepp, Epp; Songisepp, Epp; Claus, Sandrine P.; Mikelsaar, Marika

    2015-01-01

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population. PMID:26437083

  13. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.

    PubMed

    Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z

    2014-04-01

    The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. PMID:24290645

  14. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. PMID:25561329

  15. Lactobacillus reuteri-Specific Immunoregulatory Gene rsiR Modulates Histamine Production and Immunomodulation by Lactobacillus reuteri

    PubMed Central

    Hemarajata, P.; Gao, C.; Pflughoeft, K. J.; Thomas, C. M.; Saulnier, D. M.; Spinler, J. K.

    2013-01-01

    Human microbiome-derived strains of Lactobacillus reuteri potently suppress proinflammatory cytokines like human tumor necrosis factor (TNF) by converting the amino acid l-histidine to the biogenic amine histamine. Histamine suppresses mitogen-activated protein (MAP) kinase activation and cytokine production by signaling via histamine receptor type 2 (H2) on myeloid cells. Investigations of the gene expression profiles of immunomodulatory L. reuteri ATCC PTA 6475 highlighted numerous genes that were highly expressed during the stationary phase of growth, when TNF suppression is most potent. One such gene was found to be a regulator of genes involved in histidine-histamine metabolism by this probiotic species. During the course of these studies, this gene was renamed the Lactobacillus reuteri-specific immunoregulatory (rsiR) gene. The rsiR gene is essential for human TNF suppression by L. reuteri and expression of the histidine decarboxylase (hdc) gene cluster on the L. reuteri chromosome. Inactivation of rsiR resulted in diminished TNF suppression in vitro and reduced anti-inflammatory effects in vivo in a trinitrobenzene sulfonic acid (TNBS)-induced mouse model of acute colitis. A L. reuteri strain lacking an intact rsiR gene was unable to suppress colitis and resulted in greater concentrations of serum amyloid A (SAA) in the bloodstream of affected animals. The PhdcAB promoter region targeted by rsiR was defined by reporter gene experiments. These studies support the presence of a regulatory gene, rsiR, which modulates the expression of a gene cluster known to mediate immunoregulation by probiotics at the transcriptional level. These findings may point the way toward new strategies for controlling gene expression in probiotics by dietary interventions or microbiome manipulation. PMID:24123819

  16. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese.

    PubMed

    Oberg, Craig J; Oberg, Taylor S; Culumber, Michele D; Ortakci, Fatih; Broadbent, Jeffery R; McMahon, Donald J

    2016-01-01

    A Gram-stain positive, rod-shaped, non-spore-forming strain (WDC04T), which may be associated with late gas production in cheese, was isolated from aged Cheddar cheese following incubation on MRS agar (pH 5.2) at 6 °C for 35 days. Strain WDC04T had 97 % 16S rRNA gene sequence similarity with Lactobacillus hokkaidonensis DSM 26202T, Lactobacillus oligofermentans 533, 'Lactobacillus danicus' 9M3, Lactobacillus suebicus CCUG 32233T and Lactobacillus vaccinostercus DSM 20634T. API 50 CH carbohydrate fermentation panels indicated strain WDC04T could only utilize one of the 50 substrates tested, ribose, although it does slowly utilize galactose. In the API ZYM system, strain WDC04T was positive for leucine arylamidase, valine arylamidase, cysteine arylamidase (weakly), naphthol-AS-BI-phosphohydrolase and β-galactosidase activities. Total genomic DNA was sequenced from strain WDC04T using a whole-genome shotgun strategy on a 454 GS Titanium pyrosequencer. The sequence was assembled into a 1.90 Mbp draft genome consisting of 105 contigs with preliminary genome annotation performed using the RAST algorithm (rast.nmpdr.org). Genome analysis confirmed the pentose phosphate pathway for ribose metabolism as well as galactose, N-acetylglucosamine, and glycerol fermentation pathways. Genomic analysis places strain WDC04T in the obligately heterofermentative group of lactobacilli and metabolic results confirm this conclusion. The result of genome sequencing, along with 16S rRNA gene sequence analysis, indicates WDC04T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus wasatchensis sp. nov. is proposed. The type strain is WDC04T ( = DSM 29958T = LMG 28678T). PMID:26475452

  17. Loss of GD1-positive Lactobacillus correlates with inflammation in human lungs with COPD

    PubMed Central

    Sze, Marc A; Utokaparch, Soraya; Elliott, W Mark; Hogg, James C; Hegele, Richard G

    2015-01-01

    Objectives The present study assesses the relationship between contents of GD1 (glycerol dehydratase)-positive Lactobacillus, presence of Lactobacillus and the inflammatory response measured in host lung tissue in mild to moderate chronic obstructive pulmonary disease (COPD). We hypothesise that there will be a loss of GD1 producing Lactobacillus with increasing severity of COPD and that GD1 has anti-inflammatory properties. Setting Secondary care, 1 participating centre in Vancouver, British Columbia, Canada. Participants 74 individuals who donated non-cancerous portions of their lungs or lobes removed as treatment for lung cancer (normal lung function controls (n=28), persons with mild (GOLD 1) (n=21) and moderate (GOLD 2) COPD (n=25)). Outcome measures Primary outcome measure was GD1 positivity within each group and whether or not this impacted quantitative histological measures of lung inflammation. Secondary outcome measures included Lactobacillus presence and quantification, and quantitative histological measurements of inflammation and remodelling in early COPD. Results Total bacterial count (p>0.05) and prevalence of Lactobacillus (p>0.05) did not differ between groups. However, the GD1 gene was detected more frequently in the controls (14%) than in either mild (5%) or moderate (0%) COPD (p<0.05) samples. Macrophage and neutrophil volume fractions (0.012±0.005 (mean±SD) vs 0.026±0.017 and 0.005±0.002 vs 0.015±0.014, respectively) in peripheral lung tissue were reduced in samples positive for the GD1 gene (p<0.0035). Conclusions A reduction in GD1 positivity is associated with an increased tissue immune inflammatory response in early stage COPD. There is potential for Lactobacillus to be used as a possible therapeutic, however, validation of these results need to be completed before an anti-inflammatory role of Lactobacillus in COPD can be confirmed. PMID:25652802

  18. Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics.

    PubMed

    Dubourg, Grégory; Elsawi, Ziena; Raoult, Didier

    2015-11-01

    The bacteriocin-mediated antimicrobial properties of Lactobacillus spp. have been widely studied, leading to the use of these micro-organisms in the food industry as preservative agents against foodborne pathogens. In an era in which antibiotic resistance is becoming a public health issue, the antimicrobial activity of Lactobacillus spp. could be used for the discovery of new potential antibiotics. Thus, it is essential to have an accurate method of screening the production of antimicrobial agents by prokaryotes. Many in vitro assays have been published to date, largely concerning but not limited to Lactobacillus spp. However, these methods mainly use the spot-on-the-lawn method, which is prone to contamination during the overlay stage, with protocols using methanol vapours or the reverse side agar technique being applied to avoid such contamination. In this study, a method combining the spot-on-the-lawn and well diffusion methods was tested, permitting clear identification of inhibition zones from eight Lactobacillus spp. towards clinical isolates of 12 species (11 bacteria and 1 yeast) commonly found in human pathology. Lactobacillus plantarum CIP 106786 and Lactobacillus rhamnosus CSUR P567 exhibited the widest antimicrobial activity, whereas Lactobacillus acidophilus strain DSM 20079 was relatively inactive. In addition, the putative MIC(50) of L. rhamnosus against Proteus mirabilis was estimated at 1.1×10(9)CFU/mL using culture broth dilution. In conclusion, considering the increasing cultivable bacterial human repertoire, these findings open the way of an effective method to screen in vitro for the production of potential antimicrobial compounds. PMID:26163158

  19. Identification of a high-molecular-mass Lactobacillus epithelium adhesin (LEA) of Lactobacillus crispatus ST1 that binds to stratified squamous epithelium.

    PubMed

    Edelman, Sanna M; Lehti, Timo A; Kainulainen, Veera; Antikainen, Jenni; Kylväjä, Riikka; Baumann, Marc; Westerlund-Wikström, Benita; Korhonen, Timo K

    2012-07-01

    Lactobacilli belong to the normal gastrointestinal and genital tract microbiota of human and animal hosts. Adhesion is important for bacterial colonization; however, only a few Lactobacillus adhesins have been identified so far. We studied extracted surface proteins from an adhesive Lactobacillus crispatus strain, ST1, which efficiently colonizes the chicken alimentary tract, for their binding to tissue sections of the chicken crop, and identified a novel high-molecular-mass repetitive surface protein that shows specific binding to stratified squamous epithelium. The adhesin binds to both crop epithelium and epithelial cells from human vagina, and was named Lactobacillus epithelium adhesin (LEA). Expression of LEA is strain-specific among L. crispatus strains and corresponds directly to in vitro bacterial adhesion ability. The partial sequence of the lea gene predicts that the LEA protein carries an N-terminal YSIRK signal sequence and a C-terminal LPxTG anchoring motif, as well as a highly repetitive region harbouring 82 aa long repeats with non-identical sequences that show similarity to Lactobacillus Rib/alpha-like repeats. LEA-mediated epithelial adherence may improve bacterial colonization in the chicken crop and the human vagina, which are the natural environments for L. crispatus. PMID:22516222

  20. Lactobacillus fermentum ME-3 – an antimicrobial and antioxidative probiotic

    PubMed Central

    Mikelsaar, Marika; Zilmer, Mihkel

    2009-01-01

    The paper lays out the short scientific history and characteristics of the new probiotic Lactobacillus fermentum strain ME-3 DSM-14241, elaborated according to the regulations of WHO/FAO (2002). L. fermentum ME-3 is a unique strain of Lactobacillus species, having at the same time the antimicrobial and physiologically effective antioxidative properties and expressing health-promoting characteristics if consumed. Tartu University has patented this strain in Estonia (priority June 2001, patent in 2006), Russia (patent in 2006) and the USA (patent in 2007). The paper describes the process of the identification and molecular typing of this probiotic strain of human origin, its deposition in an international culture collection, and its safety assessment by laboratory tests and testing on experimental animals and volunteers. It has been established that L. fermentum strain ME-3 has double functional properties: antimicrobial activity against intestinal pathogens and high total antioxidative activity (TAA) and total antioxidative status (TAS) of intact cells and lysates, and it is characterized by a complete glutathione system: synthesis, uptake and redox turnover. The functional efficacy of the antimicrobial and antioxidative probiotic has been proven by the eradication of salmonellas and the reduction of liver and spleen granulomas in Salmonella Typhimurium-infected mice treated with the combination of ofloxacin and L. fermentum strain ME-3. Using capsules or foodstuffs enriched with L. fermentum ME-3, different clinical study designs (including double-blind, placebo-controlled, crossover studies) and different subjects (healthy volunteers, allergic patients and those recovering from a stroke), it has been shown that this probiotic increased the antioxidative activity of sera and improved the composition of the low-density lipid particles (LDL) and post-prandial lipids as well as oxidative stress status, thus demonstrating a remarkable anti-atherogenic effect. The elaboration of the probiotic L. fermentum strain ME-3 has drawn on wide international cooperative research and has taken more than 12 years altogether. The new ME-3 probiotic-containing products have been successfully marketed and sold in Baltic countries and Finland. PMID:19381356

  1. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing. PMID:24607713

  2. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    PubMed Central

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  3. Severe oral infection due to Lactobacillus rhamnosus during induction chemotherapy for acute myeloid leukemia.

    PubMed

    Ishihara, Yuko; Kanda, Junya; Tanaka, Kaori; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Kawamura, Koji; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Terasako-Saito, Kiriko; Kimura, Shun-Ichi; Kikuchi, Misato; Nakasone, Hideki; Yamazaki, Rie; Kako, Shinichi; Nishida, Junji; Watanabe, Kunitomo; Kanda, Yoshinobu

    2014-12-01

    We report a case of severe oral infection with a high fever due to Lactobacillus rhamnosus during induction chemotherapy for acute myeloid leukemia. The patient did not improve on treatment with meropenem, clindamycin, or vancomycin until neutrophil recovery. Since L. rhamnosus GG is used in dairy products, and the patient ingested dairy products daily before starting chemotherapy, we suspected an association between the ingestion of dairy products and the development of infection. Pulsed-field gel electrophoresis using two different restriction enzymes showed that the strain isolated from the patient was identical to the L. rhamnosus GG strain isolated from dairy products and ATCC #53103. This was confirmed by a PCR assay with species-specific L. rhamnosus GG primers. Since Lactobacillus infection, particularly L. rhamnosus infection, can be fatal in immunocompromised hosts, we should consider Lactobacillus as a causative organism when Gram-positive rods are detected during treatment with broad-spectrum antibiotics and vancomycin. The causal association between the ingestion of dairy products containing Lactobacillus and Lactobacillus infection in immunocompromised hosts warrants further study. PMID:25115834

  4. Lantibiotics biosynthesis genes and bacteriocinogenic activity of Lactobacillus spp. isolated from raw milk and cheese.

