Science.gov

Sample records for lactobacillus casei dn-114

  1. Effects of Probiotic Lactobacillus Casei DN-114 001 in Prevention of Radiation-Induced Diarrhea: Results From Multicenter, Randomized, Placebo-Controlled Nutritional Trial

    SciTech Connect

    Giralt, Jordi Regadera, Jose Perez; Verges, Ramona; Romero, Jesus; Fuente, Isabel de la; Biete, Albert; Villoria, Jesus; Cobo, Jose Maria; Guarner, Francisco

    2008-07-15

    Purpose: To determine whether a probiotic drink containing Lactobacillus casei DN-114 001 reduces the incidence of radiation-induced diarrhea in patients with gynecologic cancer. Methods and Materials: Patients who were undergoing pelvic radiotherapy (45-50 Gy, conventional fractionation) for either cervical carcinoma (radiotherapy and weekly cisplatin) or endometrial adenocarcinoma (postoperative radiotherapy) were randomly assigned to a probiotic drink or placebo, in a double-blind fashion. The probiotic drink consisted of liquid yogurt containing L. casei DN-114 001 at 10{sup 8} CFU/g. The patients recorded the daily the number of bowel movements and scored the stool consistency using the Bristol scale. Diarrhea was graded weekly according the Common Toxicity Criteria system. The primary endpoint was to reduce the incidence of diarrhea, defined by a Common Toxicity Criteria Grade of 2 or greater or the need for loperamide. Results: A total of 85 patients were enrolled. Grade 2 or greater diarrhea and/or the use of loperamide was observed in 24 of 41 patients in the placebo group and 30 of 44 in the probiotic group (p = 0.568). No differences were found in the median time to the presentation of the primary endpoint. Probiotic intervention had a significant effect on stool consistency (p = 0.04). The median time for patients to present with Bristol scale stools of Type 6 or greater was 14 days for patients receiving the probiotic drink vs. 10 days for those receiving placebo. Conclusion: Nutritional intervention with the probiotic drink containing L. casei DN-114 001 does not reduce the incidence of radiation-induced diarrhea as defined by a Common Toxicity Criteria Grade 2 or greater. However, it had a significant effect on stool consistency as measured by the Bristol scale.

  2. Lysate of Probiotic Lactobacillus casei DN-114 001 Ameliorates Colitis by Strengthening the Gut Barrier Function and Changing the Gut Microenvironment

    PubMed Central

    Zakostelska, Zuzana; Kverka, Miloslav; Klimesova, Klara; Rossmann, Pavel; Mrazek, Jakub; Kopecny, Jan; Hornova, Michaela; Srutkova, Dagmar; Hudcovic, Tomas; Ridl, Jakub; Tlaskalova-Hogenova, Helena

    2011-01-01

    Background Probiotic bacteria can be used for the prevention and treatment of human inflammatory diseases including inflammatory bowel diseases (IBD). However, the nature of active components and exact mechanisms of this beneficial effects have not been fully elucidated. Our aim was to investigate if lysate of probiotic bacterium L. casei DN-114 001 (Lc) could decrease the severity of intestinal inflammation in a murine model of IBD. Methodology/Principal Findings The preventive effect of oral administration of Lc significantly reduces the severity of acute dextran sulfate sodium (DSS) colitis in BALB/c but not in SCID mice. In order to analyze how this beneficial effect interferes with well-known phases of intestinal inflammation pathogenesis in vivo and in vitro, we evaluated intestinal permeability using the FITC-labeled dextran method and analysed tight junction proteins expression by immunofluorescence and PCR. We also measured CD4+FoxP3+ regulatory T cells proportion by FACS analysis, microbiota composition by pyrosequencing, and local cytokine production by ELISA. Lc leads to a significant protection against increased intestinal permeability and barrier dysfunction shown by preserved ZO-1 expression. We found that the Lc treatment increases the numbers of CD4+FoxP3+ regulatory T cells in mesenteric lymph nodes (MLN), decreases production of pro-inflammatory cytokines TNF-α and IFN-γ, and anti-inflammatory IL-10 in Peyer's patches and large intestine, and changes the gut microbiota composition. Moreover, Lc treatment prevents lipopolysaccharide-induced TNF-α expression in RAW 264.7 cell line by down-regulating the NF-κB signaling pathway. Conclusion/Significance Our study provided evidence that even non-living probiotic bacteria can prevent the development of severe forms of intestinal inflammation by strengthening the integrity of intestinal barrier and modulation of gut microenvironment. PMID:22132181

  3. Production and Regeneration of Lactobacillus casei Protoplasts

    PubMed Central

    Lee-Wickner, Lyang-Ja; Chassy, Bruce M.

    1984-01-01

    Methods for the production and regeneration of Lactobacillus casei protoplasts are described. Protoplasts of L. casei strains were obtained by treatment with mutanolysin or with mutanolysin and lysozyme together in a protoplast formation buffer containing 0.02 M HEPES (N-2-hydroxyethylpiperazine-N?-2-ethanesulfonic acid) (pH 7.0), 1 mM MgCl2, 0.5% gelatin, and 0.3 M raffinose. Cells were regenerated on a complex medium supplemented with bovine serum albumin, MgCl2, CaCl2, gelatin, and raffinose. Lengthy digestion with lytic enzymes inhibited the capacity of protoplasts to regenerate. The optimum conditions of protoplast formation varied from strain to strain. Using predetermined optimal conditions it was possible to prepare protoplasts of several L. casei strains and regenerate them with 10 to 40% efficiency. The methods were applicable to other species of lactobacilli as well. Images PMID:16346670

  4. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains.

    PubMed Central

    Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N

    1997-01-01

    Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109

  5. Stress responses in probiotic Lactobacillus casei.

    PubMed

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics. PMID:24915363

  6. High efficiency electrotransformation of Lactobacillus casei.

    PubMed

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements. PMID:25670703

  7. Manufacture of probiotic Minas Frescal cheese with Lactobacillus casei Zhang.

    PubMed

    Dantas, Aline B; Jesus, Vitor F; Silva, Ramon; Almada, Carine N; Esmerino, E A; Cappato, Leandro P; Silva, Marcia C; Raices, Renata S L; Cavalcanti, Rodrigo N; Carvalho, Celio C; Sant'Ana, Anderson S; Bolini, Helena M A; Freitas, Monica Q; Cruz, Adriano G

    2016-01-01

    In this study, the addition of Lactobacillus casei Zhang in the manufacture of Minas Frescal cheese was investigated. Minas Frescal cheeses supplemented with probiotic bacteria (Lactobacillus casei Zhang) were produced by enzymatic coagulation and direct acidification and were subjected to physicochemical (pH, proteolysis, lactic acid, and acetic acid), microbiological (probiotic and lactic bacteria counts), and rheological analyses (uniaxial compression and creep test), instrumental color determination (luminosity, yellow intensity, and red intensity) and sensory acceptance test. The addition of L. casei Zhang resulted in low pH values and high proteolysis indexes during storage (from 5.38 to 4.94 and 0.470 to 0.702, respectively). Additionally, the cheese protocol was not a hurdle for growth of L. casei Zhang, as the population reached 8.16 and 9.02 log cfu/g by means of the direct acidification and enzymatic coagulation protocol, respectively, after 21 d of refrigerated storage. The rheology data showed that all samples presented a more viscous-like behavior, which rigidity tended to decrease during storage and lower luminosity values were also observed. Increased consumer acceptance was observed for the control sample produced by direct acidification (7.8), whereas the cheeses containing L. casei Zhang presented lower values for all sensory attributes, especially flavor and overall liking (5.37 and 4.61 for enzymatic coagulation and 5.57 and 4.72 for direct acidification, respectively). Overall, the addition of L. casei Zhang led to changes in all parameters and affected negatively the sensory acceptance. The optimization of L. casei Zhang dosage during the manufacturing of probiotic Minas Frescal cheese should be performed. PMID:26519974

  8. Functional genomics of Lactobacillus casei establishment in the gut

    PubMed Central

    Licandro-Seraut, Hélène; Scornec, Hélène; Pédron, Thierry; Cavin, Jean-François; Sansonetti, Philippe J.

    2014-01-01

    Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis. PMID:25024222

  9. Development of an Escherichia coli-Lactobacillus casei shuttle vector for heterologous protein expression in Lactobacillus casei.

    PubMed

    Suebwongsa, Namfon; Lulitanond, Viraphong; Mayo, Baltasar; Yotpanya, Panjamaporn; Panya, Marutpong

    2016-01-01

    There is an increasing interest to develop various lactic acid bacteria (LAB) species as mucosal delivery vehicles, for which the development of a variety of cloning and expression systems for these bacteria is of primary importance. This study reports the complete nucleotide sequence of the cryptic plasmid pRCEID7.6 derived from the chicken probiotic LAB strain Lactobacillus casei TISTR1341. Sequence analysis and comparison showed that pRCEID7.6 is composed of nine putative open reading frames. The replicon origin of pRCEID7.6 consisted of untranslated origin of replication and translated replication protein B sequences. This region was used to construct Escherichia coli/L. casei shuttle vectors carrying erythromycin and chloramphenicol resistance genes as selective markers. Segregation and structural stability of the vectors in L. casei was sufficient for most genetic applications. The feasibility of this vector for heterologous protein expression in L. casei was determined by cloning in pRCEID-LC7.6, the gene encoding the nucleocapsid protein (NP), from the influenza A virus under the control of the homologous promoter from the lactate dehydrogenase gene. L. casei carrying this recombinant plasmid was shown to successfully express the NP protein. Therefore, this shuttle vector can be used for further study in the development of mucosal delivery vehicles. PMID:27026866

  10. In vitro antagonistic activity of Lactobacillus casei against Helicobacter pylori

    PubMed Central

    Enany, Shymaa; Abdalla, Salah

    2015-01-01

    Helicobacter pylori is one of the most common causes of chronic infections in humans. Curing H. pylori infection is difficult because of the habitat of the organism below the mucus adherent layer of gastric mucosa. Lactobacilli are known as acid-resistant bacteria and can remain in stomach for a long time than any other organism, we aimed in this study to examine the efficacy of Lactobacillus casei as a probiotic against H. pylori in humans. Particularly, L. casei was opted as it is considered to be one of the widely used probiotics in dairy products. One hundred and seven strains of H. pylori were isolated from dyspeptic patients and were tested for their antibiotic susceptibility to metronidazole (MTZ), clarithromycin (CLR), tetracycline (TET), and amoxicillin (AMX) by the disc diffusion method. The strains were examined for their susceptibility toward L. casei - present in fermented milk products - by well diffusion method. It was found that 74.7% strains were resistant to MTZ; 1.8% to MTZ, TET, and CLR; 3.7% to MTZ and CLR; 4.6% to MTZ and TET; and 0.9% were resistant to MTZ, TET, and AMX. The antibacterial activity of L. casei against H. pylori was determined on all the tested H. pylori isolates including antibiotic resistant strains with different patterns. Our study proposed the use of probiotics for the treatment of H. pylori infection as an effective approach. PMID:26691482

  11. In vitro antagonistic activity of Lactobacillus casei against Helicobacter pylori.

    PubMed

    Enany, Shymaa; Abdalla, Salah

    2015-01-01

    Helicobacter pylori is one of the most common causes of chronic infections in humans. Curing H. pylori infection is difficult because of the habitat of the organism below the mucus adherent layer of gastric mucosa. Lactobacilli are known as acid-resistant bacteria and can remain in stomach for a long time than any other organism, we aimed in this study to examine the efficacy of Lactobacillus casei as a probiotic against H. pylori in humans. Particularly, L. casei was opted as it is considered to be one of the widely used probiotics in dairy products. One hundred and seven strains of H. pylori were isolated from dyspeptic patients and were tested for their antibiotic susceptibility to metronidazole (MTZ), clarithromycin (CLR), tetracycline (TET), and amoxicillin (AMX) by the disc diffusion method. The strains were examined for their susceptibility toward L. casei - present in fermented milk products - by well diffusion method. It was found that 74.7% strains were resistant to MTZ; 1.8% to MTZ, TET, and CLR; 3.7% to MTZ and CLR; 4.6% to MTZ and TET; and 0.9% were resistant to MTZ, TET, and AMX. The antibacterial activity of L. casei against H. pylori was determined on all the tested H. pylori isolates including antibiotic resistant strains with different patterns. Our study proposed the use of probiotics for the treatment of H. pylori infection as an effective approach. PMID:26691482

  12. Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria.

    PubMed

    Tharmaraj, N; Shah, N P

    2003-07-01

    Nineteen bacteriological media were evaluated to assess their suitability to selectively enumerate Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus, bifidobacteria, and propionibacteria. Bacteriological media evaluated included Streptococcus thermophilus agar, pH modified MRS agar, MRS-vancomycine agar, MRS-bile agar, MRS-NaCl agar, MRS-lithium chloride agar, MRS-NNLP (nalidixic acid, neomycin sulfate, lithium chloride and paramomycine sulfate) agar, reinforced clostridial agar, sugar-based (such as maltose, galactose, sorbitol, manitol, esculin) media, sodium lactate agar, arabinose agar, raffinose agar, xylose agar, and L. casei agar. Incubations were carried out under aerobic and anaerobic conditions at 27, 30, 37, 43, and 45 degrees C for 24, 72 h, and 7 to 9 d. S. thermophilus agar and aerobic incubation at 37 degrees C for 24 h were suitable for S. thermophilus. L. delbrueckii ssp. bulgaricus could be enumerated using MRS agar (pH 4.58 or pH 5.20) and under anaerobic incubation at 45 degrees C for 72 h. MRS-vancomycine agar and anaerobic incubation at 43 degrees C for 72 h were suitable to enumerate L. rhamnosus. MRS-vancomycine agar and anaerobic incubation at 37 degrees C for 72 h were selective for L. casei. To estimate the counts of L. casei by subtraction method, counts of L. rhamnosus on MRS-vancomycine agar at 43 degrees C for 72 h under anaerobic incubation could be subtracted from total counts of L. casei and L. rhamnosus enumerated on MRS-vancomycine agar at 37 degrees C for 72 h under anaerobic incubation. L. acidophilus could be enumerated using MRS-agar at 43 degrees C for 72 h or Basal agar-maltose agar at 43 degrees C for 72 h or BA-sorbitol agar at 37 degrees C for 72 h, under anaerobic incubation. Bifidobacteria could be enumerated on MRS-NNLP agar under anaerobic incubation at 37 degrees C for 72 h. Propionibacteria could be enumerated on sodium lactate agar under anaerobic incubation at 30 degrees C for 7 to 9 d. A subtraction method was most suitable for counting propionibacteria in the presence of other lactic acid bacteria from a product. For this method, counts of lactic bacteria at d 3 on sodium lactate agar under anaerobic incubation at 30 degrees C were subtracted from counts at d 7 of lactic bacteria and propionibacteria. PMID:12906045

  13. M-RTLV agar, a novel selective medium to distinguish Lactobacillus casei and Lactobacillus paracasei from Lactobacillus rhamnosus.

    PubMed

    Sakai, Takafumi; Oishi, Kenji; Asahara, Takashi; Takada, Toshihiko; Yuki, Norikatsu; Matsumoto, Kazumasa; Nomoto, Koji; Kushiro, Akira

    2010-05-15

    We developed a novel selective medium, modified-rhamnose-2,3,5-triphenyltetrazolium chloride-LBS-vancomycin agar (M-RTLV agar), that utilizes the fermentability of L-rhamnose to distinguish Lactobacillus casei and Lactobacillus paracasei from Lactobacillus rhamnosus. Whereas L. casei and L. paracasei formed red colonies on the M-RTLV agar, L. rhamnosus formed either pink-toned colonies or white colonies with a red spot. An intervention study was conducted to confirm the capability of M-RTLV agar to detect ingested L. casei when recovered from human feces. Subjects consumed one bottle daily of a fermented milk product (Yakult or Yakult Light, which contains L. casei strain Shirota; LcS) for 7 days. Diluents of the fecal samples were cultivated on M-RTLV agar. We were able to enumerate circular medium-sized red colonies, which were morphologically similar to L. casei/L. paracasei but clearly distinguishable from the remaining colonies owing to the color difference. These colonies were then subjected to enzyme-linked immunosorbent assay in order to identify the LcS. The viable counts of LcS were 6.6+/-0.7 log(10) CFU/g feces after intake of Yakult and 6.5+/-0.6 log(10) CFU/g feces after intake of Yakult Light (mean+/-SD). PMID:20385416

  14. Functional analysis of the Lactobacillus casei BL23 sortases.

    PubMed

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G; Monedero, Vicente

    2012-12-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  15. Functional Analysis of the Lactobacillus casei BL23 Sortases

    PubMed Central

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2012-01-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  16. Comparative Genomic and Functional Analysis of Lactobacillus casei and Lactobacillus rhamnosus Strains Marketed as Probiotics

    PubMed Central

    Douillard, François P.; Ribbera, Angela; Järvinen, Hanna M.; Kant, Ravi; Pietilä, Taija E.; Randazzo, Cinzia; Paulin, Lars; Laine, Pia K.; Caggia, Cinzia; von Ossowski, Ingemar; Reunanen, Justus; Satokari, Reetta; Salminen, Seppo; Palva, Airi

    2013-01-01

    Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities. PMID:23315726

  17. Draft Genome Sequence of the Respiration-Competent Strain Lactobacillus casei N87.

    PubMed

    Zotta, Teresa; Ricciardi, Annamaria; Parente, Eugenio; Reale, Anna; Ianniello, Rocco G; Bassi, Daniela

    2016-01-01

    Lactobacillus casei is used as a starter, adjunct, and/or probiotic culture in the production of fermented and functional foods. Here, we report the draft genome sequence of the respiration-competent strain L. casei N87, isolated from infant feces. This genome information may be useful for the study of respiratory metabolism in lactic acid bacteria. PMID:27151805

  18. Draft Genome Sequence of the Respiration-Competent Strain Lactobacillus casei N87

    PubMed Central

    Ricciardi, Annamaria; Parente, Eugenio; Reale, Anna; Ianniello, Rocco G.

    2016-01-01

    Lactobacillus casei is used as a starter, adjunct, and/or probiotic culture in the production of fermented and functional foods. Here, we report the draft genome sequence of the respiration-competent strain L. casei N87, isolated from infant feces. This genome information may be useful for the study of respiratory metabolism in lactic acid bacteria. PMID:27151805

  19. The effect of Lactobacillus casei extract on cervical cancer cell lines

    PubMed Central

    Kim, Soo-Nyung; Lee, Won Moo; Park, Kyoung Sik; Kim, Jong Bin; Han, Dae Jong

    2015-01-01

    Aim of the study Lactobacillus casei (L. casei) has been shown to inhibit the proliferation of several types of cancer in vivo, but its effect on cervical cells has not been reported. We incubated cells of the human cervical cell lines Caski and HeLa with extracts of L. casei and investigated its effects on the growth of the cells and possible synergy with anticancer drugs. Material and methods Cell-free extracts of L. casei were prepared and purified. Cultures of Caski and HeLa cells adhering to tissue culture plates were treated with L. casei extract. The effects of L. casei extract on the growth of cancer cells and its possible synergy with anti-cancer drugs in cervical cancer cell lines were investigated. The cells were treated with L. casei extract alone, anti-cancer drugs alone [doxorubicin, paclitaxel, 5-fluorouracil (5-FU), and cisplatin], or L. casei extract plus anti-cancer drugs. Results L. casei extract had no significant effect on the growth rate of the two cell lines. Anti-cancer drugs alone induced growth inhibition, but there was no synergistic effect of L. casei extract on growth inhibition. Conclusions L. casei extract does not have a potent effect on the viability of cervical cancer cells in vitro. In addition, L. casei extract has no synergistic effect on the inhibition of growth of cancer cells in the presence of anti-cancer drugs. PMID:26557779

  20. Complete genome sequence of the probiotic Lactobacillus casei strain BL23.

    PubMed

    Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Bourand, Alexa; Loux, Valentin; Yebra, Maria Jesus; Monedero, Vicente; Correia, Karine; Jacques, Noémie; Beaufils, Sophie; Poncet, Sandrine; Joyet, Philippe; Milohanic, Eliane; Casarégola, Serge; Auffray, Yanick; Pérez-Martínez, Gaspar; Gibrat, Jean-François; Zagorec, Monique; Francke, Christof; Hartke, Axel; Deutscher, Josef

    2010-05-01

    The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar. PMID:20348264

  1. Complete Genome Sequence of the Probiotic Lactobacillus casei Strain BL23▿

    PubMed Central

    Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Bourand, Alexa; Loux, Valentin; Yebra, Maria Jesus; Monedero, Vicente; Correia, Karine; Jacques, Noémie; Beaufils, Sophie; Poncet, Sandrine; Joyet, Philippe; Milohanic, Eliane; Casarégola, Serge; Auffray, Yanick; Pérez-Martínez, Gaspar; Gibrat, Jean-François; Zagorec, Monique; Francke, Christof; Hartke, Axel; Deutscher, Josef

    2010-01-01

    The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar. PMID:20348264

  2. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392.

    PubMed

    Dahroud, Behnaz Dahri; Mokarram, Reza Rezai; Khiabani, Mahmoud Sowti; Hamishehkar, Hamed; Bialvaei, Abed Zahedi; Yousefi, Mehdi; Kafil, Hossein Samadi

    2016-05-01

    l-Lactic acid (L-LA) is one of the microbial products with several applications and its production efficiency is so important. In the present study, we have been exploring application of low intensity ultrasound technology to improve the metabolic activity for l-lactic acid production by Lactobacillus casei in different mediums. L-LA, biomass production and substrate (protein) consumption were measured as parameters of fermentation yield. L-LA and protein contents were determined using the titratable acidity and the biuret method respectively. Spectrophotometry (OD600nm) was used for measuring cell growths. L-LA, biomass production and protein consumption considered as dependent variables, but the amplitude of waves (20%, 40% and 60%), waves duration (15, 30, 45s) and add of peptone (2, 6 and 10g/l) as independent variables. The results showed that L-LA, biomass production and substrate consumption significantly increased (≈25%). Optimum conditions for biomass production was amplitude of 60%, 15s exposure time and 10g/l peptone, while for acid lactic production and substrate consumption was 40%, 30s and 6g/l peptone, respectively. Flowcytometry analysis also showed that sonication led to increasing cell membrane permeability. This observation shows low intensity ultrasound as a potential parameter in the improvement of metabolic activity of L. casei. PMID:26836618

  3. Cracking Streptococcus thermophilus to stimulate the growth of the probiotic Lactobacillus casei in co-culture.

    PubMed

    Ma, Chengjie; Ma, Aimin; Gong, Guangyu; Liu, Zhenmin; Wu, Zhengjun; Guo, Benheng; Chen, Zhengjun

    2015-10-01

    Lactobacillus casei, a probiotic, and Streptococcus thermophilus, a fast acidifying lactic acid bacterial strain, are both used in the food industry. The aim of this study was to investigate the interaction between L. casei and S. thermophilus in the presence or absence of S. thermophilus-specific bacteriophage during milk fermentation. The acidification capability of L. casei co-cultured with S. thermophilus was significantly higher than that observed for L. casei or S. thermophilus cultured alone. However, the probiotic content (i.e., L. casei cell viability) was low. The fastest acidification and the highest viable L. casei cell count were observed in co-cultures of L. casei and S. thermophilus with S. thermophilus phage. In these co-cultures, S. thermophilus compensated for the slow acid production of L. casei in the early exponential growth phase. Thereafter, phage-induced lysis of the S. thermophilus cells eliminated the competition for nutrients, allowing L. casei to grow well. Additionally, the ruptured S. thermophilus cells released intracellular factors, which further promoted the growth and function of the probiotic bacteria. Crude cellular extract isolated from S. thermophilus also significantly accelerated the growth and propagation of L. casei, supporting the stimulatory role of the phage on this micro-ecosystem. PMID:26093989

  4. Probiotic Properties of Lyophilized Cell Free Extract of Lactobacillus casei

    PubMed Central

    Saadatzadeh, Afrooz; Fazeli, Mohamma Reza; Jamalifar, Hossein; Dinarvand, Rassoul

    2013-01-01

    Background In recent years there have been considerable interests in the use of probiotic live cells for nutritional and therapeutic purposes. This strategy can be concomitant with some limitations such as survival of live cell during the GI-transit and their effective delivery to target tissues upon ingestion. Several attempts have been made to overcome these limitations such as their microencapsulation, spray-drying and lyophilization. Objectives In this study extract of cultured probiotics without cells was evaluated for its antimicrobial effects, antioxidant activity, and its stability. Materials and Methods In this work the potential of lyophilized-cell-free-probiotic-extract (LPE) as a suitable alternative strategy for the preparation of probiotic-products was investigated. The main aim of this study was to find out the antibacterial and antioxidant activity of LPE and also its stability. LPE was obtained by centrifugation and subsequent lyophilization of the collected supernatant from culture media of Lactobacillus casei. An enzymatic reagent-kit was used for detection of its content of lactic acid. Antibacterial test was performed using agar cup-plat-method, the DPPH scavenging -assay was used to determine its antioxidant activity and during a storage course, LPE was under a long-term stability study. Results Results showed that, LPE had more antipathogenic effects, antioxidant activity, and stability during storage-time when compared to fresh probiotic-extract. Conclusions Employing the LPE as a new approach, gives novel concept of probiotic-products in food and medical marketing. PMID:24624202

  5. PCR screening and sequence analysis of iol clusters in Lactobacillus casei strains isolated from koumiss.

    PubMed

    Zhang, W; Sun, Z; Sun, T; Zhang, H

    2010-11-01

    The iol cluster (consisting of genes involved in myo-inositol utilization) was investigated in Lactobacillus casei strains isolated from koumiss. Ten strains were tested for the presence of iol cluster by PCR screening; three strains encoded this cluster. Full-sequencing procedure was conducted; the iol cluster was identical to that of L. casei BL23 (GenBank access. no. FM177140) except for an upstream transposase. The iol cluster is not a common feature for L. casei strains isolated from koumiss. PMID:21253906

  6. Effect of Lactobacillus casei on the absorption of nifedipine from rat small intestine.

    PubMed

    Kato, Ryuji; Yuasa, Hiroaki; Inoue, Katsuhisa; Iwao, Takahiro; Tanaka, Kazuhiko; Ooi, Kazuya; Hayashi, Yayoi

    2007-04-01

    Lactobacillus casei Shirota strain (L. casei) has a modulating effect on the production of cytokines, which often play important roles in drug metabolism, in the inflamed intestinal mucosa. We evaluated the effect of L. casei administered orally in advance for 4 weeks on the absorption of nifedipine from the rat small intestine. The maximum concentration of nifedipine in plasma after administration into the intestinal loop (0.8 mg/kg) was significantly higher in L. casei-treated rats (3.26 microg/mL) than in those untreated rats (2.33 microg/mL) by 40%. Accordingly, the bioavailability of nifedipine was tended to be higher in the former, while the effect of L. casei on the disposition of intravenously administered nifedipine was negligible. We also found that the availability of nifedipine for the passage through the intestinal mucosa was significantly increased in L. casei-treated rats from the single-pass intestinal perfusion experiments. Therefore, it is likely that the exposure to nifedipine after its administration into rat intestine was increased by oral ingestion of L. casei due to an increase in absorption by increased intestinal availability (decreased metabolic extraction) during passage through the intestinal mucosa. This study has suggested that L. casei has some effect on the metabolic activity in the intestinal mucosa, though it seems to be only mild. PMID:17495416

  7. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Karska-Wysocki, Barbara; Bazo, Mari; Smoragiewicz, Wanda

    2010-10-20

    Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant microorganism and the principal nosocomial pathogen worldwide. The antibacterial activity of lactic acid bacteria against MRSA from ten human clinical isolates as well as MRSA standard strain ATCC 43300 was tested in vitro. The Lactobacillus (Lb.) strains (Lb. acidophilus CL1285(®) and Lb. casei LBC80R) as pure cultures, which came from commercial food products were employed. The growth inhibitory effect produced by the antimicrobial activity of the lactic acid bacteria on the MRSA strains was tested on solid medium using agar diffusion methods as well as a using a liquid medium procedure that contained a mixture of MRSA and lactic acid bacteria cultures. In the latter instance, we were able to demonstrate that the direct interaction of lactic acid bacteria and MRSA in such a mixture led to the elimination of 99% of the MRSA cells after 24 h of their incubation at 37°C. PMID:20116228

  8. Enhancement of host resistance against Listeria infection by Lactobacillus casei: Role of macrophages

    SciTech Connect

    Sato, K.

    1984-05-01

    Among the 10 species of the genus Lactobacillus, L. casei showed the strongest protective action against Listeria monocytogenes infection in mice. The activity of L. casei differed with regard to the dose of administration. The anti-L. monocytogenes resistance in mice intravenously administered 5.5 X 10(7), 2.8 X 10(8), or 1.1 X 10(9) L. casei cells was most manifest at ca. 2, 2 and 13, and 3 to 21 days after its administration, respectively. The growth of L. monocytogenes in the liver of mice injected with L. casei (10(7), 10(8), or 10(9) cells) 48 h after infection was suppressed, particularly when 10(8) or 10(9) L. casei cells were given 2 or 13 days before the induced infection, respectively. This suppression of L. monocytogenes growth was overcome by carrageenan treatment or X-ray irradiation. (/sup 3/H)thymidine incorporation into the liver DNA increased 13 days after administration of L. casei, and augmentation of (/sup 3/H)thymidine incorporation during 6 to 48 h after infection was dependent on the dose of L. casei. Peritoneal macrophage accumulation observed 1 to 5 days after intraperitoneal injection of UV-killed L. monocytogenes was markedly enhanced when the mice were treated with L. casei cells 13 days before macrophage elicitation. Therefore, the enhanced host resistance by L. casei to L. monocytogenes infection may be mediated by macrophages migrating from the blood stream to the reticuloendothelial system in response to L. casei injection before or after L. monocytogenes infection.

  9. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  10. Attenuation of Colitis by Lactobacillus casei BL23 Is Dependent on the Dairy Delivery Matrix.

    PubMed

    Lee, Bokyung; Yin, Xiaochen; Griffey, Stephen M; Marco, Maria L

    2015-09-01

    The role of the food delivery matrix in probiotic performance in the intestine is not well understood. Because probiotics are often provided to consumers in dairy products, we investigated the contributions of milk to the health-benefiting performance of Lactobacillus casei BL23 in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis. L. casei BL23 protected against the development of colitis when ingested in milk but not in a nutrient-free buffer simulating consumption as a nutritional supplement. Consumption of (acidified) milk alone also provided some protection against weight loss and intestinal inflammation but was not as effective as L. casei and milk in combination. In contrast, L. casei mutants deficient in DltD (lipoteichoic acid d-alanine transfer protein) or RecA (recombinase A) were unable to protect against DSS-induced colitis, even when consumed in the presence of milk. Mice fed either L. casei or milk contained reduced quantities of colonic proinflammatory cytokines, indicating that the L. casei DltD(-) and RecA(-) mutants as well as L. casei BL23 in nutrient-free buffer were effective at modulating immune responses. However, there was not a direct correlation between colitis and quantities of these cytokines at the time of sacrifice. Identification of the cecal microbiota by 16S rRNA gene sequencing showed that L. casei in milk enriched for Comamonadaceae and Bifidobacteriaceae; however, the consumption of neither L. casei nor milk resulted in the restoration of the microbiota to resemble that of healthy animals. These findings strongly indicate that probiotic strain efficacy can be influenced by the food/supplement delivery matrix. PMID:26162873

  11. Attenuation of Colitis by Lactobacillus casei BL23 Is Dependent on the Dairy Delivery Matrix

    PubMed Central

    Lee, Bokyung; Yin, Xiaochen; Griffey, Stephen M.

    2015-01-01

    The role of the food delivery matrix in probiotic performance in the intestine is not well understood. Because probiotics are often provided to consumers in dairy products, we investigated the contributions of milk to the health-benefiting performance of Lactobacillus casei BL23 in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis. L. casei BL23 protected against the development of colitis when ingested in milk but not in a nutrient-free buffer simulating consumption as a nutritional supplement. Consumption of (acidified) milk alone also provided some protection against weight loss and intestinal inflammation but was not as effective as L. casei and milk in combination. In contrast, L. casei mutants deficient in DltD (lipoteichoic acid d-alanine transfer protein) or RecA (recombinase A) were unable to protect against DSS-induced colitis, even when consumed in the presence of milk. Mice fed either L. casei or milk contained reduced quantities of colonic proinflammatory cytokines, indicating that the L. casei DltD− and RecA− mutants as well as L. casei BL23 in nutrient-free buffer were effective at modulating immune responses. However, there was not a direct correlation between colitis and quantities of these cytokines at the time of sacrifice. Identification of the cecal microbiota by 16S rRNA gene sequencing showed that L. casei in milk enriched for Comamonadaceae and Bifidobacteriaceae; however, the consumption of neither L. casei nor milk resulted in the restoration of the microbiota to resemble that of healthy animals. These findings strongly indicate that probiotic strain efficacy can be influenced by the food/supplement delivery matrix. PMID:26162873

  12. Draft Genome Sequence of Lactobacillus casei DPC6800, an Isolate with the Potential to Diversify Flavor in Cheese

    PubMed Central

    Stefanovic, Ewelina; Casey, Aidan; Cotter, Paul; Cavanagh, Daniel; Fitzgerald, Gerald

    2016-01-01

    Lactobacillus casei is a nonstarter lactic acid bacterium commonly present in various types of cheeses. It is believed that strains of this species have a significant impact on the development of cheese flavor. The draft genome sequence of L. casei DPC6800, isolated from a semi-hard Dutch cheese, is reported. PMID:26941145

  13. Draft Genome Sequence of Lactobacillus casei DPC6800, an Isolate with the Potential to Diversify Flavor in Cheese.

    PubMed

    Stefanovic, Ewelina; Casey, Aidan; Cotter, Paul; Cavanagh, Daniel; Fitzgerald, Gerald; McAuliffe, Olivia

    2016-01-01

    Lactobacillus casei is a nonstarter lactic acid bacterium commonly present in various types of cheeses. It is believed that strains of this species have a significant impact on the development of cheese flavor. The draft genome sequence of L. casei DPC6800, isolated from a semi-hard Dutch cheese, is reported. PMID:26941145

  14. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro.

    PubMed

    Escamilla, Juanita; Lane, Michelle A; Maitin, Vatsala

    2012-08-01

    Probiotics have been shown to have a preventative role in colorectal carcinogenesis but research concerning their prophylactic potential in the later stages of colorectal cancer, specifically metastasis is limited. This study explored the potential of cell-free supernatants (CFS) from 2 probiotic Lactobacillus sp., Lactobacillus casei and Lactobacillus rhamnosus GG, to inhibit colon cancer cell invasion by influencing matrix metalloproteinase-9 (MMP-9) activity and levels of the tight junction protein zona occludens-1 (ZO-1) in cultured metastatic human colorectal carcinoma cells. HCT-116 cells were treated with CFS from L. casei, L. rhamnosus, or Bacteroides thetaiotaomicron (a gut commensal); or with uninoculated bacterial growth media. Treatment with CFS from both Lactobacillus sp. decreased colorectal cell invasion but treatment with CFS from B. thetaiotaomicron did not. CFS from both Lactobacillus sp. decreased MMP-9 and increased ZO-1 protein levels. L. rhamnosus CFS also lowered MMP-9 activity. To begin elucidating the secreted bacterial factor conveying these responses, Lactobacillus sp. CFS were fractionated into defined molecular weight ranges and cell invasion assessed. Fractionation revealed that the inhibitory activity was contained primarily in the >100 kDa and 50-100 kDa fractions, suggesting the inhibitory compound may be a macromolecule such as a protein, nucleic acid, or a polysaccharide. PMID:22830611

  15. Probiotic cheese production using Lactobacillus casei cells immobilized on fruit pieces.

    PubMed

    Kourkoutas, Y; Bosnea, L; Taboukos, S; Baras, C; Lambrou, D; Kanellaki, M

    2006-05-01

    Lactobacillus casei cells were immobilized on fruit (apple and pear) pieces and the immobilized biocatalysts were used separately as adjuncts in probiotic cheese making. In parallel, cheese with free L. casei cells and cheese only from renneted milk were prepared. The produced cheeses were ripened at 4 to 6 degrees C and the effect of salting and ripening time on lactose, lactic acid, ethanol concentration, pH, and lactic acid bacteria viable counts were investigated. Fat, protein, and moisture contents were in the range of usual levels of commercial cheeses. Reactivation in whey of L. casei cells immobilized on fruit pieces after 7 mo of ripening showed a higher rate of pH decrease and lower final pH value compared with reactivation of samples withdrawn from the remaining mass of the cheese without fruit pieces, from cheese with free L. casei, and rennet cheese. Preliminary sensory evaluation revealed the fruity taste of the cheeses containing immobilized L. casei cells on fruit pieces. Commercial Feta cheese was characterized by a more sour taste, whereas no significant differences concerning cheese flavor were reported by the panel between cheese containing free L. casei and rennet cheese. Salted cheeses scored similar values to commercial Feta cheese, whereas unsalted cheese scores were significantly lower, but still acceptable to the sensory panelists. PMID:16606715

  16. Inhibition of Staphylococcus aureus Invasion into Bovine Mammary Epithelial Cells by Contact with Live Lactobacillus casei

    PubMed Central

    Bouchard, Damien S.; Rault, Lucie; Berkova, Nadia; Le Loir, Yves

    2013-01-01

    Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen. PMID:23183972

  17. Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution

    PubMed Central

    Cai, Hui; Thompson, Rebecca; Budinich, Mateo F.; Broadbent, Jeff R.

    2009-01-01

    Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

  18. Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei.

    PubMed

    Bouchard, Damien S; Rault, Lucie; Berkova, Nadia; Le Loir, Yves; Even, Sergine

    2013-02-01

    Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen. PMID:23183972

  19. Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice.

    PubMed

    Alvarez, S; Herrero, C; Bru, E; Perdigon, G

    2001-11-01

    Pseudomonas aeruginosa is an opportunistic pathogen that rarely causes pulmonary disease in normal hosts but one that is an important cause of acute pneumonia in immunocompromised patients, including neonates, and of chronic pneumonia in patients with cystic fibrosis. The aim of this work was to study the effect of oral administration of Lactobacillus casei and yogurt on prevention of P. aeruginosa lung infection in young mice (3 weeks old). This study demonstrates that oral administration of L. casei or yogurt to young mice enhanced lung clearance of P. aeruginosa and phagocytic activity of alveolar macrophages through a dose-dependent effect. There were, however, no significant differences in white blood cell (WBC) differential counts. Furthermore, it was observed that previous administration of L. casei or yogurt induced a significant increase in IgA and IgM levels in bronchoalveolar lavages (BALs) after a P. aeruginosa infection, although there was no relationship with the serum values. PMID:11726157

  20. Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei.

    PubMed

    Nadal, Inmaculada; Rico, Juan; Pérez-Martínez, Gaspar; Yebra, María J; Monedero, Vicente

    2009-09-01

    The capability of Lactobacillus casei to produce the flavor-related compounds diacetyl and acetoin from whey permeate has been examined by a metabolic engineering approach. An L. casei strain in which the ilvBN genes from Lactococcus lactis, encoding acetohydroxyacid synthase, were expressed from the lactose operon was mutated in the lactate dehydrogenase gene (ldh) and in the pdhC gene, which codes for the E2 subunit of the pyruvate dehydrogenase complex. The introduction of these mutations resulted in an increased capacity to synthesize diacetyl/acetoin from lactose in whey permeate (1,400 mg/l at pH 5.5). The results showed that L. casei can be manipulated to synthesize added-value metabolites from dairy industry by-products. PMID:19609583

  1. Interaction with Intestinal Epithelial Cells Promotes an Immunosuppressive Phenotype in Lactobacillus casei

    PubMed Central

    Tiittanen, Minna; Keto, Joni; Haiko, Johanna; Mättö, Jaana; Partanen, Jukka; Lähteenmäki, Kaarina

    2013-01-01

    Maintenance of the immunological tolerance and homeostasis in the gut is associated with the composition of the intestinal microbiota. We here report that cultivation of Lactobacillus casei ATCC 334 in the presence of human intestinal epithelial cells promotes functional changes in bacteria. In particular, the interaction enhanced the immunosuppressive phenotype of L. casei as demonstrated by the ability of L. casei to generate functional regulatory T cells (CD4+CD25+FoxP3+) and production of the anti-inflammatory cytokine interleukin-10 by human peripheral blood mononuclear cells. The results indicate microbe-host cross-talk that changes features of microbes, and suggest that in vitro simulation of epithelial cell interaction can reveal functional properties of gut microbes more accurately than conventional cultivation. PMID:24244309

  2. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei.

    PubMed

    Lin, Jinzhong; Zou, Yexia; Cao, Kunlin; Ma, Chengjie; Chen, Zhengjun

    2016-05-01

    Two heme-dependent catalase genes were amplified from genomic DNA of Lactobacillus plantarum WCFS1 (KatE1) and Lactobacillus brevis ATCC 367 (KatE2), respectively, and a manganese-containing superoxide dismutase from Lactobacillus casei MCJΔ1 (MnSOD) were cloned into plasmid pELX1, yielding pELX1-KatE1, pELX1-KatE2 and pELX1-MnSOD, then the recombinant plasmids were transferred into L. casei MCJΔ1. The strains of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were tolerant at 2 mM H2O2. The survival rates of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were 270-fold and 300-fold higher than that of the control strain on a short-term H2O2 exposure, and in aerated condition, the survival cells counts were 146- and 190-fold higher than that of the control strain after 96 h of incubation. Furthermore, L. casei MCJΔ1/pELX1-MnSOD was the best in three recombinants which was superior in the living cell viability during storage when co-storage with Lactobacillus delbrueckii subsp. lactis LBCH-1. PMID:26922415

  3. PCR method for detection and identification of Lactobacillus casei/paracasei bacteriophages in dairy products.

    PubMed

    Binetti, Ana G; Capra, M Luján; Alvarez, Miguel A; Reinheimer, Jorge A

    2008-05-31

    Bacteriophage infections of starter lactic acid bacteria (LAB) pose a serious risk to the dairy industry. Nowadays, the expanding use of valuable Lactobacillus strains as probiotic starters determines an increase in the frequency of specific bacteriophage infections in dairy plants. This work describes a simple and rapid Polymerase Chain Reaction (PCR) method that detects and identifies bacteriophages infecting Lactobacillus casei/paracasei, the main bacterial species used as probiotic. Based on a highly conserved region of the NTP-binding genes belonging to the replication module of L. casei phages phiA2 and phiAT3 (the only two whose genomes are completely sequenced), a pair of primers was designed to generate a specific fragment. Furthermore, this PCR detection method proved to be a useful tool for monitoring and identifying L. casei/paracasei phages in industrial samples since specific PCR signals were obtained from phage contaminated milk (detection limit: 10(4) PFU/mL milk) and other commercial samples (fermented milks and cheese whey) that include L. casei/paracasei as probiotic starter (detection limit: 10(6) PFU/mL fermented milk). Since this method can detect the above phages in industrial samples and can be easily incorporated into dairy industry routines, it might be readily used to earmark contaminated milk for use in processes that do not involve susceptible starter organisms, or processes which involve phage-deactivating conditions. PMID:18471918

  4. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23.

    PubMed

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D Brent; Monedero, Vicente

    2010-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria. PMID:21178363

  5. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei.

    PubMed

    Gosalbes, M J; Esteban, C D; Galán, J L; Pérez-Martínez, G

    2000-11-01

    The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3' end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, beta-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses. PMID:11055930

  6. Lactobacillus casei Low-Temperature, Dairy-Associated Proteome Promotes Persistence in the Mammalian Digestive Tract.

    PubMed

    Lee, Bokyung; Tachon, Sybille; Eigenheer, Richard A; Phinney, Brett S; Marco, Maria L

    2015-08-01

    We found that incubation of probiotic Lactobacillus casei BL23 in milk at 4 °C prior to ingestion increased its survival in the mammalian digestive tract. To investigate the specific molecular adaptations of L. casei to milk, we used tandem mass spectrometry to compare proteins produced by L. casei BL23 at 4 °C in milk to those in exponential and stationary phase cells in laboratory culture medium at either 37 or 4 °C. These comparisons revealed a core of expressed L. casei proteins as well as proteins produced in either a growth-phase or temperature-specific manner. In total, 205 L. casei proteins were uniquely expressed or detected in higher abundance specifically as a result of incubation in milk and included an over-representation of proteins for cell surface modification, fatty acid metabolism, amino acid transport and metabolism, and inorganic ion transport. Genes for DltD (d-alanine transfer protein), FabH (3-oxoacyl-ACP synthase), RecA (recombinase A), and Sod (superoxide dismutase) were targeted for inactivation. The competitive fitness of the mutants was altered in the mouse intestine compared with wild-type cells. These results show that the food matrix can have a profound influence on dietary (probiotic) bacteria and their functional significance in the mammalian gut. PMID:26148687

  7. Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A

    PubMed Central

    Vinay-Lara, Elena; Hamilton, Joshua J.; Stahl, Buffy; Broadbent, Jeff R.; Reed, Jennifer L.; Steele, James L.

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  8. Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group

    PubMed Central

    Zotta, Teresa; Ricciardi, Annamaria; Ianniello, Rocco G.; Parente, Eugenio; Reale, Anna; Rossi, Franca; Iacumin, Lucilla; Comi, Giuseppe; Coppola, Raffaele

    2014-01-01

    One hundred eighty four strains belonging to the species Lactobacillus casei, L. paracasei and L. rhamnosus were screened for their ability to grow under aerobic conditions, in media containing heme and menaquinone and/or compounds generating reactive oxygen species (ROS), in order to identify respiratory and oxygen-tolerant phenotypes. Most strains were able to cope with aerobic conditions and for many strains aerobic growth and heme or heme/menaquinone supplementation increased biomass production compared to anaerobic cultivation. Only four L. casei strains showed a catalase-like activity under anaerobic, aerobic and respiratory conditions and were able to survive in presence of H2O2 (1 mM). Almost all L. casei and L. paracasei strains tolerated menadione (0.2 mM) and most tolerated pyrogallol (50 mM), while L. rhamnosus was usually resistant only to the latter compound. This is the first study in which an extensive screening of oxygen and oxidative stress tolerance of members of the L. casei group has been carried out. Results allowed the selection of strains showing the typical traits of aerobic and respiratory metabolism (increased pH and biomass under aerobic or respiratory conditions) and unique oxidative stress response properties. Aerobic growth and respiration may confer technological and physiological advantages in the L. casei group and oxygen-tolerant phenotypes could be exploited in several food industry applications. PMID:24918811

  9. Identification of a Stimulant for Lactobacillus casei Produced by Streptococcus lactis

    PubMed Central

    Branen, A. L.; Keenan, T. W.

    1970-01-01

    A compound stimulatory to the growth of Lactobacillus casei was isolated from cell extracts of Streptococcus lactis, purified, and characterized. The stimulant was identified as a small peptide with a molecular weight of approximately 4,500 daltons. The purified peptide gave negative tests for nucleic acids, phosphorus, glucosamine, and carbohydrates. Sixteen amino acids were detected in acid hydrolysates of this peptide. Serine, proline, glycine, alanine, leucine, and glutamic acid were present in hydrolysates in greatest abundance. PMID:5485084

  10. Development of a highly efficient protein-secreting system in recombinant Lactobacillus casei.

    PubMed

    Kajikawa, Akinobu; Ichikawa, Eiko; Igimi, Shizunobu

    2010-02-01

    The available techniques for heterologous protein secretion in Lactobacillus strains are limited. The aim of the present study was to develop an efficient protein-secretion system using recombinant lactobacilli for various applications such as live delivery of biotherapeutics. For the construction of expression vectors, the Lactobacillus brevis slpA promoter, Lactobacillus casei prtP signal sequence, and mouse IL-10 sequences were used as a model system. Interestingly, the slpA promoter exhibited strong activity in L. casei contrary to previous observations. In order to stabilize replication of the plasmid in E. coli, a removable terminator sequence was built into the promoter region. For the improvement of secretion efficiency, a DTNSD oligopeptide was added to the cleavage site of signal peptidase. The resulting plasmids provided remarkably efficient IL-10 secretion. Accumulation of the protein in the culture supernatant varied widely according to the pH conditions. By analysis of the secreted protein, formation of homodimers and biological activity, IL-10 was confirmed to be functional. The presently constructed plasmids could be useful tools for heterologous protein-secretion in L. casei. PMID:20208444

  11. Well-controlled proinflammatory cytokine responses of Peyer’s patch cells to probiotic Lactobacillus casei

    PubMed Central

    Chiba, Yukihide; Shida, Kan; Nagata, Satoru; Wada, Mariko; Bian, Lei; Wang, Chongxin; Shimizu, Toshiaki; Yamashiro, Yuichiro; Kiyoshima-Shibata, Junko; Nanno, Msanobu; Nomoto, Koji

    2010-01-01

    In order to clarify the probiotic features of immunomodulation, cytokine production by murine spleen and Peyer’s patch (PP) cells was examined in response to probiotic and pathogenic bacteria. In spleen cells, probiotic Lactobacillus casei induced interleukin (IL)-12 production by CD11b+ cells more strongly than pathogenic Gram-positive and Gram-negative bacteria and effectively promoted the development of T helper (Th) type 1 cells followed by high levels of secretion of interferon (IFN)-γ. Although the levels of IL-12 secreted by PP cells in response to L. casei were lower in comparison with spleen cells, Th1 cells developed as a result of this low-level induction of IL-12. However, IFN-γ secretion by the L. casei-induced Th1 cells stimulated with a specific antigen was down-regulated in PP cells. Development of IL-17-producing Th17 cells was efficiently induced in PP cells by antigen stimulation. Lactobacillus casei slightly, but significantly, inhibited the antigen-induced secretion of IL-17 without a decrease in the proportion of Th17 cells. No bacteria tested induced the development of IL-10-producing, transforming growth factor-β-producing or Foxp3-expressing regulatory T cells, thus suggesting that certain probiotics might regulate proinflammatory responses through as yet unidentified mechanisms in PP cells. These data show probiotic L. casei to have considerable potential to induce IL-12 production and promote Th1 cell development, but the secretion of proinflammatory cytokines such as IL-12 and IL-17 may be well controlled in PP cells. PMID:20636824

  12. Development of an alternative culture medium for the selective enumeration of Lactobacillus casei in fermented milk.

    PubMed

    Colombo, Monique; de Oliveira, Aline Evelyn Zimmermann; de Carvalho, Antonio Fernandes; Nero, Luís Augusto

    2014-05-01

    Monitoring the populations of probiotic strains of the species Lactobacillus casei in food is required by food industries in order to assure that a minimum concentration of these organisms will be ingested by consumers. In this context, Petrifilm™ AC plates can be used along with selective culture media to allow the enumeration of specific groups of lactic acid bacteria. The present study aimed to assess chemical substances as selective agents for Lb. casei in order to propose a selective culture medium to be used with Petrifilm™ AC plates as an alternative protocol for the enumeration of probiotic strains of this species in fermented milk. Twenty-six probiotic and starter cultures (including six strains of Lb. casei) were plated on de Man Rogosa and Sharpe (MRS) agar with distinct concentrations of nalidixic acid, bile, lithium chloride, metronidazole, sodium propionate, and vancomycin. Vancomycin at 10 mg/L demonstrated selective activity for Lb. casei. In addition, 2,3,5-triphenyltetrazolium chlorine was identified as a compound that did not inhibit Lb. casei, and Petrifilm™ AC plates used with MRS and vancomycin at 10 mg/L (MRS-V) demonstrated more colonies of this organism when incubated under anaerobic conditions than aerobic conditions. Acidophilus milk and yoghurt were prepared, added to Lb. casei strains, and stored at 4 °C. Lb. casei populations were monitored using MRS-V and MRTLV by conventional plating and associated with Petrifilm™ AC plates. All correlation indices between counts obtained by conventional plating and Petrifilm™ AC were significant (p < 0.05), but the best performance was observed for growth on MRS-V. The obtained data indicate the efficiency of using MRS-V associated with Petrifilm™ AC plates for the enumeration of Lb. casei strains in fermented milk. However, the selective potential of this culture medium must be evaluated considering the specific strains of Lb. casei and the starter cultures inoculated in the fermented milk that requires monitoring. PMID:24387857

  13. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase

    PubMed Central

    Bogicevic, Biljana; Berthoud, Hélène; Portmann, Reto; Bavan, Tharmatha; Meile, Leo; Irmler, Stefan

    2016-01-01

    In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase (metA). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro. Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE. PMID:26790714

  14. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus casei Expressing Phytases From Bifidobacteria.

    PubMed

    García-Mantrana, Izaskun; Monedero, Vicente; Haros, Monika

    2015-09-01

    Plant-based food products can be modified by fermentation to improve flavour and the concentration of some biologically active compounds, but also to increase the mineral availability by eliminating anti-nutrient substances such as phytates. The objective of this study was to develop a fermented soybean drink with improved nutritional quality and source of probiotic bacteria by including as starter for fermentation Lactobacillus casei strains modified to produce phytase enzymes from bifidobacteria. The L. casei strains showed a good adaptation to develop in the soy drink but they needed the addition of external carbohydrates to give rise to an efficient acidification. The strain expressing the Bifidobacterium pseudocatenulatum phytase was able to degrade more than 90 % phytate during product fermentation, whereas expression of Bifidobacterium longum spp. infantis phytase only led to 65 % hydrolysis. In both cases, accumulation of myo-inositol triphosphates was observed. In addition, the hydrolysis of phytate in soy drink fermented with the L. casei strain expressing the B. pseudocatenulatum phytase resulted in phytate/mineral ratios for Fe (0.35) and Zn (2.4), which were below the critical values for reduced mineral bioavailability in humans. This investigation showed the ability of modified L. casei to produce enzymes with technological relevance in the design of new functional foods. PMID:26003176

  15. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx

    PubMed Central

    Zhang, Yong; Guo, Xiao; Guo, Jianlin; He, Qiuwen; Li, He; Song, Yuqin; Zhang, Heping

    2014-01-01

    Gut microbiota mediated low-grade inflammation is involved in the onset of type 2 diabetes (T2DM). In this study, we used a high fat sucrose (HFS) diet-induced pre-insulin resistance and a low dose-STZ HFS rat models to study the effect and mechanism of Lactobacillus casei Zhang in protecting against T2DM onset. Hyperglycemia was favorably suppressed by L. casei Zhang treatment. Moreover, the hyperglycemia was connected with type 1 immune response, high plasma bile acids and urine chloride ion loss. This chloride ion loss was significantly prevented by L. casei via upregulating of chloride ion-dependent genes (ClC1-7, GlyRα1, SLC26A3, SLC26A6, GABAAα1, Bestrophin-3 and CFTR). A shift in the caecal microflora, particularly the reduction of bile acid 7α-dehydroxylating bacteria, and fecal bile acid profiles also occurred. These change coincided with organ chloride influx. Thus, we postulate that the prevention of T2DM onset by L. casei Zhang may be via a microbiota-based bile acid-chloride exchange mechanism. PMID:25133590

  16. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase.

    PubMed

    Bogicevic, Biljana; Berthoud, Hélène; Portmann, Reto; Bavan, Tharmatha; Meile, Leo; Irmler, Stefan

    2016-02-01

    In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase (metA). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro. Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE. PMID:26790714

  17. Adjuvant effects of Lactobacillus casei added to a renutrition diet in a malnourished mouse model.

    PubMed

    Gauffin, Cano Paola; Agüero, Graciela; Perdigon, Gabriela

    2002-04-01

    Nutritional deficiencies are associated with impaired immune response, affecting the body's defence mechanisms. It is also known that Lactic Acid Bacteria (LAB) and fermented products such us yogurt have immunopotentiator activity and nutritional properties, and could thus be used as a valuable supplement in a renutrition diet. The aim of this study was to determine, in a non-severe malnutrition model, the effective dose of Lactobacillus casei (L. casei), which when is used as an adjuvant in a renutrition diet, would modulate the mucosal immune system and induce recovery of the integrity of the intestinal barrier. The experiments were performed on groups of malnourished and renourished BALB/c mice. They received after milk renutrition a supplement of different doses and periods of L. casei feeding. We measured body weight; hematologic values and serum proteins. We also characterized small intestine immunoglobulin secreting cells, intraepithelial leukocytes, mastocytes and goblet cells. Structural and ultrastructural studies were performed. Our results suggest that impaired gut barrier and mucosal immune function produced by malnutrition can be reversed by L. casei and that the dose of 10(7) cfu/day/mouse administered during 5 consecutive days was the optimal one for recovery of the gut mucosal immune system. The clinical significance of these findings suggests ways for improving mucosal immunity, and generating protection against enteropathogens in hosts immunosuppressed by malnutrition. PMID:12058380

  18. Reconstruction and analysis of the genome-scale metabolic model of Lactobacillus casei LC2W.

    PubMed

    Xu, Nan; Liu, Jie; Ai, Lianzhong; Liu, Liming

    2015-01-10

    Lactobacillus casei LC2W is a recently isolated probiotic lactic acid bacterial strain, which is widely used in the dairy and pharmaceutical industries and in clinical medicine. The first genome-scale metabolic model for L. casei, composed of 846 genes, 969 metabolic reactions, and 785 metabolites, was reconstructed using both manual genome annotation and an automatic SEED model. Then, the iJL846 model was validated by simulating cell growth on 15 reported carbon sources. The iJL846 model explored the metabolism of L. casei on a genome scale: (1) explanation of the genetic codes-metabolic functions of 342 genes were reannotated in this model; (2) characterization of the physiology-10 amino acids and 7 vitamins were identified to be essential nutrients for L. casei LC2W growth; (3) analyses of metabolic pathways-the transport and metabolism of the 17 essential nutrients and exopolysaccharide (EPS) biosynthesis-were performed; (4) exploration of metabolic capacity was conducted-for lactate, the importance of genes in its biosynthetic pathways was evaluated, and the requirements of amino acids were predicted for mixed acid fermentation; for flavor compounds, the effects of oxygen were analyzed, and three new knockout targets were selected for acetoin production; for EPS, 11 types of nutrients in the rich medium and important reactions in the biosynthetic pathway were identified that enhanced EPS production. In conclusion, the iJL846 model serves as a useful tool for understanding and engineering the metabolism of this probiotic strain. PMID:25452194

  19. Monitoring survival of Lactobacillus casei ATCC 393 in probiotic yogurts using an efficient molecular tool.

    PubMed

    Sidira, Marianthi; Saxami, Georgia; Dimitrellou, Dimitra; Santarmaki, Valentini; Galanis, Alex; Kourkoutas, Yiannis

    2013-05-01

    The aim of the present study was to monitor the survival of the probiotic strain Lactobacillus casei ATCC 393 during refrigerated storage of natural regular yogurts compared with Lactobacillus delbrueckii ssp. bulgaricus. Both free and immobilized cells on supports of high industrial interest, such as fruits and oat pieces, were tested. Microbiological and strain-specific multiplex PCR analysis showed that both free and immobilized Lb. casei ATCC 393 were detected in the novel products at levels required to confer a probiotic effect (at least 6 log cfu/g) for longer periods than required by the dairy industry (≥ 30 d) during storage at 4°C. In contrast, the viable bacterial density of Lb. delbrueckii ssp. bulgaricus decreased to levels <6 log cfu/g after 14 d of cold storage. Of note, the final pH of all products was 4.2 to 4.3. Acid resistance or cold tolerance of Lb. casei ATCC 393 apparently allows for increased survival compared with Lb. delbrueckii ssp. bulgaricus in these yogurt formulations. PMID:23498002

  20. Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production.

    PubMed

    Ho, P S; Kwang, J; Lee, Y K

    2005-02-01

    Lactobacillus casei strain Shirota was selected as a bacterial carrier for the development of live mucosal vaccines against coronavirus. A 75 kDa fragment of transmissible gastroenteritis coronavirus (TGEV) spike glycoprotein S was used as the model coronavirus antigen. The S glycoprotein was cloned into a Lactobacillus/E. coli shuttle vector (pLP500) where expression and secretion of the glycoprotein S from the recombinant lactobacilli was detected via immunoblotting. Oral immunization of BALB/c mice with recombinant LcS that constitutively expresses the 75 kDa fragment of the glycoprotein S, induced both local mucosal and systemic immune responses against TGEV. Maximum titers of IgG (8.38+/-0.19 ng/ml of serum) and IgA (64.82+/-2.9 ng/ml of intestinal water) were attained 32 days post oral inturbation. The induced antibodies demonstrated neutralizing effects on TGEV infection. PMID:15661381

  1. Short communication: Protection of lyophilized milk starter Lactobacillus casei Zhang by glutathione.

    PubMed

    Zhang, Juan; Liu, Qian; Chen, Wei; Du, Guocheng; Chen, Jian

    2016-03-01

    Lyophilization is considered an effective way to preserve the activity of milk starters, such as lactic acid bacteria, in which proper protective agents play key roles. In this study, Lactobacillus casei Zhang, a probiotic bacterium applied as a milk starter in China, was used to investigate the effects of various cryoprotectants according to cell survival rate and physiological characteristics. The result showed a significant survival improvement to 86.6% when glutathione (GSH) was added as an ideal cryoprotectant. Further study revealed that GSH plays a key role on maintaining higher unsaturation ratio of cell membrane and shorter chain length of saturated fatty acids. In this case, the intact cell structure can be obtained. These findings will contribute not only to deepen the understanding of cells during lyophilization but also to improve the industrial performance of certain milk starters such as L. casei Zhang by application of GSH as cryoprotectant. PMID:26723115

  2. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the human NK-cell activity.

    PubMed

    Takeda, Kazuyoshi; Okumura, Ko

    2007-03-01

    Nine healthy middle-aged and 10 elderly volunteers drank fermented milk containing 4 x 10(10) live cells of Lactobacillus casei strain Shirota daily for 3 wk, and their natural killer (NK) activity and other immunological functions were examined. In the experiments with middle-aged volunteers, NK activity significantly increased (P<0.01) 3 wk after the start of intake, elevated NK cell activity remained for the next 3 wk, and this effect was particularly prominent in the low-NK-activity individuals. In the experiments with elderly volunteers, NK activity significantly decreased (P<0.01) in the control group 3 wk after the start of intake; however, the intake of Lactobacillus casei strain Shirota maintained the NK activity. These results suggest that daily intake of Lactobacillus casei strain Shirota provides a positive effect on NK-cell activity. PMID:17311976

  3. Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.

    PubMed

    Yebra, María Jesús; Zúñiga, Manuel; Beaufils, Sophie; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente

    2007-06-01

    Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23. PMID:17449687

  4. Radioprotection of mice by a single subcutaneous injection of heat-killed Lactobacillus casei after irradiation

    SciTech Connect

    Nomoto, K.; Yokokura, T.; Tsuneoka, K.; Shikita, M. )

    1991-03-01

    Treatment of whole-body gamma-irradiated mice with a preparation of Lactobacillus casei (LC 9018) immediately after irradiation caused a sustained increase in serum colony-stimulating activity which was followed by an enhanced repopulation of granulocyte-macrophage colony-forming cells in the femoral marrow and spleen. Numbers of blood leukocytes, erythrocytes, and platelets were increased earlier in the treated mice than in the controls, and the survival rate was elevated significantly. The radioprotective effect was dependent on the dose of LC 9018 as well as on the dose of radiation. These results demonstrate the value of LC 9018 for the treatment of myelosuppression after radiotherapy or radiation accidents.

  5. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate.

    PubMed Central

    Handwerger, S; Pucci, M J; Volk, K J; Liu, J; Lee, M S

    1994-01-01

    The emergence of acquired high-level resistance among Enterococcus species has renewed interest in mechanisms of resistance to glycopeptide antibiotics in gram-positive bacteria. In Enterococcus faecalis and Enterococcus faecium, resistance is encoded by the van gene cluster and is due to the production of a peptidoglycan precursor terminating in D-alanyl-D-lactate, to which vancomycin does not bind. Most Leuconostoc and many Lactobacillus species are intrinsically resistant to high levels of glycopeptide antibiotics, but the mechanism of resistance has not been elucidated. To determine whether the mechanisms of resistance are similar in intrinsically resistant bacteria, cytoplasmic peptidoglycan precursors were isolated from Leuconostoc mesenteroides and Lactobacillus casei and analyzed by mass spectrometry, revealing structures consistent with UDP-N-acetylmuramyl-L-Ala-D-Glu-L-Lys-(L-Ala)-D-Ala-D-lactate and UDP-N-acetylmuramyl-L-Ala-D-Glu-L-Lys-D-Ala-D-lactate, respectively. PMID:8282706

  6. The sim Operon Facilitates the Transport and Metabolism of Sucrose Isomers in Lactobacillus casei ATCC 334?

    PubMed Central

    Thompson, John; Jakubovics, Nicholas; Abraham, Bindu; Hess, Sonja; Pikis, Andreas

    2008-01-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with Mrs of ?50,000 and ?17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the ?50-kDa protein as an NAD+- and metal ion-dependent phospho-?-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-?-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to ?1.5- and ?1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon. PMID:18310337

  7. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei.

    PubMed Central

    Chassy, B M; Thompson, J

    1983-01-01

    Cells of Lactobacillus casei grown in media containing galactose or a metabolizable beta-galactoside (lactose, lactulose, or arabinosyl-beta-D-galactoside) were induced for a galactose-phosphoenolpyruvate-dependent phosphotransferase system (gal-PTS). This high-affinity system (Km for galactose, 11 microM) was inducible in eight strains examined, which were representative of all five subspecies of L. casei. The gal-PTS was also induced in strains defective in glucose- and lactose-phosphoenolpyruvate-dependent phosphotransferase systems during growth on galactose. Galactose 6-phosphate appeared to be the intracellular inducer of the gal-PTS. The gal-PTS was quite specific for D-galactose, and neither glucose, lactose, nor a variety of structural analogs of galactose caused significant inhibition of phosphotransferase system-mediated galactose transport in intact cells. The phosphoenolpyruvate-dependent phosphorylation of galactose in vitro required specific membrane and cytoplasmic components (including enzyme IIIgal), which were induced only by growth of the cells on galactose or beta-galactosides. Extracts prepared from such cells also contained an ATP-dependent galactokinase which converted galactose to galactose 1-phosphate. Our results demonstrate the separate identities of the gal-PTS and the lactose-phosphoenol-pyruvate-dependent phosphotransferase system in L. casei. Images PMID:6406427

  8. Isolation and Characterization of a Novel Virulent Phage of Lactobacillus casei ATCC 393.

    PubMed

    Zhang, Xi; Lan, Yu; Jiao, Wenchao; Li, Yijing; Tang, Lijie; Jiang, Yanping; Cui, Wen; Qiao, Xinyuan

    2015-12-01

    A new virulent phage (Lcb) of Lactobacillus casei ATCC 393 was isolated from Chinese sauerkraut. It was specific to L. casei ATCC 393. Electron micrograph revealed that it had an icosahedral head (60.2 ± 0.8 nm in diameter) and a long tail (251 ± 2.6 nm). It belonged to the Siphoviridae family. The genome of phage Lcb was estimated to be approximately 40 kb and did not contain cohesive ends. One-step growth kinetics of its lytic development revealed latent and burst periods of 75 and 45 min, respectively, with a burst size of 16 PFU per infected cell. The phage was able to survive in a pH range between 4 and 11. However, a treatment of 70 °C for 30 min and 75% ethanol or isopropanol for 20 min was observed to inactivate phage Lcb thoroughly. The presence of both Ca(2+) and Mg(2+) showed a little influence on phage adsorption, but they were indispensable to gain complete lysis and improve plaque formation. The adsorption kinetics were similar on viable or nonviable cells, and high adsorption rates maintained between 10 and 37 °C. The highest adsorption rate was at 30 °C. This study increased the knowledge on phages of L. casei. The characterization of phage Lcb is helpful to establish a basis for adopting effective strategies to control phage attack in industry. PMID:26123178

  9. Culture media for differential isolation of Lactobacillus casei Shirota from oral samples.

    PubMed

    Sutula, Justyna; Coulthwaite, Lisa; Verran, Joanna

    2012-07-01

    This study aimed to develop a solid culture medium for differential isolation of the probiotic strain Lactobacillus casei Shirota (LcS) and for selective cultivation of lactobacilli present in oral samples. Type strains of lactobacilli and isolates from commercial probiotic products were inoculated onto modified de Man Rogosa Sharpe agar (termed 'LcS Select'), containing bromophenol blue pH indicator, vancomycin and reducing agent L-cysteine hydrochloride for differential colony morphology development. L. casei Shirota cultured on the novel medium produced distinctive colony morphologies, different from other lactobacilli tested. LcS-characteristic colonies were recovered on LcS Select medium from samples of saliva and tongue plaque following a four-week probiotic intervention study. The viable count of presumptive LcS colonies correlated with those isolated on a non-commercial lactitol-LBS-vancomycin agar (LLV) developed for a selective isolation of LcS from faeces. The novel LcS Select medium proved suitable for differential isolation of the probiotic strain L. casei Shirota from oral samples containing mixed microbial populations. It can also be used for selective growth of vancomycin-resistant lactobacilli. There are few available culture media that are sufficiently selective to enable isolation of probiotic strains from mixed populations. LcS Select medium provides a cheaper, yet effective tool in this context. PMID:22484087

  10. Construction and characterization of three protein-targeting expression system in Lactobacillus casei.

    PubMed

    Lin, Jinzhong; Zou, Yexia; Ma, Chengjie; Liang, Yunxiang; Ge, Xiangyang; Chen, Zhengjun; She, Qunxin

    2016-04-01

    We previously reported that the β-1,4-Mannanase (manB) gene from Bacillus pumilus functions as a good reporter gene in Lactobacillus casei. Two vectors were constructed. One carries the signal peptide of secretion protein Usp45 (SPUsp45) from Lactococcus lactis (pELSH), and the other carries the full-length S-layer protein, SlpA, from L. acidophilus (pELWH). In this work, another vector, pELSPH, was constructed to include the signal peptide of protein SlpA (SPSlpA), and the capacity of all three vectors to drive expression of the manB gene in L. casei was evaluated. The results showed that SPUsp45 is functionally recognized and processed by the L. casei secretion machinery. The SPUsp45-mediated secretion efficiency was ∼87%, and SPSlpA drove the export of secreted ManB with ∼80% efficiency. SPSlpA secretion was highly efficient, and expressed SlpA was anchored to the cell wall by an unknown secretion mechanism. Full-length SlpA drove the cell wall-anchored expression of an SlpA-ManB fusion protein but at a much lower level than that of protein SlpA. PMID:26892019

  11. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    PubMed

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications. PMID:26566892

  12. Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model.

    PubMed

    Okubo, Hirofumi; Sakoda, Hideyuki; Kushiyama, Akifumi; Fujishiro, Midori; Nakatsu, Yusuke; Fukushima, Toshiaki; Matsunaga, Yasuka; Kamata, Hideaki; Asahara, Takashi; Yoshida, Yasuto; Chonan, Osamu; Iwashita, Misaki; Nishimura, Fusanori; Asano, Tomoichiro

    2013-12-01

    Gut microbiota alterations are associated with various disorders. In this study, gut microbiota changes were investigated in a methionine-choline-deficient (MCD) diet-induced nonalcoholic steatohepatitis (NASH) rodent model, and the effects of administering Lactobacillus casei strain Shirota (LcS) on the development of NASH were also investigated. Mice were divided into three groups, given the normal chow diet (NCD), MCD diet, or the MCD diet plus daily oral administration of LcS for 6 wk. Gut microbiota analyses for the three groups revealed that lactic acid bacteria such as Bifidobacterium and Lactobacillus in feces were markedly reduced by the MCD diet. Interestingly, oral administration of LcS to MCD diet-fed mice increased not only the L. casei subgroup but also other lactic acid bacteria. Subsequently, NASH development was evaluated based on hepatic histochemical findings, serum parameters, and various mRNA and/or protein expression levels. LcS intervention markedly suppressed MCD-diet-induced NASH development, with reduced serum lipopolysaccharide concentrations, suppression of inflammation and fibrosis in the liver, and reduced colon inflammation. Therefore, reduced populations of lactic acid bacteria in the colon may be involved in the pathogenesis of MCD diet-induced NASH, suggesting normalization of gut microbiota to be effective for treating NASH. PMID:24113768

  13. Predictive modelling of Lactobacillus casei KN291 survival in fermented soy beverage.

    PubMed

    Zielińska, Dorota; Dorota, Zielińska; Kołożyn-Krajewska, Danuta; Danuta, Kołożyn-Krajewska; Goryl, Antoni; Antoni, Goryl; Motyl, Ilona

    2014-02-01

    The aim of the study was to construct and verify predictive growth and survival models of a potentially probiotic bacteria in fermented soy beverage. The research material included natural soy beverage (Polgrunt, Poland) and the strain of lactic acid bacteria (LAB) - Lactobacillus casei KN291. To construct predictive models for the growth and survival of L. casei KN291 bacteria in the fermented soy beverage we design an experiment which allowed the collection of CFU data. Fermented soy beverage samples were stored at various temperature conditions (5, 10, 15, and 20°C) for 28 days. On the basis of obtained data concerning the survival of L. casei KN291 bacteria in soy beverage at different temperature and time conditions, two non-linear models (r(2)= 0.68-0.93) and two surface models (r(2)=0.76-0.79) were constructed; these models described the behaviour of the bacteria in the product to a satisfactory extent. Verification of the surface models was carried out utilizing the validation data - at 7°C during 28 days. It was found that applied models were well fitted and charged with small systematic errors, which is evidenced by accuracy factor - Af, bias factor - Bf and mean squared error - MSE. The constructed microbiological growth and survival models of L. casei KN291 in fermented soy beverage enable the estimation of products shelf life period, which in this case is defined by the requirement for the level of the bacteria to be above 10(6) CFU/cm(3). The constructed models may be useful as a tool for the manufacture of probiotic foods to estimate of their shelf life period. PMID:24500482

  14. Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine.

    PubMed

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J

    2012-07-01

    UDP-sugars are used as glycosyl donors in many enzymatic glycosylation processes. In bacteria UDP-N-acetylglucosamine (UDP-GlcNAc) is synthesized from fructose-6-phosphate by four successive reactions catalyzed by three enzymes: Glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM), and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). In this work several metabolic engineering strategies, aimed to increment UDP-GlcNAc biosynthesis, were applied in the probiotic bacterium Lactobacillus casei strain BL23. This strain does not produce exopolysaccharides, therefore it could be a suitable host for the production of oligosaccharides. The genes glmS, glmM, and glmU coding for GlmS, GlmM, and GlmU activities in L. casei BL23, respectively, were identified, cloned and shown to be functional by homologous over-expression. The recombinant L. casei strain over-expressing simultaneously the genes glmM and glmS showed a 3.47 times increase in GlmS activity and 6.43 times increase in GlmM activity with respect to the control strain. Remarkably, these incremented activities resulted in about fourfold increase of the UDP-GlcNAc pool. In L. casei BL23 wild type strain transcriptional analyses showed that glmM and glmU are constitutively transcribed. By contrast, glmS transcription is down-regulated with a 21-fold decrease of glmS mRNA in cells cultured with N-acetylglucosamine as the sole carbon source compared to cells cultured with glucose. Our results revealed for the first time that GlmS, GlmM, and GlmU are responsible for UDP-GlcNAc biosynthesis in lactobacilli. PMID:22383248

  15. Acid stress suggests different determinants for polystyrene and HeLa cell adhesion in Lactobacillus casei.

    PubMed

    Haddaji, N; Khouadja, S; Fdhila, K; Krifi, B; Ben Ismail, M; Lagha, R; Bakir, K; Bakhrouf, A

    2015-07-01

    Adhesion has been regarded as one of the basic features of probiotics. The aim of this study was to investigate the influence of acid stress on the functional properties, such as hydrophobicity, adhesion to HeLa cells, and composition of membrane fatty acids, of Lactobacillus probiotics strains. Two strains of Lactobacillus casei were used. Adhesion on polystyrene, hydrophobicity, epithelial cells adhesion, and fatty acids analysis were evaluated. Our results showed that the membrane properties such as hydrophobicity and fatty acid composition of stressed strains were significantly changed with different pH values. However, we found that acid stress caused a change in the proportions of unsaturated and saturated fatty acid. The ratio of saturated fatty acid to unsaturated fatty acids observed in acid-stressed Lactobacillus casei cells was significantly higher than the ration in control cells. In addition, we observed a significant decrease in the adhesion ability of these strains to HeLa cells and to a polystyrene surface at low pH. The present finding could first add new insight about the acid stress adaptation and, thus, enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. Second, no relationship was observed between changes in membrane composition and fluidity induced by acid treatment and adhesion to biotic and abiotic surfaces. In fact, the decrease of cell surface hydrophobicity and the adhesion ability to abiotic surface and the increase of the capacity of adhesion to biotic surface demonstrate that adhesive characteristics will have little relevance in probiotic strain-screening procedures. PMID:25981066

  16. Production of Human Papillomavirus Type 16 L1 Virus-Like Particles by Recombinant Lactobacillus casei Cells

    PubMed Central

    Aires, Karina Araujo; Cianciarullo, Aurora Marques; Carneiro, Sylvia Mendes; Villa, Luisa Lina; Boccardo, Enrique; Pérez-Martinez, Gaspar; Perez-Arellano, Isabel; Oliveira, Maria Leonor Sarno; Ho, Paulo Lee

    2006-01-01

    Infections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L. casei. Expression was confirmed by Western blotting, and an electron microscopy analysis of L. casei expressing L1 showed that the protein was able to self-assemble into VLPs intracellularly. The presence of conformational epitopes on the L. casei-produced VLPs was confirmed by immunofluorescence using the anti-HPV-16 VLP conformational antibody H16.V5. Moreover, sera from mice that were subcutaneously immunized with L. casei expressing L1 reacted with Spodoptera frugiperda-produced HPV-16 L1 VLPs, as determined by an enzyme-linked immunosorbent assay. The production of L1 VLPs by Lactobacillus opens the possibility for development of new live mucosal prophylactic vaccines. PMID:16391114

  17. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread.

    PubMed

    García-Mantrana, Izaskun; Yebra, María J; Haros, Monika; Monedero, Vicente

    2016-01-01

    Phytases are enzymes capable of sequentially dephosphorylating phytic acid to products of lower chelating capacity and higher solubility, abolishing its inhibitory effect on intestinal mineral absorption. Genetic constructions were made for expressing two phytases from bifidobacteria in Lactobacillus casei under the control of a nisin-inducible promoter. L. casei was able of producing, exporting and anchoring to the cell wall the phytase of Bifidobacterium pseudocatenulatum. The phytase from Bifidobacterium longum spp. infantis was also produced, although at low levels. L. casei expressing any of these phytases completely degraded phytic acid (2mM) to lower myo-inositol phosphates when grown in MRS medium. Owing to the general absence of phytase activity in lactobacilli and to the high phytate content of whole grains, the constructed L. casei strains were applied as starter in a bread making process using whole-grain flour. L. casei developed in sourdoughs by fermenting the existing carbohydrates giving place to an acidification. In this food model system the contribution of L. casei strains expressing phytases to phytate hydrolysis was low, and the phytate degradation was mainly produced by activation of the cereal endogenous phytase as a consequence of the drop in pH. This work shows the capacity of lactobacilli to be modified in order to produce enzymes with relevance in food technology processes. The ability of these strains in reducing the phytate content in fermented food products must be evaluated in further models. PMID:26384212

  18. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.

    PubMed

    O'Sullivan, Daniel J; McSweeney, Paul L H; Cotter, Paul D; Giblin, Linda; Sheehan, Jeremiah J

    2016-04-01

    Nonstarter lactic acid bacteria are commonly implicated in undesirable gas formation in several varieties, including Cheddar, Dutch-, and Swiss-type cheeses, primarily due to their ability to ferment a wide variety of substrates. This effect can be magnified due to factors that detrimentally affect the composition or activity of starter bacteria, resulting in the presence of greater than normal amounts of fermentable carbohydrates and citrate. The objective of this study was to determine the potential for a facultatively heterofermentative Lactobacillus (Lactobacillus casei DPC6987) isolated from a cheese plant environment to promote gas defects in the event of compromised starter activity. A Swiss-type cheese was manufactured, at pilot scale and in triplicate, containing a typical starter culture (Streptococcus thermophilus and Lactobacillus helveticus) together with propionic acid bacteria. Lactobacillus helveticus populations were omitted in certain vats to mimic starter failure. Lactobacillus casei DPC6987 was added to each experimental vat at 4 log cfu/g. Cheese compositional analysis and X-ray computed tomography revealed that the failure of starter bacteria, in this case L. helveticus, coupled with the presence of a faculatively heterofermentative Lactobacillus (L. casei) led to excessive eye formation during ripening. The availability of excess amounts of lactose, galactose, and citrate during the initial ripening stages likely provided the heterofermentative L. casei with sufficient substrates for gas formation. The accrual of these fermentable substrates was notable in cheeses lacking the L. helveticus starter population. The results of this study are commercially relevant, as they demonstrate the importance of viability of starter populations and the control of specific nonstarter lactic acid bacteria to ensure appropriate eye formation in Swiss-type cheese. PMID:26805985

  19. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei.

    PubMed

    Serata, Masaki; Iino, Tohru; Yasuda, Emi; Sako, Tomoyuki

    2012-04-01

    The Lactobacillus casei strain Shirota used in this study has in the genome four putative thioredoxin genes designated trxA1, trxA2, trxA3 and trxA4, and one putative thioredoxin reductase gene designated trxB. To elucidate the roles of the thioredoxins and the thioredoxin reductase against oxidative stress in L. casei, we constructed gene disruption mutants, in which each of the genes trxA1, trxA2 and trxB, or both trxA1 and trxA2 were disrupted, and we characterized their growth and response to oxidative stresses. In aerobic conditions, the trxA1 (MS108) and the trxA2 (MS109) mutants had moderate growth defects, and the trxA1 trxA2 double mutant (MS110) had a severe growth defect, which was characterized by elongation of doubling time and a lower final turbidity level. Furthermore, the trxB mutant (MS111), which is defective in thioredoxin reductase, lost the ability to grow under aerobic conditions, although it grew partially under anaerobic conditions. The growth of these mutants, however, could be substantially restored by the addition of dithiothreitol or reduced glutathione. In addition, MS110 and MS111 were more sensitive to hydrogen peroxide and disulfide stress than the wild-type. In particular, the stress sensitivity of MS111 was significantly increased. On the other hand, transcription of all these genes was only weakly affected by these oxidative stresses. Taken together, these results suggest that the thioredoxin-thioredoxin reductase system is the major thiol/disulfide redox system and is essential to allow the facultative anaerobe L. casei to grow under aerobic conditions. PMID:22301908

  20. Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems.

    PubMed

    Bruno-Bárcena, J M; Ragout, A L; Córdoba, P R; Siñeriz, F

    1999-03-01

    A two-stage two-stream chemostat system and a two-stage two-stream immobilized upflow packed-bed reactor system were used for the study of lactic acid production by Lactobacillus casei subsp casei. A mixing ratio of D12/D2 = 0.5 (D = dilution rate) resulted in optimum production, making it possible to generate continuously a broth with high lactic acid concentration (48 g l-1) and with a lowered overall content of initial yeast extract (5 g l-1), half the concentration supplied in the one-step process. In the two-stage chemostat system, with the first stage at pH 5.5 and 37 degrees C and a second stage at pH 6.0, a temperature change from 40 degrees C to 45 degrees C in the second stage resulted in a 100% substrate consumption at an overall dilution rate of 0.05 h-1. To increase the cell mass in the system, an adhesive strain of L. casei was used to inoculate two packed-bed reactors, which operated with two mixed feedstock streams at the optimal conditions found above. Lactic acid fermentation started after a lag period of cell growth over foam glass particles. No significant amount of free cells, compared with those adhering to the glass foam, was observed during continuous lactic acid production. The extreme values, 57.5 g l-1 for lactic acid concentration and 9.72 g l-1 h-1 for the volumetric productivity, in upflow packed-bed reactors were higher than those obtained for free cells (48 g l-1 and 2.42 g l-1 h-1) respectively and the highest overall L(+)-lactic acid purity (96.8%) was obtained in the two-chemostat system as compared with the immobilized-cell reactors (93%). PMID:10222580

  1. Enhancement of the Mexican bovine babesiosis vaccine efficacy by using Lactobacillus casei.

    PubMed

    Bautista, Carlos R; Alvarez, Jesus A; Mosqueda, Juan J; Falcon, Alfonso; Ramos, Juan A; Rojas, Carmen; Figueroa, Julio V; Ku, Magdalena

    2008-12-01

    To evaluate the effect of Lactobacillus casei on the effectiveness of the Mexican bovine babesiosis mixed vaccine, 20 bovines were randomly allocated into four groups of five animals (I, II, III, and IV). At day -2 animals in groups I and II were inoculated with saline solution by intramuscular route (i.m.) and animals in groups III and IV were inoculated with L. casei. At day 0 bovines in groups I and III were inoculated i.m. with bovine normal erythrocytes and animals of groups II and IV were inoculated with the babesiosis vaccine. Twenty-four days later each bovine was challenged with Babesia bovis- and B. bigemina-infected erythrocytes. The average rectal temperature in groups I and III was higher (P < 0.05) than that in the vaccinated groups after challenge. The average packed cell volume was lower (P < 0.01) in the control groups than in the vaccinated groups. At day 10 after challenge, the average anti-Babesia antibody level was higher in group IV than in group II. At day 7 after vaccination, the percentage of bovines positive to gamma interferon, as determined by real-time PCR, was 20, 0, 40, and 80 for groups I, II, III, and IV, respectively. All animals in control groups (I and III) were treated against babesiosis to avoid their death because they showed signs of babesiosis. The results indicate that L. casei, inoculated 2 days before the inoculation of the Mexican bivalent bovine babesiosis vaccine, improves the vaccine's efficiency. PMID:19120190

  2. Expression of cbsA Encoding the Collagen-Binding S-Protein of Lactobacillus crispatus JCM5810 in Lactobacillus casei ATCC 393T

    PubMed Central

    Martínez, Beatriz; Sillanpää, Jouko; Smit, Egbert; Korhonen, Timo K.; Pouwels, Peter H.

    2000-01-01

    The cbsA gene encoding the collagen-binding S-layer protein of Lactobacillus crispatus JCM5810 was expressed in L. casei ATCC 393T. The S-protein was not retained on the surface of the recombinant bacteria but was secreted into the medium. By translational fusion of CbsA to the cell wall sorting signal of the proteinase, PrtP, of L. casei, CbsA was presented at the surface, rendering the transformants able to bind to immobilized collagens. PMID:11073938

  3. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene.

    PubMed

    Li, Nan; Wang, Yuanlong; Zhu, Ping; Liu, Zhenmin; Guo, Benheng; Ren, Jing

    2015-02-01

    Lactobacillus casei LC2W is an exopolysaccharide (EPS)-producing strain with probiotic effects. To investigate the regulation mechanism of EPS biosynthesis and to improve EPS production through cofactor engineering, a H₂O-forming NADH oxidase gene was cloned from Streptococcus mutans and overexpressed in L. casei LC2W under the control of constitutive promoter P₂₃. The recombinant strain LC-nox exhibited 0.854 U/mL of NADH oxidase activity, which was elevated by almost 20-fold in comparison with that of wild-type strain. As a result, overexpression of NADH oxidase resulted in a reduction in growth rate. In addition, lactate production was decreased by 22% in recombinant strain. It was proposed that more carbon source was saved and used for the biosynthesis of EPS, the production of which was reached at 219.4 mg/L, increased by 46% compared to that of wild-type strain. This work provided a novel and convenient genetic approach to manipulate metabolic flux and to increase EPS production. To the best of our knowledge, this is the first report which correlates cofactor engineering with EPS production. PMID:25644955

  4. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Rubio-Del-Campo, Antonio; Yebra, María J

    2012-01-01

    UDP-N-acetylglucosamine (UDP-GlcNAc) is an important sugar nucleotide used as a precursor of cell wall components in bacteria, and as a substrate in the synthesis of oligosaccharides in eukaryotes. In bacteria UDP-GlcNAc is synthesized from the glycolytic intermediate D-fructose-6-phosphate (fructose-6P) by four successive reactions catalyzed by three enzymes: glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM) and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). We have previously reported a metabolic engineering strategy in Lactobacillus casei directed to increase the intracellular levels of UDP-GlcNAc by homologous overexpression of the genes glmS, glmM and glmU. One of the most remarkable features regarding the production of UDP-GlcNAc in L. casei was to find multiple regulation points on its biosynthetic pathway: (1) regulation by the NagB enzyme, (2) glmS RNA specific degradation through the possible participation of a glmS riboswitch mechanism, (3) regulation of the GlmU activity probably by end product inhibition and (4) transcription of glmU. PMID:22825354

  5. Shotgun phage display of Lactobacillus casei BL23 against collagen and fibronectin.

    PubMed

    Munoz-Provencio, Diego; Monedero, Vicente

    2011-02-01

    Lactobacilli are normal constituents of the intestinal microbiota, and some strains show the capacity to bind to extracellular matrix proteins and components of the mucosal layer, which represents an adaptation to persist in this niche. A shotgun phage-display library of Lactobacillus casei BL23 was constructed and screened for peptides able to bind to fibronectin and collagen. Clones showing binding to these proteins were isolated, which encoded overlapping fragments of a putative transcriptional regulator (LCABL_29260), a hypothetical protein exclusively found in the L. casei/rhamnosus group (LCABL_01820), and a putative phage-related endolysin (LCABL_13470). The construction of different glutathione S-transferase (GST) fusions confirmed the binding activity and demonstrated that the three identified proteins could interact with fibronectin, fibrinogen, and collagen. The results illustrate the utility of phage display for the isolation of putative adhesins in lactobacilli. However, it remains to be determined whether the primary function of these proteins actually is adhesion to mucosal surfaces. PMID:21364304

  6. Distinct adhesion of probiotic strain Lactobacillus casei ATCC 393 to rat intestinal mucosa.

    PubMed

    Saxami, Georgia; Ypsilantis, Petros; Sidira, Marianthi; Simopoulos, Constantinos; Kourkoutas, Yiannis; Galanis, Alex

    2012-08-01

    Adhesion to the intestine represents a critical parameter for probiotic action. In this study, the adhesion ability of Lactobacillus casei ATCC 393 to the gastrointestinal tract of Wistar rats was examined after single and daily administration of fermented milk containing either free or immobilized cells on apple pieces. The adhesion of the probiotic cells at the large intestine (cecum and colon) was recorded at levels ≥6 logCFU/g (suggested minimum levels for conferring a probiotic effect) following daily administration for 7 days by combining microbiological and strain-specific multiplex PCR analysis. Single dose administration resulted in slightly reduced counts (5 logCFU/g), while they were lower at the small intestine (duodenum, jejunum, ileum) (≤3 logCFU/g), indicating that adhesion was a targeted process. Of note, the levels of L. casei ATCC 393 were enhanced in the cecal and colon fluids both at single and daily administration of immobilized cells (6 and 7 logCFU/g, respectively). The adhesion of the GI tract was transient and thus daily consumption of probiotic products containing the specific strain is suggested as an important prerequisite for retaining its levels at an effective concentration. PMID:22554894

  7. Identification of Surface Proteins from Lactobacillus casei BL23 Able to Bind Fibronectin and Collagen.

    PubMed

    Muñoz-Provencio, Diego; Pérez-Martínez, Gaspar; Monedero, Vicente

    2011-03-01

    Strains of lactobacilli show the capacity to attach to extracellular matrix proteins. Cell-wall fractions of Lactobacillus casei BL23 enriched in fibronectin, and collagen-binding proteins were isolated. Mass spectrometry analysis of their protein content revealed the presence of stress-related proteins (GroEL, ClpL), translational elongation factors (EF-Tu, EF-G), oligopeptide solute-binding proteins, and the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The latter two enzymes were expressed in Escherichia coli and purified as glutathione-S-transferase (GST) fusion proteins, and their in vitro binding activity to fibronectin and collagen was confirmed. These results reinforce the idea that lactobacilli display on their surfaces a variety of moonlighting proteins that can be important in their adaptation to survive at intestinal mucosal sites and in the interaction with host cells. PMID:26781495

  8. Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.

    PubMed

    Matsuki, Takahiro; Pédron, Thierry; Regnault, Béatrice; Mulet, Céline; Hara, Taeko; Sansonetti, Philippe J

    2013-01-01

    In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA) were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut. PMID:23646174

  9. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection.

    PubMed

    Hudault, S; Liévin, V; Bernet-Camard, M F; Servin, A L

    1997-02-01

    The aim of this study was to compare the antagonistic properties of Lactobacillus casei GG exerted in vitro against Salmonella typhimurium C5 in a cellular model, cultured enterocyte-like Caco-2 cells, to those exerted in vivo in an animal model, C3H/He/Oujco mice. Our results show that a 1-h contact between the invading strain C5 and either the culture or the supernatant of L. casei GG impeded the invasion by the Salmonella strain in Caco-2 cells, without modifying the viability of the strain. After neutralization at pH 7, no inhibition of the invasion by C5 was observed. The antagonistic activity of L. casei GG was examined in C3H/He/Oujco mice orally infected with C5 as follows: (i) L. casei GG was given daily to conventional animals as a probiotic, and (ii) it was given once to germ-free animals in order to study the effect of the population of L. casei GG established in the different segments of the gut. In vivo experiments show that after a single challenge with C5, this strain survives and persists at a higher level in the feces of the untreated conventional mice than in those of the treated group. In L. casei GG germ-free mice, establishment of L. casei GG in the gut significantly delayed the occurrence of 100% mortality of the animals (15 days after C5 challenge versus 9 days in germ-free mice [P < 0.01]). Cecal colonization level and translocation rate of C5 to the mesenteric lymph nodes, spleen, and liver were significantly reduced during the first 2 days post-C5 challenge, although the L. casei GG population level in the gut dramatically decreased in these animals. PMID:9023930

  10. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection.

    PubMed Central

    Hudault, S; Liévin, V; Bernet-Camard, M F; Servin, A L

    1997-01-01

    The aim of this study was to compare the antagonistic properties of Lactobacillus casei GG exerted in vitro against Salmonella typhimurium C5 in a cellular model, cultured enterocyte-like Caco-2 cells, to those exerted in vivo in an animal model, C3H/He/Oujco mice. Our results show that a 1-h contact between the invading strain C5 and either the culture or the supernatant of L. casei GG impeded the invasion by the Salmonella strain in Caco-2 cells, without modifying the viability of the strain. After neutralization at pH 7, no inhibition of the invasion by C5 was observed. The antagonistic activity of L. casei GG was examined in C3H/He/Oujco mice orally infected with C5 as follows: (i) L. casei GG was given daily to conventional animals as a probiotic, and (ii) it was given once to germ-free animals in order to study the effect of the population of L. casei GG established in the different segments of the gut. In vivo experiments show that after a single challenge with C5, this strain survives and persists at a higher level in the feces of the untreated conventional mice than in those of the treated group. In L. casei GG germ-free mice, establishment of L. casei GG in the gut significantly delayed the occurrence of 100% mortality of the animals (15 days after C5 challenge versus 9 days in germ-free mice [P < 0.01]). Cecal colonization level and translocation rate of C5 to the mesenteric lymph nodes, spleen, and liver were significantly reduced during the first 2 days post-C5 challenge, although the L. casei GG population level in the gut dramatically decreased in these animals. PMID:9023930

  11. Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicans-colonized immunodeficient mice.

    PubMed

    Wagner, R D; Pierson, C; Warner, T; Dohnalek, M; Hilty, M; Balish, E

    2000-05-01

    Probiotic bacteria can protect immunodeficient mice from orogastric candidiasis but cause some pathology of their own. Severely immunodeficient patients may be at risk if fed viable probiotics, so this study evaluated the probiotic potential of nonviable probiotic bacteria to protect immunodeficient mice from Candida albicans infections. Heat-killed probiotic bacteria were fed to gnotobiotic bg/bg-nu/nu and bg/bg-nu/+ mice to ascertain if they could protect the mice from mucosal and systemic candidiasis. Both heat-killed Lactobacillus acidophilus (HKLA) and heat-killed Lactobacillus casei (HKLC), in comparison to control mice not fed the probiotic bacteria but challenged (oral) with C. albicans, suppressed the severity of orogastric candidiasis in bg/bg-nu/nu mice at 2 weeks after colonization with C. albicans, inhibited disseminated candidiasis in C. albicans-colonized bg/bg-nu/+ mice at 4 weeks after colonization, and suppressed the number of viable C. albicans in the alimentary tract. HKLA, but not HKLC, treatment inhibited disseminated candidiasis in bg/bg-nu/nu mice at 2 weeks after oral challenge and enhanced the proliferative responses of splenocytes from C. albicans-colonized bg/bg-nu/+ mice to C. albicans antigens. Neither HKLA nor HKLC were able to prolong the survival of gnotobiotic bg/bg-nu/nu mice after oral challenge with C. albicans. These results demonstrate that heat-killed lactobacilli can induce some (limited) protection (probiotic effect) against candidiasis in mice. PMID:10826722

  12. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-01

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. PMID:21807435

  13. Transition of the probiotic bacteria, Lactobacillus casei strain Shirota, in the gastrointestinal tract of a pig.

    PubMed

    Ohashi, Yuji; Umesaki, Yoshinori; Ushida, Kazunari

    2004-10-01

    The transition of probiotic bacteria Lactobacillus in the gastrointestinal tract was investigated in pigs that received commercially available fermented milk prepared with Lactobacillus casei strain Shirota (LCS). Three female pigs fistulated at the cecum were fed 130 ml of fermented milk that contained over 10(10) (cfu) LCS with their daily meal for 8 days. Cecal contents were sampled through a fistula every 2 h for 24 h after marker dosing. The viable cell number (log cfu/g) of LCS and the concentrations of transit markers in each sample were determined. The viable number of LCS cells ranged from 3.56 to 6.58. The number of LCS in the cecum was not stable in pigs and varied with the flow of the cecal content. The viable number of LCS cells was significantly correlated with the relative concentration of the marker. These results indicated that most LCS moved with the liquid component. The level of LCS reached the maximum (6.38) 6 h after dosing. Four doses every 6 h may be required to maintain the maximum level of LCS at the cecum. PMID:15358506

  14. 454 pyrosequencing reveals changes in the faecal microbiota of adults consuming Lactobacillus casei Zhang.

    PubMed

    Zhang, Jiachao; Wang, Lifeng; Guo, Zhuang; Sun, Zhihong; Gesudu, Qimu; Kwok, Laiyu; Menghebilige; Zhang, Heping

    2014-06-01

    Probiotics are believed to help to maintain a healthy balance of the human gut microbiota. Lactobacillus casei Zhang (LcZ) is a novel potential probiotic isolated from the naturally fermented food koumiss. To better understand the impact of this potential probiotic on human intestinal microbiota, 24 subjects were randomly recruited for a longitudinal study: the subjects were required to consume LcZ for 28 days, and faecal samples were collected prior to, during and after the LcZ consumption phase. Alterations in the gut microbiota were monitored using 454 pyrosequencing and quantitative polymerase chain reaction(q-PCR) technologies. We found that the consumption of LcZ significantly altered the composition of intestinal microbiota (P < 0.001) and the gut microbiota diversity. Further analysis at the genus level revealed a positive correlation between LcZ and Prevotella, Lactobacillus, Faecalibacterium, Propionibacterium, Bifidobacterium and an unidentified genus from Bacteroidaceae and Lachnospiraceae and a negative correlation between LcZ administration and the presence of Clostridium, Phascolarctobacterium, Serratia, Enterococcus, Shigella and Shewanella. Furthermore, these changes were confirmed by q-PCR data. PMID:24702028

  15. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase

    PubMed Central

    Alvarez-Sieiro, Patricia; Martin, Maria Cruz; Redruello, Begoña; del Rio, Beatriz; Ladero, Victor; Palanski, Brad A.; Khosla, Chaitan; Fernandez, Maria; Alvarez, Miguel A.

    2015-01-01

    Prolyl endopeptidases (PEP), a family of serine proteases with the ability to hydrolyze the peptide bond on the carboxyl side of an internal proline residue, are able to degrade immunotoxic peptides responsible for celiac disease (CD), such as a 33-residue gluten peptide (33-mer). Oral administration of PEP has been suggested as a potential therapeutic approach for CD, although delivery of the enzyme to the small intestine requires intrinsic gastric stability or advanced formulation technologies. We have engineered two food-grade Lactobacillus casei strains to deliver PEP in an in vitro model of small intestine environment. One strain secretes PEP into the extracellular medium, whereas the other retains PEP in the intracellular environment. The strain that secretes PEP into the extracellular medium is the most effective to degrade the 33-mer and is resistant to simulated gastrointestinal stress. Our results suggest that in a future, after more studies and clinical trials, an engineered food-grade Lactobacillus strain may be useful as a vector for in situ production of PEP in the upper small intestine of CD patients. PMID:24752841

  16. The effects of microencapsulated Lactobacillus casei on tumour cell growth: In vitro and in vivo studies.

    PubMed

    Dwivedi, Anupma; Nomikou, Nikolitsa; Nigam, Poonam Singh; McHale, Anthony P

    2012-12-01

    It has been known for some time that the micro-milieu of solid tumours provides an ideal environment for growth of facultative and strictly anaerobic bacteria, and it has been shown that certain species including Lactobacillus and Clostridium can colonise those environments leading to regression of tumour growth. Such observations have given rise to the concept of bacteriolytic therapy where live microorganisms might be employed to colonise the tumour and exert a tumorolytic effect. In choosing such an approach, it would be advantageous to exploit a relatively non-pathogenic strain and provide some form of containment that would enable site-specific injection and minimise dispersion of the microorganism throughout the host. In testing the feasibility of such an approach, we prepared microencapsulated formulations of Lactobacillus casei NCDO 161 and demonstrated that conditioned extra-capsular culture media were toxic to tumour cells in vitro. We further investigated the effects of the microencapsulated formulations on tumour growth in vivo following direct intra-tumoural injection. The study demonstrates significant inhibition of tumour growth in vivo by these formulations and suggests potential therapeutic benefit of this approach in the treatment of solid tumours. PMID:23072864

  17. Theoretical insight into the heat shock response (HSR) regulation in Lactobacillus casei and L. rhamnosus.

    PubMed

    Rossi, Franca; Zotta, Teresa; Iacumin, Lucilla; Reale, Anna

    2016-08-01

    The understanding of the heat shock response (HSR) in lactobacilli from a regulatory point of view is still limited, though an increased knowledge on the regulation of this central stress response can lead to improvements in the exploitation of these health promoting microorganisms. Therefore the aim of this in silico study, that is the first to be carried out for members of the Lactobacillus genus, was predicting how HSR influences cell functions in the food associated and probiotic species Lactobacillus casei and Lactobacillus rhamnosus. To this purpose, thirteen whole genomes of these bacteria were analyzed to identify which genes involved in HSR are present. It was found that all the genomes share 25 HSR related genes, including those encoding protein repair systems, HSR repressors, HrcA and CtsR, and the positive regulators of HSR, alternative σ factors σ(32) and σ(24). Two genes encoding a σ(70)/σ(24) factor and a Lon protease, respectively, were found only in some genomes. The localization of the HSR regulators binding sites in genomes was analyzed in order to identify regulatory relationships driving HSR in these lactobacilli. It was observed that the binding site for the HrcA repressor is found upstream of the hrcA-grpE-dnaK-dnaJ and groES-groEL gene clusters, of two hsp genes, clpE, clpL and clpP, while the CtsR repressor binding site precedes the ctsR-clpC operon, clpB, clpE and clpP. Therefore the ClpE-ClpP protease complex is dually regulated by HrcA and CtsR. Consensus sequences for the promoters recognized by the HSR alternative σ factors were defined for L. casei and L. rhamnosus and were used in whole genome searches to identify the genes that are possibly regulated by these transcription factors and whose expression level is expected to increases in HSR. The results were validated by applying the same procedure of promoter consensus generation and whole genome search to an additional 11 species representative of the main Lactobacillus lineages. The composition of the resulting regulons highlighted the existence of relationships between HSR and relevant cell functions, including nutrient utilization, DNA repair, protein synthesis and export of toxic substances. In fact, some of the predicted members of the σ(32) regulon are central regulators ccpA, spxA, cadA, and functional proteins brnQ, ldh, choS, poxL and nagB involved in the tolerance to different stress factors. The analysis of the expression level of these molecular markers of cell protective mechanisms can be used to select the heat shock exposure times and temperatures that maximize the tolerance of L. casei and L. rhamnosus to technological and environmental stress factors. PMID:27142777

  18. Effect of Lactobacillus casei on the Production of Pro-Inflammatory Markers in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Zarfeshani, A; Khaza'ai, H; Mohd Ali, R; Hambali, Z; Wahle, K W J; Mutalib, M S A

    2011-12-01

    It has been demonstrated that probiotic supplementation has positive effects in several murine models of disease through influences on host immune responses. This study examined the effect of Lactobacillus casei strain Shirota (L. casei Shirota) on the blood glucose, C-reactive protein (CRP), Interleukin-6 (IL-6), Interleukin-4 (IL-4), and body weight among STZ-induced diabetic rats. Diabetes mellitus was induced by streptozotocin (STZ, 50 mg/kg BW) in male Sprague-Dawley rats. Streptozotocin caused a significant increase in the blood glucose levels, CRP, and IL-6. L. casei Shirota supplementation lowered the CRP and IL-6 levels but had no significant effect on the blood glucose levels, body weight, or IL-4. Inflammation was determined histologically. The presence of the innate immune cells was not detectable in the liver of L. casei Shirota-treated hyperglycemic rats. The probiotic L. casei Shirota significantly lowered blood levels of pro-inflammatory cytokines (IL-6, CRP) and neutrophils in diabetic rats, showing a lower risk of diabetes mellitus and its complications. PMID:26781677

  19. Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Yebra, María J

    2011-07-20

    UDP-sugars are widely used as substrates in the synthesis of oligosaccharides catalyzed by glycosyltransferases. In the present work a metabolic engineering strategy aimed to direct the carbon flux towards UDP-glucose and UDP-galactose biosynthesis was successfully applied in Lactobacillus casei. The galU gene coding for UDP-glucose pyrophosphorylase (GalU) enzyme in L. casei BL23 was cloned under control of the inducible nisA promoter and it was shown to be functional by homologous overexpression. Notably, about an 80-fold increase in GalU activity resulted in approximately a 9-fold increase of UDP-glucose and a 4-fold increase of UDP-galactose. This suggested that the endogenous UDP-galactose 4-epimerase (GalE) activity, which inter-converts both UDP-sugars, is not sufficient to maintain the UDP-glucose/UDP-galactose ratio. The L. casei galE gene coding for GalE was cloned downstream of galU and the resulting plasmid was transformed in L. casei. The new recombinant strain showed about a 4-fold increase of GalE activity, however this increment did not affect that ratio, suggesting that GalE has higher affinity for UDP-galactose than for UDP-glucose. The L. casei strains constructed here that accumulate high intracellular levels of UDP-sugars would be adequate hosts for the production of oligosaccharides. PMID:21663774

  20. Impact of lactose starvation on the physiology of Lactobacillus casei GCRL163 in the presence or absence of tween 80.

    PubMed

    Al-Naseri, Ali; Bowman, John P; Wilson, Richard; Nilsson, Rolf E; Britz, Margaret L

    2013-11-01

    The global proteomic response of the nonstarter lactic acid bacteria Lactobacillus casei strain GCRL163 under carbohydrate depletion was investigated to understand aspects of its survival following cessation of fermentation. The proteome of L. casei GCRL163 was analyzed quantitatively after growth in modified MRS (with and without Tween 80) with different levels of lactose (0% lactose, starvation; 0.2% lactose, growth limiting; 1% lactose, non-growth-limited control) using gel-free proteomics. Results revealed that carbohydrate starvation lead to suppression of lactose and galactose catabolic pathways as well as pathways for nucleotide and protein synthesis. Enzymes of the glycolysis/gluconeogenesis pathway, amino acid synthesis, and pyruvate and citrate metabolism become more abundant as well as other carbohydrate catabolic pathways, suggesting increased optimization of intermediary metabolism and scavenging. Tween 80 did not affect growth yield; however, proteins related to fatty acid biosynthesis were repressed in the presence of Tween 80. The data suggest that L. casei adeptly switches to a scavenging mode, using both citrate and Tween 80, and efficiently adjusts energetic requirements when carbohydrate starved and thus can sustain survival for weeks to months. Explaining the adaptation of L. casei during lactose starvation will assist efforts to maintain viability of L. casei and extend its utility as a beneficial dietary adjunct and fermentation processing aid. PMID:24066708

  1. Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2015-08-01

    The aim of the current study was to investigate the effect of varying sodium chloride concentrations (0-5%) on viability and membrane integrity of three probiotic bacteria, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum, using conventional technique and flow cytometry. Double staining of cells by carboxyfluorescein diacetate (cFDA) and propidium iodide (PI) enabled to evaluate the effect of NaCl on cell esterase activity and membrane integrity. Observations from conventional culture technique were compared with findings from flow cytometric analysis on the metabolic activities of the cells and a correlation was observed between culturability and dye extrusion ability of L. casei and B. longum. However, a certain population of L. acidophilus was viable as per the plate count method but its efflux activity was compromised. Esterase activity of most bacteria reduced significantly (P < 0.05) during one week storage at NaCl concentrations greater than 3.5%. The study revealed that L. casei was least affected by higher NaCl concentrations among the three probiotic bacteria, as opposed to B. longum where the cF extrusion performance was greatly reduced during 1 wk storage. The metabolic activity and salt resistance of L. casei was found to be highest among the bacteria studied. PMID:25846931

  2. Utilization of natural fucosylated oligosaccharides by three novel alpha-L-fucosidases from a probiotic Lactobacillus casei strain.

    PubMed

    Rodríguez-Díaz, Jesús; Monedero, Vicente; Yebra, María J

    2011-01-01

    Three putative α-L-fucosidases encoded in the Lactobacillus casei BL23 genome were cloned and purified. The proteins displayed different abilities to hydrolyze natural fucosyloligosaccharides like 2'-fucosyllactose, H antigen disaccharide, H antigen type II trisaccharide, and 3'-, 4'-, and 6'-fucosyl-GlcNAc. This indicated a possible role in the utilization of oligosaccharides present in human milk and intestinal mucosa. PMID:21097595

  3. Lactobacillus casei secreting alpha-MSH induces the therapeutic effect on DSS-induced acute colitis in Balb/c Mice.

    PubMed

    Yoon, Sun-Woo; Lee, Chul-Ho; Kim, Jeong-Yoon; Kim, Jie-Youn; Sung, Moon-Hee; Poo, Haryoung

    2008-12-01

    The neuropeptide alpha-melanocyte-stimulating hormone (alpha- MSH) has anti-inflammatory property by downregulating the expressions of proinflammatory cytokines. Because alpha-MSH elicits the anti-inflammatory effect in various inflammatory disease models, we examined the therapeutic effect of oral administration of recombinant Lactobacillus casei, which secretes alpha-MSH (L. casei-alpha-MSH), on dextran sulfate sodium (DSS)-induced colitis in Balb/c mice. Thus, we constructed the alpha-MSH-secreting Lactobacillus casei by the basic plasmid, pLUAT-ss, which was composed of a PldhUTLS promoter and alpha-amylase signal sequence from Streptococcus bovis strain. Acute colitis was induced by oral administration of 5% DSS in drinking water for 7 days. To investigate the effect of L. casei-alpha-MSH on the colitis, L. casei or L. casei-alpha-MSH was orally administered for 7 days and their effects on body weight, mortality rate, cytokine production, and tissue myeloperoxidase (MPO) activity were observed. Administration of L. casei-alpha-MSH reduced the symptom of acute colitis as assessed by body weight loss (DSS alone: 14.45+/-0. 2 g; L. casei-alpha- MSH: 18.2+/-0.12 g), colitis score (DSS alone: 3.6+/-0.4; L. casei-alpha-MSH: 1.4+/-0.6), MPO activity (DSS alone: 42.7+/-4.5 U/g; L. casei-alpha-MSH: 10.25+/-0.5 U/g), survival rate, and histological damage compared with the DSS alone mice. L. casei-alpha-MSH-administered entire colon showed reduced in vitro production of proinflammatory cytokines and NF-kappaB activation. The alpha-MSH-secreting recombinant L. casei showed significant anti-inflammatory effects in the murine model of acute colitis and suggests a potential therapeutic role for this agent in clinical inflammatory bowel diseases. PMID:19131702

  4. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    SciTech Connect

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

  5. Antimicrobial Activity of Intraurethrally Administered Probiotic Lactobacillus casei in a Murine Model of Escherichia coli Urinary Tract Infection

    PubMed Central

    Asahara, Takashi; Nomoto, Koji; Watanuki, Masaaki; Yokokura, Teruo

    2001-01-01

    The antimicrobial activity of the intraurethrally administered probiotic Lactobacillus casei strain Shirota against Escherichia coli in a murine urinary tract infection (UTI) model was examined. UTI was induced by intraurethral administration of Escherichia coli strain HU-1 (a clinical isolate from a UTI patient, positive for type 1 and P fimbriae), at a dose of 1 × 106 to 2 × 106 CFU in 20 μl of saline, into a C3H/HeN mouse bladder which had been traumatized with 0.1 N HCl followed immediately by neutralization with 0.1 N NaOH 24 h before the challenge infection. Chronic infection with the pathogen at 106 CFU in the urinary tract (bladder and kidneys) was maintained for more than 3 weeks after the challenge, and the number of polymorphonuclear leukocytes and myeloperoxidase activity in the urine were markedly elevated during the infection period. A single administration of L. casei Shirota at a dose of 108 CFU 24 h before the challenge infection dramatically inhibited E. coli growth and inflammatory responses in the urinary tract. Multiple daily treatments with L. casei Shirota during the postinfection period also showed antimicrobial activity in this UTI model. A heat-killed preparation of L. casei Shirota exerted significant antimicrobial effects not only with a single pretreatment (100 μg/mouse) but also with multiple daily treatments during the postinfection period. The other Lactobacillus strains tested, i.e., L. fermentum ATCC 14931T, L. jensenii ATCC 25258T, L. plantarum ATCC 14917T, and L. reuteri JCM 1112T, had no significant antimicrobial activity. Taken together, these results suggest that the probiotic L. casei strain Shirota is a potent therapeutic agent for UTI. PMID:11353622

  6. The dnaJ gene as a molecular discriminator to differentiate among species and strain within the Lactobacillus casei group.

    PubMed

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2015-12-01

    Identifying Lactobacillus casei and its closely related taxa at the species and strain level using only phenotypic and genotypic (16S rDNA sequence homology analysis) techniques often yields inaccurate results. In this study, the dnaJ chaperone gene was investigated as a molecular target for inter- and intraspecies discrimination within the Lb. casei group as well as for the development of specific primers for species identification. The results showed that most of the examined strains could be clearly distinguished from closely related species based on the sequenced fragments. At the interspecies level, the dnaJ sequence similarities were 81.7%-85.5%. However, at the intraspecies level, the dnaJ sequence similarities were 96.2-100% and could be assigned to different haplotypes in Lactobacillus paracasei and Lactobacillus rhamnosus, respectively. Compared to the 16S rRNA gene, the dnaJ sequence showed greater variation at both the species and strain level. Thus, the dnaJ gene can be proposed as an alternative marker for the Lb. casei group that provides higher discriminatory power than the 16S rRNA gene. In addition, species-specific primers were developed and subsequently employed in two-plex minisequencing analysis and shown to be specific for Lb. paracasei and Lb. rhamnosus. Our data indicate that phylogenetic relationships in the Lb. casei group can be resolved using comparative sequence analysis of the dnaJ gene and that the Lb. paracasei and Lb. rhamnosus species can be simultaneously identified using a novel species-specific minisequencing assay. PMID:26050941

  7. Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity.

    PubMed

    Shida, Kan; Suzuki, Tomomi; Kiyoshima-Shibata, Junko; Shimada, Shin-Ichiro; Nanno, Masanobu

    2006-09-01

    We examined the effect of a probiotic strain, Lactobacillus casei strain Shirota, on cytokine production and natural killer (NK) cell activity in human peripheral blood mononuclear cells (PBMNC). The cellular mechanisms of immunoregulation by L. casei strain Shirota were also investigated. L. casei strain Shirota stimulated PBMNC to secrete interleukin-12 (IL-12), gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and IL-10. However, depletion of monocytes from PBMNC eliminated the induction of these cytokines. L. casei strain Shirota was phagocytosed by monocytes and directly stimulated them to secrete IL-12, TNF-alpha, and IL-10. IFN-gamma production was diminished by the addition of anti-IL-12 antibody to the PBMNC cultures. Purified T cells, but not NK cells, produced IFN-gamma effectively when stimulated with L. casei strain Shirota in the presence of monocytes, indicating that monocytes triggered by L. casei strain Shirota help T cells to produce IFN-gamma through secreting IL-12. In addition, NK cell activity and CD69 expression on NK cells increased after cultivation of PBMNC with L. casei strain Shirota. When monocytes were depleted from PBMNC, L. casei strain Shirota did not enhance NK cell activity. These results demonstrate that monocytes play critical roles in the induction of cytokines and following the augmentation of NK cell activity during the stimulation of human PBMNC with L. casei strain Shirota. PMID:16960110

  8. Carbon Source Requirements for Exopolysaccharide Production by Lactobacillus casei CG11 and Partial Structure Analysis of the Polymer

    PubMed Central

    Cerning, J.; Renard, C. M. G. C.; Thibault, J. F.; Bouillanne, C.; Landon, M.; Desmazeaud, M.; Topisirovic, L.

    1994-01-01

    Exopolysaccharide production by Lactobacillus casei CG11 was studied in basal minimum medium containing various carbon sources (galactose, glucose, lactose, sucrose, maltose, melibiose) at concentrations of 2, 5, 10, and 20 g/liter. L. casei CG11 produced exopolysaccharides in basal minimum medium containing each of the sugars tested; lactose and galactose were the poorest carbon sources, and glucose was by far the most efficient carbon source. Sugar concentrations had a marked effect on polymer yield. Plasmid-cured Muc- derivatives grew better in the presence of glucose and attained slightly higher populations than the wild-type strain. The values obtained with lactose were considerably lower for both growth and exopolysaccharide yield. The level of specific polymer production per cell obtained with glucose was distinctively lower for Muc- derivatives than for the Muc+ strain. The polymer produced by L. casei CG11 in the presence of glucose was different from that formed in the presence of lactose. The polysaccharide produced by L. casei CG11 in basal minimum medium containing 20 g of glucose per liter had an intrinsic viscosity of 1.13 dl/g. It was rich in glucose (76%), which was present mostly as 2- or 3-linked residues along with some 2,3 doubly substituted glucose units, and in rhamnose (21%), which was present as 2-linked or terminal rhamnose; traces of mannose and galactose were also present. PMID:16349427

  9. A murine oral model for Mycobacterium avium subsp. paratuberculosis infection and immunomodulation with Lactobacillus casei ATCC 334.

    PubMed

    Cooney, Meagan A; Steele, James L; Steinberg, Howard; Talaat, Adel M

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) the causative agent of Johne's disease, is one of the most serious infectious diseases in dairy cattle worldwide. Due to the chronic nature of this disease and no feasible control strategy, it is essential to have an efficient animal model which is representative of the natural route of infection as well as a viable treatment option. In this report, we evaluated the effect of different doses of M. paratuberculosis in their ability to colonize murine tissues following oral delivery and the ability of Lactobacillus casei ATCC 334, a nascent probiotic, to combat paratuberculosis. Oral inoculation of mice was able to establish paratuberculosis in a dose-dependent manner. Two consecutive doses of approximately 10(9) CFU per mouse resulted in a disseminated infection, whereas lower doses were not efficient to establish infection. All inoculated mice were colonized with M. paratuberculosis, maintained infection for up to 24 weeks post infection and generated immune responses that reflect M. paratuberculosis infection in cattle. Notably, oral administration of L. casei ATCC 334 did not reduce the level of M. paratuberculosis colonization in treated animals. Interestingly, cytokine responses and histology indicated a trend for the immunomodulation and reduction of pathology in animals receiving L. casei ATCC 334 treatment. Overall, a reproducible oral model of paratuberculosis in mice was established that could be used for future vaccine experiments. Although the L. casei ATCC 334 was not a promising candidate for controlling paratuberculosis, we established a protocol to screen other probiotic candidates. PMID:24551602

  10. NMR studies of multiple conformations in complexes of Lactobacillus casei dihydrofolate reductase with analogues of pyrimethamine

    SciTech Connect

    Birdsall, B.; Tendler, S.J.B.; Feeney, J.; Carr, M.D. ); Arnold, J.R.P.; Thomas, J.A.; Roberts, G.C.K. ); Griffin, R.J.; Stevens, M.F.G. )

    1990-10-01

    {sup 1}H and {sup 19}F NMR signals from bound ligands have been assigned in one- and two-dimensional NMR spectra of complexes of Lactobacillus casei dihydrofolate reductase with various pyrimethamine analogues. The signals were identified mainly by correlating signals from bound and free ligands by using 2D exchange experiments. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues containing asymmetrically substituted aromatic rings exist as mixtures of two rotational isomers (an enantiomeric pair) because of this hindered rotation and the NMR spectra revealed that both isomers (forms A and B) bind to the enzyme with comparable, though unequal, binding energies. In this case two complete sets of bound proton signals were observed. The relative orientations of the two forms have been determined from NOE through-space connections between protons on the ligand and protein. Ternary complexes with NADP{sup {plus}} were also examined.

  11. Probiotic effects of Lactobacillus casei on DSS-induced ulcerative colitis in mice.

    PubMed

    Herías, M V; Koninkx, J F J G; Vos, J G; Huis in't Veld, J H J; van Dijk, J E

    2005-08-25

    We tested the effect of Lactobacillus casei strain Shirota (LcS) on the murine model of ulcerative colitis induced by dextran sodium sulphate. The effect of LcS was tested either as a prophylactic 10 days before the onset of the disease, simultaneously with ulcerative colitis induction or continued 10 days after the disease was induced. LcS was not able to prevent the disease induction in any of the experiments. However, important clinical parameters including blood anemia indicators, body weight, and organ weight were improved in the animals receiving LcS as compared with the ulcerative colitis-induced controls. Increased colonic epithelial regeneration in the LcS treated animals was observed in the chronic stage. The results seemed better for the simultaneous short LcS treatment where some parameters remained similar to the PBS controls, including disease activity scores measured in the acute stage. We can conclude that although LcS alone cannot prevent the induction of ulcerative colitis by dextran sodium sulphate, it can improve the clinical condition of the mice. This could imply important biological consequences for the human situation. Further studies including LcS or other probiotic bacteria together with the available treatment are encouraged. PMID:16083817

  12. Effect of probiotics, Bifidobacterium breve and Lactobacillus casei, on bisphenol A exposure in rats.

    PubMed

    Oishi, Kenji; Sato, Tadashi; Yokoi, Wakae; Yoshida, Yasuto; Ito, Masahiko; Sawada, Haruji

    2008-06-01

    Bisphenol A (BPA), a putative endocrine disruptor, may be taken up by humans via the diet and have adverse effects on human health. In this study, we evaluated whether the probiotics, Bifidobacterium breve strain Yakult (BbY) and Lactobacillus casei strain Shirota (LcS), could exert a protective effect against dietary exposure to BPA. A group of rats fed on a diet containing 5% BbY or 5% LcS showed three advantageous effects compared to the control group; (i) the area under the blood concentration-time curve of BPA after its oral administration was significantly decreased, (ii) the amount of BPA excreted in the feces was significantly greater (2.4 times), and (iii) the percentage of BPA bound to the sediment fraction of the feces was significantly higher. These results suggest that BbY and LcS reduced the intestinal absorption by facilitating the excretion of BPA, and that these probiotics may suppress the adverse effects of BPA on human health. PMID:18540113

  13. Lactobacillus casei Abundance Is Associated with Profound Shifts in the Infant Gut Microbiome

    PubMed Central

    Fujimura, Kei E.; Liu, Jane T.; McKean, Michelle; Boushey, Homer A.; Segal, Mark R.; Brodie, Eoin L.; Cabana, Michael D.; Lynch, Susan V.

    2010-01-01

    Colonization of the infant gut by microorganisms over the first year of life is crucial for development of a balanced immune response. Early alterations in the gastrointestinal microbiota of neonates has been linked with subsequent development of asthma and atopy in older children. Here we describe high-resolution culture-independent analysis of stool samples from 6-month old infants fed daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG) or placebo in a double-blind, randomized Trial of Infant Probiotic Supplementation (TIPS). Bacterial community composition was examined using a high-density microarray, the 16S rRNA PhyloChip, and the microbial assemblages of infants with either high or low LGG abundance were compared. Communities with high abundance of LGG exhibited promotion of phylogenetically clustered taxa including a number of other known probiotic species, and were significantly more even in their distribution of community members. Ecologically, these aspects are characteristic of communities that are more resistant to perturbation and outgrowth of pathogens. PhyloChip analysis also permitted identification of taxa negatively correlated with LGG abundance that have previously been associated with atopy, as well as those positively correlated that may prove useful alternative targets for investigation as alternative probiotic species. From these findings we hypothesize that a key mechanism for the protective effect of LGG supplementation on subsequent development of allergic disease is through promotion of a stable, even, and functionally redundant infant gastrointestinal community. PMID:20090909

  14. Antialcoholic liver activity of whey fermented by Lactobacillus casei isolated from koumiss.

    PubMed

    Zhao, Z W; Pan, D D; Wu, Z; Sun, Y Y; Guo, Y X; Zeng, X Q

    2014-07-01

    Whey fermented liquid (WFL) was studied for its hepatoprotective effects by using chronic alcohol-induced mice. Whey fermented liquid, prepared by inoculating whey with 4% (vol/vol) Lactobacillus casei and then incubating at 41°C for 8h, was used to orally treat alcohol-induced mice at 3 dosages for 5 wk. Ethanol consumption significantly reduced the activity of superoxide dismutase and glutathione peroxidase, while lowering glutathione content and increasing levels of aspartate aminotransferase, alanine aminotransferase, total triglyceride, malondialdehyde, and cytochrome P450 2E1. Treatment with WFL significantly attenuated the increased levels of alanine aminotransferase, aspartate aminotransferase, triglyceride, and cytochrome P450 2E1, while decreasing superoxide dismutase, glutathione peroxidase, malondialdehyde, and glutathione levels. Pathological changes in the livers of mice who had ingested alcohol were improved by the administration of WFL. These results suggest that WFL may exert a protective effect against alcoholic liver disease by increasing antioxidant activity, which supports the use of WFL as an antialcoholic liver disease treatment. PMID:24767886

  15. Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome.