    PubMed

    Perin, Luana Martins; Moraes, Paula Mendonça; Silva, Abelardo; Nero, Luís Augusto

    2012-05-01

    Lactobacillus species are usually used as starters for the production of fermented products, and some strains are capable of producing antimicrobial substances, such as bacteriocins. Because these characteristics are highly desirable, research are continually being performed for novel Lactobacillus strains with bacteriocinogenic potential for use by food industries. The aim of this study was to characterise the bacteriocinogenic potential and activity of Lactobacillus isolates. From a lactic acid bacteria culture collection obtained from raw milk and cheese, 27 isolates were identified by 16S rDNA as Lactobacillus spp. and selected for the detection of lantibiotics biosynthesis genes, bacteriocin production, antimicrobial spectra, and ideal incubation conditions for bacteriocin production. Based on the obtained results, 21 isolates presented at least one of the three lantibiotics biosynthesis genes (lanB, lanC or lamM), and 23 isolates also produced antimicrobial substances with sensitivity to at least one proteinase, indicating their bacteriocinogenic activity. In general, the isolates had broad inhibitory activity, mainly against Listeria spp. and Staphylococcus spp. strains, and the best antimicrobial performance of the isolates occurred when they were cultivated at 25 °C for 24 or 48 h or at 35 °C for 12 h. The present study identified the bacteriocinogenic potential of Lactobacillus isolates obtained from raw milk and cheese, suggesting their potential use as biopreservatives in foods. PMID:22447149

  5. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study

    PubMed Central

    Österlund, P; Ruotsalainen, T; Korpela, R; Saxelin, M; Ollus, A; Valta, P; Kouri, M; Elomaa, I; Joensuu, H

    2007-01-01

    5-Fluorouracil (5-FU)-based chemotherapy is frequently associated with diarrhoea. We compared two 5-FU-based regimens and the effect of Lactobacillus and fibre supplementation on treatment tolerability. Patients diagnosed with colorectal cancer (n=150) were randomly allocated to receive monthly 5-FU and leucovorin bolus injections (the Mayo regimen) or a bimonthly 5-FU bolus plus continuous infusion (the simplified de Gramont regimen) for 24 weeks as postoperative adjuvant therapy. On the basis of random allocation, the study participants did or did not receive Lactobacillus rhamnosus GG supplementation (1–2 × 1010 per day) and fibre (11 g guar gum per day) during chemotherapy. Patients who received Lactobacillus had less grade 3 or 4 diarrhoea (22 vs 37%, P=0.027), reported less abdominal discomfort, needed less hospital care and had fewer chemotherapy dose reductions due to bowel toxicity. No Lactobacillus-related toxicity was detected. Guar gum supplementation had no influence on chemotherapy tolerability. The simplified de Gramont regimen was associated with fewer grade 3 or 4 adverse effects than the Mayo regimen (45 vs 89%), and with less diarrhoea. We conclude that Lactobacillus GG supplementation is well tolerated and may reduce the frequency of severe diarrhoea and abdominal discomfort related to 5-FU-based chemotherapy. PMID:17895895

  6. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry.

    PubMed

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Andreatti Filho, Raphael Lucio

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  7. PCR monitoring of Lactobacillus and Bifidobacterium dynamics in fermentations by piglet intestinal microbiota.

    PubMed

    Moura, Patrícia; Simões, Fernanda; Gírio, Francisco; Loureiro-Dias, Maria C; Esteves, M Paula

    2007-04-01

    A new group-specific primer (Lact71R), targeting the 16S-23S rDNA intergenic spacer region of Lactobacillus, was tested in its specificity to amplify rDNA of lactobacilli from piglet intestinal origin by polymerase chain reaction (PCR). Lact71R and Lab0677F, a Lactobacillus group-specific primer targeting the 16S rDNA, generated a common amplicon by PCR with DNA from Lactobacillus and Pediococcus reference strains, but not from Weissella strains. Sequence analysis of clones obtained by PCR amplification with Lact71R and Lab0677F and total DNA isolated from the ileal, caecal and colonic contents of one piglet resulted in Lactobacillus and Lactobacillus-like sequences mainly retrieved from intestinal environments. The primer pair was further validated in a culture independent PCR-analysis to monitor broad fluctuations of lactobacilli populations in fructo-oligosaccharides (FOS) fermentations by piglet intestinal microbiota. Bifidobacterium genus-specific primers were also used for PCR titre determination throughout FOS fermentations, in parallel with lactate and short chain fatty acids (SCFA) quantification. Increases between PCR titres were correlated with lactate detection in early stages of fermentation. Based on the obtained results, a simple monitoring PCR approach is proposed, foreseeing its application to the study of the dynamics of specific bacterial populations in complex environments. PMID:17440917

  8. Molecular detection of Lactobacillus species in the neovagina of male-to-female transsexual women

    PubMed Central

    Petricevic, Ljubomir; Kaufmann, Ulrike; Domig, Konrad J.; Kraler, Manuel; Marschalek, Julian; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    There is a general opinion that penile skin lined neovagina of transsexual women is not able to support the growth of lactobacilli. This study was undertaken to prove if lactobacilli strains could survive in neovagina and to characterise the most dominant Lactobacillus species. Sixty three male-to-female transsexual women without abnormal vaginal discharge, clinical signs of infection were recruited on an ongoing basis from among transsexual outpatients in an academic research institution and tertiary care centre. Neovaginal smears were taken for molecular Lactobacillus spp. profiling by denaturing gradient gel electrophoresis (PCR–DGGE). Lactobacillus species were detected from 47/63 transsexual women (75%). The 279 Lactobacillus signals detected by PCR-DGGE technique belonged to 13 different species. Lactobacilli of the L. delbrueckii group (L. gasseri, L. crispatus, L. johnsonii, L. iners, L. jensenii) were predominant. More than 90% of women harboured a combination of two or more neovaginal Lactobacillus species. In this study we report the frequent occurrence of lactobacilli from neovagina of transsexual women. Both, frequency and composition were similar to the normal lactic acid bacterial microflora in both women of reproductive age and postmenopausal women. PMID:24434849

  9. Starch-binding domain affects catalysis in two Lactobacillus alpha-amylases.

    PubMed

    Rodríguez-Sanoja, R; Ruiz, B; Guyot, J P; Sanchez, S

    2005-01-01

    A new starch-binding domain (SBD) was recently described in alpha-amylases from three lactobacilli (Lactobacillus amylovorus, Lactobacillus plantarum, and Lactobacillus manihotivorans). Usually, the SBD is formed by 100 amino acids, but the SBD sequences of the mentioned lactobacillus alpha-amylases consist of almost 500 amino acids that are organized in tandem repeats. The three lactobacillus amylase genes share more than 98% sequence identity. In spite of this identity, the SBD structures seem to be quite different. To investigate whether the observed differences in the SBDs have an effect on the hydrolytic capability of the enzymes, a kinetic study of L. amylovorus and L. plantarum amylases was developed, with both enzymes acting on several starch sources in granular and gelatinized forms. Results showed that the amylolytic capacities of these enzymes are quite different; the L. amylovorus alpha-amylase is, on average, 10 times more efficient than the L. plantarum enzyme in hydrolyzing all the tested polymeric starches, with only a minor difference in the adsorption capacities. PMID:15640201

  10. Genotyping by randomly amplified polymorphic DNA of bacteriocin producing Lactobacillus acidophilus strains from Nigeria.

    PubMed

    Alli, John Adeolu; Iwalokun, Bamidele A; Oluwadun, Afolabi; Okonko, Iheanyi Omezuruike

    2015-01-01

    Yogurt and starter culture producers are still searching strains of Lactobacillus acidophilus to produce healthier yogurt with a longer shelf life and better texture, taste, and quality. This study determined the genotyping of bacteriocin producing Lactobacillus acidophilus strains recovered from Nigerian yogurts. Yogurt samples were collected from four different states of South West regions of Nigeria. Isolates were obtained from MRS Medium and biochemically characterized. This was further confirmed by API50CH. The bacteriocin positivity and activity was determined. Genomic characterization of our Lactobacillus acidophilus strains was done with randomly amplified polymorphic DNA-PCR. All yogurt samples containing Lactobacillus acidophilus strains meet the probiotic requirement of ?10(6) cfu/mL. The gel picture revealed 6 RAPD clonal types of Lactobacillus acidophilus strains with RAPD type C observed to be more common. Significant differences existed in the mean growth inhibition zone (t = -7.32, P < 0.05 for E. coli ATCC; t = -6.19, P < 0.05 for E. coli clinical isolates; t = -6.16, P < 0.05 for Enterobacter sp; t = -11.92, P < 0.05 for Salmonella typhi, t = -1.10, P > 0.05 Staphylococcus aureus). No correlation between the bacteriocin production, activity, and their RAPD clonal division (X(2) = 7.49, P = 0.1610, df = 5). In conclusion, L. acidophilus isolated in Nigeria samples met the probiotic requirements of ?10(6) cfu/mL and produce bacteriocins with good spectrum of activity. PMID:25153762

  11. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    PubMed Central

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  12. Enteric coating of granules containing the probiotic Lactobacillus acidophilus.

    PubMed

    Pyar, Hassan; Peh, Kok-Khiang

    2014-06-01

    In the present study, a capsule formulation composed of enteric coated granules of Lactobacillus acidophilus ATCC 4962 was developed using Eudragit L30D-55 as enteric polymer. Optimization of the capsule formulation was achieved with a maximum viable cell count after 2 h of incubation in acid medium and disintegration time of 1 h in buffer pH 6.8. The amount of Eudragit L30D-55 in the capsules correlated with gastric juice resistance. The best protective qualities against artificial gastric juice were observed when capsules were prepared from granules composed of L. acidophilus, corn starch, lactose monohydrate, polyvinylpyrrolidone and coated with 12.5 % (m/V) of Eudragit L30D-55. Capsule formulation of L. acidophilus in edible broth medium suspension serves as a cheap alternative to the expensive freeze-drying procedure for preparing L. acidophilus. In addition, the enteric coating using Eudragit L30D-55 could protect probiotics from the acidic gastric environment and enhance the bioactivity of probiotics along with replacement of pathogenic microbes in human intestine. PMID:24914724

  13. Heterologous production of pediocin PA-1 in Lactobacillus reuteri.

    PubMed

    Eom, Ji-Eun; Moon, Sung-Kwon; Moon, Gi-Seong

    2010-08-01

    The recombinant DNA pLR5cat_PSAB in which pediocin PA-1 structural and immunity genes (pedAB) fused with the promoter and deduced signal sequence of an alpha-amylase gene from a bifidobacterial strain were inserted in pLR5cat, an Escherichia coli-lactobacilli shuttle vector was transferred to Lactobacillus reuteri KCTC 3679 and the transformant presented bacteriocin activity. The recombinant L. reuteri KCTC 3679 transformed with the shortened pLR5cat(S)_PSAB, where non-essential region for the lactobacilli replicon was removed, also showed bacteriocin activity. The molecular mass of the secreted pediocin PA-1 from the recombinant bacteria was the same as that of native pediocin PA-1 (~4.6 kDa) from Pediococcus acidilactici K10 on a sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel. In co-cultures with Listeria monocytogenes, the recombinant L. reuteri KCTC 3679 effectively reduced the viable cell count of the pathogenic bacterium by a 3 log scale compared with a control where L. monocytogenes was incubated alone. PMID:20798585

  14. Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization.

    PubMed

    Zhang, Kai; Ni, Ye

    2014-02-01

    Tyrosine decarboxylase (TDC, EC 4.1.1.25) is an enzyme that catalyzes the decarboxylation of l-tyrosine to produce tyramine and CO2. In this study, a 1881-bp tdc gene from Lactobacillus brevis was cloned and heterologously expressed in Escherichia coli BL21 (DE3). Glucose was discovered to play an important role in the soluble expression of rLbTDC. After optimization, recombinant TDC (rLbTDC) was achieved in excellent solubility and a yield of 224mg rLbTDC/L broth. The C-terminal His-Tagged rLbTDC was one-step purified with 90% recovery. Based on SDS-PAGE and gel filtration analysis, rLbTDC is a dimer composed of two identical subunits of approximately 70kDa. Using l-tyrosine as substrate, the specific activity of rLbTDC was determined to be 133.5U/mg in the presence of 0.2mM pyridoxal-5'-phosphate at 40°C and pH 5.0. The Km and Vmax values of rLbTDC were 0.59mM and 147.1μmolmin(-1)mg(-1), respectively. In addition to l-tyrosine, rLbTDC also exhibited decarboxylase activity towards l-DOPA. This study has demonstrated, for the first time, the soluble expression of tdc gene from L. brevis in heterologous host. PMID:24211777

  15. Transport of Aminophosphonic Acids in Lactobacillus plantarum and Streptococcus faecalis

    PubMed Central

    Holden, Joseph T.; Van Balgooy, Josephus N. A.; Kittredge, James S.

    1968-01-01

    Aminophosphonic acids analogous to glutamic acid, aspartic acid, alanine, and valine were actively accumulated by Lactobacillus plantarum. Uptake was dependent on the availability of glucose and, in all cases, the estimated intracellular concentrations substantially exceeded extracellular levels. During uptake, there was little metabolism of tritiated 2-amino-3-phosphonopropionic acid (APP), the aspartic acid analogue, and a negligible incorporation of isotope from this substance into the nucleic acid, lipid, protein, or cell wall fractions of the cell. Competition studies with APP indicated that its transport in L. plantarum and in Streptococcus faecalis was antagonized only by structurally related compounds such as glutamic, aspartic, and cysteic acids. Kinetic studies showed that APP was taken up by a single catalytic system in S. faecalis. A mutant strain of this organism which lacks one of two kinetically distinguishable dicarboxylic amino acid transport systems failed to accumulate measurable amounts of APP. These experiments indicate that the aminophosphonic acids are accumulated by the amino acid transport systems in these bacteria with minimal metabolic changes. PMID:4971894

  16. A Hydrolase from Lactobacillus sakei Moonlights as a Transaminase

    PubMed Central

    Sinz, Quirin; Freiding, Simone; Vogel, Rudi F.