    PubMed

    Cox, Michael J; Huang, Yvonne J; Fujimura, Kei E; Liu, Jane T; McKean, Michelle; Boushey, Homer A; Segal, Mark R; Brodie, Eoin L; Cabana, Michael D; Lynch, Susan V

    2010-01-01

    Colonization of the infant gut by microorganisms over the first year of life is crucial for development of a balanced immune response. Early alterations in the gastrointestinal microbiota of neonates has been linked with subsequent development of asthma and atopy in older children. Here we describe high-resolution culture-independent analysis of stool samples from 6-month old infants fed daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG) or placebo in a double-blind, randomized Trial of Infant Probiotic Supplementation (TIPS). Bacterial community composition was examined using a high-density microarray, the 16S rRNA PhyloChip, and the microbial assemblages of infants with either high or low LGG abundance were compared. Communities with high abundance of LGG exhibited promotion of phylogenetically clustered taxa including a number of other known probiotic species, and were significantly more even in their distribution of community members. Ecologically, these aspects are characteristic of communities that are more resistant to perturbation and outgrowth of pathogens. PhyloChip analysis also permitted identification of taxa negatively correlated with LGG abundance that have previously been associated with atopy, as well as those positively correlated that may prove useful alternative targets for investigation as alternative probiotic species. From these findings we hypothesize that a key mechanism for the protective effect of LGG supplementation on subsequent development of allergic disease is through promotion of a stable, even, and functionally redundant infant gastrointestinal community. PMID:20090909

  16. Effect of immobilized Lactobacillus casei on the evolution of flavor compounds in probiotic dry-fermented sausages during ripening.

    PubMed

    Sidira, Marianthi; Kandylis, Panagiotis; Kanellaki, Maria; Kourkoutas, Yiannis

    2015-02-01

    The effect of immobilized Lactobacillus casei ATCC 393 on wheat grains on the generation of volatile compounds in probiotic dry-fermented sausages during ripening was investigated. For comparison reasons, sausages containing free L. casei cells or no starter culture were also included in the study. Samples were collected after 1, 28 and 45days of ripening and subjected to SPME GC/MS analysis. Both the probiotic culture and the ripening process affected significantly the concentration of all volatile compounds. The significantly highest content of total volatiles, esters, alcohols and miscellaneous compounds was observed in sausages containing the highest amount of immobilized culture (300g/kg of stuffing mixture) ripened for 45days. Principal component analysis of the semi-quantitative data revealed that primarily the concentration of the immobilized probiotic culture affected the volatile composition. PMID:25306510

  17. Genomic and Functional Characterization of the Unusual pLOCK 0919 Plasmid Harboring the spaCBA Pili Cluster in Lactobacillus casei LOCK 0919.

    PubMed

    Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Bagińska, Anna; Grynberg, Marcin; Nowak, Adriana; Cukrowska, Bożena; Kozakova, Hana; Bardowski, Jacek

    2016-01-01

    Here, we report the extensive bioinformatic and functional analyses of the unusual pLOCK 0919, a plasmid originating from the probiotic Lactobacillus casei LOCK 0919 strain. This plasmid is atypical because it harbors the spaCBA-srtC gene cluster encoding SpaCBA pili. We show that all other spaCBA-srtC sequences of the Lactobacillus genus that have been previously described and deposited in GenBank are present in the chromosomal DNA. Another important observation for pLOCK 0919 is that the spaCBA-srtC gene cluster and its surrounding genes are highly similar to the respective DNA region that is present in the most well-known and active SpaCBA pili producer, the probiotic Lactobacillus rhamnosus GG strain. Our results demonstrate that the spaCBA-srtC clusters of pLOCK 0919 and L. rhamnosus GG are genealogically similar, located in DNA regions that are rich in transposase genes and are poorly conserved among the publicly available sequences of Lactobacillus sp. In contrast to chromosomally localized pilus gene clusters from L. casei and Lactobacillus paracasei, the plasmidic spaC of L. casei LOCK 0919 is expressed and undergoes a slight glucose-induced repression. Moreover, results of series of in vitro tests demonstrate that L. casei LOCK 0919 has an adhesion potential, which is largely determined by the presence of the pLOCK 0919 plasmid. In particular, the plasmid occurrence positively influenced the hydrophobicity and aggregation abilities of L. casei LOCK 0919. Moreover, in vivo studies indicate that among the three Lactobacillus strains used to colonize the gastrointestinal tract of germ-free mice, already after 2 days of colonization, L. casei LOCK 0919 became the dominant strain and persisted there for at least 48 days. PMID:26637469

  18. Genomic and Functional Characterization of the Unusual pLOCK 0919 Plasmid Harboring the spaCBA Pili Cluster in Lactobacillus casei LOCK 0919

    PubMed Central

    Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Bagińska, Anna; Grynberg, Marcin; Nowak, Adriana; Cukrowska, Bożena; Kozakova, Hana; Bardowski, Jacek

    2016-01-01

    Here, we report the extensive bioinformatic and functional analyses of the unusual pLOCK 0919, a plasmid originating from the probiotic Lactobacillus casei LOCK 0919 strain. This plasmid is atypical because it harbors the spaCBA-srtC gene cluster encoding SpaCBA pili. We show that all other spaCBA-srtC sequences of the Lactobacillus genus that have been previously described and deposited in GenBank are present in the chromosomal DNA. Another important observation for pLOCK 0919 is that the spaCBA-srtC gene cluster and its surrounding genes are highly similar to the respective DNA region that is present in the most well-known and active SpaCBA pili producer, the probiotic Lactobacillus rhamnosus GG strain. Our results demonstrate that the spaCBA-srtC clusters of pLOCK 0919 and L. rhamnosus GG are genealogically similar, located in DNA regions that are rich in transposase genes and are poorly conserved among the publicly available sequences of Lactobacillus sp. In contrast to chromosomally localized pilus gene clusters from L. casei and Lactobacillus paracasei, the plasmidic spaC of L. casei LOCK 0919 is expressed and undergoes a slight glucose-induced repression. Moreover, results of series of in vitro tests demonstrate that L. casei LOCK 0919 has an adhesion potential, which is largely determined by the presence of the pLOCK 0919 plasmid. In particular, the plasmid occurrence positively influenced the hydrophobicity and aggregation abilities of L. casei LOCK 0919. Moreover, in vivo studies indicate that among the three Lactobacillus strains used to colonize the gastrointestinal tract of germ-free mice, already after 2 days of colonization, L. casei LOCK 0919 became the dominant strain and persisted there for at least 48 days. PMID:26637469

  19. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation

    PubMed Central

    2012-01-01

    Background The broad ecological distribution of L. casei makes it an insightful subject for research on genome evolution and lifestyle adaptation. To explore evolutionary mechanisms that determine genomic diversity of L. casei, we performed comparative analysis of 17 L. casei genomes representing strains collected from dairy, plant, and human sources. Results Differences in L. casei genome inventory revealed an open pan-genome comprised of 1,715 core and 4,220 accessory genes. Extrapolation of pan-genome data indicates L. casei has a supragenome approximately 3.2 times larger than the average genome of individual strains. Evidence suggests horizontal gene transfer from other bacterial species, particularly lactobacilli, has been important in adaptation of L. casei to new habitats and lifestyles, but evolution of dairy niche specialists also appears to involve gene decay. Conclusions Genome diversity in L. casei has evolved through gene acquisition and decay. Acquisition of foreign genomic islands likely confers a fitness benefit in specific habitats, notably plant-associated niches. Loss of unnecessary ancestral traits in strains collected from bacterial-ripened cheeses supports the hypothesis that gene decay contributes to enhanced fitness in that niche. This study gives the first evidence for a L. casei supragenome and provides valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible and industrially important lactic acid bacterium. Additionally, our data confirm the Distributed Genome Hypothesis extends to non-pathogenic, ecologically flexible species like L. casei. PMID:23035691

  20. Consumption of Lactobacillus casei Fermented Milk Prevents Salmonella Reactive Arthritis by Modulating IL-23/IL-17 Expression

    PubMed Central

    Noto Llana, Mariángeles; Sarnacki, Sebastián Hernán; Aya Castañeda, María del Rosario; Bernal, María Isabel; Giacomodonato, Mónica Nancy; Cerquetti, María Cristina

    2013-01-01

    Reactive arthritis is the development of sterile joint inflammation as a sequel to a remote infection, often in the gut. We have previously shown that a low dose of S. enteritidis inoculated to streptomycin-pretreated mice generates a self-limiting enterocolitis suitable for studying reactive arthritis. Here we show that consumption of Lactobacillus casei prior to infection abolishes intestinal and joint inflammation triggered by Salmonella. BALB/c mice were sacrificed after infection; intestinal and joint samples were analyzed for histological changes and expression of cytokines. TNF-α was measured by ELISA and the expression of IL-1β, IL-6, IL-10, IL-17, IL-23 and TGF-β was assessed by qPCR. L. casei consumption prevented Salmonella-induced synovitis, the increment of TNF-α in knees and the increase of IL-17 expression in popliteal and inguinal lymph nodes. At intestinal level consumption of L. casei drastically diminished S. enteritidis invasiveness and shortened splenic persistence of the pathogen. Bacterial loads recovered at days 2 and 5 from Peyer’s patches were 10-fold lower in mice fed with L. casei. In accordance, we found that the augment in gut permeability induced during enterocolitis was decreased in those animals. Consumption of L. casei prior to infection failed to increase anti- inflammatory molecules such as IL-10 and TGF-β in the intestine. On the other hand, consumption of L. casei abrogated the expression of TNF-α, IL-17, IL-23, IL-1β and IL-6 in cecum and mesenteric lymph nodes. These cytokines are needed for differentiation of immune cells involved in the development of reactive arthritis such as Th17 and γδ T cells. Trafficking of these inflammatory cells from the gut to the joints has been proposed as a mechanism of generation of reactive arthritis. Our results suggest that L. casei consumption prevents Salmonella-induced synovitis by altering the intestinal milieu necessary for differentiation of cells involved in the generation of joint inflammation. PMID:24340048

  1. Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using α-L-fucosidases from Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Carbajo, Rodrigo J; Pineda-Lucena, Antonio; Monedero, Vicente; Yebra, María J

    2013-06-01

    AlfB and AlfC α-l-fucosidases from Lactobacillus casei were used in transglycosylation reactions, and they showed high efficiency in synthesizing fucosyldisaccharides. AlfB and AlfC activities exclusively produced fucosyl-α-1,3-N-acetylglucosamine and fucosyl-α-1,6-N-acetylglucosamine, respectively. The reaction kinetics showed that AlfB can convert 23% p-nitrophenyl-α-l-fucopyranoside into fucosyl-α-1,3-N-acetylglucosamine and AlfC at up to 56% into fucosyl-α-1,6-N-acetylglucosamine. PMID:23542622

  2. Survival of Lactobacillus casei strain Shirota in the intestines of healthy Chinese adults.

    PubMed

    Wang, Ran; Chen, Shanbin; Jin, Junhua; Ren, Fazheng; Li, Yang; Qiao, Zhenxing; Wang, Yue; Zhao, Liang

    2015-05-01

    Lactobacillus casei strain Shirota (LcS) is a widely used probiotic strain with health benefits. In this study, the survival of LcS in the intestines of healthy Chinese adults was assessed and the effects of LcS on stool consistency, stool SCFAs and intestinal microbiota evaluated. Subjects consumed 100 mL per day of a probiotic beverage containing 1.0 × 10(8) CFU/mL of LcS for 14 days. LcS were enumerated using a culture method and the colony identity confirmed by ELISA. Fourteen days after ingestion, the amount of LcS recovered from fecal samples was between 6.86 ± 0.80 and 7.17 ± 0.57 Log10 CFU/g of feces (mean ± SD). The intestinal microbiotas were analyzed by denaturing gradient gel electrophoresis. Principal component analysis showed that consuming LcS significantly changed fecal microbiota profiles. According to redundancy analysis, the amounts of 25 bacterial strains were significantly correlated with LcS intake (P < 0.05), 11 of them positively and fourteen negatively. Concentrations of acetic acid and propionic acid in feces were significantly lower during the ingestion period than during the baseline period (P < 0.05). These results confirm that LcS can survive passage through the gastrointestinal tract of Chinese people; however, they were found to have little ability to persist once their consumption had ceased. Furthermore, consumption of probiotic beverages containing LcS can modulate the composition of the intestinal microbiota on a long-term basis, resulting in decreased concentrations of SCFAs in the gut. PMID:25707300

  3. Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia, China

    PubMed Central

    Ya, Tuo; Zhang, Qijin; Chu, Fuliang; Merritt, Justin; Bilige, Menhe; Sun, Tiansong; Du, Ruiting; Zhang, Heping

    2008-01-01

    Background There is increasing evidence to suggest an immunomodulation function both within the intestines and systemically upon consuming probiotic species. We recently isolated a novel LAB, Lactobacillus caseiZhang (LcZhang) from koumiss. LcZhang exhibited favorable probiotic properties, such as acid resistance, bile resistance, gastrointestinal (GI) colonization ability, etc. In order to examine the immunomodulatory qualities of LcZhang, we administered LcZhang to healthy mice with varying doses of either live or heat-killed LcZhang and measured various parameters of the host immune response. Results The study was performed in four separate experiments via oral administration of live and heat-killed LcZhang to BALB/c mice for several consecutive days. We investigated the immunomodulating capacity of LcZhang in vivo by analyzing the profile of cytokines, T cell subpopulations, and immunoglobulin concentrations induced in blood serum and intestinal fluid in BALB/c mice. Only live bacteria elicited a wide range of immune responses, which include the increased production of interferon-γ (IFN-γ), and depression of tumor necrosis factor-α (TNF-α) levels. In addition, interleukin-2 (IL-2) and IL-2 receptor gene transcription increased significantly, but the proportion of T cell subsets appeared to be unaffected. We also observed that LcZhang was capable of inducing gut mucosal responses by enhancing the production of secretory Immunoglobulin A (sIgA) as well influencing the systemic immunity via the cytokines released to the circulating blood. Conclusion The present work shows that the dose-dependent administration of LcZhang is capable of influencing immune responses, implying that it may be a valuable strain for probiotic use in humans. PMID:19019236

  4. The Influence of Probiotic Lactobacillus casei in Combination with Prebiotic Inulin on the Antioxidant Capacity of Human Plasma.

    PubMed

    Kleniewska, Paulina; Hoffmann, Arkadiusz; Pniewska, Ewa; Pawliczak, Rafał

    2016-01-01

    The aim of the present study was to assess whether probiotic bacteria Lactobacillus casei (4 × 10(8) CFU) influences the antioxidant properties of human plasma when combined with prebiotic Inulin (400 mg). Experiments were carried out on healthy volunteers (n = 32). Volunteers were divided according to sex (16 male and 16 female) and randomly assigned to synbiotic and control groups. Blood samples were collected before synbiotic supplementation and after 7 weeks, at the end of the study. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, and the ferric reducing ability of plasma (FRAP) in human plasma were examined. The administration of synbiotics containing L. casei plus Inulin resulted in a significant increase in FRAP values (p = 0.00008) and CAT activity (p = 0.02) and an insignificant increase in SOD and GPx activity compared to controls. Synbiotics containing L. casei (4 × 10(8) CFU) with prebiotic Inulin (400 mg) may have a positive influence on human plasma antioxidant capacity and the activity of selected antioxidant enzymes. PMID:27066188

  5. The Influence of Probiotic Lactobacillus casei in Combination with Prebiotic Inulin on the Antioxidant Capacity of Human Plasma

    PubMed Central

    Kleniewska, Paulina; Hoffmann, Arkadiusz; Pniewska, Ewa

    2016-01-01

    The aim of the present study was to assess whether probiotic bacteria Lactobacillus casei (4 × 108 CFU) influences the antioxidant properties of human plasma when combined with prebiotic Inulin (400 mg). Experiments were carried out on healthy volunteers (n = 32). Volunteers were divided according to sex (16 male and 16 female) and randomly assigned to synbiotic and control groups. Blood samples were collected before synbiotic supplementation and after 7 weeks, at the end of the study. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, and the ferric reducing ability of plasma (FRAP) in human plasma were examined. The administration of synbiotics containing L. casei plus Inulin resulted in a significant increase in FRAP values (p = 0.00008) and CAT activity (p = 0.02) and an insignificant increase in SOD and GPx activity compared to controls. Synbiotics containing L. casei (4 × 108 CFU) with prebiotic Inulin (400 mg) may have a positive influence on human plasma antioxidant capacity and the activity of selected antioxidant enzymes. PMID:27066188

  6. Influence of the route of administration on immunomodulatory properties of bovine beta-lactoglobulin-producing Lactobacillus casei.

    PubMed

    Hazebrouck, S; Przybylski-Nicaise, L; Ah-Leung, S; Adel-Patient, K; Corthier, G; Langella, P; Wal, J-M

    2009-09-25

    Because of their intrinsic immunomodulatory properties, some lactic acid bacteria were reported to modulate allergic immune responses in mice and humans. We recently developed recombinant strains of Lactobacillus casei that produce beta-lactoglobulin (BLG), a major cow's milk allergen. Here, we investigated immunomodulatory potency of intranasal and oral administrations of recombinant lactobacilli on a subsequent sensitization of mice to BLG. Intranasal administration of the BLG-producing Lb. casei stimulated serum BLG-specific IgG2a and IgG1 responses, and fecal IgA response as well, but did not inhibit BLG-specific IgE production. In contrast, oral administration led to a significant inhibition of BLG-specific IgE production while IgG1 and IgG2a responses were not stimulated. After both oral and intranasal administrations, production of IL-17 cytokine by BLG-reactivated splenocytes was similarly enhanced, thus confirming the adjuvant effect of the Lb. casei strain. However, a mixed Th1/Th2 cell response was evidenced in BLG-reactivated splenocytes from mice intranasally pretreated, with enhanced secretions of Th1 cytokines (IFN-gamma and IL-12) and Th2 cytokines (IL-4 and IL-5) whereas only production of Th1 cytokines, but not Th2 cytokines, was enhanced in BLG-reactivated splenocytes from mice orally pretreated. Our results show that the mode of administration of live bacteria may be critical for their immunomodulatory effects. PMID:19654068

  7. Adjuvant effects for oral immunization provided by recombinant Lactobacillus casei secreting biologically active murine interleukin-1{beta}.

    PubMed

    Kajikawa, Akinobu; Masuda, Kazuya; Katoh, Mitsunori; Igimi, Shizunobu

    2010-01-01

    Vaccine delivery systems using lactic acid bacteria are under development, but their efficiency is insufficient. Autologous cytokines, such as interleukin-1beta (IL-1beta), are potential adjuvants for mucosal vaccines and can be provided by recombinant lactic acid bacteria. The aim of this study was the construction and evaluation of recombinant Lactobacillus casei producing IL-1beta as an adjuvant delivery agent. The recombinant strain was constructed using an expression/secretion vector plasmid, including a mature IL-1beta gene from mouse. The biological activity of the cytokine was confirmed by IL-8 production from Caco-2 cells. In response to the recombinant L. casei secreting IL-1beta, expression of IL-6 was detected in vivo using a ligated-intestinal-loop assay. The release of IL-6 from Peyer's patch cells was also detected in vitro. Intragastric immunization with heat-killed Salmonella enterica serovar Enteritidis (SE) in combination with IL-1beta-secreting lactobacilli resulted in relatively high SE-specific antibody production. In this study, it was demonstrated that recombinant L. casei secreting bioactive murine IL-1beta provided adjuvant effects for intragastric immunization. PMID:19923575

  8. Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats.

    PubMed

    Yadav, Hariom; Jain, Shalini; Sinha, Pushpalata Ravindra

    2008-05-01

    In this study, the effect of dahi containing probiotic Lactobacillus acidophilus NCDC14 and Lactobacillus casei NCDC19 (73 x 10(8) cfu/g) on progression of streptozotocin (STZ)-induced diabetes in rats (15 g/day/rat) for 28 days was investigated. Feeding of probiotic dahi significantly suppressed the incremental peaks and area under the curve and delayed reduction of insulin secretion during oral glucose tolerance test more than skim milk or control dahi. The feeding of milk products reduced the total cholesterol, triglycerides, LDL and VLDL-cholesterol and increased HDL-cholesterol levels (P<0.05). Moreover, probiotic dahi significantly suppressed STZ-induced oxidative damage in pancreatic tissues by inhibiting the lipid peroxidation and formation of nitric oxide, and preserving antioxidant pool such as glutathione content and activities of superoxide dismutase, catalase and glutathione peroxidase. The results suggest that the supplementation of probiotic Lb. acidophilus and Lb. casei with dahi cultures increased the efficacy of dahi to suppress STZ-induced diabetes in rats by inhibiting depletion of insulin as well as preserving diabetic dyslipidemia, and inhibiting lipid peroxidation and nitrite formation. This may empower antioxidant system of beta-cells and may slow down the reduction of insulin and elevation of blood glucose levels. PMID:18474136

  9. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage.

    PubMed

    Jofré, A; Aymerich, T; Garriga, M

    2015-01-01

    The production of long shelf-life highly concentrated dried probiotic/starter cultures is of paramount importance for the food industry. The aim of the present study was to evaluate the protective effect of glucose, lactose, trehalose, and skim milk applied alone or combined upon the survival of potentially probiotic Lactobacillus rhamnosus CTC1679, Lactobacillus casei/paracasei CTC1677 and L. casei/paracasei CTC1678 during freeze-drying and after 39 weeks of storage at 4 and 22 °C. Immediately after freeze-drying, the percentage of survivors was very high (≥ 94%) and only slight differences were observed among strains and cryoprotectants. In contrast, during storage, survival in the dried state depended on the cryoprotectant, temperature and strain. For all the protectants assayed, the stability of the cultures was remarkably higher when stored under refrigeration (4 °C). Under these conditions, skim milk alone or supplemented with trehalose or lactose showed the best performance (reductions ≤ 0.9 log units after 39 weeks of storage). The lowest survival was observed during non-refrigerated storage and with glucose and glucose plus milk; no viable cells left at the end of the storage period. Thus, freeze-drying in the presence of appropriate cryoprotectants allows the production of long shelf-life highly concentrated dried cultures ready for incorporation in high numbers into food products as starter/potential probiotic cultures. PMID:25380798

  10. Microbial counts, fermentation products, and aerobic stability of whole crop corn and a total mixed ration ensiled with and without inoculation of Lactobacillus casei or Lactobacillus buchneri.

    PubMed

    Nishino, N; Wada, H; Yoshida, M; Shiota, H

    2004-08-01

    Whole crop corn (DM 29.2%) and a total mixed ration (TMR, DM 56.8%) containing wet brewers grains, alfalfa hay, dried beet pulp, cracked corn, soybean meal, and molasses at a ratio of 5:1:1:1:1:1 on fresh weight basis, were ensiled with and without Lactobacillus casei or Lactobacillus buchneri in laboratory silos. The effects of inoculation on microbial counts, fermentation products, and aerobic stability were determined after 10 and 60 d. Untreated corn silage was well preserved with high lactic acid content, whereas large numbers of remaining yeasts resulted in low stability on exposure to air. Inoculation with L. casei suppressed heterolactic fermentation, but no improvements were found in aerobic stability. The addition of L. buchneri markedly enhanced the aerobic stability, while not affecting the DM loss and NH3-N production. Large amounts of ethanol were found when the TMR was ensiled, and the content of ethanol overwhelmed that of lactic acid in untreated silage. This fermentation was related to high yeast populations and accounted for a large loss of DM found in the initial 10 d. The ethanol production decreased when inoculated with L. casei and L. buchneri, but the effects diminished at 60 d of ensiling. Inoculation with L. buchneri lowered the yeasts in TMR silage from the beginning of storage; however, the populations decreased to undetectable levels when stored for 60 d, regardless of inoculation. No heating was observed in TMR silage during aerobic deterioration test for 7 d. This stability was achieved even when a high population of yeasts remained and was not affected by either inoculation or ensiling period. The results indicate that inoculation with L. buchneri can inhibit yeast growth and improve aerobic stability of corn and TMR silage; however, high stability of TMR silage can be obtained even when no treatments were made and high population (>10(5) cfu/g) of yeasts were detected. PMID:15328280

  11. Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid.

    PubMed

    Watanabe, Toshio; Nishio, Hikaru; Tanigawa, Tetsuya; Yamagami, Hirokazu; Okazaki, Hirotoshi; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Oshitani, Nobuhide; Asahara, Takashi; Nomoto, Koji; Higuchi, Kazuhide; Takeuchi, Koji; Arakawa, Tetsuo

    2009-09-01

    Inflammatory responses triggered by activation of the lipopolysaccharide (LPS)/Toll-like receptor (TLR) 4 signaling pathway are a key mechanism in nonsteroidal anti-inflammatory drug-induced enteropathy. The aim of this study was to investigate the probiotic effect of Lactobacillus casei strain Shirota (LcS) on indomethacin-induced small intestinal injury. Rats pretreated with viable LcS or heat-killed LcS once or once daily for a week were administered indomethacin by gavage to induce injury. Anti-inflammatory effects of L-lactic acid (1-15 mM) were evaluated in vitro by use of THP-1 cells. One-week treatment with viable LcS prevented indomethacin-induced intestinal injury with increase in the concentration of lactic acid in small intestinal content and inhibited increases in myeloperoxidase activity and expression of mRNA for tumor necrosis factor-alpha (TNF-alpha) while affecting neither TLR4 expression nor the number of gram-negative bacteria in intestinal content, whereas neither heat-killed LcS nor a single dose of viable LcS inhibited intestinal injury. Prevention of this injury was also observed in rats given l-lactic acid in drinking water. Both L-lactic acid and LcS culture supernatant containing 10 mM lactic acid inhibited NF-kappaB activation and increases in TNF-alpha mRNA expression and TNF-alpha protein secretion in THP-1 cells treated with LPS. Western blot analyses showed that both L-lactic acid and LcS culture supernatants suppressed phosphorylation and degradation of I-kappaB-alpha induced by LPS without affecting expression of TLR4. These findings suggest that LcS exhibits a prophylactic effect on indomethacin-induced enteropathy by suppressing the LPS/TLR4 signaling pathway and that this probiotic effect of LcS may be mediated by L-lactic acid. PMID:19589943

  12. Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells

    PubMed Central

    2014-01-01

    Background Clostridium difficile is the main cause of hospital-acquired diarrhea and colitis known as C. difficile-associated disease (CDAD).With increased severity and failure of treatment in CDAD, new approaches for prevention and treatment, such as the use of probiotics, are needed. Since the pathogenesis of CDAD involves an inflammatory response with a massive influx of neutrophils recruited by interleukin (IL)-8, this study aimed to investigate the probiotic effects of Lactobacillus spp. on the suppression of IL-8 production in response to C. difficile infection. Results We screened Lactobacillus conditioned media from 34 infant fecal isolates for the ability to suppress C. difficile-induced IL-8 production from HT-29 cells. Factors produced by two vancomycin-resistant lactobacilli, L. rhamnosus L34 (LR-L34) and L.casei L39 (LC-L39), suppressed the secretion and transcription of IL-8 without inhibiting C. difficile viability or toxin production. Conditioned media from LR-L34 suppressed the activation of phospho-NF-κB with no effect on phospho-c-Jun. However, LC-L39 conditioned media suppressed the activation of both phospho-NF-κB and phospho-c-Jun. Conditioned media from LR-L34 and LC-L39 also decreased the production of C. difficile-induced GM-CSF in HT-29 cells. Immunomodulatory factors present in the conditioned media of both LR-L34 and LC-L39 are heat-stable up to 100°C and > 100 kDa in size. Conclusions Our results suggest that L. rhamnosus L34 and L. casei L39 each produce factors capable of modulating inflammation stimulated by C. difficile. These vancomycin-resistant Lactobacillus strains are potential probiotics for treating or preventing CDAD. PMID:24989059

  13. Does Short-Term High Dose Probiotic Supplementation Containing Lactobacillus casei Attenuate Exertional-Heat Stress Induced Endotoxaemia and Cytokinaemia?

    PubMed

    Gill, Samantha K; Allerton, Dean M; Ansley-Robson, Paula; Hemmings, Krystal; Cox, Martin; Costa, Ricardo J

    2016-06-01

    The study aimed to determine if short-term high dose probiotic supplementation containing Lactobacillus casei (L.casei) attenuates the commonly reported exertional-heat stress (EHS) induced endotoxinaemia and cytokinaemia. Eight endurance trained male volunteers (mean± SD: age 26 ± 6 y, nude body mass 70.2 ± 8.8 kg, height 1.75 ± 0.05 m, VO2max 59 ± 5 ml·kg-1·min-1) completed a blinded randomized cross-over design, whereby oral ingestion of a commercially available probiotic beverage containing L.casei (volume equivalent for ×1011 colony forming units·day-1) (PRO) or placebo (PLA) was consumed for 7 consecutive days before exposure to EHS, which comprised of 2h running exercise at 60% VO2max in hot ambient conditions (34.0 °C and 32% RH). Blood samples were collected at baseline (7 days before EHS), pre-EHS, post-EHS (1 hr, 2 hr, 4 hr, and at 24 hr). Plasma samples were analyzed for gram-negative bacterial endotoxin, cytokine profile (IL-6, IL-1β, TNF-α, IFN-γ, IL-8, and IL-10) and plasma osmolality. Plasma osmolality did not differ between trials. Seven days of L.casei supplementation did not show significant changes in resting circulatory endotoxin concentration or plasma cytokine profile compared with PLA. A main effect of time was observed for IL-6, TNF-α, IL-10 and IL-8; whereby levels increased in response to EHS (p < .05). Relative to pre-EHS concentrations, higher plasma concentrations of endotoxin (p = .05), and a trend for higher plasma TNF-α concentration (p = .09) was observed on PRO compared with PLA throughout recovery. Short-term high dose supplementation of a probiotic beverage containing L.casei before EHS did not attenuate EHS induced endotoxaemia and cytokinaemia; nor is it more positively favorable over a placebo. PMID:26568577

  14. Malic Enzyme and Malolactic Enzyme Pathways Are Functionally Linked but Independently Regulated in Lactobacillus casei BL23

    PubMed Central

    Landete, José María; Ferrer, Sergi; Monedero, Vicente

    2013-01-01

    Lactobacillus casei is the only lactic acid bacterium in which two pathways for l-malate degradation have been described: the malolactic enzyme (MLE) and the malic enzyme (ME) pathways. Whereas the ME pathway enables L. casei to grow on l-malate, MLE does not support growth. The mle gene cluster consists of three genes encoding MLE (mleS), the putative l-malate transporter MleT, and the putative regulator MleR. The mae gene cluster consists of four genes encoding ME (maeE), the putative transporter MaeP, and the two-component system MaeKR. Since both pathways compete for the same substrate, we sought to determine whether they are coordinately regulated and their role in l-malate utilization as a carbon source. Transcriptional analyses revealed that the mle and mae genes are independently regulated and showed that MleR acts as an activator and requires internalization of l-malate to induce the expression of mle genes. Notwithstanding, both l-malate transporters were required for maximal l-malate uptake, although only an mleT mutation caused a growth defect on l-malate, indicating its crucial role in l-malate metabolism. However, inactivation of MLE resulted in higher growth rates and higher final optical densities on l-malate. The limited growth on l-malate of the wild-type strain was correlated to a rapid degradation of the available l-malate to l-lactate, which cannot be further metabolized. Taken together, our results indicate that L. casei l-malate metabolism is not optimized for utilization of l-malate as a carbon source but for deacidification of the medium by conversion of l-malate into l-lactate via MLE. PMID:23835171

  15. Heterologous Expression of Mannanase and Developing a New Reporter Gene System in Lactobacillus casei and Escherichia coli

    PubMed Central

    Lin, Jinzhong; Zou, Yexia; Ma, Chengjie; She, Qunxin; Liang, Yunxiang; Chen, Zhengjun; Ge, Xiangyang

    2015-01-01

    Reporter gene systems are useful for studying bacterial molecular biology, including the regulation of gene expression and the histochemical analysis of protein products. Here, two genes, β-1,4-mannanase (manB) from Bacillus pumilus and β-glucuronidase (gusA) from Escherichia coli K12, were cloned into the expression vector pELX1. The expression patterns of these reporter genes in Lactobacillus casei were investigated by measuring their enzymatic activities and estimating their recombinant protein yields using western blot analysis. Whereas mannanase activity was positively correlated with the accumulation of ManB during growth, GusA activity was not; western blot analysis indicated that while the amount of GusA protein increased during later growth stages, GusA activity gradually decreased, indicating that the enzyme was inactive during cell growth. A similar trend was observed in E. coli JM109. We chose to use the more stable mannanase gene as the reporter to test secretion expression in L. casei. Two pELX1-based secretion vectors were constructed: one carried the signal peptide of the unknown secretion protein Usp45 from Lactococcus lactis (pELSH), and the other contained the full-length SlpA protein from the S-layer of L. acidophilus (pELWH). The secretion of ManB was detected in the supernatant of the pELSH-ManB transformants and in the S-layer of the cell surface of the pELWH-ManB transformants. This is the first report demonstrating that the B. pumilus manB gene is a useful reporter gene in L. casei and E.coli. PMID:26562012

  16. Oral immunization of mice against Clostridium perfringens epsilon toxin with a Lactobacillus casei vector vaccine expressing epsilon toxoid.

    PubMed

    Alimolaei, Mojtaba; Golchin, Mehdi; Daneshvar, Hamid

    2016-06-01

    Clostridium perfringens type D infects ruminants and causes the enterotoxemia disease by ε-toxin. A mutated ε-toxin gene lacking toxicity was designed, synthesized, and cloned into the pT1NX vector and electroporated into Lactobacillus casei competent cells to yield LC-pT1NX-ε recombinant strain. BALB/c mice, immunized orally with this strain, highly induced mucosal, humoral, and cell-mediated immune responses and developed a protection against 200 MLD/ml of the activated ε-toxin. This study showed that the LC-pT1NX-ε could be a promising vaccine candidate against the enterotoxemia disease. PMID:27012151

  17. Beneficial effect of butyrate, Lactobacillus casei and L-carnitine combination in preference to each in experimental colitis

    PubMed Central

    Moeinian, Mahsa; Ghasemi-Niri, Seyedeh Farnaz; Mozaffari, Shilan; Abdolghaffari, Amir Hossein; Baeeri, Maryam; Navaea-Nigjeh, Mona; Abdollahi, Mohammad

    2014-01-01

    AIM: To investigate the beneficial effect of the combination of butyrate, Lactobacillus casei, and L-carnitine in a rat colitis model. METHODS: Rats were divided into seven groups. Four groups received oral butyrate, L-carnitine, Lactobacillus casei and the combination of three agents for 10 consecutive days. The remaining groups included negative and positive controls and a sham group. Macroscopic, histopathological examinations, and biomarkers such as tumor necrosis factor-alpha (TNF-α) and interlukin-1β (IL-1β), myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), and ferric reduced ability of plasma (FRAP) were determined in the colon. RESULTS: The combination therapy exhibited a significant beneficial effect in alleviation of colitis compared to controls. Overall changes in reduction of TNF-α (114.66 ± 18.26 vs 171.78 ± 9.48 pg/mg protein, P < 0.05), IL-1β (24.9 ± 1.07 vs 33.06 ± 2.16 pg/mg protein, P < 0.05), TBARS (0.2 ± 0.03 vs 0.49 ± 0.04 μg/mg protein, P < 0.01), MPO (15.32 ± 0.4 vs 27.24 ± 3.84 U/mg protein, P < 0.05), and elevation of FRAP (23.46 ± 1.2 vs 15.02 ± 2.37 μmol/L, P < 0.05) support the preference of the combination therapy in comparison to controls. Although the monotherapies were also effective in improvement of colitis markers, the combination therapy was much better in improvement of colon oxidative stress markers including FRAP, TBARS, and MPO. CONCLUSION: The present combination is a suitable mixture in control of experimental colitis and should be trialed in the clinical setting. PMID:25152589

  18. Effect of probiotic-fermented milk administration on gastrointestinal survival of Lactobacillus casei ATCC 393 and modulation of intestinal microbial flora.

    PubMed

    Sidira, Marianthi; Galanis, Alex; Ypsilantis, Petros; Karapetsas, Athanasios; Progaki, Zoi; Simopoulos, Constantinos; Kourkoutas, Yiannis

    2010-01-01

    The aim of the present study was to assess the survival of free and immobilized Lactobacillus casei ATCC 393 on apple pieces, contained in probiotic-fermented milk, after gastrointestinal (GI) transit and to investigate the potential regulation of intestinal microbial flora in a rat model. In in vitro GI stress tolerance tests, immobilized L. casei ATCC 393 exhibited significantly higher survival rates compared to free cells. At a second stage, probiotic-fermented milk produced by either free or immobilized cells was administered orally at a single dose or daily for 9 days in Wistar rats. By 12 h after single-dose administration, both free and immobilized cells were detected by microbiological and molecular analysis at levels ≥6 logCFU/g of feces. Moreover, daily administration led to significant reduction of staphylococci, enterobacteria, coliforms and streptococci counts. In conclusion, L. casei ATCC 393 contained in fermented milk survived GI transit and modulated intestinal microbiota. PMID:21160205

  19. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells.

    PubMed

    Tiptiri-Kourpeti, Angeliki; Spyridopoulou, Katerina; Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  20. Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides.

    PubMed

    Yasuda, Emi; Serata, Masaki; Sako, Tomoyuki

    2008-08-01

    Although many Lactobacillus strains used as probiotics are believed to modulate host immune responses, the molecular natures of the components of such probiotic microorganisms directly involved in immune modulation process are largely unknown. We aimed to assess the function of polysaccharide moiety of the cell wall of Lactobacillus casei strain Shirota as a possible immune modulator which regulates cytokine production by macrophages. A gene survey of the genome sequence of L. casei Shirota hunted down a unique cluster of 10 genes, most of whose predicted amino acid sequences had similarities to various extents to known proteins involved in biosynthesis of extracellular or capsular polysaccharides from other lactic acid bacteria. Gene knockout mutants of eight genes from this cluster resulted in the loss of reactivity to L. casei Shirota-specific monoclonal antibody and extreme reduction of high-molecular-mass polysaccharides in the cell wall fraction, indicating that at least these genes are involved in biosynthesis of high-molecular-mass cell wall polysaccharides. By adding heat-killed mutant cells to mouse macrophage cell lines or to mouse spleen cells, the production of tumor necrosis factor alpha, interleukin-12 (IL-12), IL-10, and IL-6 was more stimulated than by wild-type cells. In addition, these mutants additively enhanced lipopolysaccharide-induced IL-6 production by RAW 264.7 mouse macrophage-like cells, while wild-type cells significantly suppressed the IL-6 production of RAW 264.7. Collectively, these results indicate that this cluster of genes of L. casei Shirota, which have been named cps1A, cps1B, cps1C, cps1D, cps1E, cps1F, cps1G, and cps1J, determine the synthesis of the high-molecular-mass polysaccharide moiety of the L. casei Shirota cell wall and that this polysaccharide moiety is the relevant immune modulator which may function to reduce excessive immune reactions during the activation of macrophages by L. casei Shirota. PMID:18552190

  1. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells

    PubMed Central

    Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E.; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S.; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  2. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus

    PubMed Central

    Nancib, Aicha; Nancib, Nabil; Boubendir, Abdelhafid; Boudrant, Joseph

    2015-01-01

    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained. PMID:26413076

  3. [Development and use of periodontal dressing of collagen and Lactobacillus casei 37 cell suspension in combined treatment of periodontal disease of inflammatory origin (a microbiological study)].

    PubMed

    Volozhin, A I; Il'in, V K; Maksimovskiĭ, Iu M; Sidorenko, A B; Istranov, L P; Tsarev, V N; Istranova, E V; Aboiants, R K

    2004-01-01

    Periodontal dressing consisting of collagen and Lactobacillus casei 37 cell suspension (cell concentration 108 cells/ml) was created and used in combined treatment of patients with chronic generalized parodontitis. Efficacy of the developed isolation was explained by a considerable decrease of the number and frequency of isolation of aggressive microbial representatives (pigment synthesizing Bacteroids, Actinomyces and Str. intermedius) in periodontal pockets and also Fungus (Candida albicans). This periodontal dressing provided remission up to 10-12 months. PMID:15602477

  4. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    PubMed Central

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  5. A Decade of Experience in Primary Prevention of Clostridium difficile Infection at a Community Hospital Using the Probiotic Combination Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+).

    PubMed

    Maziade, Pierre-Jean; Pereira, Pascale; Goldstein, Ellie J C

    2015-05-15

    In August 2003, the 284-bed community hospital Pierre-Le Gardeur (PLGH) in Quebec experienced a major outbreak associated with the Clostridium difficile NAP1/027/BI strain. Augmented standard preventive measures (SPMs) were not able to control this outbreak. It was decided in February 2004 to give to every adult inpatient on antibiotics, without any exclusion, a probiotic (Bio-K+: Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2) within 12 hours of the antibiotic prescription. Augmented SPMs were continued. The use of the probiotic in addition to SPMs was associated with a marked reduction of C. difficile infection (CDI). During the 10 years of observation, 44 835 inpatients received Bio-K+, and the CDI rate at PLGH declined from 18.0 cases per 10,000 patient-days and remained at low mean levels of 2.3 cases per 10,000 patient-days. Additionally, 10-year data collected by the Ministry of Health in Quebec comparing the CDI rate between Quebec hospitals showed that CDI rates at PLGH were consistently and continuously lower compared with those at similar hospitals. Blood cultures were monitored at PLGH for Lactobacillus bacteremia through the 10 years' experience, and no Lactobacillus bacteremias were detected. Despite the limitation of an observational study, we concluded that the probiotic Bio-K+ was safe and effective in decreasing our primary CDI rate. PMID:25922400

  6. Four weeks supplementation with Lactobacillus paracasei subsp. paracasei L. casei W8® shows modest effect on triacylglycerol in young healthy adults.

    PubMed

    Bjerg, A T; Kristensen, M; Ritz, C; Stark, K D; Holst, J J; Leser, T D; Wellejus, A; Astrup, A

    2015-03-01

    The microbiota has been shown to have the potential to affect appetite and blood lipids positively in animal studies. We investigated if four weeks supplementation with Lactobacillus paracasei subsp. paracasei L. casei W8® (L. casei W8) had an effect on subjective appetite sensation, ad libitum energy intake, glucagon-like peptide 1 (GLP-1), glucose and insulin response in humans. Secondarily, we explored potential effects on blood lipids, fatty acids and stearoyl-CoA desaturase-1 (SCD1) activity in humans as well as SCD1 expression in piglets given L. casei W8 for two weeks. 64 healthy participants completed the double-blinded, randomised, controlled, parallel four weeks study with supplementation of L. casei W8 (1010 cfu) or placebo capsules. A meal test was conducted before and after the intervention, where subjective appetite, ad libitum energy intake, GLP-1, glucose and insulin response were measured. Additionally fasting blood lipids and fatty acids concentrations were measured. Sixteen piglets were randomised into two groups: L. casei W8 (1010 cfu/day) as top dressing on morning fed or no treatment. After two weeks piglets were sacrificed and tissue from ileum, jejunum and skeletal muscle were sampled for mRNA analyses of SCD1 expression. Compared to placebo, L. casei W8 did not affect appetite, ad libitum energy intake, GLP-1, glucose and insulin response and total, high-density or low-density lipoprotein cholesterol levels after four weeks intervention. Triacylglycerol decreased in the L. casei W8 group compared to placebo at week 4 (P=0.03). The C16:1n-7/C16:0 ratio, reflecting SCD1 activity, tended to decrease when having L. casei W8 (P=0.06) compared to placebo. Muscle SCD1 expression decreased in piglets supplemented with L. casei W8 compared to control. In conclusion, supplementation with L. casei W8 did not affect appetite parameters, glucose or insulin responses; but appear to be able to lower triacylglycerol levels, possibly by reducing its production. PMID:25245572

  7. Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides.

    PubMed

    Yasuda, Emi; Tateno, Hiroaki; Hirabayashi, Jun; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki

    2011-07-01

    We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS. PMID:21602390

  8. Constitutive delivery of bovine beta-lactoglobulin to the digestive tracts of gnotobiotic mice by engineered Lactobacillus casei.

    PubMed

    Hazebrouck, S; Oozeer, R; Adel-Patient, K; Langella, P; Rabot, S; Wal, J-M; Corthier, G

    2006-12-01

    The gut microbiota is critical for maturation of the immune system. Recent evidence suggests that early establishment of lactobacilli in the intestinal microbiota, during neonatal colonization or by probiotic supplementation, could prevent the development of allergic disorders. Postnatal maturation of the gut immune system with allergen-producing lactobacilli colonizing the digestive tract could then affect the development of further allergic sensitization. In this paper, we describe construction of a recombinant Lactobacillus casei strain that can constitutively deliver bovine beta-lactoglobulin (BLG), a major cow's milk allergen, to the guts of gnotobiotic mice. The blg gene was inserted into the L. casei chromosome downstream of an endogenous promoter. BLG production was improved by fusing the propeptide LEISSTCDA (LEISS) to the BLG mature moiety. This led to a 10-fold increase in LEISS-BLG production compared to the production obtained without the propeptide and also led to enhanced secretion corresponding to 5% of the total production. After inoculation into germfree C3H/HeN mice, the genetic stability of the recombinant strain and in vivo BLG production were confirmed for at least 10 weeks. BLG stimulation of spleen cells from mice monoassociated with the BLG-producing lactobacilli induced secretion of the Th1 cytokine gamma interferon and, to a lesser extent, the Th2 cytokine interleukin-5. No BLG-specific immunoglobulin G1 (IgG1), IgG2a, or IgA was detected in sera or in fecal samples. These results suggest that gut colonization with allergen-producing lactobacilli could provide a useful model for studying the modulation of allergic disorders. PMID:16997983

  9. Effect of Lactobacillus strains (L. casei and L. Acidophillus Strains cerela) on bacterial overgrowth-related chronic diarrhea.

    PubMed

    Gaon, David; Garmendia, Carmen; Murrielo, Norberto O; de Cucco Games, Alfredo; Cerchio, Angel; Quintas, Ricardo; González, Silvia N; Oliver, Guillermo

    2002-01-01

    Small bowel bacterial overgrowth and related diarrhea is a condition that frequently accompanies anatomic disorders, surgically created blind loops or strictures with partial small bowel obstruction and although it is often controlled with antimicrobial therapy, alternative treatment may be needed. The aim of this study was to evaluate the efficacy of an oral probiotic preparation of 2 viable lyophilized strains of lactobacilli (1.5 g each) compared with placebo. Twenty two patients with proven overgrowth and chronic diarrhea are described. In random order and double-blind fashion, 2 groups of patients received identical capsules with both Lactobacillus casei and L. acidophillus strains CERELA (12 patients) (LC) and placebo (10 patients) (P) during three consecutive periods of 7 days each followed by a similar three periods of control after withdrawal. At the end of each period the mean daily number of stools, glucose breath H2 test, and symptoms were considered. Lactobacillus were investigated in feces in both groups at day 0 (baseline), on day 21 of treatment with LC and P and on day 21 after withdrawal. Compared with P a significant reduction in mean daily number of stools was achieved with LC (p < 0.005) at 15 days, and (p < 0.0005) at 21 days and the effect was sustained at 7 days and 15 days (p < 0.005) after withdrawal. With respect to breath H2 level a significant decrease in H2 concentration was noted at 7 days (p < 0.005) at 15 days, and 21 days (p < 0.0001) with LC and only a significant decrease (p < 0.005) was observed at 7 days after withdrawal. No significant changes were observed with respect to symptoms. The Lactobacillus CERELA strains were isolated from the feces in all patients LC (n = 12) on day 21, and by contrast no Lactobacillus were observed except in two patients out of seven patients after withdrawal. In summary, this study provides evidence that LC are effective for treatment of bacterial overgrowth--related chronic diarrhea, and suggest that probiotics must be used with continuity. PMID:12038039

  10. The Antimicrobial Effect of Lactobacillus Casei Culture Supernatant Against Multiple Drug Resistant Clinical Isolates of Shigella Sonnei and Shigella Flexneri in Vitro

    PubMed Central

    Mirnejad, Reza; Vahdati, Ali Reza; Rashidiani, Jamal; Erfani, Mohammad; Piranfar, Vahhab

    2013-01-01

    Backgrounds Shigellosis remains an important public health problem in developing countries with S. sonnei and S. flexneri in US, Europe and in Asian countries being of importance. Objectives This study evaluates the protective effect of Lactobacillus casei cell-free culture supernatants (CFCS) against multiple drug resistance (MDR) clinical samples of Shigella sonnei and Shigella flexneri in vitro. Materials and Methods S. sonnei and S .flexneri was identified by common microbiological and serological methods. Antibiogram with 18 antibiotics were tested for 34 positive cultures by disc diffusion method. The Samples showed considerable resistance to antibiotics. Antimicrobial effects of CFCS were tested against S. sonnei and S. flexneri by agar-well assay and broth micro dilution methods. In addition, the antimicrobial activity remained active treatment after adjust pH 7, adding Proteinase K and heating for L. casei. Results The results implicate that L. casei strongly inhibits the development of pathogen samples. In contrast, via the disc diffusion method 4 out of 18 antibiogram have shown complete resistance against the pathogen samples. In addition, the natures of antimicrobial properties have been tested in different conditions such as various pH, temperature and presence of proteinase K. The MIC50 (minimum inhibitory concentration) and MIC90 of CFCS of L. casei were determined, for S. sonnei were 2.25 and 10.5, for S .flexneri were 5.25 and 5.25 respectively. The results have shown a significant resistance pattern by these four antibiotics in this case. Conclusions The data indicates that. L. casei highly resistant against to antibiotics, heat, Proteinase K and so many activities against MDR Shigella pathogenic strains . L. casei is the best probiotics candidate. PMID:23682323

  11. Comparative genome analysis of Lactobacillus casei strains isolated from Actimel and Yakult products reveals marked similarities and points to a common origin

    PubMed Central

    Douillard, Franois P; Kant, Ravi; Ritari, Jarmo; Paulin, Lars; Palva, Airi; Vos, Willem M

    2013-01-01

    Summary The members of the Lactobacillus genus are widely used in the food and feed industry and show a remarkable ecological adaptability. Several Lactobacillus strains have been marketed as probiotics as they possess health-promoting properties for the host. In the present study, we used two complementary next-generation sequencing technologies to deduce the genome sequences of two Lactobacillus casei strains LcA and LcY, which were isolated from the products Actimel and Yakult, commercialized as probiotics. The LcA and LcY draft genomes have, respectively, an estimated size of 3067 and 3082?Mb and a G+C content of 46.3%. Both strains are close to identical to each other and differ by no more than minor chromosomal re-arrangements, substitutions, insertions and deletions, as evident from the verified presence of one insertion-deletion (InDel) and only 29 single-nucleotide polymorphisms (SNPs). In terms of coding capacity, LcA and LcY are predicted to encode a comparable exoproteome, indicating that LcA and LcY are likely to establish similar interactions with human intestinal cells. Moreover, both L.?casei?LcA and LcY harboured a 59.6?kb plasmid that shared high similarities with plasmids found in other L.?casei strains, such as W56 and BD-II. Further analysis revealed that the L.?casei plasmids constitute a good evolution marker within the L.?casei species. The plasmids of the LcA and LcY strains are almost identical, as testified by the presence of only three verified SNPs, and share a 3.5?kb region encoding a remnant of a lactose PTS system that is absent from the plasmids of W56 and BD-II but conserved in another smaller L.?casei plasmid (pLC2W). Our observations imply that the results obtained in animal and human experiments performed with the Actimel and Yakult strains can be compared with each other as these strains share a very recent common ancestor. Funding Information The present work was supported by the Center of Excellence in Microbial Food Safety Research (Academy of Finland, Grant 141140), Grant ERC 250172 Microbes Inside from the European Research Council and Grants 137389 and 141130 from the Academy of Finland. F.P.D. was funded by a postdoctoral research fellowship (Academy of Finland, Grant 252123). PMID:23815335

  12. Screening sourdough samples for gliadin-degrading activity revealed Lactobacillus casei strains able to individually metabolize the coeliac-disease-related 33-mer peptide.

    PubMed

    Alvarez-Sieiro, Patricia; Redruello, Begoña; Ladero, Victor; Martín, Maria Cruz; Fernández, María; Alvarez, Miguel A

    2016-05-01

    A selective culture medium containing acid-hydrolyzed gliadins as the sole nitrogen source was used in the search for sourdough-indigenous lactic acid bacteria (LAB) with gliadin-metabolizing activity. Twenty gliadin-degrading LAB strains were isolated from 10 sourdoughs made in different ways and from different geographical regions. Fifteen of the 20 isolated strains were identified as Lactobacillus casei, a species usually reported as subdominant in sourdough populations. The other 5 gliadin-degrading strains belonged to the more commonly encountered sourdough species Leuconostoc mesenteroides and Lactobacillus plantarum. All these strains were shown to be safe in terms of their resistance to antimicrobial agents. When individually incubated with the α2-gliadin-derived immunotoxic 33-mer peptide (97.5 ppm), half of the L. casei strains metabolized at least 50% of it within 24 h. One strain metabolized 82% of the 33-mer peptide within 8 h and made it fully disappear within 12 h. These results reveal for the first time the presence in sourdough of proteolytic L. casei strains with the capacity to individually metabolize the coeliac-disease-related 33-mer peptide. PMID:27021684

  13. Biosynthesis of D-alanyl-lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues

    SciTech Connect

    Childs, W.C. 3d.; Taron, D.J.; Neuhaus, F.C.

    1985-06-01

    Lipoteichoic acid (LTA) from Lactobacillus casei contains poly(glycerophosphate) substituted with D-alanyl ester residues. The distribution of these residues in the in vitro-synthesized polymer is uniform. Esterification of LTA with D-alanine may occur in one of two modes: (i) addition at random or (ii) addition at a defined locus in the poly(glycerophosphate) chain followed by redistribution of the ester residues. A time-dependent transacylation of these residues from D-(/sup 14/C)alanyl-lipophilic LTA to hydrophilic acceptor was observed. The hydrophilic acceptor was characterized as D-alanyl-hydrophilic LTA. This transacylation requires neither ATP nor the D-alanine incorporation system, i.e., the D-alanine activating enzyme and D-alanine:membrane acceptor ligase. No evidence for an enzyme-catalyzed transacylation reaction was observed. The authors propose that this process of transacylation may be responsible for the redistribution of D-alanyl residues after esterification to the poly(glycerophosphate). As a result, it is difficult to distinguish between these proposed modes of addition.

  14. Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production.

    PubMed

    Dong, H; Rowland, I; Tuohy, K M; Thomas, L V; Yaqoob, P

    2010-08-01

    Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8(+) and CD56(+) subsets in the absence of any other stimulus. LcS also induced production of interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF)-alpha, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1beta production but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-alpha and IL-12 production. Monocyte depletion reduced significantly the impact of LcS on lymphocyte activation, cytokine production and natural killer (NK) cell activity. In conclusion, LcS activated cytotoxic lymphocytes preferentially in both the innate and specific immune systems, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both proinflammatory and anti-inflammatory cytokine production in the absence of LPS, but in some cases inhibited LPS-induced cytokine production. Monocytes play an important role in LcS-induced immunological responses. PMID:20456417

  15. The effect of Lactobacillus casei strain Shirota on the cecal fermentation pattern depends on the individual cecal microflora in pigs.

    PubMed

    Ohashi, Yuji; Tokunaga, Makoto; Ushida, Kazunari

    2004-12-01

    Probiotic bacteria improve fermentation in the large intestine through interaction with indigenous bacteria. The microflora in the large intestine differ from one individual to another. The objective of this study was to determine whether the different cecal microflora induce different probiotic effects on cecal fermentation in three pigs (pig A, B and C). Pigs were administered fermented milk prepared with the Lactobacillus casei strain Shirota (LCS) as a probiotic for 2 wk. The average number of LCS was higher than 5.0 (log cfu/g cecal digesta) in all pigs. The hierarchical clustering of the temperature-gradient gel electrophoresis (TGGE) profile of cecal bacteria showed that the cecal microflora was slightly altered by the LCS dose in all pigs. However, the molar ratios of cecal butyrate in pigs A and C were significantly increased by LCS. Inversely, the molar ratio of propionate in pigs A and C was significantly decreased by LCS. However, the molar ratio of individual short-chain fatty acid in pig B was not significantly affected by LCS. The hierarchical clustering of the TGGE profiles indicated that the cecal microflora of pig A resembled that of pig C and that of pig B was dissimilar to those of pigs A and C. These results indicated that the effect of LCS on fermentation in the large intestine was possibly dependent on the composition of indigenous microflora. PMID:15895514

  16. Oral administration of probiotic bacteria, Lactobacillus casei and Bifidobacterium breve, does not exacerbate neurological symptoms in experimental autoimmune encephalomyelitis.

    PubMed

    Kobayashi, Toshihide; Kato, Ikuo; Nanno, Masanobu; Shida, Kan; Shibuya, Kazumoto; Matsuoka, Yoshiaki; Onoue, Masaharu

    2010-03-01

    To evaluate the safety of two probiotic bacterial strains, Lactobacillus casei strain Shirota (LcS) and Bifidobacterium breve strain Yakult (BbY), these probiotics were orally administered to Lewis rats with experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We examined three experimental designs by combining different antigen types and probiotic administration periods: (1) EAE was induced with a homogenate of guinea pig spinal cord as the sensitizing antigen, and LcS was orally administered from one week before this sensitization until the end of the experiment; (2) EAE was induced using guinea pig originated myelin basic protein (MBP) as the sensitizing antigen, and LcS was orally administered from one week before this sensitization to the end of the experiment; (3) EAE was induced using guinea pig MBP as the sensitizing antigen, and the probiotic strains (LcS and BbY) were administered starting in infancy (two weeks old) and continued until the end of the experiment. In experiment 1, oral administration of LcS tended to suppress the development of neurological symptoms. Differences in neurological symptoms between the control group and the administration groups did not reach statistical significance in experiments 2 and 3. These results support the notion that neither LcS nor BbY exacerbates autoimmune disease. PMID:19831500

  17. Fermented milk containing Lactobacillus casei strain Shirota reduces incidence of hard or lumpy stools in healthy population.

    PubMed

    Sakai, Takafumi; Makino, Hiroshi; Ishikawa, Eiji; Oishi, Kenji; Kushiro, Akira

    2011-06-01

    The objective of the present study was to investigate the efficacy of fermented milk containing Lactobacillus casei strain Shirota (LcS) in a healthy population. Healthy subjects with Bristol Stool Form Scale (BS) score < 3.0 were randomized to fermented milk treatment for 3 weeks or non-intervention control. The primary endpoint was the proportion of subjects that produced hard or lumpy stools (HLS) ≥ 25% of bowel movements (H-HLS). Secondary endpoints included changes in BS score, constipation-related symptom scores and stool parameters. Efficacy was analyzed in 39 subjects. After 3 weeks of treatment the proportion of H-HLS subjects had significantly decreased from 73.7% to 36.8%, whereas in the control group the proportion had increased from 75.0% to 85.0% during the same period (P = 0.002). The BS score was significantly improved after the treatment compared with the control (P < 0.001). In conclusion, daily consumption of fermented milk containing LcS reduced the incidence of HLS. PMID:21322768

  18. [Prevention of irinotecan hydrochloride-induced diarrhea by oral administration of Lactobacillus casei strain Shirota in rats].

    PubMed

    Ooi, Kazuya; Miya, Takafumi; Sasaki, Hiromi; Morimoto, Yasunori

    2008-06-01

    Irinotecan hydrochloride is an inhibitor of DNA topoisomerase I enzyme by its main active metabolite SN-38. However, irinotecan-induced severe diarrhea has often limited its more widespread use. We assessed the effect of oral administration of Lactobacillus casei strain Shirota (LcS) on irinotecan-induced diarrhea in rats. Rats in the LcS group were administered LcS (1.64 x 10(11) cfu/0.5 g/3 mL saline) orally for 28 days. Fourteen days later, irinotecan was given for 4 days (100 mg/kg i. p.). Control group rats were administered 3 mL saline orally for 28 days together with irinotecan, as in the LcS group. As a result, LcS significantly inhibited the weight decrease due to irinotecan and the food intake was greater than in the controls. The delayed diarrhea symptoms induced by irinotecan also seemed to be improved. Although we cannot conclude why LcS improved the side effect of irinotecan, LcS might inhibit beta-glucuronidase activity, which is produced by intestinal flora and plays a key role in the development of irinotecan-induced delayed diarrhea. Further investigations including this issue are warranted. PMID:18633223

  19. Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production

    PubMed Central

    Dong, H; Rowland, I; Tuohy, K M; Thomas, L V; Yaqoob, P

    2010-01-01

    Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8+ and CD56+ subsets in the absence of any other stimulus. LcS also induced production of interleukin (IL)-1?, IL-6, tumour necrosis factor (TNF)-?, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1? production but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-? and IL-12 production. Monocyte depletion reduced significantly the impact of LcS on lymphocyte activation, cytokine production and natural killer (NK) cell activity. In conclusion, LcS activated cytotoxic lymphocytes preferentially in both the innate and specific immune systems, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both proinflammatory and anti-inflammatory cytokine production in the absence of LPS, but in some cases inhibited LPS-induced cytokine production. Monocytes play an important role in LcS-induced immunological responses. PMID:20456417

  20. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection. PMID:26825016

  1. Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study

    PubMed Central

    Lemesch, Sandra; Trajanoski, Slave; Bashir, Mina; Horvath, Angela; Tawdrous, Monika; Stojakovic, Tatjana; Fauler, Günter; Fickert, Peter; Högenauer, Christoph; Klymiuk, Ingeborg; Stiegler, Philipp; Lamprecht, Manfred; Pieber, Thomas R.; Tripolt, Norbert J.; Sourij, Harald

    2015-01-01

    Metabolic syndrome is associated with disturbances in gut microbiota composition. We aimed to investigate the effect of Lactobacillus casei Shirota (LcS) on gut microbiota composition, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects with metabolic syndrome received either LcS for 12 weeks (n = 13) or no LcS (n = 15). Data were compared to healthy controls (n = 16). Gut microbiota composition was characterised from stool using 454 pyrosequencing of 16S rRNA genes. Serum bile acids were quantified by tandem mass spectrometry. Zonulin and calprotectin were measured in serum and stool by ELISA. Bacteroidetes/Firmicutes ratio was significantly higher in healthy controls compared to metabolic syndrome but was not influenced by LcS. LcS supplementation led to enrichment of Parabacteroides. Zonulin and calprotectin were increased in metabolic syndrome stool samples but not influenced by LcS supplementation. Serum bile acids were similar to controls and not influenced by LcS supplementation. Metabolic syndrome is associated with a higher Bacteroidetes/Firmicutes ratio and gut barrier dysfunction but LcS was not able to change this. LcS administration was associated with subtle microbiota changes at genus level. Trial Registration ClinicalTrials.gov NCT01182844 PMID:26509793

  2. Metabolomic approach assisted high resolution LC-ESI-MS based identification of a xenobiotic derivative of fenhexamid produced by Lactobacillus casei.

    PubMed

    Lénárt, József; Bujna, Erika; Kovács, Béla; Békefi, Eszter; Száraz, Leonóra; Dernovics, Mihály

    2013-09-18

    Fenhexamid is a widely used fungicide with one of the highest maximum tolerance limits approved for fruits and vegetables. The goal of this study was to examine if fenhexamid is metabolized by a nontarget organism, a Lactobacillus species (Lactobacillus casei Shirota), a probiotic strain of the human gastrointestinal tract. The assignment of bacterial derivatives of the xenobiotic fenhexamid was substantially facilitated by a metabolomic software based approach optimized for the extraction of molecular features of chlorine-containing compounds from liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry data with an untargeted compound search algorithm. After validating the software with a set of seventeen chlorinated pesticides and manually verifying the result lists, eleven molecular features out of 4363 turned out to be bacterial derivatives of fenhexamid, revealing the O-glycosyl derivative as the most abundant one that arose from the fermentation medium of Lactobacillus casei Shirota in the presence of 100 μg/mL fenhexamid. PMID:23971653

  3. The Extracellular Wall-Bound β-N-Acetylglucosaminidase from Lactobacillus casei Is Involved in the Metabolism of the Human Milk Oligosaccharide Lacto-N-Triose.

    PubMed

    Bidart, Gonzalo N; Rodríguez-Díaz, Jesús; Yebra, María J

    2016-01-01

    Human milk oligosaccharides (HMOs) are considered to play a key role in establishing and maintaining the infant gut microbiota. Lacto-N-triose forms part of both type 1 and type 2 HMOs and also of the glycan moieties of glycoproteins. Upstream of the previously characterized gene cluster involved in lacto-N-biose and galacto-N-biose metabolism from Lactobacillus casei BL23, there are two genes, bnaG and manA, encoding a β-N-acetylglucosaminidase precursor and a mannose-6-phosphate isomerase, respectively. In this work, we show that L. casei is able to grow in the presence of lacto-N-triose as a carbon source. Inactivation of bnaG abolished the growth of L. casei on this oligosaccharide, demonstrating that BnaG is involved in its metabolism. Interestingly, whole cells of a bnaG mutant were totally devoid of β-N-acetylglucosaminidase activity, suggesting that BnaG is an extracellular wall-attached enzyme. In addition to hydrolyzing lacto-N-triose into N-acetylglucosamine and lactose, the purified BnaG enzyme also catalyzed the hydrolysis of 3'-N-acetylglucosaminyl-mannose and 3'-N-acetylgalactosaminyl-galactose. L. casei can be cultured in the presence of 3'-N-acetylglucosaminyl-mannose as a carbon source, but, curiously, the bnaG mutant strain was not impaired in its utilization. These results indicate that the assimilation of 3'-N-acetylglucosaminyl-mannose is independent of BnaG. Enzyme activity and growth analysis with a manA-knockout mutant showed that ManA is involved in the utilization of the mannose moiety of 3'-N-acetylglucosaminyl-mannose. Here we describe the physiological role of a β-N-acetylglucosaminidase in lactobacilli, and it supports the metabolic adaptation of L. casei to the N-acetylglucosaminide-rich gut niche. PMID:26546429

  4. Exposing the Secrets of Two Well-Known Lactobacillus casei Phages, J-1 and PL-1, by Genomic and Structural Analysis

    PubMed Central

    Dieterle, Maria Eugenia; Bowman, Charles; Batthyany, Carlos; Lanzarotti, Esteban; Turjanski, Adrián; Hatfull, Graham

    2014-01-01

    Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection. PMID:25217012

  5. Lactobacillus casei Zhang modulate cytokine and Toll-like receptor expression and beneficially regulate PolyI:C-induced immune responses in RAW264.7 macrophages.

    PubMed

    Wang, Yuzhen; Xie, Jiming; Wang, Na; Li, Yunxu; Sun, Xiaolin; Zhang, Yong; Zhang, Heping

    2012-10-15

    Lactobacilli are frequently used as probiotics due to their health-benefiting effects. Lactobacillus casei Zhang (LcZ), exhibiting favorite probiotic properties, was isolated from koumiss. In this study, we assessed the immunomodulating effects of LcZ on cytokine and toll-like receptor expression in RAW264.7 macrophages. Our results showed that live LcZ promoted the production of nitric oxide (NO), tumor necrosis factor (TNF)-?, interleukin (IL)-6 and interferon (IFN)-?. The transcription of inducible nitric oxide synthase (iNOS) was also enhanced by viable LcZ. The immunostimulating effects of live LcZ were significantly attenuated in heat-killed LcZ. Live LcZ promoted TLR2 mRNA transcription, while heat-killed LcZ enhanced the transcription of TLR2, TLR3, TLR4 and TLR9. Furthermore, Live LcZ significantly suppressed polyinosinic:polycytidylic acid (PolyI:C)-stimulated NO, iNOS and TNF-? expression while enhancing the expression of IFN-?. We found that PolyI:C-induced IRF-3 reporter gene activity was significantly up-regulated by Live LcZ. These results suggest that Lactobacillus casei Zhang keep the innate immune system alert by increasing the transcription of toll-like receptors and enhancing the production of pro-inflammatory mediators and type I IFN in macrophages. The synergistic effect of live LcZ with PolyI:C on IFN-? expression is associated with increased activities of IRF-3. Lactobacillus casei Zhang has the potential to be used as an adjuvant against viral infections. PMID:23062198

  6. Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis.

    PubMed

    Dieterle, Maria Eugenia; Bowman, Charles; Batthyany, Carlos; Lanzarotti, Esteban; Turjanski, Adrián; Hatfull, Graham; Piuri, Mariana

    2014-11-01

    Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection. PMID:25217012

  7. Secretory expression of a phospholipase A2 from Lactobacillus casei DSM20011 in Kluyveromyces lactis.

    PubMed

    Wang, Hui; Zhang, Liang; Shi, Guiyang

    2015-12-01

    The pla2 gene encoding a phospholipase A2 (EC 3.1.1.4) of Lactobacillus casei DSM20011 was cloned and expressed in the yeast Kluyveromyces lactis GG799 successfully for the first time. The structural pla2 gene fused in frame with the K. lactis secretion signal α-mating factor was integrated into the LAC4 locus and expressed under the control of the LAC4 promoter. sPLA2 activity was detected in the culture supernatant during shake flask culture of K. lactis/pKLAC1-pla2. In comparison with the control strain K. lactis/pKLAC1, SDS-PAGE analysis revealed a 17-kDa recombinant protein band in K. lactis/pKLAC1-pla2, which was consistent with the predicted molecular weight of the mature protein. Real-time quantitative PCR analysis indicated that the copy number of the integrated pla2 gene ranged from 2 to 6 and positively correlated with sPLA2 activity. When the inducer galactose was used as the carbon source, the sPLA2 activity in the culture supernatant of the recombinant that harbored six pla2 gene copies reached 1.96 ± 0.15 U/mL. The influence of the culture composition and conditions on the recombinant sPLA2 activity in shake flask culture were also studied. When the recombinant was cultured at 30°C in a YPD medium culture volume of 70 mL in a 250-mL shake flask with an initial pH of 7.0, the sPLA2 activity reached 2.16 ± 0.18 U/mL. PMID:26108160

  8. Probiotic Lactobacillus casei Shirota supplementation does not modulate immunity in healthy men with reduced natural killer cell activity.

    PubMed

    Seifert, Stephanie; Bub, Achim; Franz, Charles M A P; Watzl, Bernhard

    2011-05-01

    Oral intake of probiotic bacteria may beneficially modulate functions of NK cells. In healthy individuals, contradictory results exist as to whether NK cell functions can be modulated by probiotic bacteria. Therefore, the primary objective of our randomized, double-blind, placebo-controlled trial was to determine the effects of the probiotic strain Lactobacillus casei Shirota (LcS) on the activity of NK cells in healthy men who had been preselected for a reduced lytic function of their NK cells. Study participants (n = 68) were supplemented for 4 wk with a probiotic drink providing 1.95 × 10(10) CFU LcS/d or with a similar milk drink without probiotic additive. A run-in period of 2 wk preceded the probiotic supplementation followed by a 2-wk follow-up phase without the probiotic or control drink. Changes in the relative proportions of NK cells and other leukocytes as well as multiple functional measurements were determined longitudinally at baseline, after the 4-wk supplementation, and at the end of the follow-up. The probiotic supplementation had no significant effect on NK cell numbers and function or on phagocytosis, respiratory burst, or cytokine secretion of peripheral blood mononuclear cells. In conclusion, 4 wk of supplementation with LcS does not increase NK cell activity in healthy men with a reduced NK cell lytic activity. However, other doses of LcS, time of intervention, or differences, e.g. in the background diet, may result in a different outcome. PMID:21430250

  9. Effect of different antibiotics and non-steroidal anti-inflammatory drugs on the growth of Lactobacillus casei Shirota.

    PubMed

    Jiménez-Serna, Alaíde; Hernández-Sánchez, Humberto

    2011-03-01

    The purpose of this study was to investigate whether some non-steroidal anti-inflammatory drugs (NSAIDs) could cause inhibition of the growth of Lactobacillus casei Shirota (LcS) or whether this microorganism is able to use some of them as the sole carbon source, considering that the simultaneous consumption of NSAIDs and a dairy drink fermented with LcS could help to prevent the appearance or improve the healing of gastric ulcers. Acetylsalicylic acid (ASA), sodium acetylsalicylate (SAS), acetaminophen, sodium naproxen, and sodium ibuprofen were added as the sole carbon source to a basal medium and tested for biodegradation by LcS. The same NSAIDs were added in different concentrations to disks and plated on MRS Agar to test the possible inhibitory effect of these compounds on LcS. Also, the resistance of LcS to 12 different antibiotics was studied on MRS agar. None of the NSAIDs tested could be used by LcS as the sole carbon source at the assayed concentrations. In the case of the disk diffusion method, sodium naproxen showed inhibition zones for the 500-μg disks and sodium ibuprofen was inhibitory for the 250- and 500-μg disks. However, when the macrobroth dilution method was used, the growth of LcS was inhibited by ASA, SAS, acetaminophen, and sodium ibuprofen. This strain showed resistance to the antibiotics sulfamethoxazole with trimethoprim, pefloxacin, and gentamicin. This is the first study on the effect of NSAIDs on probiotic bacteria. The results of the biodegradation test indicate that the simultaneous consumption of NSAIDs and a dairy beverage with LcS is not likely to change the bioavailability of the drugs. PMID:21104082

  10. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase.

    PubMed

    De Boeck, Reinout; Sarmiento-Rubiano, Luz Adriana; Nadal, Inmaculada; Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-02-01

    Sorbitol is a sugar alcohol largely used in the food industry as a low-calorie sweetener. We have previously described a sorbitol-producing Lactobacillus casei (strain BL232) in which the gutF gene, encoding a sorbitol-6-phosphate dehydrogenase, was expressed from the lactose operon. Here, a complete deletion of the ldh1 gene, encoding the main L-lactate dehydrogenase, was performed in strain BL232. In a resting cell system with glucose, the new strain, named BL251, accumulated sorbitol in the medium that was rapidly metabolized after glucose exhaustion. Reutilization of produced sorbitol was prevented by deleting the gutB gene of the phosphoenolpyruvate: sorbitol phosphotransferase system (PTS(Gut)) in BL251. These results showed that the PTS(Gut) did not mediate sorbitol excretion from the cells, but it was responsible for uptake and reutilization of the synthesized sorbitol. A further improvement in sorbitol production was achieved by inactivation of the mtlD gene, encoding a mannitol-1-phosphate dehydrogenase. The new strain BL300 (lac::gutF Deltaldh1 DeltagutB mtlD) showed an increase in sorbitol production whereas no mannitol synthesis was detected, avoiding thus a polyol mixture. This strain was able to convert lactose, the main sugar from milk, into sorbitol, either using a resting cell system or in growing cells under pH control. A conversion rate of 9.4% of lactose into sorbitol was obtained using an optimized fed-batch system and whey permeate, a waste product of the dairy industry, as substrate. PMID:19784641

  11. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress.

    PubMed

    Kato-Kataoka, A; Nishida, K; Takada, M; Suda, K; Kawai, M; Shimizu, K; Kushiro, A; Hoshi, R; Watanabe, O; Igarashi, T; Miyazaki, K; Kuwano, Y; Rokutan, K

    2016-03-11

    This pilot study investigated the effects of the probiotic Lactobacillus casei strain Shirota (LcS) on psychological, physiological, and physical stress responses in medical students undertaking an authorised nationwide examination for promotion. In a double-blind, placebo-controlled trial, 24 and 23 healthy medical students consumed a fermented milk containing LcS and a placebo milk, respectively, once a day for 8 weeks until the day before the examination. Psychophysical state, salivary cortisol, faecal serotonin, and plasma L-tryptophan were analysed on 5 different sampling days (8 weeks before, 2 weeks before, 1 day before, immediately after, and 2 weeks after the examination). Physical symptoms were also recorded in a diary by subjects during the intervention period for 8 weeks. In association with a significant elevation of anxiety at 1 day before the examination, salivary cortisol and plasma L-tryptophan levels were significantly increased in only the placebo group (P<0.05). Two weeks after the examination, the LcS group had significantly higher faecal serotonin levels (P<0.05) than the placebo group. Moreover, the rate of subjects experiencing common abdominal and cold symptoms and total number of days experiencing these physical symptoms per subject were significantly lower in the LcS group than in the placebo group during the pre-examination period at 5-6 weeks (each P<0.05) and 7-8 weeks (each P<0.01) during the intervention period. Our results suggest that the daily consumption of fermented milk containing LcS may exert beneficial effects preventing the onset of physical symptoms in healthy subjects exposed to stressful situations. PMID:26689231

  12. Effect of fermented milk containing Lactobacillus casei strain Shirota on constipation-related symptoms and haemorrhoids in women during puerperium.

    PubMed

    Sakai, T; Kubota, H; Gawad, A; Gheyle, L; Ramael, S; Oishi, K

    2015-01-01

    Constipation and haemorrhoids are common complaints after childbirth. The objective of this pilot study was to evaluate impact of fermented milk containing Lactobacillus casei strain Shirota (LcS) on stool consistency and frequency, constipation-related symptoms and quality of life, and incidence of haemorrhoids in women during puerperium. Forty women who had natural childbirth were randomised to group consuming either one bottle/day of fermented milk containing at least 6.5×109 cfu of LcS, or placebo, for 6 weeks after childbirth. Subjects filled in a diary on their bowel habits including number of bowel movement, stool consistency and incidence of haemorrhoids, and answered questionnaires on constipation-related symptoms (PAC-SYM) and quality of life (PAC-QOL) during the study period. The probiotic group showed the better scores on overall PAC-SYM (P=0.013), PAC-SYM subscales of abdominal symptoms (P=0.043) and rectal symptoms (P=0.031), and PAC-QOL satisfaction subscale (P=0.037) in comparison with the placebo group. In the probiotic group, two to four subjects experienced haemorrhoids during the first 3 weeks of treatment. The number decreased in week 4 and no one had haemorrhoids on most days in week 5-6. In the placebo group, on average four subjects had haemorrhoids from the beginning, and no obvious change was observed until week 6. No statistically significant effect was observed on stool consistency and frequency. The study products did not cause any adverse event in the subjects. Results of this study indicate that continuous consumption of fermented milk containing LcS might alleviate constipation-related symptoms, provide satisfactory bowel habit and result in earlier recovery from haemorrhoids in women during puerperium. Nonetheless, there are several limitations in interpretation of the results attributed to the study design, including lack of baseline data. Further study is required in order to confirm the efficacy. PMID:25380801

  13. Mucosal Immunization with Surface-Displayed Severe Acute Respiratory Syndrome Coronavirus Spike Protein on Lactobacillus casei Induces Neutralizing Antibodies in Mice

    PubMed Central

    Lee, Jong-Soo; Poo, Haryoung; Han, Dong P.; Hong, Seung-Pyo; Kim, Kwang; Cho, Michael W.; Kim, Eun; Sung, Moon-Hee; Kim, Chul-Joong

    2006-01-01

    Induction of mucosal immunity may be important for preventing SARS-CoV infections. For safe and effective delivery of viral antigens to the mucosal immune system, we have developed a novel surface antigen display system for lactic acid bacteria using the poly-γ-glutamic acid synthetase A protein (PgsA) of Bacillus subtilis as an anchoring matrix. Recombinant fusion proteins comprised of PgsA and the Spike (S) protein segments SA (residues 2 to 114) and SB (residues 264 to 596) were stably expressed in Lactobacillus casei. Surface localization of the fusion protein was verified by cellular fractionation analyses, immunofluorescence microscopy, and flow cytometry. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA, as demonstrated by enzyme-linked immunosorbent assays using S protein peptides. More importantly, these antibodies exhibited potent neutralizing activities against severe acute respiratory syndrome (SARS) pseudoviruses. Orally immunized mice mounted a greater neutralizing-antibody response than those immunized intranasally. Three new neutralizing epitopes were identified on the S protein using a peptide neutralization interference assay (residues 291 to 308, 520 to 529, and 564 to 581). These results indicate that mucosal immunization with recombinant L. casei expressing SARS-associated coronavirus S protein on its surface provides an effective means for eliciting protective immune response against the virus. PMID:16571824

  14. Lactobacillus casei and bifidobacterium lactis supplementation reduces tissue damage of intestinal mucosa and liver after 2,4,6-trinitrobenzenesulfonic acid treatment in mice.

    PubMed

    Bellavia, M; Rappa, F; Lo Bello, M; Brecchia, G; Tomasello, G; Leone, A; Spatola, G; Uzzo, M L; Bonaventura, G; David, S; Damiani, P; Hajj Hussein, I; Zeenny, M N; Jurjus, A; Schembri-Wismayer, P; Cocchi, M; Zummo, G; Farina, F; Gerbino, A; Cappello, F; Traina, G

    2014-01-01

    Probiotics (PB) are living microorganisms that act as a commensal population in normal intestines and confer numerous beneficial effects on the host. The introduction of probiotics in the treatment of inflammatory bowel disease (IBD) prolongs remission. The aim of this study was to investigate the intestinal and hepatic effects of PB supplementation in an experimental IBD model in mice induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). In the first step of the experimental procedure, CD-1 male mice, 5 to 6 weeks old, were randomly divided into 3 groups and inoculated intrarectally with, respectively, saline, alcohol, or TNBS to assess the experimental IBD model. In the second step, mice treated, or not, with TNBS inoculation, were treated with PB (Lactobacillus Casei, Bifidobacterum Lactis) for 1, 2 or 3 weeks, on a daily basis. Large bowel (colon and rectum) and liver were processed for histological alterations, according to a scoring system. Large bowel was also assessed for apoptosis by TUNEL assay. TNBS induced, as expected, severe damage and inflammation in the large bowel, including nuclear alterations and apoptosis, and, to a lesser extent, to the liver. Administration of PB determined significant reduction of both histological alterations and apoptosis. PB administration in advance protects from inflammation. In conclusion, supplementation with Lactobacillus casei, Bifidobacterum lactis PB is able to ameliorate the colitis by reversing the histological changes caused by TNBS in mice. Experimentation in human subjects in needed to prove their efficacy in reducing histological alterations that may be present in subjects with IBD. PMID:25001657

  15. Co-immunization of cattle with a vaccine against babesiosis and Lactobacillus casei increases specific IgG1 levels to Babesia bovis and B. bigemina.

    PubMed

    Bautista-Garfias, Carlos Ramón; Lozano, Astrid Rodríguez; Martínez, Carmen Rojas; Martínez, Jesús Antonio Álvarez; Millán, Julio Vicente Figueroa; García, Gustavo Román Reyes; Castañeda-Arriola, Roberto; Aguilar-Figueroa, Blanca Rosa

    2015-10-01

    The effect of Lactobacillus casei administered along with a live attenuated vaccine vs. bovine babesiosis (VAC) on induction of IgG1 and IgG2 antibodies to Babesia bovis and Babesia bigemina was assessed by the indirect fluorescent antibody test (IFAT) in bovines of an endemic babesiosis area before (day 0) and after vaccination (days 15 and 30). We previously reported that L. casei increases the efficiency of VAC under controlled conditions and under extreme conditions in the field; however, the levels of IgG1 and IgG2 antibodies to B. bovis and B. bigemina are not known in vaccinated animals. Twenty-one dairy cows were allocated into three groups (seven animals per group): unvaccinated, vaccinated with VAC and vaccinated simultaneously with VAC and L. casei (VAC-LC). All animals were kept in a babesiosis endemic area at Tlalixcoyan, Veracruz. At days 15 and 30 after vaccination, the average levels of IgG1 to B. bovis and to B. bigemina were significantly higher in VAC-LC group than levels observed in VAC and control groups (P<0.01). Levels of IgG2 were similar in VAC and VAC-LC groups but higher than in the control group (P<0.01). When tested in in vitro cultures of B. bovis, sera from VAC-LC group significantly inhibited parasite growth as compared with the sera of the other two groups. It is suggested that the efficiency improvement of VAC, in part, is due to the L. casei boost of IgG1 over IgG2 antibodies to B. bovis and B. bigemina when the bacteria is co-inoculated with this vaccine. PMID:25936971

  16. Requirement of the Lactobacillus casei MaeKR Two-Component System for l-Malic Acid Utilization via a Malic Enzyme Pathway▿ †

    PubMed Central

    Landete, José María; García-Haro, Luisa; Blasco, Amalia; Manzanares, Paloma; Berbegal, Carmen; Monedero, Vicente; Zúñiga, Manuel

    2010-01-01

    Lactobacillus casei can metabolize l-malic acid via malolactic enzyme (malolactic fermentation [MLF]) or malic enzyme (ME). Whereas utilization of l-malic acid via MLF does not support growth, the ME pathway enables L. casei to grow on l-malic acid. In this work, we have identified in the genomes of L. casei strains BL23 and ATCC 334 a cluster consisting of two diverging operons, maePE and maeKR, encoding a putative malate transporter (maeP), an ME (maeE), and a two-component (TC) system belonging to the citrate family (maeK and maeR). Homologous clusters were identified in Enterococcus faecalis, Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus uberis. Our results show that ME is essential for l-malic acid utilization in L. casei. Furthermore, deletion of either the gene encoding the histidine kinase or the response regulator of the TC system resulted in the loss of the ability to grow on l-malic acid, thus indicating that the cognate TC system regulates and is essential for the expression of ME. Transcriptional analyses showed that expression of maeE is induced in the presence of l-malic acid and repressed by glucose, whereas TC system expression was induced by l-malic acid and was not repressed by glucose. DNase I footprinting analysis showed that MaeR binds specifically to a set of direct repeats [5′-TTATT(A/T)AA-3′] in the mae promoter region. The location of the repeats strongly suggests that MaeR activates the expression of the diverging operons maePE and maeKR where the first one is also subjected to carbon catabolite repression. PMID:19897756

  17. Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice

    PubMed Central

    2009-01-01

    Background Porcine rotavirus infection is a significant cause of morbidity and mortality in the swine industry necessitating the development of effective vaccines for the prevention of infection. Immune responses associated with protection are primarily mucosal in nature and induction of mucosal immunity is important for preventing porcine rotavirus infection. Results Lactobacillus casei expressing the major protective antigen VP4 of porcine rotavirus (pPG612.1-VP4) or VP4-LTB (heat-labile toxin B subunit from Echerichia coli) (pPG612.1-VP4-LTB) fusion protein was used to immunize mice orally. The expression of recombinant pPG612.1-VP4 and pPG612.1-VP4-LTB was confirmed by SDS-PAGE and Western blot analysis and surface-displayed expression on L. casei was verified by immunofluorescence. Mice orally immunized with recombinant protein-expressing L. casei produced high levels of serum immunoglobulin G (IgG) and mucosal IgA. The IgA titters from mice immunized with pPG612.1-VP4-LTB were higher than titters from pPG612.1-VP4-immunized mice. The induced antibodies demonstrated neutralizing effects on RV infection. Conclusion These results demonstrated that VP4 administered in the context of an L. casei expression system is an effective method for stimulating mucosal immunity and that LTB served to further stimulate mucosal immunity suggesting that this strategy can be adapted for use in pigs. PMID:19958557

  18. Probiotic supplementation with Lactobacillus casei (Actimel) induces a Th1 response in an animal model of antiphospholipid syndrome.

    PubMed

    Amital, Howard; Gilburd, B; Shoenfeld, Yehuda

    2007-09-01

    Probiotic fermented milk products have the capacity to modulate many immunological mechanisms. Several attempts have been made to alter the progression of various atopic and inflammatory disorders in which the immune system plays a major role. We studied this issue in an animal model of the antiphospholipid syndrome (APS) by supplementing the animals' daily intake with a probiotic mixture. We studied the effects of nutritional supplementation of a commercial product that consists of 10(8)/ml Lactobacillus casei (Actimel) on Balb/c mice that were immunized with beta-2- glycoprotein (beta2GPI) in order to induce a familiar murine model of APS. As controls, we used similar animals that were fed with either yogurt or sham solution as a supplement. We analyzed the effect of Actimel on the concentrations of interleukin (IL)-10 interferon gamma (IFNgamma) as well as the extent of the primary T cell response to beta2GPI, and the levels of autoantibodies to beta2GPI determined by ELISA. Two weeks after priming (in the hind footpad) of Balb/c mice with beta2GPI, we analyzed the cytokine profile of the animals by measuring the concentration of IL-10 and IFNgamma in the supernatants of lymphocytes that were extracted from the popliteal lymph nodes. Following stimulation with 10 microg/mL of beta2GPI, we noticed significant (P < 0.05) suppression of IL-10 production by the stimulated lymphocytes in the animals fed with Actimel and yogurt in comparison to sham solution (73.42 +/- 29.4, 84.7 +/- 8, 196 +/- 41.62 pg/mL, respectively). Both dairy products enhanced the secretion of IFNgamma from 657 +/- 47.09 pg/mL to 896 +/- 78.1, and 933 +/- 76.7 (P < 0.01), respectively; similarly they also accelerated by a mild degree the level of the T cell primary response to beta2GPI measured by [3H]thymidine incorporation. The level of autoantibodies to beta2GPI was suppressed in mice fed with actimel and yogurt in a significant manner (P < 0.05). Actimel as well as yogurt confer an immunological impact on Balb/c mice immunized with beta2GPI. Actimel was able not only to enhance IFNgamma secretion but also to inhibit IL-10 production. PMID:17911481

  19. The effect of a commercial probiotic drink containing Lactobacillus casei strain Shirota on oral health in healthy dentate people

    PubMed Central

    Sutula, Justyna; Coulthwaite, Lisa Ann; Thomas, Linda Valerie; Verran, Joanna

    2013-01-01

    Background In the past decade, the use of probiotic-containing products has been explored as a potential alternative in oral health therapy. A widely available probiotic drink, Yakult, was evaluated for oral health applications in this longitudinal study. Selected oral health parameters, such as levels and composition of salivary and tongue plaque microbiota and of malodorous gases, in dentate healthy individuals were investigated for changes. The persistence of the probiotic strain in the oral cavity was monitored throughout the study period. Methods A three-phase study (7 weeks) was designed to investigate simultaneously the effect of 4-week consumption of the probiotic-containing milk drink Yakult on the microbiota of saliva and dorsum tongue coating in healthy dentate people (n = 22) and levels of volatile sulphur compounds (VSCs) in morning breath. Study phases comprised one baseline visit, at which ‘control’ levels of oral parameters were obtained prior to the probiotic product consumption; a 4-week period of daily consumption of one 65 ml bottle of Yakult, each bottle containing a minimum of 6.5×109 viable cells of Lactobacillus casei strain Shirota (LcS); and a 2-week washout period. The microbial viability and composition of saliva and tongue dorsum coating were assessed using a range of solid media. The presence of LcS in the oral cavity was investigated using a novel selective medium, ‘LcS Select’. Portable sulphur monitors Halimeter® and OralChromaTM were used to measure levels of VSCs in morning breath. Results Utilization of the LcS Select medium revealed a significant (p < 0.05) but temporary and consumption-dependent presence of LcS in saliva and tongue plaque samples from healthy dentate individuals (n = 19) during the probiotic intervention phase. LcS was undetectable with culture after 2 weeks of ceasing its consumption. Morning breath scores measured with Halimeter and OralChroma were not significantly affected throughout the trial, except in a small number of individual cases where Halimeter scores were significantly reduced during the probiotic intervention period. Natural fluctuations in resident acidogenic populations, and numbers of Candida and anaerobic species, including malodourous Gram-negative anaerobes, were unaffected. Conclusion While no broad ecological changes in the mouth were induced by consumption of Yakult in healthy dentate individuals, findings of this study confirm the temporary and intake-dependent presence of LcS. Future studies could focus on subjects at greater risk of oral infection, where ill-defined microbiota (e.g. an increased presence of periopathogens) or clinically diagnosed halitosis might be significantly affected by consumption of this probiotic. PMID:24179468

  20. The anti-obesity effects of Lactobacillus casei strain Shirota versus Orlistat on high fat diet-induced obese rats

    PubMed Central

    Karimi, Golgis; Sabran, Mohd Redzwan; Jamaluddin, Rosita; Parvaneh, Kolsoom; Mohtarrudin, Norhafizah; Ahmad, Zuraini; Khazaai, Huzwah; Khodavandi, Alireza

    2015-01-01

    Background Obesity and overweight are major public health problems. Various factors, such as daily nutritional habits, physical inactivity, and genetic, are related to the prevalence of obesity. Recently, it was revealed that the gut microflora may also play an important role in weight management. Thus, this study aimed to determine the anti-obesity effects of Lactobacillus casei strain Shirota (LcS) compared with those of orlistat in an animal model fed a high-fat diet (HFD). Design Thirty-two male Sprague-Dawley rats were assigned to four groups fed various diets as follows: a standard diet group, HFD group, HFD supplemented with LcS (108109 colony-forming units (HFD-LcS) group, and HFD group treated with Orlistat (10 mg/kg body weight)). After 15 weeks, the weights of organs, body weight, body fat mass and serological biomarkers were measured. In addition, histological analysis of the liver and adipose tissue was performed. Results Body weight, body mass index, fat mass, leptin and glucose levels were lower, and high-density lipoprotein and adiponectin levels were higher in the HFD-LcS and HFD-orlistat groups than in the HFD group. In addition a significant difference in body fat mass was observed between HFD-LcS group with HFD-orlistat group (19.19±5.76 g vs. 30.19±7.98 g). Although the interleukin-6 level was significantly decreased in the HFD-LcS and HFD-orlistat groups compared with the HFD group, no significant change was observed in other inflammatory biomarkers. Conclusion The results of the present study show that LcS supplementation improves body weight management and the levels of some related biomarkers. In addition, LcS supplementation showed a better result in fat mass and alanine aminotransferase reduction than Orlistat. Further studies are needed to elucidate the anti-obesity effects of LcS, with a longer period of supplementation. PMID:26699936

  1. Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose.

    PubMed

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J

    2012-07-01

    We have previously characterized from Lactobacillus casei BL23 three α-L-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-α-1,3-N-acetylglucosamine (Fuc-α-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the L-fucose moiety during growth on Fuc-α-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the α-L-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-α-1,3-GlcNAc. This proves that AlfB is involved in Fuc-α-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-α-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an α-L-fucosidase in lactic acid bacteria and the utilization of Fuc-α-1,3-GlcNAc as a carbon source for bacteria. PMID:22544237

  2. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans.

    PubMed

    Kamaladevi, Arumugam; Ganguli, Abhijit; Balamurugan, Krishnaswamy

    2016-01-01

    Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide. PMID:26297616

  3. Identification and functional characterization of AclB, a novel cell-separating enzyme from Lactobacillus casei.

    PubMed

    Xu, Yi; Wang, Ting; Kong, Jian; Wang, Hui-Li

    2015-06-16

    Autolysis of nonstarter lactic acid bacteria (NSLAB) was favorable for the development of flavor compounds during cheese manufacture. Among these bacteria, Lb. casei was regarded as the most important microbiota involved in cheese processes. In this study, a novel autolysin named AclB was identified in the genome of Lb. casei BL23 and its modular structure was predicted through bioinformatic approaches. Subsequently, its transcription profile in the exponential phase, hydrolytic activities against cell walls, enzymatic properties under different conditions, physiological function via gene inactivation and upregulation assays, as well as potential applications to NSLAB's autolysis were fully investigated. According to the results, AclB was recognized as a species-specific cell-separating enzyme, responsible for cell separation after cell division in Lb. casei BL23. The purified AclB showed considerable hydrolyzing activities towards cell walls, indicating its enzymatic nature as peptidoglycan hydrolase, or autolysin. The highest activity of AclB was determined at pH5.0 and 37°C, and the expression vector constructed based on AclB was shown to facilitate the controlled lysis of Lb. casei BL23 hosts. In summary, this study provided insight into the enzymatic properties of a novel autolysin involved in cell separation of Lb. casei BL23, which is promising to accelerate cheese ripening and improve cheese quality. PMID:25797034

  4. High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR.

    PubMed

    Iacumin, Lucilla; Ginaldi, Federica; Manzano, Marisa; Anastasi, Veronica; Reale, Anna; Zotta, Teresa; Rossi, Franca; Coppola, Raffaele; Comi, Giuseppe

    2015-04-01

    The correct identification and characterisation of bacteria is essential for several reasons: the classification of lactic acid bacteria (LAB) has changed significantly over the years, and it is important to distinguish and define them correctly, according to the current nomenclature, avoiding problems in the interpretation of literature, as well as mislabelling when probiotic are used in food products. In this study, species-specific PCR and HRM (high-resolution melting) analysis were developed to identify strains belonging to the Lactobacillus casei group and to classify them into L. casei, Lactobacillus paracasei and Lactobacillus rhamnosus. HRM analysis confirmed to be a potent, simple, fast and economic tool for microbial identification. In particular, 201 strains, collected from International collections and attributed to the L. casei group, were examined using these techniques and the results were compared with consolidated molecular methods, already published. Seven of the tested strains don't belong to the L. casei group. Among the remaining 194 strains, 6 showed inconsistent results, leaving identification undetermined. All the applied techniques were congruent for the identification of the vast majority of the tested strains (188). Notably, for 46 of the strains, the identification differed from the previous attribution. PMID:25475306

  5. Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch.

    PubMed

    Narita, Junya; Okano, Kenji; Kitao, Tomoe; Ishida, Saori; Sewaki, Tomomitsu; Sung, Moon-Hee; Fukuda, Hideki; Kondo, Akihiko

    2006-01-01

    We developed a new cell surface engineering system based on the PgsA anchor protein from Bacillus subtilis. In this system, the N terminus of the target protein was fused to the PgsA protein and the resulting fusion protein was expressed on the cell surface. Using this new system, we constructed a novel starch-degrading strain of Lactobacillus casei by genetically displaying alpha-amylase from the Streptococcus bovis strain 148 with a FLAG peptide tag (AmyAF). Localization of the PgsA-AmyA-FLAG fusion protein on the cell surface was confirmed by immunofluorescence microscopy and flow cytometric analysis. The lactic acid bacteria which displayed AmyAF showed significantly elevated hydrolytic activity toward soluble starch. By fermentation using AmyAF-displaying L. casei cells, 50 g/liter of soluble starch was reduced to 13.7 g/liter, and 21.8 g/liter of lactic acid was produced within about 24 h. The yield in terms of grams of lactic acid produced per gram of carbohydrate utilized was 0.60 g per g of carbohydrate consumed at 24 h. Since AmyA was immobilized on the cells, cells were recovered after fermentation and used repeatedly. During repeated utilization of cells, the lactic acid yield was improved to 0.81 g per g of carbohydrate consumed at 72 h. These results indicate that efficient simultaneous saccharification and fermentation from soluble starch to lactic acid were carried out by recombinant L. casei cells with cell surface display of AmyA. PMID:16391053

  6. Display of α-Amylase on the Surface of Lactobacillus casei Cells by Use of the PgsA Anchor Protein, and Production of Lactic Acid from Starch

    PubMed Central

    Narita, Junya; Okano, Kenji; Kitao, Tomoe; Ishida, Saori; Sewaki, Tomomitsu; Sung, Moon-Hee; Fukuda, Hideki; Kondo, Akihiko

    2006-01-01

    We developed a new cell surface engineering system based on the PgsA anchor protein from Bacillus subtilis. In this system, the N terminus of the target protein was fused to the PgsA protein and the resulting fusion protein was expressed on the cell surface. Using this new system, we constructed a novel starch-degrading strain of Lactobacillus casei by genetically displaying α-amylase from the Streptococcus bovis strain 148 with a FLAG peptide tag (AmyAF). Localization of the PgsA-AmyA-FLAG fusion protein on the cell surface was confirmed by immunofluorescence microscopy and flow cytometric analysis. The lactic acid bacteria which displayed AmyAF showed significantly elevated hydrolytic activity toward soluble starch. By fermentation using AmyAF-displaying L. casei cells, 50 g/liter of soluble starch was reduced to 13.7 g/liter, and 21.8 g/liter of lactic acid was produced within about 24 h. The yield in terms of grams of lactic acid produced per gram of carbohydrate utilized was 0.60 g per g of carbohydrate consumed at 24 h. Since AmyA was immobilized on the cells, cells were recovered after fermentation and used repeatedly. During repeated utilization of cells, the lactic acid yield was improved to 0.81 g per g of carbohydrate consumed at 72 h. These results indicate that efficient simultaneous saccharification and fermentation from soluble starch to lactic acid were carried out by recombinant L. casei cells with cell surface display of AmyA. PMID:16391053

  7. Modulation of Lactobacillus casei bacteriophage A2 lytic/lysogenic cycles by binding of Gp25 to the early lytic mRNA.

    PubMed

    Carrasco, Begoña; Escobedo, Susana; Alonso, Juan C; Suárez, Juan E

    2016-01-01

    The genetic switch of Lactobacillus casei bacteriophage A2 is regulated by the CI protein, which represses the early lytic promoter PR and Cro that abolishes expression from the lysogenic promoter PL . Lysogens contain equivalent cI and cro-gp25 mRNA concentrations, i.e., CI only partially represses PR , predicting a lytic cycle dominance. However, A2 generates stable lysogens. This may be due to Gp25 binding to the cro-gp25 mRNA between the ribosomal binding site and the cro start codon, which abolishes its translation. Upon lytic cycle induction, CI is partially degraded, cro-gp25 mRNA levels increase, and Cro accumulates, launching viral progeny production. The concomitant concentration increase of Gp25 restricts cro mRNA translation, which, together with the low but detectable levels of CI late during the lytic cycle, promotes reentry of part of the cell population into the lysogenic cycle, thus explaining the low proportion of L. casei lysogens that become lysed (∼ 1%). A2 shares its genetic switch structure with many other Firmicutes phages. The data presented may constitute a model of how these phages make the decision for lysis versus lysogeny. PMID:26417647

  8. In Vitro Effects of 2.5% Titanium Tetrafluoride on Streptococcus Mutans and Lactobacillus Casei in Dentin Followed by Self-Etching Adhesive Systems.

    PubMed

    Bridi, Enrico Coser; Amaral Flávia Lucisano Botelho; França Fabiana Mantovani Gomes; Turssi Cecilia Pedroso; Florio, Flávia Martão; Basting, Roberta Tarkany

    2015-12-01

    The aim was to evaluate the effect of a 2.5% titanium tetrafluoride (TiF4) solution followed by self-etching adhesives against Streptococcus mutans/Sm and Lactobacillus casei/Lc. Four cylindrical-shaped cavities were performed on each dentin surface of 40 third molars and contaminated with Sm or Lc. Each one of the four cavities received one of the following treatments (n = 10): 1) control; 2) TiF4; 3) Clearfil SE Bond/CSE or Adper EasyOne/AEO; 4) TiF4 followed by CSE or AED. ANOVA was applied to data. The TiF4 solution showed an antimicrobial effect, although the TiF4 used for dentin pretreatment before CSE or AEO showed no influence on antimicrobial effect. PMID:26767239

  9. A prospective uncontrolled trial of fermented milk drink containing viable Lactobacillus casei strain Shirota in the treatment of HTLV-1 associated myelopathy/tropical spastic paraparesis.

    PubMed

    Matsuzaki, Toshio; Saito, Mineki; Usuku, Koichiro; Nose, Hirohisa; Izumo, Shuji; Arimura, Kimiyoshi; Osame, Mitsuhiro

    2005-10-15

    Ten patients with human T-cell lymphotropic virus type-1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) were treated in an uncontrolled preliminary trial by oral administration of viable Lactobacillus casei strain Shirota (LcS) containing fermented milk. HTLV-1 provirus load, motor function, neurological findings, and immunological parameters were evaluated after 4 weeks. Although LcS did not change the frequencies or absolute numbers of all the examined cell surface phenotypes of peripheral blood mononuclear cells, NK cell activity was significantly increased after 4 weeks of oral administration of LcS preparation. Improvements in spasticity (modified Ashworth Scale scores) and urinary symptoms were also seen after LcS treatment. No adverse effect was observed in all the 10 patients throughout the study period. Our results indicated that LcS may be a safe and beneficial agent for the treatment of HAM/TSP; therefore randomized controlled studies are warranted. PMID:15961107

  10. Mucosal vaccination with recombinant Lactobacillus casei-displayed CTA1-conjugated consensus matrix protein-2 (sM2) induces broad protection against divergent influenza subtypes in BALB/c mice.

    PubMed

    Chowdhury, Mohammed Y E; Li, Rui; Kim, Jae-Hoon; Park, Min-Eun; Kim, Tae-Hwan; Pathinayake, Prabuddha; Weeratunga, Prasanna; Song, Man Ki; Son, Hwa-Young; Hong, Seung-Pyo; Sung, Moon-Hee; Lee, Jong-Soo; Kim, Chul-Joong

    2014-01-01

    To develop a safe and effective mucosal vaccine against pathogenic influenza viruses, we constructed recombinant Lactobacillus casei strains that express conserved matrix protein 2 with (pgsA-CTA1-sM2/L. casei) or without (pgsA-sM2/L. casei) cholera toxin subunit A1 (CTA1) on the surface. The surface localization of the fusion protein was verified by cellular fractionation analyses, flow cytometry and immunofluorescence microscopy. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA. However, the conjugation of cholera toxin subunit A1 induced more potent mucosal, humoral and cell-mediated immune responses. In a challenge test with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird /Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant pgsA-CTA1-sM2/L. casei provided better protection against lethal challenges than pgsA-sM2/L. casei, pgsA/L. casei and PBS in mice. These results indicate that mucosal immunization with recombinant L. casei expressing CTA1-conjugated sM2 protein on its surface is an effective means of eliciting protective immune responses against diverse influenza subtypes. PMID:24714362

  11. Mucosal Vaccination with Recombinant Lactobacillus casei-Displayed CTA1-Conjugated Consensus Matrix Protein-2 (sM2) Induces Broad Protection against Divergent Influenza Subtypes in BALB/c Mice

    PubMed Central

    Chowdhury, Mohammed Y. E.; Li, Rui; Kim, Jae-Hoon; Park, Min-Eun; Kim, Tae-Hwan; Pathinayake, Prabuddha; Weeratunga, Prasanna; Song, Man Ki; Son, Hwa-Young; Hong, Seung-Pyo; Sung, Moon-Hee; Lee, Jong-Soo; Kim, Chul-Joong

    2014-01-01

    To develop a safe and effective mucosal vaccine against pathogenic influenza viruses, we constructed recombinant Lactobacillus casei strains that express conserved matrix protein 2 with (pgsA-CTA1-sM2/L. casei) or without (pgsA-sM2/L. casei) cholera toxin subunit A1 (CTA1) on the surface. The surface localization of the fusion protein was verified by cellular fractionation analyses, flow cytometry and immunofluorescence microscopy. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA. However, the conjugation of cholera toxin subunit A1 induced more potent mucosal, humoral and cell-mediated immune responses. In a challenge test with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird /Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant pgsA-CTA1-sM2/L. casei provided better protection against lethal challenges than pgsA-sM2/L. casei, pgsA/L. casei and PBS in mice. These results indicate that mucosal immunization with recombinant L. casei expressing CTA1-conjugated sM2 protein on its surface is an effective means of eliciting protective immune responses against diverse influenza subtypes. PMID:24714362

  12. Use of Pistacia terebinthus resin as immobilization support for Lactobacillus casei cells and application in selected dairy products.

    PubMed

    Schoina, Vasiliki; Terpou, Antonia; Angelika-Ioanna, Gialleli; Koutinas, Athanasios; Kanellaki, Maria; Bosnea, Loulouda

    2015-09-01

    Resin from Pistacia terebinthus tree was used for the immobilization of L. casei ATCC 393 cells. The encapsulated L. casei cells biocatalysts were added as adjuncts during yogurt production at 45 °C and probiotic viability was assessed during storage at 4 °C. For comparison reasons yogurt with free L. casei cells were prepared. The effect of encapsulated bacteria as adjuncts in yogurt on pH, lactic acid, lactose and other physicochemical parameters were studied for 60 storage days at 4 °C. Samples were also tested for the microbiological and organoleptic characteristics during storage at 4 °C. Encapsulation matrix seems to sustain the viability of embedded L. casei cells at levels more than 7 logcfug(-1) after 60 days of storage at 4 °C. Furthermore, the absence of pathogens such as Salmonella, Staphylococci, Enterobacteriaceae and coliforms in the produced yogurts is noteworthy where spoilage microorganisms such as yeasts and molds seem to affect yogurt quality only in absence of Pistacia terebinthus resin. The effect of the resin on production of aroma-related compounds responsible for yogurt flavor was also studied using the solid phase microextraction gas chromatography/mass spectrometry technique. Alpha and beta- pinene were the major aroma compounds detected in produced yogurts (over 60 % of total aromatic compounds detected). Yogurts with immobilized cells on P.terebintus resin had a fine aroma and taste characteristic of the resin. PMID:26344983

  13. High-Dose Probiotic Supplementation Containing Lactobacillus casei for 7 Days Does Not Enhance Salivary Antimicrobial Protein Responses to Exertional Heat Stress Compared With Placebo.

    PubMed

    Gill, Samantha Kirsty; Teixeira, Ana Maria; Rosado, Fatima; Cox, Martin; Costa, Ricardo Jose

    2016-04-01

    The study aimed to determine whether high-dose probiotic supplementation containing Lactobacillus casei (L. casei) for 7 consecutive days enhances salivary antimicrobial protein (S-AMP) responses to exertional-heat stress (EHS). Eight endurance-trained male volunteers (age 26 ± 6 years, nude body mass 70.2 ± 8.8 kg, height 1.75 ± 0.05 m, VO2max 59 ± 5 ml·kg-1·min-1 [M ± SD]) completed a blinded randomized and counterbalanced crossover design. Oral supplementation of the probiotic beverage (PRO; L. casei . 1011 colony-forming units·day-1) or placebo (PLA) was consumed for 7 consecutive days before 2 hr running exercise at 60% VO2max in hot ambient conditions (34.0° C and 32% RH). Body mass and unstimulated saliva and venous blood samples were collected at baseline (7 days before EHS), pre-EHS, post-EHS (1 hr, 2 hr, and 4 hr), and at 24 hr. Saliva samples were analyzed for salivary (S) IgA, α-amylase, lysozyme, and cortisol. Plasma samples were analyzed for plasma osmolality. Body mass and plasma osmolality did not differ between trials. Saliva flow rate remained relatively constant throughout the experimental design in PRO (overall M ± SD = 601 ± 284 μl/min) and PLA (557 ± 296 μl/min). PRO did not induce significant changes in resting S-AMP responses compared with PLA (p > .05). Increases in S-IgA, S-α-amylase, and S-cortisol responses, but not S-lysozyme responses, were observed after EHS (p < .05). No main effects of trial or Time x Trial interaction were observed for S-AMP and S-cortisol responses. Supplementation of a probiotic beverage containing L. casei for 7 days before EHS does not provide any further oral-respiratory mucosal immune protection, with respect to S-AMP, over PLA. PMID:26479711

  14. The Effect of Lactobacillus casei 32G on the Mouse Cecum Microbiota and Innate Immune Response Is Dose and Time Dependent

    PubMed Central

    Aktas, Busra; De Wolfe, Travis J.; Tandee, Kanokwan; Safdar, Nasia; Darien, Benjamin J.; Steele, James L.

    2015-01-01

    Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-α) in a manner consistent with an anti-inflammatory response. PMID:26714177

  15. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    PubMed

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8. PMID:24370881

  16. A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei.

    PubMed

    Bidart, Gonzalo N; Rodríguez-Díaz, Jesús; Monedero, Vicente; Yebra, María J

    2014-08-01

    The probiotic Lactobacillus casei catabolizes galacto-N-biose (GNB) and lacto-N-biose (LNB) by using a transport system and metabolic routes different from those of Bifidobacterium. L. casei contains a gene cluster, gnbREFGBCDA, involved in the metabolism of GNB, LNB and also N-acetylgalactosamine. Inactivation of gnbC (EIIC) or ptsI (Enzyme I) of the phosphoenolpyruvate : sugar phosphotransferase system (PTS) prevented the growth on those three carbohydrates, indicating that they are transported and phosphorylated by the same PTS(Gnb) . Enzyme activities and growth analysis with knockout mutants showed that GnbG (phospho-β-galactosidase) hydrolyses both disaccharides. However, GnbF (N-acetylgalactosamine-6P deacetylase) and GnbE (galactosamine-6P isomerase/deaminase) are involved in GNB but not in LNB fermentation. The utilization of LNB depends on nagA (N-acetylglucosamine-6P deacetylase), showing that the N-acetylhexosamine moieties of GNB and LNB follow different catabolic routes. A lacAB mutant (galactose-6P isomerase) was impaired in GNB and LNB utilization, indicating that their galactose moiety is channelled through the tagatose-6P pathway. Transcriptional analysis showed that the gnb operon is regulated by substrate-specific induction mediated by the transcriptional repressor GnbR, which binds to a 26 bp DNA region containing inverted repeats exhibiting a 2T/2A conserved core. The data represent the first characterization of novel metabolic pathways for human milk oligosaccharides and glycoconjugate structures in Firmicutes. PMID:24942885

  17. Utilization of d-Ribitol by Lactobacillus casei BL23 Requires a Mannose-Type Phosphotransferase System and Three Catabolic Enzymes

    PubMed Central

    Bourand, A.; Yebra, M. J.; Boël, G.; Mazé, A.

    2013-01-01

    Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment d-ribitol (also called d-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates d-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in d-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented d-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a d-ribitol-5-phosphate (d-ribitol-5-P) 2-dehydrogenase, a d-ribulose-5-P 3-epimerase, a d-ribose-5-P isomerase, and a d-xylulose-5-P phosphoketolase. In the first catabolic step, the protein d-ribitol-5-P 2-dehydrogenase uses NAD+ to oxidize d-ribitol-5-P formed during PTS-catalyzed transport to d-ribulose-5-P, which, in turn, is converted to d-xylulose-5-P by the enzyme d-ribulose-5-P 3-epimerase. Finally, the resulting d-xylulose-5-P is split by d-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate d-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as d-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation. PMID:23564164

  18. Effect of salt stress on morphology and membrane composition of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum, and their adhesion to human intestinal epithelial-like Caco-2 cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    The effects of NaCl reduction (10.0, 7.5, 5.0, 2.5, and 0% NaCl) and its substitution with KCl (50% substitution at each given concentration) on morphology of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum was investigated using transmission electron microscopy. Changes in membrane composition, including fatty acids and phospholipids, were investigated using gas chromatography and thin layer chromatography. Adhesion ability of these bacteria to human intestinal epithelial-like Caco-2 cells, as affected by NaCl and its substitution with KCl, was also evaluated. Bacteria appeared elongated and the intracellular content appeared contracted when subjected to salt stress, as observed by transmission electron microscopy. Fatty acid content was altered with an increase in the ratio of unsaturated to saturated fatty acid content on increasing the NaCl-induced stress. Among the phospholipids, phosphatidylglycerol was reduced, whereas phosphatidylinositol and cardioplipin were increased when the bacteria were subjected to salt stress. There was a significant reduction in adhesion ability of the bacteria to Caco-2 cells when cultured in media supplemented with NaCl; however, the adhesion ability was improved on substitution with KCl at a given total salt concentration. The findings provide insights into bacterial membrane damage caused by NaCl. PMID:26874411

  19. Effect of a fermented milk combining Lactobacillus acidophilus CL1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: A randomized, double-blind, placebo-controlled trial

    PubMed Central

    Beausoleil, Mélanie; Fortier, Nadia; Guénette, Stéphanie; L’Ecuyer, Amélie; Savoie, Michel; Franco, Martin; Lachaîne, Jean; Weiss, Karl

    2007-01-01

    BACKGROUND: Antibiotic-associated diarrhea is an important problem in hospitalized patients. The use of probiotics is gaining interest in the scientific community as a potential measure to prevent this complication. The main objective of the present study was to assess the efficacy and safety of a fermented milk combining Lactobacillus acidophilus and Lactobacillus casei that is widely available in Canada, in the prevention of antibiotic-associated diarrhea. METHODS: In this double-blind, randomized study, hospitalized patients were randomly assigned to receive either a lactobacilli-fermented milk or a placebo on a daily basis. RESULTS: Among 89 randomized patients, antibiotic-associated diarrhea occurred in seven of 44 patients (15.9%) in the lactobacilli group and in 16 of 45 patients (35.6%) in the placebo group (OR 0.34, 95% CI 0.125 to 0.944; P=0.05). The median hospitalization duration was eight days in the lactobacilli group, compared with 10 days in the placebo group (P=0.09). Overall, the lactobacilli-fermented milk was well tolerated. CONCLUSION: The daily administration of a lactobacilli-fermented milk was safe and effective in the prevention of antibiotic-associated diarrhea in hospitalized patients. PMID:18026577

  20. Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile

    SciTech Connect

    Ntamere, A.S.; Taron, D.J.; Neuhaus, F.C.

    1987-04-01

    D-Alanyl-lipoteichoic acid (D-alanyl-LTA) from Lactobacillus casei ATCC 7469 contains a poly(glycerophosphate) moiety that is acylated with D-alanyl ester residues. The physiological function of these residues is not well understood. Five mutant strains of this organism that are deficient in the esters of this amphiphile were isolated and characterized. When compared with the parent, strains AN-1 and AN-4 incorporated less than 10% of D-(/sup 14/C)alanine into LTA, whereas AN-2, AN-3, and AN-5 incorporated 50%. The synthesis of D-(/sup 14/C)alanyl-lipophilic LTA was virtually absent in the first group and was approximately 30% in the second group. The mutant strains synthesized and selected the glycolipid anchor for LTA assembly. In addition, all of the strains synthesized the poly(glycerophosphate) moiety of LTA to the same extent as did the parent or to a greater extent. It was concluded that the membranes from the mutant strains AN-1 and AN-4 are defective for D-alanylation of LTA even though acceptor LTA is present. Mutant strains AN-2 and AN-3 appear to be partially deficient in the amount of the D-alanine-activating enzyme. Aberrant morphology and defective cell separation appear to result from this deficiency in D-alanyl ester content.

  1. Improvement of atopic dermatitis-like skin lesions by IL-4 inhibition of P14 protein isolated from Lactobacillus casei in NC/Nga mice.

    PubMed

    Kim, Min-Soo; Kim, Jin-Eung; Yoon, Yeo-Sang; Kim, Tai Hoon; Seo, Jae-Gu; Chung, Myung-Jun; Yum, Do-Young

    2015-09-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease, with a complex etiology encompassing immunologic responses. AD is frequently associated with elevated serum immunoglobulin (Ig) E levels and is exacerbated by a variety of environmental factors, which contribute to its pathogenesis. However, the etiology of AD remains unknown. Recently, reports have documented the role of lactic acid bacteria (LAB) in the treatment and prevention of AD in humans and mice. The LAB, Lactobacillus casei (LC), is frequently used in the treatment of AD. To identify the active component of LC, we screened fractions obtained from the ion exchange chromatography of LC extracts. Using this approach, we identified the candidate protein, P14. We examined whether the P14 protein has anti-atopic properties, using both in vitro and in vivo models. Our results showed that the P14 protein selectively downregulated serum IgE and interleukin-4 cytokine levels, as well as the AD index and scratching score in AD-like NC/Nga mice. In addition, histological examination was also effective in mice. These results suggest that the P14 protein has potential therapeutic effects and that it may also serve as an effective immunomodulatory agent for treating patients with AD. PMID:25687448

  2. [Effect of continuous probiotic fermented milk intake containing Lactobacillus casei strain Shirota on fever in mass infectious gastroenteritis rest home outbreak].

    PubMed

    Yamada, Toshihiko; Nagata, Satoru; Kondo, Shigemi; Bian, Lei; Wang, Chongxin; Asahara, Takashi; Ohta, Toshihisa; Nomoto, Koji; Yamashiro, Yuichiro

    2009-01-01

    As part of medical risk management in a long-term stay facility for the elderly, we introduced probiotic fermented milk containing Lactobacillus casei strain Shirota (LcS-fermented milk) in an open case-control study of its effect of (1 bottle a day) on winter-time norovirus gastroenteritis. During the 1 month from December 1 to 31, 2006, norovirus gastroenteritis occurred in 21 (55%) of 38 cases in the nonmilk group, and in 27 (64%) of 39 cases in the milk group, showing no statistically significant difference. The mean duration of >37 degrees C fever after disease onset, however, was 2.9+/-2.3 days in the non-milk group and 1.5+/-1.7 days in the milk group, showing significant shortening (p<0.05). The duration of > 38 degrees C fever after disease onset also tended to be shorter. No significant differences were seen in age, gender, days of antipyretic use, or stool-free days. These results suggested that continuous intake of LcS-fermented milk could aggravate fever duration in elderly long-term rest home residents although it probably did not prevent noroviral gastroenteritis onset. PMID:19227222

  3. Compound(s) secreted by Lactobacillus casei strain Shirota YIT9029 irreversibly and reversibly impair the swimming motility of Helicobacter pylori and Salmonella enterica serovar Typhimurium, respectively.

    PubMed

    Le Moal, Vanessa Liévin; Fayol-Messaoudi, Domitille; Servin, Alain L

    2013-09-01

    We conducted experiments in order to examine whether the probiotic Lactobacillus casei strain Shirota YIT9029 (LcS) in vitro and in vivo antagonism of Helicobacter pylori and Salmonella, involves inhibition of the swimming motility of these pathogens. We report the irreversible inhibition of the swimming motility of H. pylori strain 1101 and reversible inhibition of Salmonella enterica serovar Typhimurium (S. Typhimurium) strain SL1344 by compound(s) secreted by LcS. In H. pylori 1101, irreversible inhibition results in the helical cells being progressively replaced by cells with 'c'-shaped and coccoid morphologies, accompanied by a loss of FlaA and FlaB flagellin expression. In S. Typhimurium SL1344, transient inhibition develops after membrane depolarization and without modification of expression of FliC flagellin. The inhibitory activity of strain LcS against both S. Typhimurium and H. pylori swimming motilities is linked with a small sized, heat-sensitive, and partially trypsin-sensitive, secreted compound(s), and needed the cooperation of the secreted membrane permeabilizing lactic acid metabolite. The inhibition of S. Typhimurium SL1344 swimming motility leads to delayed cell entry into human enterocyte-like Caco-2/TC7 cells and a strong decrease of cell entry into human mucus-secreting HT29-MTX cells. PMID:23873784

  4. Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: selective isolation from faeces and identification using monoclonal antibodies.

    PubMed

    Yuki, N; Watanabe, K; Mike, A; Tagami, Y; Tanaka, R; Ohwaki, M; Morotomi, M

    1999-04-01

    Lactobacillus casei strain Shirota (LCS) is a probiotic bacterium used in the production of fermented milk products and lactic acid bacteria preparations. To investigate the survival of LCS in the gastrointestinal tract, we have developed a selective medium and specific monoclonal antibodies to isolate and identify this strain. Selective LLV agar medium was prepared by modifying LBS medium, a selective medium for lactobacilli, through the replacement of glucose with lactitol as a carbon source and vancomycin as a selective antibiotic. Culture in LLV agar medium followed by ELISA using monoclonal antibodies specific for LCS was able to detect the organism in faeces. Using this method, we studied the faecal recovery of LCS in individuals who drank 125 ml of fermented milk which contained 10(10) live LCS for 3 days. The mean recovery was about 10(7) live bacteria per gram of faeces, indicating that LCS survived transit through the gastrointestinal tract after ingestion of the fermented milk. PMID:10375134

  5. Determination of the folate content in cladodes of nopal (Opuntia ficus indica) by microbiological assay utilizing Lactobacillus casei (ATCC 7469) and enzyme-linked immunosorbent assay.

    PubMed

    Ortiz-Escobar, Tania Breshkovskaya; Valverde-González, Maria Elena; Paredes-López, Octavio

    2010-05-26

    Prickly pear cactus has been an important food source in Mexico since ancient times due to its economical and ecological benefits and potential nutraceutical value. Nevertheless, studies on the nutritional aspects and health benefits have been scarce. The purpose of this study was to assess, apparently for the first time, the folate contents of cladodes of nopal by a microbiological assay, using Lactobacillus casei (ATCC 7469) in extracts that were enzymatically treated to release the bound vitamin, employing single, dual, and trienzymatic procedures, and using the enzyme-linked immunosorbent assay (ELISA). We used Opuntia cladodes of different length sizes. The microbiological assay showed some differences among enzyme treatments and sizes of nopal; the trienzyme treatment (alpha-amylase-protease-conjugase) was more efficient in determining the folate content in nopal, giving 5.0 ng/g in the small size cladodes at 54 h of testing time, while ELISA showed no significant differences in the folate content among sizes of cladodes (5.5-5.62 ng/g at 0 min testing time). Both techniques may be used for the assessment of folate content in cladodes, but ELISA is more rapid and reliable. PMID:20441169

  6. Lactobacillus

    MedlinePlus

    ... in babies. Taking a specific Lactobacillus reuteri product (Probiotic Drops, BioGaia AB) 100 million CFUs once daily ... daily for 6 weeks. A specific lactobacillus combination probiotic containing viable lyophilized bacteria species including lactobacillus, bifidobacteria, ...

  7. Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA.