    2013-01-01

    Enzymatic transamination of amino acids yields ?-keto acids and is the initial step for the production of volatile compounds that contribute to the sensory perception of fermented foods such as salami. Lactobacillus sakei is one of the lactic acid bacterial strains commonly used in starter cultures. Although the genome sequence of L. sakei 23K lacks genes encoding typical branched-chain amino acid transaminases, transamination activity and the formation of amino acid-derived volatile metabolites could be demonstrated. A protein purified from L. sakei is held responsible for the transamination activity. By heterologous expression of the corresponding gene in Escherichia coli, we were able to characterize the transamination side activity of an enzyme annotated as a putative acylphosphatase (AcP). A transamination side activity of hen egg white lysozyme (HEWL) was also discovered. Both enzymes showed substrate specificity toward branched-chain and aromatic amino acids. AcP also accepted l-methionine. Activity was optimal at neutral pH for both enzymes, whereas AcP showed a significantly higher temperature optimum (55°C) than that of HEWL (37°C). Kinetic parameters revealed high affinity toward l-leucine for AcP (Km = 1.85 mM) and toward l-isoleucine for HEWL (Km = 3.79 mM). AcP seems to play a major role in the metabolism of amino acids in L. sakei. PMID:23354716

  17. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

    PubMed Central

    2014-01-01

    Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains. PMID:25186587

  18. The Adsorption of Ochratoxin A by Lactobacillus Species

    PubMed Central

    Piotrowska, Małgorzata

    2014-01-01

    The objective of this study was to examine ochratoxin A (OTA) binding by three lactic acid bacteria (LAB) species: Lactobacillus plantarum, L. brevis, and L. sanfranciscensis. Experiments were conducted using MRS medium and PBS buffer contaminated with 1000 ng/mL OTA and inoculated with live or thermally inactivated bacterial biomass at a concentration of 1 or 5 mg dry weight/mL. It was found that, depending on the strain and biomass density, live bacterial cells reduced OTA content by 16.9% to 35% in MRS medium and by 14.8% to 26.4% in PBS after 24 h of contact. OTA binding was higher in the case of thermally inactivated bacterial biomass (46.2% to 59.8%). The process is very rapid: OTA was removed from PBS as early as after 30 min of contact. The binding of the toxin by cells was partially reversible under the treatment by water and 1 M HCl. The results show that OTA is adsorbed to the surface structures of the cell wall, which is promoted not only by the hydrophobic properties of the cell wall, but also by electron donor-acceptor and Lewis acid-base interactions. PMID:25247265

  19. Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps.

    PubMed

    Vong, Linda; Lorentz, Robert J; Assa, Amit; Glogauer, Michael; Sherman, Philip M

    2014-02-15

    Neutrophil extracellular traps (NETs) are an essential component of the antimicrobial repertoire and represent an effective means by which neutrophils capture, contain, and kill microorganisms. However, the uncontrolled or excessive liberation of NETs also damages surrounding cells and can contribute to disease pathophysiology. Alterations in the gut microbiota, as well as the presence of local and systemic markers of inflammation, are strongly associated with the manifestation of a spectrum of intestinal disorders, including chronic inflammatory bowel disease. Although probiotics exert beneficial effects on gut homeostasis, their direct effect on neutrophils, which are abundant in the setting of intestinal inflammation, remains unclear. In this study, we investigated the effects of nonpathogenic, enteropathogenic, and probiotic bacteria on the dynamics of NET formation. Using murine bone marrow-derived neutrophils and the neutrophil-differentiated human myeloid cell line d.HL-60, we demonstrate for the first time, to our knowledge, that probiotic Lactobacillus rhamnosus strain GG inhibits both PMA- and Staphylococcus aureus-induced formation of NETs. Moreover, probiotic L. rhamnosus strain GG had potent antioxidative activity: dampening reactive oxygen species production and phagocytic capacity of the neutrophils while protecting against cell cytotoxicity. Within the milieu of the gut, this represents a novel mechanism by which probiotics can locally dampen innate immune responses and confer desensitization toward luminal Ags. PMID:24465012

  20. Adhesion of Lactobacillus amylovorus to Insoluble and Derivatized Cornstarch Granules

    PubMed Central

    Imam, Syed H.; Harry-O'Kuru, R. E.

    1991-01-01

    Approximately 70% of the cells in a suspension of the amylolytic bacterium Lactobacillus amylovorus bind to cornstarch granules within 30 min at 25°C. More than 60% of the bound bacteria were removed by formaldehyde (2%) or glycine (1 M) at pH 2.0. More than 90% of the bound bacteria were removed by MgCl2 (2 M; pH 7.0). Binding of L. amylovorus to cornstarch was inhibited in heat-killed cells and in cells that had been pretreated with glutaraldehyde, formaldehyde, sodium azide, trypsin, or 1% soluble potato starch. Bacterial binding to cornstarch appeared to correlate with both the concentration of cornstarch in the suspension and the amylose content in the granules. The ability of L. amylovorus to adhere to cornstarch granules was reduced for granules that had been extracted with HCl-ethanol, HCl-methanol, HCl-propanol, or HCl-butanol. Chemical derivatization of cornstarch resulted in a wide variety of adhesion responses by these bacteria. For example, 2-O-butyl starch (degree of substitution, 0.09) enhanced adhesion, whereas two palmitate starches (degree of substitution, 0.48 and 0.09) exhibited reduced adhesion activities. 2-O-(2-hydroxybutyl) starch and starch-poly(ethylene-co-acrylic acid) ester showed adhesion activities similar to those of the nonderivatized starch controls. Images PMID:16348460

  1. Hemagglutination activity of Lactobacillus acidophilus group lactic acid bacteria.

    PubMed

    Yamada, M; Saito, T; Toba, T; Kitazawa, H; Uemura, J; Itoh, T

    1994-05-01

    The cells of 28 strains of the Lactobacillus acidophilus group were evaluated for hemagglutination (HA) activity. The activity was found in the surface layer (SL) protein fraction extracted by 2 M guanidine hydrochloride. The most SL proteins from the A group strains (L. acidophilus (A1), L. crispatus (A2), L. amylovorus (A3), and L. gallinarum (A4)) showed HA activity, but the proteins from the B group strains (L. gasseri (B1) and L. johnsonii (B2)) showed no activity. The SL proteins from the A group strains were composed in common of a main component having molecular mass of about 40-45 kDa on SDS-PAGE. The SL proteins from JCM 1034 strain that showed the highest HA activity was fractionated by CM-Toyopearl ion-exchange chromatography. The highest HA activity was detected in the major protein of 41 kDa. This protein was purified and shown to be composed of about 50% of hydrophobic amino acids. The HA activity of the protein (1034 lectin) was specifically inhibited by fetuin and bovine lactoferrin at the concentrations of 80 and 160 micrograms/ml, respectively. The removal of N-acetylneuraminic acid from fetuin significantly decreased the inhibitory activity. PMID:7517228

  2. Acid Tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum†

    PubMed Central

    McDonald, L. C.; Fleming, H. P.; Hassan, H. M.

    1990-01-01

    In this study, we determined the internal cellular pH response of Leuconostoc mesenteroides and Lactobacillus plantarum to the external pH created by the microorganisms themselves or by lactic or acetic acids and their salts added to the growth medium. Growth of Leuconostoc mesenteroides stopped when its internal pH reached 5.4 to 5.7, and growth of L. plantarum stopped when its internal pH reached 4.6 to 4.8. Variation in growth medium composition or pH did not alter the growth-limiting internal pH reached by these microorganisms. L. plantarum maintained its pH gradient in the presence of either 160 mM sodium acetate or sodium lactate down to an external pH of 3.0 with either acid. In contrast, the ?pH of Leuconostoc mesenteroides was zero at pH 4.0 with acetate and 5.0 with lactate. No differences were found between d-(?)- and l-(+)-lactic acid for the limiting internal pH for growth of either microorganism. The comparatively low growth-limiting internal pH and ability to maintain a pH gradient at high organic acid concentration may contribute to the ability of L. plantarum to terminate vegetable fermentations. PMID:16348238

  3. Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides.

    PubMed

    Quiberoni, Andrea; Guglielmotti, Daniela M; Reinheimer, Jorge A

    2003-07-15

    The effect of several biocides and thermal treatments on the viability of four Lactobacillus delbrueckii phages was investigated. Time to achieve 99% inactivation of phages at 63 and 72 degrees C in three suspension media (Tris Magnesium Gelatin (TMG) buffer, Man Rogosa Sharpe (MRS) broth and reconstituted nonfat dry skim milk (RSM)) was calculated. Thermal resistance depended on the phage considered, but a marked heat-resistance was exhibited by one phage (Ib(3)) since its high titre suspensions were completely inactivated only after 45 min at 72 degrees C or 15 min at 90 degrees C. A clear protective effect of the milk was revealed when the three suspension media were compared. As regards to the effects of biocides on phages, only peracetic acid was found to be effective for inactivating high titre suspensions. Ethanol, even at a concentration of 100%, was not suitable to assure no surviving phage particles and isopropanol turned out to be less effective than ethanol. Sodium hypochlorite at 200-400 ppm inactivated the phages completely, except phage Ib(3), which was only destroyed after treatments with 1200 ppm. The diversity observed in the heat and biocide resistance of L. delbrueckii phages is useful to establish a basis for adopting the most effective thermal and chemical treatments for inactivating them in dairy plants and laboratory environments. PMID:12781954

  4. Molecular Diversity within Lactobacillus helveticus as Revealed by Genotypic Characterization

    PubMed Central

    Giraffa, Giorgio; Gatti, Monica; Rossetti, Lia; Senini, Lucia; Neviani, Erasmo

    2000-01-01

    Lactobacillus helveticus is a homofermentative thermophilic lactic acid bacterium that is used in the manufacture of Swiss type and long-ripened Italian cheeses, such as Emmental, Grana, and Provolone cheeses. Substantial differences in several technologically important characteristics are found among L. helveticus strains isolated from natural dairy starter cultures. In the present study we investigated the genotypic diversity of 74 strains isolated from different dairy cultures used for manufacturing Grana and Provolone cheeses and six collection strains. A restriction fragment length polymorphism analysis of both total genomic DNA and the 16S rRNA gene (ribotyping) was used as genotypic fingerprinting. A multivariate statistical analysis of the data enabled us to identify significant genotypic heterogeneity in L. helveticus. We found that genotypic fingerprinting could be used to distinguish strains; in particular, it was possible to associate the presence of specific strain genotypes with dairy ecosystem sources (e.g., Grana or Provolone cheese). Our data contribute to the description of microbial heterogeneity in L. helveticus and provide a more solid basis for understanding the functional and ecological significance of the presence of different L. helveticus biotypes in natural dairy starter cultures. PMID:10742197

  5. Lactobacillus equigenerosi Strain Le1 Invades Equine Epithelial Cells

    PubMed Central

    Botha, Marlie; Botes, Marelize; Loos, Ben; Smith, Carine

    2012-01-01

    Lactobacillus equigenerosi strain Le1, a natural inhabitant of the equine gastrointestinal tract, survived pH 3.0 and incubation in the presence of 1.5% (wt/vol) bile salts for at least 2 h. Strain Le1 showed 8% cell surface hydrophobicity, 60% auto-aggregation, and 47% coaggregation with Clostridium difficile C6. Only 1% of the cells adhered to viable buccal epithelial cells and invaded the cells within 20 min after contact. Preincubation of strain Le1 in a buffer containing pronase prevented adhesion to viable epithelial cells. Preincubation in a pepsin buffer delayed invasion from 20 min to 1 h. Strain Le1 did not adhere to nonviable epithelial cells. Administration of L. equigenerosi Le1 (1 × 109 CFU per 50 kg body weight) to healthy horses did not increase white blood cell numbers. Differential white blood cell counts and aspartate aminotransferase levels remained constant. Glucose, lactate, cholesterol, and urea levels remained constant during administration with L. equigenerosi Le1 but decreased during the week after administration. PMID:22504808

  6. Kinetics and Modeling of Lactic Acid Production by Lactobacillus plantarum

    PubMed Central

    Passos, Frederico V.; Fleming, Henry P.; Ollis, David F.; Felder, Richard M.; McFeeters, R. F.

    1994-01-01

    An unstructured model was developed to describe bacterial growth, substrate utilization, and lactic acid production by Lactobacillus plantarum in cucumber juice. Significant lactic acid production occurred during growth, as well as stationary phases. The percentage of acid produced after growth ceased was a function of the medium composition. Up to 51% of the lactic acid was produced after growth ceased when NaCl was not present in the medium, whereas not more than 18% of the total lactic acid was produced after the growth ceased in presence of NaCl, probably because of an increase in the cell death rate. An equation relating the specific death rate and NaCl concentration was developed. With the kinetic model proposed by R. Luedeking and E. L. Piret (J. Biochem. Microbiol. Technol. Eng. 1:393-412, 1958) for lactic acid production rate, the growth-associated and non-growth-associated coefficients were determined as 51.9 (±4.2) mmol/g of cells and 7.2 (±0.9) mmol/g of cells h-1 respectively. The model was demonstrated for batch growth of L. plantarum in cucumber juice. Mathematical simulations were used to predict the influence of variations in death rate, proton concentration when growth ceased, and buffer capacity of the juice on the overall fermentation process. PMID:16349339

  7. Lactobacillus acidophilus—Rutin Interplay Investigated by Proteomics

    PubMed Central

    Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna

    2015-01-01

    Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus. PMID:26544973

  8. Timely approaches to identify probiotic species of the genus Lactobacillus

    PubMed Central

    2013-01-01

    Over the past decades the use of probiotics in food has increased largely due to the manufacturer’s interest in placing “healthy” food on the market based on the consumer’s ambitions to live healthy. Due to this trend, health benefits of products containing probiotic strains such as lactobacilli are promoted and probiotic strains have been established in many different products with their numbers increasing steadily. Probiotics are used as starter cultures in dairy products such as cheese or yoghurts and in addition they are also utilized in non-dairy products such as fermented vegetables, fermented meat and pharmaceuticals, thereby, covering a large variety of products. To assure quality management, several pheno-, physico- and genotyping methods have been established to unambiguously identify probiotic lactobacilli. These methods are often specific enough to identify the probiotic strains at genus and species levels. However, the probiotic ability is often strain dependent and it is impossible to distinguish strains by basic microbiological methods. Therefore, this review aims to critically summarize and evaluate conventional identification methods for the genus Lactobacillus, complemented by techniques that are currently being developed. PMID:24063519

  9. Draft Genome Sequence of Coccoid Lactobacillus equigenerosi NRIC 0697T Isolated from the Gastrointestinal Tracts of Healthy Thoroughbreds.

    PubMed

    Toh, Hidehiro; Nakano, Akiyo; Nguyen, Co Thi Kim; Mimura, Iyo; Arakawa, Kensuke; Tashiro, Kosuke; Kikusui, Takefumi; Morita, Hidetoshi

    2016-01-01

    Lactobacillus equigenerosi NRIC 0697(T) was isolated from the gastrointestinal tracts of healthy thoroughbreds. This strain produced unique spherical or oval cells, which is rare in the genus Lactobacillus. Here, we report the draft genome sequence of this strain. PMID:26847890

  10. Alleviating effects of Lactobacillus strains on pathogenic Vibrio parahaemolyticus-induced intestinal fluid accumulation in the mouse model.