    PubMed

    Fujimoto, Junji; Matsuki, Takahiro; Sasamoto, Masae; Tomii, Yasuaki; Watanabe, Koichi

    2008-08-15

    Lactobacillus casei strain Shirota (LcS) has been used in the production of fermented milk products for many years and is one of the most intensively studied probiotics. To evaluate the ability of LcS to proliferate in human intestines after it has been ingested, we developed a PCR-based method to identify and quantify LcS using an LcS-specific primer set (pLcS) derived from a randomly amplified polymorphic DNA (RAPD) analysis. We confirmed the high specificity of the pLcS primer set in 167 bacterial strains (57 strains of L. casei and 110 other strains of bacteria commonly isolated from human feces). The method's ability to identify LcS matched that of an ELISA using a monoclonal antibody and a RAPD analysis in a representative sample of colonies cultured from human feces. The detection limit of quantitative PCR (qPCR) using pLcS was 10(4.6) per gram of feces. The number of LcS in feces detected with qPCR was highly and significantly correlated with the number of LcS added to fecal samples within the range of 10(4.6) to 10(9.6) per gram feces (r(2)=0.999, P<0.001). After 14 healthy subjects ingested 10(11.0) CFU of LcS daily for 7 days, 10(9.1+/-0.5) LcS g(-1) (mean+/-S.D.) was detected in the fecal samples of all subjects by qPCR, and 10(8.0+/-0.9) CFU g(-1) was detected by culture; these values were significantly different (P<0.001, paired t-test). After the subjects stopped ingesting LcS, fecal LcS counts obtained with both methods decreased daily. The values produced by the 2 methods might have differed because of an overestimation in the PCR analysis due to the presence of dead LcS cells or an underestimation in the culture system due to the use of selective culture media; however, dead LcS cells can also be beneficial as immunomodulators. We confirmed that qPCR with an LcS-specific primer set was a rapid and accurate method for determining the total amount of LcS in feces including dead or less active cells which could not be detected by culture method. PMID:18573558

  8. A Novel Type of Peptidoglycan-binding Domain Highly Specific for Amidated d-Asp Cross-bridge, Identified in Lactobacillus casei Bacteriophage Endolysins*

    PubMed Central

    Regulski, Krzysztof; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre

    2013-01-01

    Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a ?-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4?d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4?l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4?d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3?3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4?3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG. PMID:23733182

  9. Effects of a probiotic fermented milk beverage containing Lactobacillus casei strain Shirota on defecation frequency, intestinal microbiota, and the intestinal environment of healthy individuals with soft stools.

    PubMed

    Matsumoto, Kazumasa; Takada, Toshihiko; Shimizu, Kensuke; Moriyama, Kaoru; Kawakami, Koji; Hirano, Koichi; Kajimoto, Osami; Nomoto, Koji

    2010-11-01

    The effects of drinking a fermented milk beverage that contains Lactobacillus casei strain Shirota (LcS) at 40 billion bacterial cells/bottle for 4 weeks (probiotics, 1 bottle/day) on defecation frequency, intestinal microbiota and the intestinal environment of healthy individuals with soft stools were evaluated. Thirty-four healthy adults who had soft stools were randomised into 2 groups, and the effects of a regular 4-week intake of probiotics were evaluated by a placebo-controlled, double-blind, parallel-group comparative design. Defecation frequency significantly decreased after the 4-week intake period compared with before the probiotic treatment. The stool quality significantly improved (hardened) compared to the placebo. Also, the water content of the stools was lower in the probiotic group than in the placebo group. Live LcS was recovered at 6.9 ± 1.3 and 7.2 ± 0.8 log(10) CFU per 1g of stool after 2 and 4 weeks, respectively, of probiotic treatment. The number of bifidobacteria in the stools also increased significantly compared with the level before starting the probiotics. The organic acid levels (total, acetic acid, propionic acid, and butyric acid) significantly increased compared with the level before intake in both the probiotic and placebo groups, but they returned to the original levels after the end of the intake period. These results suggest that probiotic fermented milk beverage has an intestine-conditioning effect by improving the frequency of defecation and stool quality and increasing the intrinsic bifidobacteria in healthy individuals with soft stool. PMID:20580604

  10. Intragastric injection of Lactobacillus casei strain Shirota suppressed spleen sympathetic activation by central corticotrophin-releasing factor or peripheral 2-deoxy-d-glucose in anesthetized rats.

    PubMed

    Tanida, Mamoru; Takada, Mai; Kato-Kataoka, Akito; Kawai, Mitsuhisa; Miyazaki, Kouji; Shibamoto, Toshishige

    2016-04-21

    Intragastric (IG) administration of probiotic strain Lactobacillus casei Shirota (LcS) decreases the sympathetic nerve outflow of anesthetized rats in a tissue-specific manner. In the present study, we examined the effects of IG administration of LcS on sympathetic activation induced by an intracerebroventricular (ICV) injection of corticotrophin-releasing factor (CRF) and an intravenous (IV) injection of 2-deoxy-d-glucose (2DG) or interleukin (IL)-1β in urethane-anesthetized rats. The IG administration of LcS differently affected the stimulatory responses of sympathetic nerve outflow to CRF. LcS suppressed the increase in splenic sympathetic nerve activity (Spleen-SNA), induced by central CRF, in a dose-dependent manner; however, it did not alter adrenal sympathetic nervous activity (ASNA). In contrast, LcS did not affect spleen-SNA and ASNA following an IV injection of IL-1β. On the other hand, IG administration of LcS suppressed the activation of ASNA following an IV injection of 2DG. These findings suggest that the suppression of central CRF-induced sympathetic activation by LcS is tissue-specific. Moreover, it can suppress the 2DG-induced sympathetic activation. Furthermore, we found that stomach-specific vagotomy attenuates the suppressive effect of LcS on CRF-mediated spleen-SNA activation. Thus, the present study suggests that LcS administered to the stomach may act on the afferent vagal nerve and send afferent signals to the brain to regulate efferent SNA induced by sympathetic stimulators. PMID:26971699

  11. A Lactobacillus casei Shirota probiotic drink reduces antibiotic-associated diarrhoea in patients with spinal cord injuries: a randomised controlled trial.

    PubMed

    Wong, Samford; Jamous, Ali; O'Driscoll, Jean; Sekhar, Ravi; Weldon, Mike; Yau, Chi Y; Hirani, Shashivadan P; Grimble, George; Forbes, Alastair

    2014-02-01

    Certain probiotics may prevent the development of antibiotic-associated diarrhoea (AAD) and Clostridium difficile-associated diarrhoea (CDAD), but their effectiveness depends on both strain and dose. There are few data on nutritional interventions to control AAD/CDAD in the spinal cord injury (SCI) population. The present study aimed to assess (1) the efficacy of consuming a commercially produced probiotic containing at least 6·5 × 10⁹ live Lactobacillus casei Shirota (LcS) in reducing the incidence of AAD/CDAD, and (2) whether undernutrition and proton pump inhibitors (PPI) are risk factors for AAD/CDAD. A total of 164 SCI patients (50·1 (sd 17·8) years) with a requirement for antibiotics (median 21 d, range 5-366) were randomly allocated to receive LcS (n 76) or no probiotic (n 82). LcS was given once daily for the duration of the antibiotic course and continued for 7 days thereafter. Nutritional risk was assessed by the Spinal Nutrition Screening Tool. The LcS group had a significantly lower incidence of AAD (17·1 v. 54·9%, P< 0·001). At baseline, 65% of patients were at undernutrition risk. Undernutrition (64·1 v. 33·3%, P< 0·01) and the use of PPI (38·4 v. 12·1 %, P= 0·022) were found to be associated with AAD. However, no significant difference was observed in nutrient intake between the groups. The multivariate logistic regression analysis identified poor appetite ( < 1/2 meals eaten) (OR 5·04, 95% CI 1·28, 19·84) and no probiotic (OR 8·46, 95% CI 3·22, 22·20) as the independent risk factors for AAD. The present study indicated that LcS could reduce the incidence of AAD in hospitalised SCI patients. A randomised, placebo-controlled study is needed to confirm this apparent therapeutic success in order to translate into improved clinical outcomes. PMID:24044687

  12. Lactobacillus casei-01 Facilitates the Ameliorative Effects of Proanthocyanidins Extracted from Lotus Seedpod on Learning and Memory Impairment in Scopolamine-Induced Amnesia Mice

    PubMed Central

    Xiao, Juan; Li, Shuyi; Sui, Yong; Wu, Qian; Li, Xiaopeng; Xie, Bijun; Zhang, Mingwei; Sun, Zhida

    2014-01-01

    Learning and memory abilities are associated with alterations in gut function. The two-way proanthocyanidins-microbiota interaction in vivo enhances the physiological activities of proanthocyanidins and promotes the regulation of gut function. Proanthocyanidins extracted from lotus seedpod (LSPC) have shown the memory-enhancing ability. However, there has been no literature about whether Lactobacillus casei-01 (LC) enhances the ameliorative effects of LSPC on learning and memory abilities. In this study, learning and memory abilities of scopolamine-induced amnesia mice were evaluated by Y-maze test after 20-day administration of LC (109 cfu/kg body weight (BW)), LSPC (low dose was 60 mg/kg BW (L-LSPC) and high dose was 90 mg/kg BW (H-LSPC)), or LSPC and LC combinations (L-LSPC+LC and H-LSPC+LC). Alterations in antioxidant defense ability and oxidative damage of brain, serum and colon, and brain cholinergic system were investigated as the possible mechanisms. As a result, the error times of H-LSPC+LC group were reduced by 41.59% and 68.75% relative to those of H-LSPC and LC groups respectively. LSPC and LC combinations ameliorated scopolamine-induced memory impairment by improving total antioxidant capacity (TAOC) level, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) activities of brain, serum and colon, suppressing malondialdehyde (MDA) level of brain, serum and colon, and inhibiting brain acetylcholinesterase (AchE), myeloperoxidase, total nitric oxide synthase and neural nitric oxide synthase (nNOS) activities, and nNOS mRNA level. Moreover, LC facilitated the ameliorative effects of H-LSPC on GSH-Px activity of colon, TAOC level, GSH-Px activity and ratio of T-SOD to MDA of brain and serum, and the inhibitory effects of H-LSPC on serum MDA level, brain nNOS mRNA level and AchE activity. These results indicated that LC promoted the memory-enhancing effect of LSPC in scopolamine-induced amnesia mice. PMID:25396737

  13. Structural comparison of complexes of methotrexate analogues with Lactobacillus casei dihydrofolate reductase by two-dimensional /sup 1/H NMR at 500 MHz

    SciTech Connect

    Hammond, S.J.; Birdsall, B.; Feeney, J.; Searle, M.S.; Roberts, G.C.K.; Cheung, H.T.A.

    1987-12-29

    The authors have used two-dimensional (2D) NMR methods to examine complexes of Lactobacillus casei dihydrofolate reductase and methotrexate (MTX) analogues having structural modifications of the benzoyl ring and also the glutamic acid moiety. Assignments of the /sup 1/H signals in the spectra of the various complexes were made by comparison of their 2D spectra with those complexes containing methotrexate where we have previously assigned resonances from 32 of the 162 amino acid residues. In the complexes formed with the dihalomethotrexate analogues, the glutamic acid and pteridine ring moieties were shown to bind to the enzyme in a manner similar to that found in the methotrexate-enzyme complex. Perturbations in /sup 1/H chemical shifts of protons in Phe-49, Leu-54, and Leu-27 and the methotrexate H7 and NMe protons were observed in the different complexes and were accounted for by changes in orientation of the benzoyl ring in the various complexes. Binding of oxidized or reduced coenzyme to the binary complexes did not result in different shifts for Leu-27, Leu-54, or Leu-19 protons, and thus, the orientation of the benzoyl ring of the methotrexate analogues is not perturbed greatly by the presence of either oxidized or reduced coenzyme. In the complex with the ..gamma..-monoamide analog, the /sup 1/H signals of assigned residues in the protein had almost identical shifts with the corresponding protons in the methotrexate-enzyme complex for all residues except His-28 and, to a lesser extent, Leu-27. This indicates that while the His-28 interaction with the MTX ..gamma..-CO/sub 2//sup -/ is no longer present in this complex with the ..gamma..-amide, there has not been a major change in the overall structure of the two complexes. This behavior contrasts to that of the ..cap alpha..-amide complex where /sup 1/H signals from protons in several amino acid residues are different compared with their values in the complex formed with methotrexate.

  14. Short communication: Effect of supplementation with Lactobacillus casei Shirota on insulin sensitivity, β-cell function, and markers of endothelial function and inflammation in subjects with metabolic syndrome--a pilot study.

    PubMed

    Tripolt, N J; Leber, B; Blattl, D; Eder, M; Wonisch, W; Scharnagl, H; Stojakovic, T; Obermayer-Pietsch, B; Wascher, T C; Pieber, T R; Stadlbauer, V; Sourij, H

    2013-01-01

    Based on animal studies, intake of probiotic bacteria was suggested to improve insulin sensitivity by reducing endotoxinemia and inflammation. The objective of this study was to determine the effects of supplementation with the probiotic strain Lactobacillus casei Shirota (LcS) over 12 wk on insulin sensitivity, β-cell function, inflammation, and endothelial dysfunction parameters in subjects with metabolic syndrome. In a randomized-controlled study, 30 subjects with metabolic syndrome either received Lactobacillus casei Shirota 3 times daily for 12 wk or served as controls with standard medical therapy. Fasting blood samples were taken and a 75-g oral glucose tolerance test was performed to derive indices for insulin sensitivity and β-cell function. In addition, parameters to assess endothelial function and inflammation markers were determined. Even though the insulin sensitivity index significantly improved after 3 mo of probiotic supplementation (0.058±0.021 vs. 0.038±0.025), the change was not significantly different compared with the control group. No improvements were seen in additional indices of insulin sensitivity (quantitative insulin sensitivity check index, insulin sensitivity by oral glucose tolerance test, and homeostasis model assessment for insulin resistance) and β-cell function (first and second phase insulin secretion, and homeostasis model assessment for β-cell function). Probiotic supplementation resulted in a significant reduction in soluble vascular cell adhesion molecule-1 (sVCAM-1) level (1,614±343 vs. 1,418±265 ng/mL). No significant changes in parameters used to assess low-grade inflammation or endothelial dysfunction were observed. Intake of LcS for 12 wk in subjects with metabolic syndrome did not improve insulin sensitivity, β-cell function, endothelial function, or inflammation markers in this trial. PMID:23164226

  15. Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged.

    PubMed

    Nagata, Satoru; Asahara, Takashi; Ohta, Toshihisa; Yamada, Toshihiko; Kondo, Shigemi; Bian, Lei; Wang, Chongxin; Yamashiro, Yuichiro; Nomoto, Koji

    2011-08-01

    For conducting effective risk management in long-stay elderly people at a health service facility, we performed an open case-controlled study to evaluate the effect of the intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota (LcS-fermented milk) on norovirus gastroenteritis occurring in the winter season during the intake period. A total of seventy-seven elderly people (mean age 84 years) were enrolled in the study. During a 1-month period, there was no significant difference in the incidence of norovirus gastroenteritis between the LcS-fermented milk-administered (n 39) and the non-administered (n 38) groups; however, the mean duration of fever of >37°C after the onset of gastroenteritis was 1·5 (SD 1·7) d in the former and 2·9 (SD 2·3) d in the latter group, showing a significant shortening in the former group (P < 0·05). RT-quantitative PCR analysis targeting ribosomal RNA showed both Bifidobacterium and Lactobacillus to be significantly dominant, whereas Enterobacteriaceae decreased in faecal samples from the administered group (n 10, mean age 83 years), with a significant increase in faecal acetic acid concentration. Continuous intake of LcS-fermented milk could positively contribute to the alleviation of fever caused by norovirus gastroenteritis by correcting the imbalance of the intestinal microflora peculiar to the elderly, although such consumption could not protect them from the disease. PMID:21521545

  16. Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients.

    TOXLINE Toxicology Bibliographic Information

    Almeida CC; Lorena SL; Pavan CR; Akasaka HM; Mesquita MA

    2012-04-01

    BACKGROUND: The efficacy of some probiotic strains for the management of lactose intolerance remains to be established.AIM: To evaluate the effects of a 4-week consumption of a probiotic product containing Lactobacillus casei Shirota and Bifidobacterium breve Yakult (10(7)-10(9) CFU of each strain) on symptoms and breath hydrogen exhalation after a lactose load in lactose-intolerant patients and whether the beneficial results persisted after probiotic discontinuation.METHODS: Twenty-seven patients with lactose maldigestion and intolerance participated in this study, which comprised 4 hydrogen breath tests: baseline condition (20 g lactose), after lactase ingestion (9000 FCC units), at the end of 4-week probiotic supplementation, and a follow-up test performed 3 months after probiotic discontinuation. For each test, the area under the breath hydrogen concentration vs time curve (AUC(180 min)) was calculated, and symptom scores were recorded.RESULTS: The probiotic combination significantly reduced symptom scores (P < .01) and breath hydrogen AUC (P = .04) compared with the baseline condition. The comparison with the lactase test showed that symptom scores were similar (P > .05), despite the significantly higher (P = .01) AUC values after probiotic use. In the follow-up test, symptom scores and breath hydrogen AUC values remained similar to those found at the end of probiotic intervention.CONCLUSION: Four-week consumption of a probiotic combination of L casei Shirota and B breve Yakult seems to improve symptoms and decrease hydrogen production intake in lactose-intolerant patients. These effects may persist for at least 3 months after suspension of probiotic consumption.

  17. Effect of Lactobacillus casei Shirota strain intraperitoneal administration in CD1 mice on the establishment of Trichinella spiralis adult worms and on IgA anti-T. spiralis production.

    PubMed

    Martínez-Gómez, Federico; Santiago-Rosales, Rocío; Ramón Bautista-Garfias, Carlos

    2009-05-26

    The effect of the intraperitoneal (ip) administration of Lactobacillus casei Shirota strain (LcS) in CD1 mice on the establishment of Trichinella spiralis adult worms (TSAW), and on the generation of intestinal IgA anti-T. spiralis after challenge (AC) were evaluated. One hundred and twenty mice were allocated at random into two groups of 60 mice each: Treated group (T) and Non-treated group (NT). Each mouse in T group was inoculated with LcS at days -21, -14, and -7. On day 0 each mouse was challenged with 200 larvae of T. spiralis. At days 3, 5, 7, 10, 12, 14, 17, 19, 21, and 28 AC, six mice from each group were sacrificed to obtain TSAW. At days 7, 14, 21, and 28 IgA-s anti-T. spiralis levels in intestinal washings were evaluated by ELISA. From day five on AC, mice in LcS group showed significantly less TSAW (P<0.05) than animals from NT group. At days 7, 14, 21, and 28 AC IgA anti-T. spiralis levels were higher in mice from T group (P<0.05) than in the NT group. The results indicate that LcS inoculated into mice induces protection against T. spiralis and an increase in the production of IgA anti-T. spiralis. PMID:19269100

  18. Influence of a probiotic Lactobacillus casei strain on the colonisation with potential pathogenic streptococci and Staphylococcus aureus in the nasopharyngeal space of healthy men with a low baseline NK cell activity.

    PubMed

    Franz, Charles M A P; Huch, Melanie; Seifert, Stephanie; Kramlich, Jeannette; Bub, Achim; Cho, Gyu-Sung; Watzl, Bernhard

    2015-08-01

    The effect of a daily intake of the probiotic strain Lactobacillus casei Shirota (LcS) on the colonisation of pathogens, specifically streptococci and Staphylococcus aureus, in the nose and throat of healthy human volunteers with low natural killer cell activity, was investigated in a randomised and controlled intervention study. The study consisted of a 2-week run-in phase, followed by a 4-week intervention phase. The probiotic treatment group received a fermented milk drink with LcS, while the placebo group received an equally composed milk drink without the probiotic additive. To isolate potential pathogenic streptococci and Staph. aureus, samples from the pharynx, as well as of both middle nasal meati, were taken, once after the run-in phase and once at the end of the intervention phase. Isolated bacteria were identified as either Staph. aureus and α- or β-haemolytic streptococci in a polyphasic taxonomical approach based on phenotypic tests, amplified ribosomal DNA restriction analysis genotyping, and 16S rRNA gene sequencing of representative strains. Salivary secretory immunoglobulin A (SIgA) was used as marker of protective mucosal immunity to evaluate whether LcS treatment influenced SIgA production. No statistically significant effect could be determined for intervention with LcS on the incidence of Staph. aureus in the nasal space, Staph. aureus in the pharyngeal space or for β-haemolytic streptococci and Streptococcus pneumoniae in the pharyngeal space. Thus, the intervention did not influence the nasopharyngeal colonisation with Gram-positive potential pathogens. Production of salivary SIgA as a potential means of microbiota modulation was also not affected. PMID:25416927

  19. Effects of biosurfactant produced by Lactobacillus casei on gtfB, gtfC, and ftf gene expression level in S. mutans by real-time RT-PCR

    PubMed Central

    Savabi, Omid; Kazemi, Mohammad; Kamali, Sara; Salehi, Ahmad Reza; Eslami, Gilda; Tahmourespour, Arezoo; Salehi, Rasoul

    2014-01-01

    Background: The Streptococci are the pioneer strains in plaque formation and Streptococcus mutans are the main etiological agent of dental plaque and caries. In general, biofilm formation is a step-wise process, which begins by adhesion of planktonic cells to the surfaces. Evidences show that expression of glucosyltransferase B and C (gtfB and gtfC) and fructosyltransferase (ftf) genes play critical role in initial adhesion of S. mutans to the tooth surface which results in formation of dental plaques and consequently caries and other periodontal disease. Materials and Methods: The aim of this study was to determine the effect of biosurfactants produced by a probiotic strain; Lactobacillus casei (ATCC39392) on gene expression profile of gftB/C and tft of S. mutans (ATCC35668) using quantitative real-time PCR. Results: The application of the prepared biosurfactant caused dramatic down regulation of all the three genes under study. The reduction in gene expression was statistically highly significant (for gtfB, P > 0.0002; for gtfC, P > 0.0063, and for ftf, P > 0.0057). Conclusion: Considerable downregulation of all three genes in the presence of the prepared biosurfactant comparing to untreated controls is indicative of successful inhibition of influential genes in bacterial adhesion phenomena. In view of the importance of glucosyltransferase gene products for S.mutans attachment to the tooth surface which is the initial important step in biofilm production and dental caries, further research in this field may lead to an applicable alternative for successful with least adverse side effects in dental caries prevention. PMID:25538917

  20. Effect of the administration of a fermented milk containing Lactobacillus casei DN-114001 on intestinal microbiota and gut associated immune cells of nursing mice and after weaning until immune maturity

    PubMed Central

    de Moreno de LeBlanc, Alejandra; Dogi, Cecilia A; Galdeano, Carolina Maldonado; Carmuega, Esteban; Weill, Ricardo; Perdigón, Gabriela

    2008-01-01

    Background Microbial colonization of the intestine after birth is an important step for the development of the gut immune system. The acquisition of passive immunity through breast-feeding may influence the pattern of bacterial colonization in the newborn. The aim of this work was to evaluate the effect of the administration of a probiotic fermented milk (PFM) containing yogurt starter cultures and the probiotic bacteria strain Lactobacillus casei DN-114001 to mothers during nursing or their offspring, on the intestinal bacterial population and on parameters of the gut immune system. Results Fifteen mice of each group were sacrificed at ages 12, 21, 28 and 45 days. Large intestines were taken for determination of intestinal microbiota, and small intestines for the study of secretory-IgA (S-IgA) in fluid and the study of IgA+ cells, macrophages, dendritic cells and goblet cells on tissue samples. The consumption of the PFM either by the mother during nursing or by the offspring after weaning modified the development of bifidobacteria population in the large intestine of the mice. These modifications were accompanied with a decrease of enterobacteria population. The administration of this PFM to the mothers improved their own immune system and this also affected their offspring. Offspring from mice that received PFM increased S-IgA in intestinal fluids, which mainly originated from their mother's immune system. A decrease in the number of macrophages, dendritic cells and IgA+ cells during the suckling period in offspring fed with PFM was observed; this could be related with the improvement of the immunity of the mothers, which passively protect their babies. At day 45, the mice reach maturity of their own immune system and the effects of the PFM was the stimulation of their mucosal immunity. Conclusion The present work shows the beneficial effect of the administration of a PFM not only to the mothers during the suckling period but also to their offspring after weaning and until adulthood. This effect positively improved the intestinal microbiota that are related with a modulation of the gut immune response, which was demonstrated with the stimulation of the IgA + cells, macrophages and dendritic cells. PMID:18554392

  1. Effect of supplementation of fermented milk drink containing probiotic Lactobacillus casei Shirota on the concentrations of aflatoxin biomarkers among employees of Universiti Putra Malaysia: a randomised, double-blind, cross-over, placebo-controlled study.

    PubMed

    Mohd Redzwan, Sabran; Abd Mutalib, Mohd Sokhini; Wang, Jia-Sheng; Ahmad, Zuraini; Kang, Min-Su; Abdul Rahman, Nurul 'Aqilah; Nikbakht Nasrabadi, Elham; Jamaluddin, Rosita

    2016-01-14

    Human exposure to aflatoxin is through the diet, and probiotics are able to bind aflatoxin and prevent its absorption in the small intestine. This study aimed to determine the effectiveness of a fermented milk drink containing Lactobacillus casei Shirota (LcS) (probiotic drink) to prevent aflatoxin absorption and reduce serum aflatoxin B1-lysine adduct (AFB1-lys) and urinary aflatoxin M1 concentrations. The present study was a randomised, double-blind, cross-over, placebo-controlled study with two 4-week intervention phases. In all, seventy-one subjects recruited from the screening stage were divided into two groups--the Yellow group and the Blue group. In the 1st phase, one group received probiotic drinks twice a day and the other group received placebo drinks. Blood and urine samples were collected at baseline, 2nd and 4th week of the intervention. After a 2-week wash-out period, the treatments were switched between the groups, and blood and urine samples were collected at the 6th, 8th and 10th week (2nd phase) of the intervention. No significant differences in aflatoxin biomarker concentrations were observed during the intervention. A within-group analysis was further carried out. Aflatoxin biomarker concentrations were not significantly different in the Yellow group. Nevertheless, ANOVA for repeated measurements indicated that AFB1-lys concentrations were significantly different (P=0·035) with the probiotic intervention in the Blue group. The 2nd week AFB1-lys concentrations (5·14 (SD 2·15) pg/mg albumin (ALB)) were significantly reduced (P=0·048) compared with the baseline (6·24 (SD 3·42) pg/mg ALB). Besides, the 4th week AFB1-lys concentrations were significantly lower (P<0·05) with probiotic supplementation than with the placebo. Based on these findings, a longer intervention study is warranted to investigate the effects of continuous LcS consumption to prevent dietary aflatoxin exposure. PMID:26490018

  2. [Penicillin-binding proteins of various strains of Lactobacillus].

    PubMed

    Griaznova, N S; Subbotina, N A; Beliavskaia, I V; Taisova, A S; Afonin, V I; Tiurin, M V; Shenderov, B A; Sazykina, Iu O; Navashin, S M

    1990-02-01

    Sensitivity of different species of Lactobacillus i.e. L. casei, L. plantarum, L. acidophillus, L. buchneri, L. jugurti and others to penicillins and cephalosporins of various generations was studied. Penicillin binding proteins (PBPs) of the Lactobacillus species were specified. It was shown that the number of PBPs depended on the Lactobacillus species. L. casei had the least number of PBPs (4) and L. brevis had the highest number of PBPs (11). Competition of 14C-benzylpenicillin with ampicillin, cefotaxime, ceftizoxime and cefoperazone for binding to separate PBPs in three strains of different Lactobacillus species was investigated. PMID:2110806

  3. Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease

    PubMed Central

    Martinez, Raquel M.; Hulten, Kristina G.; Bui, Uyen

    2014-01-01

    Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry. PMID:24131686

  4. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  5. Molecular identification of Lactobacillus spp. associated with puba, a Brazilian fermented cassava food

    PubMed Central

    Crispim, S.M.; Nascimento, A.M.A.; Costa, P.S.; Moreira, J.L.S.; Nunes, A.C.; Nicoli, J.R.; Lima, F.L.; Mota, V.T.; Nardi, R.M.D.

    2013-01-01

    Puba or carim is a Brazilian staple food obtained by spontaneous submerged fermentation of cassava roots. A total of 116 lactobacilli and three cocci isolates from 20 commercial puba samples were recovered on de Man, Rogosa and Sharpe agar (MRS); they were characterized for their antagonistic activity against foodborne pathogens and identified taxonomically by classical and molecular methods. In all samples, lactic acid bacteria were recovered as the dominant microbiota (7.86 0.41 log10 CFU/g). 16S23S rRNA ARDRA pattern assigned 116 isolates to the Lactobacillus genus, represented by the species Lactobacillus fermentum (59 isolates), Lactobacillus delbrueckii (18 isolates), Lactobacillus casei (9 isolates), Lactobacillus reuteri (6 isolates), Lactobacillus brevis (3 isolates), Lactobacillus gasseri (2 isolates), Lactobacillus nagelii (1 isolate), and Lactobacillus plantarum group (18 isolates). recA gene-multiplex PCR analysis revealed that L. plantarum group isolates belonged to Lactobacillus plantarum (15 isolates) and Lactobacillus paraplantarum (3 isolates). Genomic diversity was investigated by molecular typing with rep (repetitive sequence)-based PCR using the primer ERIC2 (enterobacterial repetitive intergenic consensus). The Lactobacillus isolates exhibited genetic heterogeneity and species-specific fingerprint patterns. All the isolates showed antagonistic activity against the foodborne pathogenic bacteria tested. This antibacterial effect was attributed to acid production, except in the cases of three isolates that apparently produced bacteriocin-like inhibitory substances. This study provides the first insight into the genetic diversity of Lactobacillus spp. of puba. PMID:24159278

  6. Performance in nondairy drinks of probiotic L. casei strains usually employed in dairy products.

    TOXLINE Toxicology Bibliographic Information

    Céspedes M; Cárdenas P; Staffolani M; Ciappini MC; Vinderola G

    2013-05-01

    The increase in vegetarianism as dietary habit and the increased allergy episodes against dairy proteins fuel the demand for probiotics in nondairy products. Lactose intolerance and the cholesterol content of dairy products can also be considered two additional reasons why some consumers are looking for probiotics in other foods. We aimed at determining cell viability in nondairy drinks and resistance to simulated gastric digestion of commercial probiotic lactobacilli commonly used in dairy products. Lactobacillus casei LC-01 and L. casei BGP 93 were added to different commercial nondairy drinks and viability and resistance to simulated gastric digestion (pH 2.5, 90 min, 37 °C) were monitored along storage (5 and 20 °C). For both strains, at least one nondairy drink was found to offer cell counts around 7 log orders until the end of the storage period. Changes in resistance to simulated gastric digestion were observed as well. Commercial probiotic cultures of L. casei can be added to commercial fruit juices after a carefull selection of the product that warrants cell viability. The resistance to simulated gastric digestion is an easy-to-apply in vitro tool that may contribute to product characterization and may help in the choice of the food matrix when no changes in cell viability are observed along storage. Sensorial evaluation is mandatory before marketing since the product type and storage conditions might influence the sensorial properties of the product due to the possibility of growth and lactic acid production by probiotic bacteria.

  7. Characterization of Selected Lactobacillus Strains for Use as Probiotics

    PubMed Central

    Song, Minyu; Yun, Bohyun; Moon, Jae-Hak; Park, Dong-June; Lim, Kwangsei; Oh, Sejong

    2015-01-01

    The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products. PMID:26761878

  8. Antimicrobial effects of GL13K peptide coatings on S. mutans and L. casei

    NASA Astrophysics Data System (ADS)

    Schnitt, Rebecca Ann

    Background: Enamel breakdown around orthodontic brackets, so-called "white spot lesions", is the most common complication of orthodontic treatment. White spot lesions are caused by bacteria such as Streptococci and Lactobacilli, whose acidic byproducts cause demineralization of enamel crystals. Aims: The aim of this project was to develop an antimicrobial peptide coating for titanium alloy that is capable of killing acidogenic bacteria, specifically Streptococcus mutans and Lactobacillus casei. The long-term goal is to create an antimicrobial-coated orthodontic bracket with the ability to reduce or prevent the formation of white spot lesions in orthodontic patients thereby improving clinical outcomes. Methods: First, an alkaline etching method with NaOH was established to allow effective coating of titanium discs with GL13K, an antimicrobial peptide derived from human saliva. Coatings were verified by contact angle measures, and treated discs were characterized using scanning electron microscopy. Secondly, GL13K coatings were tested against hydrolytic, proteolytic and mechanical challenges to ensure robust coatings. Third, a series of qualitative and quantitative microbiology experiments were performed to determine the effects of GL13K--L and GL13K--D on S. mutans and L. casei, both in solution and coated on titanium. Results: GL13K-coated discs were stable after two weeks of challenges. GL13K--D was effective at killing S. mutans in vitro at low doses. GL13K--D also demonstrated a bactericidal effect on L. casei, however, in contrast to S. mutans, the effect on L. casei was not statistically significant. Conclusion: GL13K--D is a promising candidate for antimicrobial therapy with possible applications for prevention of white spot lesions in orthodontics.

  9. Lactobacillus species: taxonomic complexity and controversial susceptibilities.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M

    2015-05-15

    The genus Lactobacillus is a taxonomically complex and is composed of over 170 species that cannot be easily differentiated phenotypically and often require molecular identification. Although they are part of the normal human gastrointestinal and vaginal flora, they can also be occasional human pathogens. They are extensively used in a variety of commercial products including probiotics. Their antimicrobial susceptibilities are poorly defined in part because of their taxonomic complexity and are compounded by the different methods recommended by Clinical Laboratory Standards Institute and International Dairy Foundation. Their use as probiotics for prevention of Clostridium difficile infection is prevalent among consumers worldwide but raises the question of will the use of any concurrent antibiotic effect their ability to survive. Lactobacillus species are generally acid resistant and are able to survive ingestion. They are generally resistant to metronidazole, aminoglycosides and ciprofloxacin with L. acidophilus being susceptible to penicillin and vancomycin, whereas L. rhamnosus and L. casei are resistant to metronidazole and vancomycin. PMID:25922408

  10. Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei.

    PubMed

    Mercanti, Diego J; Rousseau, Geneviève M; Capra, María L; Quiberoni, Andrea; Tremblay, Denise M; Labrie, Simon J; Moineau, Sylvain

    2016-01-01

    Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts. PMID:26475105

  11. Effect of recombinant lactobacillus expressing canine GM-CSF on immune function in dogs.

    PubMed

    Chung, Jin Young; Sung, Eui Jae; Cho, Chun Gyu; Seo, Kyoung Won; Lee, Jong-Soo; Bhang, Dong Ha; Lee, Hee Woo; Hwang, Cheol Yong; Lee, Wan Kyu; Youn, Hwa Young; Kim, Chul Joong

    2009-11-01

    Many Lactobacillus strains have been promoted as good probiotics for the prevention and treatment of diseases. We engineered recombinant Lactobacillus casei, producing biologically active canine granulocyte macrophage colony stimulating factor (cGM-CSF), and investigated its possibility as a good probiotic agent for dogs. Expression of the cGM-CSF protein in the recombinant Lactobacillus was confirmed by SDS-PAGE and Western blotting methods. For the in vivo study, 18 Beagle puppies of 7 weeks of age were divided into three groups; the control group was fed only on a regular diet and the two treatment groups were fed on a diet supplemented with either 1 x 10(9) colony forming units (CFU)/day of L. casei or L. casei expressing cGM-CSF protein for 7 weeks. Body weight was measured, and fecal and blood samples were collected from the dogs during the experiment for the measurement of hematology, fecal immunoglobulin (Ig)A and IgG, circulating IgA and IgG, and canine corona virus (CCV)-specific IgG. There were no differences in body weights among the groups, but monocyte counts in hematology and serum IgA were higher in the group receiving L. casei expressing cGMCSF than in the other two groups. After the administration of CCV vaccine, CCV-specific IgG in serum increased more in the group supplemented with L. casei expressing cGM-CSF than the other two groups. This study shows that a dietary L. casei expressing cGM-CSF enhances specific immune functions at both the mucosal and systemic levels in puppies. PMID:19996694

  12. Characterisation and preliminary lipid-lowering evaluation of Lactobacillus isolated from a traditional Serbian dairy product.

    PubMed

    Zavišić, G; Ristić, S; Petrièević, S; Novaković Jovanović, J; Janać Petković, B; Strahinić, I; Piperski, V

    2015-03-01

    We investigated the potential probiotic properties of indigenous lactic acid bacteria (LAB) isolated from Serbian homemade cheese. Seventeen LAB strains were isolated and characterised using standard protocols. One of the strains showed several probiotic properties: survival at low pH and in bile salts solution, antimicrobial activity, susceptibility to antibiotics and adhesion to hexodecane. DNA analysis identified the isolate as Lactobacillus casei, hereafter named L. casei 5s. The lipid lowering effect of L. casei 5s was evaluated in vivo using a hyperlipidemic rat model. Orally administered L. casei 5s significantly decreased the elevated total serum cholesterol and triglycerides, and attenuated macro vesicular steatosis in the liver. Moreover, L. casei 5s improved the intestinal microbial balance in favour of lactobacilli, while decreasing the number of Escherichia coli cells. The bacteria were re-isolated and identified from the surface of the intestinal mucosa and from the faecal samples of treated animals, indicating adhesiveness and colonisation ability. The results of an acute oral toxicity study in mice and the absence of translocation to other organs demonstrated the safety of the strain. In conclusion, L. casei 5s demonstrated promising probiotic potential and might be a good candidate for more detailed investigations. PMID:24889894

  13. Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion.

    PubMed

    Shida, K; Kiyoshima-Shibata, J; Nagaoka, M; Watanabe, K; Nanno, M

    2006-09-01

    Some strains of lactobacilli can stimulate macrophages and dendritic cells to secrete IL-12, which plays a key role in activating innate immunity. We examined the IL-12-inducing ability of 47 Lactobacillus strains belonging to 10 species in mouse peritoneal macrophages, and characterized the properties important for the induction of IL-12. Although considerable differences in IL-12-inducing ability were observed among the strains tested, almost all strains belonging to the Lactobacillus casei group (L. casei, Lactobacillus rhamnosus, and Lactobacillus zeae) or to Lactobacillus fermentum induced high levels of IL-12. Phagocytosis of lactobacilli was necessary for IL-12 induction, and the strains with strong IL-12 induction were relatively resistant to lysis in the macrophages. The sensitivity of Lactobacillus strains to in vitro treatment with M-1 enzyme, a member of the N-acetylmuramidases, was negatively correlated with IL-12-inducing ability. Using a probiotic strain, L. casei strain Shirota (LcS), we showed that the cell wall of LcS could be digested by long-term treatment with a high dose of M-1 enzyme and that the IL-12-inducing ability was diminished according to the duration of the enzyme treatment. The soluble polysaccharide-peptidoglycan complex released from the cell wall of LcS did not induce IL-12, whereas the insoluble intact cell wall of LcS induced IL-12. These results suggest that the intact cell wall structure of lactobacilli is an important element in the ability to induce IL-12 and that Lactobacillus strains having a rigid cell wall resistant to intracellular digestion effectively stimulate macrophages to induce IL-12. PMID:16899663

  14. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: process optimisation and product stability.

    PubMed

    Costa, Mayra Garcia Maia; Fonteles, Thatyane Vidal; de Jesus, Ana Laura Tibério; Rodrigues, Sueli

    2013-08-15

    The aim of this study was to evaluate the use of sonicated pineapple juice as substrate for producing a probiotic beverage by Lactobacillus casei NRRL B442. Maximal microbial viability was found by cultivating L. casei at 31°C and pH 5.8 (optimised conditions). After fermentation, samples of sweetened and non-sweetened juice were stored. After 42 days of storage under refrigeration (4°C), the microbial viability was 6.03 Log CFU/mL in the non-sweetened sample and 4.77 Log CFU/mL in the sweetened sample. The pH of both samples decreased during storage due to lactic acid production (post acidification). The characteristic colour of the juice was maintained throughout the shelf life and no browning was observed. Sonicated pineapple juice was shown to be a suitable substrate for L. casei cultivation and for the development of an alternative non-dairy probiotic beverage. PMID:23561104

  15. Prevention of nephrolithiasis by Lactobacillus in stone-forming rats: a preliminary study.

    PubMed

    Kwak, Cheol; Jeong, Byong Chang; Ku, Ja Hyeon; Kim, Hyeon Hoe; Lee, Jeong Jun; Huh, Chul Sung; Baek, Young Jin; Lee, Sang Eun

    2006-08-01

    Hyperoxaluria is a risk factor for renal stones. It appears to be sustained by increased dietary load or increased intestinal absorption. The aim of this study was to evaluate whether oral administration of lactobacilli could prevent urolithiasis in stone-forming rats. Oxalate-degrading activities of lactobacilli were evaluated by measuring the oxalate level in a culture medium after inoculation with lactobacilli. Only the strains of Lactobacillus having oxalate-degrading activity were used. Sprague-Dawley rats were fed a powdered standard diet containing 3% sodium oxalate and/or received 100 mg/kg of celecoxib for the first 8 days by gavage, before or after the beginning of this experiment (groups with previous treatment or with co-treatment). Rats were sacrificed after 4 weeks and kidneys were harvested for the assay of crystal formation under a dissecting microscope. Twenty-four-hour urine collections were performed before kidney harvest. Only two strains, Lactobacillus casei HY2743 and L. casei HY7201 out of 31 strains of Lactobacillus were able to degrade oxalate. In both groups of co-treatment and previous treatment with L. casei HY2743 and L. casei HY7201, urine oxalate excretion decreased compared to the group without lactobacilli. The dissecting microscope examination of kidneys in the rats in two previous treatment groups and the co-treatment group with L. casei HY7201 showed less abundant crystals than control groups. Our results show that lactobacilli may be used as a potential therapeutic strategy in the prevention of urinary stones. PMID:16633809

  16. Probiotic features of two oral Lactobacillus isolates.

    PubMed

    Zavisic, Gordana; Petricevic, Sasa; Radulovic, Zeljka; Begovic, Jelena; Golic, Natasa; Topisirovic, Ljubisa; Strahinic, Ivana

    2012-01-01

    In this study, we checked lactobacilli strains of human origin for their potential as probiotic. Samples were collected from oral mucosa of 16 healthy individuals, out of which twenty isolates were obtained and two of them were selected and identified as Lactobacillus plantarum (G1) and L. casei (G3). Both isolates exhibited antagonistic action towards pathogenic microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Salmonella abony, and Clostridium sporogenes, but not on the growth of Candida albicans. The bacteriocin activity against Staphylococcus aureus ATCC 6358-P was shown only by L. plantarum G1. Moreover, the isolates G1 and G3 showed good viability in the acid gastric environment and in the gut environment containing bovine bile salts. The viability of G1 and G3 isolates in the gastrointestinal tract, and the adhesion to the intestinal mucosa were also confirmed in vivo. The biochemical tests of blood samples revealed lower levels of serum triglycerides and cholesterol, as well as reduced activity of alkaline phosphatase in all lactobacilli-treated Wistar rats, compared to control ones. No toxicity for NMRI Ham mice was observed. According to our experimental results, these findings imply that L. plantarum G1 and L. casei G3 could be characterized as potential probiotics. PMID:24031847

  17. Probiotic features of two oral Lactobacillus isolates

    PubMed Central

    Zavisic, Gordana; Petricevic, Sasa; Radulovic, Zeljka; Begovic, Jelena; Golic, Natasa; Topisirovic, Ljubisa; Strahinic, Ivana

    2012-01-01

    In this study, we checked lactobacilli strains of human origin for their potential as probiotic. Samples were collected from oral mucosa of 16 healthy individuals, out of which twenty isolates were obtained and two of them were selected and identified as Lactobacillus plantarum (G1) and L. casei (G3). Both isolates exhibited antagonistic action towards pathogenic microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Salmonella abony, and Clostridium sporogenes, but not on the growth of Candida albicans. The bacteriocin activity against Staphylococcus aureus ATCC 6358-P was shown only by L. plantarum G1. Moreover, the isolates G1 and G3 showed good viability in the acid gastric environment and in the gut environment containing bovine bile salts. The viability of G1 and G3 isolates in the gastrointestinal tract, and the adhesion to the intestinal mucosa were also confirmed in vivo. The biochemical tests of blood samples revealed lower levels of serum triglycerides and cholesterol, as well as reduced activity of alkaline phosphatase in all lactobacilli-treated Wistar rats, compared to control ones. No toxicity for NMRI Ham mice was observed. According to our experimental results, these findings imply that L. plantarum G1 and L. casei G3 could be characterized as potential probiotics. PMID:24031847

  18. Clinical characteristics of bacteraemia caused by Lactobacillus spp. and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2000-2014.

    PubMed

    Lee, Meng-Rui; Tsai, Chia-Jung; Liang, Sheng-Kai; Lin, Ching-Kai; Huang, Yu-Tsung; Hsueh, Po-Ren

    2015-10-01

    The clinical characteristics of 89 patients with Lactobacillus bacteraemia treated at a university-affiliated hospital in northern Taiwan during 2000-2014 were retrospectively evaluated. Lactobacillus spp. were identified by 16S rRNA sequencing analysis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antimicrobial susceptibilities of the isolates were determined by broth microdilution. The most commonly isolated species was Lactobacillus salivarius (n = 21), followed by Lactobacillus paracasei (n = 16) and Lactobacillus fermentum (n = 13). Excluding three isolates with lower 16S rRNA sequence similarity, MALDI-TOF/MS provided correct identification for 84.9% (73/86) of Lactobacillus isolates. Concordant identification was lowest for Lactobacillus casei (11%). The main infection foci were intra-abdominal infection (49%) and catheter-related bloodstream infection (17%). Only one-half of the patients received adequate antibiotic treatment during the bacteraemic episode. The majority of patients with Lactobacillus bacteraemia were immunocompromised. The 7-day and in-hospital mortality rates were 21% and 62%, respectively, and underlying malignancy was associated with a higher in-hospital mortality rate (odds ratio = 2.666). There were no significant differences in mortality (7-day, 14-day, 30-day and in-hospital) among patients with bacteraemia due to different Lactobacillus spp. Minimum inhibitory concentrations were highest for glycopeptides, cephalosporins and fluoroquinolones and were lowest for carbapenems and aminopenicillins. Lactobacillus bacteraemia was associated with a high mortality rate, and patient outcome was associated with underlying malignancy. MALDI-TOF/MS was able to accurately identify 84.9% of the Lactobacillus isolates, and L. salivarius was the predominant pathogen. The accuracy rate for identification of Lactobacillus spp. by MALDI-TOF/MS was lowest for L. casei. PMID:26298673

  19. Effect of Lactobacillus strains and Saccharomyces boulardii on persistent diarrhea in children.

    PubMed

    Gaón, David; García, Hugo; Winter, Luis; Rodríguez, Nora; Quintás, Ricardo; González, Silvia N; Oliver, Guillermo

    2003-01-01

    The efficacy of probiotics on persistent diarrhea remains uncertain. The purpose of this study was to evaluate the effect of Lactobacillus sp and Saccharomyces boulardii on persistent diarrhea in children. In a double-blind trial eighty-nine children, aged 6-24 months were randomly distributed to receive pasteurized cow milk containing 2 viable lyophilized strains Lactobacillus casei and Lactobacillus acidophillus strains CERELA, (10(10)-10(12) colony-forming units per g) (n = 30), or lyophilized S. boulardii, (10(10)-10(12) colony forming units per g) (n = 30) or pasteurized cow milk as placebo (n = 29); on each diet 175 g was given twice a day for a 5 day period. Number of depositions, duration of illness and frequency of vomiting were considered. Enteric pathogens were isolated from stools in 40% of the patients, 27% had rotavirus. Lactobacillus and S. boulardii significantly reduced the number of depositions (p < 0.001) and diarrheal duration (p < 0.005). Similarly both significantly (p < 0.002) reduced vomiting as compared with placebo. There was no difference between treatments depending on rotavirus status. In conclusion, L. casei and L. acidophillus strains CERELA and S. boulardii are useful in the management of persistent diarrhea in children. PMID:14518142

  20. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  1. Fructooligosaccharides metabolism and effect on bacteriocin production in Lactobacillus strains isolated from ensiled corn and molasses.

    PubMed

    Muñoz, M; Mosquera, A; Alméciga-Díaz, C J; Melendez, A P; Sánchez, O F

    2012-06-01

    Fructo- (FOS) and galacto-oligosaccharides have been used to promote the growth of probiotics, mainly those from Lactobacillus genus. However, only few reports have evaluated the effect of prebiotics on bacteriocins activity and production. In this work, we characterized the effect of FOS supplementation on the growth, lactic and acetic acids production, and antimicrobial activity of crude extracts obtained from Lactobacillus strains isolated from ensiled corn and molasses. Seven out of 28 isolated Lactobacillus, belonging to Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus brevis, showed antimicrobial activity against Listeria innocua. Among them, the strain L. plantarum LE5 showed antimicrobial activity against Listeria monocytogenes and Enteroccocus faecalis; while the L. plantarum LE27 strain showed antimicrobial effect against L. monocytogenes, E. faecalis, Escherichia coli and Salmonella enteritidis. This antimicrobial activity in most of the cases was obtained only after FOS supplementation. In summary, these results show the feasibility to increase the antimicrobial activity of Lactobacillus bacteriocins by supplementing the growth medium with FOS. PMID:22342961

  2. Divergence in codon usage of Lactobacillus species.

    PubMed Central

    Pouwels, P H; Leunissen, J A

    1994-01-01

    We have analyzed codon usage patterns of 70 sequenced genes from different Lactobacillus species. Codon usage in lactobacilli is highly biased. Both inter-species and intra-species heterogeneity of codon usage bias was observed. Codon usage in L. acidophilus is similar to that in L. helveticus, but dissimilar to that in L. bulgaricus, L. casei, L. pentosus and L. plantarum. Codon usage in the latter three organisms is not significantly different, but is different from that in L. bulgaricus. Inter-species differences in codon usage can, at least in part, be explained by differences in mutational drift. L. bulgaricus shows GC drift, whereas all other species show AT drift. L. acidophilus and L. helveticus rarely use NNG in family-box (a set of synonymous) codons, in contrast to all other species. This result may be explained by assuming that L. acidophilus and L. helveticus, but not other species examined, use a single tRNA species for translation of family-box codons. Differences in expression level of genes are positively correlated with codon usage bias. Highly expressed genes show highly biased codon usage, whereas weakly expressed genes show much less biased codon usage. Codon usage patterns at the 5'-end of Lactobacillus genes is not significantly different from that of entire genes. The GC content of codons 2-6 is significantly reduced compared with that of the remainder of the gene. The possible implications of a reduced GC content for the control of translation efficiency are discussed. PMID:8152923

  3. Evaluation in vitro of the antagonistic substances produced by Lactobacillus spp. isolated from chickens

    PubMed Central

    Lima, Edna T.; Andreatti Filho, Raphael L.; Okamoto, Adriano S.; Noujaim, José C.; Barros, Mércia R.; Crocci, Adalberto J.

    2007-01-01

    To determine the inhibitory capacity of lactic acid bacteria due to the action of antagonistic substances, we tested 474 isolates of Lactobacillus from the crop and cecum of chickens against gram-positive and gram-negative indicator microorganisms by the spot-on-the-lawn and well-diffusion antagonism methods. Of the 474 isolates, 265 demonstrated antimicrobial activity against the indicator microorganisms. Isolates identified as L. reuteri, L. salivarius, or Lactobacillus spp. inhibited Enterococcus faecalis, E. faecium, Listeria monocytogenes, and Salmonella spp. but not L. casei, L. delbrueckii, L. fermentum, or L. helveticus by the well-diffusion simultaneous antagonism method under anaerobic incubation conditions. The antagonistic substances produced by some of the Lactobacillus isolates were inactivated after treatment by proteolytic enzymes, which suggested that the substances could be antimicrobial peptides or bacteriocins. PMID:17479773

  4. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    PubMed

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106. PMID:22021580

  5. Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef.

    PubMed

    Kato, Y; Sakala, R M; Hayashidani, H; Kiuchi, A; Kaneuchi, C; Ogawa, M

    2000-05-01

    Lactobacillus algidus sp. nov. is described on the basis of 40 strains isolated as one of the predominant bacteria from five specimens of vacuum-packaged beef collected from different meat shops and stored at 2 degrees C for 3 weeks. These strains were quite uniform in the overall characteristics examined. They are facultatively anaerobic, psychrophilic, Gram-positive, non-spore-forming, non-motile, lactic acid-homofermentative rods. The cells occurred singly and in pairs on agar media and in rather long chains in broth media. They differed in several cultural and biochemical characteristics from the authentic meso-diaminopimelic acid-positive or psychrophilic lactic acid bacteria in the genera Lactobacillus, Carnobacterium and Brochothrix. The SDS-PAGE whole-cell protein pattern was clearly distinctive. DNA-DNA hybridization and phylogenetic analysis of 16S rDNA also failed to associate these strains closely with any of the validly described organisms used. The phylogenetic analysis showed that these strains are rather remotely but most closely related to Lactobacillus mali (93% sequence similarity), which belongs to the Lactobacillus casei/Pediococcus group. Therefore, these strains should be included in the genus Lactobacillus and considered to represent a new species, Lactobacillus algidus sp. nov. The type strain is M6A9T (= JCM 10491T). PMID:10843056

  6. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS).

    PubMed

    Koh, Ji Hoon; Choi, Seung Hye; Park, Seung Won; Choi, Nag-Jin; Kim, Younghoon; Kim, Sae Hun

    2013-10-01

    Synbiotics, the combination of prebiotics and probiotics, has been shown to produce synergistic effects that promote gastrointestinal well-being of host. Tagatose is a low calorie food ingredient with putative health-promoting benefits. Herein, we investigated its synbiotic impact on the viability of Lactobacillus casei 01 and Lactobacillus rhamnosus strain GG and the potential mechanism involved. Tagatose, as a synbiotic substrate, enhanced the growth of L. casei 01 and L. rhamnosus strain GG compared to other prebiotics. Other gut-indigenous such as Clostridium spp. readily utilized fructooligosaccharide (FOS), the most widely used functional prebiotics, but not tagatose. Additionally, tagatose enhanced probiotic functions of L. casei 01 and L. rhamnosus strain GG by reinforcing their attachment on HT-29 intestine epithelial cells and enhancing their cholesterol-lowering activities. Whole transcriptome study and quantitative real-time polymerase chain reaction (qRT-PCR) test showed that the presence of tagatose in L. rhamnosus strain GG caused induction of a large number of genes associated with carbohydrate metabolism including the phosphotransferase system (PTS). Collectively, these results indicate the tagatose enhanced the growth of L. casei 01 and L. rhamnosus strain GG and their probiotic activities by activating tagatose-associated PTS networks. Importantly, this study highlights the potential application of tagatose and L. casei 01 and/or L. rhamnosus strain GG as a synbiotic partner in functional dairy foods (i.e. yogurt and cheese) and therapeutic dietary supplements. PMID:23764214

  7. The effect of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat.

    PubMed

    Goldin, B R; Gualtieri, L J; Moore, R P

    1996-01-01

    Male Fischer 344 rats were fed a 20% or a 5% corn oil diet and were injected subcutaneously with dimethylhydrazine (DMH) weekly for 16 weeks. In addition, an approximately equal number of animals challenged with DMH were fed daily, until the end of the study, 2 x 10(10) Lactobacillus casei subsp. rhamnosus strain GG starting three weeks before DMH administration or after the ninth weekly injection. The feeding of the Lactobacillus GG before and during carcinogen treatment resulted in a significant decrease in the incidence of colon tumors and the number of small intestinal and colon tumors per tumor-bearing animal for rats fed a 20% corn oil diet. This decrease in tumor incidence or number of tumors was not seen when animals were fed the Lactobacillus after the ninth week of carcinogen treatment. Animals fed a 5% corn oil diet had a lower tumor incidence and number of tumors resulting from the decrease in dietary fat; in addition the feeding of Lactobacillus GG before the carcinogen challenge resulted in a lower incidence of colon tumors. These studies show that a specific strain of L. casei subsp. rhamnosus designated GG can interfere with the initiation or early promotional stages of DMH-induced intestinal tumorigenesis, and this effect is most pronounced for animals fed a high-fat diet. PMID:8710689

  8. Importance of Molecular Methods to Determine Whether a Probiotic is the Source of Lactobacillus Bacteremia.

    PubMed

    Aroutcheva, Alla; Auclair, Julie; Frappier, Martin; Millette, Mathieu; Lolans, Karen; de Montigny, Danielle; Carrière, Serge; Sokalski, Stephen; Trick, William E; Weinstein, Robert A

    2016-03-01

    There has been an increasing interest in the use of probiotic products for the prevention of Clostridium difficile infection (CDI). Bio-K+(®) is a commercial probiotic product comprising three strains of lactobacilli-Lactobacillus acidophilus CL1285(®), Lact. casei LBC80R(®) and Lact. rhamnosus CLR2(®)-that have been applied to prevent CDI. Generally considered as safe, lactobacilli have potential to cause bacteremia, endocarditis and other infections. The source of Lactobacillus bacteremia can be normal human flora or lactobacilli-containing probiotic. The aim of this study was to assess whether probiotic lactobacilli caused bacteremia and to show the value of molecular identification and typing techniques to determine probiotic and patient strain relatedness. We report an episode of Lactobacillus bacteremia in a 69-year-old man admitted to a hospital with severe congestive heart failure. During his hospitalization, he required long-term antibiotic therapy. Additionally, the patient received Bio-K+(®) probiotic as part of a quality improvement project to prevent CDI. Subsequently, Lactobacillus bacteremia occurred. Two independent blinded laboratory evaluations, using pulse field gel electrophoresis, 16S rRNA gene sequencing and DNA fingerprint analysis (rep-PCR), were performed to determine whether the recovered Lact. acidophilus originated from the probiotic product. Ultimately, the patient strain was identified as Lact. casei and both laboratories found no genetic relation between the patient's strain and any of the probiotic lactobacilli. This clinical case of lactobacillus bacteremia in the setting of probiotic exposure demonstrates the value of using discriminatory molecular methods to clearly determine whether there were a link between the patient's isolate and the probiotic strains. PMID:26915093

  9. Hwangryun-Haedok-Tang Fermented with Lactobacillus casei Suppresses Ovariectomy-Induced Bone Loss

    PubMed Central

    Shim, Ki-Shuk; Kim, Taesoo; Ha, Hyunil; Cho, Chang-Won; Kim, Han Sung; Seo, Dong-Hyun; Ma, Jin Yeul

    2012-01-01

    Hwangryun-haedok-tang (HRT) is the common recipe in traditional Asian medicine, and microbial fermentation is used for the conventional methods for processing traditional medicine. We investigated the inhibitory effect of the n-butanol fraction of HRT (HRT-BU) and fHRT (fHRT-BU) on the RANKL-induced osteoclastogenesis in bone-marrow-derived macrophages. mRNA expression of osteoclastogenesis-related genes were evaluated by real-time QPCR. The activation of signaling pathways was determined by western blot analysis. The marker compounds of HRT-BU and fHRT-BU were analyzed by HPLC. The inhibitory effect of HRT or fHRT on ovariectomy-induced bone loss were evaluated using OVX rats with orally administered HRT, fHRT (300, 1000 mg/kg), or its vehicle for 12 weeks. fHRT-BU significantly inhibited RANKL-induced osteoclastogenesis, and phosphorylation of p38, IKKα/β, and NF-κBp65 compared to HRT-BU. In addition, fHRT-BU also significantly inhibited the mRNA expression of Nfκb2, TNF-α, NFATc1, TRAP, ATPv0d2, and cathepsin K. Furthermore, administration of fHRT had a greater effect on the increase of BMD, and greater improved bone microstructure of the femora than that of HRT in ovariectomy rats. This study demonstrated that bacterial fermentation enhances the inhibitory effect of HRT on osteoclastogenesis and bone loss. These results suggest that fermented HRT might have the beneficial effects on bone disease by inhibiting osteoclastogenesis. PMID:23082080

  10. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection. PMID:26340935

  11. Absence of cholic acid 7 alpha-dehydroxylase activity in the strains of Lactobacillus and Bifidobacterium.

    PubMed

    Takahashi, T; Morotomi, M

    1994-11-01

    To investigate the presence of 7 alpha-dehydroxylase activity on bile acids in the bacterial strains of fermented milk products, 46 strains of Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus gasseri, Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium longum, Lactococcus lactis spp. lactis, and Streptococcus salivarius spp. thermophilus were tested for their ability to produce deoxycholic acid from cholic acid. The production of deoxycholic acid was quantitatively measured by radiochromatographic analysis in anaerobically prepared washed whole resting cells and by HPLC analysis in growing cultures. Resting whole cells from a positive control strain, Eubacterium lentum-like strain c-25, converted 81.7% of .2 mM cholic acid to deoxycholic acid and 3.7% to 7-keto-deoxycholic acid, when the cell suspension was incubated anaerobically at a concentration of 2 mg of protein/ml for 4 h at pH 7.3. However, none of the test strains investigated in this study was able to transform cholic acid under the same conditions. In growing cultures, 91.5% of 150 micrograms/ml of cholic acid was transformed to deoxycholic acid and 1.1% to 7-keto-deoxycholic acid by E. lentum-like c-25 after a 7-d anaerobic incubation. None of the test strains showed production of either deoxycholic acid or 7-keto-deoxycholic acid as growing cultures. PMID:7814703

  12. Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya.

    PubMed

    Mathara, Julius Maina; Schillinger, Ulrich; Guigas, Claudia; Franz, Charles; Kutima, Phillip Museve; Mbugua, Samuel K; Shin, H-K; Holzapfel, Wilhelm H

    2008-08-15

    In this study functional characteristics of 23 representative Lactobacillus strains isolated from the Maasai traditional fermented milk 'Kule naoto' were determined. The Lb. acidophilus group strains showed resistance to gastric juice and bile. In addition, some Lb. acidophilus strains expressed bile salt hydrolase activity, and had ability to assimilate cholesterol in vitro. In-vitro adhesion to HT29 MTX cells of up to 70% was recorded. Lb. fermentum strains showed almost 100% survival under simulated stomach acidic conditions and physiological salt concentrations of bile salts, hydrophobicity values were over 80%. Most strains of the Lb. casei and Lb. acidophilus groups showed aggregation abilities of above 50%. Many strains expressed a protective effect against N-methyl-N'-nitro-N-nitrosoguanidine induced DNA damage according to the 'comet assay' and none was virulent. The antibiotic minimum inhibitory concentration of selected strains was established. According to these results, the Lactobacillus spp associated with 'Kule naoto', contain potentially probiotic (functional) strains. PMID:18539351

  13. Mucosally administered Lactobacillus surface-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) Induce broadly protective immune responses against divergent influenza subtypes.

    PubMed

    Li, Rui; Chowdhury, Mohammed Y E; Kim, Jae-Hoon; Kim, Tae-Hwan; Pathinayake, Prabuddha; Koo, Wan-Seo; Park, Min-Eun; Yoon, Ji-Eun; Roh, Jong-Bok; Hong, Seung-Pyo; Sung, Moon-Hee; Lee, Jong-Soo; Kim, Chul-Joong

    2015-09-30

    The development of a universal influenza vaccine that provides broad cross protection against existing and unforeseen influenza viruses is a critical challenge. In this study, we constructed and expressed conserved sM2 and HA2 influenza antigens with cholera toxin subunit A1 (CTA1) on the surface of Lactobacillus casei (pgsA-CTA1sM2HA2/L. casei). Oral and nasal administrations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and their isotypes (IgG1 & IgG2a) as well as mucosal IgA. The mucosal administration of pgsA-CTA1sM2HA2/L. casei may also significantly increase the levels of sM2- or HA2-specific cell-mediated immunity because increased release of both IFN-γ and IL-4 was observed. The recombinant pgsA-CTA1sM2HA2/L. casei provided better protection of BALB/c mice against 10 times the 50% mouse lethal doses (MLD50) of homologous A/EM/Korea/W149/06(H5N1) or A/Aquatic bird/Korea/W81/2005 (H5N2) and heterologous A/Puerto Rico/8/34(H1N1), or A/Chicken/Korea/116/2004(H9N2) or A/Philippines/2/08(H3N2) viruses, compared with L. casei harboring sM2HA2 and also the protection was maintained up to seven months after administration. These results indicate that recombinant L. casei expressing the highly conserved sM2, HA2 of influenza and CTA1 as a mucosal adjuvant could be a potential mucosal vaccine candidate or tool to protect against divergent influenza viruses for human and animal. PMID:26210951

  14. Brevibacterium casei as a Cause of Brain Abscess in an Immunocompetent Patient ▿

    PubMed Central

    Kumar, V. Anil; Augustine, Deepthi; Panikar, Dilip; Nandakumar, Aswathy; Dinesh, Kavitha R.; Karim, Shamsul; Philip, Rosamma

    2011-01-01

    Coryneform bacteria belonging to the genus Brevibacterium have emerged as opportunistic pathogens. Of the nine known species of Brevibacterium isolated from human clinical samples, Brevibacterium casei is the most frequently reported species from clinical specimens. We report the first case of B. casei brain abscess in an immunocompetent patient successfully treated by surgery and antimicrobial therapy. PMID:22012007

  15. Bioactivity characterization of Lactobacillus strains isolated from dairy products.

    PubMed

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Khosroushahi, Ahmad Yari

    2015-10-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  16. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    PubMed Central

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  17. Labeling quality and molecular characterization studies of products containing Lactobacillus spp. strains.

    PubMed

    Blandino, Giovanna; Fazio, Davide; Petronio, Giulio Petronio; Inturri, Rosanna; Tempera, Gianna; Furneri, Pio Maria

    2016-03-01

    The objective of the study was to characterize at species level by phenotypic and different molecular methods the strains of Lactobacillus spp. used as constituents of five oral and four vaginal products. Susceptibilities to representative antibiotics were evaluated. In addition, total viable counts at mid and 3 months to deadline of shelf life, in the different formulations and the presence of eventual contaminant microorganisms were investigated.In all oral products the molecular characterization at species level of the strains of Lactobacillus spp. confirmed the strains stated on the label, except for one strain cited on the label as Lactobacillus casei, that our study characterized as Lactobacillus paracasei. In oral products total viable cell content complied with content claimed on the label. In three out four vaginal products (one product claimed "bacillo di Döderlein"), molecular characterization complied with the bacterial name stated on the label. Two vaginal products reported viable counts on the label that were confirmed by our study. The other vaginal products, which did not report bacterial counts on the label, showed a similar decrease of viable counts at different dates to deadline compared to the others. From all the tested products, contaminant microorganisms and acquired resistance to representative antibiotics by the probiotic strains were not detected. PMID:26667227

  18. Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries

    PubMed Central

    Byun, Roy; Nadkarni, Mangala A.; Chhour, Kim-Ly; Martin, F. Elizabeth; Jacques, Nicholas A.; Hunter, Neil

    2004-01-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion. PMID:15243071

  19. Accumulation of polyphosphate in Lactobacillus spp. and its involvement in stress resistance.

    PubMed

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel; Monedero, Vicente

    2014-03-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  20. Accumulation of Polyphosphate in Lactobacillus spp. and Its Involvement in Stress Resistance

    PubMed Central

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel

    2014-01-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  1. Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota.

    PubMed

    Rossi, Maddalena; Martínez-Martínez, Daniel; Amaretti, Alberto; Ulrici, Alessandro; Raimondi, Stefano; Moya, Andrés

    2016-06-01

    The genus Lactobacillus includes over 215 species that colonize plants, foods, sewage and the gastrointestinal tract (GIT) of humans and animals. In the GIT, Lactobacillus population can be made by true inhabitants or by bacteria occasionally ingested with fermented or spoiled foods, or with probiotics. This study longitudinally surveyed Lactobacillus species and strains in the feces of a healthy subject through whole genome sequencing (WGS) data-mining, in order to identify members of the permanent or transient populations. In three time-points (0, 670 and 700 d), 58 different species were identified, 16 of them being retrieved for the first time in human feces. L. rhamnosus, L. ruminis, L. delbrueckii, L. plantarum, L. casei and L. acidophilus were the most represented, with estimated amounts ranging between 6 and 8 Log (cells g(-1) ), while the other were detected at 4 or 5 Log (cells g(-1) ). 86 Lactobacillus strains belonging to 52 species were identified. 43 seemingly occupied the GIT as true residents, since were detected in a time span of almost 2 years in all the three samples or in 2 samples separated by 670 or 700 d. As a whole, a stable community of lactobacilli was disclosed, with wide and understudied biodiversity. PMID:27043715

  2. Human infections caused by Brevibacterium casei, formerly CDC groups B-1 and B-3.

    PubMed Central

    Gruner, E; Steigerwalt, A G; Hollis, D G; Weyant, R S; Weaver, R E; Moss, C W; Daneshvar, M; Brown, J M; Brenner, D J

    1994-01-01

    Forty-one clinical strains of CDC coryneform groups B-1 and B-3 were compared biochemically, by analysis of cell wall sugars, amino acids, and cellular fatty acids, and by DNA relatedness to the type strains of Brevibacterium casei, Brevibacterium epidermidis, and Brevibacterium linens. Twenty-two strains were shown to be B. casei, while five other strains formed a phenotypically inseparable genomospecies in the same genus. The remaining isolates were genetically heterogeneous, and most are probably members of the genus Brevibacterium. They were not further identified, but they were biochemically distinguishable from B. casei. Eleven of the clinical strains of B. casei were isolated from blood, and two each were isolated from cerebrospinal fluid and from pleural fluid. At least five isolates were from multiple blood or cerebrospinal fluid cultures. To our knowledge, these strains are the first described clinical isolates identified as B. casei, which was previously considered to be a nonpathogenic species. PMID:8077397

  3. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. PMID:26709174

  4. Gut health promoting activity of new putative probiotic/protective Lactobacillus spp. strains: a functional study in the small intestinal cell model.

    PubMed

    Nissen, Lorenzo; Chingwaru, Walter; Sgorbati, Barbara; Biavati, Bruno; Cencic, Avrelija

    2009-11-15

    In interaction studies with the host intestine, the use of the appropriate gut functional cell model is essential. Therefore, we examined the protective properties of selected lactobacilli in a newly established intestinal cell model. Bacteria were cocultured with the pig small intestinal epithelial cells (PSIc1) and pig blood monocytes (PoM2) in a functional intestinal cell model. Intercellular intestinal integrity was measured by transepithelial electrical resistance (TER), before and after coculture with selected bacterial strains. All selected bacterial strains showed important gut health promoting activity by: enhancing the intestinal integrity and increasing metabolic activity of intestinal cells. Stimulation of immune response was strain specific. The best stimulants were unidentified lactobacillus strains obtained from fermented food in Africa (PCK87 and 66), followed by Lactobacillus plantarum (PCS26). Their activity was significantly higher (p<0.05) than that of the commercial Lactobacillus casei Shirota strain. PMID:19775767

  5. Incorporation of Lactobacillus adjuncts culture to improve the quality of Feta-type cheese made using buffalo milk.

    PubMed

    Kumar, Sanjeev; Kanawjia, Suresh K; Kumar, Suryamani

    2015-08-01

    Feta-type cheese was made from buffalo milk using commercial adjunct culture of Lactobacillus helveticus and Lactobacillus casei along with standard mesophillic cheese cultures. The sensory, biochemical and texture characteristics of the experimental cheeses were studied during ripening. Expert panellists observed, significant differences (P < 0.01) between the control and the experimental cheeses. The pH, titratable acidity, soluble protein and free fatty acid content of the experimental cheeses were found to be significantly (P < 0.01) higher than those of the control. The texture parameter values of the experimental cheeses were found to be significantly (P < 0.01) lower than values of the control. PMID:26243922

  6. Practical identification of human originated Lactobacillus species by amplified ribosomal DNA restriction analysis (ARDRA) for probiotic use.

    PubMed

    Öztürk, Mehmet; Meterelliyöz, Merve

    2015-08-01

    Probiotics are gaining popularity and increasing the importance of their accurate speciation. Lactobacillus species are commonly used as probiotic strains mostly of clinical importance. Present knowledge indicates that at least 14 Lactobacillus species are associated with the human intestinal tract. Currently, researchers are interested in developing efficient techniques for screening and selecting probiotics bacteria, but unfortunately most of these methods are time-consuming, labor-intensive and costly. The aim of this study is to develop reliable, rapid and accurate method to identify 14 references Lactobacillus species that could have been found in the human alimentary tract by 16S ribosomal DNA restriction analysis. In this study, to develop an effective method for the genotype-based identification of the reference Lactobacillus species, 1.5 kb of 16S rRNA nucleotide sequences of 14 Lactobacillus were collected from the Gene Bank aligned, in silico restricted and analyzed in respect to their 16S-rRNA restriction fragment polymorphism. In silico restriction profiles of 16S-rRNA indicated that FspBI, HinfI and DraI restriction enzymes (RE) are convenient for differentiation of 14 Lactobacillus species in human intestinal tract except Lb. casei and Lb. paracasei. The patterns of our experimental findings obtained from 16S PCR-ARDRA completely confirmed our in silico patterns. The present work demonstrated that 16S PCR-ARDRA method with FspBI, HinfI and DraI RE is a rapid, accurate and reliable method for the identification of Lactobacillus species from human alimentary tract, especially during the identification of large numbers of isolates and any laboratory equipped with a thermo cycler for probiotic use. PMID:25860079

  7. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture.

    PubMed Central

    Coconnier, M H; Klaenhammer, T R; Kernéis, S; Bernet, M F; Servin, A L

    1992-01-01

    The adhesion of Lactobacillus acidophilus BG2FO4, a human stool isolate, to two human enterocytelike cell lines (Caco-2 and HT-29) and to the mucus secreted by a subpopulation of mucus-secreting HT29-MTX cells was investigated. Scanning electron microscopy revealed that the bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage and with the mucus secreted by the subpopulation of HT29-MTX cells. The adhesion to Caco-2 cells did not require calcium and involved an adhesion-promoting factor that was present in the spent supernatant of L. acidophilus cultures. This factor promoted adhesion of poorly adhering human Lactobacillus casei GG but did not promote adhesion of L. casei CNRZ 387, a strain of dairy origin. The adherence components on the bacterial cells and in the spent supernatant were partially characterized. Carbohydrates on the bacterial cell wall appeared to be partly responsible for the interaction between the bacteria and the extracellular adhesion-promoting factor. The adhesion-promoting factor was proteinaceous, since trypsin treatment dramatically decreased the adhesion of the L. acidophilus strain. The adhesion-promoting factor may be an important component of Lactobacillus species that colonize the gastrointestinal tract. Images PMID:1622282

  8. The potential of the endolysin Lysdb from Lactobacillus delbrueckii phage for combating Staphylococcus aureus during cheese manufacture from raw milk.

    PubMed

    Guo, Tingting; Xin, YongPing; Zhang, Chenchen; Ouyang, Xudong; Kong, Jian

    2016-04-01

    Phage endolysins have received increased attention in recent times as potential antibacterial agents and the biopreservatives in food production processes. Staphylococcus aureus is one of the most common pathogens in bacterial food poisoning outbreaks. In this study, the endolysin Lysdb, one of the two-component cell lysis cassette of Lactobacillus delbrueckii phage phiLdb, was shown to possess a muramidase domain and catalytic sites with homology to Chalaropsis-type lysozymes. Peptidoglycan hydrolytic bond specificity determination revealed that Lysdb was able to cleave the 6-O-acetylated peptidoglycans present in the cell walls of S. aureus. Turbidity reduction assays demonstrated that Lysdb could effectively lyse the S. aureus live cells under acidic and mesothermal conditions. To further evaluate the ability of Lysdb as a potential antibacterial agent against S. aureus in cheese manufacture, Lactobacillus casei BL23 was engineered to constitutively deliver active Lysdb to challenge S. aureus in lab-scale cheese making from raw milk. Compared with the raw milk, the viable counts of S. aureus were reduced by 10(5)-fold in the cheese inoculated with the engineered L. casei strain during the fermentation process, and the pathogenic bacterial numbers remained at a low level (10(4) CFU/g) after 6 weeks of ripening at 10 °C. Taken together, all results indicated that the Lysdb has the function as an effective tool for combating S. aureus during cheese manufacture from raw milk. PMID:26621799

  9. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera

    PubMed Central

    Alsterfjord, Magnus; Nilson, Bo; Butler, Èile; Vásquez, Alejandra

    2014-01-01

    We previously discovered a symbiotic lactic acid bacterial (LAB) microbiota in the honey stomach of the honeybee Apis mellifera. The microbiota was composed of several phylotypes of Bifidobacterium and Lactobacillus. 16S rRNA gene sequence analyses and phenotypic and genetic characteristics revealed that the phylotypes isolated represent seven novel species. One grouped with Lactobacillus kunkeei and the others belong to the Lactobacillus buchneri and Lactobacillus delbrueckiisubgroups of Lactobacillus. We propose the names Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov. for these novel species, with the respective type strains being Fhon13NT ( = DSM 26257T = CCUG 63287T), Bin4NT ( = DSM 26254T = CCUG 63291T), Hon2NT ( = DSM 26255T = CCUG 63289T), Hma8NT ( = DSM 26256T = CCUG 63629T), Hma2NT ( = DSM 26263T = CCUG 63633T), Bma5NT ( = DSM 26265T = CCUG 63301T) and Biut2NT ( = DSM 26262T = CCUG 63631T). PMID:24944337

  10. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera.

    PubMed

    Olofsson, Tobias C; Alsterfjord, Magnus; Nilson, Bo; Butler, Eile; Vásquez, Alejandra

    2014-09-01

    We previously discovered a symbiotic lactic acid bacterial (LAB) microbiota in the honey stomach of the honeybee Apis mellifera. The microbiota was composed of several phylotypes of Bifidobacterium and Lactobacillus. 16S rRNA gene sequence analyses and phenotypic and genetic characteristics revealed that the phylotypes isolated represent seven novel species. One grouped with Lactobacillus kunkeei and the others belong to the Lactobacillus buchneri and Lactobacillus delbrueckii subgroups of Lactobacillus. We propose the names Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov. for these novel species, with the respective type strains being Fhon13N(T) ( = DSM 26257(T) = CCUG 63287(T)), Bin4N(T) ( = DSM 26254(T) = CCUG 63291(T)), Hon2N(T) ( = DSM 26255(T) = CCUG 63289(T)), Hma8N(T) ( = DSM 26256(T) = CCUG 63629(T)), Hma2N(T) ( = DSM 26263(T) = CCUG 63633(T)), Bma5N(T) ( = DSM 26265(T) = CCUG 63301(T)) and Biut2N(T) ( = DSM 26262(T) = CCUG 63631(T)). PMID:24944337

  11. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa

    PubMed Central

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-01-01

    Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. Materials and Methods: A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. Results: The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Conclusions: Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections. PMID:26034539

  12. Quality control Lactobacillus strains for use with the API 50CH and API ZYM systems at 37 degrees C.

    PubMed

    Charteris, W P; Kelly, P M; Morelli, L; Collins, J K

    2001-01-01

    The API 50CH and API ZYM systems fulfil an important role in the polyphasic taxonomic identification of lactobacilli. When the API 50CH fermentation profile of the quality control Lactobacillus casei var. alactosus (Lb. paracasei subsp. paracasei) strain NCFB 206 was determined at 37 degrees C, it was found to differ from that determined at 30 degrees C by BioMéreiux SA (Montalieu Vercieu, France) and the National Collection of Food Bacteria (Aberdeen, Scotland). In addition, the API 50CH fermentation and API ZYM profiles of Lb. casei strain ATCC 334T determined at 37 degrees C differed from those determined at 30 degrees C by Lee and Simard (1984). Strains NCFB 206 and ATCC 334T were thus assumed to exhibit temperature-dependent variation in fermentation profile, a phenomenon recently described by Nigatu et al. (2000). In contrast, Lb. rhamnosus strain ATCC 243T did not exhibit temperature-dependent variation in fermentation profile. Moreover, the fermentation profile obtained at 37 degrees C differed in only one respect (positive beta-gentiobiose utilisation) from that published by Collins et al. (1989). In addition, Lactobacillus strain GG produced a stable and reproducible API ZYM profile at 37 degrees C, although some variation in the level of enzyme activity was evident. Thus, strain NCFB 206 was replaced by strain ATCC 243T as the quality control strain of choice for use with the API 50CH fermentation system, and Lactobacillus strain GG adopted for use as a quality control strain with the API ZYM system for strain identification of lactobacilli at 37 degrees C. The API 50CH and API ZYM profiles of the commercially important Lactobacillus strains NCFB 1748, GG, KLD, F19, and ACA-DC 212.3 were determined at 37 degrees C after anaerobic growth in MRS broth. The fermentation and enzyme profiles of strain NCFB 1748 were almost identical to those of Lb. crispatus ATCC 33820T, those of strain GG were found to be more similar to those of Lb. rhamnosus strain 243T than Lb. zeae strain ATCC 15820T, those of strain KLD were most similar to those of Lb. fermentum DSM 20052T, while those of strains F19 and ACA-DC 212.3 were similar to those of Lb. casei strain ATCC 334T. PMID:11688210

  13. Examination of the technological properties of newly isolated strains of the genus Lactobacillus and possibilities for their application in the composition of starters

    PubMed Central

    Denkova, Rositsa; Ilieva, Svetla; Denkova, Zapryana; Georgieva, Ljubka; Krastanov, Albert

    2014-01-01

    The ability of four Lactobacillus strains – Lactobacillus brevis LBRZ7 (isolated from fermented cabbage), Lactobacillus plantarum LBRZ12 (isolated from fermented cabbage), Lactobacillus fermentum LBRH9 (of human origin) and Lactobacillus casei ssp. rhamnosus LBRC11 (isolated from home-made cheese) – to grow in flour/water environment and to accumulate high concentrations of viable cells was examined. Two starters for sourdough were created for lab-scale production of wheat bread: a two-strain starter and a four-strain starter. Wheat bread with improved properties – greater loaf volume, enhanced flavour and softer and brighter crumb – was obtained from the 7% four-strain starter sourdough. The addition of sourdough in the production of wheat bread affected positively the technological and organoleptic characteristics of the final bread by inhibiting the growth of wild yeasts and mold and Bacillus spores without the addition of preservatives. The inclusion of 15% of the four-strain starter sourdough in the bread-making process led to enhanced safety and longer shelf life of the baked bread. PMID:26019534

  14. Lactobacillus Adhesion to Mucus

    PubMed Central

    Tassell, Maxwell L. Van; Miller, Michael J.

    2011-01-01

    Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host. PMID:22254114

  15. Coexpression and Secretion of Endoglucanase and Phytase Genes in Lactobacillus reuteri

    PubMed Central

    Wang, Lei; Yang, Yuxin; Cai, Bei; Cao, Pinghua; Yang, Mingming; Chen, Yulin

    2014-01-01

    A multifunctional transgenic Lactobacillus with probiotic characteristics and an ability to degrade β-glucan and phytic acid (phytate) was engineered to improve nutrient utilization, increase production performance and decrease digestive diseases in broiler chickens. The Bacillus subtilis WL001 endoglucanase gene (celW) and Aspergillus fumigatus WL002 phytase gene (phyW) mature peptide (phyWM) were cloned into an expression vector with the lactate dehydrogenase promoter of Lactobacillus casei and the secretion signal peptide of the Lactococcus lactis usp45 gene. This construct was then transformed into Lactobacillus reuteri XC1 that had been isolated from the gastrointestinal tract of broilers. Heterologous enzyme production and feed effectiveness of this genetically modified L. reuteri strain were investigated and evaluated. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that the molecular mass of phyWM and celW was approximately 48.2 and 55 kDa, respectively, consistent with their predicted molecular weights. Endoglucanase and phytase activities in the extracellular fraction of the transformed L. reuteri culture were 0.68 and 0.42 U/mL, respectively. Transformed L. reuteri improved the feed conversion ratio of broilers from 21 to 42 days of age and over the whole feeding period. However, there was no effect on body weight gain and feed intake of chicks. Transformed L. reuteri supplementation improved levels of ash, calcium and phosphorus in tibiae at day 21 and of phosphorus at day 42. In addition, populations of Escherichia coli, Veillonella spp. and Bacteroides vulgatus were decreased, while populations of Bifidobacterium genus and Lactobacillus spp. were increased in the cecum at day 21. PMID:25050780

  16. DNA probe for lactobacillus delbrueckii

    SciTech Connect

    Delley, M.; Mollet, B.; Hottinger, H. )

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  17. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  18. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  19. Lactobacillus rhamnosus GG induces tumor regression in mice bearing orthotopic bladder tumors.

    PubMed

    Seow, Shih Wee; Cai, Shirong; Rahmat, Juwita N; Bay, Boon Huat; Lee, Yuan Kun; Chan, Yiong Huak; Mahendran, Ratha

    2010-03-01

    The present gold standard for bladder cancer is Mycobacterium bovis, Bacillus Calmette Guerin (BCG) immunotherapy. But it has a non-responder rate of 30-50% and side effects are common. Lactobacillus casei strain Shirota has been reported to reduce the incidence of recurrence in bladder cancer patients and to cure tumor-bearing mice. Our aim was to determine if Lactobacillus rhamnosus GG (LGG) could be as efficacious as BCG in a murine model of bladder cancer. MB49 bladder cancer cells secreting human prostate-specific antigen were implanted orthotopically in female C57BL/6 mice and urinary prostate-specific antigen levels were used as a marker of tumor growth. Mice were treated with either live or lyophilized LGG given via intravesical instillation, or both oral and intravesical LGG given once a week for a period of 6 weeks starting at day 4 after tumor implantation. A comparison of LGG and BCG immunotherapy was also carried out. LGG therapy (live or lyophilized) significantly (P = 0.006) increased the number of cured mice. Cytokine arrays and immune cell recruitment analysis revealed differences between untreated, treated, cured, and tumor-bearing mice. LGG therapy restored XCL1 levels to those in healthy bladders. LGG also recruited large numbers of neutrophils and macrophages to the tumor site. Intravesical LGG and BCG immunotherapy had cure rates of 89 and 77%, respectively, compared with 20% in untreated mice. LGG has the potential to replace BCG immunotherapy for the treatment of bladder cancer. PMID:20015287

  20. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains.

    PubMed

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  1. CASEI Project (Consultation and Administration Specialists in Early Intervention) Final Report.

    ERIC Educational Resources Information Center

    Ostrosky, Michaelene M.

    This final report describes the activities and accomplishments of the Consultation and Administration Specialists in Early Intervention Project (CASEI). This federally funded project was developed to provide cross-disciplinary preservice training for early intervention (EI) specialists in Illinois. Students were recruited from a broad range of

  2. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer.

    PubMed

    Matsumoto, S; Hara, T; Nagaoka, M; Mike, A; Mitsuyama, K; Sako, T; Yamamoto, M; Kado, S; Takada, T

    2009-09-01

    Interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signals play key roles in the pathogenesis of inflammatory bowel disease (IBD). We previously described that both intact cells and a cell wall-derived polysaccharide-peptidoglycan complex (PSPG) in a strain of lactobacillus [Lactobacillus casei Shirota (LcS)] inhibited IL-6 production in lipopolysaccharide (LPS)-stimulated lamina propria mononuclear cells (LPMCs) isolated from murine IBD. Diets with LcS improve murine IBD by suppression of IL-6 synthesis in LPMCs. Moreover, LcS supplementation with fermented milk ameliorates disease activity in patients with active ulcerative colitis. Here, we focused on the specific roles of PSPG in LcS concerning their anti-inflammatory actions. PSPG derived from LcS, and no other strain of lactobacilli, inhibited IL-6 production in LPS-stimulated murine IBD LPMCs. Purified PSPG-I from LcS inhibited IL-6 synthesis in LPS-stimulated murine IBD LPMCs through the inhibition of nuclear factor-kappaB. The anti-IL-6 action of LcS PSPG was abrogated by masking with monoclonal anti-PSPG-I. Furthermore, PSPG-I-negative L. casei strains (PSPG-I-negative mutant LcS: LC(DeltaPSPG-I), L. casei ATCC 334) did not inhibit IL-6 production. Finally, we confirmed the effects of PSPG-I on LcS in the models of both IBD and colitis-associated cancer (CAC). In the IBD model, ingestion of LcS improved ileitis and inhibited activation of IL-6/STAT3 signaling, while ingestion of the LC(DeltaPSPG-I) strain did not. In the CAC model, treatment with LcS, but not the LC(DeltaPSPG-I) strain, showed tumour-suppressive effects with an inhibition of IL-6 production in the colonic mucosa. These results suggested that a specific polysaccharide component in an L. casei strain plays a crucial role in its anti-inflammatory actions in chronic intestinal inflammatory disorders. PMID:19740306

  3. Rapid identification of Lactobacillus nantensis, Lactobacillus spicheri and Lactobacillus hammesii species using species-specific primers.

    PubMed

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-04-30

    Based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR), an identification tool for rapid differentiation of Lactobacillus nantensis, Lactobacillus spicheri and Lactobacillus hammesii, species isolated recently from French sourdough was developed. The DNA fragments containing ISRs were amplified with primers pairs 16S/p2 and 23S/p7. Clone libraries of the PCR-amplified rDNA with these primers were constructed using a pCR2.1 TA cloning kit and sequenced. The DNA sequences obtained were analyzed and species-specific primers were designed from these sequences. Two PCR amplicons, which were designated small ISR (S-ISR) and large ISR (L-ISR), were obtained for all Lactobacillus species studied. The L-ISR sequence reveale2d the presence of two tRNA genes, tRNAAla and tRNAIle. Species-specific primers designed allowed rapid identification of these species. The specificity of these primers was positively demonstrated as no response was obtained for more than 200 other species tested. PMID:18378031

  4. Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis

    PubMed Central

    Delgado, Susana; Leite, Analy M. O.; Ruas-Madiedo, Patricia; Mayo, Baltasar

    2015-01-01

    This work characterizes a set of lactobacilli strains isolated from the stomach of healthy humans that might serve as probiotic cultures. Ten different strains were recognized by rep-PCR and PFGE fingerprinting among 19 isolates from gastric biopsies and stomach juice samples. These strains belonged to five species, Lactobacillus gasseri (3), Lactobacillus reuteri (2), Lactobacillus vaginalis (2), Lactobacillus fermentum (2) and Lactobacillus casei (1). All ten strains were subjected to a series of in vitro tests to assess their functional and technological properties, including acid resistance, bile tolerance, adhesion to epithelial gastric cells, production of antimicrobial compounds, inhibition of Helicobacter pylori, antioxidative activity, antibiotic resistance, carbohydrate fermentation, glycosidic activities, and ability to grow in milk. As expected, given their origin, all strains showed good resistance to low pH (3.0), with small reductions in counts after 90 min exposition to this pH. Species- and strain-specific differences were detected in terms of the production of antimicrobials, antagonistic effects toward H. pylori, antioxidative activity and adhesion to gastric epithelial cells. None of the strains showed atypical resistance to a series of 16 antibiotics of clinical and veterinary importance. Two L. reuteri strains were deemed as the most appropriate candidates to be used as potential probiotics against microbial gastric disorders; these showed good survival under gastrointestinal conditions reproduced in vitro, along with strong anti-Helicobacter and antioxidative activities. The two L. reuteri strains further displayed appropriated technological traits for their inclusion as adjunct functional cultures in fermented dairy products. PMID:25642213

  5. Probiotics Lactobacillus rhamnosus GG, Lactobacillus acidophilus suppresses DMH-induced procarcinogenic fecal enzymes and preneoplastic aberrant crypt foci in early colon carcinogenesis in Sprague Dawley rats.

    PubMed

    Verma, Angela; Shukla, Geeta

    2013-01-01

    Diet makes an important contribution to colorectal cancer (CRC) risk implying risks for CRC are potentially reducible. Therefore, the probiotics have been suggested as the prophylactic measure in colon cancer. In this study, different probiotics were used to compare their protective potential against 1,2 dimethylhydrazine dihydrochloride (DMH)-induced chemical colon carcinogenesis in Sprague Dawley rats. Animals belonging to different probiotic groups were fed orally with 1 × 10(9) lactobacilli daily for 1 week, and then a weekly injection of DMH was given intraperitoneally for 6 wks with daily administration of probiotic. Lactobacillus GG and L.acidophilus + DMH-treated animals had maximum percent reduction in ACF counts. A significant decrease (P < 0.05) in fecal nitroreductase activity was observed in L.casei + DMH and L.plantarum + DMH-treated rats whereas β-glucuronidase activity decreased in L.GG + DMH and L.acidophilus + DMH-treated rats. Animals treated with Bifidobacterium bifidum + DMH had significant decreased β-glucosidase activity. However, not much difference was observed in the colon morphology of animals belonging to various probiotic + DMH-treated rats compared with DMH-treated alone. The results indicated that probiotics, L.GG, and L.acidophilus can be used as the better prophylactic agents for experimental colon carcinogenesis. PMID:23368917

  6. Detection, partial purification and characterization of bacteriocin produced by Lactobacillus brevis FPTLB3 isolated from freshwater fish: Bacteriocin from Lb. brevis FPTLB3.

    PubMed

    Banerjee, Shiba Prosad; Dora, Krushna Chandra; Chowdhury, Supratim

    2013-02-01

    Lactobacillus brevis FPTLB3 was isolated from freshwater fish, capable of producing bacteriocin that had broad spectrum of inhibition (3200 AU/ml) against Escherichia coli MTCC 1563, Enterococcus faecalis MTCC 2729, Lactobacillus casei MTCC 1423, Lactobacillus sakei ATCC 15521 and Staphylococcus aureus ATCC 25923. The antimicrobial activity of crude supernatant fluid was stable after heating at 121 °C for 60 min and declined thereafter. Stability of antimicrobial activity was observed at pH range of 2.0 to 8.0. Its active principle was proteinaceous in nature since the bacteriocin was inactivated by proteolytic enzymes, but not by other non-proteolytic enzymes. Mitomycin C and UV light did not affect the activity of the bacteriocin, while chloroform extraction completely destroyed their activity. Exposure to surfactant resulted in an increase in titre, except Nonidet P-40, which led to total loss of activity. No bacteriocin adsorption was detected at pH 1 to 2, whereas 100% bacteriocin adsorption was found at pH 6.5. Based on Tricine SDS-PAGE the estimated molecular mass of bacteriocin was 54 kDa. No plasmid was found to present in the isolate. PMID:24425883

  7. Genome Sequence of Lactobacillus versmoldensis KCTC 3814

    PubMed Central

    Kim, Dae-Soo; Choi, Sang-Haeng; Kim, Dong-Wook; Kim, Ryong Nam; Nam, Seong-Hyeuk; Kang, Aram; Kim, Aeri; Park, Hong-Seog

    2011-01-01

    Lactobacillus versmoldensis KCTC 3814 was isolated from raw fermented poultry salami. The species was present in high numbers and frequently dominated the lactic acid bacteria (LAB) populations of the products. Here, we announce the draft genome sequence of Lactobacillus versmoldensis KCTC 3814, isolated from poultry salami, and describe major findings from its annotation. PMID:21914893

  8. Gut Balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals

    PubMed Central

    West, Nicholas P.; Pyne, David B.; Cripps, Allan; Christophersen, Claus T.; Conlon, Michael A.; Fricker, Peter A.

    2012-01-01

    Synbiotic supplements, which contain multiple functional ingredients, may enhance the immune system more than the use of individual ingredients alone. A double blind active controlled parallel trial over a 21 day exercise training period was conducted to evaluate the effect of Gut BalanceTM, which contains Lactobacillus paracasei subsp paracasei (L. casei 431®), Bifidobacterium animalis ssp lactis (BB-12®), Lactobacillus acidophilus (LA-5®), Lactobacillus rhamnosus (LGG®), two prebiotics (raftiline and raftilose) and bovine whey derived lactoferrin and immunoglobulins with acacia gum on fecal microbiota, short chain fatty acids (SCFA), gut permeability, salivary lactoferrin and serum cytokines. All subjects randomized were included in the analysis. There was a 9-fold (1.2-fold to 64-fold; 95% confidence intervals p = 0.03) greater increase in fecal L. paracasei numbers with Gut BalanceTM compared with acacia gum supplementation. Gut BalanceTM was associated with a 50% (-12% to 72%; p = 0.02) smaller increase in the concentration of serum IL-16 in comparison to acacia gum from pre- to post-study. No substantial effects of either supplement were evident in fecal SCFA concentrations, measures of mucosal immunity or GI permeability. Clinical studies are now required to determine whether Gut BalanceTM may exert beneficial GI health effects by increasing the recovery of fecal L. paracasei. Both supplements had little effect on immunity. Twenty-two healthy physically active male subjects (mean age = 33.9 ± 6.5 y) were randomly allocated to either daily prebiotic or synbiotic supplementation for 21 day. Saliva, blood, urine and fecal samples were collected pre-, mid- and post-intervention. Participants recorded patterns of physical activity on a self-reported questionnaire. PMID:22572834

  9. Oxygen-Dependent Regulation of the Expression of the Catalase Gene katA of Lactobacillus sakei LTH677

    PubMed Central

    Hertel, Christian; Schmidt, Gudrun; Fischer, Marc; Oellers, Katja; Hammes, Walter P.

    1998-01-01

    The catalase gene katA of Lactobacillus sakei LTH677 was cloned and expressed in Escherichia coli UM2, Lactobacillus casei LK1, and Lactobacillus curvatus LTH1432. The last host is a catalase-deficient plasmid-cured derivative of a starter organism used in meat fermentation. The regulation of katA expression was found to be the same in L. sakei LTH677 and the recombinant strains. The addition of H2O2 to anaerobic cultures, as well as a switch to aerobic conditions, resulted in a strong increase in KatA activity. The expression was investigated in more detail with L. sakei LTH677 and L. curvatus LTH4002. The recombinant strain LTH4002 did not accumulate H2O2 under glucose-limited aerobic conditions and remained viable in the stationary phase. Under inductive conditions, the katA-specific mRNA and the apoenzyme were synthesized de novo. Deletion derivatives of the katA promoter were produced, and the regulatory response was investigated by fusion to the β-glucuronidase reporter gene gusA and expression in L. sakei LTH677. The fact that gene expression was subject to induction was confirmed at the level of transcription and protein synthesis. A small putative regulatory sequence of at least 25 bp was identified located upstream of the −35 site. Competition experiments performed with L. sakei LTH677 harboring the fusion constructs consisting of the katA promoter and gusA revealed that an activator protein is involved in the transcriptional induction of katA. PMID:9546173

  10. Gut Balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals.

    PubMed

    West, Nicholas P; Pyne, David B; Cripps, Allan W; Christophersen, Claus T; Conlon, Michael A; Fricker, Peter A

    2012-01-01

    Synbiotic supplements, which contain multiple functional ingredients, may enhance the immune system more than the use of individual ingredients alone. A double blind active controlled parallel trial over a 21 d exercise training period was conducted to evaluate the effect of Gut Balance™, which contains Lactobacillus paracasei subsp. paracasei (L. casei 431®), Bifidobacterium animalis ssp. lactis (BB-12®), Lactobacillus acidophilus (LA-5®), Lactobacillus rhamnosus (LGG®), two prebiotics (raftiline and raftilose) and bovine whey derived lactoferrin and immunoglobulins with acacia gum on fecal microbiota, short chain fatty acids (SCFA), gut permeability, salivary lactoferrin and serum cytokines. All subjects randomized were included in the analysis. There was a 9-fold (1.2-fold to 64-fold; 95% confidence intervals p = 0.03) greater increase in fecal L. paracasei numbers with Gut Balance™ compared with acacia gum supplementation. Gut Balance™ was associated with a 50% (-12% to 72%; p = 0.02) smaller increase in the concentration of serum IL-16 in comparison to acacia gum from pre- to post-study. No substantial effects of either supplement were evident in fecal SCFA concentrations, measures of mucosal immunity or GI permeability. Clinical studies are now required to determine whether Gut Balance™ may exert beneficial GI health effects by increasing the recovery of fecal L. paracasei. Both supplements had little effect on immunity. Twenty two healthy physically active male subjects (mean age = 33.9 ± 6.5y) were randomly allocated to either daily prebiotic or synbiotic supplementation for 21 d. Saliva, blood, urine and fecal samples were collected pre-, mid and post-intervention. Participants recorded patterns of physical activity on a self-reported questionnaire. PMID:22572834

  11. Differential Sensitivity of Lactobacillus spp. to Inhibition by Candidate Topical Microbicides.

    PubMed

    Anderson, Robert A; Aroutcheva, Alla; Feathergill, Kenneth A; Anderson, Amillia B

    2009-06-01

    Preclinical evaluation of vaginal microbicides includes screening against lactobacilli. However, there is no consensus regarding the species to be tested. This study was carried out to determine if results with one species would apply to other species, and to evaluate the utility of turbidometry as a screening tool. One current (PPCM; previously designated sulfuric acid-modified mandelic acid, SAMMA) and two former (cellulose sulfate, CS; and polystyrene sulfonate, PSS) candidate microbicides were evaluated. Bacterial growth was measured turbidometrically and by direct cell count. No microbicide affected Lact. gasseri, measured by either method. Apparent inhibition of Lact. jensenii by CS, PSS, and PPCM, and of Lact. crispatus by CS, occurred with turbidometric measurement. This was not substantiated with direct cell count. PSS and PPCM inhibited Lact. crispatus and Lact. acidophilus with both methods. These findings agree with results from vaginal isolates, which included Lact. gasseri, jensenii, acidophillus, crispatus, rhamnosis, casei, and paracasei. We conclude that sensitivities of similar lactobacilli to at least three microbicides are different. A single species is inadequate for screening vaginal products. Turbidometric evaluation is a sensitive, but not specific, screening method. We recommend that this method be used to screen candidate microbicides against several species of prevalent Lactobacillus species as an initial measure of microbicide safety evaluation. PMID:26783129

  12. Fermentation of Metroxylon sagu resistant starch type III by Lactobacillus sp. and Bifidobacterium bifidum.

    PubMed

    Siew-Wai, Loo; Zi-Ni, Tan; Karim, Alias A; Hani, Norziah M; Rosma, Ahmad

    2010-02-24

    The in vitro fermentability of sago (Metroxylon sagu) resistant starch type III (RS(3)) by selected probiotic bacteria was investigated. Sago RS(3) with 12% RS content was prepared by enzymatic debranching of native sago starch with pullulanase enzyme, followed by autoclaving, cooling, and annealing. The fermentation of sago RS(3) by L. acidophilus FTCC 0291, L. bulgaricus FTCC 0411, L. casei FTCC 0442, and B. bifidum BB12 was investigated by observing the bacterial growth, carbohydrate consumption profiles, pH changes, and total short chain fatty acids (SCFA) produced in the fermentation media. Comparisons were made with commercial fructo-oligosaccharide (FOS), Hi-maize 1043, and Hi-maize 240. Submerged fermentations were conducted in 30 mL glass vials for 24 h at 37 degrees C in an oven without shaking. The results indicated that fermentation of sago RS(3) significantly (P < 0.05) yielded the highest count of Lactobacillus sp. accompanied by the largest reduction in pH of the medium. Sago RS(3) was significantly the most consumed substrate compared to FOS and Hi-maizes. PMID:20121195

  13. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    PubMed

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture. PMID:26685674

  14. Lactobacillus: host-microbe relationships.

    PubMed

    O'Callaghan, John; O'Toole, Paul W

    2013-01-01

    Lactobacilli are a subdominant component of the human intestinal microbiota that are also found in other body sites, certain foods, and nutrient-rich niches in the free environment. They represent the types of microorganisms that mammalian immune systems have learned not to react to, which is recognized as a potential driving force in the evolution of the human immune system. Co-evolution of lactobacilli and animals provides a rational basis to postulate an association with health benefits. To further complicate a description of their host interactions, lactobacilli may rarely cause opportunistic infections in compromised subjects. In this review, we focus primarily on human-Lactobacillus interactions. We overview the microbiological complexity of this extraordinarily diverse genus, we describe where lactobacilli are found in or on humans, what responses their presence elicits, and what microbial interaction and effector molecules have been identified. The rare cases of Lactobacillus septicaemia are explained in terms of the host impairment required for such an outcome. We discuss possibilities for exploitation of lactobacilli for therapeutic delivery and mucosal vaccination. PMID:22102141

  15. Treatment of textile dyeing wastewater by biomass of Lactobacillus: Lactobacillus 12 and Lactobacillus rhamnosus.

    PubMed

    Sayilgan, Emine; Cakmakci, Ozgur

    2013-03-01

    The main purpose of this study was to investigate the effectiveness of Lactobacillus 12 and Lactobacillus rhamnosus as both cells and biomasses for the removal of dye from real textile dyeing wastewater. The removal experiments were conducted according to the Box-Behnken experimental design, and the regression equations for the removal of dye were determined by the Minitab 14 program. The optimum variables were found to be 10 g/L biomass concentration for biomasses, 3 for initial pH of the solution, and 20 °C for temperature with an observed dye removal efficiency of about 60 and 80 % with L. 12 and L. rhamnosus biomasses, respectively. Scanning electron microscopy and Fourier transform infrared spectroscopy images also showed that the biomass characteristics studied were favored by the sorption of the dye from the textile industry wastewater. Consequently, these biomasses may be considered as good biosorbents due to their effective yields and the lower cost of the removal of dyes from the effluents of the textile dyeing house. PMID:22684899

  16. Intervention of Acidophilus-casei dahi and wheat bran against molecular alteration in colon carcinogenesis.

    PubMed

    Kumar, Arvind; Singh, Nikhlesh Kumar; Sinha, Pushpalata Rabindra; Kumar, Raj

    2010-01-01

    An in vivo trial was conducted on seventy five rats allocated to three groups, first group was DMH control group, second group was Wheat bran-DMH group (WB-DMH) in which wheat bran was given along with DMH (1,2-dimethylhydrazine) injection, third group was Wheat bran-DMH-Ac Dahi group in which both wheat bran and Acidophilus-casei dahi (a probiotic microorganisms fermented dairy product) was given along with DMH injections. Animals received subcutaneous injections of DMH at a dose rate of 20 mg/kg body weight, once weekly for 15 weeks. The rats were dissected at 40th week of experiment and comet assay was done in colonic cells to assess the DNA damage. The c-myc and cox-2 expression was studied in rat tumour. A significant reduction in DNA damage (48.2%) was observed in WB-DMH-Ac Dahi group as compared to DMH control group (87.8%). The c-myc and cox-2 mRNA level was found highest in DMH control group as compared to WB-DMH and WB-DMH-Ac Dahi group. The results of present study show the enhanced protective potential of Acidophilus-casei and wheat bran against DMH induced molecular alteration in colonic cells during carcinogenesis. PMID:19642015

  17. Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli.

    PubMed

    Atassi, Fabrice; Brassart, Dominique; Grob, Philipp; Graf, Federico; Servin, Alain L

    2006-04-01

    The purpose of this study was to investigate the antibacterial activities of Lactobacillus jensenii KS119.1 and KS121.1, and Lactobacillus gasserii KS120.1 and KS124.3 strains isolated from the vaginal microflora of healthy women, against uropathogenic, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strains IH11128 and 7372 involved in recurrent cystitis. We observed that some of the Lactobacillus isolates inhibited the growth and decreased the viability of E. coli IH11128 and 7372. In addition, we observed that adhering Lactobacillus strains inhibited adhesion of E. coli IH11128 onto HeLa cells, and inhibited internalization of E. coli IH11128 within HeLa cells. PMID:16553843

  18. Gene replacement in Lactobacillus helveticus.

    PubMed Central

    Bhowmik, T; Fernández, L; Steele, J L

    1993-01-01

    An efficient method for gene replacement in Lactobacillus helveticus CNRZ32 was developed by utilizing pSA3 as an integration vector. This plasmid is stably maintained in CNRZ32 at 37 degrees C but is unstable at 45 degrees C. This method consisted of a two-step gene-targeting technique: (i) chromosomal integration of a plasmid carrying an internal deletion in the gene of interest via homologous recombination and (ii) excision of the vector and the wild-type gene via homologous recombination, resulting in gene replacement. By using this procedure, the chromosomal X-prolyl dipeptidyl aminopeptidase gene (pepXP) of CNRZ32 was successfully inactivated. Images PMID:8104928

  19. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. PMID:27001126

  20. Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species.

    PubMed

    McCracken, A; Turner, M S; Giffard, P; Hafner, L M; Timms, P

    2000-01-01

    Promoter-active fragments were isolated from the genome of the probiotic organism Lactobacillus rhamnosus strain GG using the promoter-probe vector pNZ272. These promoter elements, together with a promoter fragment isolated from the vaginal strain Lactobacillus fermentum BR11 and two previously defined promoters (Lactococcus lactis and Lactobacillus acidophilus ATCC 4356 slpA), were introduced into three strains of Lactobacillus. Primer-extension analysis was used to map the transcriptional start site for each promoter. All promoter fragments tested were functional in each of the three lactobacilli and a purine residue was used to initiate transcription in most cases. The promoter elements encompassed a 52- to 1,140-fold range in promoter activity depending on the host strain. Lactobacillus promoters were further examined by surveying previously mapped sequences for conserved base positions. The Lactobacillus hexamer regions (-35: TTgaca and -10: TAtAAT) closely resembled those of Escherichia coli and Bacillus subtilis, with the highest degree of agreement at the -10 hexamer. The TG dinucleotide upstream of the -10 hexamer was conserved in 26% of Lactobacillus promoters studied, but conservation rates differed between species. The region upstream of the -35 hexamer of Lactobacillus promoters showed conservation with the bacterial UP element. PMID:10896218

  1. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T). PMID:19126714

  2. Evaluation of various physico-chemical properties of Hibiscus sabdariffa and L. casei incorporated probiotic yoghurt.

    PubMed

    Rasdhari, M; Parekh, T; Dave, N; Patel, V; Subhash, R

    2008-09-01

    The present investigation was carried out to examine the effect of Hibiscus sabdariffa Calyx extract on the physico-chemical properties, sensory attributes, texture and microbial analysis of L. casei incorporated in probiotic yoghurt after manufacture and during storage. Incorporation of Hibiscus sabdariffa Calyx extract into the probiotic yoghurt resulted into decrease in coagulation time by 25 min. The pH ranged from 4.39 to 4.59, TA 0.81 to 1.14%, moisture 3.05 to 3.37 g%, syneresis 18.85 to 24.90 mL/50 g of sample, % inhibition 12.32 to 59.43, TS 21.27 to 24.90 g% and beta-galactosidase activity 1.041 to 3.277. The protein content ranged between 4.11 and 4.14 g% while the fat content ranged between 3.43 and 3.49 g%. No major changes in sensory evaluation were observed on the day of manufacture and during storage for 7 days. Sabdariffa added yoghurt showed a higher score in almost all sensory attributes. Microbial analysis showed a total plate count ranging from 1.8 x 10(4) to 1.85 x 10(7) cfu mL(-1). Yeast and mold counts were negligible in the Sabdariffa yoghurts. Thus the study concludes that incorporation of Hibiscus sabdariffa extract in yoghurt improved the total antioxidant property, organoleptic qualities and decreased the exudation of whey proteins (Syneresis). Thus, Hibiscus sabdariffa Calyces has beneficial influence on the quality of L. casei incorporated probiotic yoghurt. PMID:19266923

  3. Lactobacillus helveticus: the proteolytic system

    PubMed Central

    Griffiths, M. W.; Tellez, A. M.

    2012-01-01

    Lactobacillus helveticus is one of the species of lactic acid bacteria (LAB) most commonly used in the production of fermented milk beverages and some types of hard cheese. The versatile nature of this bacterium is based on its highly efficient proteolytic system consisting of cell-envelope proteinases (CEPs), transport system and intracellular peptidases. Besides use of L. helveticus in cheese processing, the production of fermented milk preparations with health promoting properties has become an important industrial application. Studies have shown that fermented dairy products are able to decrease blood pressure, stimulate the immune system, promote calcium absorption, and exert an anti-virulent effect against pathogens. These beneficial effects are produced by a variety of peptides released during the hydrolysis of milk proteins by the proteolytic system of L. helveticus, which provides the bacterium with its nutritional requirements for growth. In recent years, studies have focused on understanding the factors that affect the kinetics of milk protein hydrolysis by specific strains and have concentrated on the effect of pH, temperature, growth phase, and matrix composition on the bacterial enzymatic system. This review focuses on the role of the proteolytic system of L. helveticus in the production of bioactive compounds formed during fermentation of dairy products. Taking advantage of the powerful proteolytic system of this bacterium opens up future opportunities to search for novel food-derived compounds with potential health promoting properties. PMID:23467265

  4. Lactobacillus helveticus: the proteolytic system.

    PubMed

    Griffiths, M W; Tellez, A M

    2013-01-01

    Lactobacillus helveticus is one of the species of lactic acid bacteria (LAB) most commonly used in the production of fermented milk beverages and some types of hard cheese. The versatile nature of this bacterium is based on its highly efficient proteolytic system consisting of cell-envelope proteinases (CEPs), transport system and intracellular peptidases. Besides use of L. helveticus in cheese processing, the production of fermented milk preparations with health promoting properties has become an important industrial application. Studies have shown that fermented dairy products are able to decrease blood pressure, stimulate the immune system, promote calcium absorption, and exert an anti-virulent effect against pathogens. These beneficial effects are produced by a variety of peptides released during the hydrolysis of milk proteins by the proteolytic system of L. helveticus, which provides the bacterium with its nutritional requirements for growth. In recent years, studies have focused on understanding the factors that affect the kinetics of milk protein hydrolysis by specific strains and have concentrated on the effect of pH, temperature, growth phase, and matrix composition on the bacterial enzymatic system. This review focuses on the role of the proteolytic system of L. helveticus in the production of bioactive compounds formed during fermentation of dairy products. Taking advantage of the powerful proteolytic system of this bacterium opens up future opportunities to search for novel food-derived compounds with potential health promoting properties. PMID:23467265

  5. Influence of Lactobacillus spp. from an Inoculant and of Weissella and Leuconostoc spp. from Forage Crops on Silage Fermentation

    PubMed Central

    Cai, Yimin; Benno, Yoshimi; Ogawa, Masuhiro; Ohmomo, Sadahiro; Kumai, Sumio; Nakase, Takashi

    1998-01-01

    Lactobacillus spp. from an inoculant and Weissella and Leuconostoc spp. from forage crops were characterized, and their influence on silage fermentation was studied. Forty-two lactic acid-producing cocci were obtained from forage crops and grasses. All isolates were gram-positive, catalase-negative cocci that produced gas from glucose, and produced more than 90% of their lactate in the d-isomer form. These isolates were divided into groups A and B by sugar fermentation patterns. Two representative strains from the two groups, FG 5 and FG 13, were assigned to the species Weissella paramesenteroides and Leuconostoc pseudomesenteroides, respectively, on the basis of DNA-DNA relatedness. Strains FG 5, FG 13, and SL 1 (Lactobacillus casei), isolated from a commercial inoculant, were used as additives to alfalfa and Italian ryegrass silage preparations. Lactic acid bacterium counts were higher in all additive-treated silages than in the control silage at an early stage of ensiling. During silage fermentation, inoculation with SL 1 more effectively inhibited the growth of aerobic bacteria and clostridia than inoculation with strain FG 5 or FG 13. SL 1-treated silages stored well. However, the control and FG 5- and FG 13-treated silages had a significantly (P < 0.05) higher pH and butyric acid and ammonia nitrogen contents and significantly (P < 0.05) lower lactate content than SL 1-treated silage. Compared with the control silage, SL 1 treatments reduced the proportion of d-(−)-lactic acid, gas production, and dry matter loss in two kinds of silage, but the FG 5 and FG 13 treatments gave similar values in alfalfa silages and higher values (P < 0.05) in Italian ryegrass silage. The results confirmed that heterofermentative strains of W. paramesenteroides FG 5 and L. pseudomesenteroides FG 13 did not improve silage quality and may cause some fermentation loss. PMID:9687461

  6. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain. PMID:26410554

  7. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization

    PubMed Central

    Kozakova, Hana; Schwarzer, Martin; Tuckova, Ludmila; Srutkova, Dagmar; Czarnowska, Elzbieta; Rosiak, Ilona; Hudcovic, Tomas; Schabussova, Irma; Hermanova, Petra; Zakostelska, Zuzana; Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Baginska, Anna; Tlaskalova-Hogenova, Helena; Cukrowska, Bozena

    2016-01-01

    Increasing numbers of clinical trials and animal experiments have shown that probiotic bacteria are promising tools for allergy prevention. Here, we analyzed the immunomodulatory properties of three selected lactobacillus strains and the impact of their mixture on allergic sensitization to Bet v 1 using a gnotobiotic mouse model. We showed that Lactobacillus (L.) rhamnosus LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919 are recognized via Toll-like receptor 2 (TLR2) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) receptors and stimulate bone marrow-derived dendritic cells to produce cytokines in species- and strain-dependent manners. Colonization of germ-free (GF) mice with a mixture of all three strains (Lmix) improved the intestinal barrier by strengthening the apical junctional complexes of enterocytes and restoring the structures of microfilaments extending into the terminal web. Mice colonized with Lmix and sensitized to the Bet v 1 allergen showed significantly lower levels of allergen-specific IgE, IgG1 and IgG2a and an elevated total IgA level in the sera and intestinal lavages as well as an increased transforming growth factor (TGF)-β level compared with the sensitized GF mice. Splenocytes and mesenteric lymph node cells from the Lmix-colonized mice showed the significant upregulation of TGF-β after in vitro stimulation with Bet v 1. Our results show that Lmix colonization improved the gut epithelial barrier and reduced allergic sensitization to Bet v 1. Furthermore, these findings were accompanied by the increased production of circulating and secretory IgA and the regulatory cytokine TGF-β. Thus, this mixture of three lactobacillus strains shows potential for use in the prevention of increased gut permeability and the onset of allergies in humans. PMID:25942514

  8. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization.

    PubMed

    Kozakova, Hana; Schwarzer, Martin; Tuckova, Ludmila; Srutkova, Dagmar; Czarnowska, Elzbieta; Rosiak, Ilona; Hudcovic, Tomas; Schabussova, Irma; Hermanova, Petra; Zakostelska, Zuzana; Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Baginska, Anna; Tlaskalova-Hogenova, Helena; Cukrowska, Bozena

    2016-03-01

    Increasing numbers of clinical trials and animal experiments have shown that probiotic bacteria are promising tools for allergy prevention. Here, we analyzed the immunomodulatory properties of three selected lactobacillus strains and the impact of their mixture on allergic sensitization to Bet v 1 using a gnotobiotic mouse model. We showed that Lactobacillus (L.) rhamnosus LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919 are recognized via Toll-like receptor 2 (TLR2) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) receptors and stimulate bone marrow-derived dendritic cells to produce cytokines in species- and strain-dependent manners. Colonization of germ-free (GF) mice with a mixture of all three strains (Lmix) improved the intestinal barrier by strengthening the apical junctional complexes of enterocytes and restoring the structures of microfilaments extending into the terminal web. Mice colonized with Lmix and sensitized to the Bet v 1 allergen showed significantly lower levels of allergen-specific IgE, IgG1 and IgG2a and an elevated total IgA level in the sera and intestinal lavages as well as an increased transforming growth factor (TGF)-β level compared with the sensitized GF mice. Splenocytes and mesenteric lymph node cells from the Lmix-colonized mice showed the significant upregulation of TGF-β after in vitro stimulation with Bet v 1. Our results show that Lmix colonization improved the gut epithelial barrier and reduced allergic sensitization to Bet v 1. Furthermore, these findings were accompanied by the increased production of circulating and secretory IgA and the regulatory cytokine TGF-β. Thus, this mixture of three lactobacillus strains shows potential for use in the prevention of increased gut permeability and the onset of allergies in humans. PMID:25942514

  9. Screening of Probiotic Activities of Forty-Seven Strains of Lactobacillus spp. by In Vitro Techniques and Evaluation of the Colonization Ability of Five Selected Strains in Humans

    PubMed Central

    Jacobsen, C. N.; Rosenfeldt Nielsen, V.; Hayford, A. E.; Mller, P. L.; Michaelsen, K. F.; Prregaard, A.; Sandstrm, B.; Tvede, M.; Jakobsen, M.

    1999-01-01

    The probiotic potential of 47 selected strains of Lactobacillus spp. was investigated. The strains were examined for resistance to pH 2.5 and 0.3% oxgall, adhesion to Caco-2 cells, and antimicrobial activities against enteric pathogenic bacteria in model systems. From the results obtained in vitro, five strains, Lactobacillus rhamnosus 19070-2, L. reuteri DSM 12246, L. rhamnosus LGG, L. delbrueckii subsp. lactis CHCC 2329, and L. casei subsp. alactus CHCC 3137, were selected for in vivo studies. The daily consumption by 12 healthy volunteers of two doses of 1010 freeze-dried bacteria of the selected strains for 18 days was followed by a washout period of 17 days. Fecal samples were taken at days 0 and 18 and during the washout period at days 5 and 11. Lactobacillus isolates were initially identified by API 50CHL and internal transcribed spacer PCR, and their identities were confirmed by restriction enzyme analysis in combination with pulsed-field gel electrophoresis. Among the tested strains, L. rhamnosus 19070-2, L. reuteri DSM 12246, and L. rhamnosus LGG were identified most frequently in fecal samples; they were found in 10, 8, and 7 of the 12 samples tested during the intervention period, respectively, whereas reisolations were less frequent in the washout period. The bacteria were reisolated in concentrations from 105 to 108 cells/g of feces. Survival and reisolation of the bacteria in vivo appeared to be linked to pH tolerance, adhesion, and antimicrobial properties in vitro. PMID:10543808

  10. Proton nuclear magnetic resonance studies of the effects of ligand binding on ryptophan residues of selectively deuterated dihydrofolate reductase from Lactobacillus casei

    SciTech Connect

    Feeney, J.; Roberts, G.C.; Thomson, J.W.; King, R.W; Griffiths, D.V.; Burgen, A.S.

    1980-05-01

    We have prepared a selectively deuterated dihydrofolate reductase in which all the aromatic protons except the C(2) protons of tryptophan have been replaced by deuterium and have examined the 1H NMR spectra of its complexes with folate, trimethoprim, methotrexate, NADP+, and NADPH. One of the four Trp C(2)-proton resonance signals (signal P at 3.66 ppm from dioxane) has been asigned to Trp-21 by examining the NMR spectrum of a selectively deuterated N-bromosuccinimide-modified dihydrofolate reductase. This signal is not perturbed by NADPH, indicating that the coenzyme is not binding close to the 2 position of Trp-21. This contrasts markedly with the 19F shift (2.7 ppm) observed for the 19F signal of Trp-21 in the NADPH complex with the 6-fluorotryptophan-labeled enzyme. In fact the crystal structure of the enzyme . methotrexate . NADPH shows that the carboxamide group of the reduced nicotinamide ring is near to the 6 position of Trp-21 but remote from its 2 position. The nonadditivity of the 1H chemical-shift contributions for signals tentatively assigned to Trp-5 and -133 indicates that these residues are influenced by ligand-induced conformational changes.

  11. Pyelonephritis and Bacteremia from Lactobacillus delbrueckii

    PubMed Central

    DuPrey, Kevin M.; McCrea, Leon; Rabinowitch, Bonnie L.; Azad, Kamran N.

    2012-01-01

    Lactobacilli are normal colonizers of the oropharynx, gastrointestinal tract, and vagina. Infection is rare, but has been reported in individuals with predisposing conditions. Here we describe the case of a woman with pyelonephritis and bacteremia in which Lactobacillus delbrueckii was determined to be the causative agent. PMID:23056967

  12. Draft Genome Sequence of Lactobacillus plantarum 2025

    PubMed Central

    Khlebnikov, Valentin C.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2016-01-01

    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain. PMID:26744375

  13. Draft Genome Sequence of Lactobacillus plantarum 2025.

    PubMed

    Karlyshev, Andrey V; Khlebnikov, Valentin C; Kosarev, Igor V; Abramov, Vyacheslav M

    2016-01-01

    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain. PMID:26744375

  14. Genome sequence of Lactobacillus crispatus ST1.

    PubMed

    Ojala, Teija; Kuparinen, Veera; Koskinen, J Patrik; Alatalo, Edward; Holm, Liisa; Auvinen, Petri; Edelman, Sanna; Westerlund-Wikström, Benita; Korhonen, Timo K; Paulin, Lars; Kankainen, Matti

    2010-07-01

    Lactobacillus crispatus is a common member of the beneficial microbiota present in the vertebrate gastrointestinal and human genitourinary tracts. Here, we report the genome sequence of L. crispatus ST1, a chicken isolate displaying strong adherence to vaginal epithelial cells. PMID:20435723

  15. Lactobacillus assisted synthesis of titanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Jha, Anal K.; Kulkarni, A. R.

    2007-05-01

    An eco-friendly lactobacillus sp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40 60 nm are found.

  16. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. PMID:26896862

  17. Lactobacillus salivarius 1077 (NRRL B-50053) bacteriocin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  18. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice

    PubMed Central

    2011-01-01

    Background Diarrheal infections caused by Salmonella, are one of the major causes of childhood morbidity and mortality in developing countries. Salmonella causes various diseases that range from mild gastroenteritis to enteric fever, depending on the serovar involved, infective dose, species, age and immune status of the host. Probiotics are proposed as an attractive alternative possibility in the prevention against this pathogen infection. Previously we demonstrated that continuous Lactobacillus casei CRL 431 administration to BALB/c mice before and after challenge with Salmonella enterica serovar Typhimurium (S. Typhimurium) decreased the severity of Salmonella infection. The aim of the present work was to deep into the knowledge about how this probiotic bacterium exerts its effect, by assessing its impact on the expression and secretion of pro-inflammatory (TNFα, IFNγ) and anti-inflammatory (IL-10) cytokines in the inductor and effector sites of the gut immune response, and analyzing toll-like receptor (TLR2, TLR4, TLR5 and TLR9) expressions in both healthy and infected mice. Results Probiotic administration to healthy mice increased the expression of TLR2, TLR4 and TLR9 and improved the production and secretion of TNFα, IFNγ and IL-10 in the inductor sites of the gut immune response (Peyer's patches). Post infection, the continuous probiotic administration, before and after Salmonella challenge, protected the host by modulating the inflammatory response, mainly in the immune effector site of the gut, decreasing TNFα and increasing IFNγ, IL-6 and IL-10 production in the lamina propria of the small intestine. Conclusions The oral administration of L. casei CRL 431 induces variations in the cytokine profile and in the TLRs expression previous and also after the challenge with S. Typhimurium. These changes show some of the immune mechanisms implicated in the protective effect of this probiotic strain against S. Typhimurium, providing an alternative way to reduce the severity of the infection. PMID:21813005

  19. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Franden, Mary Ann; Mc Millan, James D.; Finkelstein, Mark

    1998-01-01

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid.