    PubMed

    Yang, Zhen-Quan; Jin, Cai-Juan; Gao, Lu; Fang, Wei-Ming; Gu, Rui-Xia; Qian, Jian-Ya; Jiao, Xin-An

    2013-02-01

    The aim of this study was to evaluate the probiotic effects of Lactobacillus strains against Vibrio parahaemolyticus causing gastroenteritis. Six-week-old ICR mice were pretreated with four Lactobacillus strains at three dosages, and then challenged with V. parahaemolyticus TGqx01 (serotype O3:K6). The results showed that V. parahaemolyticus TGqx01 caused severe intestinal fluid accumulation (FA) and villi damage in control mice which were pretreated with phosphate-buffered saline. In contrast, significant alleviation of FA was seen in mice pretreated by with a high dose of Lactobacillus strains (P < 0.05, n = 6) but not in mice that received low-dose pretreatments. Among middle-dose treatments, two highly adhesive strains, Lactobacillus rhamnosus H15 and Lactobacillus brevis Y29-4, significantly decreased intestinal FA and villi damage in treated mice (P < 0.05). Two low-adhesive strains, Lactobacillus acidophilus Y14-3 and Lactobacillus fermentum F16-6, had no significant alleviating effects. At the same dosing levels, no significant differences in FA were observed in mice pretreated with strains with similar adhesive abilities but different antagonistic activities. Our findings suggest that Lactobacillus strains can alleviate V. parahaemolyticus-induced intestinal FA in mice, and the doses required for in vivo efficacy depend more on adhesive ability than on the antibacterial activity of strains. PMID:23210909

  11. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kôso, a Japanese Sugar-Vegetable Fermented Beverage.

    PubMed

    Chiou, Tai-Ying; Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-01

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. PMID:26769925

  12. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kôso, a Japanese Sugar-Vegetable Fermented Beverage

    PubMed Central

    Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-01

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kôso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. PMID:26769925

  13. Draft Genome Sequence of Coccoid Lactobacillus equigenerosi NRIC 0697T Isolated from the Gastrointestinal Tracts of Healthy Thoroughbreds

    PubMed Central

    Toh, Hidehiro; Nakano, Akiyo; Nguyen, Co Thi Kim; Mimura, Iyo; Arakawa, Kensuke; Tashiro, Kosuke; Kikusui, Takefumi

    2016-01-01

    Lactobacillus equigenerosi NRIC 0697T was isolated from the gastrointestinal tracts of healthy thoroughbreds. This strain produced unique spherical or oval cells, which is rare in the genus Lactobacillus. Here, we report the draft genome sequence of this strain. PMID:26847890

  14. Human ?-amylase Present in Lower-Genital-Tract Mucosal Fluid Processes Glycogen to Support Vaginal Colonization by Lactobacillus

    PubMed Central

    Spear, Gregory T.; French, Audrey L.; Gilbert, Douglas; Zariffard, M. Reza; Mirmonsef, Paria; Sullivan, Thomas H.; Spear, William W.; Landay, Alan; Micci, Sandra; Lee, Byung-Hoo; Hamaker, Bruce R.

    2014-01-01

    Lactobacillus colonization of the lower female genital tract provides protection from the acquisition of sexually transmitted diseases, including human immunodeficiency virus, and from adverse pregnancy outcomes. While glycogen in vaginal epithelium is thought to support Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize glycogen in vitro. This study investigated how glycogen could be utilized by vaginal lactobacilli in the genital tract. Several Lactobacillus isolates were confirmed to not grow in glycogen, but did grow in glycogen-breakdown products, including maltose, maltotriose, maltopentaose, maltodextrins, and glycogen treated with salivary ?-amylase. A temperature-dependent glycogen-degrading activity was detected in genital fluids that correlated with levels of ?-amylase. Treatment of glycogen with genital fluids resulted in production of maltose, maltotriose, and maltotetraose, the major products of ?-amylase digestion. These studies show that human ?-amylase is present in the female lower genital tract and elucidates how epithelial glycogen can support Lactobacillus colonization in the genital tract. PMID:24737800

  15. Characterization of the most abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotics for genetic engineering.

    PubMed

    Wang, Lei; Fang, Mingjian; Hu, Yanping; Yang, Yuxin; Yang, Mingming; Chen, Yulin

    2014-07-01

    The count and diffusion of Lactobacilli species in the different gastrointestinal tract (GI) regions of broilers were investigated by quantitative real-time polymerase chain reaction, and the probiotic characteristics of six L. reuteri species isolated from broilers' GI tract were also investigated to obtain the potential target for genetic engineering. Lactobacilli had the highest diversity in the crop and the lowest one in the cecum. Compared with the lower GI tract, more Lactobacilli were found in the upper GI tract. Lactobacillus reuteri, L. johnsonii, L. acidophilus, L. crispatus, L. salivarius, and L. aviarius were the predominant Lactobacillus species and present throughout the GI tract of chickens. Lactobacillus reuteri was the most abundant Lactobacillus species. Lactobacillus reuteri XC1 had good probiotic characteristics that would be a potential and desirable target for genetic engineering. PMID:24850302

  16. Evaluation of antibacterial activity of Calotropis gigentica against Streptococcus mutans and Lactobacillus acidophilus: An in vitro comparative study

    PubMed Central

    Sharma, Meenakshi; Tandon, Sandeep; Aggarwal, Vishal; Bhat, Kishore G; Kappadi, Damodhar; Chandrashekhar, Pavitra; Dorwal, Rakesh

    2015-01-01

    Background: This study was conducted to evaluate in vitro antibacterial potential of ethanolic extract of Calotropis gigentica. Materials and Methods: The inhibitory effect of the ethanolic extract was tested against Streptococcus mutans and Lactobacilli casei by using disc diffusion method. Results: Ethanolic extract of Calotropis gigentica showed 16 mm and 14 mm of minimum inhibition zone at 1.25% concentration for S. mutans and lactobacilli, respectively. Conclusion: Calotropis gigentica was found to effective against S. mutans and lactobacilli. PMID:26752839

  17. Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans.

    PubMed

    Filoche, S K; Anderson, S A; Sissons, C H

    2004-10-01

    The ability of oral bacteria to integrate within a biofilm is pivotal to their survival. A dependence on the amount of biofilm growth by noncoaggregating Lactobacillus rhamnosus and Lactobacillus plantarum on coculture with Actinomyces naeslundii, Actinomyces gerencseriae, Streptococcus mutans and Veillonella parvula was investigated using an artificial-mouth culture system. Biofilm formation by the lactobacilli in mono-culture was poor. In coculture with Actinomyces species the amount of L. rhamnosus increased 7-20 times and L. plantarum 4-7 times compared to its mono-culture biofilm. S. mutans also promoted substantial biofilm growth of lactobacilli but V. parvula had no effect. We conclude that these Actinomyces species promoted growth of key Lactobacillus species in a biofilm, as did S. mutans to a smaller extent, and that the ability of individual bacteria to form mono-culture biofilms is not necessarily an indicator of their survival and pathogenic potential in a complex multispecies biofilm community. PMID:15327645

  18. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  19. Isolation and microencapsulation of Lactobacillus spp. from corn silage for probiotic application

    PubMed Central

    Kasra – Kermanshahi, R; Fooladi, J; Peymanfar, S

    2010-01-01

    Background and Objectives Probiotics including strains of Lactobacillus spp. are living microorganisms including which are beneficial to human and animals health. In this study, Lactobacillus has been isolated from corn silage in a cold region of Iran by anaerobic culture. Materials and Methods The bacteriological and biochemical standard methods were used for identification and phenotypic characterization of isolated organism. To increase the stability of organism in the environment, we used microencapsulation technique using stabilizer polymers (Alginate and Chitosan). Results The isolated Lactobacillus spp. was able to ferment tested carbohydrates and grow at 10°C–50°C. Using microencapsulation, the stability and survival of this bacterium increased. Conclusion microencapsulation of lactic acid bacteria with alginate and chitosan coating offers an effective way of delivering viable bacterial cells to the colon and maintaining their survival during refrigerated storage. PMID:22347557

  20. Bacteriocins from Lactobacillus plantarum – production, genetic organization and mode of action

    PubMed Central

    Todorov, Svetoslav D.

    2009-01-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented. PMID:24031346

  1. Effect of different cultivation conditions on Lactobacillus manihotivorans OND32T, an amylolytic lactobacillus isolated from sour starch cassava fermentation.

    PubMed

    Guyot, J P; Morlon-Guyot, J

    2001-08-01

    Study of the cassava sour starch fermentation has led to the isolation of a new homofermentative amylolytic lactic acid bacterium, Lactobacillus manihotivorans OND32T, whose nutritional requirements have been investigated in this work. The main effect of deleting one of the substrate components of the MRS-starch medium was to reduce the amylase production. When starch fermentation with nitrogen as a gas phase was compared to fermentation under aerobic conditions, both growth and amylase production were reduced whereas lactic acid formation was not affected. Addition of carbon dioxide (> or = 20% v/v) to the nitrogen gas phase restored growth and amylase production. The amylase production was high with starch, maltose or cellobiose contrary to glucose, fructose and sucrose. During mixed fermentation of glucose and maltose, a diauxic growth was observed. The maltose consumption and the amylase production started after the glucose depletion. The presence of maltose altered the carbon assimilation from glucose, whereas the energetic pathway was not affected. It is concluded that the elimination of soluble sugars by the wet extraction of starch during the processing of cassava, together with the expected in situ CO2 production, are conditions favouring the growth and the amylase synthesis. However, these are likely to be limited by the low nitrogen content in cassava. PMID:11518431

  2. Investigation into the Potential of Bacteriocinogenic Lactobacillus plantarum BFE 5092 for Biopreservation of Raw Turkey Meat.

    PubMed

    Cho, Gyu-Sung; Hanak, Alexander; Huch, Melanie; Holzapfel, Wilhelm H; Franz, Charles M A P

    2010-12-01

    The bacteriocin-producing Lactobacillus plantarum BFE 5092 was assessed for its potential as a protective culture in the biopreservation of aerobically stored turkey meat. This strain produces three bacteriocins, i.e. plantaricins EF, JK and N. The absolute expression of Lactobacillus plantarum BFE 5092 16S rRNA housekeeping gene, as well as l-ldh, plnEF and plnG genes as determined by quantitative, real-time-PCR, revealed that these genes were expressed to similar levels when the strain was grown at 8 and 30 °C in MRS broth. On turkey meat, Lactobacillus plantarum BFE 5092 did not grow but survived, as indicated by similar viable cell numbers during a 9-day storage period at 8 °C. When inoculated at 1 × 10(7) CFU/g on the turkey meat and subsequently stored at 10 °C, the culture did again not show good growth. Lactobacillus plantarum BFE 5092 could not inhibit the growth of naturally occurring listeriae or Gram-negative bacteria on the turkey meat at 10 °C, or that of Listeria monocytogenes when it was co-inoculated at a level of 1 × 10(5) CFU/g. Gene expression analyses showed that the bacteriocin genes were expressed on turkey meat stored at 10 °C. Moreover, the investigation into the absolute expression of the three plantaricin genes of Lactobacillus plantarum BFE 5092 in co-culture with Listeria monocytogenes on turkey meat by qRT-PCR showed that the plantaricin genes were indeed expressed during the low-temperature storage condition. The Lactobacillus plantarum BFE 5092 strain overall could not effectively inhibit L. monocytogenes and therefore it would not make a suitable protective culture for biopreservation of turkey meat stored aerobically at low temperature. PMID:26781319

  3. Evaluation of Phytate-Degrading Lactobacillus Culture Administration to Broiler Chickens

    PubMed Central

    Askelson, Tyler E.; Campasino, Ashley; Lee, Jason T.

    2014-01-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics. PMID:24271165

  4. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    PubMed Central

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median?=?0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ?30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  5. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  6. Effect of orally administered Lactobacillus brevis HY7401 in a food allergy mouse model.

    PubMed

    Lee, Jeongmin; Bang, Jieun; Woo, Hee-Jong

    2013-11-28

    We had found that orally administered Lactobacillus species were effective immune modulators in ovalbumin (OVA)-sensitized mice. To validate these findings, we investigated the effects of orally administered Lactobacillus brevis HY7401 in OVA-T cell receptor transgenic mice. This strain showed a tendency to induce Th1 cytokines and inhibit Th2 cytokines. All assayed isotypes of OVA-specific antibody were effectively reduced. Systemic anaphylaxis was also relatively reduced with the probiotic administration. These results reveal that L. brevis HY7401 might be useful to promote anti-allergic processes through oral administration. PMID:23985541

  7. Probiotics in digestive diseases: focus on Lactobacillus GG.

    PubMed

    Pace, F; Pace, M; Quartarone, G

    2015-12-01

    Probiotics are becoming increasingly important in basic and clinical research, but they are also a subject of considerable economic interest due to their expanding popularity. They are live micro-organisms which, when administered in adequate amounts, confer a health benefit to the host. From this very well-known definition, it is clear that, unlike drugs, probiotics might be useful in healthy subjects to reduce the risk of developing certain diseases or to optimise some physiological functions. They also may offer some advantages in already ill persons in relieving symptoms and signs, e.g. people with acute diarrhea. According to current definitions, probiotics should survive both gastric acid and bile to reach the small intestine and colon, where they exert their effects. Many of these are available in a lyophilized (freeze-dried) pill form, though some are available in yogurt or as packets (sachets), which can be mixed into non-carbonated drinks. The present review focuses on three main issues: 1) understanding why, at present, probiotics are so interesting for doctors and consumers; 2) reviewing the available data on probiotic use in digestive diseases, in particular irritable bowel syndrome (IBS), (prevention of) infectious diarrhea, inflammatory bowel disease (IBD), non-alcoholic fatty liver disease (NAFLD), and colorectal cancer (CRC); 3) highlighting the individual profile of Lactobacillus GG (LGG) in the above contexts, providing an assessment as well as recommendations on its use in gastro-intestinal tract (GIT) disorders. Research studies conducted in animals and humans with the main probiotics strains for GIT diseases, and published from the early 1990s to 2014 have been considered. PubMed, Medline and Ovid were the main sources adopted for data retrieving. The increasing attention on probiotics is a direct consequence of the improvement in the techniques for studying microbiota. Until recently, its composition has been analysed by culture-based methods that use differential media to select for specific populations of bacteria according to their metabolic requirements. Lactobacillus and Bifidobacterium species are by and large the most commonly used probiotics. Strictly speaking, however, the term "probiotic" should be reserved for live microbes that have been shown in controlled human studies to provide a health benefit. Taking into account patients suffering from the most common gastrointestinal diseases, in whose establishment the GI microbiota plays a key role, probiotics have to be considered as very promising agents, capable of beneficially modulating the intestinal ecosystem, which is perturbed in cases of dysbiosis. Although more clinical data are still needed to better assess the clinical relevance of probiotics, to date, procariota such as Bifidobacteria and Lactobacilli strains, and eucariota such as some Saccharomyces strains are among the most widely used agents in GIT disorders. LGG is a well-known probiotic strain that was isolated more than 20 years ago by Goldin and Gorbach from a faecal sample of a healthy adult, based on several selection criteria: high adhesion in vitro, high resistance against gastric acidity and high antimicrobial activity against pathogens such as Salmonella. In vivo studies have also shown a good persistence of LGG in the human GIT. Since its isolation, LGG has become one of the best clinically documented probiotic strains. A growing body of evidence suggests benefits such as prevention and relief of various types of diarrhoea, and treatment of relapsing Clostridium difficile colitis. Thus, with respect to both adaptation to the GIT and probiotic effects, LGG can be regarded as a prototypical probiotic strain. PMID:26657927

  8. Resistance of functional Lactobacillus plantarum strains against food stress conditions.

    PubMed

    Ferrando, Verónica; Quiberoni, Andrea; Reinhemer, Jorge; Suárez, Viviana

    2015-06-01

    The survival of three Lactobacillus plantarum strains (Lp 790, Lp 813 and Lp 998) with functional properties was studied taking into account their resistance to thermal, osmotic and oxidative stress factors. Stress treatments applied were: 52 °C-15 min (Phosphate Buffer pH 7, thermal shock), H2O2 0.1% (p/v) - 30 min (oxidative shock) and NaCl aqueous solution at 17, 25 and 30% (p/v) (room temperature - 1 h, osmotic shock). The osmotic stress was also evaluated on cell growth in MRS broth added of 2, 4, 6, 8 and 10% (p/v) of NaCl, during 20 h at 30 °C. The cell thermal adaptation was performed in MRS broth, selecting 45 °C for 30 min as final conditions for all strains. Two strains (Lp 813 and Lp 998) showed, in general, similar behaviour against the three stress factors, being clearly more resistant than Lp 790. An evident difference in growth kinetics in presence of NaCl was observed between Lp 998 and Lp 813, Lp998 showing a higher optical density (OD570nm) than Lp 813 at the end of the assay. Selected thermal adaptation improved by 2 log orders the thermal resistance of both strains, but cell growth in presence of NaCl was enhanced only in Lp 813. Oxidative resistance was not affected with this thermal pre-treatment. These results demonstrate the relevance of cell technological resistance when selecting presumptive "probiotic" cultures, since different stress factors might considerably affect viability or/and performance of the strains. The incidence of stress conditions on functional properties of the strains used in this work are currently under research in our group. PMID:25790993

  9. Uracil salvage pathway in Lactobacillus plantarum: Transcription and genetic studies.

    PubMed

    Arsène-Ploetze, Florence; Nicoloff, Hervé; Kammerer, Benoît; Martinussen, Jan; Bringel, Françoise

    2006-07-01

    The uracil salvage pathway in Lactobacillus plantarum was demonstrated to be dependent on the upp-pyrP gene cluster. PyrP was the only high-affinity uracil transporter since a pyrP mutant no longer incorporated low concentrations of radioactively labeled uracil and had increased resistance to the toxic uracil analogue 5-fluorouracil. The upp gene encoded a uracil phosphoribosyltransferase (UPRT) enzyme catalyzing the conversion of uracil and 5-phosphoribosyl-alpha-1-pyrophosphate to UMP and pyrophosphate. Analysis of mutants revealed that UPRT is a major cell supplier of UMP synthesized from uracil provided by preformed nucleic acid degradation. In a mutant selection study, seven independent upp mutants were isolated and all were found to excrete low amounts of pyrimidines to the growth medium. Pyrimidine-dependent transcription regulation of the biosynthetic pyrimidine pyrR1-B-C-Aa1-Ab1-D-F-E operon was impaired in the upp mutants. Despite the fact that upp and pyrP are positioned next to each other on the chromosome, they are not cotranscribed. Whereas pyrP is expressed as a monocistronic message, the upp gene is part of the lp_2376-glyA-upp operon. The lp_2376 gene encodes a putative protein that belongs to the conserved protein family of translation modulators such as Sua5, YciO, and YrdC. The glyA gene encodes a putative hydroxymethyltransferase involved in C1 unit charging of tetrahydrofolate, which is required in the biosynthesis of thymidylate, pantothenate, and purines. Unlike upp transcription, pyrP transcription is regulated by exogenous pyrimidine availability, most likely by the same mechanism of transcription attenuation as that of the pyr operon. PMID:16788187

  10. Uracil Salvage Pathway in Lactobacillus plantarum: Transcription and Genetic Studies

    PubMed Central

    Arsène-Ploetze, Florence; Nicoloff, Hervé; Kammerer, Benoît; Martinussen, Jan; Bringel, Françoise

    2006-01-01

    The uracil salvage pathway in Lactobacillus plantarum was demonstrated to be dependent on the upp-pyrP gene cluster. PyrP was the only high-affinity uracil transporter since a pyrP mutant no longer incorporated low concentrations of radioactively labeled uracil and had increased resistance to the toxic uracil analogue 5-fluorouracil. The upp gene encoded a uracil phosphoribosyltransferase (UPRT) enzyme catalyzing the conversion of uracil and 5-phosphoribosyl-?-1-pyrophosphate to UMP and pyrophosphate. Analysis of mutants revealed that UPRT is a major cell supplier of UMP synthesized from uracil provided by preformed nucleic acid degradation. In a mutant selection study, seven independent upp mutants were isolated and all were found to excrete low amounts of pyrimidines to the growth medium. Pyrimidine-dependent transcription regulation of the biosynthetic pyrimidine pyrR1-B-C-Aa1-Ab1-D-F-E operon was impaired in the upp mutants. Despite the fact that upp and pyrP are positioned next to each other on the chromosome, they are not cotranscribed. Whereas pyrP is expressed as a monocistronic message, the upp gene is part of the lp_2376-glyA-upp operon. The lp_2376 gene encodes a putative protein that belongs to the conserved protein family of translation modulators such as Sua5, YciO, and YrdC. The glyA gene encodes a putative hydroxymethyltransferase involved in C1 unit charging of tetrahydrofolate, which is required in the biosynthesis of thymidylate, pantothenate, and purines. Unlike upp transcription, pyrP transcription is regulated by exogenous pyrimidine availability, most likely by the same mechanism of transcription attenuation as that of the pyr operon. PMID:16788187

  11. Two Arginine Repressors Regulate Arginine Biosynthesis in Lactobacillus plantarum

    PubMed Central

    Nicoloff, Hervé; Arsène-Ploetze, Florence; Malandain, Cédric; Kleerebezem, Michiel; Bringel, Françoise

    2004-01-01

    The repression of the carAB operon encoding carbamoyl phosphate synthase leads to Lactobacillus plantarum FB331 growth inhibition in the presence of arginine. This phenotype was used in a positive screening to select spontaneous mutants deregulated in the arginine biosynthesis pathway. Fourteen mutants were genetically characterized for constitutive arginine production. Mutations were located either in one of the arginine repressor genes (argR1 or argR2) present in L. plantarum or in a putative ARG operator in the intergenic region of the bipolar carAB-argCJBDF operons involved in arginine biosynthesis. Although the presence of two ArgR regulators is commonly found in gram-positive bacteria, only single arginine repressors have so far been well studied in Escherichia coli or Bacillus subtilis. In L. plantarum, arginine repression was abolished when ArgR1 or ArgR2 was mutated in the DNA binding domain, or in the oligomerization domain or when an A123D mutation occurred in ArgR1. A123, equivalent to the conserved residue A124 in E. coli ArgR involved in arginine binding, was different in the wild-type ArgR2. Thus, corepressor binding sites may be different in ArgR1 and ArgR2, which have only 35% identical residues. Other mutants harbored wild-type argR genes, and 20 mutants have lost their ability to grow in normal air without carbon dioxide enrichment; this revealed a link between arginine biosynthesis and a still-unknown CO2-dependent metabolic pathway. In many gram-positive bacteria, the expression and interaction of different ArgR-like proteins may imply a complex regulatory network in response to environmental stimuli. PMID:15342575

  12. Lactobacillus GG bacteria ameliorate arthritis in Lewis rats.

    PubMed

    Baharav, Ehud; Mor, Felix; Halpern, Marisa; Weinberger, Abraham

    2004-08-01

    Probiotic bacteria have beneficial effects in infectious and inflammatory diseases, principally in bowel disorders. In the case of chronic progressive autoimmune arthritides, a major goal of treatment is to reduce inflammation. We hypothesized that probiotic bacteria would ameliorate inflammation found in arthritis models. To assess this effect, Lewis rats were injected with 50 microg bovine alpha-tropomyosin (TRM) or complete Freund's adjuvant (CFA) to induce tropomyosin arthritis (TA) or adjuvant arthritis (AA), respectively. In both models, the rats were divided into 6 groups and fed 0.5 mL/d of the following suspensions: 1) heat-killed Lactobacillus GG (LGG) bacteria; 2) live LGG, both 10(11) colony-forming units (cfu)/L; 3) sterilized milk; 4) plain yogurt; 5) yogurt containing 10(11) cfu/L LGG; or 6) sterilized water. In the disease-prevention experiments, feeding started 1 wk before or after disease induction. In the therapeutic experiments, feeding was initiated at the onset of clinical arthritis. In all experiments, there were significant interactions between time and treatment (P < 0.001), except for milk, which had no effect in the therapeutic experiment. Histologically, rats fed yogurt containing LGG had a milder inflammation in all experiments (P < 0.05), whereas rats fed plain yogurt exhibited a moderate inflammatory score only in the prevention experiments. Anti-TRM antibody titers were not affected by any of the treatments in any of the experiments. Ingestion of live or heat-killed human LGG had a clinically beneficial effect on experimental arthritis. Our observation of the remarkable preventive and curative effect on arthritis using commercial yogurts containing lactobacilli, especially LGG, suggests the need for investigation of these agents in arthritic patients. PMID:15284384

  13. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei.

    PubMed

    Honoré, Anders H; Aunsbjerg, Stina D; Ebrahimi, Parvaneh; Thorsen, Michael; Benfeldt, Connie; Knøchel, Susanne; Skov, Thomas

    2016-01-01

    Lactic acid bacteria with antifungal properties are applied for biopreservation of food. In order to further our understanding of their antifungal mechanism, there is an ongoing search for bioactive molecules. With a focus on the metabolites formed, bioassay-guided fractionation and comprehensive screening have identified compounds as antifungal. Although these are active, the compounds have been found in concentrations that are too low to account for the observed antifungal effect. It has been hypothesized that the formation of metabolites and consumption of nutrients during bacterial fermentations form the basis for the antifungal effect, i.e., the composition of the exometabolome. To build a more comprehensive view of the chemical changes induced by bacterial fermentation and the effects on mold growth, a strategy for correlating the exometabolomic profiles with mold growth was applied. The antifungal properties were assessed by measuring mold growth of two Penicillium strains on cell-free ferments of three strains of Lactobacillus paracasei pre-fermented in a chemically defined medium. Exometabolomic profiling was performed by reversed-phase liquid chromatography in combination with mass spectrometry in electrospray positive and negative modes. By multivariate data analysis, the three strains of Lb. paracasei were readily distinguished by the relative difference of their exometabolomes. The relative differences correlated with the relative growth of the two Penicillium strains. Metabolic footprinting proved to be a supplement to bioassay-guided fractionation for investigation of antifungal properties of bacterial ferments. Additionally, three previously identified and three novel antifungal metabolites from Lb. paracasei and their potential precursors were detected and assigned using the strategy. PMID:26573172

  14. Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments.

    PubMed

    Quiberoni, A; Suárez, V B; Reinheimer, J A

    1999-08-01

    The effect of several biocides and thermal treatments on the viability of four Lactobacillus helveticus phages was investigated. Times to achieve 99% inactivation of phages at 63 degrees C and 72 degrees C in three suspension media were calculated. The three suspension media were tris magnesium gelatin buffer (10 mM Tris-HCl, 10 mM MgSO4, and 0.1% wt/vol gelatin), reconstituted skim milk sterile reconstituted commercial nonfat dry skim milk, and Man Rogosa Sharpe broth. The thermal resistance depended on the phage considered, but a treatment of 5 min at 90 degrees C produced a total inactivation of high titer suspensions of all phages studied. The results obtained for the three tested media did not allow us to establish a clear difference among them, since some phages were more heat resistant in Man Rogosa Sharpe broth and others in tris magnesium gelatin buffer. From the investigation on biocides, we established that sodium hypochlorite at a concentration of 100 ppm was very effective in inactivating phages. The suitability of ethanol 75%, commonly used to disinfect utensils and laboratory equipment, was confirmed. Isopropanol turned out to be, in general, less effective than ethanol at the assayed concentrations. In contrast, peracetic acid (0.15%) was found to be an effective biocide for the complete inactivation of all phages studied after 5 min of exposure. The results allowed us to establish a basis for adopting the most effective thermal and chemical treatments for inactivating phages in dairy plant and laboratory environments. PMID:10456743

  15. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis

    PubMed Central

    2010-01-01

    Background Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish. Results Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall two-dimensional gel electrophoresis (2-DE) protein expression pattern was similar for the different strains, though distinct differences were seen between the two subspecies (sakei and carnosus), and a variation of about 20% in the number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher expression of stress related proteins growing on both carbon sources. Conclusions It is obvious from the data obtained in this study that the proteomic approach efficiently identifies differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application point of view, an understanding of regulatory mechanisms, actions of catabolic enzymes and proteins, and preference of carbon source is of great importance. PMID:20412581

  16. Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco.

    PubMed Central

    Neubauer, H; Glaasker, E; Hammes, W P; Poolman, B; Konings, W N

    1994-01-01

    Lactobacillus sanfrancisco LTH 2581 can use only glucose and maltose as sources of metabolic energy. In maltose-metabolizing cells of L. sanfrancisco, approximately half of the internally generated glucose appears in the medium. The mechanisms of maltose (and glucose) uptake and glucose excretion have been investigated in cells and in membrane vesicles of L. sanfrancisco in which beef heart cytochrome c oxidase had been incorporated as a proton-motive-force-generating system. In the presence of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and cytochrome c, the hybrid membranes facilitated maltose uptake against a concentration gradient, but accumulation of glucose could not be detected. Similarly, in intact cells of L. sanfrancisco, the nonmetabolizable glucose analog alpha-methylglucoside was taken up only to the equilibration level. Selective dissipation of the components of the proton and sodium motive force in the hybrid membranes indicated that maltose is transported by a proton symport mechanism. Internal [14C]maltose could be chased with external unlabeled maltose (homologous exchange), but heterologous maltose/glucose exchange could not be detected. Membrane vesicles of L. sanfrancisco also catalyzed glucose efflux and homologous glucose exchange. These activities could not be detected in membrane vesicles of glucose-grown cells. The results indicate that maltose-grown cells of L. sanfrancisco express a maltose-H+ symport and glucose uniport system. When maltose is the substrate, the formation of intracellular glucose can be more rapid than the subsequent metabolism, which leads to excretion of glucose via the uniport system. PMID:8188601

  17. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum.

    PubMed Central

    Glaasker, E; Konings, W N; Poolman, B

    1996-01-01

    Bacteria respond to changes in medium osmolarity by varying the concentrations of specific solutes in order to maintain constant turgor pressure. The cytoplasmic pools of K+, proline, glutamate, alanine, and glycine of Lactobacillus plantarum ATCC 14917 increased when the osmolarity of the growth media was raised from 0.20 to 1.51 osmol/kg by KCL. When glycine-betaine was present in a high-osmolarity chemically defined medium, it was accumulated to a high cytoplasmic concentration, while the concentrations of most other osmotically important solutes decreased. These observations, together with the effects of glycine-betaine on the specific growth rate under high-osmolarity conditions, suggest that glycine-betaine is preferentially accumulated in L. plantarum. Uptake of glycine-betaine, proline, glutamate, and alanine was studied in cells that were alternately exposed to hyper- and hypo-osmotic stresses. The rate of uptake of proline and glycine-betaine increased instantaneously upon increasing the osmolarity, whereas that of other amino acids did not. This activation occurred also under conditions in which protein synthesis was inhibited was most pronounced when cells were pregrown at high osmolarity. The duration of net transport was a function of the osmotic strength of the assay medium. Glutamate uptake was not activated by an osmotic upshock, and the uptake of alanine was low under all conditions tested. When cells were subjected to osmotic downshock, a rapid efflux of accumulated glycine-betaine, proline, and alanine occurred whereas the pools of other amin acids remained unaffected. The results indicate that osmolyte efflux is, at least to some extent, mediated via specific osmotically regulated efflux systems and not via nonspecific mechanisms as has been suggested previously. PMID:8550485

  18. Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia.

    PubMed

    Choi, Il-Dong; Kim, Sung-Hwan; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Hong, Seong Soo; Sim, Jae-Hun; Ahn, Young-Tae

    2016-03-28

    The triglyceride-lowering effect of probiotics Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 were investigated. Male SD Wistar rats were randomly divided into three groups and fed high-fat diet (HFD), HFD and probiotics (5 X 10(9) CFU/day of L. plantarum KY1032 and 5 X 10(9) CFU/day of L. curvatus HY7601), or normal diet for 6 weeks. Probiotic treatment significantly lowered the elevated plasma triglyceride and increased plasma free fatty acid, glycerol, and plasma apolipoprotein A-V (ApoA-V) levels. The probiotic-treated group showed elevated hepatic mRNA expression of PPARα, bile acid receptor (FXR), and ApoA-V. These results demonstrate that L. plantarum KY1032 and L. curvatus HY7601 lower triglycerides in hypertriglyceridemic rats by upregulating ApoA-V, PPARα, and FXR. PMID:26699746

  19. Lactobacillus plantarum and Lactobacillus buchneri as expression systems: evaluation of different origins of replication for the design of suitable shuttle vectors.

    PubMed

    Spath, Katharina; Heinl, Stefan; Egger, Esther; Grabherr, Reingard

    2012-09-01

    The objectives of this study were to establish transformation protocols for Lactobacillus plantarum CD033 and Lactobacillus buchneri CD034, two industrial silage strains and to test the influence of selected origins of replication on plasmid copy number, plasmid stability, and plasmid incompatibility in these strains. Electro-transformation protocols were optimized by examination of the influence of different electroporation solutions and cell wall weakening agents on transformation efficiency. Using Lithium acetate as cell wall weakening agent, we could achieve transformation efficiencies of 8 × 10(4) transformants per 1 ?g DNA for L. buchneri CD034 which is to our knowledge the highest described for this species up to now. In order to test feasibility of previously described origins of replication derived from Bacillus subtilis, L. plantarum, Lactococcus lactis, and two novel L. buchneri CD034 plasmids to drive replication in our two selected Lactobacillus strains, six shuttle vectors were constructed. Results indicate that, in terms of stable propagation and high gene copy numbers (up to 238 copies/chromosome), the most suitable origins of replication for the construction of expression vectors for the selected silage strains were the ones derived from the novel L. buchneri CD034 plasmids. PMID:22081307

  20. Antimicrobial Activity of Lactobacillus spp. Isolated From Fecal Flora of Healthy Breast-Fed Infants Against Diarrheagenic Escherichia coli

    PubMed Central

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Lashani, Elahe; Tajabadi Ebrahimi, Maryam

    2015-01-01

    Background: Among the enteric pathogens, diarrheagenic Escherichia coli are important causes of diarrhea in children in both developing and industrialized countries. Some Lactobacillus species are commonly used as probiotics, with effects especially against acute diarrhea in childhood. Objectives: The aim of this study was to explore antimicrobial activity of Lactobacillus strains isolated from fecal flora of healthy breast-fed infants against five diarrheagenic E. coli pathotypes such as enteroaggregative E. coli (EAEC), enterohaemorrhagic E. coli (EHEC) enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). Materials and Methods: Fecal samples were collected from seven healthy breast-fed infants between 1 to 18 months of age in Tehran city, Iran. Identification of Lactobacillus isolates was performed by biochemical and 16S rRNA gene sequencing methods. An agar well diffusion assay was used for detection of antimicrobial activity of Lactobacillus isolates against five diarrheagenic E. coli pathotypes. Results: A total of 20 Lactobacillus isolates were identified from stool samples. Lactobacillus fermentum was the most frequently isolated strain, followed by L. plantarum and L. rhamnosus. Seven Lactobacillus strains including L. fermentum (four isolates), L. paracasei (one isolate), L. plantarum (one isolate) and L. rhamnosus (one isolate) had a mild inhibitory activity against diarrheagenic E. coli. The mechanism of inhibitory activity of Lactobacillus strains appeared to be due to the production of organic acids or hydrogen peroxide. Conclusions: Our findings show that Lactobacillus strains with human origin had a mild inhibitory activity against the diarrheagenic E. coli, and these strains may be useful as probiotic candidates in prevention of intestinal infections caused by diarrheagenic E. coli. PMID:26865944

  1. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    PubMed

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (P<0.01). B. subtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (P<0.05). The viability of Lactobacillus increased when co-cultured with B. subtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (P<0.05). The role of Bacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended. PMID:26259891

  2. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus buchneri has recently been associated with anaerobic spoilage of fermented cucumbers due to its ability to metabolize lactic acid into acetic acid and 1,2-propanediol. However, we have limited knowledge of other chemical components in fermented cucumber that may be related to spoilage ...

  3. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Reduced yields of ethanol due to bacterial contamination in fermentation cultures weakens the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predomin...

  4. Novel antibacterial polypeptide laparaxin produced by Lactobacillus paracasei strain NRRL B-50314 via fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the production and characterization of a novel antibacterial polypeptide, designated laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. Crude laparaxin has antibacterial activity against a wide variety of Gram-positive bacteria, including: lactic acid bacteria ...

  5. Draft Genome Sequence of Lactobacillus panis DSM 6035T, First Isolated from Sourdough

    PubMed Central

    Zhu, Yixin; Fang, Daiqiong; Shi, Ding; Li, Ang; Lv, Longxian; Yan, Ren; Yao, Jian; Hua, Dasong; Hu, Xinjun; Guo, Feifei; Wu, Wenrui; Guo, Jing; Chen, Yanfei; Jiang, Xiawei; Chen, Xiaoxiao

    2015-01-01

    We report a draft genome sequence of Lactobacillus panis DSM 6035T, isolated from sourdough. The genome of this strain is 2,082,789 bp long, with 47.9% G+C content. A total of 2,047 protein-coding genes were predicted. PMID:26205855

  6. Draft Genome Sequence of Lactobacillus panis DSM 6035T, First Isolated from Sourdough.

    PubMed

    Zhu, Yixin; Fang, Daiqiong; Shi, Ding; Li, Ang; Lv, Longxian; Yan, Ren; Yao, Jian; Hua, Dasong; Hu, Xinjun; Guo, Feifei; Wu, Wenrui; Guo, Jing; Chen, Yanfei; Jiang, Xiawei; Chen, Xiaoxiao; Li, Lanjuan

    2015-01-01

    We report a draft genome sequence of Lactobacillus panis DSM 6035(T), isolated from sourdough. The genome of this strain is 2,082,789 bp long, with 47.9% G+C content. A total of 2,047 protein-coding genes were predicted. PMID:26205855

  7. Effect of LGG yoghurt on Streptococcus mutans and Lactobacillus spp. salivary counts in children.

    PubMed

    Glavina, Domagoj; Gorseta, Kristina; Skrinjarić, Ilija; Vranić, Dubravka Negovetić; Mehulić, Ketij; Kozul, Karlo

    2012-03-01

    The aim of this study was to establish effect of 14 day consumption of commercially available yoghurt containing Lactobacillus rhamnosus ATCC53103 - LGG (Bioaktiv LGG, Dukat, Croatia) on Streptococcus mutans and Lactobacillus spp. salivary counts in children. Twenty five patients, 6-10 yr old participated in the study. At the inclusion in the study caries risk for every patient was evaluated. The saliva samples were tested with chair side kits for saliva buffer capacity (CRT buffer, Vivadent, Schaan, Liechtenstein), S. Mutans and Lactobacillus counts (CRT bacteria test, Vivadent, Schaan, Liechtenstein). Seven, 14 and 30d after yoghurt consumption saliva samples were tested again with CRT buffer and CRT bacteria tests. Obtained data were analyzed using chi2 and Kruskal-Wallis tests. Results showed significant increase in saliva buffer capacity 30d after yoghurt consumption. S. Mutans salivary counts were significantly decreased after 30d. Significant differences in Lactobacillus counts were not observed. It could be concluded that daily consumption of yoghurt containing LGG have an inhibitory effect on oral pathogenic bacteria and may be beneficial in caries prevention. PMID:22816209

  8. Draft Genome Sequence of a Probiotic Strain, Lactobacillus fermentum UCO-979C

    PubMed Central

    Villena, Julio; Gonzalez, Carlos; Albarracin, Leonardo; Barros, Javier

    2015-01-01

    This report describes a draft genome sequence of Lactobacillus fermentum strain UCO-979C. The reads generated by a Ion Torrent PGM were assembled into contigs, with a total size of 2.01 Mb. The data were annotated using the NCBI GenBank and RAST servers. Specific features of the genome are highlighted. PMID:26659681

  9. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four alfalfa trials, one corn, and one bmr corn were treated with no inoculant (Control), Lactobacillus plantarum (MTD/1) and formic acid (FA), ensiled in 1-L mini-silos, and fermented for 60 d at room temperature (22 C). Mini-silos were opened and analyzed for fermentation characteristics and solub...

  10. Lactobacillus plantarum MTD/1, Its Impact on Silage and In vitro Rumen Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to quantify the impact of Lactobacillus plantarum MTD/1 on silage and in vitro rumen fermentation on alfalfa and corn silage. Four trials were conducted in alfalfa in second (35 and 32% DM) and third harvest (38 and 31% DM), and two in forage corn, hybrids Mycogen 797...

  11. Identification of Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus by rDNA-based techniques.

    PubMed

    Chenoll, E; Macián, M C; Aznar, R

    2003-11-01

    Ribosomal DNA-based techniques including the analysis of profiles generated by ISR amplification, ISR restriction and ARDRA have been evaluated as molecular tools for identifying Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus. They have been applied for the molecular characterization of 91 strains with the following identities: eight Carnobacterium including the eight type species of the genus; 61 Lactobacillus including 40 type strains out of 45 species, 13 Leuconostoc, out of them 11 are type strains and three are subspecies of Lc. mesenteroides; and nine strains representing the six species of genus Pediococcus. The genetic relationship displayed between these species by rrn-based profiles is sustained by their phylogenetic relationships and can therefore be considered useful for taxonomic purposes. Profiles obtained by ISR amplification allowed identification at genus level of Carnobacterium and Leuconostoc, and even at species level in genus Carnobacterium. Genera Lactobacillus and Pediococcus could not be distinguished from each other by applying this technique. The Lactobacillus species analysed here (45) were differentiated using ARDRA-DdeI and ISR-DdeI profiles, sequentially, and Pediococcus species by ISR-DdeI profiles. It was necessary to combine profiles generated by restriction of ISR-DdeI, ARDRA-DdeI and ARDRA-HaeIII in order to complete the identification of Leuconostoc species. PMID:14666983

  12. Conversion of Biomass Hydrolysates and Other Substrates to Ethanol and Other Chemicals by Lactobacillus buchneri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Lactobacillus buchneri strain NRRL B-30929 can convert xylose and glucose into ethanol and chemicals. In this paper, L. buchneri NRRL B-30929 was initially compared with the type strains L. buchneri NRRL 1837 and DSM 5987 for growth and fermentation using single substrate derived from plant mater...

  13. Genome Sequence of Rapid Beer-Spoiling Isolate Lactobacillus brevis BSO 464

    PubMed Central

    Bergsveinson, Jordyn; Pittet, Vanessa; Ewen, Emily; Baecker, Nina

    2015-01-01

    The genome of brewery-isolate Lactobacillus brevis BSO 464 was sequenced and assembly produced a chromosome and eight plasmids. This bacterium tolerates dissolved CO2/pressure and can rapidly spoil packaged beer. This genome is useful for analyzing the genetics associated with beer spoilage by lactic acid bacteria. PMID:26634759

  14. ISOLATION OF A LACTOBACILLUS SALIVARIUS: ITS BACTERIOCIN IS INHIBITORY TO CAMPYLOBACTER JEJUNI IN CHICKENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated anti-Campylobacter jejuni activity among >1,200 isolates of lactic acid bacteria. One, Lactobacillus salivarius (NRRL B-30514), was selected for further study. The cell-free, ammonium sulfate precipitate from the broth culture was termed the crude antimicrobial preparation (CAP). Ten...

  15. Characterization of Lactobacillus fermentum PL9988 Isolated from Healthy Elderly Korean in a Longevity Village.

    PubMed

    Park, Jong-Su; Shin, Eunju; Hong, Hyunjin; Shin, Hyun-Jung; Cho, Young-Hoon; Ahn, Ki-Hyun; Paek, Kyungsoo; Lee, Yeonhee

    2015-09-01

    In this work, we wanted to develop a probiotic from famous longevity villages in Korea. We visited eight longevity villages in Korea to collect fecal samples from healthy adults who were aged above 80 years and had regular bowel movements, and isolated lactic-acid-producing bacteria from the samples. Isolated colonies that appeared on MRS agar containing bromophenol blue were identified by means of 16S rRNA sequencing, and 102 of the isolates were identified as lactic-acid-producing bacteria (18 species). Lactobacillus fermentum was the most frequently found species. Eight isolates were selected on the basis of their ability to inhibit the growth of six intestinal pathogens (Escherichia coli O157:H7, Salmonella enterica subsp. enterica Typhimurium, Salmonella enterica subsp. enterica Enteritidis, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes) and their susceptibility to 15 antimicrobial agents. Among these eight isolates, four Lactobacillus fermentum isolates were found not to produce any harmful enzymes or metabolites. Among them, Lactobacillus fermentum isolate no. 24 showed the strongest binding to intestinal epithelial cells, the highest immune-enhancing activity, anti-inflammation activity, and anti-oxidation activity as well as the highest survival rates in the presence of artificial gastric juice and bile solution. This isolate, designated Lactobacillus fermentum PL9988, has all the characteristics for a good probiotic. PMID:26095384

  16. Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents.

    PubMed

    Killer, J; Havlík, J; Vlková, E; Rada, V; Pechar, R; Benada, O; Kope?ný, J; Kofro?ová, O; Sechovcová, H

    2014-05-01

    Three strains of regular, long, Gram-stain-positive bacterial rods were isolated using TPY, M.R.S. and Rogosa agar under anaerobic conditions from the digestive tract of wild mice (Mus musculus). All 16S rRNA gene sequences of these isolates were most similar to sequences of Lactobacillus gasseri ATCC 33323T and Lactobacillus johnsonii ATCC 33200T (97.3% and 97.2% sequence similarities, respectively). The novel strains shared 99.2-99.6% 16S rRNA gene sequence similarities. Type strains of L. gasseri and L. johnsonii were also most related to the newly isolated strains according to rpoA (83.9-84.0% similarities), pheS (84.6-87.8%), atpA (86.2-87.7%), hsp60 (89.4-90.4%) and tuf (92.7-93.6%) gene sequence similarities. Phylogenetic studies based on 16S rRNA, hsp60, rpoA, atpA and pheS gene sequences, other genotypic and many phenotypic characteristics (results of API 50 CHL, Rapid ID 32A and API ZYM biochemical tests; cellular fatty acid profiles; cellular polar lipid profiles; end products of glucose fermentation) showed that these bacterial strains represent a novel species within the genus Lactobacillus. The name Lactobacillus rodentium sp. nov. is proposed to accommodate this group of new isolates. The type strain is MYMRS/TLU1T (=DSM 24759T=CCM 7945T). PMID:24478214

  17. Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus brevis ATCC 367 is able to metabolize xylose into lactate and acetate but not ethanol. In an attempt to transform L. brevis into an ethanologen that uses xylose, a Gram-positive gene for pyruvate decarboxylase (PDC) was introduced. This enzyme catalyzes the decarboxylation of pyruvat...

  18. Colon-specific delivery of lactobacillus rhamnosus GG using pectin hydrogel beads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The probiotic bacteria, Lactobacillus rhamnosus GG (LGG), has shown beneficial effects on human health, and is accepted by increasing populations for the prevention and treatment of irritable bowel diseases. To increase the bioavailability and efficacy of LGG, the probiotic was encapsulated in hydro...

  19. Genome Sequence of Lactobacillus gastricus PS3, a Strain Isolated from Human Milk.

    PubMed

    Martín, Virginia; Cárdenas, Nivia; Jiménez, Esther; Maldonado, Antonio; Rodríguez, Juan Miguel; Fernández, Leonides

    2013-01-01

    Lactobacillus gastricus is a mostly unknown lactobacilli species associated with mucosal surfaces. We present the draft annotated genome sequence of L. gastricus strain PS3, isolated from a human milk sample, to provide new insights into its biology and to characterize those genes related to advantageous technological and beneficial properties. PMID:23846278

  20. Genome sequence of Lactobacillus ruminis SPM0211, isolated from a fecal sample from a healthy Korean.

    PubMed

    Lee, Sunghee; Cho, Yong-Joon; Lee, Anne Hayoung; Chun, Jongsik; Ha, Nam-Joo; Ko, GwangPyo

    2011-09-01

    Lactobacillus ruminis SPM0211 is a potential probiotic strain that shows antimicrobial activity against emerging pathogens. Here we present the draft genomic sequence of L. ruminis SPM0211, isolated from a fecal sample from a healthy Korean and describe both the common and unique features of this strain. PMID:21742873

  1. Mutation and Selection of Lactobacillus plantarum Strains That Do Not Produce Carbon Dioxide from Malate †

    PubMed Central

    Daeschel, M. A.; McFeeters, R. F.; Fleming, H. P.; Klaenhammer, T. R.; Sanozky, R. B.

    1984-01-01

    A differential medium was developed to distinguish between malate-decarboxylating (MDC+) and -non-decarboxylating (MDC?) strains of Lactobacillus plantarum. MDC? strains produced a visible acid reaction in the medium, whereas MDC+ strains did not. Use of the medium allowed for rapid screening and isolation of mutagenized cells that had lost the ability to produce CO2 from malate. PMID:16346479

  2. The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several starter cultures used in the production of fermented beverages were screened for lactic acid bacteria that produced water-insoluble polysaccharides from sucrose. The strain producing the greatest amount was identified as Lactobacillus satsumensis by its 16S RNA sequence. This strain produc...

  3. Use of a lactobacillus-based probiotic culture to reduce Salmonella in day of hatch broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A commercially available Lactobacillus probiotic (FM-B11™ Ivesco LLC) (B11) significantly reduced Salmonella recovery from day-of-hatch chicks in several studies. For all experiments, day-of-hatch male broiler chicks (n=40 per pen) were challenged with approximately 10**4 cfu per chick of Salmonell...

  4. Proteomic Approach for Molecular Mechanisms under Ethanol Stress in Lactobacillus buchneri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria have potential to serve as microbial catalysts for production of fuels and chemicals from lignocellulosic biomass. Lactobacillus buchneri NRRL B-30929 is a novel strain that belongs to the hetero-fermentative group of lactic acid bacteria. It was isolated from a fuel ethanol p...

  5. Draft Genome Sequence of a Probiotic Strain, Lactobacillus fermentum UCO-979C.

    PubMed

    Karlyshev, Andrey V; Villena, Julio; Gonzalez, Carlos; Albarracin, Leonardo; Barros, Javier; Garcia, Apolinaria

    2015-01-01

    This report describes a draft genome sequence of Lactobacillus fermentum strain UCO-979C. The reads generated by a Ion Torrent PGM were assembled into contigs, with a total size of 2.01 Mb. The data were annotated using the NCBI GenBank and RAST servers. Specific features of the genome are highlighted. PMID:26659681

  6. Inactivation of Lactobacillus plantarum in apple cider using radio frequency electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) processing is effective at inactivating Gram negative bacteria in fruit juices at moderately low temperatures, but has yet to be shown to be effective at reducing Gram positive bacteria. Lactobacillus plantarum ATCC 49445, a Gram positive bacterium, was inocula...

  7. Effect of malic acid on the growth kinetics of Lactobacillus plantarum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fermentation kinetics of Lactobacillus plantarum was studied in a specially designed broth formulated from commercially available, dehydrated components (YTA - yeast extract, trypticase, and ammonium sulfate) in batch and continuous culture. During batch growth in the absence of malic acid in t...

  8. Carbohydrate utilization and detection of a nucleotide hydrolase in Lactobacillus buchneri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus buchneri strains NRRL 1837, DSM 5987, and NRRL B-30929 were examined for capacity to metabolize various carbohydrates via growth and fermentation analyses. Carbon sources used for this study included D-melibiose, inosine, uridine, D-melezitose, maltotriose, N-acetyl-D-glucosamine, suc...

  9. Genome Sequence of Rough and Smooth Variants of Pleomorphic Strain Lactobacillus farciminis CNCM-I-3699

    PubMed Central

    Tareb, R.; Bernardeau, M.

    2015-01-01

    The probiotic Lactobacillus farciminis CNCM-I-3699 is a pleomorphic strain exhibiting smooth and rough variants. We report their complete genomes consisting of a chromosome of 2, 4 Mb and a plasmid of 6,417 bp. The smooth variant differs by the presence of an additional plasmid of 35,418 bp. PMID:26383668

  10. Draft Genome Sequence of Lactobacillus johnsonii Strain 16, Isolated from Mice

    PubMed Central

    Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Elgavish, Sharona

    2015-01-01

    Here, we report the genome sequence of Lactobacillus johnsonii, a member of the gut lactobacilli. This draft genome of L. johnsonii strain 16 isolated from C57BL/6J mice enables the identification of bacterial genes responsible for host-specific gut persistence. PMID:26450724

  11. Preparation of a Lactobacillus plantarum starter culture for cucumber fermentations that can meet kosher guidelines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method is described for growth of a Lactobacillus plantarum starter culture in jars of commercially available pasteurized fresh-pack kosher dill cucumbers so that jars can be used to inoculate commercial scale cucumber fermentation tanks. A procedure is also described to transfer lactic acid bacte...

  12. Draft Genome Sequence of a Novel Lactobacillus salivarius Strain Isolated from Piglet.

    PubMed

    Mackenzie, Donald A; McLay, Kirsten; Roos, Stefan; Walter, Jens; Swarbreck, David; Drou, Nizar; Crossman, Lisa C; Juge, Nathalie

    2014-01-01

    Lactobacillus salivarius is part of the vertebrate indigenous microbiota of the gastrointestinal tract, oral cavity, and milk. The properties associated with some L. salivarius strains have led to their use as probiotics. Here we describe the draft genome of the pig isolate L. salivarius cp400, providing insights into host-niche specialization. PMID:24526652

  13. Effect of intestinal colonisation by two Lactobacillus strains on the immune response of gnotobiotic mice.

    PubMed

    Steinberg, R S; Lima, M; Gomes de Oliveira, N L; Miyoshi, A; Nicoli, J R; Neumann, E; Nunes, A C

    2014-12-01

    The effect of intestinal colonisation on the immune system was investigated in germ-free mice monoassociated with Lactobacillus strains isolated from calf faeces. Single doses of Lactobacillus acidophilus L36 or Lactobacillus salivarius L38 were administered to germ-free mice by intragastric gavage. Ten days later, the mice were euthanised. Gene expression levels of interleukin 5 (IL-5), IL-6, IL-10, IL-12b, IL-17a, gamma interferon (IFN-?), transforming growth factor beta 1 (TGF-?1), and tumour necrosis factor alpha (TNF-?) were quantified in segments of the small and large intestines by real time quantitative polymerase chain reaction. All the mice were colonised rapidly after Lactobacillus administration with intestinal counts ranging from 6.53 to 8.26 log cfu/g. L. acidophilus L36 administration increased the expression of cytokines involved with the Th2 (IL-5, IL-6 and TGF-?1) and Th17 (IL-17a, TNF-? and IL-6) inflammatory response, whereas L. salivarius L38 appeared to stimulate a pattern of less diversified cytokines in the intestine. Intragastric gavage of L. acidophilus L36 and L. salivarius L38 induced similar levels of colonisation in the digestive tracts of germ-free mice but stimulated different immune responses in the intestinal mucosa. The different immunomodulation patterns might facilitate the potential use of these lactobacilli as probiotics to treat distinct pathological conditions, for example protection against Citrobacter rodentium infection by stimulating IL-17 production. PMID:24939801

  14. Degradation of ascorbic acid and potassium sorbate by different Lactobacillus species isolated from packed green olives.

    PubMed

    Montaño, Alfredo; Sánchez, Antonio Higinio; Casado, Francisco Javier; Beato, Víctor Manuel; de Castro, Antonio

    2013-05-01

    The aim of this research was to ascertain the lactic acid bacteria responsible for the degradation of ascorbic acid and/or potassium sorbate, isolated from packed green olives where these additives had diminished. A total of 14 isolates were recovered from samples of different green olive containers. According to partial sequencing of the 16S rRNA coding gene, Lactobacillus parafarraginis, Lactobacillus rapi, Lactobacillus pentosus, Lactobacillus paracollinoides, and Pediococcus ethanolidurans were identified. With the exception of L. pentosus and L. paracollinoides, the other species had not been mentioned in table olives before this study. Only three of the 14 isolates metabolized ascorbic acid in MRS broth, and the products from ascorbic acid in modified MRS broth without carbon sources were acetic and lactic acids. Except for the two L. rapi and the two P. ethanolidurans strains, the remaining 10 isolates depleted potassium sorbate added into MRS broth to some extent. The product generated by three of these strains was confirmed to be trans-4-hexenoic acid. The degradation of ascorbate or sorbate by lactic acid bacteria should be taken into account when these additives are used in food products where this group of bacteria may be present. PMID:23498172

  15. Complete Genome Sequences of Lactobacillus Phages J-1 and PL-1

    PubMed Central

    Dieterle, Maria Eugenia; Jacobs-Sera, Deborah; Russell, Daniel; Hatfull, Graham

    2014-01-01

    Lactobacillus phages J-1 and PL-1 were isolated during the 1960s from abnormal fermentations of Yakult. The genomes are almost identical, but PL-1 has a deletion in the genetic switch region and also differs in a gene coding for a putative tail protein. PMID:24385573

  16. Novel antibacterial polypeptide produced by Lactobacillus paracasei strain NRRL B-50314

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the production and characterization of a novel antibacterial polypeptide, designated as laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. The crude laparaxin has antibacterial activity against a range of Gram-positive bacteria including the following: lactic a...

  17. Genome Sequence of a Potential Probiotic Strain, Lactobacillus fermentum HFB3, Isolated from a Human Gut

    PubMed Central

    Kumari, Madhu; Swarnkar, Mohit Kumar; Kumar, Sanjay

    2015-01-01

    A draft genome sequence of 2.04 Mb is reported for Lactobacillus fermentum HFB3, which is a lactic acid bacterium with probiotic properties. The gene-coding clusters also predicted the presence of genes responsible for probiotic characteristics. PMID:26543124

  18. Genome Sequence of a Potential Probiotic Strain, Lactobacillus fermentum HFB3, Isolated from a Human Gut.

    PubMed

    Kumari, Madhu; Swarnkar, Mohit Kumar; Kumar, Sanjay; Singh, Anil Kumar; Gupta, Mahesh

    2015-01-01

    A draft genome sequence of 2.04 Mb is reported for Lactobacillus fermentum HFB3, which is a lactic acid bacterium with probiotic properties. The gene-coding clusters also predicted the presence of genes responsible for probiotic characteristics. PMID:26543124

  19. Complete genome sequence of probiotic Lactobacillus plantarum P-8 with antibacterial activity.

    PubMed

    Zhang, Wenyi; Sun, Zhihong; Bilige, Menghe; Zhang, Heping

    2015-01-10

    Lactobacillus plantarum P-8 is a probiotic bacterium, which shows high antibacterial activity. The genome consists of a circular 3,033,693-bp chromosome and six plasmids. Bioinformatics inspection of the genome revealed a gene cluster relating to bacteriocin production. Genome information has provided the basis for understanding the potential molecular mechanism behind the bacteriocin production. PMID:25444879

  20. Genome sequence of Lactobacillus salivarius GJ-24, a probiotic strain isolated from healthy adult intestine.

    PubMed

    Cho, Yong-Joon; Choi, Jae Kyoung; Kim, Ji-Hee; Lim, Yea-Seul; Ham, Jun-Sang; Kang, Dae-Kyung; Chun, Jongsik; Paik, Hyun-Dong; Kim, Geun-Bae

    2011-09-01

    The draft genome sequence of Lactobacillus salivarius GJ-24 isolated from the feces of healthy adults was determined. Its properties, including milk fermentation activity and bacteriocin production, suggest its potential uses as a probiotic lactic acid bacterium and start culture for dairy products. PMID:21742893

  1. Phenotypic Characteristics and Probiotic Potentials of Lactobacillus spp. Isolated From Poultry

    PubMed Central

    Noohi, Nasrin; Ebrahimipour, Gholamhosein; Rohani, Mahdi; Talebi, Malihe; Pourshafie, Mohammad Reza

    2014-01-01

    Background: Lactic acid bacteria, especially Lactobacillus spp., have been considered as excellent probiotic microorganisms, because of their activities in reducing the enteric diseases and maintaining healthy poultry. Objectives: The current study aimed to evaluate the phenotypic characteristics and the probiotic potentials of Lactobacillus spp. isolated from poultry. Materials and Methods: A total of 168 lactic acid bacteria (LAB) were isolated from healthy six and twenty-one-day old chickens and their feed samples. The isolated bacteria were identified by morphological, biochemical, and molecular tests including Polymerase Chain Reaction (PCR) and 16S rRNA gene sequencing. Biochemical fingerprinting with Phene Plate system (Ph-P) was done and the acid and bile resistant lactobacilli were subjected to the antibiotic susceptibility test. Results: Amongst all of the examined LAB, 30.3% were resistant to bile and acid. Most of the isolated LAB (57.1%) belonged to the genus Lactobacillus with Lactobacillus brevis (78.1%) as the dominant species followed by L. reuteri (16.6%), L. plantarum (3%), and L. vaginalis (2%). The remaining isolates were identified as Pediococcus spp. (42.9%). The Ph-P cluster analysis of 75 L. brevis and 16 L. reuteri strains showed high phenotypic diversity. Whilst the results of Ph-P typing from L. reuteri strains showed low phenotypic variations especially among the strains sensitive to acid and bile salts. Conclusions: Overall, the results showed that some of the high potential probiotic LAB species existed in Iranian poultry. PMID:25485067

  2. Complete Genome Sequence of Lactobacillus acidophilus MN-BM-F01

    PubMed Central

    Yang, Lan; Li, Zhiwei; Shi, Yudong; Li, Zhouyong; Zhao, Xiaohui

    2016-01-01

    Lactobacillus acidophilus MN-BM-F01 was originally isolated from a traditional fermented dairy product in China. The characteristics of this bacterium are its low post-acidification ability and high acid-producing rate. Here, we report the main genome features of L. acidophilus MN-BM-F01. PMID:26868391

  3. Complete Genome Sequence of Lactobacillus acidophilus MN-BM-F01.

    PubMed

    Yang, Lan; Chen, Yun; Li, Zhiwei; Shi, Yudong; Li, Zhouyong; Zhao, Xiaohui

    2016-01-01

    Lactobacillus acidophilus MN-BM-F01 was originally isolated from a traditional fermented dairy product in China. The characteristics of this bacterium are its low post-acidification ability and high acid-producing rate. Here, we report the main genome features of L. acidophilus MN-BM-F01. PMID:26868391

  4. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations

    SciTech Connect

    Nakamura, L.K.

    1981-01-01

    The morphology, physiology and fermentation characteristics of this hitherto unrecognized species are described. The new Lactobacillus species can be differentiated from L. acidophilus, L. jensenii, and L. leichmannii on the basis of starch fermentation, G + C content, vitamin requirements and stereoisomerism of lactic acid produced. The type strain of L. amylovorus is NRRL B-4540. (Refs. 39).

  5. Draft Genome Sequence of the Mannitol-Producing Strain Lactobacillus mucosae CRL573

    PubMed Central

    Bleckwedel, Juliana; Terán, Lucrecia C.; Bonacina, Julieta; Saavedra, Lucila

    2014-01-01

    Lactobacillus mucosae CRL573, isolated from child fecal samples, efficiently converts fructose and/or sucrose into the low-calorie sugar mannitol when cultured in modified MRS medium at pH 5.0. Also, the strain is capable of producing bacteriocin. The draft genome sequence of this strain with potential industrial applications is presented here. PMID:25502678

  6. Survival of Lactobacillus plantarum in model solutions and fruit juices.

    PubMed

    Nualkaekul, Sawaminee; Charalampopoulos, Dimitris

    2011-03-30

    The aim of the work was to study the survival of Lactobacillus plantarum NCIMB 8826 in model solutions and develop a mathematical model describing its dependence on pH, citric acid and ascorbic acid. A Central Composite Design (CCD) was developed studying each of the three factors at five levels within the following ranges, i.e., pH (3.0-4.2), citric acid (6-40 g/L), and ascorbic acid (100-1000 mg/L). In total, 17 experimental runs were carried out. The initial cell concentration in the model solutions was approximately 1 × 10(8)CFU/mL; the solutions were stored at 4°C for 6 weeks. Analysis of variance (ANOVA) of the stepwise regression demonstrated that a second order polynomial model fits well the data. The results demonstrated that high pH and citric acid concentration enhanced cell survival; one the other hand, ascorbic acid did not have an effect. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate, cranberry and lemon juice. The model predicted well the cell survival in orange, blackcurrant and pineapple, however it failed to predict cell survival in grapefruit and pomegranate, indicating the influence of additional factors, besides pH and citric acid, on cell survival. Very good cell survival (less than 0.4 log decrease) was observed after 6 weeks of storage in orange, blackcurrant and pineapple juice, all of which had a pH of about 3.8. Cell survival in cranberry and pomegranate decreased very quickly, whereas in the case of lemon juice, the cell concentration decreased approximately 1.1 logs after 6 weeks of storage, albeit the fact that lemon juice had the lowest pH (pH~2.5) among all the juices tested. Taking into account the results from the compositional analysis of the juices and the model, it was deduced that in certain juices, other compounds seemed to protect the cells during storage; these were likely to be proteins and dietary fibre In contrast, in certain juices, such as pomegranate, cell survival was much lower than expected; this could be due to the presence of antimicrobial compounds, such as phenolic compounds. PMID:21411170

  7. Zymogram and Preliminary Characterization of Lactobacillus helveticus Autolysins

    PubMed Central

    Valence, F.; Lortal, S.

    1995-01-01

    The autolysins of Lactobacillus helveticus ISLC5 were detected and partially characterized by renaturing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with substrate-containing gels (zymogram). By using lyophilized Micrococcus luteus cells or heated whole cells of L. helveticus ISLC5 (0.2% [wt/vol]) as a substrate, several lytic activities were detected in the whole-cell SDS extract of strain ISLC5 (i) one activity at 42.4 kDa, which was named autolysin A, and (ii) six other activities having very similar molecular weights (29.1, 29.6, 30, 30.8, 31.7, and 32.8 kDa), which were named autolysins B (B1 through B6, respectively). As regards the temporal distribution of the enzymes, autolysins A and B were detected in the cells harvested from the beginning of the exponential growth phase. Autolysin A appeared to be associated only with viable cells, whereas the autolysins B remained associated with the cell envelope several days after the complete loss of culture viability. When SDS-treated walls of L. helveticus ISLC5 were used as a substrate, a supplementary lytic activity appeared at 37.5 kDa; it was considered a peptidoglycan hydrolase, since it was not able to induce lysis of whole-cell substrate. The autolysins of 30 other strains of L. helveticus from various geographical origins were also analyzed by zymogram; all the activity profiles obtained were similar to that of strain ISLC5 in terms of the number of lytic bands and their apparent molecular weights. Only the relative intensities of the lytic bands corresponding to autolysins A and B were variable depending on the strains. This observation suggested that autolysins are highly conserved enzymes. A concentrated crude lysate of the virulent bacteriophage 832-B1 infecting L. helveticus was also analyzed by zymogram; one lytic activity with an apparent molecular weight of 31.7 kDa, very close to the weights of the autolysins B, was observed. Finally, the autolysins of L. helveticus ISLC5 were successfully extracted from whole cells by using a 1 M lithium chloride solution; they were partially purified by precipitation, selective resolubilization, and gel filtration chromatography, which led to a 20-fold increase in specific activity. PMID:16535125

  8. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum.

    PubMed

    Archibald, F S; Fridovich, I

    1981-01-01

    Lactobacillus plantarum is aerotolerant during log-phase growth on glucose, but is an obligate aerobe on polyols. Respiration was cyanide resistant and under certain conditions was associated with the accumulation of millimolar concentrations of H(2)O(2). On glucose, optimal growth was observed in the absence of O(2). Extracts of L. plantarum did not catalyze the reduction of paraquat by reduced nicotinamide adenine dinucleotide, but plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) was readily reduced. Such extracts produced O(2) (-) in the presence of NADH plus plumbagin. Plumbagin caused a 10-fold increase in the rate of respiration of intact cells in the presence of glucose and also imposed a loss of viability which was dependent upon both glucose and O(2). Although extracts of L. plantarum were devoid of true superoxide dismutase activity, this organism was comparable to superoxide dismutase-containing species in its resistance toward hyperbaric O(2) and toward the oxygen-dependent lethality of plumbagin. L. plantarum required Mn-rich media and actively accumulated Mn(II). Soluble extracts were found to contain approximately 9 mug of Mn per mg of protein and 75 to 90% of this Mn was dialyzable. Such extracts exhibited a dialyzable and ethylenediaminetetraacetic acid-inhibitable ability to scavenge O(2) (-). This O(2) (-)-scavenging activity was due to the dialyzable Mn(II) present in these extracts and could be mimicked by MnCl(2). Cells grown in Mn-rich media were enriched in dialyzable Mn and were more resistant toward oxygen toxicity and toward the oxygen-dependent plumbagin toxicity than were cells grown in Mn-deficient media. L. plantarum exhibited no nutritional requirement for iron and little or no iron was present in these cells, even when they were grown in iron-rich media. L. plantarum thus appears to use millimolar levels of Mn(II) to scavenge O(2) (-), much as most other organisms use micromolar levels of superoxide dismutases. PMID:6257639

  9. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei.

    PubMed

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2016-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  10. Global transcriptome response in Lactobacillus sakei during growth on ribose

    PubMed Central

    2011-01-01

    Background Lactobacillus sakei is valuable in the fermentation of meat products and exhibits properties that allow for better preservation of meat and fish. On these substrates, glucose and ribose are the main carbon sources available for growth. We used a whole-genome microarray based on the genome sequence of L. sakei strain 23K to investigate the global transcriptome response of three L. sakei strains when grown on ribose compared with glucose. Results The function of the common regulated genes was mostly related to carbohydrate metabolis