  20. A selective differential medium for Lactobacillus plantarum.

    PubMed

    Bujalance, Carmen; Jiménez-Valera, Maria; Moreno, Encarnacion; Ruiz-Bravo, Alfonso

    2006-09-01

    The quantification of exogenous lactobacilli in faecal samples is frequently required for the evaluation of the intestinal colonization by probiotic bacteria. In this study, a selective and differential medium, designated LPSM, was developed for the culture of exogenous Lactobacillus plantarum. In quantitative assays, LPSM showed a sensitivity similar to those of enriched and Lactobacillus-adapted media. The presence of ciprofloxacin made LPSM inhibitory to most intestinal bacteria, including endogenous acid lactic bacteria, whereas exogenous L. plantarum strains grew producing a yellow color caused by acid production from sorbitol in the presence of bromocresol purple. The results showed that LPSM is suitable for detection and enumeration of L. plantarum in faecal samples. PMID:16554099

  1. Dry sausage fermented by Lactobacillus rhamnosus strains.

    PubMed

    Erkkilä, S; Suihko, M L; Eerola, S; Petäjä, E; Mattila-Sandholm, T

    2001-02-28

    The ability of three probiotic Lactobacillus rhamnosus strains GG, E-97800 and LC-705 and one commercial Pediococcus pentosaceus starter strain (control) to produce dry sausage was studied. During the fermentation process the numbers of inoculated lactic acid bacteria increased from approx. 7 log10 to 8-9 log10 cfu/g and the pH values decreased from 5.6 to 4.9-5.0. The sensory test indicated that the dry sausages fermented by L. rhamnosus LC-705 were inferior to the control sausages. The presence of inoculated experimental strains as predominant organisms in the dry sausages was recognised on the basis of their genetic fingerprints by ribotyping. The concentrations of biogenic amines remained low during the ripening process. These results indicated that the studied Lactobacillus rhamnosus strains, especially strains GG and E-97800, are suitable for use as probiotic starter cultures in fermenting dry sausage. PMID:11252505

  2. Biofilm formation by vaginal Lactobacillus in vivo.

    PubMed

    Ventolini, G; Mitchell, E; Salazar, M

    2015-05-01

    Biofilm formation by nonpathogenic bacteria is responsible for their stable maintenance in vivo ecosystems as it promotes long-term permanence on the host's vaginal mucosa. Biofilm formation by Lactobacilli has been reported in vitro but not in vivo. We hypothesize the presence of biofilm formation in vivo could be also documented by microscope photographs (MP) of wet mounts obtained from uninfected vaginal samples satisfying rigorous scientific identification criteria. We analyzed 400 MP from our database, and we were able to determine that 12 MP from 6 different patients contained clues of the formation of biofilm by Lactobacilli. The most probable lactobacillus involved is presumed to be Lactobacillus jensenii. The documentation of biofilm formation by vaginal Lactobacilli at fresh wet mount preparation is significant and has several important clinical preventive and therapeutic implications. PMID:25725906

  3. The S-layer protein of Lactobacillus acidophilus ATCC 4356: identification and characterisation of domains responsible for S-protein assembly and cell wall binding.

    PubMed

    Smit, E; Oling, F; Demel, R; Martinez, B; Pouwels, P H

    2001-01-12

    Lactobacillus acidophilus, like many other bacteria, harbors a surface layer consisting of a protein (S(A)-protein) of 43 kDa. S(A)-protein could be readily extracted and crystallized in vitro into large crystalline patches on lipid monolayers with a net negative charge but not on lipids with a net neutral charge. Reconstruction of the S-layer from crystals grown on dioleoylphosphatidylserine indicated an oblique lattice with unit cell dimensions (a=118 A; b=53 A, and gamma=102 degrees ) resembling those determined for the S-layer of Lactobacillus helveticus ATCC 12046. Sequence comparison of S(A)-protein with S-proteins from L. helveticus, Lactobacillus crispatus and the S-proteins encoded by the silent S-protein genes from L. acidophilus and L. crispatus suggested the presence of two domains, one comprising the N-terminal two-thirds (SAN), and another made up of the C-terminal one-third (SAC) of S(A)-protein. The sequence of the N-terminal domains is variable, while that of the C-terminal domain is highly conserved in the S-proteins of these organisms and contains a tandem repeat. Proteolytic digestion of S(A)-protein showed that SAN was protease-resistant, suggesting a compact structure. SAC was rapidly degraded by proteases and therefore probably has a more accessible structure. DNA sequences encoding SAN or Green Fluorescent Protein fused to SAC (GFP-SAC) were efficiently expressed in Escherichia coli. Purified SAN could crystallize into mono and multi-layered crystals with the same lattice parameters as those found for authentic S(A)-protein. A calculated S(A)-protein minus SAN density-difference map revealed the probable location, in projection, of the SAC domain, which is missing from the truncated SAN peptide. The GFP-SAC fusion product was shown to bind to the surface of L. acidophilus, L. helveticus and L. crispatus cells from which the S-layer had been removed, but not to non-stripped cells or to Lactobacillus casei. PMID:11124903

  4. Genome Sequence of Lactobacillus cypricasei KCTC 13900 ▿

    PubMed Central

    Kim, Dae-Soo; Choi, Sang-Haeng; Kim, Dong-Wook; Kim, Ryong Nam; Nam, Seong-Hyeuk; Kang, Aram; Kim, Aeri; Park, Hong-Seog

    2011-01-01

    Lactobacillus cypricasei KCTC 13900 is important in the generation of particular flavors and in other ripening processes associated with specific cheeses. Here, we announce the draft genome sequence of Lactobacillus cypricasei KCTC 13900, isolated from cheeses, and describe major findings from its annotation. PMID:21742864

  5. Draft Genome Sequence of the Lactobacillus mucosae Strain Marseille

    PubMed Central

    Drissi, Fatima; Merhej, Vicky; Blanc-Tailleur, Caroline

    2015-01-01

    Lactobacillus mucosae strain Marseille, isolated from stool samples of a child suffering from a malnutrition disorder called Kwashiorkor, produces bacteriocin and seems to have specific carbohydrate and lipid metabolisms different from those of other Lactobacillus organisms. The draft genome sequence of this strain is presented here. PMID:26227603

  6. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. PMID:26404012

  7. Lactobacillus and Lactobacillus cell-free culture supernatants modulate chicken macrophage activities.

    PubMed

    Quinteiro-Filho, W M; Brisbin, J T; Hodgins, D C; Sharif, S

    2015-12-01

    Lactobacilli are commensal microbes that reside in the intestines of several species, including chickens. Structural constituents of lactobacilli are able to stimulate the host immune system. Macrophages are crucial players in both innate and adaptive immune systems. Here, we investigated the effects of Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus salivarius and their cell-free culture supernatants on the pro-inflammatory gene expression profile, nitric oxide (NO) production and phagocytosis by chicken macrophages. Substantial differences were found among Lactobacillus strains in their capacity to induce pro-inflammatory cytokines. L. acidophilus only up-regulated interferon (IFN)-γ, while L. reuteri and L. salivarius up-regulated interleukin (IL)-1β, IL-6, IL-8 and IL-12 expression. Supernatant of L. salivarius up-regulated IL-1β, IL-8 and IFN-γ expression, while the other cell-free supernatants did not induce significant changes. Moreover, L. reuteri and L. salivarius increased macrophage phagocytosis, but all cell-free supernatants increased macrophage NO production and did not change phagocytosis activity. PMID:26679813

  8. Dominance of Lactobacillus acidophilus in the Facultative Jejunal Lactobacillus Microbiota of Fistulated Beagles

    PubMed Central

    Tang, Yurui; Manninen, Titta J. K.

    2012-01-01

    Lactobacilli were isolated from jejunal chyme from five fistulated beagles. Cultivable lactobacilli varied from 104 to 108 CFU/ml. Seventy-four isolates were identified by partial 16S rRNA gene sequencing and differentiated by repetitive element PCR (Rep-PCR), Lactobacillus acidophilus was dominant, and nearly 80% of 54 isolates shared the same DNA fingerprint pattern. PMID:22843523

  9. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface.

    PubMed

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günaydın, Gökçe; Lin, Yin; Martín, M Cruz; Álvarez, Miguel A; Hammarström, Lennart; Marcotte, Harold

    2015-09-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23. PMID:26092449

  10. Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS.

    PubMed

    Cai, Ruopeng; Jiang, Yanlong; Yang, Wei; Yang, Wentao; Shi, Shaohua; Shi, Chunwei; Hu, Jingtao; Gu, Wei; Ye, Liping; Zhou, Fangyu; Gong, Qinglong; Han, Wenyu; Yang, Guilian; Wang, Chunfeng

    2016-02-28

    Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surfacedisplayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1β, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA. PMID:26608167

  11. Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells.

    PubMed

    Matsumoto, S; Hara, T; Hori, T; Mitsuyama, K; Nagaoka, M; Tomiyasu, N; Suzuki, A; Sata, M

    2005-06-01

    IL-6/STAT-3 signals play key roles in inflammatory bowel disease (IBD). It is known that Lactobacillus casei strain Shirota (LcS) improves inflammatory disorders. This study aimed to elucidate the effect of LcS on murine chronic IBD and to clarify the mechanism. We focused the inhibitory effect of LcS on the production of IL-6 in lipopolysaccharide (LPS)-stimulated large intestinal lamina propria mononuclear cells (LI-LPMC) isolated from mice with chronic colitis and in RAW264.7 cells in vitro. We also determined in vivo the effect of LcS on murine chronic IBD models induced with dextran sodium sulphate and SAMP1/Yit mice. Finally, we examined the cellular determinants of LcS for the down-regulation of IL-6 secretion by LI-LPMC, RAW264.7 cells and peripheral blood mononuclear cells (PBMC) derived from patients with ulcerative colitis (UC). LcS, but not other strains of Lactobacillus, inhibited the production of IL-6 in LPS-stimulated LI-LPMC and RAW264.7 cells, down-regulating the nuclear translocation of NF-kappaB. The LcS-diet-improved murine chronic colitis is associated with the reduction of IL-6 synthesis by LI-LPMC. LcS also improved chronic ileitis in SAMP1/Yit mice. The release of IL-6 in vitro in LPS-stimulated LI-LPMC, RAW 264.7 cells and UC-PBMC was inhibited by a polysaccharide-peptidoglycan complex (PSPG) derived from LcS. This probiotic-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines such as IL-6 and IFN-gamma production in LPMC. Therefore, LcS may be a useful probiotic for the treatment of human inflammatory bowel disease. PMID:15932502

  12. An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface

    PubMed Central

    Álvarez, Beatriz; Krogh-Andersen, Kasper; Tellgren-Roth, Christian; Martínez, Noelia; Günaydın, Gökçe; Lin, Yin; Martín, M. Cruz; Álvarez, Miguel A.; Hammarström, Lennart

    2015-01-01

    Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23. PMID:26092449

  13. Bacteriocin PJ4 active against enteric pathogen produced by Lactobacillus helveticus PJ4 isolated from gut microflora of wistar rat (Rattus norvegicus): partial purification and characterization of bacteriocin.

    PubMed

    Jena, Prasant Kumar; Trivedi, Disha; Chaudhary, Harshita; Sahoo, Tapasa Kumar; Seshadri, Sriram

    2013-04-01

    The increase of multidrug-resistant pathogens and the restriction on the use antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are small antimicrobial peptides produced by numerous bacteria. Much interest has been focused on bacteriocins because they exhibit inhibitory activity against pathogens. Lactic acid bacteria possess the ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this study, an antibacterial substance (bacteriocin PJ4) produced by Lactobacillus helveticus PJ4, isolated from rat gut microflora, was identified as bacteriocin. It was effective against wide assay of both Gram-positive and Gram-negative bacteria involved in various diseases, including Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus. The antimicrobial peptide was relatively heat-resistant and also active over a wide pH range of 2-10. It has been partially purified to homogeneity using ammonium sulfate precipitation and size exclusion chromatography and checked on reverse-phase high-performance liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of bacteriocin PJ4 purified through size exclusion chromatography resolved ~6.5 kDa protein with bacteriocin activity. The peptide is inactivated by proteolytic enzymes, trypsin, and lipase but not when treated with catalase, α-amylase, and pepsin. It showed a bactericidal mode of action against the indicator strains E. coli MTCC443, Lactobacillus casei MTCC1423, and E. faecalis DT48. Such characteristics indicate that this bacteriocin may be a potential candidate for alternative agents to control important pathogens. PMID:23371780

  14. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1

    PubMed Central

    Leonard, Michael T.; Valladares, Ricardo B.; Ardissone, Alexandria; Gonzalez, Claudio F.; Lorca, Graciela L.

    2014-01-01

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model. PMID:24812223

  15. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1.

    PubMed

    Leonard, Michael T; Valladares, Ricardo B; Ardissone, Alexandria; Gonzalez, Claudio F; Lorca, Graciela L; Triplett, Eric W

    2014-01-01

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model. PMID:24812223

  16. In vitro antagonistic growth effects of Lactobacillus fermentum and lactobacillus salivarius and their fermentative broth on periodontal pathogens

    PubMed Central

    Chen, Ling-Ju; Tsai, Hsiu-Ting; Chen, Wei-Jen; Hsieh, Chu-Yang; Wang, Pi-Chieh; Chen, Chung-Shih; Wang, Lina; Yang, Chi-Chiang

    2012-01-01

    As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis in vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, although different inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health. PMID:24031966

  17. Eruca sativa Might Influence the Growth, Survival under Simulated Gastrointestinal Conditions and Some Biological Features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus Strains

    PubMed Central

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-01-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power. PMID:25275269

  18. Anticandidal activity of cell extracts from 13 probiotic Lactobacillus strains and characterisation of lactic acid and a novel fatty acid derivative from one strain.

    PubMed

    Nyanzi, Richard; Awouafack, Maurice D; Steenkamp, Paul; Jooste, Piet J; Eloff, Jacobus N

    2014-12-01

    This study investigated the anti-Candida activity of methanol extracts from freeze-dried probiotic cells and the isolation of some constituents in the extracts. The MIC values of the probiotic methanol cell extracts against Candida albicans ranged between 1.25 and 5mg/ml after 48 h of incubation. However, Lactococcus latics subsp. lactis strain X and Lactobacillus casei strain B extracts had an MIC of 10mg/ml after 48 h of incubation. The extracts had fungistatic rather than fungicidal activity. These extracts had a much higher antifungal activity than antifungal compounds isolated from the growth medium by many other authors. This indicates that probiotics may also release antifungal compounds in their cells that could contribute to a therapeutic effect. Lactic acid (1) and 6-O-(α-D-glucopyranosyl)-1,6-di-O-pentadecanoyl-α-D-glucopyranose a novel fatty acid derivative (2) were isolated from methanol probiotic extracts and the structure of these compounds were elucidated using NMR (1 and 2D) and mass spectrometry (MS). PMID:24996359

  19. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Santillan, Eugenio Felipe; Shanahan, Timothy; Omelon, Christopher; Major, Jonathan; Bennett, Philip

    2015-07-01

    When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analogue, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 to 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 hours. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° to 45°C andconsumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 MPa to 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.

  20. Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures

    PubMed Central

    Georgieva, Ralitsa; Yocheva, Lyubomira; Tserovska, Lilia; Zhelezova, Galina; Stefanova, Nina; Atanasova, Akseniya; Danguleva, Antonia; Ivanova, Gergana; Karapetkov, Nikolay; Rumyan, Nevenka; Karaivanova, Elena

    2015-01-01

    Antimicrobial activity and antibiotic susceptibility were tested for 23 Lactobacillus and three Bifidobacterium strains isolated from different ecological niches. Agar-well diffusion method was used to test the antagonistic effect (against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Candida albicans) of acid and neutralized (pH 5.5) lyophilized concentrated supernatants (cell-free supernatant; CFS) and whey (cell-free whey fractions; CFW) from de Man–Rogosa–Sharpe/trypticase-phytone-yeast broth and skim milk. Acid CFS and CFW showed high acidification rate-dependent bacterial inhibition; five strains were active against C. albicans. Neutralized CFS/CFW assays showed six strains active against S. aureus (L. acidophilus L-1, L. brevis 1, L. fermentum 1, B. animalis subsp. lactis L-3), E. coli (L. bulgaricus 6) or B. cereus (L. plantarum 24-4В). Inhibition of two pathogens with neutralized CFS (L. bulgaricus 6, L. helveticus 3, L. plantarum 24-2L, L. fermentum 1)/CFW (L. plantarum 24-5D, L. plantarum 24-4В) was detected. Some strains maintained activity after pH neutralization, indicating presence of active substances. The antibiotics minimum inhibitory concentrations (MICs) were determined by the Epsilometer test method. All strains were susceptible to ampicillin, gentamicin, erythromycin and tetracycline. Four lactobacilli were resistant to one antibiotic (L. rhamnosus Lio 1 to streptomycin) or two antibiotics (L. acidophilus L-1 and L. brevis 1 to kanamycin and clindamycin; L. casei L-4 to clindamycin and chloramphenicol). Vancomycin MICs > 256 μg/mL indicated intrinsic resistance for all heterofermentative lactobacilli. The antimicrobially active strains do not cause concerns about antibiotic resistance transfer and could be used as natural biopreservatives in food and therapeutic formulations. PMID:26019620

  1. Lactobacillus mixtipabuli sp. nov. isolated from total mixed ration silage.

    PubMed

    Tohno, Masanori; Kitahara, Maki; Irisawa, Tomohiro; Ohmori, Hideyuki; Masuda, Takaharu; Ohkuma, Moriya; Tajima, Kiyoshi

    2015-06-01

    Using a polyphasic taxonomic approach, we investigated three bacterial strains - IWT30T, IWT8 and IWT75 - isolated from total mixed ration silage prepared in Hachimantai, Iwate, Japan. The isolates comprised Gram-stain positive, non-motile, non-spore-forming, catalase-negative, rod-shaped bacteria. Good growth occurred at 15-45 °C and at pH 4.0-7.5. Their major cellular fatty acids were C18:1ω9c and C19:1 cyclo 9,10.The G+C content of genomic DNA of strain IWT30T was 44.6 mol%. Comparative 16S rRNA gene sequence analysis showed that these novel strains belonged to the genus Lactobacillus. These strains shared 100 % 16S rRNA gene sequence similarity and were most closely related to the type strains of Lactobacillus silagei, Lactobacillus odoratitofui, Lactobacillus similis, Lactobacillus collinoides, Lactobacillus paracollinoides and Lactobacillus kimchicus, with sequence similarity values of 99.5, 98.8, 98.7, 97.8, 97.8 and 96.8 %, respectively. The level of DNA-DNA relatedness between these strains and their closest phylogenetic neighbours was less than 30 %. On the basis of additional phylogenetic analysis of pheS and rpoA gene sequences and phenotypic and chemotaxonomic characteristics, we conclude that these three strains represent a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus mixtipabuli sp. nov. The type strain is IWT30T ( = JCM 19805T = DSM 28580T). PMID:25807979

  2. Transmission of Lactobacillus jensenii and Lactobacillus acidophilus from mother to child at time of delivery.

    PubMed Central

    Carlsson, J; Gothefors, L

    1975-01-01

    The presence of Lactobacillus jensenii and Lactobacillus acidophilus has been studied in specimens from the rectum and vagina of the mother, from the mouth of the infant at the time of delivery, and from the mouth and rectum of infants six days of age. L. jensenii could be differentiated from other species of lactobacilli by the following combination of characteristics: production of only D-lactate, hydrolysis of arginine, and fermentation of cellobiose, galactose, and ribose, but not of lactose. L. jensenii and L. acidophilus were common inhabitants of the vagina. In spite of a contamination of the infant's mouth by L. jensenii and L. acidophilus during delivery, neither of these organisms became established in the mouth of the newborn infants. PMID:809467

  3. Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: a green chemistry approach.

    PubMed

    Ram Kumar Pandian, Sureshbabu; Deepak, Venkatraman; Kalishwaralal, Kalimuthu; Muniyandi, Jeyaraj; Rameshkumar, Neelamegam; Gurunathan, Sangiliyandi

    2009-11-01

    Polyhydroxyalkanoates (PHAs) are natural, biodegradable polymers accumulated by bacteria under nutritional exhausted condition where carbon source is in excess. A gram positive bacterium (designated strain SRKP2) that potentially accumulated polyhydroxybutyrate (PHB) was isolated from dairy industrial waste. From its morphological and physiological properties and nucleotide sequence of its 16S rRNA, it was suggested that strain SRKP2 was similar to Brevibacterium casei. PHAs were synthesized from a medium containing dairy waste, yeast extract and sea water. The synthesized PHAs were characterized by FT-IR as Polyhydroxybutyrate (PHB). Response surface methodology was applied to optimize the production of PHB. From the optimized medium the yield of PHB was found to be 2.940 g/L. Here we report the direct use of dairy waste and sea water as potential sources for the production of PHB. Produced PHB was used to synthesize nanoparticles using solvent displacement technique. PMID:19700268

  4. Draft Genome Sequence of Lactobacillus oryzae Strain SG293T

    PubMed Central

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Mochizuki, Takako; Kaminuma, Eli; Nakamura, Yasukazu

    2014-01-01

    We report the 1.86-Mb draft genome and annotation of Lactobacillus oryzae SG293T isolated from fermented rice grains. This genome information may provide further insights into the mechanisms underlying the fermentation of rice grains. PMID:25169865

  5. Lactobacillus insicii sp. nov., isolated from fermented raw meat.

    PubMed

    Ehrmann, Matthias A; Kröckel, Lothar; Lick, Sonja; Radmann, Pia; Bantleon, Annegret; Vogel, Rudi F

    2016-01-01

    The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8 % 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4 %), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3 %), Lactobacillus versmoldensis DSM 14857T (96.9 %) and Lactobacillus furfuricola JCM 18764T (97.2 %). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70 % and the DNA G+C content was 36.3 mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T ( = CECT 8802T = DSM 29801T). PMID:26486967

  6. Bile resistance mechanisms in Lactobacillus and Bifidobacterium

    PubMed Central

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  7. Bile resistance mechanisms in Lactobacillus and Bifidobacterium.

    PubMed

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  8. Lactobacillus curieae sp. nov., isolated from stinky tofu brine.

    PubMed

    Lei, Xiao; Sun, Guipeng; Xie, Jingli; Wei, Dongzhi

    2013-07-01

    A lactic acid bacterium, strain CCTCC M 2011381(T), isolated from the brine of the traditional Chinese snack, stinky tofu, was studied to determine its taxonomic position. It was a Gram-stain-positive, non-motile, facultatively anaerobic rod-shaped bacterium that did not exhibit catalase activity. The DNA G+C content of the strain was 44.1 % and its peptidoglycan was characterized by the presence of meso-diaminopimelic acid. Levels of 16S rRNA gene sequence similarity between strain CCTCC M 2011381(T) and the most closely related species Lactobacillus senioris JCM 17472(T), Lactobacillus parafarraginis JCM 14109(T) and Lactobacillus diolivorans JCM 12183(T) were 96.5, 96.4 and 96.4 %, respectively. Combined with data from high-resolution genomic markers recA, rpoA and pheS, strain CCTCC M 2011381(T) was classified as representing a novel species. The strain could also be distinguished from other related species of the genus Lactobacillus by its physiological and biochemical characteristics. Based on the phylogenetic, physiological and biochemical data, it is proposed that the new isolate can be classified as representing a novel species of the genus Lactobacillus, for which the name Lactobacillus curieae sp. nov. (type strain CCTCC M 2011381(T) = S1L19(T) = JCM 18524(T)) is proposed. PMID:23223818

  9. Lactobacillus faecis sp. nov., isolated from animal faeces.

    PubMed

    Endo, Akihito; Irisawa, Tomohiro; Futagawa-Endo, Yuka; Salminen, Seppo; Ohkuma, Moriya; Dicks, Leon

    2013-12-01

    Three lactic acid bacteria were isolated from faeces of a jackal (Canis mesomelas) and raccoons (Procyron lotor). The isolates formed a subcluster in the Lactobacillus salivarius phylogenetic group, closely related to Lactobacillus animalis, Lactobacillus apodemi and Lactobacillus murinus, by phylogenetic analysis based on 16S rRNA and recA gene sequences. Levels of DNA-DNA relatedness revealed that the isolates belonged to the same taxon and were genetically separated from their phylogenetic relatives. The three strains were non-motile, obligately homofermentative and produced l-lactic acid as the main end-product from d-glucose. The strains metabolized raffinose. The major cellular fatty acids in the three strains were C16 : 0, C18 : 1ω9c and C19 : 1 cyclo 9,10. Based on the data provided, it is concluded that the three strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus faecis sp. nov. is proposed. The type strain is AFL13-2(T) ( = JCM 17300(T) = DSM 23956(T)). PMID:23907223

  10. Effect of Lactobacillus species on Streptococcus mutans biofilm formation.

    PubMed

    Ahmed, Ayaz; Dachang, Wu; Lei, Zhou; Jianjun, Liu; Juanjuan, Qiu; Yi, Xin

    2014-09-01

    Streptococcus mutans is the primary pathogen responsible for initiating dental caries and decay. The presence of sucrose, stimulates S. mutans to produce insoluble glucans to form oral biofilm also known as dental plaque to initiate caries lesion. The GtfB and LuxS genes of S. mutans are responsible for formation and maturation of biofilm. Lactobacillus species as probiotic can reduces the count of S. mutans. In this study effect of different Lactobacillus species against the formation of S. mutans biofilm was observed. Growing biofilm in the presence of sucrose was detected using 96 well microtiter plate crystal violet assay and biofilm formation by S. mutans in the presence of Lactobacillus was detected. Gene expression of biofilm forming genes (GtfB and LuxS) was quantified through Real-time PCR. All strains of Lactobacillus potently reduced the formation of S. mutans biofilm whereas Lactobacillus acidophilus reduced the genetic expression by 60-80%. Therefore, probiotic Lactobacillus species can be used as an alternative instead of antibiotics to decrease the chance of dental caries by reducing the count of S. mutans and their gene expression to maintain good oral health. PMID:25176247

  11. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability. PMID:22676388

  12. Whole-Genome Sequencing of Lactobacillus shenzhenensis Strain LY-73T

    PubMed Central

    Lin, Zhe; Liu, Zhaoshan; Yang, Rentao; Zou, Yuanqiang; Wan, Daiwei; Chen, Jing; Guo, Min; Zhao, Jiao; Fang, Chengxiang

    2013-01-01

    Lactobacillus shenzhenensis strain LY-73T is a novel species which was first isolated from fermented goods. Here, we report the draft genome sequence of Lactobacillus shenzhenensis LY-73T. PMID:24265500

  13. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Franden, M.A.; McMillan, J.D.; Finkelstein, M.

    1998-08-25

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid. 4 figs.

  14. Evaluation of Lactobacillus strains for selected probiotic properties.

    PubMed

    Turková, Kristýna; Mavrič, Anja; Narat, Mojca; Rittich, Bohuslav; Spanová, Alena; Rogelj, Irena; Matijašić, Bojana Bogovič

    2013-07-01

    Eleven strains of Lactobacillus collected in the Culture Collection of Dairy Microorganisms (CCDM) were evaluated for selected probiotic properties such as survival in gastrointestinal fluids, antimicrobial activity, and competition with non-toxigenic Escherichia coli O157:H7 for adhesion on Caco-2 cells. The viable count of lactobacilli was reduced during 3-h incubation in gastric fluid followed by 3-h incubation in intestinal fluid. All strains showed antimicrobial activity and the three most effective strains inhibited the growth of at least 16 indicator strains. Antimicrobial metabolites of seven strains active against Lactobacillus and Clostridium indicator strains were found to be sensitive to proteinase K and trypsin, which indicates their proteinaceous nature. The degree of competitive inhibition of non-toxigenic E. coli O157:H7 adhesion on the surface of Caco-2 cells was strain-dependent. A significant decrease (P < 0.05) in the number of non-toxigenic E. coli O157:H7 adhering to Caco-2 cells was observed with all lactobacilli. Three strains were selected for additional studies of antimicrobial activity, i.e., Lactobacillus gasseri CCDM 215, Lactobacillus acidophilus CCDM 149, and Lactobacillus helveticus CCDM 82. PMID:23135901

  15. Genome sequence and analysis of Lactobacillus helveticus

    PubMed Central

    Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

    2013-01-01

    The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

  16. Lactobacillus salivarius: bacteriocin and probiotic activity.

    PubMed

    Messaoudi, S; Manai, M; Kergourlay, G; Prévost, H; Connil, N; Chobert, J-M; Dousset, X

    2013-12-01

    Lactic acid bacteria (LAB) antimicrobial peptides typically exhibit antibacterial activity against food-borne pathogens, as well as spoilage bacteria. Therefore, they have attracted the greatest attention as tools for food biopreservation. In some countries LAB are already extensively used as probiotics in food processing and preservation. LAB derived bacteriocins have been utilized as oral, topical antibiotics or disinfectants. Lactobacillus salivarius is a promising probiotic candidate commonly isolated from human, porcine, and avian gastrointestinal tracts (GIT), many of which are producers of unmodified bacteriocins of sub-classes IIa, IIb and IId. It is a well-characterized bacteriocin producer and probiotic organism. Bacteriocins may facilitate the introduction of a producer into an established niche, directly inhibit the invasion of competing strains or pathogens, or modulate the composition of the microbiota and influence the host immune system. This review gives an up-to-date overview of all L. salivarius strains, isolated from different origins, known as bacteriocin producing and/or potential probiotic. PMID:24010610

  17. Health-Promoting Properties of Lactobacillus helveticus

    PubMed Central

    Taverniti, Valentina; Guglielmetti, Simone

    2012-01-01

    Lactobacillus helveticus is an important industrial thermophilic starter that is predominantly employed in the fermentation of milk for the manufacture of several cheeses. In addition to its technological importance, a growing body of scientific evidence shows that strains belonging to the L. helveticus species have health-promoting properties. In this review, we synthesize the results of numerous primary literature papers concerning the ability of L. helveticus strains to positively influence human health. Several in vitro studies showed that L. helveticus possesses many common probiotic properties, such as the ability to survive gastrointestinal transit, adhere to epithelial cells, and antagonize pathogens. In vivo studies in murine models showed that L. helveticus could prevent gastrointestinal infections, enhance protection against pathogens, modulate host immune responses, and affect the composition of the intestinal microbiota. Interventional studies and clinical trials have also demonstrated a number of health-promoting properties of L. helveticus. Finally, several studies suggested that specific enzymatic activities of L. helveticus could indirectly benefit the human host by enhancing the bioavailability of nutrients, removing allergens and other undesired molecules from food, and producing bioactive peptides through the digestion of food proteins. In conclusion, this review demonstrates that in light of the scientific literature presented, L. helveticus can be included among the bacterial species that are generally considered to be probiotic. PMID:23181058

  18. Genome Instability in Lactobacillus rhamnosus GG

    PubMed Central

    Molenaar, Douwe; van IJcken, Wilfred; Venema, Koen

    2013-01-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies. PMID:23354703

  19. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity. PMID:26610803

  20. Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus

    PubMed Central

    De Angelis, Maria; Bottacini, Francesca; Fosso, Bruno; Kelleher, Philip; Calasso, Maria; Di Cagno, Raffaella; Ventura, Marco; Picardi, Ernesto; van Sinderen, Douwe; Gobbetti, Marco

    2014-01-01

    Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches. PMID:25264826

  1. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. PMID:26611169

  2. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)). PMID:16014493

  3. Vaginal Lactobacillus: biofilm formation in vivo – clinical implications

    PubMed Central

    Ventolini, Gary

    2015-01-01

    Vaginal lactobacilli provide protection against intrusive pathogenic bacteria. Some Lactobacillus spp. produce in vitro a thick, protective biofilm. We report in vivo formation of biofilm by vaginal Lactobacillus jensenii. The biofilm formation was captured in fresh wet-mount microscopic samples from asymptomatic patients after treatment for recurrent bacterial vaginitis. In vivo documentation of biofilm formation is in our opinion noteworthy, and has significant clinical implications, among which are the possibility to isolate, grow, and therapeutically utilize lactobacilli to prevent recurrent vaginal infections and preterm labor associated with vaginal microbial pathogens. PMID:25733930

  4. Vaginal Lactobacillus: biofilm formation in vivo - clinical implications.

    PubMed

    Ventolini, Gary

    2015-01-01

    Vaginal lactobacilli provide protection against intrusive pathogenic bacteria. Some Lactobacillus spp. produce in vitro a thick, protective biofilm. We report in vivo formation of biofilm by vaginal Lactobacillus jensenii. The biofilm formation was captured in fresh wet-mount microscopic samples from asymptomatic patients after treatment for recurrent bacterial vaginitis. In vivo documentation of biofilm formation is in our opinion noteworthy, and has significant clinical implications, among which are the possibility to isolate, grow, and therapeutically utilize lactobacilli to prevent recurrent vaginal infections and preterm labor associated with vaginal microbial pathogens. PMID:25733930

  5. Lactobacillus species shift in distal esophagus of high-fat-diet-fed rats

    PubMed Central

    Zhao, Xin; Liu, Xiao-Wei; Xie, Ning; Wang, Xue-Hong; Cui, Yi; Yang, Jun-Wen; Chen, Lin-Lin; Lu, Fang-Gen

    2011-01-01

    AIM: To analyze the microbiota shift in the distal esophagus of Sprague-Dawley rats fed a high-fat diet. METHODS: Twenty Sprague-Dawley rats were divided into high-fat diet and normal control groups of 10 rats each. The composition of microbiota in the mucosa from the distal esophagus was analyzed based on selective culture. A variety of Lactobacillus species were identified by molecular biological techniques. Bacterial DNA from Lactobacillus colonies was extracted, and 16S rDNA was amplified by PCR using bacterial universal primers. The amplified 16S rDNA products were separated by denaturing gradient gel electrophoresis (DGGE). Every single band was purified from the gel and sent to be sequenced. RESULTS: Based on mucosal bacterial culturing in the distal esophagus, Staphylococcus aureus was absent, and total anaerobes and Lactobacillus species were decreased significantly in the high-fat diet group compared with the normal control group (P < 0.01). Detailed DGGE analysis on the composition of Lactobacillus species in the distal esophagus revealed that Lactobacillus crispatus, Lactobacillus gasseri (L. gasseri) and Lactobacillus reuteri (L. reuteri) comprised the Lactobacillus species in the high-fat diet group, while the composition of Lactobacillus species in the normal control group consisted of L. gasseri, Lactobacillus jensenii and L. reuteri. CONCLUSION: High-fat diet led to a mucosal microflora shift in the distal esophagus in rats, especially the composition of Lactobacillus species. PMID:21912459

  6. Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195.

    PubMed

    Kaplan, Handan; Hutkins, Robert W

    2003-04-01

    Fermentation of fructooligosaccharides (FOS) and other oligosaccharides has been suggested to be an important property for the selection of bacterial strains used as probiotics. However, little information is available on FOS transport and metabolism by lactic acid bacteria and other probiotic bacteria. The objectives of this research were to identify and characterize the FOS transport system of Lactobacillus paracasei 1195. Radiolabeled FOS was synthesized enzymatically from [(3)H]sucrose and purified by column and thin-layer chromatography, yielding three main products: glucose (G) alpha-1,2 linked to two, three, or four fructose (F) units (GF(2), GF(3), and GF(4), respectively). FOS hydrolysis activity was detected only in cell extracts prepared from FOS- or sucrose-grown cells and was absent in cell supernatants, indicating that transport must precede hydrolysis. FOS transport assays revealed that the uptake of GF(2) and GF(3) was rapid, whereas little GF(4) uptake occurred. Competition experiments showed that glucose, fructose, and sucrose reduced FOS uptake but that other mono-, di-, and trisaccharides were less inhibitory. When cells were treated with sodium fluoride, iodoacetic acid, or other metabolic inhibitors, FOS transport rates were reduced by up to 60%; however, ionophores that abolished the proton motive force only slightly decreased FOS transport. In contrast, uptake was inhibited by ortho-vanadate, an inhibitor of ATP-binding cassette transport systems. De-energized cells had low intracellular ATP concentrations and had a reduced capacity to accumulate FOS. These results suggest that FOS transport in L. paracasei 1195 is mediated by an ATP-dependent transport system having specificity for a narrow range of substrates. PMID:12676703

  7. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  8. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  9. In vivo gut transcriptome responses to Lactobacillus rhamnosus GG and Lactobacillus acidophilus in neonatal gnotobiotic piglets

    PubMed Central

    Kumar, Anand; Vlasova, Anastasia N; Liu, Zhe; Chattha, Kuldeep S; Kandasamy, Sukumar; Esseili, Malak; Zhang, Xiaoli; Rajashekara, Gireesh; Saif, Linda J

    2014-01-01

    Probiotics facilitate mucosal repair and maintain gut homeostasis. They are often used in adjunct with rehydration or antibiotic therapy in enteric infections. Lactobacillus spp have been tested in infants for the prevention or treatment of various enteric conditions. However, to aid in rational strain selection for specific treatments, comprehensive studies are required to delineate and compare the specific molecules and pathways involved in a less complex but biologically relevant model (gnotobiotic pigs). Here we elucidated Lactobacillus rhamnosus (LGG) and L. acidophilus (LA) specific effects on gut transcriptome responses in a neonatal gnotobiotic (Gn) pig model to simulate responses in newly colonized infants. Whole genome microarray, followed by biological pathway reconstruction, was used to investigate the host-microbe interactions in duodenum and ileum at early (day 1) and later stages (day 7) of colonization. Both LA and LGG modulated common responses related to host metabolism, gut integrity, and immunity, as well as responses unique to each strain in Gn pigs. Our data indicated that probiotic establishment and beneficial effects in the host are guided by: (1) down-regulation or upregulation of immune function-related genes in the early and later stages of colonization, respectively, and (2) alternations in metabolism of small molecules (vitamins and/or minerals) and macromolecules (carbohydrates, proteins, and lipids). Pathways related to immune modulation and carbohydrate metabolism were more affected by LGG, whereas energy and lipid metabolism-related transcriptome responses were prominently modulated by LA. These findings imply that identification of probiotic strain-specific gut responses could facilitate the rational design of probiotic-based interventions to moderate specific enteric conditions. PMID:24637605

  10. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.

    PubMed

    Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo

    2013-10-15

    Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. PMID:23987441

  11. Sequence of ornithine decarboxylase from Lactobacillus sp. strain 30a.

    PubMed Central

    Hackert, M L; Carroll, D W; Davidson, L; Kim, S O; Momany, C; Vaaler, G L; Zhang, L

    1994-01-01

    A gene encoding biodegradative ornithine decarboxylase from Lactobacillus sp. strain 30a was isolated from a genomic DNA library and sequenced. Primer extension analysis revealed two transcription initiation sites. The deduced amino acid sequence is compared with the amino acid sequences of five previously reported bacterial decarboxylases, and conserved pyridoxal phosphate motif residues are identified. PMID:7961515

  12. Genome Sequence of Lactobacillus plantarum Strain UCMA 3037

    PubMed Central

    Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias

    2013-01-01

    Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem. PMID:23704179

  13. Genome Sequence of Lactobacillus plantarum Strain UCMA 3037.

    PubMed

    Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias; Vernoux, Jean-Paul

    2013-01-01

    Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem. PMID:23704179

  14. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  15. Lactobacillus plantarum mediated fermentation of Psidium guajava L. fruit extract.

    PubMed

    Bhat, Ravish; Suryanarayana, Lakshminarayana Chikkanayakanahalli; Chandrashekara, Karunakara Alageri; Krishnan, Padma; Kush, Anil; Ravikumar, Puja

    2015-04-01

    Sixteen hour fermentation of the white flesh raw guava Lucknow 49 cultivar using Lactobacillus plantarum NCIM 2912 was taken up for enhancing the antioxidant potential. The fermented guava product with high antioxidant potential, total phenolic content and short and medium chain fatty acids can be used as functional food. PMID:25300190

  16. Nearly Complete Genome Sequence of Lactobacillus plantarum Strain NIZO2877

    PubMed Central

    Bayjanov, Jumamurat R.; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; Siezen, Roland; van Hijum, Sacha A. F. T.

    2015-01-01

    Lactobacillus plantarum is a versatile bacterial species that is isolated mostly from foods. Here, we present the first genome sequence of L. plantarum strain NIZO2877 isolated from a hot dog in Vietnam. Its two contigs represent a nearly complete genome sequence. PMID:26607887

  17. Draft Genome Sequence of Lactobacillus fermentum NB-22

    PubMed Central

    Shkoporov, A. N.; Efimov, B. A.; Pikina, A. P.; Borisova, O. Y.; Gladko, I. A.; Postnikova, E. A.; Lordkipanidze, A. E.; Kafarskaia, L. I.

    2015-01-01

    We announce here a draft genome sequence of Lactobacillus fermentum NB-22, a strain isolated from human vaginal microbiota. The assembled sequence consists of 190 contigs, joined into 137 scaffolds, and the total size is 2.01 Mb. PMID:26272572

  18. Draft Genome Sequence of Lactobacillus fermentum NB-22.

    PubMed

    Chaplin, A V; Shkoporov, A N; Efimov, B A; Pikina, A P; Borisova, O Y; Gladko, I A; Postnikova, E A; Lordkipanidze, A E; Kafarskaia, L I

    2015-01-01

    We announce here a draft genome sequence of Lactobacillus fermentum NB-22, a strain isolated from human vaginal microbiota. The assembled sequence consists of 190 contigs, joined into 137 scaffolds, and the total size is 2.01 Mb. PMID:26272572

  19. Role of transporter proteins in bile tolerance of Lactobacillus acidophilus.

    PubMed

    Pfeiler, Erika A; Klaenhammer, Todd R

    2009-09-01

    Lactobacillus acidophilus NCFM derivatives containing deletion mutations in the transporter genes LBA0552, LBA1429, LBA1446, and LBA1679 exhibited increased sensitivity to bile. These strains showed unique patterns of sensitivity to a variety of inhibitory compounds, as well as differential accumulations of ciprofloxacin and taurocholate. PMID:19633113

  20. Isolation and Characterization of a Novel CO2-Tolerant Lactobacillus Strain from Crystal Geyser, UT

    NASA Astrophysics Data System (ADS)

    Santillan, E. U.; Major, J. R.; Omelon, C. R.; Shanahan, T. M.; Bennett, P.

    2013-12-01

    Capnophiles are microbes that grow in CO2 enriched environments. Cultured capnophiles generally, grow in 2 to 25% CO2, or 0.02 to 0.25 atm. When CO2 is sequestered in deep saline aquifers, the newly created high CO2 environment may select for capnophlic organisms. In this study, a capnophile was isolated from Crystal Geyser, a CO2 spring along the Little Grand Wash Fault, UT, a site being investigated as an analogue to CO2 sequestration. Crystal Geyser periodically erupts with CO2 charged water, indicating the presence of very high CO2 pressures below the subsurface, similar to sequestration conditions. Biomass was sampled by pumping springwater from approximately 10 m below the surface through filters. Filters were immediately placed in selective media within pressure vessels where they were pressurized to 10 atm in the field. Subsequent recultures produced an isolate, designated CG-1, that is most closely (99%) related to Lactobacillus casei on the strain level. CG-1 grows in tryptic soy broth, in PCO2 ranging from 0 atm to 10 atm, 40 times higher than pressures of previously cultured capnophiles. At 25 atm, growth is inhibited though survival can be as long as 5 days. At 50 atm, survival is poor, with sterilization occurring by 24 hours. Growth is optimal between pH values of 6 to 8, though sluggish if no CO2 is present. Its optimal salinity is 0.25 M NaCl though growth is observed ranging from 0 to 1 M NaCl. Growth is observed between 25o to 45o C, but optimal at 25oC. It consumes long-chained carbon molecules such as glucose, sucrose, and crude oil, and exhibits poor growth when supplied with lactate, acetate, formate, and pyruvate. The organism likely performs lactic acid fermentation as it requires no electron acceptors for growth and produces no acid, gas, and sulfide in triple sugar iron agar slants. CG-1 also expresses a variety of lipids, most notably cyclopropyl C19 (cycC19), or lactobacillic acid, characteristic of organisms belonging to the Lactobacilli. At 1 atm PCO2, CG-1 largely expresses monounsaturated fatty acids. At 10 atm, this changes to an increase saturated fatty acids and cycC19 consistent with a cell size decrease. Transmission electron microscopy reveals the organism as rod shaped at 1 atm. At 10 atm, the organism appears smaller, amorphous, and surrounded by a sheath. However, invaginations present in the cell at this pressure indicate cell division at high PCO2. Isolation of this organism shows that viable microbial populations can exist during CO2 sequestration and these organisms will likely contribute to changes in geochemistry and permeability of saline aquifers, which can affect the overall fate of stored CO2. Furthermore, its tolerance and reliance on CO2 pressures higher than any other known capnophile means this organism should be classified as a new kind of extremeophile, a hyper-capnophile.

  1. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis. PMID:25095898

  2. Antibiotic susceptibility of potentially probiotic Lactobacillus species.

    PubMed

    Charteris, W P; Kelly, P M; Morelli, L; Collins, J K

    1998-12-01

    In recent years, the time-honored reputation of lactobacilli as promoters of gastrointestinal and female urogenital health has been qualified. This has occurred due to a rare association with human infection in the presence of certain predisposing factors and their potential to act as a source of undesirable antibiotic resistance determinants to other members of the indigenous microbiota. This necessitates greater caution in their selection for use in microbial adjunct nutrition and disease management (prophylaxis and therapy). It was against this background that 46 Lactobacillus strains from human and dairy sources were assayed for susceptibility to 44 antibiotics. All strains were resistant to a group of 14 antibiotics, which included inhibitors of cell wall synthesis (cefoxitin [30 microg] and aztreonam [30 microg]), protein synthesis (amikacin [30 microg], gentamicin [10 microg], kanamycin [30 microg], and streptomycin [10 microg]), nucleic acid synthesis (norfloxacin [10 microg], nalidixic acid [30 microg], sulphamethoxazole [100 microg], trimethoprim [5 microg], co-trimoxazole [25 microg], and metronidazole [5 microg]), and cytoplasmic membrane function (polymyxin B [300 microg] and colistin sulphate [10 microg]). All strains were susceptible to tetracycline (30 microg), chloramphenicol (30 microg), and rifampicin (5 microg). Four human strains and one dairy strain exhibited atypical resistance to a penicillin, bacitracin (10 microg), and/or nitrofurantoin (300 microg). One human strain was also resistant to erythromycin (15 microg) and clindamycin (2 microg). These resistances may have been acquired due to antibiotic exposure in vivo, but conclusive evidence is lacking in this regard. Seven microorganism-drug combinations were evaluated for beta-lactamase activity using synergy and nitrocefin tests. The absence of activity suggested that cell wall impermeability appeared responsible for beta-lactam resistance. The occurrence of a minority of lactobacilli with undesirable, atypical resistance to certain antibiotics demonstrates that not all strains are suitable for use as probiotics or bacteriotherapeutic agents. The natural resistance of lactobacilli to a wide range of clinically important antibiotics may enable the development of antibiotic/probiotic combination therapies for such conditions as diarrhea, female urogenital tract infection, and infective endocarditis. PMID:9874341

  3. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard.

    PubMed

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction. PMID:26909087

  4. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard

    PubMed Central

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction. PMID:26909087

  5. The Effects of Two Lactobacillus plantarum Strains on Rat Lipid Metabolism Receiving a High Fat Diet

    PubMed Central

    Salaj, Rastislav; Štofilová, Jana; Šoltesová, Alena; Hertelyová, Zdenka; Hijová, Emília; Bertková, Izabela; Strojný, Ladislav; Kružliak, Peter

    2013-01-01

    The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet. Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat. These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance. PMID:24470789

  6. Characterization of Indigenous Lactobacillus Strains for Probiotic Properties

    PubMed Central

    Mojgani, Naheed; Hussaini, Fatimah; Vaseji, Narges

    2015-01-01

    Background: Probiotics are defined as adequate amount of live microorganisms able to confer health benefits on the host. Currently, most commercially available probiotic products in the market belong to genera Lactobacillus. Traditional dairy products are usually rich source of Lactobacillus strains with significant health benefits. In order to evaluate the probiotic potential of these bacteria, it is essential to assess their health benefits, efficacy, and safety. Objectives: The probiotic efficacy of two Lactobacillus strains namely Lactobacillus pentosus LP05 and L. brevis LB32 was evaluated. They were previously isolated from ewes’ milk in a rural area in East Azerbaijan, Iran. Materials and Methods: The selected isolates were tested for certain phenotypic characters and identified to genus and species level by 16S rRNA gene sequencing and species specific primers. Further analysis included acid and bile resistance, antagonistic activity, cholesterol removing ability, survival in simulated gastric and upper intestine contents, aggregation and coaggregation properties. Finally, the adhering ability of the selected Lactobacillus strains to epithelial cells was tested using Caco-2 cell lines. Results: The selected isolates tolerated bile salt concentrations ranging from 0.5% to 3%, however their coefficient of inhibition were varied. Both isolates hydrolyzed bile and grew at pH values of 3, 4, and 5, while isolate LP05 was not able to hydrolyze arginine. Based on 16s rRNA gene sequencing and species-specific primers, the isolates were identified as L. brevis LB32 and L. pentosus LP05. In contrast to simulated gastric conditions, the growth rate of the isolates in alkaline conditions of upper intestine increased significantly with the passage of time reaching its maximum in 24 hours. These 2 isolates inhibited the growth of Listeria monocytogenes, Salmonella enteritidis, Shigella dysenteriae, Staphylococcus aureus, and Streptococcus pneumonia. Furthermore, L. brevis LB32 was able to reduce approximately 86% of cholesterol compared to L. pentosus LP05, which showed only 69% of reduction. Higher aggregation and coaggregation percentage and adherence to Caco-2 cell line was observed in L. pentosus LP05 compared to L. brevis LB32. Conclusions: This research study proved the presence of viable probiotic LAB microflora in the ewe milk with enhanced health benefits. The 2 selected Lactobacillus strains could be exploited in dairy or pharmaceutical industry in future. PMID:25793099

  7. Characterization of novel glycolipid antigens with an α-galactose epitope in lactobacilli detected with rabbit anti-Lactobacillus antisera and occurrence of antibodies against them in human sera.

    PubMed

    Iwamori, Masao; Sakai, Akihiro; Minamimoto, Norihito; Iwamori, Yuriko; Tanaka, Kyoko; Aoki, Daisuke; Adachi, Shigeki; Nomura, Taisei

    2011-11-01

    Anti-Lactobacillus johnsonii (LJ) antisera generated by immunization of rabbits with LJ reacted with glyceroglycolipids in LJ, i.e. dihexaosyl diacylglycerol (DH-DG), trihexaosyl DG (TH-DG) and tetrahexaosyl DG (TetH-DG), whose reactivities with antisera increased proportionally with longer carbohydrate chains of glycolipids. Structural analyses of glycolipids from LJ revealed that DH-DG was Galα1-2Glcα1-3'DG, and TH-DG and TetH-DG were novel derivatives of it with α-Gal at the non-reducing terminal, i.e. Galα1-6Galα1-2Glcα1-3'DG and Galα1-6Galα1-6Galα1-2Glcα1-3'DG, respectively. DH-DG was commonly present in several lactobacilli examined, but TetH-DG was restricted to LJ, L. intestinalis and L. reuteri, while the TH-DGs from L. casei were Glc1-6Galα1-2Glcα1-3'DG and an esterified derivative of it, Glc1-6Galα1-2Glc(6-fatty acid)α1-3'DG, as reported in the literature. Anti-LJ antisera reacted with TH-DG and esterified TH-DG from L. casei to lesser extents, but not at all with gentibiosyl DG from Staphylococcus epidermidis or kojibiosyl DG from Streptococcus salivalis or sphingoglycolipids containing α-Gal residues. The major molecular species of glycolipids obtained from lactobacilli were 11-octadecenoic and 11,12-methylene-octadecanoic acids-containing ones. Also, human IgM antibodies against TH-DG and TetH-DG from LJ were detected in human sera, with various antibody titres, indicating that an immune reaction to symbiotic lactobacilli occurs against their glycolipid antigens, TH-DG and TetH-DG. PMID:21784785

  8. Survey of compound microsatellites in multiple Lactobacillus genomes.

    PubMed

    Basharat, Zarrin; Yasmin, Azra

    2015-12-01

    Distinct simple sequence repeats with 2 or more individual microsatellites joined together or lying adjacent to each other are identified as compound microsatellites. Investigation of such composite microsatellites in the genomes of genus Lactobacillus was the aim of this study. In silico inspection of microsatellite clustering in genomes of 14 Lactobacillus species revealed a wealth of compound microsatellites. All of the mined compound microsatellites were imperfect, were composed of variant motifs, and increased in all genomes, with maximum distance (dMAX) increments of 10 to 50. The majority of these repeats were present in the coding regions. A correlation of microsatellite to compound microsatellite density was detected. The difference established in compound microsatellite division among eukaryotes, Escherichia coli, and lactobacilli is suggestive of diverse genomic features and elementary distinction between creation and fixation methods of compound microsatellites among these organisms. PMID:26445296

  9. Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains.

    PubMed

    Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying

    2013-01-01

    The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing novel fermented foods. PMID:23894554

  10. Complete Genome Sequence of Probiotic Strain Lactobacillus acidophilus La-14.

    PubMed

    Stahl, Buffy; Barrangou, Rodolphe

    2013-01-01

    We present the 1,991,830-bp complete genome sequence of Lactobacillus acidophilus strain La-14 (SD-5212). Comparative genomic analysis revealed 99.98% similarity overall to the L. acidophilus NCFM genome. Globally, 111 single nucleotide polymorphisms (SNPs) (95 SNPs, 16 indels) were observed throughout the genome. Also, a 416-bp deletion in the LA14_1146 sugar ABC transporter was identified. PMID:23788546

  11. The effect of probiotics (Lactobacillus rhamnosus HN001, Lactobacillus paracasei LPC-37, and Lactobacillus acidophilus NCFM) on the availability of minerals from Dutch-type cheese.

    PubMed

    Aljewicz, Marek; Siemianowska, Ewa; Cichosz, Grażyna; Tońska, Elżbieta

    2014-01-01

    The use of probiotic cultures in the production of Dutch-type cheeses did not lead to significant changes in their chemical composition but it lowered their acidity. The availability of calcium and magnesium analyzed by in vitro enzymatic hydrolysis was 19 and 35%, respectively; the availability of phosphorus was significantly higher, at >90%. The use of probiotic cultures significantly increased the availability of calcium (~2.5%), phosphorus (~6%), and magnesium (~18%). The in vitro method supports accurate determination of the effect of the Lactobacillus spp. cultures on the availability of mineral compounds ingested with Dutch-type cheese. PMID:24913654

  12. Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains.

    PubMed

    Stoyancheva, Galina; Marzotto, Marta; Dellaglio, Franco; Torriani, Sandra

    2014-09-01

    The human vagina is a complex and dynamic ecosystem containing an abundance of microorganisms. In women of childbearing age, this system is dominated by Lactobacillus spp. In the present work, seventeen newly isolated vaginal strains were identified by 16S rDNA sequencing and were investigated for their antimicrobial properties. Twelve of the isolated Lactobacillus strains showed activity against one or more microorganisms. Six and five of them produced substances that inhibited the growth of two different Klebsiella strains and Staphylococcus aureus, respectively. Two lactobacilli strains were active against an Escherichia coli strain, one isolate was active against an Enterococus faecalis strain and another lactobacilli strain showed antimicrobial activity against a Candida parapsilosis strain. The nature of the active compounds was additionally studied, and the presence of bacteriocin-like substances was proved. The genes related to the bacteriocin production in three of the newly isolated strains were identified and sequenced. The presence of gassericin A operon in the genome of the species Lactobacillus crispatus was described for the first time. The presence of antimicrobial activity contributes to their possible use as potential probiotic strains after further research. PMID:24919535

  13. Diet alters probiotic Lactobacillus persistence and function in the intestine.

    PubMed

    Tachon, Sybille; Lee, Bokyung; Marco, Maria L

    2014-09-01

    We investigated the effects of host diet on the intestinal persistence and gene expression of Lactobacillus plantarum WCFS1 in healthy and health-compromised, 2,4,6-trinitrobenzene sulfonic acid (TNBS)-treated mice. Mice fed either a low-fat chow diet (CD) or high fat and sucrose Western diet (WD) received 10(9) L. plantarum WCFS1 cells for five consecutive days. Lactobacillus plantarum persistence was 10- to 100-fold greater in the intestines of WD-fed compared with CD-fed mice. TNBS, an intestinal irritant that induces the development of inflammatory bowel disease-like symptoms, resulted in up to a 10(4) -fold increase in L. plantarum survival in the digestive tract relative to healthy animals. Expression levels of 12 metabolic and gut-inducible L. plantarum genes were differentially affected by diet and TNBS administration. Pyrosequencing of 16S rRNA transcripts from the indigenous intestinal microbiota showed that WD resulted in significant reductions in proportions of metabolically active indigenous Lactobacillus species and increases in the Desulfovibrionaceae family. Feeding L. plantarum WCFS1 resulted in lower levels of colitis and higher concentrations of colonic IL-10 and IL-12 in WD and not CD-fed mice. Interactions between probiotics, nutritional components and the intestinal bacteria should be considered when examining for probiotic-mediated effects and elucidating mechanisms of probiotic function in the mammalian gut. PMID:24118739

  14. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery.

    PubMed

    Petricevic, Ljubomir; Domig, Konrad J; Nierscher, Franz Josef; Sandhofer, Michael J; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery. PMID:24875844

  15. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery

    PubMed Central

    Petricevic, Ljubomir; Domig, Konrad J.; Nierscher, Franz Josef; Sandhofer, Michael J.; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery. PMID:24875844

  16. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. PMID:26026241

  17. Peptidoglycan hydrolases as species-specific markers to differentiate Lactobacillus helveticus from Lactobacillus gallinarum and other closely related homofermentative lactobacilli.

    PubMed

    Jebava, Iva; Chuat, Victoria; Lortal, Sylvie; Valence, Florence

    2014-04-01

    We propose a new method that allows accurate discrimination of Lactobacillus helveticus from other closely related homofermentative lactobacilli, especially Lactobacillus gallinarum. This method is based on the amplification by PCR of two peptidoglycan hydrolytic genes, Lhv_0190 and Lhv_0191. These genes are ubiquitous and show high homology at the intra-species level. The PCR method gave two specific PCR products, of 542 and 747 bp, for 25 L. helveticus strains coming from various sources. For L. gallinarum, two amplicons were obtained, the specific 542 bp amplicon and another one with a size greater than 1,500 bp. No specific PCR products were obtained for 12 other closely related species of lactobacilli, including the L. acidophilus complex, L. delbrueckii, and L. ultunensis. The developed PCR method provided rapid, precise, and easy identification of L. helveticus. Moreover, it enabled differentiation between the two closely phylogenetically related species L. helveticus and L. gallinarum. PMID:24362553

  18. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  19. Synergistic impact of Lactobacillus fermentum, Lactobacillus plantarum and vincristine on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in mice

    PubMed Central

    ASHA; GAYATHRI, DEVARAJA

    2012-01-01

    Lactobacillus sp. is the most dominant probiotic strain of bacteria. Evidence indicates that the consumption of Lactobacillus sp. reduces the risk of colorectal cancer in animal models. The present study was carried out to determine whether administration of Lactobacillus fermentum/ Lactobacillus plantarum alone or in combination with vincristine have a synergistic impact on the control of colorectal cancer in an animal model. Mice with 1,2 dimethylhydrazine (DMH) hydrochloride-induced colon cancer were fed with L. fermentum and L. plantarum isolated along with vincristine. An increase in body weight, a decrease in ammonia concentration, a decrease in β glucosidase and β glucuronidase enzyme activity and a reduction in the number of crypts in the mice in the pre-carcinogen-induced group was noted when compared to these variables in the post-carcinogen-induced group. The body weight of the mice fed L. fermentum along with vincristine was increased (6.5 g), and was found to be 3.5 times higher compared to that of the control. A marked decrease in the ammonia concentration (240 mg), and β glucosidase (0.0023 IU) and β glucopyranose enzyme activity (0.0027 IU) was observed; 22.59% less ammonia concentration, 73.26% less β glucosidase activity and 56.46% less β glucuronidase enzyme activity was noted when compared to the control. A significant reduction in the number of aberrant crypt foci (ACF) (90%) was observed when compared to the control. Maximum protection was observed in the mice fed the probiotics and vincristine prior to cancer induction. Among the different dietary combinations tested in the present study, L. fermentum and vincristine showed a more extensive reduction in ammonia concentration, β glucosidase, β glucuronidase activity and the number of ACF. PMID:22970015

  20. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  1. Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules

    PubMed Central

    Jalali, M.; Abedi, D.; Varshosaz, J.; Najjarzadeh, M.; Mirlohi, M.; Tavakoli, N.

    2012-01-01

    Freeze-drying is a common preservation technology in the pharmaceutical industry. Various studies have investigated the effect of different cryoprotectants on probiotics during freeze-drying. However, information on the effect of cryoprotectants on the stability of some Lactobacillus strains during freeze-drying seems scarce. Therefore, the aim of the present study was to establish production methods for preparation of oral capsule probiotics containing Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. Bulgaricus. It was also of interest to examine the effect of various formulations of cryoprotectant media containing skim milk, trehalose and sodium ascorbate on the survival rate of probiotic bacteria during freeze-drying at various storage temperatures. Without any cryoprotectant, few numbers of microorganisms survived. However, microorganisms tested maintained higher viability after freeze-drying in media containing at least one of the cryoprotectants. Use of skim milk in water resulted in an increased viability after lyophilization. Media with a combination of trehalose and skim milk maintained a higher percentage of live microorganisms, up to 82%. In general, bacteria retained a higher number of viable cells in capsules containing freeze-dried bacteria with sodium ascorbate after three months of storage. After this period, a marked decline was observed in all samples stored at 23°C compared to those stored at 4°C. The maximum survival rate (about 72-76%) was observed with media containing 6% skim milk, 8% trehalose and 4% sodium ascorbate. PMID:23181077

  2. Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules.

    PubMed

    Jalali, M; Abedi, D; Varshosaz, J; Najjarzadeh, M; Mirlohi, M; Tavakoli, N

    2012-01-01

    Freeze-drying is a common preservation technology in the pharmaceutical industry. Various studies have investigated the effect of different cryoprotectants on probiotics during freeze-drying. However, information on the effect of cryoprotectants on the stability of some Lactobacillus strains during freeze-drying seems scarce. Therefore, the aim of the present study was to establish production methods for preparation of oral capsule probiotics containing Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. Bulgaricus. It was also of interest to examine the effect of various formulations of cryoprotectant media containing skim milk, trehalose and sodium ascorbate on the survival rate of probiotic bacteria during freeze-drying at various storage temperatures. Without any cryoprotectant, few numbers of microorganisms survived. However, microorganisms tested maintained higher viability after freeze-drying in media containing at least one of the cryoprotectants. Use of skim milk in water resulted in an increased viability after lyophilization. Media with a combination of trehalose and skim milk maintained a higher percentage of live microorganisms, up to 82%. In general, bacteria retained a higher number of viable cells in capsules containing freeze-dried bacteria with sodium ascorbate after three months of storage. After this period, a marked decline was observed in all samples stored at 23°C compared to those stored at 4°C. The maximum survival rate (about 72-76%) was observed with media containing 6% skim milk, 8% trehalose and 4% sodium ascorbate. PMID:23181077

  3. PRODUCTION OF MANNITOL AND LACTIC ACID BY FERMENTATION WITH LACTOBACILLUS INTERMEDIUS NRRL B-3693

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus intermedius B-3693 was selected as a good producer of mannitol from 9 strains (Lactobacillus brevis B-1836, L. buchneri B-1860, L. cellobiosus B-1840, L. fermentum B-1915, L. intermedius B-3693, Leuconostoc amelibiosum B-742, L. citrovorum B-1147, L. mesenteroides subsp. dextranicum B-...

  4. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required. PMID:25930687

  5. Draft Genome Sequence of Lactobacillus gorillae Strain KZ01T, Isolated from a Western Lowland Gorilla.

    PubMed

    Tsuchida, Sayaka; Nezuo, Maiko; Tsukahara, Masatoshi; Ogura, Yoshitoshi; Hayashi, Tetsuya; Ushida, Kazunari

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus gorillae strain KZ01(T) isolated from a western lowland gorilla (Gorilla gorilla gorilla). This genome sequence will be helpful for the comparative genomics between human and nonhuman primate-associated Lactobacillus. PMID:26472838

  6. Draft Genome Sequence of Lactobacillus gorillae Strain KZ01T, Isolated from a Western Lowland Gorilla

    PubMed Central

    Tsuchida, Sayaka; Nezuo, Maiko; Tsukahara, Masatoshi; Ogura, Yoshitoshi; Hayashi, Tetsuya

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus gorillae strain KZ01T isolated from a western lowland gorilla (Gorilla gorilla gorilla). This genome sequence will be helpful for the comparative genomics between human and nonhuman primate-associated Lactobacillus. PMID:26472838

  7. Genome Sequence of Lactobacillus fabifermentans Strain T30PCM01, Isolated from Fermenting Grape Marc

    PubMed Central

    Treu, Laura; Vendramin, Veronica; Bovo, Barbara; Giacomini, Alessio; Corich, Viviana

    2014-01-01

    Here, we report the draft genome assembly of Lactobacillus fabifermentans strain T30PCM01 isolated from grape marc. Its genome is the largest (3.58 Mbp) among Lactobacillus species and reveals an enormous potential for carbohydrate utilization and transcriptional regulation. PMID:24558238

  8. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  9. Diversity and functional characterization of Lactobacillus spp. isolated throughout the ripening of a hard cheese.

    PubMed

    Bautista-Gallego, J; Alessandria, V; Fontana, M; Bisotti, S; Taricco, S; Dolci, P; Cocolin, L; Rantsiou, K

    2014-07-01

    The aim of this work was to study the Lactobacillus spp. intra- and inter- species diversity in a Piedmont hard cheese made of raw milk without thermal treatment and without addition of industrial starter, and to perform a first screening for potential functional properties. A total of 586 isolates were collected during the cheese production and identified by means of molecular methods: three hundred and four were identified as Lactobacillus rhamnosus, two hundred and forty as Lactobacillus helveticus, twenty six as Lactobacillus fermentum, eleven as Lactobacillus delbrueckii, three as Lactobacillus pontis, and two as Lactobacillus gasseri and Lactobacillus reuteri, respectively. A high genetic heterogeneity was detected by using the repetitive bacterial DNA element fingerprinting (rep-PCR) with the use of (GTG)5 primer resulting in eight clusters of L. helveticus and sixteen clusters in the case of L. rhamnosus. Most of isolates showed a high auto-aggregation property, low hydrophobicity values, and a general low survival to simulated digestion process. However, sixteen isolates showed promising functional characteristics. PMID:24819414

  10. A simple identification method for vaginal secretions using relative quantification of Lactobacillus DNA.

    PubMed

    Doi, Masanori; Gamo, Shinsuke; Okiura, Tatsuyuki; Nishimukai, Hiroaki; Asano, Migiwa

    2014-09-01

    In criminal investigations there are some cases in which identifying the presence of vaginal secretions provides crucial evidence in proving sexual assault. However, there are no methods for definitively identifying vaginal secretions. In the present study, we focused on Lactobacillus levels in vaginal secretions and developed a novel identification method for vaginal secretions by relative quantification based on real time PCR. We designed a Lactobacillus conserved region primer pair (LCP) by aligning 16S rRNA gene sequences from major vaginal Lactobacillus species (Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners and Lactobacillus jensenii), and selected the human specific primer pair (HSP) as an endogenous control for relative quantification. As a result, the ΔCt (ΔCt=Ct[LCP]-Ct[HSP]) values of vaginal secretions (11 out of 12 samples) were significantly lower than those of saliva, semen and skin surface samples, and it was possible to discriminate between vaginal secretions and other body fluids. For the one remaining sample, it was confirmed that the predominant species in the microflora was not of the Lactobacillus genus. The ΔCt values in this study were calculated when the total DNA input used from the vaginal secretions was 10pg or more. Additionally, the ΔCt values of samples up to 6-months-old, which were kept at room temperature, remained unchanged. Thus, we concluded in this study that the simple ΔCt method by real time PCR is a useful tool for detecting the presence of vaginal secretions. PMID:24905338

  11. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. PMID:26143437

  12. Evaluation of Antibacterial Activity of Lactobacillus Spp. on Selected Food Spoilage Bacteria.

    PubMed

    Sharma, Anurag; Gupta, Piyush; Bhattacharya, Susinjan

    2015-01-01

    This study was done to isolate Lactobacillus species from curd, amla/Indian gooseberry and orange and to assess their antagonistic ability against selected food spoilage bacteria, Escherichia coli, Pseudomonas spp. and Bacillus spp. isolated from natural food sources. In the approaches used, native Lactobacillus spp. were isolated from amla, orange and curd and identified by standard microbiological methods. Their antagonistic affect was tested by disc diffusion tests against three selected test isolates, Escherichia coli, Pseudomonas and Bacillus spp. isolated from tomato, pumpkin, cauliflower, lady's finger, carrot, and milk. There are recent patents also suggesting use of novel strains of Lactobacillus for microbial antagonism. In our present work, the lactobacilli isolated from different food sources showed varied ability to inhibit the growth of test isolates. The growth of test isolates was inhibited by Lactobacillus isolates with one of the Lactobacillus isolate from amla being the most potent inhibitor. PMID:25751004

  13. Draft Genome Sequences of Lactobacillus equicursoris CIP 110162T and Lactobacillus sp. Strain CRBIP 24.137, Isolated from Thoroughbred Racehorse Feces and Human Urine, Respectively

    PubMed Central

    Cousin, Sylvie; Loux, Valentin; Ma, Laurence; Creno, Sophie; Clermont, Dominique; Bizet, Chantal

    2013-01-01

    We report the draft genome sequences of strain Lactobacillus equicursoris CIP 110162T, isolated from racehorse breed feces, and Lactobacillus sp. strain CRBIP 24.137, isolated from human urine; the two strains are closely related. The total lengths of the 116 and 62 scaffolds are about 2.157 and 2.358 Mb, with G+C contents of 46 and 45% and 2,279 and 2,342 coding sequences (CDSs), respectively. PMID:23969063

  14. Screening of Lactobacillus strains of domestic goose origin against bacterial poultry pathogens for use as probiotics.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2014-10-01

    Lactobacilli are natural inhabitants of human and animal mucous membranes, including the avian gastrointestinal tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities, among which their antagonistic potential against pathogens plays a key role. A study was conducted to evaluate probiotic properties of Lactobacillus strains isolated from feces or cloacae of domestic geese. Among the 104 examined isolates, previously identified to the species level by whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and analysis of 16S-23S regions of rDNA, dominated Lactobacillus salivarius (35%), followed by Lactobacillus johnsonii (18%) and Lactobacillus ingluviei (11%). All lactobacilli were screened for antimicrobial activity toward Salmonella Enteritidis, Escherichia coli, Clostridium perfringens, Staphylococcus aureus, Pasteurella multocida, and Riemerella anatipestifer using the agar slab method and the well diffusion method. Lactobacillus salivarius and Lactobacillus plantarum exhibited particularly strong antagonism toward all of the indicator strains. In the agar slab method, the highest sensitivity to Lactobacillus was observed in R. anatipestifer and P. multocida, and the lowest in E. coli and S. aureus. The ability to produce H₂O₂was exhibited by 92% of isolates, but there was no correlation between the rate of production of this reactive oxygen species and the antimicrobial activity of Lactobacillus sp. All lactobacilli showed resistance to pH 3.0 and 3.5 and to 2% bile. The data demonstrate that Lactobacillus isolates from geese may have probiotic potential in reducing bacterial infections. The antibacterial activity of the selected lactobacilli is mainly due to lactic acid production by these bacteria. The selected Lactobacillus strains that strongly inhibited the growth of pathogenic bacteria, and were also resistant to low pH and bile salts, can potentially restore the balance of intestinal microflora in geese and could offer an alternative to antibiotic therapy. PMID:25104766

  15. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health

    PubMed Central

    Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah

    2015-01-01

    The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies. PMID:25859220

  16. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health.

    PubMed

    Petrova, Mariya I; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah

    2015-01-01

    The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies. PMID:25859220

  17. Adhesive and chemokine stimulatory properties of potentially probiotic Lactobacillus strains.

    PubMed

    Vizoso Pinto, María G; Schuster, Tobias; Briviba, Karlis; Watzl, Bernhard; Holzapfel, Wilhelm H; Franz, Charles M A P

    2007-01-01

    Five Lactobacillus plantarum strains and two Lactobacillus johnsonii strains, stemming either from African traditionally fermented milk products or children's feces, were investigated for probiotic properties in vitro. The relationship between the hydrophobic-hydrophilic cell surface and adhesion ability to HT29 intestinal epithelial cells was investigated, and results indicated that especially the L. johnsonii strains, which exhibited both hydrophobic and hydrophilic surface characteristics, adhered well to HT29 cells. Four L. plantarum and two L. johnsonii strains showed high adherence to HT29 cells, generally higher than that of the probiotic control strain Lactobacillus rhamnosus GG. Most strains with high adhesion ability also showed high autoaggregation ability. The two L. johnsonii strains coaggregated well with the intestinal pathogens Listeria monocytogenes Scott A, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Salmonella enterica serovar Typhimurium ATCC 14028. The L. plantarum BFE 1685 and L. johnsonii 6128 strains furthermore inhibited the adhesion of at least two of these intestinal pathogens in coculture with HT29 cells in a strain-dependent way. These two potential probiotic strains also significantly increased interleukin-8 (IL-8) chemokine production by HT29 cells, although modulation of other cytokines, such as IL-1, IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), and transforming growth factor beta (TGF-beta), did not occur. Altogether, our results suggested that L. plantarum BFE 1685 and L. johnsonii BFE 6128 showed good adherence, coaggregated with pathogens, and stimulated chemokine production of intestinal epithelial cells, traits that may be considered promising for their development as probiotic strains. PMID:17265871

  18. Antibiotic susceptibility of Lactobacillus strains isolated from domestic geese.

    PubMed

    Dec, M; Wernicki, A; Puchalski, A; Urban-Chmiel, R

    2015-01-01

    The aim of this study was to determine the antibiotic susceptibility of 93 Lactobacillus strains isolated from domestic geese raised on Polish farms. The minimal inhibitory concentration (MIC) of 13 antimicrobial substances was determined by the broth microdilution method. All strains were sensitive to the cell wall inhibitors ampicillin and amoxicillin (MIC ≤ 8 μg/ml). Resistance to inhibitors of protein synthesis and to fluoroquinolone inhibitors of replication was found in 44.1% and 60.2% of isolates, respectively; 26.9% strains were resistant to neomycin (MIC ≥ 64 μg/ml), 23.6% to tetracycline (MIC ≥ 32 μg/ml), 15% to lincomycin (MIC ≥ 64 μg/ml), 18.3% to doxycycline (MIC ≥ 32 μg/ml), 9.7% to tylosin (MIC ≥ 32 μg/ml), 56% to flumequine (MIC ≥ 256 μg/ml) and 22.6% to enrofloxacin (MIC ≥ 64 μg/ml). Bimodal distribution of MICs indicative of acquired resistance and unimodal distribution of the high MIC values indicative of intrinsic resistance were correlated with Lactobacillus species. Eleven (11.8%) strains displayed multiple resistance for at least three classes of antibiotics. Data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorisation of susceptible and resistant strains of Lactobacillus genus and help to assess the hazards associated with the occurrence of drug resistance among natural intestinal microflora. PMID:26105622

  19. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. [Lactobacillus sake; Lactobacillus curvatus; Lactobacillus farciminis; Staphylococcus aureus; Salmonella typimurium

    SciTech Connect

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.

  20. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics.

    PubMed

    Lhomme, Emilie; Orain, Servane; Courcoux, Philippe; Onno, Bernard; Dousset, Xavier

    2015-11-20

    Fourteen bakeries located in different regions of France were selected. These bakers use natural sourdough and organic ingredients. Consequently, different organic sourdoughs used for the manufacture of French bread were studied by the enumeration of lactic acid bacteria (LAB) and 16S rRNA sequencing of the isolates. In addition, after DNA extraction the bacterial diversity was assessed by pyrosequencing of the 16S rDNA V1-V3 region. Although LAB counts showed significant variations (7.6-9.5log10CFU/g) depending on the sourdough studied, their identification through a polyphasic approach revealed a large predominance of Lactobacillus sanfranciscensis in all samples. In ten sourdoughs, both culture and independent methods identified L. sanfranciscensis as the dominant LAB species identified. In the remaining sourdoughs, culture methods identified 30-80% of the LAB as L. sanfranciscensis whereas more than 95% of the reads obtained by pyrosequencing belonged to L. sanfranciscensis. Other sub-dominant species, such as Lactobacillus curvatus, Lactobacillus hammesii, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei, were also identified. Quantification of L. sanfranciscensis by real-time PCR confirmed the predominance of this species ranging from 8.24 to 10.38log10CFU/g. Regarding the acidification characteristics, sourdough and related bread physico-chemical characteristics varied, questioning the involvement of sub-dominant species or L. sanfranciscensis intra-species diversity and/or the role of the baker's practices. PMID:26051957

  1. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. PMID:26946538

  2. Lactobacillus crispatus and its nonaggregating mutant in human colonization trials.

    PubMed

    Cesena, C; Morelli, L; Alander, M; Siljander, T; Tuomola, E; Salminen, S; Mattila-Sandholm, T; Vilpponen-Salmela, T; von Wright, A

    2001-05-01

    A wild-type Lactobacillus crispatus, showing a cell aggregation phenotype and its spontaneous nonaggregating mutant were compared for their in vitro adhesion properties to human ileal mucus and to a cultured human colonic cell line (Caco2) and for their in vivo colonization and adhesion potential with colonoscopy patients as volunteers in feeding trials. The wild-type strain adhered better to mucus or to Caco2 cells than did the mutant. Altogether, three human trials with the wild type and two with the mutant strain were performed. In two of the trials, the wild type could be recovered from either fecal samples or biopsies taken from the colon, while the mutant strain could not be demonstrated in either of the trials where it was used. The L. crispatus colonies recovered from the trials were often mixed, and several enterococci and lactobacillus strains coaggregating with L. crispatus wild type could be isolated. The results indicate that the surface-mediated properties, such as aggregation, of lactobacilli can have a role in adhesion and colonization. PMID:11384025

  3. Characterization of an intracellular oligopeptidase from Lactobacillus paracasei.

    PubMed Central

    Tobiassen, R O; Sørhaug, T; Stepaniak, L

    1997-01-01

    An intracellular oligopeptidase from Lactobacillus paracasei Lc-01 has been purified to homogeneity by Fast Flow Q Sepharose, hydroxyapatite, and Mono Q chromatography. The molecular mass of the enzyme was determined to be 140 kDa by gel filtration and approximately 30 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and SDS-capillary electrophoresis. The pI of the enzyme was at pH 4.5. The enzyme expressed maximum activity at pH 8.0 and 40 degrees C. Oligopeptidase activity on bradykinin was inhibited strongly by 1,10-phenantroline and EDTA and partly by p-chloromercuribenzoic acid but not by phosphoramidon or phenylmethylsulfonyl fluoride. Marked inhibition by beta-casein fragment 58 to 72 was demonstrated. The enzyme showed neither general aminopeptidase nor caseinolytic activity, and it degraded only oligopeptides between 8 and 13 amino acids. The enzyme readily hydrolyzed the Phe-Ser and Pro-Phe bonds of bradykinin; the Phe-His bond of angiotensin I; the Pro-Gln, Gln-Phe, and Phe-Gly bonds of substance P; and the Pro-Tyr bond of neurotensin. Weak activity toward the Ala-Tyr and Pro-Ser bonds of alpha(s1)-casein fragment 157 to 164, was observed. The N-terminal amino acid sequence of the oligopeptidase showed a high degree of homology to the lactacin B inducer from Lactobacillus acidophilus. PMID:9097425

  4. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli. PMID:26546316

  5. Identification, technological and safety characterization of Lactobacillus sakei and Lactobacillus curvatus isolated from Argentinean anchovies (Engraulis anchoita).

    PubMed

    Belfiore, Carolina; Raya, Ral R; Vignolo, Graciela M

    2013-12-01

    In this study, the identification and characterization of Lactobacillus previously isolated from fresh anchovies (Engraulis anchoita) are investigated. 16S rDNA partial sequencing assigned all the isolates to belong to the Lactobacillus sakei/curvatus group. Fourteen out of 15 isolates were identified as L. sakei by phenotypic traits: they exhibited catalase activity and fermented melibiose, although only 10 of them hydrolyzed arginine. These results were confirmed by multiplex PCR-based restriction enzyme analysis with HindIII and by restriction fragment length polymorphic (RFLP) analysis of the 16S-23S rDNA intergenic spacer region with TaqI. Among identified isolates, four L. sakei strains and the sole L. curvatus strain showing sensitivity to chloramphenicol, erythromycin and tetracycline and exhibiting high tolerance to NaCl (10-18%) were unable to produce neither dextran nor biogenic amines. Based on technological and safety features, L. sakei SACB704 and L. curvatus SACB03a naturally present in fresh anchovies may be promising strains for the development of a starter culture to accelerate and control the fermentation of salt fermented anchovy-based products. PMID:23807916

  6. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    PubMed Central

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  7. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  8. Lactobacillus reuteri CRL 1098 and Lactobacillus acidophilus CRL 1014 differently reduce in vitro immunotoxic effect induced by Ochratoxin A.

    PubMed

    Mechoud, Mónica A; Juarez, Guillermo E; de Valdez, Graciela Font; Rodriguez, Ana V

    2012-12-01

    Ochratoxin A (OTA) is a widespread mycotoxin contaminating several food products which causes detrimental health effects. The ability of Lactobacillus reuteri CRL 1098 and Lactobacillus acidophilus CRL 1014 to prevent OTA effects on TNF-α and IL-10 production and apoptosis induction in human peripheral blood mononuclear cells (PBMC) was investigated. Membrane rafts participation in these responses was also evaluated. L. reuteri reduced by 29% the OTA inhibition of TNF-α production whereas L. acidophilus increased 8 times the TNF-α production by OTA treated-PBMC. Also, both bacteria reversed apoptosis induced by OTA by 32%. However, neither of the bacteria reversed the OTA inhibition on IL-10 production. On the other hand, the lactobacilli were less effective to reverse OTA effects on disrupted-rafts PBMC. This study shows that two lactobacilli strains can reduce some negative OTA effects, being membrane rafts integrity necessary to obtain better results. Also, the results highlight the potential capacity of some lactobacilli strains usually included in natural dietary components in milk-derived products and cereals feed, to reduce OTA toxicity once ingested by humans or animals. PMID:22975144

  9. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products.

    PubMed

    Sohail, Asma; Turner, Mark S; Prabawati, Elisabeth Kartika; Coombes, Allan G A; Bhandari, Bhesh

    2012-07-01

    This study investigated the effect of microencapsulation on the survival of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM and their acidification in orange juice at 25°C for nine days and at 4°C over thirty five days of storage. Alginate micro beads (10-40 μm) containing the probiotics were produced by a novel dual aerosol method of alginate and CaCl(2) cross linking solution. Unencapsulated L. rhamnosus GG was found to have excellent survivability in orange juice at both temperatures. However unencapsulated L. acidophilus NCFM showed significant reduction in viability. Encapsulation of these two bacteria did not significantly enhance survivability but did reduce acidification at 25°C and 4°C. In agreement with this, encapsulation of L. rhamnosus GG also reduced acidification in pear and peach fruit-based foods at 25°C, however at 4°C difference in pH was insignificant between free and encapsulated cells. In conclusion, L. rhamnosus GG showed excellent survival in orange juice and microencapsulation has potential in reducing acidification and possible negative sensory effects of probiotics in orange juice and other fruit-based products. PMID:22633536

  10. The structure and immunomodulatory activity on intestinal epithelial cells of the EPSs isolated from Lactobacillus helveticus sp. Rosyjski and Lactobacillus acidophilus sp. 5e2.

    PubMed

    Patten, Daniel A; Leivers, Shaun; Chadha, Marcus J; Maqsood, Mohammed; Humphreys, Paul N; Laws, Andrew P; Collett, Andrew

    2014-01-30

    The Lactic acid bacteria (LAB) Lactobacillus acidophilus sp. 5e2 and Lactobacillus helveticus sp. Rosyjski both secrete exopolysaccharides (EPSs) into their surrounding environments during growth. A number of EPSs have previously been shown to exhibit immunomodulatory activity with professional immune cells, such as macrophages, but only limited studies have been reported of their interaction with intestinal epithelial cells. An investigation of the immunomodulatory potential of pure EPSs, isolated from cultures of Lactobacillus acidophilus sp. 5e2 and Lactobacillus helveticus sp. Rosyjski, with the HT29-19A intestinal epithelial cell line are reported here. For the first time the structure of the EPS from Lactobacillus helveticus sp. Rosyjski which is a hetropolysaccharide with a branched pentasaccharide repeat unit containing d-glucose, d-galactose and N-acetyl-d-mannosamine is described. In response to exposure to lactobacilli EPSs HT29-19A cells produce significantly increased levels of the proinflammatory cytokine IL-8. Additionally, the EPSs differentially modulate the mRNA expression of Toll-like receptors. Finally, the pre-treatment of HT29-19A cells with the EPSs sensitises the cells to subsequent challenge with bacterial antigens. The results reported here suggest that EPSs could potentially play a role in intestinal homeostasis via a specific interaction with intestinal epithelial cells. PMID:24394883

  11. Efficacy of supercritical carbon dioxide for inactivating Lactobacillus plantarum in apple cider

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juice makers have traditionally used thermal pasteurization to prevent deterioration by spoilage bacteria such as Lactobacillus plantarum; however this thermal processing causes adverse effects on product quality such as undesirable taste and destruction of heat sensitive nutrients. For this reason,...

  12. Antibiotic Resistances of Yogurt Starter Cultures Streptococcus thermophilus and Lactobacillus bulgaricus.

    PubMed

    Sozzi, T; Smiley, M B

    1980-11-01

    Twenty-nine strains of Lactobacillus bulgaricus and 15 strains of Streptococcus thermophilus were tested for resistance to 35 antimicrobial agents by using commercially available sensitivity disks. Approximately 35% of the isolates had uncharacteristic resistance patterns. PMID:16345654

  13. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)). PMID:25281727

  14. Bacterial Endocarditis Caused by Lactobacillus acidophilus Leading to Rupture of Sinus of Valsalva Aneurysm

    PubMed Central

    Loranger, Austin Mitchell; Bharatkumar, A.G.; Almassi, G. Hossein

    2016-01-01

    Lactobacillus acidophilus rarely causes bacterial endocarditis, because it usually resides in the mucosa of the vagina, gastrointestinal tract, and oropharynx. Moreover, sinus of Valsalva aneurysms are rare cardiac anomalies, either acquired or congenital. We present the case of a middle-aged man whose bacterial endocarditis, caused by Lactobacillus acidophilus, led to an aneurysmal rupture of the sinus of Valsalva into the right ventricular outflow tract. The patient underwent successful surgical repair, despite numerous complications and sequelae. PMID:27127435

  15. Bacterial Endocarditis Caused by Lactobacillus acidophilus Leading to Rupture of Sinus of Valsalva Aneurysm.

    PubMed

    Encarnacion, Carlos Omar; Loranger, Austin Mitchell; Bharatkumar, A G; Almassi, G Hossein

    2016-04-01

    Lactobacillus acidophilus rarely causes bacterial endocarditis, because it usually resides in the mucosa of the vagina, gastrointestinal tract, and oropharynx. Moreover, sinus of Valsalva aneurysms are rare cardiac anomalies, either acquired or congenital. We present the case of a middle-aged man whose bacterial endocarditis, caused by Lactobacillus acidophilus, led to an aneurysmal rupture of the sinus of Valsalva into the right ventricular outflow tract. The patient underwent successful surgical repair, despite numerous complications and sequelae. PMID:27127435

  16. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model

    PubMed Central

    Bhandari, Praveen; Prabha, Vijay

    2015-01-01

    Background & objectives: Urogenital infections of bacterial origin have a high incidence among the female population at reproductive age, affecting the fertility. Strains of Escherichia coli can colonize the vagina and replace natural microflora. Lactobacillus the predominant vaginal microorganism in healthy women, maintains the acidic vaginal pH which inhibits pathogenic microorganisms. Studies on Lactobacillus have shown that these can inhibit E. coli growth and vaginal colonization. An alternative therapeutic approach to antimicrobial therapy is to re-establish Lactobacillus in this microbiome through probiotic administration to resurge fertility. Therefore, the aim of the present study was to determine the capability of L. plantarum 2621 strain with probiotic properties, to prevent the vaginal colonization of E. coli causing agglutination of sperms and to evaluate its profertility effect in a murine model. Methods: Screened mice were divided into five groups i.e. control group, E. coli group, Lactobacillus group, prophylactic and therapeutic groups. The control group was infused with 20 µl PBS, E.coli group was administered with 106 cfu/20 µl E. coli, and probiotic group was administered with Lactobacillus (108 cfu/20 µl) for 10 consecutive days. In prophylactic group, the vagina was colonized with 10 consecutive doses of Lactobacillus (108 cfu/20 µl). After 24 h, it was followed by 10 day intravaginal infection with E. coli (106 cfu/20 µl) whereas for the therapeutic group vagina was colonized with (106 cfu/20 µl) E. coli for 10 consecutive days, followed by 10 day intravaginal administration with Lactobacillus after 24 h. Results: Upon mating and completion of gestation period, control, probiotic and the therapeutic groups had litters in contrast to the prophylactic group and the group administered with E. coli. Interpretation & conclusions: Results indicated that Lactobacillus intermitted colonization of pathogenic strains that resulted in reinforcement of natural microflora and resurge fertility. PMID:26261170

  17. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-05-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  18. Identification of Lactobacillus species using tDNA-PCR.

    PubMed

    Baele, Margo; Vaneechoutte, Mario; Verhelst, Rita; Vancanneyt, Marc; Devriese, Luc A; Haesebrouck, Freddy

    2002-08-01

    tDNA intergenic spacer PCR (tDNA-PCR) using consensus primers complementary to the conserved edges of the tRNA genes can amplify the intergenic spacers. Separation of the PCR products with capillary electrophoresis enables discrimination between fragments differing only one basepair in length. This method was applied to a collection of 82 Lactobacillus strains belonging to 37 species in order to evaluate the discriminatory power of this technique within this genus. Twenty-one species could be distinguished to species level on the basis of a unique tDNA fingerprint pattern. The other species grouped by two (e.g. L. fermentum and L. cellobiosus) or three (L. acidophilus, L. gallinarum and L. helveticus). Inclusion of the resulting fingerprints in a numerical database containing fingerprints of numerous other Gram-positive and Gram-negative species makes the identification of unknown strains possible. PMID:12031576

  19. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value and dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.

  20. Crystallographic studies of aspartate racemase from Lactobacillus sakei NBRC 15893.

    PubMed

    Fujii, Tomomi; Yamauchi, Takae; Ishiyama, Makoto; Gogami, Yoshitaka; Oikawa, Tadao; Hata, Yasuo

    2015-08-01

    Aspartate racemase catalyzes the interconversion between L-aspartate and D-aspartate and belongs to the PLP-independent racemases. The enzyme from the lactic acid bacterium Lactobacillus sakei NBRC 15893, isolated from kimoto, is considered to be involved in D-aspartate synthesis during the brewing process of Japanese sake at low temperatures. The enzyme was crystallized at 293?K by the sitting-drop vapour-diffusion method using 25%(v/v) PEG MME 550, 5%(v/v) 2-propanol. The crystal belonged to space group P3121, with unit-cell parameters a = b = 104.68, c = 97.29?, and diffracted to 2.6? resolution. Structure determination is under way. PMID:26249691

  1. Characterization of a Feruloyl Esterase from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species. PMID:23793626

  2. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed Central

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-01-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  3. Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages

    PubMed Central

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. PMID:25002431

  4. Development of an integration mutagenesis system in Lactobacillus gasseri

    PubMed Central

    Selle, Kurt; Goh, Yong Jun; O'Flaherty, Sarah; Klaenhammer, Todd R

    2014-01-01

    Lactobacillus gasseri ATCC 33323 is a member of the acidophilus-complex group, microbes of human origin with significant potential for impacting human health based on niche-specific traits. In order to facilitate functional analysis of this important species, a upp-based counterselective chromosomal integration system was established and employed for targeting the lipoteichoic acid (LTA) synthesis gene, ltaS, in L. gasseri ATCC 33323. The ltaS gene encodes a phosphoglycerol transferase responsible for building the glycerol chain of LTA. No isogenic mutant bearing the deletion genotype was recovered, but an integration knockout mutant was generated with insertion inactivation at the ltaS locus. The ltaS deficient derivative exhibited an altered cellular morphology and significantly reduced ability to adhere to Caco-2 intestinal cell monolayers, relative to the wild-type parent strain. PMID:24837903

  5. Amylolytic Lactobacillus strains from Bulgarian fermented beverage boza.

    PubMed

    Petrova, Penka; Emanuilova, Milena; Petrov, Kaloyan

    2010-01-01

    The lactic acid fermentation is a worldwide method for cereal processing. Great diversity of fermented foods and drinks is produced with the participation of amylolytic lactic acid bacteria (ALAB). In the present study the ALAB content of the Bulgarian cereal beverage "boza" was investigated. Two strains, Bom 816 and N3, were found to possess significant amylolytic activity. The strains' identification was based on genetic criteria, namely amplified ribosomal DNA restriction analysis (ARDRA) and sequencing of the 16S rDNA. The strain Bom 816 belongs to the species Lactobacillus plantarum and N3 to Lactobacillus pentosus, being the first amylolytic representative of this species. Optimization of the media composition with starch as a sole carbon source was done. The starch hydrolysis was most efficient in medium containing 4 g/l yeast and 8 g/l meat extracts. Thus, L. plantarum Bom 816 consumed 14 g/l starch, while L. pentosus N3 consumed 17 g/l. The highest values of lactic acid reached were 9.5 g/l produced by Bom 816 and 5.5 g/l produced by N3. In the presence of yeast extract L. pentosus N3 formed 0.8-1 g/l succinic acid. Both strains produced mainly cell-bound enzymes with amylase activity, at a pH optimum of 5.5, ranging from 3-4 to 21 U/ml for L. pentosus N3 and from 0.5 to 11.5 U/ml for L. plantarum Bom 816, in dependence of the assay conditions. PMID:20469641

  6. Genetic Determinants of Reutericyclin Biosynthesis in Lactobacillus reuteri

    PubMed Central

    Lin, Xiaoxi B.; Lohans, Christopher T.; Duar, Rebbeca; Zheng, Jinshui; Vederas, John C.; Walter, Jens

    2015-01-01

    Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin. PMID:25576609

  7. Lifestyle of Lactobacillus plantarum in the mouse caecum.

    PubMed

    Marco, Maria L; Peters, Theodorus H F; Bongers, Roger S; Molenaar, Douwe; van Hemert, Saskia; Sonnenburg, Justin L; Gordon, Jeffrey I; Kleerebezem, Michiel

    2009-10-01

    Lactobacillus plantarum is a common inhabitant of mammalian gastrointestinal tracts. Strains of L. plantarum are also marketed as probiotics intended to confer beneficial health effects upon delivery to the human gut. To understand how L. plantarum adapts to its gut habitat, we used whole genome transcriptional profiling to characterize the transcriptome of strain WCFS1 during colonization of the caeca of adult germ-free C57Bl/6 J mice fed a standard low-fat rodent chow diet rich in complex plant polysaccharides or a prototypic Western diet high in simple sugars and fat. Lactobacillus plantarum colonized the digestive tracts of these animals to high levels, although L. plantarum was found in 10-fold higher amounts in the caeca of mice fed the standard chow. Metabolic reconstructions based on the transcriptional data sets revealed that genes involved in carbohydrate transport and metabolism form the principal functional group that is upregulated in vivo compared with exponential phase cells grown in three different culture media, and that a Western diet provides a more nutritionally restricted, growth limiting milieu for the microbe in the distal gut. A set of bacterial genes encoding cell surface-related functions were differentially regulated in both groups of mice. This set included downregulated genes required for the d-alanylation of lipoteichoic acids, extracellular structures of L. plantarum that mediate interactions with the host immune system. These results, obtained in a reductionist gnotobiotic mouse model of the gut ecosystem, provide insights about the niches (professions) of this lactic acid bacterium, and a context for systematically testing features that affect epithelial and immune cell responses to this organism in the digestive tract. PMID:19638173

  8. Lactobacillus acidophilus upregulates intestinal NHE3 expression and function

    PubMed Central

    Singh, Varsha; Raheja, Geetu; Borthakur, Alip; Kumar, Anoop; Gill, Ravinder K.; Alakkam, Anas; Malakooti, Jaleh

    2012-01-01

    A major mechanism of electroneutral NaCl absorption in the human ileum and colon involves coupling of Na+/H+ and Cl−/HCO3− exchangers. Disturbances in these mechanisms have been implicated in diarrheal conditions. Probiotics such as Lactobacillus have been indicated to be beneficial in the management of gastrointestinal disorders, including diarrhea. However, the molecular mechanisms underlying antidiarrheal effects of probiotics have not been fully understood. We have previously demonstrated Lactobacillus acidophilus (LA) to stimulate Cl−/HCO3− exchange activity via an increase in the surface levels and expression of the Cl−/HCO3− exchanger DRA in vitro and in vivo. However, the effects of LA on NHE3, the Na+/H+ exchanger involved in the coupled electroneutral NaCl absorption, are not known. Current studies were, therefore, undertaken to investigate the effects of LA on the function and expression of NHE3 and to determine the mechanisms involved. Treatment of Caco2 cells with LA or its conditioned culture supernatant (CS) for 8–24 h resulted in a significant increase in Na+/H+ exchange activity, mRNA, and protein levels of NHE3. LA-CS upregulation of NHE3 function and expression was also observed in SK-CO15 cells, a human colonic adenocarcinoma cell line. Additionally, LA treatment increased NHE3 promoter activity, suggesting involvement of transcriptional mechanisms. In vivo, mice gavaged with live LA showed significant increase in NHE3 mRNA and protein expression in the ileum and colonic regions. In conclusion, LA-induced increase in NHE3 expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of probiotics. PMID:23086913

  9. Characterization of Two Virulent Phages of Lactobacillus plantarum

    PubMed Central

    Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea

    2012-01-01

    We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172

  10. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    PubMed

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. PMID:24961744

  11. Health-promoting properties exhibited by Lactobacillus helveticus strains.

    PubMed

    Skrzypczak, Katarzyna; Gustaw, Waldemar; Waśko, Adam

    2015-01-01

    Many strains belonging to lactobacilli exert a variety of beneficial health effects in humans and some of the bacteria are regarded as probiotic microorganisms. Adherence and capabilities of colonization by Lactobacillus strains of the intestinal tract is a prerequisite for probiotic strains to exhibit desired functional properties. The analysis conducted here aimed at screening strains of Lactobacillus helveticus possessing a health-promoting potential. The molecular analysis performed, revealed the presence of a slpA gene encoding the surface S-layer protein SlpA (contributing to the immunostimulatory activity of L. helveticus M 92 probiotic strain) in all B734, DSM, T80, and T105 strains. The product of gene amplification was also identified in a Bifidobacterium animalis ssp. lactis BB12 probiotic strain. SDS-PAGE of a surface protein extract demonstrated the presence of a protein with a mass of about 50 kDa in all strains, which refers to the mass of the S-layer proteins. These results are confirmed by observations carried with transmission electron microscopy, where a clearly visible S-layer was registered in all the strains analyzed. The in vitro study results obtained indicate that the strongest adhesion capacity to epithelial cells (HT-29) was demonstrated by L. helveticus B734, while coaggregation with pathogens was highly diverse among the tested strains. The percentage degree of coaggregation was increasing with the incubation time. After 5 h of incubation, the strongest ability to coaggregate with Escherichia coli was expressed by T104. The T80 strain demonstrated a significant ability to co-aggregate with Staphylococcus aureus, while DSM with Bacillus subtilis. For B734, the highest values of co-aggregation coefficient was noted in samples with Salmonella. The capability of autoaggregation, antibiotic susceptibility, resistance to increasing salt concentrations, and strain survival in simulated small intestinal juice were also analyzed. PMID:26601325

  12. Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6.

    PubMed

    Ahire, Jayesh Jagannath; Mokashe, Narendra Uttamrao; Patil, Hemant Jagatrao; Chaudhari, Bhushan Liladhar

    2013-02-01

    Folate producing Lactobacillus sp. CD6 isolated from fermented milk showed 98% similarity with Lactobacillus helveticus based on 16S rRNA gene sequence analysis. It was found to produce a folic acid derivative 5-methyl tetrahydrofolate (5-MeTHF). The intracellular cell-free extract of strain demonstrated antioxidative activity with the inhibition rate of ascorbate autoxidation in the range of 27.5% ± 3.7%. It showed highest metal ion chelation ability for Fe(2+) (0.26 ± 0.06 ppm) as compared to Cu(2+). The DPPH (α,α-Diphenyl-β-Picrylhydrazyl) radical scavenging activity for intact cells were found to be 24.7% ± 10.9% proved its antioxidative potential. Furthermore, it demonstrated 14.89% inhibition of epinephrine autoxidation, 20.9 ± 1.8 μg cysteine equivalent reducing activity and 20.8% ± 0.9% hydroxyl radical scavenging effect. The strain was evaluated for probiotic properties as per WHO and FAO guidelines. It showed 90.61% survival at highly acidic condition (pH 2.0), 90.66% viability in presence of synthetic gastric juice and 68% survivability at 0.5% bile concentration for 24 h. It was susceptible to many antibiotics which reduces the prospect to offer resistance determinants to other organisms if administered in the form of probiotic preparations. It showed in vitro mucus binding and antimicrobial activity against enteric pathogens like Salmonella typhimurium (NCIM 2501), Streptococcus pyogenes (NCIM 2608), and Staphylococcus aureus (NCIM 5021) and moreover it showed non- hemolytic activity on sheep blood agar. PMID:24425884

  13. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay

    PubMed Central

    Sepp, Epp; Songisepp, Epp; Claus, Sandrine P.; Mikelsaar, Marika

    2015-01-01

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population. PMID:26437083

  14. Lactobacillus sicerae sp. nov., a lactic acid bacterium isolated from Spanish natural cider.

    PubMed

    Puertas, Ana Isabel; Arahal, David R; Ibarburu, Idoia; Elizaquvel, Patricia; Aznar, Rosa; Dueas, M Teresa

    2014-09-01

    Strains CUPV261(T) and CUPV262 were isolated from ropy natural ciders of the Basque Country, Spain, in 2007. Cells are Gram-stain positive, non-spore-forming, motile rods, facultative anaerobes and catalase-negative. The strains are obligately homofermentative (final product dl-lactate) and produce exopolysaccharides from sucrose. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both isolates corresponded to the type strain of Lactobacillus vini (99.1?%), followed by Lactobacillus satsumensis (96.4?%), and Lactobacillus oeni (96.2?%), and for all other established species, 16S rRNA gene sequence similarities were below 96?%. The species delineation of strains CUPV261(T) and CUPV262 was evaluated through RAPD fingerprinting. In addition, a random partial genome pyrosequencing approach was performed on strain CUPV261(T) in order to compare it with the genome sequence of Lactobacillus vini DSM 20605(T) and calculate indexes of average nucleotide identity (ANI) between them. Results permit the conclusion that strains CUPV261(T) and CUPV262 represent a novel species of the genus Lactobacillus, for which the name Lactobacillus sicerae sp. nov. is proposed. The type strain is CUPV261(T) (?=?CECT 8227(T)?=?KCTC 21012(T)). PMID:24899655

  15. Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach

    PubMed Central

    Wilson, Charlotte M.; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M.; O'Toole, Paul W.; Zomer, Aldert

    2014-01-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. PMID:25063664

  16. Analysis of Lactobacillus Products for Phages and Bacteriocins That Inhibit Vaginal Lactobacilli

    PubMed Central

    Pavlova, Sylvia I.; Mou, Susan M.; Ma, Wen-ge; Kiliç, Ali O.

    1997-01-01

    Objective: Bacterial vaginosis is associated with an unexplained loss of vaginal lactobacilli. Previously, we have identified certain vaginal lactobacilli-released phages that can inhibit in vitro other vaginal lactobacilli. However, there is no apparent route for phages to be transmitted among women. The purpose of this study was to identify whether certain Lactobacillus products commonly used by women release phages or bacteriocins that can inhibit vaginal lactobacilli. Methods: From 26 Lactobacillus products (2 acidophilus milks, 20 yogurts, 3 Lactobacillus pills, and 1 vaginal douche mix), lactobacilli were isolated with Rogosa SL agar (Difco, Detroit, MI). From these lactobacilli, phages and bacteriocins were induced with mitomycin C and tested against a collection of vaginal Lactobacillus strains. Results: From the 26 products, 43 Lactobacillus strains were isolated. Strains from 11 yogurts released phages, among which 7 inhibited vaginal lactobacilli. Eleven strains released bacteriocins that inhibited vaginal lactobacilli. While about one-half of the vaginal strains were lysed by bacteriocins, less than 20% were lysed by phages. Conclusions: Some vaginal lactobacilli were inhibited in vitro by phages or bacteriocins released from Lactobacillus products used by women, implying that vaginal lactobacilli may be reduced naturally due to phages or bacteriocins from the environment. PMID:18476145

  17. Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria.

    PubMed

    Dave, R I; Shah, N P

    1996-09-01

    Fifteen media were evaluated to determine their suitability for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria using 5 to 6 strains of each of the four groups of organisms. Streptococcus thermophilus agar was found to be suitable for selective enumeration of S. thermophilus under aerobic incubation at 37 degrees C for 24 h. The MRS agar at pH 5.2 or reinforced clostridial agar at pH 5.3 could be used for the selective enumeration of L. delbrueckii ssp. bulgaricus when the incubation was carried out at 45 degrees C for > or = 72 h. However, the recovery of this organism was lower on MRS agar at pH 5.2 or reinforced clostridial agar at pH 5.3 than that obtained on MRS agar. The recovery of L. acidophilus and bifidobacteria on MRS agar and MRS-maltose agar was similar; MRS-maltose agar could be used to enumerate total counts of L. acidophilus and bifidobacteria. For selective enumeration of L. acidophilus, MRS-salicin agar or MRS-sorbitol agar could be used. For selective enumeration of bifidobacteria, MRS NNLP (nalidixic acid, neomycin sulfate, lithium chloride, and paromomycin sulfate) agar was suitable; however, determination of bifidobacteria by differential counts between L. acidophilus enumerated on MRS-salicin agar or MRS-sorbitol agar and the total counts of L. acidophilus and bifidobacteria obtained from MRS-maltose agar resulted in higher recovery of some strains of bifidobacteria. Other media that were evaluated in this study were not suitable for selective enumeration. PMID:8899517

  18. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.

    PubMed

    Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z

    2014-04-01

    The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. PMID:24290645

  19. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. PMID:25561329

  20. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli.

    PubMed

    Putaala, H; Barrangou, R; Leyer, G J; Ouwehand, A C; Hansen, E Bech; Romero, D A; Rautonen, N

    2010-09-01

    The complex microbial population residing in the human gastrointestinal tract consists of commensal, potential pathogenic and beneficial species, which are probably perceived differently by the host and consequently could be expected to trigger specific transcriptional responses. Here, we provide a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33 DCE-induced changes were overall more similar to those of B. lactis 420 than to L. acidophilus NCFM™, which is consistent with previously observed in vivo immunomodulation properties. In the gene ontology and pathway analyses both specific and unspecific changes were observed. Common to all was the regulation of apoptosis and adipogenesis, and lipid-metabolism related regulation by the probiotics. Specific changes such as regulation of cell-cell adhesion by B. lactis 420, superoxide metabolism by L. salivarius Ls-33, and regulation of MAPK pathway by L. acidophilus NCFM™ were noted. Furthermore, fundamental differences were observed between the pathogenic and probiotic treatments in the Toll-like receptor pathway, especially for adapter molecules with a lowered level of transcriptional activation of MyD88, TRIF, IRAK1 and TRAF6 by probiotics compared to EHEC. The results in this study provide insights into the relationship between probiotics and human intestinal epithelial cells, notably with regard to strain-specific responses, and highlight the differences between transcriptional responses to pathogenic and probiotic bacteria. PMID:21831765

  1. Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics.

    PubMed

    Dubourg, Grégory; Elsawi, Ziena; Raoult, Didier

    2015-11-01

    The bacteriocin-mediated antimicrobial properties of Lactobacillus spp. have been widely studied, leading to the use of these micro-organisms in the food industry as preservative agents against foodborne pathogens. In an era in which antibiotic resistance is becoming a public health issue, the antimicrobial activity of Lactobacillus spp. could be used for the discovery of new potential antibiotics. Thus, it is essential to have an accurate method of screening the production of antimicrobial agents by prokaryotes. Many in vitro assays have been published to date, largely concerning but not limited to Lactobacillus spp. However, these methods mainly use the spot-on-the-lawn method, which is prone to contamination during the overlay stage, with protocols using methanol vapours or the reverse side agar technique being applied to avoid such contamination. In this study, a method combining the spot-on-the-lawn and well diffusion methods was tested, permitting clear identification of inhibition zones from eight Lactobacillus spp. towards clinical isolates of 12 species (11 bacteria and 1 yeast) commonly found in human pathology. Lactobacillus plantarum CIP 106786 and Lactobacillus rhamnosus CSUR P567 exhibited the widest antimicrobial activity, whereas Lactobacillus acidophilus strain DSM 20079 was relatively inactive. In addition, the putative MIC(50) of L. rhamnosus against Proteus mirabilis was estimated at 1.1×10(9)CFU/mL using culture broth dilution. In conclusion, considering the increasing cultivable bacterial human repertoire, these findings open the way of an effective method to screen in vitro for the production of potential antimicrobial compounds. PMID:26163158

  2. Loss of GD1-positive Lactobacillus correlates with inflammation in human lungs with COPD

    PubMed Central

    Sze, Marc A; Utokaparch, Soraya; Elliott, W Mark; Hogg, James C; Hegele, Richard G

    2015-01-01

    Objectives The present study assesses the relationship between contents of GD1 (glycerol dehydratase)-positive Lactobacillus, presence of Lactobacillus and the inflammatory response measured in host lung tissue in mild to moderate chronic obstructive pulmonary disease (COPD). We hypothesise that there will be a loss of GD1 producing Lactobacillus with increasing severity of COPD and that GD1 has anti-inflammatory properties. Setting Secondary care, 1 participating centre in Vancouver, British Columbia, Canada. Participants 74 individuals who donated non-cancerous portions of their lungs or lobes removed as treatment for lung cancer (normal lung function controls (n=28), persons with mild (GOLD 1) (n=21) and moderate (GOLD 2) COPD (n=25)). Outcome measures Primary outcome measure was GD1 positivity within each group and whether or not this impacted quantitative histological measures of lung inflammation. Secondary outcome measures included Lactobacillus presence and quantification, and quantitative histological measurements of inflammation and remodelling in early COPD. Results Total bacterial count (p>0.05) and prevalence of Lactobacillus (p>0.05) did not differ between groups. However, the GD1 gene was detected more frequently in the controls (14%) than in either mild (5%) or moderate (0%) COPD (p<0.05) samples. Macrophage and neutrophil volume fractions (0.012±0.005 (mean±SD) vs 0.026±0.017 and 0.005±0.002 vs 0.015±0.014, respectively) in peripheral lung tissue were reduced in samples positive for the GD1 gene (p<0.0035). Conclusions A reduction in GD1 positivity is associated with an increased tissue immune inflammatory response in early stage COPD. There is potential for Lactobacillus to be used as a possible therapeutic, however, validation of these results need to be completed before an anti-inflammatory role of Lactobacillus in COPD can be confirmed. PMID:25652802

  3. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese.

    PubMed

    Oberg, Craig J; Oberg, Taylor S; Culumber, Michele D; Ortakci, Fatih; Broadbent, Jeffery R; McMahon, Donald J

    2016-01-01

    A Gram-stain positive, rod-shaped, non-spore-forming strain (WDC04T), which may be associated with late gas production in cheese, was isolated from aged Cheddar cheese following incubation on MRS agar (pH 5.2) at 6 °C for 35 days. Strain WDC04T had 97 % 16S rRNA gene sequence similarity with Lactobacillus hokkaidonensis DSM 26202T, Lactobacillus oligofermentans 533, 'Lactobacillus danicus' 9M3, Lactobacillus suebicus CCUG 32233T and Lactobacillus vaccinostercus DSM 20634T. API 50 CH carbohydrate fermentation panels indicated strain WDC04T could only utilize one of the 50 substrates tested, ribose, although it does slowly utilize galactose. In the API ZYM system, strain WDC04T was positive for leucine arylamidase, valine arylamidase, cysteine arylamidase (weakly), naphthol-AS-BI-phosphohydrolase and β-galactosidase activities. Total genomic DNA was sequenced from strain WDC04T using a whole-genome shotgun strategy on a 454 GS Titanium pyrosequencer. The sequence was assembled into a 1.90 Mbp draft genome consisting of 105 contigs with preliminary genome annotation performed using the RAST algorithm (rast.nmpdr.org). Genome analysis confirmed the pentose phosphate pathway for ribose metabolism as well as galactose, N-acetylglucosamine, and glycerol fermentation pathways. Genomic analysis places strain WDC04T in the obligately heterofermentative group of lactobacilli and metabolic results confirm this conclusion. The result of genome sequencing, along with 16S rRNA gene sequence analysis, indicates WDC04T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus wasatchensis sp. nov. is proposed. The type strain is WDC04T ( = DSM 29958T = LMG 28678T). PMID:26475452

  4. Identification of a high-molecular-mass Lactobacillus epithelium adhesin (LEA) of Lactobacillus crispatus ST1 that binds to stratified squamous epithelium.

    PubMed

    Edelman, Sanna M; Lehti, Timo A; Kainulainen, Veera; Antikainen, Jenni; Kylväjä, Riikka; Baumann, Marc; Westerlund-Wikström, Benita; Korhonen, Timo K

    2012-07-01

    Lactobacilli belong to the normal gastrointestinal and genital tract microbiota of human and animal hosts. Adhesion is important for bacterial colonization; however, only a few Lactobacillus adhesins have been identified so far. We studied extracted surface proteins from an adhesive Lactobacillus crispatus strain, ST1, which efficiently colonizes the chicken alimentary tract, for their binding to tissue sections of the chicken crop, and identified a novel high-molecular-mass repetitive surface protein that shows specific binding to stratified squamous epithelium. The adhesin binds to both crop epithelium and epithelial cells from human vagina, and was named Lactobacillus epithelium adhesin (LEA). Expression of LEA is strain-specific among L. crispatus strains and corresponds directly to in vitro bacterial adhesion ability. The partial sequence of the lea gene predicts that the LEA protein carries an N-terminal YSIRK signal sequence and a C-terminal LPxTG anchoring motif, as well as a highly repetitive region harbouring 82 aa long repeats with non-identical sequences that show similarity to Lactobacillus Rib/alpha-like repeats. LEA-mediated epithelial adherence may improve bacterial colonization in the chicken crop and the human vagina, which are the natural environments for L. crispatus. PMID:22516222

  5. Lactobacillus fermentum ME-3 – an antimicrobial and antioxidative probiotic

    PubMed Central

    Mikelsaar, Marika; Zilmer, Mihkel

    2009-01-01

    The paper lays out the short scientific history and characteristics of the new probiotic Lactobacillus fermentum strain ME-3 DSM-14241, elaborated according to the regulations of WHO/FAO (2002). L. fermentum ME-3 is a unique strain of Lactobacillus species, having at the same time the antimicrobial and physiologically effective antioxidative properties and expressing health-promoting characteristics if consumed. Tartu University has patented this strain in Estonia (priority June 2001, patent in 2006), Russia (patent in 2006) and the USA (patent in 2007). The paper describes the process of the identification and molecular typing of this probiotic strain of human origin, its deposition in an international culture collection, and its safety assessment by laboratory tests and testing on experimental animals and volunteers. It has been established that L. fermentum strain ME-3 has double functional properties: antimicrobial activity against intestinal pathogens and high total antioxidative activity (TAA) and total antioxidative status (TAS) of intact cells and lysates, and it is characterized by a complete glutathione system: synthesis, uptake and redox turnover. The functional efficacy of the antimicrobial and antioxidative probiotic has been proven by the eradication of salmonellas and the reduction of liver and spleen granulomas in Salmonella Typhimurium-infected mice treated with the combination of ofloxacin and L. fermentum strain ME-3. Using capsules or foodstuffs enriched with L. fermentum ME-3, different clinical study designs (including double-blind, placebo-controlled, crossover studies) and different subjects (healthy volunteers, allergic patients and those recovering from a stroke), it has been shown that this probiotic increased the antioxidative activity of sera and improved the composition of the low-density lipid particles (LDL) and post-prandial lipids as well as oxidative stress status, thus demonstrating a remarkable anti-atherogenic effect. The elaboration of the probiotic L. fermentum strain ME-3 has drawn on wide international cooperative research and has taken more than 12 years altogether. The new ME-3 probiotic-containing products have been successfully marketed and sold in Baltic countries and Finland. PMID:19381356

  6. Lantibiotics biosynthesis genes and bacteriocinogenic activity of Lactobacillus spp. isolated from raw milk and cheese.

    PubMed

    Perin, Luana Martins; Moraes, Paula Mendonça; Silva, Abelardo; Nero, Luís Augusto

    2012-05-01

    Lactobacillus species are usually used as starters for the production of fermented products, and some strains are capable of producing antimicrobial substances, such as bacteriocins. Because these characteristics are highly desirable, research are continually being performed for novel Lactobacillus strains with bacteriocinogenic potential for use by food industries. The aim of this study was to characterise the bacteriocinogenic potential and activity of Lactobacillus isolates. From a lactic acid bacteria culture collection obtained from raw milk and cheese, 27 isolates were identified by 16S rDNA as Lactobacillus spp. and selected for the detection of lantibiotics biosynthesis genes, bacteriocin production, antimicrobial spectra, and ideal incubation conditions for bacteriocin production. Based on the obtained results, 21 isolates presented at least one of the three lantibiotics biosynthesis genes (lanB, lanC or lamM), and 23 isolates also produced antimicrobial substances with sensitivity to at least one proteinase, indicating their bacteriocinogenic activity. In general, the isolates had broad inhibitory activity, mainly against Listeria spp. and Staphylococcus spp. strains, and the best antimicrobial performance of the isolates occurred when they were cultivated at 25 °C for 24 or 48 h or at 35 °C for 12 h. The present study identified the bacteriocinogenic potential of Lactobacillus isolates obtained from raw milk and cheese, suggesting their potential use as biopreservatives in foods. PMID:22447149

  7. Molecular detection of Lactobacillus species in the neovagina of male-to-female transsexual women

    PubMed Central

    Petricevic, Ljubomir; Kaufmann, Ulrike; Domig, Konrad J.; Kraler, Manuel; Marschalek, Julian; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    There is a general opinion that penile skin lined neovagina of transsexual women is not able to support the growth of lactobacilli. This study was undertaken to prove if lactobacilli strains could survive in neovagina and to characterise the most dominant Lactobacillus species. Sixty three male-to-female transsexual women without abnormal vaginal discharge, clinical signs of infection were recruited on an ongoing basis from among transsexual outpatients in an academic research institution and tertiary care centre. Neovaginal smears were taken for molecular Lactobacillus spp. profiling by denaturing gradient gel electrophoresis (PCR–DGGE). Lactobacillus species were detected from 47/63 transsexual women (75%). The 279 Lactobacillus signals detected by PCR-DGGE technique belonged to 13 different species. Lactobacilli of the L. delbrueckii group (L. gasseri, L. crispatus, L. johnsonii, L. iners, L. jensenii) were predominant. More than 90% of women harboured a combination of two or more neovaginal Lactobacillus species. In this study we report the frequent occurrence of lactobacilli from neovagina of transsexual women. Both, frequency and composition were similar to the normal lactic acid bacterial microflora in both women of reproductive age and postmenopausal women. PMID:24434849

  8. PCR monitoring of Lactobacillus and Bifidobacterium dynamics in fermentations by piglet intestinal microbiota.

    PubMed

    Moura, Patrícia; Simões, Fernanda; Gírio, Francisco; Loureiro-Dias, Maria C; Esteves, M Paula

    2007-04-01

    A new group-specific primer (Lact71R), targeting the 16S-23S rDNA intergenic spacer region of Lactobacillus, was tested in its specificity to amplify rDNA of lactobacilli from piglet intestinal origin by polymerase chain reaction (PCR). Lact71R and Lab0677F, a Lactobacillus group-specific primer targeting the 16S rDNA, generated a common amplicon by PCR with DNA from Lactobacillus and Pediococcus reference strains, but not from Weissella strains. Sequence analysis of clones obtained by PCR amplification with Lact71R and Lab0677F and total DNA isolated from the ileal, caecal and colonic contents of one piglet resulted in Lactobacillus and Lactobacillus-like sequences mainly retrieved from intestinal environments. The primer pair was further validated in a culture independent PCR-analysis to monitor broad fluctuations of lactobacilli populations in fructo-oligosaccharides (FOS) fermentations by piglet intestinal microbiota. Bifidobacterium genus-specific primers were also used for PCR titre determination throughout FOS fermentations, in parallel with lactate and short chain fatty acids (SCFA) quantification. Increases between PCR titres were correlated with lactate detection in early stages of fermentation. Based on the obtained results, a simple monitoring PCR approach is proposed, foreseeing its application to the study of the dynamics of specific bacterial populations in complex environments. PMID:17440917

  9. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study.

    PubMed

    Osterlund, P; Ruotsalainen, T; Korpela, R; Saxelin, M; Ollus, A; Valta, P; Kouri, M; Elomaa, I; Joensuu, H

    2007-10-22

    5-Fluorouracil (5-FU)-based chemotherapy is frequently associated with diarrhoea. We compared two 5-FU-based regimens and the effect of Lactobacillus and fibre supplementation on treatment tolerability. Patients diagnosed with colorectal cancer (n=150) were randomly allocated to receive monthly 5-FU and leucovorin bolus injections (the Mayo regimen) or a bimonthly 5-FU bolus plus continuous infusion (the simplified de Gramont regimen) for 24 weeks as postoperative adjuvant therapy. On the basis of random allocation, the study participants did or did not receive Lactobacillus rhamnosus GG supplementation (1-2 x 10(10) per day) and fibre (11 g guar gum per day) during chemotherapy. Patients who received Lactobacillus had less grade 3 or 4 diarrhoea (22 vs 37%, P=0.027), reported less abdominal discomfort, needed less hospital care and had fewer chemotherapy dose reductions due to bowel toxicity. No Lactobacillus-related toxicity was detected. Guar gum supplementation had no influence on chemotherapy tolerability. The simplified de Gramont regimen was associated with fewer grade 3 or 4 adverse effects than the Mayo regimen (45 vs 89%), and with less diarrhoea. We conclude that Lactobacillus GG supplementation is well tolerated and may reduce the frequency of severe diarrhoea and abdominal discomfort related to 5-FU-based chemotherapy. PMID:17895895

  10. Severe oral infection due to Lactobacillus rhamnosus during induction chemotherapy for acute myeloid leukemia.

    PubMed

    Ishihara, Yuko; Kanda, Junya; Tanaka, Kaori; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Kawamura, Koji; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Terasako-Saito, Kiriko; Kimura, Shun-Ichi; Kikuchi, Misato; Nakasone, Hideki; Yamazaki, Rie; Kako, Shinichi; Nishida, Junji; Watanabe, Kunitomo; Kanda, Yoshinobu

    2014-12-01

    We report a case of severe oral infection with a high fever due to Lactobacillus rhamnosus during induction chemotherapy for acute myeloid leukemia. The patient did not improve on treatment with meropenem, clindamycin, or vancomycin until neutrophil recovery. Since L. rhamnosus GG is used in dairy products, and the patient ingested dairy products daily before starting chemotherapy, we suspected an association between the ingestion of dairy products and the development of infection. Pulsed-field gel electrophoresis using two different restriction enzymes showed that the strain isolated from the patient was identical to the L. rhamnosus GG strain isolated from dairy products and ATCC #53103. This was confirmed by a PCR assay with species-specific L. rhamnosus GG primers. Since Lactobacillus infection, particularly L. rhamnosus infection, can be fatal in immunocompromised hosts, we should consider Lactobacillus as a causative organism when Gram-positive rods are detected during treatment with broad-spectrum antibiotics and vancomycin. The causal association between the ingestion of dairy products containing Lactobacillus and Lactobacillus infection in immunocompromised hosts warrants further study. PMID:25115834

  11. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    PubMed Central

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  12. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study

    PubMed Central

    Österlund, P; Ruotsalainen, T; Korpela, R; Saxelin, M; Ollus, A; Valta, P; Kouri, M; Elomaa, I; Joensuu, H

    2007-01-01

    5-Fluorouracil (5-FU)-based chemotherapy is frequently associated with diarrhoea. We compared two 5-FU-based regimens and the effect of Lactobacillus and fibre supplementation on treatment tolerability. Patients diagnosed with colorectal cancer (n=150) were randomly allocated to receive monthly 5-FU and leucovorin bolus injections (the Mayo regimen) or a bimonthly 5-FU bolus plus continuous infusion (the simplified de Gramont regimen) for 24 weeks as postoperative adjuvant therapy. On the basis of random allocation, the study participants did or did not receive Lactobacillus rhamnosus GG supplementation (1–2 × 1010 per day) and fibre (11 g guar gum per day) during chemotherapy. Patients who received Lactobacillus had less grade 3 or 4 diarrhoea (22 vs 37%, P=0.027), reported less abdominal discomfort, needed less hospital care and had fewer chemotherapy dose reductions due to bowel toxicity. No Lactobacillus-related toxicity was detected. Guar gum supplementation had no influence on chemotherapy tolerability. The simplified de Gramont regimen was associated with fewer grade 3 or 4 adverse effects than the Mayo regimen (45 vs 89%), and with less diarrhoea. We conclude that Lactobacillus GG supplementation is well tolerated and may reduce the frequency of severe diarrhoea and abdominal discomfort related to 5-FU-based chemotherapy. PMID:17895895

  13. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    PubMed Central

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation