Science.gov

Sample records for lactobacillus casei dn-114

  1. Effects of Probiotic Lactobacillus Casei DN-114 001 in Prevention of Radiation-Induced Diarrhea: Results From Multicenter, Randomized, Placebo-Controlled Nutritional Trial

    SciTech Connect

    Giralt, Jordi Regadera, Jose Perez; Verges, Ramona; Romero, Jesus; Fuente, Isabel de la; Biete, Albert; Villoria, Jesus; Cobo, Jose Maria; Guarner, Francisco

    2008-07-15

    Purpose: To determine whether a probiotic drink containing Lactobacillus casei DN-114 001 reduces the incidence of radiation-induced diarrhea in patients with gynecologic cancer. Methods and Materials: Patients who were undergoing pelvic radiotherapy (45-50 Gy, conventional fractionation) for either cervical carcinoma (radiotherapy and weekly cisplatin) or endometrial adenocarcinoma (postoperative radiotherapy) were randomly assigned to a probiotic drink or placebo, in a double-blind fashion. The probiotic drink consisted of liquid yogurt containing L. casei DN-114 001 at 10{sup 8} CFU/g. The patients recorded the daily the number of bowel movements and scored the stool consistency using the Bristol scale. Diarrhea was graded weekly according the Common Toxicity Criteria system. The primary endpoint was to reduce the incidence of diarrhea, defined by a Common Toxicity Criteria Grade of 2 or greater or the need for loperamide. Results: A total of 85 patients were enrolled. Grade 2 or greater diarrhea and/or the use of loperamide was observed in 24 of 41 patients in the placebo group and 30 of 44 in the probiotic group (p = 0.568). No differences were found in the median time to the presentation of the primary endpoint. Probiotic intervention had a significant effect on stool consistency (p = 0.04). The median time for patients to present with Bristol scale stools of Type 6 or greater was 14 days for patients receiving the probiotic drink vs. 10 days for those receiving placebo. Conclusion: Nutritional intervention with the probiotic drink containing L. casei DN-114 001 does not reduce the incidence of radiation-induced diarrhea as defined by a Common Toxicity Criteria Grade 2 or greater. However, it had a significant effect on stool consistency as measured by the Bristol scale.

  2. Lysate of Probiotic Lactobacillus casei DN-114 001 Ameliorates Colitis by Strengthening the Gut Barrier Function and Changing the Gut Microenvironment

    PubMed Central

    Zakostelska, Zuzana; Kverka, Miloslav; Klimesova, Klara; Rossmann, Pavel; Mrazek, Jakub; Kopecny, Jan; Hornova, Michaela; Srutkova, Dagmar; Hudcovic, Tomas; Ridl, Jakub; Tlaskalova-Hogenova, Helena

    2011-01-01

    Background Probiotic bacteria can be used for the prevention and treatment of human inflammatory diseases including inflammatory bowel diseases (IBD). However, the nature of active components and exact mechanisms of this beneficial effects have not been fully elucidated. Our aim was to investigate if lysate of probiotic bacterium L. casei DN-114 001 (Lc) could decrease the severity of intestinal inflammation in a murine model of IBD. Methodology/Principal Findings The preventive effect of oral administration of Lc significantly reduces the severity of acute dextran sulfate sodium (DSS) colitis in BALB/c but not in SCID mice. In order to analyze how this beneficial effect interferes with well-known phases of intestinal inflammation pathogenesis in vivo and in vitro, we evaluated intestinal permeability using the FITC-labeled dextran method and analysed tight junction proteins expression by immunofluorescence and PCR. We also measured CD4+FoxP3+ regulatory T cells proportion by FACS analysis, microbiota composition by pyrosequencing, and local cytokine production by ELISA. Lc leads to a significant protection against increased intestinal permeability and barrier dysfunction shown by preserved ZO-1 expression. We found that the Lc treatment increases the numbers of CD4+FoxP3+ regulatory T cells in mesenteric lymph nodes (MLN), decreases production of pro-inflammatory cytokines TNF-α and IFN-γ, and anti-inflammatory IL-10 in Peyer's patches and large intestine, and changes the gut microbiota composition. Moreover, Lc treatment prevents lipopolysaccharide-induced TNF-α expression in RAW 264.7 cell line by down-regulating the NF-κB signaling pathway. Conclusion/Significance Our study provided evidence that even non-living probiotic bacteria can prevent the development of severe forms of intestinal inflammation by strengthening the integrity of intestinal barrier and modulation of gut microenvironment. PMID:22132181

  3. Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics.

    PubMed

    Hamon, Erwann; Horvatovich, Peter; Bisch, Magali; Bringel, Françoise; Marchioni, Eric; Aoudé-Werner, Dalal; Ennahar, Saïd

    2012-01-01

    The identification of cell determinants involved in probiotic features is a challenge in current probiotic research. In this work, markers of bile tolerance in Lactobacillus casei were investigated using comparative proteomics. Six L. casei strains were classified on the basis of their ability to grow in the presence of bile salts in vitro. Constitutive differences between whole cell proteomes of the most tolerant strain (L. casei Rosell-215), the most sensitive one (L. casei ATCC 334), and a moderately tolerant strain (L. casei DN-114 001) were investigated. The ascertained subproteome was further studied for the six strains in both standard and bile stressing conditions. Focus was on proteins whose expression levels were correlated with observed levels of bile tolerance in vitro, particularly those previously reported to be involved in the bile tolerance process of lactobacilli. Analysis revealed that 12 proteins involved in membrane modification (NagA, NagB, and RmlC), cell protection and detoxification (ClpL and OpuA), as well as central metabolism (Eno, GndA, Pgm, Pta, Pyk, Rp1l, and ThRS) were likely to be key determinants of bile tolerance in L. casei and may serve as potential biomarkers for phenotyping or screening purposes. The approach used enabled the correlation of expression levels of particular proteins with a specific probiotic trait. PMID:22040141

  4. Genomic adaptation of the Lactobacillus casei group.

    PubMed

    Toh, Hidehiro; Oshima, Kenshiro; Nakano, Akiyo; Takahata, Muneaki; Murakami, Masaru; Takaki, Takashi; Nishiyama, Hidetoshi; Igimi, Shizunobu; Hattori, Masahira; Morita, Hidetoshi

    2013-01-01

    Lactobacillus casei, L. paracasei, and L. rhamnosus form a closely related taxonomic group (Lactobacillus casei group) within the facultatively heterofermentative lactobacilli. Here, we report the complete genome sequences of L. paracasei JCM 8130 and L. casei ATCC 393, and the draft genome sequence of L. paracasei COM0101, all of which were isolated from daily products. Furthermore, we re-annotated the genome of L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG), which we have previously reported. We confirmed that ATCC 393 is distinct from other strains previously described as L. paracasei. The core genome of 10 completely sequenced strains of the L. casei group comprised 1,682 protein-coding genes. Although extensive genome-wide synteny was found among the L. casei group, the genomes of ATCC 53103, JCM 8130, and ATCC 393 contained genomic islands compared with L. paracasei ATCC 334. Several genomic islands, including carbohydrate utilization gene clusters, were found at the same loci in the chromosomes of the L. casei group. The spaCBA pilus gene cluster, which was first identified in GG, was also found in other strains of the L. casei group, but several L. paracasei strains including COM0101 contained truncated spaC gene. ATCC 53103 encoded a higher number of proteins involved in carbohydrate utilization compared with intestinal lactobacilli, and extracellular adhesion proteins, several of which are absent in other strains of the L. casei group. In addition to previously fully sequenced L. rhamnosus and L. paracasei strains, the complete genome sequences of L. casei will provide valuable insights into the evolution of the L. casei group. PMID:24116025

  5. Genomic Adaptation of the Lactobacillus casei Group

    PubMed Central

    Nakano, Akiyo; Takahata, Muneaki; Murakami, Masaru; Takaki, Takashi; Nishiyama, Hidetoshi; Igimi, Shizunobu; Hattori, Masahira; Morita, Hidetoshi

    2013-01-01

    Lactobacillus casei, L. paracasei, and L. rhamnosus form a closely related taxonomic group (Lactobacillus casei group) within the facultatively heterofermentative lactobacilli. Here, we report the complete genome sequences of L. paracasei JCM 8130 and L. casei ATCC 393, and the draft genome sequence of L. paracasei COM0101, all of which were isolated from daily products. Furthermore, we re-annotated the genome of L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG), which we have previously reported. We confirmed that ATCC 393 is distinct from other strains previously described as L. paracasei. The core genome of 10 completely sequenced strains of the L. casei group comprised 1,682 protein-coding genes. Although extensive genome-wide synteny was found among the L. casei group, the genomes of ATCC 53103, JCM 8130, and ATCC 393 contained genomic islands compared with L. paracasei ATCC 334. Several genomic islands, including carbohydrate utilization gene clusters, were found at the same loci in the chromosomes of the L. casei group. The spaCBA pilus gene cluster, which was first identified in GG, was also found in other strains of the L. casei group, but several L. paracasei strains including COM0101 contained truncated spaC gene. ATCC 53103 encoded a higher number of proteins involved in carbohydrate utilization compared with intestinal lactobacilli, and extracellular adhesion proteins, several of which are absent in other strains of the L. casei group. In addition to previously fully sequenced L. rhamnosus and L. paracasei strains, the complete genome sequences of L. casei will provide valuable insights into the evolution of the L. casei group. PMID:24116025

  6. Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei.

    PubMed

    Dicks, L M; Du Plessis, E M; Dellaglio, F; Lauer, E

    1996-01-01

    The type strain of Lactobacillus casei subsp. casei (ATCC 393) exhibits low levels of DNA homology with other strains of L. casei subsp. casei (8 to 46%) and strains of Lactobacillus paracasei (30 to 50%), but exhibits a level of DNA similarity of 80% with Lactobacillus rhamnosus ATCC 15820, the original type strain of "Lactobacterium zeae" Kuznetsov 1959. Strains ATCC 393T (T = type strain) and ATCC 15820T are members of one protein profile cluster that is separate from the other Lactobacillus spp. The randomly amplified polymorphic DNA PCR profile of strain ATCC 393T is also different from the profiles obtained for the other species. L. casei ATCC 334T is genetically closely related to L. casei subsp. casei strains (71 to 97%) and L. paracasei strains (71 to 91%), is a member of the same protein profile cluster as these organisms, and shares several DNA amplicons with L. paracasei strains. On the basis of these results, we propose that L. casei subsp. casei ATCC 393T and L. rhamnosus ATCC 15820 should be reclassified as members of Lactobacillus zeae nom. rev. (type strain, ATCC 15820), that strain ATCC 334 should be designated the neotype strain of L. casei subsp. casei, and that the name L. paracasei should be rejected. PMID:8573516

  7. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains.

    PubMed Central

    Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N

    1997-01-01

    Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109

  8. Aspartate protects Lactobacillus casei against acid stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics. PMID:23292549

  9. Ribotyping of Lactobacillus casei group strains isolated from dairy products.

    PubMed

    Svec, P; Dráb, V; Sedlácek, I

    2005-01-01

    A series of lactobacilli isolated from dairy products were characterized using biotyping and ribotyping with EcoRI and HindIII restriction enzymes. Biotyping assigned 14 strains as Lactobacillus casei, 6 strains as Lactobacillus paracasei subsp. paracasei and 12 as Lactobacillus rhamnosus. The obtained ribotype patterns separated all analyzed strains into two clearly distinguished groups corresponding to L. rhamnosus and L. casei/L. paracasei subsp. paracasei. The HindIII ribotypes of individual strains representing these two groups were visually very similar. In contrast, EcoRI ribotyping revealed high intraspecies variability. All ribotypes of L. casei and L. paracasei subsp. paracasei dairy strains were very close and some strains even shared identical ribotype profiles. The type strains L. casei CCM 7088T (= ATCC 393T) and Lactobacillus zeae CCM 7069T revealing similar ribopatterns formed a separate subcluster using both restriction enzymes. In contrast, the ribotype profile of L. casei CCM 7089 (= ATCC 334) was very close to ribopatterns obtained from the dairy strains. These results support synonymy of L. casei and L. paracasei species revealed by other studies as well as reclassification of the type strain L. casei CCM 7088T as L. zeae and designation of L. casei CCM 7089 as the neotype strain. PMID:16295661

  10. Draft Genome Sequence of Lactobacillus casei W56

    PubMed Central

    Hochwind, Kerstin; Weinmaier, Thomas; Schmid, Michael; van Hemert, Saskia; Hartmann, Anton; Rattei, Thomas

    2012-01-01

    We announce the draft genome sequence of Lactobacillus casei W56 in one contig. This strain shows immunomodulatory and probiotic properties. The strain is also an ingredient of commercially available probiotic products. PMID:23144392

  11. Draft genome sequence of Lactobacillus casei W56.

    PubMed

    Hochwind, Kerstin; Weinmaier, Thomas; Schmid, Michael; van Hemert, Saskia; Hartmann, Anton; Rattei, Thomas; Rothballer, Michael

    2012-12-01

    We announce the draft genome sequence of Lactobacillus casei W56 in one contig. This strain shows immunomodulatory and probiotic properties. The strain is also an ingredient of commercially available probiotic products. PMID:23144392

  12. Stress responses in probiotic Lactobacillus casei.

    PubMed

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics. PMID:24915363

  13. High efficiency electrotransformation of Lactobacillus casei.

    PubMed

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements. PMID:25670703

  14. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial.

    PubMed

    Guillemard, E; Tondu, F; Lacoin, F; Schrezenmeir, J

    2010-01-01

    Common infectious diseases (CID) of the airways and the gastrointestinal tract are still a considerable cause of morbidity and mortality in elderly. The present study examined the beneficial effect of a dairy product containing the probiotic strain Lactobacillus casei DN-114 001 (fermented product) on the resistance of free-living elderly to CID. The study was multicentric, double blind and controlled, involving 1072 volunteers (median age = 76.0 years) randomised for consumption of either 200 g/d of fermented (n 537) or control (non-fermented) dairy product (n 535) for 3 months, followed by an additional 1 month's follow-up. The results showed that, when considering all CID, the fermented product significantly reduced the average duration per episode of CID (6.5 v. 8 d in control group; P = 0.008) and the cumulative duration of CID (7 v. 8 d in control group; P = 0.009). Reduction in both episode and cumulative durations was also significant for all upper respiratory tract infections (URTI; P < 0.001) and for rhinopharyngitis (P < 0.001). This was accompanied with an increase of L. casei species in stools throughout the fermented product consumption (2-3.8 x 107 equivalents of colony-forming unit/g of stools, P < 0.001). The cumulative number of CID (primary outcome) was not different between groups nor was the CID severity, fever, pathogens' occurrence, medication, immune blood parameters and quality of life. The fermented product was safe and well tolerated. In conclusion, consumption of a fermented dairy product containing the probiotic strain L. casei DN-114 001 in elderly was associated with a decreased duration of CID in comparison with the control group, especially for URTI such as rhinopharyngitis. PMID:19747410

  15. Lactobacillus casei, Lactobacillus rhamnosus, and Lactobacillus zeae isolates identified by sequence signature and immunoblot phenotype.

    PubMed

    Dobson, C Melissa; Chaban, Bonnie; Deneer, Harry; Ziola, Barry

    2004-07-01

    Species taxonomy within the Lactobacillus casei group of bacteria has been unsettled. With the goal of helping clarify the taxonomy of these bacteria, we investigated the first 3 variable regions of the 16S rRNA gene, the 16S-23S rRNA interspacer region, and one third of the chaperonin 60 gene for Lactobacillus isolates originally designated as L. casei, L. paracasei, L. rhamnosus, and L. zeae. For each genetic region, a phylogenetic tree was created and signature sequence analysis was done. As well, phenotypic analysis of the various strains was performed by immunoblotting. Both sequence signature analysis and immunoblotting gave immediate identification of L. casei, L. rhamnosus, and L. zeae isolates. These results corroborate and extend previous findings concerning these lactobacilli; therefore, we strongly endorse recent proposals for revised nomenclature. Specifically, isolate ATCC 393 is appropriately rejected as the L. casei type strain because of grouping with isolates identified as L. zeae. As well, because all other L. casei isolates, including the proposed neotype isolate ATCC 334, grouped together with isolates designated L. paracasei, we support the use of the single species L. casei and rejection of the name L. paracasei. PMID:15381972

  16. Lactobacillus casei as a biocatalyst for biofuel production.

    PubMed

    Vinay-Lara, Elena; Wang, Song; Bai, Lina; Phrommao, Ekkarat; Broadbent, Jeff R; Steele, James L

    2016-09-01

    Microbial fermentation of sugars from plant biomass to alcohols represents an alternative to petroleum-based fuels. The optimal biocatalyst for such fermentations needs to overcome hurdles such as high concentrations of alcohols and toxic compounds. Lactic acid bacteria, especially lactobacilli, have high innate alcohol tolerance and are remarkably adaptive to harsh environments. This study assessed the potential of five Lactobacillus casei strains as biocatalysts for alcohol production. L. casei 12A was selected based upon its innate alcohol tolerance, high transformation efficiency and ability to utilize plant-derived carbohydrates. A 12A derivative engineered to produce ethanol (L. casei E1) was compared to two other bacterial biocatalysts. Maximal growth rate, maximal optical density and ethanol production were determined under conditions similar to those present during alcohol production from lignocellulosic feedstocks. L. casei E1 exhibited higher innate alcohol tolerance, better growth in the presence of corn stover hydrolysate stressors, and resulted in higher ethanol yields. PMID:27312380

  17. Manufacture of probiotic Minas Frescal cheese with Lactobacillus casei Zhang.

    PubMed

    Dantas, Aline B; Jesus, Vitor F; Silva, Ramon; Almada, Carine N; Esmerino, E A; Cappato, Leandro P; Silva, Marcia C; Raices, Renata S L; Cavalcanti, Rodrigo N; Carvalho, Celio C; Sant'Ana, Anderson S; Bolini, Helena M A; Freitas, Monica Q; Cruz, Adriano G

    2016-01-01

    In this study, the addition of Lactobacillus casei Zhang in the manufacture of Minas Frescal cheese was investigated. Minas Frescal cheeses supplemented with probiotic bacteria (Lactobacillus casei Zhang) were produced by enzymatic coagulation and direct acidification and were subjected to physicochemical (pH, proteolysis, lactic acid, and acetic acid), microbiological (probiotic and lactic bacteria counts), and rheological analyses (uniaxial compression and creep test), instrumental color determination (luminosity, yellow intensity, and red intensity) and sensory acceptance test. The addition of L. casei Zhang resulted in low pH values and high proteolysis indexes during storage (from 5.38 to 4.94 and 0.470 to 0.702, respectively). Additionally, the cheese protocol was not a hurdle for growth of L. casei Zhang, as the population reached 8.16 and 9.02 log cfu/g by means of the direct acidification and enzymatic coagulation protocol, respectively, after 21 d of refrigerated storage. The rheology data showed that all samples presented a more viscous-like behavior, which rigidity tended to decrease during storage and lower luminosity values were also observed. Increased consumer acceptance was observed for the control sample produced by direct acidification (7.8), whereas the cheeses containing L. casei Zhang presented lower values for all sensory attributes, especially flavor and overall liking (5.37 and 4.61 for enzymatic coagulation and 5.57 and 4.72 for direct acidification, respectively). Overall, the addition of L. casei Zhang led to changes in all parameters and affected negatively the sensory acceptance. The optimization of L. casei Zhang dosage during the manufacturing of probiotic Minas Frescal cheese should be performed. PMID:26519974

  18. Complete Genome Sequence of the Probiotic Strain Lactobacillus casei (Formerly Lactobacillus paracasei) LOCK919

    PubMed Central

    Aleksandrzak-Piekarczyk, Tamara; Bardowski, Jacek

    2013-01-01

    Lactobacillus casei is usually regarded as a bacterium that lives naturally in the human intestinal tract, where it can contribute to host health and well-being. We describe here the complete genome sequence of L. casei LOCK919, a strain with probiotic properties isolated from child feces. The genome consists of a 3.11-Mb chromosome and a 29,768-bp plasmid. PMID:24072862

  19. Complete Genome Sequence of the Probiotic Strain Lactobacillus casei (Formerly Lactobacillus paracasei) LOCK919.

    PubMed

    Koryszewska-Baginska, Anna; Aleksandrzak-Piekarczyk, Tamara; Bardowski, Jacek

    2013-01-01

    Lactobacillus casei is usually regarded as a bacterium that lives naturally in the human intestinal tract, where it can contribute to host health and well-being. We describe here the complete genome sequence of L. casei LOCK919, a strain with probiotic properties isolated from child feces. The genome consists of a 3.11-Mb chromosome and a 29,768-bp plasmid. PMID:24072862

  20. Functional genomics of Lactobacillus casei establishment in the gut

    PubMed Central

    Licandro-Seraut, Hélène; Scornec, Hélène; Pédron, Thierry; Cavin, Jean-François; Sansonetti, Philippe J.

    2014-01-01

    Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis. PMID:25024222

  1. Development of an Escherichia coli-Lactobacillus casei shuttle vector for heterologous protein expression in Lactobacillus casei.

    PubMed

    Suebwongsa, Namfon; Lulitanond, Viraphong; Mayo, Baltasar; Yotpanya, Panjamaporn; Panya, Marutpong

    2016-01-01

    There is an increasing interest to develop various lactic acid bacteria (LAB) species as mucosal delivery vehicles, for which the development of a variety of cloning and expression systems for these bacteria is of primary importance. This study reports the complete nucleotide sequence of the cryptic plasmid pRCEID7.6 derived from the chicken probiotic LAB strain Lactobacillus casei TISTR1341. Sequence analysis and comparison showed that pRCEID7.6 is composed of nine putative open reading frames. The replicon origin of pRCEID7.6 consisted of untranslated origin of replication and translated replication protein B sequences. This region was used to construct Escherichia coli/L. casei shuttle vectors carrying erythromycin and chloramphenicol resistance genes as selective markers. Segregation and structural stability of the vectors in L. casei was sufficient for most genetic applications. The feasibility of this vector for heterologous protein expression in L. casei was determined by cloning in pRCEID-LC7.6, the gene encoding the nucleocapsid protein (NP), from the influenza A virus under the control of the homologous promoter from the lactate dehydrogenase gene. L. casei carrying this recombinant plasmid was shown to successfully express the NP protein. Therefore, this shuttle vector can be used for further study in the development of mucosal delivery vehicles. PMID:27026866

  2. In vitro antagonistic activity of Lactobacillus casei against Helicobacter pylori

    PubMed Central

    Enany, Shymaa; Abdalla, Salah

    2015-01-01

    Helicobacter pylori is one of the most common causes of chronic infections in humans. Curing H. pylori infection is difficult because of the habitat of the organism below the mucus adherent layer of gastric mucosa. Lactobacilli are known as acid-resistant bacteria and can remain in stomach for a long time than any other organism, we aimed in this study to examine the efficacy of Lactobacillus casei as a probiotic against H. pylori in humans. Particularly, L. casei was opted as it is considered to be one of the widely used probiotics in dairy products. One hundred and seven strains of H. pylori were isolated from dyspeptic patients and were tested for their antibiotic susceptibility to metronidazole (MTZ), clarithromycin (CLR), tetracycline (TET), and amoxicillin (AMX) by the disc diffusion method. The strains were examined for their susceptibility toward L. casei - present in fermented milk products - by well diffusion method. It was found that 74.7% strains were resistant to MTZ; 1.8% to MTZ, TET, and CLR; 3.7% to MTZ and CLR; 4.6% to MTZ and TET; and 0.9% were resistant to MTZ, TET, and AMX. The antibacterial activity of L. casei against H. pylori was determined on all the tested H. pylori isolates including antibiotic resistant strains with different patterns. Our study proposed the use of probiotics for the treatment of H. pylori infection as an effective approach. PMID:26691482

  3. Characterization of the Lactobacillus casei group and the Lactobacillus acidophilus group by automated ribotyping.

    PubMed

    Ryu, C S; Czajka, J W; Sakamoto, M; Benno, Y

    2001-01-01

    A total of 91 type and reference strains of the Lactobacillus casei group and the L acidophilus group were characterized by the automated ribotyping device Riboprinter microbial characterization system. The L. casei group was divided into five (C1-C5) genotypes by ribotyping. Among them, the strain of L. casei ATCC 334 was clustered to the same genotype group as most of L. paracasei strains and L casei JCM 1134T generated a riboprint pattern that was different from the type strain of L. zeae. These results supported the designation of L. casei ATCC 334 as the neotype strain, but were not consistent with the reclassification of L. casei JCM 1134T as L. zeae. The L. acidophilus group was also divided into 14 (A1-A11, B1-B3) genotypes by ribotyping. L. acidophilus, L. amylovorus, L. crispatus and L. gallinarum generated ribotype patterns that were distinct from the patterns produced by L. gasseri and L. johnsonii. This result confirmed previous data that the L. acidophilus group divided to two major clusters. Five strains of L. acidophilus and two strains of L. gasseri were correctly reidentified by ribotyping. Most strains belonging to the L. casei group and the L. acidophilus group were discriminated at the species level by automated ribotyping. Thus this RiboPrinter system yields rapid, accurate and reproducible genetic information for the identification of many strains. PMID:11386416

  4. The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion.

    PubMed

    Dellaglio, Franco; Felis, Giovanna E; Torriani, Sandra

    2002-01-01

    On the basis of considerable published evidence, it is concluded that the species Lactobacillus casei is not correctly represented by the strain actually designated as the type strain ATCC 393. It is proposed that the Judicial Commission consider: (1) that ATCC 393T is scientifically unsuitable as the type strain of Lactobacillus casei and should be reclassified as Lactobacillus zeae; (2) that Lactobacillus casei ATCC 334 and Lactobacillus paracasei strains are members of the same taxon and therefore can be united within the name Lactobacillus casei (Rules 42 and 23a), the name Lactobacillus paracasei being rejected; and (3) designating ATCC 334 as the neotype strain for the species PMID:11837314

  5. Effect of Lactobacillus casei- casei and Lactobacillus reuteri on acrylamide formation in flat bread and Bread roll.

    PubMed

    Dastmalchi, Farnaz; Razavi, Seyed Hadi; Faraji, Mohammad; Labbafi, Mohsen

    2016-03-01

    The aim of this study was the evaluation of fermentation by lactic acid bacteria (LAB) contains lactobacillus (L.) casei- casei and L. reuteri on acrylamide formation and physicochemical properties of the Iranian flat bread named, Sangak, and Bread roll. Sangak and Bread roll were made with whole and white wheat flour, respectively. Whole-wheat flour had upper content of protein, sugar, ash, fiber, damaged starch and the activity of amylase than the white wheat flour. After 24 h of fermentation, the pH values of the sourdoughs made from whole-wheat flour (3.00, 2.90) were lower, in compared to sourdoughs prepared from white wheat flour (3.60, 3.58). In addition, in Sangak bread, glucose, and fructose were completely utilized after fermentation, but in bread roll, the reduced sugar levels increased after fermentation and baking that represent microorganisms cannot be activated and utilized sugars. Acrylamide formation was impacted by pH of sourdough and total reducing sugar (r = 0.915, r = 0.885 respectively). Bread roll and Sangak bread were fermented by L. casei- casei contained lowest acrylamide content, in two bread types (219.1, 104.3 μg/kg respectively). As an important result, the acrylamide content of Sangak bread in all cases was lower than in the Bread roll. PMID:27570278

  6. Inhibition of Aflatoxin Production of Aspergillus flavus by Lactobacillus casei

    PubMed Central

    Chang, Injeong

    2007-01-01

    Lactobacillus casei KC-324 was tested for its ability to inhibit aflatoxin production and mycelial growth of Aspergillus flavus ATCC 15517 in liquid culture. Aflatoxin B1 biosynthesis and mycelial growth were inhibited in both simultaneous culture and individual antagonism assays,suggesting that the inhibitory activity was due to extracellular metabolites produced in cell-free supernatant fluids of the cultured broth of L. casei KC-324. In cell-free supernatant fluids of all media tested,deMan,Rogosa and Sharpe broth,potato dextrose broth,and Czapek-Dox broth + 1% yeast extract showed higher antiaflatoxigenic activity. In these case, fungal growths, however, was not affected as measured by mycelial dry weight. The antiaflatoxigenic metabolites from L. casei KC-324 were produced over wide range of temperatures between 25℃ and 37℃. However, these metabolites were not thermostable since the inhibitory activity of the supernatant was inactivated within 30 minutes at 100℃ and 121℃. The inhibitory activity was not influenced by changing pH of supernatant between 4 and 10. However,the antiaflatoxigenic activity was slightly reduced at pH 10. PMID:24015075

  7. Lactobacillus casei combats acid stress by maintaining cell membrane functionality.

    PubMed

    Wu, Chongde; Zhang, Juan; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-07-01

    Lactobacillus casei strains have traditionally been recognized as probiotics and frequently used as adjunct culture in fermented dairy products where lactic acid stress is a frequently encountered environmental condition. We have investigated the effect of lactic acid stress on the cell membrane of L. casei Zhang [wild type (WT)] and its acid-resistant mutant Lbz-2. Both strains were grown under glucose-limiting conditions in chemostats; following challenge by low pH, the cell membrane stress responses were investigated. In response to acid stress, cell membrane fluidity decreased and its fatty acid composition changed to reduce the damage caused by lactic acid. Compared with the WT, the acid-resistant mutant exhibited numerous survival advantages, such as higher membrane fluidity, higher proportions of unsaturated fatty acids, and higher mean chain length. In addition, cell integrity analysis showed that the mutant maintained a more intact cellular structure and lower membrane permeability after environmental acidification. These results indicate that alteration in membrane fluidity, fatty acid distribution, and cell integrity are common mechanisms utilized by L. casei to withstand severe acidification and to reduce the deleterious effect of lactic acid on the cell membrane. This detailed comparison of cell membrane responses between the WT and mutant add to our knowledge of the acid stress adaptation and thus enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. PMID:22366811

  8. Identification of antifungal compounds produced by Lactobacillus casei AST18.

    PubMed

    Li, Hongjuan; Liu, Lu; Zhang, Shuwen; Cui, Wenming; Lv, Jiaping

    2012-08-01

    Lactobacillus casei AST18 was screened as an antifungal lactic acid bacteria which we have reported before. In this research, the antifungal properties of cell-free culture filtrate (CCF) from L. casei AST18 were detected, and the antifungal compounds of CCF were prepared by ultrafiltration, and semi-preparative HPLC, and then determined by GC-MS. CCF was sensitive to pH and heat treatment but it was not affected by the treatment of trypsin and pepsin. Through the treatment of ultrafiltration and semi-preparative HPLC there were two parts of CCF which showed antifungal activities: part 1 and part 4. Lactic acid was identified as the main antifungal compound in part 1. In part 4, three small molecular substances were detected with GC-MS. The three potential antifungal substances were cyclo-(Leu-Pro), 2,6-diphenyl-piperidine, and 5,10-diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a;1',2'-d]pyrazine. The antifungal activity of L. casei AST18 was a synergistic effect of lactic acid and cyclopeptides. PMID:22580887

  9. Functional Analysis of the Lactobacillus casei BL23 Sortases

    PubMed Central

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2012-01-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  10. Functional analysis of the Lactobacillus casei BL23 sortases.

    PubMed

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G; Monedero, Vicente

    2012-12-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  11. Comparative Genomic and Functional Analysis of Lactobacillus casei and Lactobacillus rhamnosus Strains Marketed as Probiotics

    PubMed Central

    Douillard, François P.; Ribbera, Angela; Järvinen, Hanna M.; Kant, Ravi; Pietilä, Taija E.; Randazzo, Cinzia; Paulin, Lars; Laine, Pia K.; Caggia, Cinzia; von Ossowski, Ingemar; Reunanen, Justus; Satokari, Reetta; Salminen, Seppo; Palva, Airi

    2013-01-01

    Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities. PMID:23315726

  12. Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics.

    PubMed

    Douillard, François P; Ribbera, Angela; Järvinen, Hanna M; Kant, Ravi; Pietilä, Taija E; Randazzo, Cinzia; Paulin, Lars; Laine, Pia K; Caggia, Cinzia; von Ossowski, Ingemar; Reunanen, Justus; Satokari, Reetta; Salminen, Seppo; Palva, Airi; de Vos, Willem M

    2013-03-01

    Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities. PMID:23315726

  13. Draft Genome Sequence of the Respiration-Competent Strain Lactobacillus casei N87.

    PubMed

    Zotta, Teresa; Ricciardi, Annamaria; Parente, Eugenio; Reale, Anna; Ianniello, Rocco G; Bassi, Daniela

    2016-01-01

    Lactobacillus casei is used as a starter, adjunct, and/or probiotic culture in the production of fermented and functional foods. Here, we report the draft genome sequence of the respiration-competent strain L. casei N87, isolated from infant feces. This genome information may be useful for the study of respiratory metabolism in lactic acid bacteria. PMID:27151805

  14. Draft Genome Sequence of the Respiration-Competent Strain Lactobacillus casei N87

    PubMed Central

    Ricciardi, Annamaria; Parente, Eugenio; Reale, Anna; Ianniello, Rocco G.

    2016-01-01

    Lactobacillus casei is used as a starter, adjunct, and/or probiotic culture in the production of fermented and functional foods. Here, we report the draft genome sequence of the respiration-competent strain L. casei N87, isolated from infant feces. This genome information may be useful for the study of respiratory metabolism in lactic acid bacteria. PMID:27151805

  15. Complete Genome Sequence of the Probiotic Lactobacillus casei Strain BL23▿

    PubMed Central

    Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Bourand, Alexa; Loux, Valentin; Yebra, Maria Jesus; Monedero, Vicente; Correia, Karine; Jacques, Noémie; Beaufils, Sophie; Poncet, Sandrine; Joyet, Philippe; Milohanic, Eliane; Casarégola, Serge; Auffray, Yanick; Pérez-Martínez, Gaspar; Gibrat, Jean-François; Zagorec, Monique; Francke, Christof; Hartke, Axel; Deutscher, Josef

    2010-01-01

    The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar. PMID:20348264

  16. Complete genome sequence of the probiotic Lactobacillus casei strain BL23.

    PubMed

    Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Bourand, Alexa; Loux, Valentin; Yebra, Maria Jesus; Monedero, Vicente; Correia, Karine; Jacques, Noémie; Beaufils, Sophie; Poncet, Sandrine; Joyet, Philippe; Milohanic, Eliane; Casarégola, Serge; Auffray, Yanick; Pérez-Martínez, Gaspar; Gibrat, Jean-François; Zagorec, Monique; Francke, Christof; Hartke, Axel; Deutscher, Josef

    2010-05-01

    The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar. PMID:20348264

  17. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392.

    PubMed

    Dahroud, Behnaz Dahri; Mokarram, Reza Rezai; Khiabani, Mahmoud Sowti; Hamishehkar, Hamed; Bialvaei, Abed Zahedi; Yousefi, Mehdi; Kafil, Hossein Samadi

    2016-05-01

    l-Lactic acid (L-LA) is one of the microbial products with several applications and its production efficiency is so important. In the present study, we have been exploring application of low intensity ultrasound technology to improve the metabolic activity for l-lactic acid production by Lactobacillus casei in different mediums. L-LA, biomass production and substrate (protein) consumption were measured as parameters of fermentation yield. L-LA and protein contents were determined using the titratable acidity and the biuret method respectively. Spectrophotometry (OD600nm) was used for measuring cell growths. L-LA, biomass production and protein consumption considered as dependent variables, but the amplitude of waves (20%, 40% and 60%), waves duration (15, 30, 45s) and add of peptone (2, 6 and 10g/l) as independent variables. The results showed that L-LA, biomass production and substrate consumption significantly increased (≈25%). Optimum conditions for biomass production was amplitude of 60%, 15s exposure time and 10g/l peptone, while for acid lactic production and substrate consumption was 40%, 30s and 6g/l peptone, respectively. Flowcytometry analysis also showed that sonication led to increasing cell membrane permeability. This observation shows low intensity ultrasound as a potential parameter in the improvement of metabolic activity of L. casei. PMID:26836618

  18. Cracking Streptococcus thermophilus to stimulate the growth of the probiotic Lactobacillus casei in co-culture.

    PubMed

    Ma, Chengjie; Ma, Aimin; Gong, Guangyu; Liu, Zhenmin; Wu, Zhengjun; Guo, Benheng; Chen, Zhengjun

    2015-10-01

    Lactobacillus casei, a probiotic, and Streptococcus thermophilus, a fast acidifying lactic acid bacterial strain, are both used in the food industry. The aim of this study was to investigate the interaction between L. casei and S. thermophilus in the presence or absence of S. thermophilus-specific bacteriophage during milk fermentation. The acidification capability of L. casei co-cultured with S. thermophilus was significantly higher than that observed for L. casei or S. thermophilus cultured alone. However, the probiotic content (i.e., L. casei cell viability) was low. The fastest acidification and the highest viable L. casei cell count were observed in co-cultures of L. casei and S. thermophilus with S. thermophilus phage. In these co-cultures, S. thermophilus compensated for the slow acid production of L. casei in the early exponential growth phase. Thereafter, phage-induced lysis of the S. thermophilus cells eliminated the competition for nutrients, allowing L. casei to grow well. Additionally, the ruptured S. thermophilus cells released intracellular factors, which further promoted the growth and function of the probiotic bacteria. Crude cellular extract isolated from S. thermophilus also significantly accelerated the growth and propagation of L. casei, supporting the stimulatory role of the phage on this micro-ecosystem. PMID:26093989

  19. Probiotic Properties of Lyophilized Cell Free Extract of Lactobacillus casei

    PubMed Central

    Saadatzadeh, Afrooz; Fazeli, Mohamma Reza; Jamalifar, Hossein; Dinarvand, Rassoul

    2013-01-01

    Background In recent years there have been considerable interests in the use of probiotic live cells for nutritional and therapeutic purposes. This strategy can be concomitant with some limitations such as survival of live cell during the GI-transit and their effective delivery to target tissues upon ingestion. Several attempts have been made to overcome these limitations such as their microencapsulation, spray-drying and lyophilization. Objectives In this study extract of cultured probiotics without cells was evaluated for its antimicrobial effects, antioxidant activity, and its stability. Materials and Methods In this work the potential of lyophilized-cell-free-probiotic-extract (LPE) as a suitable alternative strategy for the preparation of probiotic-products was investigated. The main aim of this study was to find out the antibacterial and antioxidant activity of LPE and also its stability. LPE was obtained by centrifugation and subsequent lyophilization of the collected supernatant from culture media of Lactobacillus casei. An enzymatic reagent-kit was used for detection of its content of lactic acid. Antibacterial test was performed using agar cup-plat-method, the DPPH scavenging -assay was used to determine its antioxidant activity and during a storage course, LPE was under a long-term stability study. Results Results showed that, LPE had more antipathogenic effects, antioxidant activity, and stability during storage-time when compared to fresh probiotic-extract. Conclusions Employing the LPE as a new approach, gives novel concept of probiotic-products in food and medical marketing. PMID:24624202

  20. Comparative sequence analyses of the genes coding for 16S rRNA of Lactobacillus casei-related taxa.

    PubMed

    Mori, K; Yamazaki, K; Ishiyama, T; Katsumata, M; Kobayashi, K; Kawai, Y; Inoue, N; Shinano, H

    1997-01-01

    The primary structures of the 16S rRNA genes of the type strains of Lactobacillus casei and related taxa were determined by PCR DNA-sequencing methods. The sequences of Lactobacillus casei, Lactobacillus zeae, Lactobacillus paracasei, and Lactobacillus rhamnosus were different. The Knuc values ranged from 0.0040 to 0.0126. On the basis of the Knuc values and the levels of DNA-DNA relatedness among the strains of these species, the L. casei-related taxa should be classified in the following three species: L. zeae, which includes the type strains of L. zeae and L. casei; a species that includes the strains of L. paracasei and L. casei ATCC 334; and L. rhamnosus. PMID:8995801

  1. PCR screening and sequence analysis of iol clusters in Lactobacillus casei strains isolated from koumiss.

    PubMed

    Zhang, W; Sun, Z; Sun, T; Zhang, H

    2010-11-01

    The iol cluster (consisting of genes involved in myo-inositol utilization) was investigated in Lactobacillus casei strains isolated from koumiss. Ten strains were tested for the presence of iol cluster by PCR screening; three strains encoded this cluster. Full-sequencing procedure was conducted; the iol cluster was identical to that of L. casei BL23 (GenBank access. no. FM177140) except for an upstream transposase. The iol cluster is not a common feature for L. casei strains isolated from koumiss. PMID:21253906

  2. Comparative genomics and transcriptional analysis of prophages identified in the genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei.

    PubMed

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Altermann, Eric; Barrangou, Rodolphe; McGrath, Stephen; Claesson, Marcus J; Li, Yin; Leahy, Sinead; Walker, Carey D; Zink, Ralf; Neviani, Erasmo; Steele, Jim; Broadbent, Jeff; Klaenhammer, Todd R; Fitzgerald, Gerald F; O'toole, Paul W; van Sinderen, Douwe

    2006-05-01

    Lactobacillus gasseri ATCC 33323, Lactobacillus salivarius subsp. salivarius UCC 118, and Lactobacillus casei ATCC 334 contain one (LgaI), four (Sal1, Sal2, Sal3, Sal4), and one (Lca1) distinguishable prophage sequences, respectively. Sequence analysis revealed that LgaI, Lca1, Sal1, and Sal2 prophages belong to the group of Sfi11-like pac site and cos site Siphoviridae, respectively. Phylogenetic investigation of these newly described prophage sequences revealed that they have not followed an evolutionary development similar to that of their bacterial hosts and that they show a high degree of diversity, even within a species. The attachment sites were determined for all these prophage elements; LgaI as well as Sal1 integrates in tRNA genes, while prophage Sal2 integrates in a predicted arginino-succinate lyase-encoding gene. In contrast, Lca1 and the Sal3 and Sal4 prophage remnants are integrated in noncoding regions in the L. casei ATCC 334 and L. salivarius UCC 118 genomes. Northern analysis showed that large parts of the prophage genomes are transcriptionally silent and that transcription is limited to genome segments located near the attachment site. Finally, pulsed-field gel electrophoresis followed by Southern blot hybridization with specific prophage probes indicates that these prophage sequences are narrowly distributed within lactobacilli. PMID:16672450

  3. Evidence that Lactobacillus casei insertion element ISL1 has a narrow host range.

    PubMed Central

    Shimizu-Kadota, M; Flickinger, J L; Chassy, B M

    1988-01-01

    The 1.3-kilobase-pair insertion element ISL1, originally isolated from Lactobacillus casei S-1, was found to have an extremely restricted host range. By DNA-DNA hybrizations performed with Southern transfers by using a cloned internal fragment of ISL1 as a molecular probe, it was found that only 3 of 19 L. casei strains examined contained sequences that hybridized to the ISL1 probe. In two of these, the hybridizing sequences were found on lactose plasmids. No homologous sequences were detected in a survey of 14 other Lactobacillus strains (9 species) and 15 strains of other bacteria (8 genera, 12 species). Images PMID:2844733

  4. [Immunogenicity of recombinant Lactobacillus casei expressing VP2 protein of infectious bursal disease virus in chickens].

    PubMed

    Lin, Hongli; Hou, Shenda; Wang, Song; Wang, Yupeng; LuanI, Yunyan; Hou, Xilin

    2014-11-01

    In order to determine immunogenicity and protective effect in chickens, we used the IBDV (Infectious bursal disease virus)-Vp2/Lactobacillus casei as antigen transfer system. First, the immunized and control chickens were challenged by IBDV/DQ at lethal dose to determine the protective ratio. Second, chickens were orallyand intranasally vaccinated twice with 10(9) CFU/mL pLA-VP2/L. casei, pLA/L. casei and PBS as negativecontrol and commercial vaccine as positive control. The bursa injury and the lesion score wererecorded post challenge. The level of specific IgG and sIgA in pLA-VP2/L. casei and positive control groups was significantly higher than that in negativecontrol groups. The protection efficacy in pLA-VP2/L. casei oral group was higher than that inintranasal group. The SI. of pLA-VP2/L. casei oral group was significant higher than other groups. The lesion score indicated the pLA-VP2/L. casei was safer than commercial vaccine for bursa. Collectively, the pLA-VP2/L. casei could be a vaccine candidate for IBDV. PMID:25985519

  5. Oral ecology and virulence of Lactobacillus casei and Streptococcus mutans in gnotobiotic rats.

    PubMed Central

    Michalek, S M; Hirasawa, M; Kiyono, H; Ochiai, K; McGhee, J R

    1981-01-01

    Lactobacilli comprise a small percentage of the normal oral microbial flora of humans and are isolated commonly from saliva and frequently from an active caries lesion. We have compared the pathogenesis and colonization pattern of Lactobacillus casei with that of Streptococcus mutans strain 6715 in gnotobiotic rats. Of the two L. casei strains tested, L. casei strain ATCC 4646 caused slightly more caries than L. casei strain ATCC 11578. However, the level of caries induced by either L. casei strain was significantly lower (P less than 0.01) than that observed in similar-aged rats monoassociated with S. mutans strain 6715. When groups of rats were infected with mixtures of L. casei strain ATCC 4646 and S. mutans strain 6715, or with L. casei followed by S. mutans, higher numbers of L. casei than S. mutans were found associated with the tongue and in saliva; S. mutans always predominated in plaque. The level of caries observed in these groups of rats was similar to that seen with rats monoassociated with S. mutans except when L. casei comprised greater than 1% of the plaque microflora. In this latter situation, the level of caries was significantly lower (P less than or equal to 0.05) than that obtained in S. mutans-monoassociated rats. The results of this study suggest that L. casei colonizes sites in the oral cavity (including the tongue and saliva) other than the tooth surface in rats. The effect of L. casei in plaque toward reduction of S. mutans-induced dental caries in rats is discussed. PMID:6793515

  6. Construction of a food-grade cell surface display system for Lactobacillus casei.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Kong, Jian; Ma, Cuiqing; Xu, Ping

    2014-01-01

    In this study, a food-grade cell surface display host/vector system for Lactobacillus casei was constructed. The food-grade host L. casei Q-5 was a lactose-deficient derivative of L. casei ATCC 334 obtained by plasmid elimination. The food-grade cell surface display vector was constructed based on safe DNA elements from lactic acid bacteria containing the following: pSH71 replicon from Lactococcus lactis, lactose metabolism genes from L. casei ATCC 334 as complementation markers, and surface layer protein gene from Lactobacillus acidophilus ATCC 4356 for cell surface display. The feasibility of the new host/vector system was verified by the expression of green fluorescent protein (GFP) on L. casei. Laser scanning confocal microscopy and immunofluorescence analysis using anti-GFP antibody confirmed that GFP was anchored on the surface of the recombinant cells. The stability of recombinant L. casei cells in artificial gastrointestinal conditions was verified, which is beneficial for oral vaccination applications. These results indicate that the food-grade host/vector system can be an excellent antigen delivery vehicle in oral vaccine construction. PMID:24598012

  7. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Karska-Wysocki, Barbara; Bazo, Mari; Smoragiewicz, Wanda

    2010-10-20

    Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant microorganism and the principal nosocomial pathogen worldwide. The antibacterial activity of lactic acid bacteria against MRSA from ten human clinical isolates as well as MRSA standard strain ATCC 43300 was tested in vitro. The Lactobacillus (Lb.) strains (Lb. acidophilus CL1285(®) and Lb. casei LBC80R) as pure cultures, which came from commercial food products were employed. The growth inhibitory effect produced by the antimicrobial activity of the lactic acid bacteria on the MRSA strains was tested on solid medium using agar diffusion methods as well as a using a liquid medium procedure that contained a mixture of MRSA and lactic acid bacteria cultures. In the latter instance, we were able to demonstrate that the direct interaction of lactic acid bacteria and MRSA in such a mixture led to the elimination of 99% of the MRSA cells after 24 h of their incubation at 37°C. PMID:20116228

  8. Enhancement of host resistance against Listeria infection by Lactobacillus casei: Role of macrophages

    SciTech Connect

    Sato, K.

    1984-05-01

    Among the 10 species of the genus Lactobacillus, L. casei showed the strongest protective action against Listeria monocytogenes infection in mice. The activity of L. casei differed with regard to the dose of administration. The anti-L. monocytogenes resistance in mice intravenously administered 5.5 X 10(7), 2.8 X 10(8), or 1.1 X 10(9) L. casei cells was most manifest at ca. 2, 2 and 13, and 3 to 21 days after its administration, respectively. The growth of L. monocytogenes in the liver of mice injected with L. casei (10(7), 10(8), or 10(9) cells) 48 h after infection was suppressed, particularly when 10(8) or 10(9) L. casei cells were given 2 or 13 days before the induced infection, respectively. This suppression of L. monocytogenes growth was overcome by carrageenan treatment or X-ray irradiation. (/sup 3/H)thymidine incorporation into the liver DNA increased 13 days after administration of L. casei, and augmentation of (/sup 3/H)thymidine incorporation during 6 to 48 h after infection was dependent on the dose of L. casei. Peritoneal macrophage accumulation observed 1 to 5 days after intraperitoneal injection of UV-killed L. monocytogenes was markedly enhanced when the mice were treated with L. casei cells 13 days before macrophage elicitation. Therefore, the enhanced host resistance by L. casei to L. monocytogenes infection may be mediated by macrophages migrating from the blood stream to the reticuloendothelial system in response to L. casei injection before or after L. monocytogenes infection.

  9. Genome Sequence Analysis of the Biogenic Amine-Degrading Strain Lactobacillus casei 5b.

    PubMed

    Ladero, Victor; Herrero-Fresno, Ana; Martinez, Noelia; Del Río, Beatriz; Linares, Daniel M; Fernández, María; Martín, María Cruz; Alvarez, Miguel A

    2014-01-01

    We here report a 3.02-Mbp annotated draft assembly of the Lactobacillus casei 5b genome. The sequence of this biogenic amine-degrading dairy isolate may help identify the mechanisms involved in the catabolism of biogenic amines and perhaps shed light on ways to reduce the presence of these toxic compounds in food. PMID:24435875

  10. Complete Genome Sequence of the Probiotic Strain Lactobacillus casei BD-II ▿

    PubMed Central

    Ai, Lianzhong; Chen, Chen; Zhou, Fangfang; Wang, Lei; Zhang, Hao; Chen, Wei; Guo, Benheng

    2011-01-01

    Lactobacillus casei BD-II, a patented probiotic strain (U.S. patent 7,270,994 B2), was isolated from homemade koumiss in China and has been implemented in the industrial production as starter cultures. Here we report the complete genome sequence of BD-II, which shows high similarity with the well-studied probiotic BL23. PMID:21478345

  11. Complete Genome Sequence of the Probiotic Bacterium Lactobacillus casei LC2W▿

    PubMed Central

    Chen, Chen; Ai, Lianzhong; Zhou, Fangfang; Wang, Lei; Zhang, Hao; Chen, Wei; Guo, Benheng

    2011-01-01

    Lactobacillus casei LC2W, a patented probiotic strain (Z. Wu, European patent EP 1642963 B1, February 2009), has been isolated from Chinese traditional dairy products and implemented in industrial production as starter culture. Here we present the complete genome sequence of LC2W and the identification of a gene cluster implicated in the biosynthesis of exopolysaccharides. PMID:21515769

  12. Complete genome sequence of the probiotic bacterium Lactobacillus casei LC2W.

    PubMed

    Chen, Chen; Ai, Lianzhong; Zhou, Fangfang; Wang, Lei; Zhang, Hao; Chen, Wei; Guo, Benheng

    2011-07-01

    Lactobacillus casei LC2W, a patented probiotic strain (Z. Wu, European patent EP 1642963 B1, February 2009), has been isolated from Chinese traditional dairy products and implemented in industrial production as starter culture. Here we present the complete genome sequence of LC2W and the identification of a gene cluster implicated in the biosynthesis of exopolysaccharides. PMID:21515769

  13. Complete genome sequence of the probiotic strain Lactobacillus casei BD-II.

    PubMed

    Ai, Lianzhong; Chen, Chen; Zhou, Fangfang; Wang, Lei; Zhang, Hao; Chen, Wei; Guo, Benheng

    2011-06-01

    Lactobacillus casei BD-II, a patented probiotic strain (U.S. patent 7,270,994 B2), was isolated from homemade koumiss in China and has been implemented in the industrial production as starter cultures. Here we report the complete genome sequence of BD-II, which shows high similarity with the well-studied probiotic BL23. PMID:21478345

  14. Genome Sequence Analysis of the Biogenic Amine-Degrading Strain Lactobacillus casei 5b

    PubMed Central

    Ladero, Victor; Herrero-Fresno, Ana; Martinez, Noelia; del Río, Beatriz; Linares, Daniel M.; Fernández, María; Martín, María Cruz

    2014-01-01

    We here report a 3.02-Mbp annotated draft assembly of the Lactobacillus casei 5b genome. The sequence of this biogenic amine-degrading dairy isolate may help identify the mechanisms involved in the catabolism of biogenic amines and perhaps shed light on ways to reduce the presence of these toxic compounds in food. PMID:24435875

  15. Comparison of fecundity and offspring immunity in zebrafish fed Lactobacillus rhamnosus CICC 6141 and Lactobacillus casei BL23.

    PubMed

    Qin, Chubin; Xu, Li; Yang, Yalin; He, Suxu; Dai, Yingying; Zhao, Huiying; Zhou, Zhigang

    2014-01-01

    To increase the knowledge of probiotic effects on zebrafish (Danio rerio), we compare the effects of two probiotic strains, Lactobacillus rhamnosus CICC 6141 (a highly adhesive strain) and Lactobacillus casei BL23 (a weakly adhesive strain), on zebrafish reproduction and their offsprings' innate level of immunity to water-borne pathogens. During probiotics treatments from 7 to 28 days, both the Lactobacillus strains, and especially L. casei BL23, significantly increased fecundity in zebrafish: higher rates of egg ovulation, fertilization, and hatching were observed. Increased densities of both small and large vitellogenic follicles, seen in specimens fed either Lactobacillus strain, demonstrated accelerated oocyte maturation. Feeding either strain of Lactobacillus upregulated gene expression of leptin, kiss2, gnrh3, fsh, lh, lhcgr, and paqr8, which were regarded to enhance fecundity and encourage oocyte maturation. Concomitantly, the gene expression of bmp15 and tgfb1 was inhibited, which code for local factors that prevent oocyte maturation. The beneficial effects of the Lactobacillus strains on fecundity diminished after feeding of the probiotics was discontinued, even for the highly adhesive gut Lactobacillus strain. Administering L. rhamnosus CICC 6141 for 28 days was found to affect the innate immunity of offspring derived from their parents, as evinced by a lower level of alkaline phosphatase activity in early larval stages. This study highlights the effects of probiotics both upon the reproductive process and upon the offsprings' immunity during early developmental stages. PMID:24129154

  16. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  17. Taxonomic and strain-specific identification of the probiotic strain Lactobacillus rhamnosus 35 within the Lactobacillus casei group.

    PubMed

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-05-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  18. Complete nucleotide sequence of plasmid plca36 isolated from Lactobacillus casei Zhang.

    PubMed

    Zhang, Wenyi; Yu, Dongliang; Sun, Zhihong; Chen, Xia; Bao, Qiuhua; Meng, He; Hu, Songnian; Zhang, Heping

    2008-09-01

    The complete 36,487 bp sequence of plasmid plca36 from Lactobacillus casei Zhang was determined. Plca36 contains 44 predicted coding regions, and to 23 of them functions could be assigned. For the first time, we identified a relBE toxin-antitoxin (TA) locus in a Lactobacillus genus, perhaps indicating a potential role for plca36 in host survival under extreme nutritional stress. A region encoding a cluster of conjugation genes (tra) was also identified. The cluster showed high similarity and co-linearity with tra regions of pWCFS103 and pMRC01 from Lactobacillus plantarum and Lactococcus lactis, respectively. Comparative gene analysis revealed that plasmids from the genus Lactobacillus may have contributed to the environmental adaptation mainly by providing carbohydrate and amino acid transporters. In addition, two chromosome-encoded relBE systems in Lactobacillus johnsonii and Lactobacillus gasseri were identified. PMID:18634821

  19. Attenuation of Colitis by Lactobacillus casei BL23 Is Dependent on the Dairy Delivery Matrix

    PubMed Central

    Lee, Bokyung; Yin, Xiaochen; Griffey, Stephen M.

    2015-01-01

    The role of the food delivery matrix in probiotic performance in the intestine is not well understood. Because probiotics are often provided to consumers in dairy products, we investigated the contributions of milk to the health-benefiting performance of Lactobacillus casei BL23 in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis. L. casei BL23 protected against the development of colitis when ingested in milk but not in a nutrient-free buffer simulating consumption as a nutritional supplement. Consumption of (acidified) milk alone also provided some protection against weight loss and intestinal inflammation but was not as effective as L. casei and milk in combination. In contrast, L. casei mutants deficient in DltD (lipoteichoic acid d-alanine transfer protein) or RecA (recombinase A) were unable to protect against DSS-induced colitis, even when consumed in the presence of milk. Mice fed either L. casei or milk contained reduced quantities of colonic proinflammatory cytokines, indicating that the L. casei DltD− and RecA− mutants as well as L. casei BL23 in nutrient-free buffer were effective at modulating immune responses. However, there was not a direct correlation between colitis and quantities of these cytokines at the time of sacrifice. Identification of the cecal microbiota by 16S rRNA gene sequencing showed that L. casei in milk enriched for Comamonadaceae and Bifidobacteriaceae; however, the consumption of neither L. casei nor milk resulted in the restoration of the microbiota to resemble that of healthy animals. These findings strongly indicate that probiotic strain efficacy can be influenced by the food/supplement delivery matrix. PMID:26162873

  20. Attenuation of Colitis by Lactobacillus casei BL23 Is Dependent on the Dairy Delivery Matrix.

    PubMed

    Lee, Bokyung; Yin, Xiaochen; Griffey, Stephen M; Marco, Maria L

    2015-09-01

    The role of the food delivery matrix in probiotic performance in the intestine is not well understood. Because probiotics are often provided to consumers in dairy products, we investigated the contributions of milk to the health-benefiting performance of Lactobacillus casei BL23 in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis. L. casei BL23 protected against the development of colitis when ingested in milk but not in a nutrient-free buffer simulating consumption as a nutritional supplement. Consumption of (acidified) milk alone also provided some protection against weight loss and intestinal inflammation but was not as effective as L. casei and milk in combination. In contrast, L. casei mutants deficient in DltD (lipoteichoic acid d-alanine transfer protein) or RecA (recombinase A) were unable to protect against DSS-induced colitis, even when consumed in the presence of milk. Mice fed either L. casei or milk contained reduced quantities of colonic proinflammatory cytokines, indicating that the L. casei DltD(-) and RecA(-) mutants as well as L. casei BL23 in nutrient-free buffer were effective at modulating immune responses. However, there was not a direct correlation between colitis and quantities of these cytokines at the time of sacrifice. Identification of the cecal microbiota by 16S rRNA gene sequencing showed that L. casei in milk enriched for Comamonadaceae and Bifidobacteriaceae; however, the consumption of neither L. casei nor milk resulted in the restoration of the microbiota to resemble that of healthy animals. These findings strongly indicate that probiotic strain efficacy can be influenced by the food/supplement delivery matrix. PMID:26162873

  1. Draft Genome Sequence of Lactobacillus casei DPC6800, an Isolate with the Potential to Diversify Flavor in Cheese

    PubMed Central

    Stefanovic, Ewelina; Casey, Aidan; Cotter, Paul; Cavanagh, Daniel; Fitzgerald, Gerald

    2016-01-01

    Lactobacillus casei is a nonstarter lactic acid bacterium commonly present in various types of cheeses. It is believed that strains of this species have a significant impact on the development of cheese flavor. The draft genome sequence of L. casei DPC6800, isolated from a semi-hard Dutch cheese, is reported. PMID:26941145

  2. Complete Genome Sequence of Lactobacillus casei Zhang, a New Probiotic Strain Isolated from Traditional Homemade Koumiss in Inner Mongolia, China▿

    PubMed Central

    Zhang, Wenyi; Yu, Dongliang; Sun, Zhihong; Wu, Rina; Chen, Xia; Chen, Wei; Meng, He; Hu, Songnian; Zhang, Heping

    2010-01-01

    Lactobacillus casei Zhang is a new probiotic bacterium isolated from koumiss collected in Inner Mongolia, China. Here, we report the main genome features of L. casei Zhang and the identification of several predicted proteins implicated in interactions with the host. PMID:20675486

  3. Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China.

    PubMed

    Zhang, Wenyi; Yu, Dongliang; Sun, Zhihong; Wu, Rina; Chen, Xia; Chen, Wei; Meng, He; Hu, Songnian; Zhang, Heping

    2010-10-01

    Lactobacillus casei Zhang is a new probiotic bacterium isolated from koumiss collected in Inner Mongolia, China. Here, we report the main genome features of L. casei Zhang and the identification of several predicted proteins implicated in interactions with the host. PMID:20675486

  4. The spxB gene as a target to identify Lactobacillus casei group species in cheese.

    PubMed

    Savo Sardaro, Maria Luisa; Levante, Alessia; Bernini, Valentina; Gatti, Monica; Neviani, Erasmo; Lazzi, Camilla

    2016-10-01

    This study focused on the spxB gene, which encodes for pyruvate oxidase. The presence of spxB in the genome and its transcription could be a way to produce energy and allow bacterial growth during carbohydrate starvation. In addition, the activity of pyruvate oxidase, which produces hydrogen peroxide, could be a mechanism for interspecies competition. Because this gene seems to provide advantages for the encoding species for adaptation in complex ecosystems, we studied spxB in a large set of cheese isolates belonging to the Lactobacillus casei group. Through this study, we demonstrated that this gene is widely found in the genomes of members of the L. casei group and shows variability useful for taxonomic studies. In particular, the HRM analysis method allowed for a specific discrimination between Lactobacillus rhamnosus, Lactobacillus paracasei and L. casei. Regarding the coding region, the spxB functionality in cheese was shown for the first time by real-time PCR, and by exploiting the heterogeneity between the L. casei group species, we identified the bacterial communities encoding the spxB gene in this ecosystem. This study allowed for monitoring of the active bacterial community involved in different stages of ripening by following the POX pathway. PMID:27375244

  5. Significant differences between Lactobacillus casei subsp. casei ATCC 393T and a commonly used plasmid-cured derivative revealed by a polyphasic study.

    PubMed

    Acedo-Félix, Evelia; Pérez-Martínez, Gaspar

    2003-01-01

    Many studies on Lactobacillus casei subsp. casei (L. casei) have been carried out using strain ATCC 393 (pLZ15-). Four strains of L. casei ATCC 393T and three of ATCC 393 (pLZ15-) were compared using phenotypic methods and many of the available genotyping techniques. These tests showed that strains of ATCC 393T obtained from independent public type-culture collections were significantly different from the plasmid-free (pLZ15-) strains of ATCC 393T. These findings were confirmed by sequencing the first 580 nt (domain I) of the 16S and 23S rDNAs of the strains. Complete sequencing of the 16S rDNA of one representative strain from each group revealed that strain ATCC 393T from culture collections was 99% similar to Lactobacillus zeae ATCC 15820T and that the strain so far considered as L. casei ATCC 393 (pLZ15-) was, in turn, 100% similar to L. casei ATCC 334 and Lactobacillus paracasei subsp. paracasei ATCC 4022. All data obtained in this work indicate that the ancestral strain of ATCC 393 (pLZ15-) might never have been the strain that is now available from culture collections. PMID:12656154

  6. Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus.

    PubMed Central

    Perdigón, G; de Macias, M E; Alvarez, S; Oliver, G; de Ruiz Holgado, A P

    1988-01-01

    This study investigates the effect of feeding fermented milks with Lactobacillus casei, Lactobacillus acidophilus and a mixture of both micro-organisms on the specific and non-specific host defence mechanisms in Swiss mice. Animals fed with fermented milk for 8 days (100 micrograms/day) showed an increase in both phagocytic and lymphocytic activity. This activation of the immune system began on the 3rd day, reached a maximum on the 5th, and decreased slightly on the 8th day of feeding. In the 8-day treated mice, boosted with a single dose (100 micrograms) on the 11th day, the immune response increased further. The feeding with fermented milk produced neither hepatomegaly nor splenomegaly. These results suggest that L. casei and L. acidophilus, associated with intestinal mucosae, can influence the level of activation of the immune system. The possible clinical application of fermented milks as immunopotentiators is also discussed. PMID:3123370

  7. [Bacteria of Lactobacillus casei group: characterization, viability as probiotic in food products and their importance for human health].

    PubMed

    Buriti, Flávia Carolina Alonso; Saad, Susana Marta Isay

    2007-12-01

    Lactobacillus casei is a group of phenotypically and genetically heterogeneous lactic acid bacteria, able to colonize various natural and man-made environments. Strains of the Lactobacillus casei group have been widely studied with respect to their health-promoting properties. Several beneficial functions for the human organism have been attributed to regular consumption of food products containing these strains. Bacteria of the Lactobacillus casei group are of great interest for the food industry to improve food quality. A number of studies have been conducted in order to evaluate the viability of strains of Lactobacillus casei group as probiotic in dairy products, desserts, among others food products. Despite its importance for the food industry, the taxonomy of the Lactobacillus casei group is still unclear. This review discusses important studies related to characterization of strains of Lactobacillus casei group, the application of these bacteria as probiotic in different food products and the main beneficial effects attributed to regular consumption of products containing such microorganisms. PMID:18524322

  8. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.

    PubMed

    Tsai, Yu-Kuo; Chen, Hung-Wen; Lo, Ta-Chun; Lin, Thy-Hou

    2009-03-01

    Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac(+) clones could be obtained. A gene cluster (lacTEGF-galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac(-)) and its Lac(+) revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac-gal gene clusters was different. The protein sequence identity between the lac-gal gene cluster and those reported previously for some L. casei (Lac(+)) strains was high; namely, 96-100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac(+) revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac(+) revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac(-) to Lac(+) for L. casei ATCC 27139. PMID:19246746

  9. Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution

    PubMed Central

    Cai, Hui; Thompson, Rebecca; Budinich, Mateo F.; Broadbent, Jeff R.

    2009-01-01

    Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

  10. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution.

    PubMed

    Cai, Hui; Thompson, Rebecca; Budinich, Mateo F; Broadbent, Jeff R; Steele, James L

    2009-01-01

    Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

  11. Interaction with intestinal epithelial cells promotes an immunosuppressive phenotype in Lactobacillus casei.

    PubMed

    Tiittanen, Minna; Keto, Joni; Haiko, Johanna; Mättö, Jaana; Partanen, Jukka; Lähteenmäki, Kaarina

    2013-01-01

    Maintenance of the immunological tolerance and homeostasis in the gut is associated with the composition of the intestinal microbiota. We here report that cultivation of Lactobacillus casei ATCC 334 in the presence of human intestinal epithelial cells promotes functional changes in bacteria. In particular, the interaction enhanced the immunosuppressive phenotype of L. casei as demonstrated by the ability of L. casei to generate functional regulatory T cells (CD4+CD25+FoxP3+) and production of the anti-inflammatory cytokine interleukin-10 by human peripheral blood mononuclear cells. The results indicate microbe-host cross-talk that changes features of microbes, and suggest that in vitro simulation of epithelial cell interaction can reveal functional properties of gut microbes more accurately than conventional cultivation. PMID:24244309

  12. Interaction with Intestinal Epithelial Cells Promotes an Immunosuppressive Phenotype in Lactobacillus casei

    PubMed Central

    Tiittanen, Minna; Keto, Joni; Haiko, Johanna; Mättö, Jaana; Partanen, Jukka; Lähteenmäki, Kaarina

    2013-01-01

    Maintenance of the immunological tolerance and homeostasis in the gut is associated with the composition of the intestinal microbiota. We here report that cultivation of Lactobacillus casei ATCC 334 in the presence of human intestinal epithelial cells promotes functional changes in bacteria. In particular, the interaction enhanced the immunosuppressive phenotype of L. casei as demonstrated by the ability of L. casei to generate functional regulatory T cells (CD4+CD25+FoxP3+) and production of the anti-inflammatory cytokine interleukin-10 by human peripheral blood mononuclear cells. The results indicate microbe-host cross-talk that changes features of microbes, and suggest that in vitro simulation of epithelial cell interaction can reveal functional properties of gut microbes more accurately than conventional cultivation. PMID:24244309

  13. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans.

    PubMed

    Shibasaki, Seiji; Karasaki, Miki; Tafuku, Senji; Aoki, Wataru; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-09-01

    Candidiasis is a common fungal infection that is prevalent in immunocompromised individuals. In this study, an oral vaccine against Candida albicans was developed by using the molecular display approach. Enolase 1 protein (Eno1p) of C. albicans was expressed on the Lactobacillus casei cell surface by using poly-gamma-glutamic acid synthetase complex A from Bacillus subtilis as an anchoring protein. The Eno1p-displaying L. casei cells were used to immunize mice, which were later challenged with a lethal dose of C. albicans. The data indicated that the vaccine elicited a strong IgG response and increased the survival rate of the vaccinated mice. Furthermore, L. casei acted as a potent adjuvant and induced high antibody titers that were comparable to those induced by strong adjuvants such as the cholera toxin. Overall, the molecular display method can be used to rapidly develop vaccines that can be conveniently administered and require minimal processing. PMID:25853077

  14. Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei.

    PubMed

    Nadal, Inmaculada; Rico, Juan; Pérez-Martínez, Gaspar; Yebra, María J; Monedero, Vicente

    2009-09-01

    The capability of Lactobacillus casei to produce the flavor-related compounds diacetyl and acetoin from whey permeate has been examined by a metabolic engineering approach. An L. casei strain in which the ilvBN genes from Lactococcus lactis, encoding acetohydroxyacid synthase, were expressed from the lactose operon was mutated in the lactate dehydrogenase gene (ldh) and in the pdhC gene, which codes for the E2 subunit of the pyruvate dehydrogenase complex. The introduction of these mutations resulted in an increased capacity to synthesize diacetyl/acetoin from lactose in whey permeate (1,400 mg/l at pH 5.5). The results showed that L. casei can be manipulated to synthesize added-value metabolites from dairy industry by-products. PMID:19609583

  15. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans

    PubMed Central

    Shibasaki, Seiji; Karasaki, Miki; Tafuku, Senji; Aoki, Wataru; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Abstract Candidiasis is a common fungal infection that is prevalent in immunocompromised individuals. In this study, an oral vaccine against Candida albicans was developed by using the molecular display approach. Enolase 1 protein (Eno1p) of C. albicans was expressed on the Lactobacillus casei cell surface by using poly-gamma-glutamic acid synthetase complex A from Bacillus subtilis as an anchoring protein. The Eno1p-displaying L. casei cells were used to immunize mice, which were later challenged with a lethal dose of C. albicans. The data indicated that the vaccine elicited a strong IgG response and increased the survival rate of the vaccinated mice. Furthermore, L. casei acted as a potent adjuvant and induced high antibody titers that were comparable to those induced by strong adjuvants such as the cholera toxin. Overall, the molecular display method can be used to rapidly develop vaccines that can be conveniently administered and require minimal processing. PMID:25853077

  16. Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23.

    PubMed

    Alcántara, Cristina; Zúñiga, Manuel

    2012-05-01

    Lactobacillus casei is a lactic acid bacterium commonly found in the gastrointestinal tract of animals, and some strains are used as probiotics. The ability of probiotic strains to survive the passage through the gastrointestinal tract is considered a key factor for their probiotic action. Therefore, tolerance to bile salts is a desirable feature for probiotic strains. In this study we have characterized the response of L. casei BL23 to bile by a transcriptomic and proteomic approach. The analysis revealed that exposure to bile induced changes in the abundance of 52 proteins and the transcript levels of 67 genes. The observed changes affected genes and proteins involved in the stress response, fatty acid and cell wall biosynthesis, metabolism of carbohydrates, transport of peptides, coenzyme levels, membrane H(+)-ATPase, and a number of uncharacterized genes and proteins. These data provide new insights into the mechanisms that enable L. casei BL23 to cope with bile stress. PMID:22322960

  17. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei.

    PubMed

    Lin, Jinzhong; Zou, Yexia; Cao, Kunlin; Ma, Chengjie; Chen, Zhengjun

    2016-05-01

    Two heme-dependent catalase genes were amplified from genomic DNA of Lactobacillus plantarum WCFS1 (KatE1) and Lactobacillus brevis ATCC 367 (KatE2), respectively, and a manganese-containing superoxide dismutase from Lactobacillus casei MCJΔ1 (MnSOD) were cloned into plasmid pELX1, yielding pELX1-KatE1, pELX1-KatE2 and pELX1-MnSOD, then the recombinant plasmids were transferred into L. casei MCJΔ1. The strains of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were tolerant at 2 mM H2O2. The survival rates of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were 270-fold and 300-fold higher than that of the control strain on a short-term H2O2 exposure, and in aerated condition, the survival cells counts were 146- and 190-fold higher than that of the control strain after 96 h of incubation. Furthermore, L. casei MCJΔ1/pELX1-MnSOD was the best in three recombinants which was superior in the living cell viability during storage when co-storage with Lactobacillus delbrueckii subsp. lactis LBCH-1. PMID:26922415

  18. Functional Analysis of the p40 and p75 Proteins from Lactobacillus casei BL23

    PubMed Central

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D. Brent; Monedero, Vicente

    2011-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria PMID:21178363

  19. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23.

    PubMed

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D Brent; Monedero, Vicente

    2010-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria. PMID:21178363

  20. Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization.

    PubMed

    Seesuriyachan, Phisit; Takenaka, Shinji; Kuntiya, Ampin; Klayraung, Srikarnjana; Murakami, Shuichiro; Aoki, Kenji

    2007-03-01

    Lactobacillus casei TISTR 1500 was isolated from soil of a dairy wastewater treatment plant and selected as the most active azo dye degrader of 19 isolates. Growing cells and freely suspended cells of this strain completely degraded methyl orange, thereby decolorizing the medium. The strain stoichiometrically converted methyl orange to N,N-dimethyl-p-phenylenediamine and 4-aminobenzenesulfonic acid, which were identified by HPLC, GC, and GC-MS analyses. The enzyme activity responsible for the cleavage of the azo bond of methyl orange was localized to the cytoplasm of cells grown on modified MRS medium containing methyl orange. The effect of sugars, oligosaccharides, organic acids, metal ions, pHs, oxygen and temperatures on methyl orange decolorization by freely suspended cells was investigated. The optimal conditions for the decolorization of methyl orange by the Lactobacillus casei TISTR 1500 are incubation at 35 degrees C and pH 6 with sucrose provided as the energy source. PMID:17254626

  1. Integrative Food-Grade Expression System Based on the Lactose Regulon of Lactobacillus casei

    PubMed Central

    Gosalbes, María José; Esteban, Carlos David; Galán, José Luis; Pérez-Martínez, Gaspar

    2000-01-01

    The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3′ end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, β-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses. PMID:11055930

  2. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    PubMed

    Vinay-Lara, Elena; Hamilton, Joshua J; Stahl, Buffy; Broadbent, Jeff R; Reed, Jennifer L; Steele, James L

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  3. Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group

    PubMed Central

    Zotta, Teresa; Ricciardi, Annamaria; Ianniello, Rocco G.; Parente, Eugenio; Reale, Anna; Rossi, Franca; Iacumin, Lucilla; Comi, Giuseppe; Coppola, Raffaele

    2014-01-01

    One hundred eighty four strains belonging to the species Lactobacillus casei, L. paracasei and L. rhamnosus were screened for their ability to grow under aerobic conditions, in media containing heme and menaquinone and/or compounds generating reactive oxygen species (ROS), in order to identify respiratory and oxygen-tolerant phenotypes. Most strains were able to cope with aerobic conditions and for many strains aerobic growth and heme or heme/menaquinone supplementation increased biomass production compared to anaerobic cultivation. Only four L. casei strains showed a catalase-like activity under anaerobic, aerobic and respiratory conditions and were able to survive in presence of H2O2 (1 mM). Almost all L. casei and L. paracasei strains tolerated menadione (0.2 mM) and most tolerated pyrogallol (50 mM), while L. rhamnosus was usually resistant only to the latter compound. This is the first study in which an extensive screening of oxygen and oxidative stress tolerance of members of the L. casei group has been carried out. Results allowed the selection of strains showing the typical traits of aerobic and respiratory metabolism (increased pH and biomass under aerobic or respiratory conditions) and unique oxidative stress response properties. Aerobic growth and respiration may confer technological and physiological advantages in the L. casei group and oxygen-tolerant phenotypes could be exploited in several food industry applications. PMID:24918811

  4. Short communication: effect of milk and milk containing Lactobacillus casei on the intestinal microbiota of mice.

    PubMed

    Yin, Xiaochen; Yan, Yinzhuo; Kim, Eun Bae; Lee, Bokyung; Marco, Maria L

    2014-01-01

    BALB/c mice were fed milk or Lactobacillus casei BL23 in milk for 14d and fecal samples were collected at d 0, 4, and 7 as well as 1 and 8d after the last administration. According to high-throughput DNA sequencing of the 16S rRNA genes extracted from the fecal microbiota, the bacterial diversity in the fecal samples of all mice increased over time. After 14d of administration, the consumption of milk and milk containing L. casei BL23 resulted in distinct effects on the microbial composition in the intestine. Specifically, the proportions of bacteria in the Lactobacillaceae, Porphyromonadaceae, and Comamonadaceae were significantly higher in mice fed the L. casei BL23-milk culture compared with one or more of the other groups of mice. The relative amounts of Lachnospiraceae were higher and Streptococcaceae were lower in mice fed milk alone. The changes were not found at d 4 and 7 during milk and L. casei feeding and were no longer detected 8d after administration was stopped. This study shows that consumption of milk or probiotic L. casei-containing milk results in non-overlapping, taxa-specific effects on the bacteria in the distal murine intestine. PMID:24508432

  5. Lactobacillus casei Low-Temperature, Dairy-Associated Proteome Promotes Persistence in the Mammalian Digestive Tract.

    PubMed

    Lee, Bokyung; Tachon, Sybille; Eigenheer, Richard A; Phinney, Brett S; Marco, Maria L

    2015-08-01

    We found that incubation of probiotic Lactobacillus casei BL23 in milk at 4 °C prior to ingestion increased its survival in the mammalian digestive tract. To investigate the specific molecular adaptations of L. casei to milk, we used tandem mass spectrometry to compare proteins produced by L. casei BL23 at 4 °C in milk to those in exponential and stationary phase cells in laboratory culture medium at either 37 or 4 °C. These comparisons revealed a core of expressed L. casei proteins as well as proteins produced in either a growth-phase or temperature-specific manner. In total, 205 L. casei proteins were uniquely expressed or detected in higher abundance specifically as a result of incubation in milk and included an over-representation of proteins for cell surface modification, fatty acid metabolism, amino acid transport and metabolism, and inorganic ion transport. Genes for DltD (d-alanine transfer protein), FabH (3-oxoacyl-ACP synthase), RecA (recombinase A), and Sod (superoxide dismutase) were targeted for inactivation. The competitive fitness of the mutants was altered in the mouse intestine compared with wild-type cells. These results show that the food matrix can have a profound influence on dietary (probiotic) bacteria and their functional significance in the mammalian gut. PMID:26148687

  6. Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A

    PubMed Central

    Vinay-Lara, Elena; Hamilton, Joshua J.; Stahl, Buffy; Broadbent, Jeff R.; Reed, Jennifer L.; Steele, James L.

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  7. Multilocus sequence typing of Lactobacillus casei isolates from naturally fermented foods in China and Mongolia.

    PubMed

    Bao, Qiuhua; Song, Yuqin; Xu, Haiyan; Yu, Jie; Zhang, Wenyi; Menghe, Bilige; Zhang, Heping; Sun, Zhihong

    2016-07-01

    Lactobacillus casei is a lactic acid bacterium used in manufacturing of many fermented food products. To investigate the genetic diversity and population biology of this food-related bacterium, 224 Lb. casei isolates and 5 reference isolates were examined by multilocus sequence typing (MLST). Among them, 224 Lb. casei isolates were isolated from homemade fermented foods, including naturally fermented dairy products, acidic gruel, and Sichuan pickles from 38 different regions in China and Mongolia. The MLST scheme was developed based on the analysis of 10 selected housekeeping genes (carB, clpX, dnaA, groEL, murE, pyrG, pheS, recA, rpoC, and uvrC). All 229 isolates could be allocated to 171 unique sequence types, including 25 clonal complexes and 71 singletons. The high index of association value (1.3524) and standardized index of association value (0.1503) indicate the formation of an underlying clonal population by all the isolates. However, split-decomposition, relative frequency of occurrence of recombination and mutation, and relative effect of recombination and mutation in the diversification values confirm that recombination may have occurred, and were more frequent than mutation during the evolution of Lb. casei. Results from Structure analyses (version 2.3; http://pritch.bsd.uchicago.edu/structure.html) demonstrated that there were 5 lineages in the Lb. casei isolates, and the overall relatedness built by minimum spanning tree showed no clear relationship between the clonal complexes with either the isolation sources or sampling locations of the isolates. Our newly developed MLST scheme of Lb. casei was an easy and valuable tool that, together with the construction of an MLST database, will contribute to further detailed studies on the evolution and population genetics of Lb. casei from various niches. PMID:27179867

  8. Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene.

    PubMed Central

    Kim, S F; Baek, S J; Pack, M Y

    1991-01-01

    An allosteric L-(+)-lactate dehydrogenase gene of Lactobacillus casei ATCC 393 was cloned in Escherichia coli, and the nucleotide sequence of the gene was determined. The gene was composed of an open reading frame of 981 bp, starting with a GTG codon and ending with a TAA codon. The sequences for the promoter and ribosome binding site were identified, and a sequence for a structure resembling a rho-independent transcription terminator was also found. Images PMID:1768113

  9. Development of a highly efficient protein-secreting system in recombinant Lactobacillus casei.

    PubMed

    Kajikawa, Akinobu; Ichikawa, Eiko; Igimi, Shizunobu

    2010-02-01

    The available techniques for heterologous protein secretion in Lactobacillus strains are limited. The aim of the present study was to develop an efficient protein-secretion system using recombinant lactobacilli for various applications such as live delivery of biotherapeutics. For the construction of expression vectors, the Lactobacillus brevis slpA promoter, Lactobacillus casei prtP signal sequence, and mouse IL-10 sequences were used as a model system. Interestingly, the slpA promoter exhibited strong activity in L. casei contrary to previous observations. In order to stabilize replication of the plasmid in E. coli, a removable terminator sequence was built into the promoter region. For the improvement of secretion efficiency, a DTNSD oligopeptide was added to the cleavage site of signal peptidase. The resulting plasmids provided remarkably efficient IL-10 secretion. Accumulation of the protein in the culture supernatant varied widely according to the pH conditions. By analysis of the secreted protein, formation of homodimers and biological activity, IL-10 was confirmed to be functional. The presently constructed plasmids could be useful tools for heterologous protein-secretion in L. casei. PMID:20208444

  10. Development of an alternative culture medium for the selective enumeration of Lactobacillus casei in fermented milk.

    PubMed

    Colombo, Monique; de Oliveira, Aline Evelyn Zimmermann; de Carvalho, Antonio Fernandes; Nero, Luís Augusto

    2014-05-01

    Monitoring the populations of probiotic strains of the species Lactobacillus casei in food is required by food industries in order to assure that a minimum concentration of these organisms will be ingested by consumers. In this context, Petrifilm™ AC plates can be used along with selective culture media to allow the enumeration of specific groups of lactic acid bacteria. The present study aimed to assess chemical substances as selective agents for Lb. casei in order to propose a selective culture medium to be used with Petrifilm™ AC plates as an alternative protocol for the enumeration of probiotic strains of this species in fermented milk. Twenty-six probiotic and starter cultures (including six strains of Lb. casei) were plated on de Man Rogosa and Sharpe (MRS) agar with distinct concentrations of nalidixic acid, bile, lithium chloride, metronidazole, sodium propionate, and vancomycin. Vancomycin at 10 mg/L demonstrated selective activity for Lb. casei. In addition, 2,3,5-triphenyltetrazolium chlorine was identified as a compound that did not inhibit Lb. casei, and Petrifilm™ AC plates used with MRS and vancomycin at 10 mg/L (MRS-V) demonstrated more colonies of this organism when incubated under anaerobic conditions than aerobic conditions. Acidophilus milk and yoghurt were prepared, added to Lb. casei strains, and stored at 4 °C. Lb. casei populations were monitored using MRS-V and MRTLV by conventional plating and associated with Petrifilm™ AC plates. All correlation indices between counts obtained by conventional plating and Petrifilm™ AC were significant (p < 0.05), but the best performance was observed for growth on MRS-V. The obtained data indicate the efficiency of using MRS-V associated with Petrifilm™ AC plates for the enumeration of Lb. casei strains in fermented milk. However, the selective potential of this culture medium must be evaluated considering the specific strains of Lb. casei and the starter cultures inoculated in the

  11. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA.

    PubMed Central

    Monedero, V; Gosalbes, M J; Pérez-Martínez, G

    1997-01-01

    The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria. PMID:9352913

  12. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase.

    PubMed

    Bogicevic, Biljana; Berthoud, Hélène; Portmann, Reto; Bavan, Tharmatha; Meile, Leo; Irmler, Stefan

    2016-02-01

    In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase (metA). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro. Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE. PMID:26790714

  13. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx

    PubMed Central

    Zhang, Yong; Guo, Xiao; Guo, Jianlin; He, Qiuwen; Li, He; Song, Yuqin; Zhang, Heping

    2014-01-01

    Gut microbiota mediated low-grade inflammation is involved in the onset of type 2 diabetes (T2DM). In this study, we used a high fat sucrose (HFS) diet-induced pre-insulin resistance and a low dose-STZ HFS rat models to study the effect and mechanism of Lactobacillus casei Zhang in protecting against T2DM onset. Hyperglycemia was favorably suppressed by L. casei Zhang treatment. Moreover, the hyperglycemia was connected with type 1 immune response, high plasma bile acids and urine chloride ion loss. This chloride ion loss was significantly prevented by L. casei via upregulating of chloride ion-dependent genes (ClC1-7, GlyRα1, SLC26A3, SLC26A6, GABAAα1, Bestrophin-3 and CFTR). A shift in the caecal microflora, particularly the reduction of bile acid 7α-dehydroxylating bacteria, and fecal bile acid profiles also occurred. These change coincided with organ chloride influx. Thus, we postulate that the prevention of T2DM onset by L. casei Zhang may be via a microbiota-based bile acid-chloride exchange mechanism. PMID:25133590

  14. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase

    PubMed Central

    Bogicevic, Biljana; Berthoud, Hélène; Portmann, Reto; Bavan, Tharmatha; Meile, Leo; Irmler, Stefan

    2016-01-01

    In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase (metA). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro. Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE. PMID:26790714

  15. Reconstruction and analysis of the genome-scale metabolic model of Lactobacillus casei LC2W.

    PubMed

    Xu, Nan; Liu, Jie; Ai, Lianzhong; Liu, Liming

    2015-01-10

    Lactobacillus casei LC2W is a recently isolated probiotic lactic acid bacterial strain, which is widely used in the dairy and pharmaceutical industries and in clinical medicine. The first genome-scale metabolic model for L. casei, composed of 846 genes, 969 metabolic reactions, and 785 metabolites, was reconstructed using both manual genome annotation and an automatic SEED model. Then, the iJL846 model was validated by simulating cell growth on 15 reported carbon sources. The iJL846 model explored the metabolism of L. casei on a genome scale: (1) explanation of the genetic codes-metabolic functions of 342 genes were reannotated in this model; (2) characterization of the physiology-10 amino acids and 7 vitamins were identified to be essential nutrients for L. casei LC2W growth; (3) analyses of metabolic pathways-the transport and metabolism of the 17 essential nutrients and exopolysaccharide (EPS) biosynthesis-were performed; (4) exploration of metabolic capacity was conducted-for lactate, the importance of genes in its biosynthetic pathways was evaluated, and the requirements of amino acids were predicted for mixed acid fermentation; for flavor compounds, the effects of oxygen were analyzed, and three new knockout targets were selected for acetoin production; for EPS, 11 types of nutrients in the rich medium and important reactions in the biosynthetic pathway were identified that enhanced EPS production. In conclusion, the iJL846 model serves as a useful tool for understanding and engineering the metabolism of this probiotic strain. PMID:25452194

  16. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx.

    PubMed

    Zhang, Yong; Guo, Xiao; Guo, Jianlin; He, Qiuwen; Li, He; Song, Yuqin; Zhang, Heping

    2014-01-01

    Gut microbiota mediated low-grade inflammation is involved in the onset of type 2 diabetes (T2DM). In this study, we used a high fat sucrose (HFS) diet-induced pre-insulin resistance and a low dose-STZ HFS rat models to study the effect and mechanism of Lactobacillus casei Zhang in protecting against T2DM onset. Hyperglycemia was favorably suppressed by L. casei Zhang treatment. Moreover, the hyperglycemia was connected with type 1 immune response, high plasma bile acids and urine chloride ion loss. This chloride ion loss was significantly prevented by L. casei via upregulating of chloride ion-dependent genes (ClC1-7, GlyRα1, SLC26A3, SLC26A6, GABAAα1, Bestrophin-3 and CFTR). A shift in the caecal microflora, particularly the reduction of bile acid 7α-dehydroxylating bacteria, and fecal bile acid profiles also occurred. These change coincided with organ chloride influx. Thus, we postulate that the prevention of T2DM onset by L. casei Zhang may be via a microbiota-based bile acid-chloride exchange mechanism. PMID:25133590

  17. Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk.

    PubMed

    Wang, Ji-Cheng; Zhang, Wen-Yi; Zhong, Zhi; Wei, Ai-Bin; Bao, Qiu-Hua; Zhang, Yong; Sun, Tian-Song; Postnikoff, Andrew; Meng, He; Zhang, He-Ping

    2012-01-01

    Lactobacillus casei Zhang is a widely recognized probiotic bacterium, which is being commercially used in China. To study the gene expression dynamics of L. casei Zhang during fermentation in soymilk, a whole genome microarray was used to screen for differentially expressed genes when grown to the lag phase, the late logarithmic phase, and the stationary phase. Comparisons of different transcripts next to each other revealed 162 and 63 significantly induced genes in the late logarithmic phase and stationary phase, of which the expression was at least threefold up-regulated and down-regulated, respectively. Approximately 38.4% of the up-regulated genes were associated with amino acid transport and metabolism notably for histidine and lysine biosynthesis, followed by genes/gene clusters involved in carbohydrate transport and metabolism, lipid transport and metabolism, and inorganic ion transport and metabolism. The analysis results suggest a complex stimulatory effect of soymilk-based ecosystem on the L. casei Zhang growth. On the other hand, it provides the very first insight into the molecular mechanism of L. casei strain for how it will adapt to the protein-rich environment. PMID:21779970

  18. Comparison of bioactive components in pressurized and pasteurized longan juices fortified with encapsulated Lactobacillus casei 01

    NASA Astrophysics Data System (ADS)

    Chaikham, Pittaya; Apichartsrangkoon, Arunee

    2012-06-01

    In this study, longan juice was subjected to a high pressure of 500 MPa for 30 min and compared with a juice pasteurized at 90°C/2 min. Probiotic Lactobacillus casei 01 was fortified into both juices and the shelf life of these products was studied. Their bioactive components such as ascorbic acid, gallic acid and ellagic acid were analyzed by High Performance Liquid Chromatography (HPLC). Total phenolic compounds and 2,2-Diphenyl-1-picrythydrazyl radical-scavenging activity were determined by colorimetric and spectrophotometric methods. It was found that the pressurized longan juice retained higher amounts of bioactive compounds than the pasteurized juice. In terms of storage stability, bioactive compounds in both processed juices decreased according to the increase in storage time. The survivability of probiotic L. casei 01 in both processed juices declined from 9 to 6 log CFU/mL after 4 weeks of storage.

  19. Cloning and characterization of two Lactobacillus casei genes encoding a cystathionine lyase.

    PubMed

    Irmler, Stefan; Raboud, Sylvie; Beisert, Beata; Rauhut, Doris; Berthoud, Hélène

    2008-01-01

    Volatile sulfur compounds are key flavor compounds in several cheese types. To better understand the metabolism of sulfur-containing amino acids, which certainly plays a key role in the release of volatile sulfur compounds, we searched the genome database of Lactobacillus casei ATCC 334 for genes encoding putative homologs of enzymes known to degrade cysteine, cystathionine, and methionine. The search revealed that L. casei possesses two genes that putatively encode a cystathionine beta-lyase (CBL; EC 4.4.1.8). The enzyme has been implicated in the degradation of not only cystathionine but also cysteine and methionine. Recombinant CBL proteins catalyzed the degradation of L-cystathionine, O-succinyl-L-homoserine, L-cysteine, L-serine, and L-methionine to form alpha-keto acid, hydrogen sulfide, or methanethiol. The two enzymes showed notable differences in substrate specificity and pH optimum. PMID:17993563

  20. Lactobacillus Casei Decreases Organophosphorus Pesticide Diazinon Cytotoxicity in Human HUVEC Cell Line

    PubMed Central

    Bagherpour Shamloo, Hasan; Golkari, Saber; Faghfoori, Zeinab; Movassaghpour, AliAkbar; Lotfi, Hajie; Barzegari, Abolfazl; Yari Khosroushahi, Ahmad

    2016-01-01

    Purpose: Exposure to diazinon can trigger acute and chronic toxicity and significantly induces DNA damage and proapoptotic effects in different human cells. Due to the significance of probiotic bacteria antitoxin effect, this study aimed to investigate the effect of Lactobacillus casei on diazinon (DZN) cytotoxicity in human umbilical vein endothelial cells (HUVEC) in vitro. Methods: The cytotoxicity assessments were performed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, DAPI (4',6-diamidino-2-phenylindole) staining and flow cytometric methodologies. Results: Cytotoxic assessments through flow cytometry/ DAPI staining demonstrated that apoptosis is the main cytotoxic mechanism of diazinon in HUVEC cells and L. casei could decrease the diazinon cytotoxic effects on toxicants. Conclusion: the screen of total bacterial secreted metabolites can be considered as a wealthy source to find the new active compounds to introduce as reducing agricultural remained pesticide cytotoxicity effects on the human food chain. PMID:27478782

  1. Short communication: Protection of lyophilized milk starter Lactobacillus casei Zhang by glutathione.

    PubMed

    Zhang, Juan; Liu, Qian; Chen, Wei; Du, Guocheng; Chen, Jian

    2016-03-01

    Lyophilization is considered an effective way to preserve the activity of milk starters, such as lactic acid bacteria, in which proper protective agents play key roles. In this study, Lactobacillus casei Zhang, a probiotic bacterium applied as a milk starter in China, was used to investigate the effects of various cryoprotectants according to cell survival rate and physiological characteristics. The result showed a significant survival improvement to 86.6% when glutathione (GSH) was added as an ideal cryoprotectant. Further study revealed that GSH plays a key role on maintaining higher unsaturation ratio of cell membrane and shorter chain length of saturated fatty acids. In this case, the intact cell structure can be obtained. These findings will contribute not only to deepen the understanding of cells during lyophilization but also to improve the industrial performance of certain milk starters such as L. casei Zhang by application of GSH as cryoprotectant. PMID:26723115

  2. Construction and potential application of controlled autolytic systems for Lactobacillus casei in cheese manufacture.

    PubMed

    Xu, Yi; Kong, Jian

    2013-07-01

    The rapid release of intracellular enzymes into the curd by the autolysis of lactic acid bacteria starters is universally recognized as a critical biological process to accelerate cheese ripening. Lactobacillus casei is typically the dominant nonstarter lactic acid bacterium in the ripening cheese. In this study, two controlled autolytic systems were established in L. casei BL23, based on the exploitation of the autolysins sourced from Lactococcus lactis (AcmA) and Enterococcus faecalis (AtlA). The lysis abilities of the systems were demonstrated both in broth and a model cheese, in which a fivefold increase in lactate dehydrogenase activity was detected in the curd with sufficient viable starter cells being maintained, indicating that they could lead to the timely release of intracellular enzymes. PMID:23834793

  3. Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334

    PubMed Central

    Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcón, Sergio

    2013-01-01

    The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacillus casei ATCC 334 metabolized citrate in complex with Ca2+ and not as free citrate or the Mg2+-citrate complex, thereby identifying Ca2+-citrate as the substrate of the transporter CitH. The pathway was induced in the presence of Ca2+ and citrate during growth and repressed by the presence of glucose and of galactose, most likely by a carbon catabolite repression mechanism. The end products of Ca2+-citrate metabolism by resting cells of Lb. casei were pyruvate, acetate, and acetoin, demonstrating the activity of the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Following pyruvate, the pathway splits into two branches. One branch is the classical citrate fermentation pathway producing acetoin by α-acetolactate synthase and α-acetolactate decarboxylase. The other branch yields acetate, for which the route is still obscure. Ca2+-citrate metabolism in a modified MRS medium lacking a carbohydrate did not significantly affect the growth characteristics, and generation of metabolic energy in the form of proton motive force (PMF) was not observed in resting cells. In contrast, carbohydrate/Ca2+-citrate cometabolism resulted in a higher biomass yield in batch culture. However, also with these cells, no generation of PMF was associated with Ca2+-citrate metabolism. It is concluded that citrate metabolism in Lb. casei is beneficial when it counteracts acidification by carbohydrate metabolism in later growth stages. PMID:23709502

  4. Ca2+-citrate uptake and metabolism in Lactobacillus casei ATCC 334.

    PubMed

    Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcón, Sergio; Lolkema, Juke S

    2013-08-01

    The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacillus casei ATCC 334 metabolized citrate in complex with Ca(2+) and not as free citrate or the Mg(2+)-citrate complex, thereby identifying Ca(2+)-citrate as the substrate of the transporter CitH. The pathway was induced in the presence of Ca(2+) and citrate during growth and repressed by the presence of glucose and of galactose, most likely by a carbon catabolite repression mechanism. The end products of Ca(2+)-citrate metabolism by resting cells of Lb. casei were pyruvate, acetate, and acetoin, demonstrating the activity of the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Following pyruvate, the pathway splits into two branches. One branch is the classical citrate fermentation pathway producing acetoin by α-acetolactate synthase and α-acetolactate decarboxylase. The other branch yields acetate, for which the route is still obscure. Ca(2+)-citrate metabolism in a modified MRS medium lacking a carbohydrate did not significantly affect the growth characteristics, and generation of metabolic energy in the form of proton motive force (PMF) was not observed in resting cells. In contrast, carbohydrate/Ca(2+)-citrate cometabolism resulted in a higher biomass yield in batch culture. However, also with these cells, no generation of PMF was associated with Ca(2+)-citrate metabolism. It is concluded that citrate metabolism in Lb. casei is beneficial when it counteracts acidification by carbohydrate metabolism in later growth stages. PMID:23709502

  5. A phase trial of the oral Lactobacillus casei vaccine polarizes Th2 cell immunity against transmissible gastroenteritis coronavirus infection.

    PubMed

    Jiang, Xinpeng; Hou, Xingyu; Tang, Lijie; Jiang, Yanping; Ma, Guangpeng; Li, Yijing

    2016-09-01

    Transmissible gastroenteritis coronavirus (TGEV) is a member of the genus Coronavirus, family Coronaviridae, order Nidovirales. TGEV is an enteropathogenic coronavirus that causes highly fatal acute diarrhoea in newborn pigs. An oral Lactobacillus casei (L. casei) vaccine against anti-transmissible gastroenteritis virus developed in our laboratory was used to study mucosal immune responses. In this L. casei vaccine, repetitive peptides expressed by L. casei (specifically the MDP and tuftsin fusion protein (MT)) were repeated 20 times and the D antigenic site of the TGEV spike (S) protein was repeated 6 times. Immunization with recombinant Lactobacillus is crucial for investigations of the effect of immunization, such as the first immunization time and dose. The first immunization is more important than the last immunization in the series. The recombinant Lactobacillus elicited specific systemic and mucosal immune responses. Recombinant L. casei had a strong potentiating effect on the cellular immunity induced by the oral L. casei vaccine. However, during TGEV infection, the systemic and local immune responses switched from Th1 to Th2-based immune responses. The systemic humoral immune response was stronger than the cellular immune response after TGEV infection. We found that the recombinant Lactobacillus stimulated IL-17 expression in both the systemic and mucosal immune responses against TGEV infection. Furthermore, the Lactobacillus vaccine stimulated an anti-TGEV infection Th17 pathway. The histopathological examination showed tremendous potential for recombinant Lactobacillus to enable rapid and effective treatment for TGEV with an intestinal tropism in piglets. The TGEV immune protection was primarily dependent on mucosal immunity. PMID:27020282

  6. Identification of a Gene Cluster Enabling Lactobacillus casei BL23 To Utilize myo-Inositol▿ †

    PubMed Central

    Yebra, María Jesús; Zúñiga, Manuel; Beaufils, Sophie; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente

    2007-01-01

    Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23. PMID:17449687

  7. Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.

    PubMed

    Yebra, María Jesús; Zúñiga, Manuel; Beaufils, Sophie; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente

    2007-06-01

    Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23. PMID:17449687

  8. The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response.

    PubMed

    Monedero, Vicente; Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Beaufils, Sophie; Hartke, Axel; Deutscher, Josef

    2007-01-01

    Genome sequencing of two different Lactobacillus casei strains (ATCC334 and BL23) is presently going on and preliminary data revealed that this lactic acid bacterium possesses numerous carbohydrate transport systems probably reflecting its capacity to proliferate under varying environmental conditions. Many carbohydrate transporters belong to the phosphoenolpyruvate:sugar phosphotransferase system (PTS), but all different kinds of non-PTS transporters are present as well and their substrates are known in a few cases. In L. casei regulation of carbohydrate transport and carbon metabolism is mainly achieved by PTS proteins. Carbon catabolite repression (CCR) is mediated via several mechanisms, including the major P-Ser-HPr/catabolite control protein A (CcpA)-dependent mechanism. Catabolite response elements, the target sites for the P-Ser-HPr/CcpA complex, precede numerous genes and operons. PTS regulation domain-containing antiterminators and transcription activators are also present in both L. casei strains. Their activity is usually controlled by two PTS-mediated phosphorylation reactions exerting antagonistic effects on the transcription regulators: P~EIIB-dependent phosphorylation regulates induction of the corresponding genes and P~His-HPr-mediated phosphorylation plays a role in CCR. Carbohydrate transport of L. casei is also regulated via inducer exclusion and inducer expulsion. The presence of glucose, fructose, etc. leads to inhibition of the transport or metabolism of less favorable carbon sources (inducer exclusion) or to the export of accumulated non-metabolizable carbon sources (inducer expulsion). While P-Ser-HPr is essential for inducer exclusion of maltose, it is not necessary for the expulsion of accumulated thio-methyl-beta-D-galactopyranoside. Surprisingly, recent evidence suggests that the PTS of L. casei also plays a role in cold shock response. PMID:17183208

  9. Lactobacillus casei microbiological assay of folic acid derivatives in 96-well microtiter plates.

    PubMed

    Horne, D W; Patterson, D

    1988-11-01

    Microbiological assay is still widely used for estimating folic acid derivatives in serum and other biological samples. We describe here a modification of this procedure involving use of 96-well microtiter plates. This procedure, used with modern, computer-interfaced microtiter-plate readers and data-reduction software, greatly shortens the time and minimizes reagent costs for this assay. Under the conditions of our assay procedures, all folic acid derivatives tested gave equal growth response for Lactobacillus casei. Results for assays of rat liver extracts showed excellent agreement between the standard bioassay and the 96-well procedure. PMID:3141087

  10. Comparative analysis of the genes encoding 23S-5S rRNA intergenic spacer regions of Lactobacillus casei-related strains.

    PubMed

    Chen, H; Lim, C K; Lee, Y K; Chan, Y N

    2000-03-01

    In this study, investigations into the 23S-5S rRNA intergenic spacer regions (ISRs) of the Lactobacillus casei group were performed. A 1.6 kb fragment, from Lactobacillus paracasei strain ATCC 27092, containing part of the 5S rRNA gene (60 bp), the 5S-23S spacer region (198 bp) and part of the 23S rRNA gene (1295 bp) was cloned and sequenced (GenBank no. AF098107). This fragment was used as a probe to determine the rRNA restriction fragment length polymorphism (RFLP) patterns of nine strains belonging to the Lactobacillus casei group, along with four other non-Lactobacillus casei lactobacilli species. A pair of PCR primers, 23-Fl and 5-Ru, was designed and used for PCR amplification of the 23S-5S rRNA ISRs of these strains. The ISR length and sequence polymorphisms provided additional information for the taxonomic study of the Lactobacillus casei group. The spacer-length polymorphism of Lactobacillus rhamnosus was distinct from those of the other strains and this observation is consistent with the classification of Lactobacillus rhamnosus proposed by Mori et al. For all Lactobacillus casei and Lactobacillus paracasei strains, two major bands (approx. 250 and 170 bp in size) were obtained except in the case of Lactobacillus paracasei subsp. tolerans strain NCIMB 9709T, which yielded only one amplified product (250 bp). The sequencing data of the PCR products of seven well-characterized Lactobacillus casei and Lactobacillus paracasei strains revealed the presence of a 76/80 bp insertion/deletion with some random, single-base substitutions between the longer and shorter spacers for each respective strain. A few base variations were also detected within different strains in this group although the overall sequence similarity was very high (95.9-99.5%). The rRNA RFLP and the spacer sequence of Lactobacillus casei type strain ATCC 393T exhibited unique identities in this cluster. On the other hand, Lactobacillus casei strain ATCC 334 showed a high level of similarity

  11. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334.

    PubMed

    Thompson, John; Jakubovics, Nicholas; Abraham, Bindu; Hess, Sonja; Pikis, Andreas

    2008-05-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with M(r)s of approximately 50,000 and approximately 17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the approximately 50-kDa protein as an NAD(+)- and metal ion-dependent phospho-alpha-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-alpha-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to approximately 1.5- and approximately 1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon. PMID:18310337

  12. Construction and characterization of three protein-targeting expression system in Lactobacillus casei.

    PubMed

    Lin, Jinzhong; Zou, Yexia; Ma, Chengjie; Liang, Yunxiang; Ge, Xiangyang; Chen, Zhengjun; She, Qunxin

    2016-04-01

    We previously reported that the β-1,4-Mannanase (manB) gene from Bacillus pumilus functions as a good reporter gene in Lactobacillus casei. Two vectors were constructed. One carries the signal peptide of secretion protein Usp45 (SPUsp45) from Lactococcus lactis (pELSH), and the other carries the full-length S-layer protein, SlpA, from L. acidophilus (pELWH). In this work, another vector, pELSPH, was constructed to include the signal peptide of protein SlpA (SPSlpA), and the capacity of all three vectors to drive expression of the manB gene in L. casei was evaluated. The results showed that SPUsp45 is functionally recognized and processed by the L. casei secretion machinery. The SPUsp45-mediated secretion efficiency was ∼87%, and SPSlpA drove the export of secreted ManB with ∼80% efficiency. SPSlpA secretion was highly efficient, and expressed SlpA was anchored to the cell wall by an unknown secretion mechanism. Full-length SlpA drove the cell wall-anchored expression of an SlpA-ManB fusion protein but at a much lower level than that of protein SlpA. PMID:26892019

  13. Culture media for differential isolation of Lactobacillus casei Shirota from oral samples.

    PubMed

    Sutula, Justyna; Coulthwaite, Lisa; Verran, Joanna

    2012-07-01

    This study aimed to develop a solid culture medium for differential isolation of the probiotic strain Lactobacillus casei Shirota (LcS) and for selective cultivation of lactobacilli present in oral samples. Type strains of lactobacilli and isolates from commercial probiotic products were inoculated onto modified de Man Rogosa Sharpe agar (termed 'LcS Select'), containing bromophenol blue pH indicator, vancomycin and reducing agent L-cysteine hydrochloride for differential colony morphology development. L. casei Shirota cultured on the novel medium produced distinctive colony morphologies, different from other lactobacilli tested. LcS-characteristic colonies were recovered on LcS Select medium from samples of saliva and tongue plaque following a four-week probiotic intervention study. The viable count of presumptive LcS colonies correlated with those isolated on a non-commercial lactitol-LBS-vancomycin agar (LLV) developed for a selective isolation of LcS from faeces. The novel LcS Select medium proved suitable for differential isolation of the probiotic strain L. casei Shirota from oral samples containing mixed microbial populations. It can also be used for selective growth of vancomycin-resistant lactobacilli. There are few available culture media that are sufficiently selective to enable isolation of probiotic strains from mixed populations. LcS Select medium provides a cheaper, yet effective tool in this context. PMID:22484087

  14. Isolation and Characterization of a Novel Virulent Phage of Lactobacillus casei ATCC 393.

    PubMed

    Zhang, Xi; Lan, Yu; Jiao, Wenchao; Li, Yijing; Tang, Lijie; Jiang, Yanping; Cui, Wen; Qiao, Xinyuan

    2015-12-01

    A new virulent phage (Lcb) of Lactobacillus casei ATCC 393 was isolated from Chinese sauerkraut. It was specific to L. casei ATCC 393. Electron micrograph revealed that it had an icosahedral head (60.2 ± 0.8 nm in diameter) and a long tail (251 ± 2.6 nm). It belonged to the Siphoviridae family. The genome of phage Lcb was estimated to be approximately 40 kb and did not contain cohesive ends. One-step growth kinetics of its lytic development revealed latent and burst periods of 75 and 45 min, respectively, with a burst size of 16 PFU per infected cell. The phage was able to survive in a pH range between 4 and 11. However, a treatment of 70 °C for 30 min and 75% ethanol or isopropanol for 20 min was observed to inactivate phage Lcb thoroughly. The presence of both Ca(2+) and Mg(2+) showed a little influence on phage adsorption, but they were indispensable to gain complete lysis and improve plaque formation. The adsorption kinetics were similar on viable or nonviable cells, and high adsorption rates maintained between 10 and 37 °C. The highest adsorption rate was at 30 °C. This study increased the knowledge on phages of L. casei. The characterization of phage Lcb is helpful to establish a basis for adopting effective strategies to control phage attack in industry. PMID:26123178

  15. Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk.

    PubMed

    Wang, Jicheng; Wu, Rina; Zhang, Wenyi; Sun, Zhihong; Zhao, Wenjing; Zhang, Heping

    2013-09-01

    Soy milk is regarded as a substitute for milk and has become popular in varied diets throughout the world. It has been shown that a newly characterized probiotic bacterium (Lactobacillus casei Zhang) actually grows faster in soy milk than in bovine milk. To elucidate the mechanism involved, we carried out a proteomic analysis to characterize bacterial proteins that varied upon growth in soy milk and bovine milk at 3 different growth phases, and compare their expression under these conditions. A total of 104 differentially expressed spots were identified from different phases using a peptide mass fingerprinting assay. Functional analysis revealed that a major part of these identified proteins is associated with transport and metabolism of carbohydrates, nucleotides, and amino acids as well. The results from our proteomic analysis were clarified by real-time quantitative PCR assay, which showed that Lb. casei Zhang loci involved in purine and pyrimidine biosynthesis were transcriptionally enhanced during growth in soy milk at lag phase (pH 6.4), whereas the loci involved in carbohydrate metabolism were upregulated in bovine milk. Particularly, our results showed that l-glutamine might play an important role in the growth of Lb. casei Zhang in soy milk and bovine milk, perhaps by contributing to purine, pyrimidine, and amino sugar metabolism. PMID:23871367

  16. Maltose transport in Lactobacillus casei and its regulation by inducer exclusion.

    PubMed

    Monedero, Vicente; Yebra, María Jesús; Poncet, Sandrine; Deutscher, Josef

    2008-03-01

    Transport of maltose in Lactobacillus casei BL23 is subject to regulation by inducer exclusion. The presence of glucose or other rapidly metabolized carbon sources blocks maltose transport by a control mechanism that depends on the phosphorylation of the HPr protein at serine residue 46. We have identified the L. casei gene cluster for maltose/maltodextrin utilization by sequence analysis and mutagenesis. It is composed of genes coding for a transcriptional regulator, oligosaccharide hydrolytic enzymes, an ABC transporter (MalEFGK2) and the enzymes for the metabolism of maltose or the degradation products of maltodextrins: maltose phosphorylase and beta-phospho-glucomutase. These genes are induced by maltose and repressed by the presence of glucose via the catabolite control protein A (CcpA). A mutant strain was constructed which expressed the hprKV267F allele and therefore formed large amounts of P-Ser-HPr even in the absence of a repressive carbon source. In this mutant, transport of maltose was severely impaired, whereas transport of sugars not subject to inducer exclusion was not changed. These results strengthen the idea that P-Ser-HPr controls inducer exclusion and make the maltose system of L. casei a suitable model for studying this process in Firmicutes. PMID:18096372

  17. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    PubMed

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications. PMID:26566892

  18. Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model.

    PubMed

    Okubo, Hirofumi; Sakoda, Hideyuki; Kushiyama, Akifumi; Fujishiro, Midori; Nakatsu, Yusuke; Fukushima, Toshiaki; Matsunaga, Yasuka; Kamata, Hideaki; Asahara, Takashi; Yoshida, Yasuto; Chonan, Osamu; Iwashita, Misaki; Nishimura, Fusanori; Asano, Tomoichiro

    2013-12-01

    Gut microbiota alterations are associated with various disorders. In this study, gut microbiota changes were investigated in a methionine-choline-deficient (MCD) diet-induced nonalcoholic steatohepatitis (NASH) rodent model, and the effects of administering Lactobacillus casei strain Shirota (LcS) on the development of NASH were also investigated. Mice were divided into three groups, given the normal chow diet (NCD), MCD diet, or the MCD diet plus daily oral administration of LcS for 6 wk. Gut microbiota analyses for the three groups revealed that lactic acid bacteria such as Bifidobacterium and Lactobacillus in feces were markedly reduced by the MCD diet. Interestingly, oral administration of LcS to MCD diet-fed mice increased not only the L. casei subgroup but also other lactic acid bacteria. Subsequently, NASH development was evaluated based on hepatic histochemical findings, serum parameters, and various mRNA and/or protein expression levels. LcS intervention markedly suppressed MCD-diet-induced NASH development, with reduced serum lipopolysaccharide concentrations, suppression of inflammation and fibrosis in the liver, and reduced colon inflammation. Therefore, reduced populations of lactic acid bacteria in the colon may be involved in the pathogenesis of MCD diet-induced NASH, suggesting normalization of gut microbiota to be effective for treating NASH. PMID:24113768

  19. The effect of temperature on L-lactic acid production and metabolite distribution of Lactobacillus casei.

    PubMed

    Qin, Hao; Gong, Sai-Sai; Ge, Xiang-Yang; Zhang, Wei-Guo

    2012-01-01

    The effect of temperature on the growth and L-lactic acid production of Lactobacillus casei G-03 was investigated in a 7-L bioreactor. It was found that the maximum specific growth rate (0.27 hr⁻¹) and L-lactic acid concentration (160.2 g L⁻¹) were obtained at a temperature of 41°C. Meanwhile, the maximum L-lactic acid yield, productivity, and dry cell weight were up to 94.1%, 4.44 g L⁻¹ hr⁻¹, and 4.30 g L⁻¹, respectively. At lower or higher temperature, the Lactobacillus casei G-03 showed lower acid production and biomass. Moreover, the main metabolite distribution of strain G-03 response to variations in temperatures was studied. The results suggested that temperature has a remarkable effect on metabolite distribution, and the maximum carbon flux toward lactic acid at the pyruvate node was obtained at 41°C, which had the minimum carbon flux toward acetic acid. PMID:23030467

  20. Characterization of a Regulatory Network of Peptide Antibiotic Detoxification Modules in Lactobacillus casei BL23

    PubMed Central

    Revilla-Guarinos, Ainhoa; Gebhard, Susanne; Alcántara, Cristina; Staroń, Anna

    2013-01-01

    Two-component systems (TCS) are major signal transduction pathways that allow bacteria to detect and respond to environmental and intracellular changes. A group of TCS has been shown to be involved in the response against antimicrobial peptides (AMPs). These TCS are characterized by the possession of intramembrane-sensing histidine kinases, and they are usually associated with ABC transporters of the peptide-7 exporter family (Pep7E). Lactobacillus casei BL23 encodes two TCS belonging to this group (TCS09 and TCS12) that are located next to two ABC transporters (ABC09 and ABC12), as well as a third Pep7E ABC transporter not genetically associated with any TCS (orphan ABC). This study addressed the involvement of modules TCS09/ABC09 and TCS12/ABC12 in AMP resistance. Results showed that both systems contribute to L. casei resistance to AMPs, and that each TCS constitutes a functional unit with its corresponding ABC transporter. Analysis of transcriptional levels showed that module 09 is required for the induction of ABC09 expression in response to nisin. In contrast, module 12 controls a wider regulon that encompasses the orphan ABC, the dlt operon (d-alanylation of teichoid acids), and the mprF gene (l-lysinylation of phospholipids), thereby controlling properties of the cell envelope. Furthermore, the characterization of a dltA mutant showed that Dlt plays a major role in AMP resistance in L. casei. This is the first report on the regulation of the response of L. casei to AMPs, giving insight into its ability to adapt to the challenging environments that it encounters as a probiotic microorganism. PMID:23455349

  1. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese.

    PubMed

    Broadbent, Jeffery R; Gummalla, Sanjay; Hughes, Joanne E; Johnson, Mark E; Rankin, Scott A; Drake, Mary Anne

    2004-08-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development. PMID:15294819

  2. Predictive modelling of Lactobacillus casei KN291 survival in fermented soy beverage.

    PubMed

    Zielińska, Dorota; Dorota, Zielińska; Kołożyn-Krajewska, Danuta; Danuta, Kołożyn-Krajewska; Goryl, Antoni; Antoni, Goryl; Motyl, Ilona

    2014-02-01

    The aim of the study was to construct and verify predictive growth and survival models of a potentially probiotic bacteria in fermented soy beverage. The research material included natural soy beverage (Polgrunt, Poland) and the strain of lactic acid bacteria (LAB) - Lactobacillus casei KN291. To construct predictive models for the growth and survival of L. casei KN291 bacteria in the fermented soy beverage we design an experiment which allowed the collection of CFU data. Fermented soy beverage samples were stored at various temperature conditions (5, 10, 15, and 20°C) for 28 days. On the basis of obtained data concerning the survival of L. casei KN291 bacteria in soy beverage at different temperature and time conditions, two non-linear models (r(2)= 0.68-0.93) and two surface models (r(2)=0.76-0.79) were constructed; these models described the behaviour of the bacteria in the product to a satisfactory extent. Verification of the surface models was carried out utilizing the validation data - at 7°C during 28 days. It was found that applied models were well fitted and charged with small systematic errors, which is evidenced by accuracy factor - Af, bias factor - Bf and mean squared error - MSE. The constructed microbiological growth and survival models of L. casei KN291 in fermented soy beverage enable the estimation of products shelf life period, which in this case is defined by the requirement for the level of the bacteria to be above 10(6) CFU/cm(3). The constructed models may be useful as a tool for the manufacture of probiotic foods to estimate of their shelf life period. PMID:24500482

  3. Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine.

    PubMed

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J

    2012-07-01

    UDP-sugars are used as glycosyl donors in many enzymatic glycosylation processes. In bacteria UDP-N-acetylglucosamine (UDP-GlcNAc) is synthesized from fructose-6-phosphate by four successive reactions catalyzed by three enzymes: Glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM), and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). In this work several metabolic engineering strategies, aimed to increment UDP-GlcNAc biosynthesis, were applied in the probiotic bacterium Lactobacillus casei strain BL23. This strain does not produce exopolysaccharides, therefore it could be a suitable host for the production of oligosaccharides. The genes glmS, glmM, and glmU coding for GlmS, GlmM, and GlmU activities in L. casei BL23, respectively, were identified, cloned and shown to be functional by homologous over-expression. The recombinant L. casei strain over-expressing simultaneously the genes glmM and glmS showed a 3.47 times increase in GlmS activity and 6.43 times increase in GlmM activity with respect to the control strain. Remarkably, these incremented activities resulted in about fourfold increase of the UDP-GlcNAc pool. In L. casei BL23 wild type strain transcriptional analyses showed that glmM and glmU are constitutively transcribed. By contrast, glmS transcription is down-regulated with a 21-fold decrease of glmS mRNA in cells cultured with N-acetylglucosamine as the sole carbon source compared to cells cultured with glucose. Our results revealed for the first time that GlmS, GlmM, and GlmU are responsible for UDP-GlcNAc biosynthesis in lactobacilli. PMID:22383248

  4. Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23.

    PubMed

    Revilla-Guarinos, Ainhoa; Gebhard, Susanne; Alcántara, Cristina; Staron, Anna; Mascher, Thorsten; Zúñiga, Manuel

    2013-05-01

    Two-component systems (TCS) are major signal transduction pathways that allow bacteria to detect and respond to environmental and intracellular changes. A group of TCS has been shown to be involved in the response against antimicrobial peptides (AMPs). These TCS are characterized by the possession of intramembrane-sensing histidine kinases, and they are usually associated with ABC transporters of the peptide-7 exporter family (Pep7E). Lactobacillus casei BL23 encodes two TCS belonging to this group (TCS09 and TCS12) that are located next to two ABC transporters (ABC09 and ABC12), as well as a third Pep7E ABC transporter not genetically associated with any TCS (orphan ABC). This study addressed the involvement of modules TCS09/ABC09 and TCS12/ABC12 in AMP resistance. Results showed that both systems contribute to L. casei resistance to AMPs, and that each TCS constitutes a functional unit with its corresponding ABC transporter. Analysis of transcriptional levels showed that module 09 is required for the induction of ABC09 expression in response to nisin. In contrast, module 12 controls a wider regulon that encompasses the orphan ABC, the dlt operon (d-alanylation of teichoid acids), and the mprF gene (l-lysinylation of phospholipids), thereby controlling properties of the cell envelope. Furthermore, the characterization of a dltA mutant showed that Dlt plays a major role in AMP resistance in L. casei. This is the first report on the regulation of the response of L. casei to AMPs, giving insight into its ability to adapt to the challenging environments that it encounters as a probiotic microorganism. PMID:23455349

  5. 16S rRNA PCR-Denaturing Gradient Gel Electrophoresis of Oral Lactobacillus casei Group and Their Phenotypic Appearances

    PubMed Central

    Piwat, S.; Teanpaisan, R.

    2013-01-01

    This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances. PMID:24191230

  6. Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group.

    PubMed

    Felis, G E; Dellaglio, F; Mizzi, L; Torriani, S

    2001-11-01

    The taxonomic positions of species of the Lactobacillus casei group have been evaluated by sequencing and phylogenetic analysis of a 277 bp recA gene fragment. High sequence similarity between strain ATCC 393T, currently designated as the type strain of L. casei, and the type strain of Lactobacillus zeae, LMG 17315T, has been established, while L. casei ATCC 334 and Lactobacillus paracasei NCDO 151T form a single phylogenetic group. The taxonomic status of species and strains at issue is discussed. PMID:11760954

  7. Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice.

    PubMed

    Watterlot, Laurie; Rochat, Tatiana; Sokol, Harry; Cherbuy, Claire; Bouloufa, Ismael; Lefèvre, François; Gratadoux, Jean-Jacques; Honvo-Hueto, Edith; Chilmonczyk, Stefan; Blugeon, Sébastien; Corthier, Gérard; Langella, Philippe; Bermúdez-Humarán, Luis G

    2010-11-15

    Human immune cells release large amounts of reactive oxygen species (ROS) such as superoxide radical and hydrogen peroxide via respiratory burst. In inflammatory bowel diseases, a sustained and abnormal activation of the immune response results in oxidative stress of the digestive tract and in a loss of intestinal homeostasis. We previously reported that heterologous production of the Lactobacillus plantarum manganese catalase (MnKat) enhances the survival of Lb. casei BL23 when exposed to oxidative stress. Anti-inflammatory effects were observed after Lb. casei BL23 oral administrations in moderate murine dextran sodium sulfate (DSS)-induced colitis, without added effects of the MnKat production. Here, we evaluated the protective effects obtained by an improved antioxidative strategy. The Lactococcus lactis sodA gene was expressed in Lb. casei BL23 which acquired an efficient manganese superoxide dismutase (MnSOD) activity. The effects of Lb. casei MnSOD alone or in combination with Lb. casei MnKat were compared first in eukaryotic cell PMA-induced oxidative stress model and then in severe murine DSS-induced colitis. Based on ROS production assays as well as colonic histological scores, a significant reduction of both oxidative stress and inflammation was observed with Lb. casei MnSOD either alone or in combination with Lb. casei MnKat. No added effect of the presence of Lb. casei MnKat was observed. These results suggest that Lb. casei BL23 MnSOD could have anti-inflammatory effects on gut inflammation. PMID:20452077

  8. Fermentation characteristics and transit tolerance of probiotic Lactobacillus casei Zhang in soymilk and bovine milk during storage.

    PubMed

    Wang, J; Guo, Z; Zhang, Q; Yan, L; Chen, W; Liu, X-M; Zhang, H-P

    2009-06-01

    Lactobacillus casei Zhang is a novel strain that was screened out of koumiss collected in Inner Mongolia, and our previous research showed that L. casei Zhang has health benefits such as cholesterol-reducing and immunomodulating effects. The fermentation characteristics of L. casei Zhang in soymilk and bovine milk and the transit tolerance of L. casei Zhang in fermented milk products during refrigerated storage for 28 d were assessed. A faster decrease in pH and faster growth of L. casei Zhang during fermentation were observed in soymilk compared with bovine milk at various inoculation rates, probably because of the low pH buffering capacity of soymilk. The fermented bovine milk samples had much higher final titratable acidity (TA) values (between 0.80 and 0.93%) than the soymilk samples (between 0.40 and 0.46%). Dramatic increases in TA values in the fermented soymilk samples during storage were observed, and the TA values of the fermented soymilk samples changed from <0.56% to values between 0.86 and 0.98%. On the other hand, only slight increases in TA were observed in the bovine milk samples during the 28 d of storage. The survival rates of freshly prepared cultures of L. casei Zhang in simulated gastric juice at pH 2.0 and 2.5 were 31 and 69%, respectively, and the delivery of L. casei Zhang through fermented soymilk and bovine milk significantly improved the viability of L. casei Zhang in simulated gastric transit. Lactobacillus casei Zhang showed good tolerance to simulated gastric juice and intestinal juice in the fermented soymilk and bovine milk samples, and maintained high viability (>10(8) cfu/g) during storage at 4 degrees C for 28 d. Our results indicated that both soymilk and bovine milk could serve as vehicles for delivery of probiotic L. casei Zhang, and further research is needed to elucidate the mechanism of the change in pH and TA of L. casei Zhang in fermented milk samples during fermentation and storage and to understand the difference between

  9. Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactobacillus casei cells.

    PubMed

    Aires, Karina Araujo; Cianciarullo, Aurora Marques; Carneiro, Sylvia Mendes; Villa, Luisa Lina; Boccardo, Enrique; Pérez-Martinez, Gaspar; Perez-Arellano, Isabel; Oliveira, Maria Leonor Sarno; Ho, Paulo Lee

    2006-01-01

    Infections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L. casei. Expression was confirmed by Western blotting, and an electron microscopy analysis of L. casei expressing L1 showed that the protein was able to self-assemble into VLPs intracellularly. The presence of conformational epitopes on the L. casei-produced VLPs was confirmed by immunofluorescence using the anti-HPV-16 VLP conformational antibody H16.V5. Moreover, sera from mice that were subcutaneously immunized with L. casei expressing L1 reacted with Spodoptera frugiperda-produced HPV-16 L1 VLPs, as determined by an enzyme-linked immunosorbent assay. The production of L1 VLPs by Lactobacillus opens the possibility for development of new live mucosal prophylactic vaccines. PMID:16391114

  10. Administration of Lactobacillus casei and Bifidobacterium bifidum Ameliorated Hyperglycemia, Dyslipidemia, and Oxidative Stress in Diabetic Rats

    PubMed Central

    Sharma, Poonam; Bhardwaj, Priyanka; Singh, Rambir

    2016-01-01

    Background: The present work was planned to evaluate the antihyperglycemic, lipid-lowering, and antioxidant effect of Lactobacillus casei and Bifidobacterium bifidum in streptozotocin (STZ)-induced diabetic rats. Methods: Single daily dose of 1 × 107 cfu/ml of L. casei and B. bifidum alone and in combination of both was given to Wistar rats orally by gavaging for 28 days. Glucose tolerance test, fasting blood glucose (FBG), lipid profile, and glycosylated hemoglobin (HbA1c) were measured from blood. Glycogen from thigh muscles and liver and oxidative stress parameters from pancreas were analyzed. Results: Administration of L. casei and B. bifidum alone and in combination of both to diabetic rats decreased serum FBG (60.47%, 55.89%, and 56.49%, respectively), HbA1c (28.11%, 28.61%, and 28.28%), total cholesterol (171.69%, 136.47%, and 173.58%), triglycerides (9.935%, 8.58%, and 7.91%), low-density lipoproteins (53.27%, 53.35%, and 52.91%) and very low-density lipoproteins (10%, 8.58%, and 11.15%, respectively) and increased high-density lipoproteins (13.73%, 15.47%, and 15.47%), and insulin (19.50%, 25.80%, and 29.47%, respectively). The treatment also resulted in increase in muscle (171.69%, 136.47%, and 173.58%) and liver (25.82%, 6.63%, and 4.02%) glycogen level. The antioxidant indexes in pancreas of diabetic rats returned to normal level with reduction in lipid peroxidation (30.89%, 46.46%, and 65.36%) and elevation in reduced glutathione (104.5%, 161.34%, and 179.04%), superoxide dismutase (38.65%, 44.32%, and 53.35%), catalase (13.08%, 27%, and 31.52%), glutathione peroxidase (55.56%, 72.23%, and 97.23%), glutathione reductase (49.27%, 88.40%, and 110.86%), and glutathione-S-transferase (140%, 220%, and 246.6%, respectively) on treatment with L. casei, B. bifidum, and combination treatment. Conclusions: Administration of L. casei and B. bifidum alone and in combination of both ameliorated hyperglycemia, dyslipidemia, and oxidative stress in STZ

  11. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.

    PubMed

    O'Sullivan, Daniel J; McSweeney, Paul L H; Cotter, Paul D; Giblin, Linda; Sheehan, Jeremiah J

    2016-04-01

    Nonstarter lactic acid bacteria are commonly implicated in undesirable gas formation in several varieties, including Cheddar, Dutch-, and Swiss-type cheeses, primarily due to their ability to ferment a wide variety of substrates. This effect can be magnified due to factors that detrimentally affect the composition or activity of starter bacteria, resulting in the presence of greater than normal amounts of fermentable carbohydrates and citrate. The objective of this study was to determine the potential for a facultatively heterofermentative Lactobacillus (Lactobacillus casei DPC6987) isolated from a cheese plant environment to promote gas defects in the event of compromised starter activity. A Swiss-type cheese was manufactured, at pilot scale and in triplicate, containing a typical starter culture (Streptococcus thermophilus and Lactobacillus helveticus) together with propionic acid bacteria. Lactobacillus helveticus populations were omitted in certain vats to mimic starter failure. Lactobacillus casei DPC6987 was added to each experimental vat at 4 log cfu/g. Cheese compositional analysis and X-ray computed tomography revealed that the failure of starter bacteria, in this case L. helveticus, coupled with the presence of a faculatively heterofermentative Lactobacillus (L. casei) led to excessive eye formation during ripening. The availability of excess amounts of lactose, galactose, and citrate during the initial ripening stages likely provided the heterofermentative L. casei with sufficient substrates for gas formation. The accrual of these fermentable substrates was notable in cheeses lacking the L. helveticus starter population. The results of this study are commercially relevant, as they demonstrate the importance of viability of starter populations and the control of specific nonstarter lactic acid bacteria to ensure appropriate eye formation in Swiss-type cheese. PMID:26805985

  12. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread.

    PubMed

    García-Mantrana, Izaskun; Yebra, María J; Haros, Monika; Monedero, Vicente

    2016-01-01

    Phytases are enzymes capable of sequentially dephosphorylating phytic acid to products of lower chelating capacity and higher solubility, abolishing its inhibitory effect on intestinal mineral absorption. Genetic constructions were made for expressing two phytases from bifidobacteria in Lactobacillus casei under the control of a nisin-inducible promoter. L. casei was able of producing, exporting and anchoring to the cell wall the phytase of Bifidobacterium pseudocatenulatum. The phytase from Bifidobacterium longum spp. infantis was also produced, although at low levels. L. casei expressing any of these phytases completely degraded phytic acid (2mM) to lower myo-inositol phosphates when grown in MRS medium. Owing to the general absence of phytase activity in lactobacilli and to the high phytate content of whole grains, the constructed L. casei strains were applied as starter in a bread making process using whole-grain flour. L. casei developed in sourdoughs by fermenting the existing carbohydrates giving place to an acidification. In this food model system the contribution of L. casei strains expressing phytases to phytate hydrolysis was low, and the phytate degradation was mainly produced by activation of the cereal endogenous phytase as a consequence of the drop in pH. This work shows the capacity of lactobacilli to be modified in order to produce enzymes with relevance in food technology processes. The ability of these strains in reducing the phytate content in fermented food products must be evaluated in further models. PMID:26384212

  13. Multilocus Sequence Typing of Lactobacillus casei Reveals a Clonal Population Structure with Low Levels of Homologous Recombination▿ †

    PubMed Central

    Diancourt, Laure; Passet, Virginie; Chervaux, Christian; Garault, Peggy; Smokvina, Tamara; Brisse, Sylvain

    2007-01-01

    Robust genotyping methods for Lactobacillus casei are needed for strain tracking and collection management, as well as for population biology research. A collection of 52 strains initially labeled L. casei or Lactobacillus paracasei was first subjected to rplB gene sequencing together with reference strains of Lactobacillus zeae, Lactobacillus rhamnosus, and other species. Phylogenetic analysis showed that all 52 strains belonged to a single compact L. casei-L. paracasei sequence cluster, together with strain CIP107868 (= ATCC 334) but clearly distinct from L. rhamnosus and from a cluster with L. zeae and CIP103137T (= ATCC 393T). The strains were genotyped using amplified fragment length polymorphism, multilocus sequence typing based on internal portions of the seven housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA, and recG, and tandem repeat variation (multilocus variable-number tandem repeats analysis [MLVA] using nine loci). Very high concordance was found between the three methods. Although amounts of nucleotide variation were low for the seven genes (π ranging from 0.0038 to 0.0109), 3 to 12 alleles were distinguished, resulting in 31 sequence types. One sequence type (ST1) was frequent (17 strains), but most others were represented by a single strain. Attempts to subtype ST1 strains by MLVA, ribotyping, clustered regularly interspaced short palindromic repeat characterization, and single nucleotide repeat variation were unsuccessful. We found clear evidence for homologous recombination during the diversification of L. casei clones, including a putative intragenic import of DNA into one strain. Nucleotides were estimated to change four times more frequently by recombination than by mutation. However, statistical congruence between individual gene trees was retained, indicating that recombination is not frequent enough to disrupt the phylogenetic signal. The developed multilocus sequence typing scheme should be useful for future studies of L. casei

  14. Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination.

    PubMed

    Diancourt, Laure; Passet, Virginie; Chervaux, Christian; Garault, Peggy; Smokvina, Tamara; Brisse, Sylvain

    2007-10-01

    Robust genotyping methods for Lactobacillus casei are needed for strain tracking and collection management, as well as for population biology research. A collection of 52 strains initially labeled L. casei or Lactobacillus paracasei was first subjected to rplB gene sequencing together with reference strains of Lactobacillus zeae, Lactobacillus rhamnosus, and other species. Phylogenetic analysis showed that all 52 strains belonged to a single compact L. casei-L. paracasei sequence cluster, together with strain CIP107868 (= ATCC 334) but clearly distinct from L. rhamnosus and from a cluster with L. zeae and CIP103137(T) (= ATCC 393(T)). The strains were genotyped using amplified fragment length polymorphism, multilocus sequence typing based on internal portions of the seven housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA, and recG, and tandem repeat variation (multilocus variable-number tandem repeats analysis [MLVA] using nine loci). Very high concordance was found between the three methods. Although amounts of nucleotide variation were low for the seven genes (pi ranging from 0.0038 to 0.0109), 3 to 12 alleles were distinguished, resulting in 31 sequence types. One sequence type (ST1) was frequent (17 strains), but most others were represented by a single strain. Attempts to subtype ST1 strains by MLVA, ribotyping, clustered regularly interspaced short palindromic repeat characterization, and single nucleotide repeat variation were unsuccessful. We found clear evidence for homologous recombination during the diversification of L. casei clones, including a putative intragenic import of DNA into one strain. Nucleotides were estimated to change four times more frequently by recombination than by mutation. However, statistical congruence between individual gene trees was retained, indicating that recombination is not frequent enough to disrupt the phylogenetic signal. The developed multilocus sequence typing scheme should be useful for future studies of L. casei

  15. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei.

    PubMed

    Serata, Masaki; Iino, Tohru; Yasuda, Emi; Sako, Tomoyuki

    2012-04-01

    The Lactobacillus casei strain Shirota used in this study has in the genome four putative thioredoxin genes designated trxA1, trxA2, trxA3 and trxA4, and one putative thioredoxin reductase gene designated trxB. To elucidate the roles of the thioredoxins and the thioredoxin reductase against oxidative stress in L. casei, we constructed gene disruption mutants, in which each of the genes trxA1, trxA2 and trxB, or both trxA1 and trxA2 were disrupted, and we characterized their growth and response to oxidative stresses. In aerobic conditions, the trxA1 (MS108) and the trxA2 (MS109) mutants had moderate growth defects, and the trxA1 trxA2 double mutant (MS110) had a severe growth defect, which was characterized by elongation of doubling time and a lower final turbidity level. Furthermore, the trxB mutant (MS111), which is defective in thioredoxin reductase, lost the ability to grow under aerobic conditions, although it grew partially under anaerobic conditions. The growth of these mutants, however, could be substantially restored by the addition of dithiothreitol or reduced glutathione. In addition, MS110 and MS111 were more sensitive to hydrogen peroxide and disulfide stress than the wild-type. In particular, the stress sensitivity of MS111 was significantly increased. On the other hand, transcription of all these genes was only weakly affected by these oxidative stresses. Taken together, these results suggest that the thioredoxin-thioredoxin reductase system is the major thiol/disulfide redox system and is essential to allow the facultative anaerobe L. casei to grow under aerobic conditions. PMID:22301908

  16. Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production.

    PubMed

    Rico, Juan; Yebra, María Jesús; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente

    2008-06-01

    Lactobacillus casei is a lactic acid bacterium that produces L-lactate as the main product of sugar fermentation via L-lactate dehydrogenase (Ldh1) activity. In addition, small amounts of the D-lactate isomer are produced by the activity of a D-hydroxycaproate dehydrogenase (HicD). Ldh1 is the main L-lactate producing enzyme, but mutation of its gene does not eliminate L-lactate synthesis. A survey of the L. casei BL23 draft genome sequence revealed the presence of three additional genes encoding Ldh paralogs. In order to study the contribution of these genes to the global lactate production in this organism, individual, as well as double mutants (ldh1 ldh2, ldh1 ldh3, ldh1 ldh4 and ldh1 hicD) were constructed and lactic acid production was assessed in culture supernatants. ldh2, ldh3 and ldh4 genes play a minor role in lactate production, as their single mutation or a mutation in combination with an ldh1 deletion had a low impact on L-lactate synthesis. A Deltaldh1 mutant displayed an increased production of D-lactate, which was probably synthesized via the activity of HicD, as it was abolished in a Deltaldh1 hicD double mutant. Contrarily to HicD, no Ldh1, Ldh2, Ldh3 or Ldh4 activities could be detected by zymogram assays. In addition, these assays revealed the presence of extra bands exhibiting D-/L-lactate dehydrogenase activity, which could not be attributed to any of the described genes. These results suggest that L. casei BL23 possesses a complex enzymatic system able to reduce pyruvic to lactic acid. PMID:18231816

  17. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-01

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. PMID:21807435

  18. Assessment of in vitro removal of cholesterol oxidation products by Lactobacillus casei ATCC334.

    PubMed

    Machorro-Méndez, I A; Hernández-Mendoza, A; Cardenia, V; Rodriguez-Estrada, M T; Lercker, G; Spinelli, F; Cellini, A; García, H S

    2013-11-01

    Cholesterol oxidation products (COPs) are a group of compounds formed during processing and storage of foods from animal origin. After ingestion, COPs are absorbed in the intestine and can be distributed to serum and various tissues, potentially promoting a variety of toxic effects. Therefore, inhibition of their intestinal absorption may contribute to reduce the health risks associated with dietary intake of COPs. Some studies have shown that drugs and dietary compounds may inhibit the intestinal absorption of dietary COPs. However, proven cholesterol- and/or food toxins-binding lactic acid bacteria have not been previously evaluated as potential COPs removal agents. The aim of this study was to assess the ability of Lactobacillus casei ATCC334 to remove COPs in aqueous solution. Results showed the ability of both growing and resting cells to remove COPs (ca. 30-60%). All COPs-bacterium interactions were specific and partly reversible, being resting cells the most efficient for COPs removal in a ranking order of 7-KC > 7α-OH/7β-OH > triol > 5,6β-EP > 5,6α-EP > 25-OH. Binding to the cell wall and/or cell membrane incorporation appears to be the most likely mechanisms involved on COPs removal by L. casei ATCC 334. PMID:23848962

  19. The gal Genes for the Leloir Pathway of Lactobacillus casei 64H

    PubMed Central

    Bettenbrock, Katja; Alpert, Carl-Alfred

    1998-01-01

    The gal genes from the chromosome of Lactobacillus casei 64H were cloned by complementation of the galK2 mutation of Escherichia coli HB101. The pUC19 derivative pKBL1 in one complementation-positive clone contained a 5.8-kb DNA HindIII fragment. Detailed studies with other E. coli K-12 strains indicated that plasmid pKBL1 contains the genes coding for a galactokinase (GalK), a galactose 1-phosphate-uridyltransferase (GalT), and a UDP-galactose 4-epimerase (GalE). In vitro assays demonstrated that the three enzymatic activities are expressed from pKBL1. Sequence analysis revealed that pKBL1 contained two additional genes, one coding for a repressor protein of the LacI-GalR-family and the other coding for an aldose 1-epimerase (mutarotase). The gene order of the L. casei gal operon is galKETRM. Because parts of the gene for the mutarotase as well as the promoter region upstream of galK were not cloned on pKBL1, the regions flanking the HindIII fragment of pKBL1 were amplified by inverse PCR. Northern blot analysis showed that the gal genes constitute an operon that is transcribed from two promoters. The galKp promoter is inducible by galactose in the medium, while galEp constitutes a semiconstitutive promoter located in galK. PMID:9603808

  20. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene.

    PubMed

    Li, Nan; Wang, Yuanlong; Zhu, Ping; Liu, Zhenmin; Guo, Benheng; Ren, Jing

    2015-02-01

    Lactobacillus casei LC2W is an exopolysaccharide (EPS)-producing strain with probiotic effects. To investigate the regulation mechanism of EPS biosynthesis and to improve EPS production through cofactor engineering, a H₂O-forming NADH oxidase gene was cloned from Streptococcus mutans and overexpressed in L. casei LC2W under the control of constitutive promoter P₂₃. The recombinant strain LC-nox exhibited 0.854 U/mL of NADH oxidase activity, which was elevated by almost 20-fold in comparison with that of wild-type strain. As a result, overexpression of NADH oxidase resulted in a reduction in growth rate. In addition, lactate production was decreased by 22% in recombinant strain. It was proposed that more carbon source was saved and used for the biosynthesis of EPS, the production of which was reached at 219.4 mg/L, increased by 46% compared to that of wild-type strain. This work provided a novel and convenient genetic approach to manipulate metabolic flux and to increase EPS production. To the best of our knowledge, this is the first report which correlates cofactor engineering with EPS production. PMID:25644955

  1. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei

    PubMed Central

    Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J.

    2012-01-01

    UDP-N-acetylglucosamine (UDP-GlcNAc) is an important sugar nucleotide used as a precursor of cell wall components in bacteria, and as a substrate in the synthesis of oligosaccharides in eukaryotes. In bacteria UDP-GlcNAc is synthesized from the glycolytic intermediate D-fructose-6-phosphate (fructose-6P) by four successive reactions catalyzed by three enzymes: glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM) and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). We have previously reported a metabolic engineering strategy in Lactobacillus casei directed to increase the intracellular levels of UDP-GlcNAc by homologous overexpression of the genes glmS, glmM and glmU. One of the most remarkable features regarding the production of UDP-GlcNAc in L. casei was to find multiple regulation points on its biosynthetic pathway: (1) regulation by the NagB enzyme, (2) glmS RNA specific degradation through the possible participation of a glmS riboswitch mechanism, (3) regulation of the GlmU activity probably by end product inhibition and (4) transcription of glmU. PMID:22825354

  2. Distinct adhesion of probiotic strain Lactobacillus casei ATCC 393 to rat intestinal mucosa.

    PubMed

    Saxami, Georgia; Ypsilantis, Petros; Sidira, Marianthi; Simopoulos, Constantinos; Kourkoutas, Yiannis; Galanis, Alex

    2012-08-01

    Adhesion to the intestine represents a critical parameter for probiotic action. In this study, the adhesion ability of Lactobacillus casei ATCC 393 to the gastrointestinal tract of Wistar rats was examined after single and daily administration of fermented milk containing either free or immobilized cells on apple pieces. The adhesion of the probiotic cells at the large intestine (cecum and colon) was recorded at levels ≥6 logCFU/g (suggested minimum levels for conferring a probiotic effect) following daily administration for 7 days by combining microbiological and strain-specific multiplex PCR analysis. Single dose administration resulted in slightly reduced counts (5 logCFU/g), while they were lower at the small intestine (duodenum, jejunum, ileum) (≤3 logCFU/g), indicating that adhesion was a targeted process. Of note, the levels of L. casei ATCC 393 were enhanced in the cecal and colon fluids both at single and daily administration of immobilized cells (6 and 7 logCFU/g, respectively). The adhesion of the GI tract was transient and thus daily consumption of probiotic products containing the specific strain is suggested as an important prerequisite for retaining its levels at an effective concentration. PMID:22554894

  3. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Rubio-Del-Campo, Antonio; Yebra, María J

    2012-01-01

    UDP-N-acetylglucosamine (UDP-GlcNAc) is an important sugar nucleotide used as a precursor of cell wall components in bacteria, and as a substrate in the synthesis of oligosaccharides in eukaryotes. In bacteria UDP-GlcNAc is synthesized from the glycolytic intermediate D-fructose-6-phosphate (fructose-6P) by four successive reactions catalyzed by three enzymes: glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM) and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). We have previously reported a metabolic engineering strategy in Lactobacillus casei directed to increase the intracellular levels of UDP-GlcNAc by homologous overexpression of the genes glmS, glmM and glmU. One of the most remarkable features regarding the production of UDP-GlcNAc in L. casei was to find multiple regulation points on its biosynthetic pathway: (1) regulation by the NagB enzyme, (2) glmS RNA specific degradation through the possible participation of a glmS riboswitch mechanism, (3) regulation of the GlmU activity probably by end product inhibition and (4) transcription of glmU. PMID:22825354

  4. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress.

    PubMed

    Wu, Rina; Zhang, Wenyi; Sun, Tiansong; Wu, Junrui; Yue, Xiqing; Meng, He; Zhang, Heping

    2011-06-30

    Tolerance to acid is an important feature for probiotic bacteria during transition through the gastrointestinal tract. Proteomics analysis of a new probiotic bacterium, Lactobacillus casei Zhang, was performed upon 30-min exposure to low acid stress (pH 2.5 vs. pH 6.4) using two-dimensional electrophoresis. Out of 33 protein spots that showed changes of expression between the two pHs, 22 showed 1.5-fold higher expression at pH 2.5 than at pH 6.4, whereas five spots had expression decreased by 1.5-fold at pH 2.5. There were also six protein spots that were exclusively present on different pH maps. Further analysis showed that eight of the enhanced proteins, NagA, NagB, PGM, GlmM, LacC, TDP, GALM and PtsI, were involved in carbohydrate catabolism. Moreover, quantitative RT-PCR showed that the mRNA expression levels of dnaK, nagB, galm, estC, tuf and luxS were consistent with changes in protein expression. We postulate that there might be some relationship between differentially expressed proteins and acid tolerance in L. casei Zhang. PMID:21561676

  5. Shotgun phage display of Lactobacillus casei BL23 against collagen and fibronectin.

    PubMed

    Munoz-Provencio, Diego; Monedero, Vicente

    2011-02-01

    Lactobacilli are normal constituents of the intestinal microbiota, and some strains show the capacity to bind to extracellular matrix proteins and components of the mucosal layer, which represents an adaptation to persist in this niche. A shotgun phage-display library of Lactobacillus casei BL23 was constructed and screened for peptides able to bind to fibronectin and collagen. Clones showing binding to these proteins were isolated, which encoded overlapping fragments of a putative transcriptional regulator (LCABL_29260), a hypothetical protein exclusively found in the L. casei/rhamnosus group (LCABL_01820), and a putative phage-related endolysin (LCABL_13470). The construction of different glutathione S-transferase (GST) fusions confirmed the binding activity and demonstrated that the three identified proteins could interact with fibronectin, fibrinogen, and collagen. The results illustrate the utility of phage display for the isolation of putative adhesins in lactobacilli. However, it remains to be determined whether the primary function of these proteins actually is adhesion to mucosal surfaces. PMID:21364304

  6. Epithelial Cell Proliferation Arrest Induced by Lactate and Acetate from Lactobacillus casei and Bifidobacterium breve

    PubMed Central

    Regnault, Béatrice; Mulet, Céline; Hara, Taeko; Sansonetti, Philippe J.

    2013-01-01

    In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA) were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut. PMID:23646174

  7. Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.

    PubMed

    Matsuki, Takahiro; Pédron, Thierry; Regnault, Béatrice; Mulet, Céline; Hara, Taeko; Sansonetti, Philippe J

    2013-01-01

    In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA) were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut. PMID:23646174

  8. The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei.

    PubMed

    Neuhaus, F C; Heaton, M P; Debabov, D V; Zhang, Q

    1996-01-01

    The D-alanine incorporation system allows Lactobacillus casei to modulate the chemical properties of lipoteichoic acid (LTA) and hence control its proposed functions, i.e., regulation of autolysin action, metal ion binding, and the electromechanical properties of the cell wall. The system requires the D-alanine-D-alanyl carrier protein ligase (Dcl) and the D-alanyl carrier protein (Dcp). Our results indicate that the genes for these proteins are encoded in the dlt operon and that this operon contains at least 2 other genes, dltB and dltD. The aim of this paper is to describe the genetic organization of the operon, the role of the D-alanyl carrier protein, and the function of the putative protein encoded by dltB in the intramembranal translocation of the activated D-alanine. PMID:9158726

  9. Identification of Surface Proteins from Lactobacillus casei BL23 Able to Bind Fibronectin and Collagen.

    PubMed

    Muñoz-Provencio, Diego; Pérez-Martínez, Gaspar; Monedero, Vicente

    2011-03-01

    Strains of lactobacilli show the capacity to attach to extracellular matrix proteins. Cell-wall fractions of Lactobacillus casei BL23 enriched in fibronectin, and collagen-binding proteins were isolated. Mass spectrometry analysis of their protein content revealed the presence of stress-related proteins (GroEL, ClpL), translational elongation factors (EF-Tu, EF-G), oligopeptide solute-binding proteins, and the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The latter two enzymes were expressed in Escherichia coli and purified as glutathione-S-transferase (GST) fusion proteins, and their in vitro binding activity to fibronectin and collagen was confirmed. These results reinforce the idea that lactobacilli display on their surfaces a variety of moonlighting proteins that can be important in their adaptation to survive at intestinal mucosal sites and in the interaction with host cells. PMID:26781495

  10. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection.

    PubMed Central

    Hudault, S; Liévin, V; Bernet-Camard, M F; Servin, A L

    1997-01-01

    The aim of this study was to compare the antagonistic properties of Lactobacillus casei GG exerted in vitro against Salmonella typhimurium C5 in a cellular model, cultured enterocyte-like Caco-2 cells, to those exerted in vivo in an animal model, C3H/He/Oujco mice. Our results show that a 1-h contact between the invading strain C5 and either the culture or the supernatant of L. casei GG impeded the invasion by the Salmonella strain in Caco-2 cells, without modifying the viability of the strain. After neutralization at pH 7, no inhibition of the invasion by C5 was observed. The antagonistic activity of L. casei GG was examined in C3H/He/Oujco mice orally infected with C5 as follows: (i) L. casei GG was given daily to conventional animals as a probiotic, and (ii) it was given once to germ-free animals in order to study the effect of the population of L. casei GG established in the different segments of the gut. In vivo experiments show that after a single challenge with C5, this strain survives and persists at a higher level in the feces of the untreated conventional mice than in those of the treated group. In L. casei GG germ-free mice, establishment of L. casei GG in the gut significantly delayed the occurrence of 100% mortality of the animals (15 days after C5 challenge versus 9 days in germ-free mice [P < 0.01]). Cecal colonization level and translocation rate of C5 to the mesenteric lymph nodes, spleen, and liver were significantly reduced during the first 2 days post-C5 challenge, although the L. casei GG population level in the gut dramatically decreased in these animals. PMID:9023930

  11. Genome Sequence of the Probiotic Strain Lactobacillus rhamnosus (Formerly Lactobacillus casei) LOCK908

    PubMed Central

    Koryszewska-Bagińska, Anna; Bardowski, Jacek

    2014-01-01

    Lactobacillus rhamnosus LOCK908, a patented probiotic strain (Polish patent no. 209987), was isolated from the feces of a healthy 6-year-old girl. Here, we present the complete genome sequence of LOCK908 and identify genes likely to be involved in the biosynthesis of exopolysaccharides (EPSs). PMID:24558250

  12. Expression of Lactobacillus reuteri Pg4 collagen-binding protein gene in Lactobacillus casei ATCC 393 increases its adhesion ability to Caco-2 cells.

    PubMed

    Hsueh, Hsiang-Yun; Yueh, Pei-Ying; Yu, Bi; Zhao, Xin; Liu, Je-Ruei

    2010-12-01

    The collagen-binding protein gene cnb was cloned from the probiotic Lactobacillus reuteri strain Pg4. The DNA sequence of the cnb gene (792 bp) has an open reading frame encoding 263 amino acids with a calculated molecular weight of 28.5 kDa. The cnb gene was constructed so as to constitutively express under the control of the Lactococcus lactis lacA promoter and was transformed into Lactobacillus casei ATCC 393, a strain isolated from dairy products with poor ability to adhere to intestinal epithelial cells. Confocal immunofluorescence microscopic and flow cytometric analysis of the transformed strain Lb. casei pNZ-cnb indicated that Cnb was displayed on its cell surface. Lb. casei pNZ-cnb not only showed a higher ability to adhere to Caco-2 cells but also exhibited a higher competition ability against Escherichia coli O157:H7 and Listeria monocytogenes adhesion to Caco-2 cells than Lb. casei ATCC 393. PMID:21070005

  13. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase.

    PubMed

    Alvarez-Sieiro, Patricia; Martin, Maria Cruz; Redruello, Begoña; Del Rio, Beatriz; Ladero, Victor; Palanski, Brad A; Khosla, Chaitan; Fernandez, Maria; Alvarez, Miguel A

    2014-08-01

    Prolyl endopeptidases (PEP) (EC 3.4.21.26), a family of serine proteases with the ability to hydrolyze the peptide bond on the carboxyl side of an internal proline residue, are able to degrade immunotoxic peptides responsible for celiac disease (CD), such as a 33-residue gluten peptide (33-mer). Oral administration of PEP has been suggested as a potential therapeutic approach for CD, although delivery of the enzyme to the small intestine requires intrinsic gastric stability or advanced formulation technologies. We have engineered two food-grade Lactobacillus casei strains to deliver PEP in an in vitro model of small intestine environment. One strain secretes PEP into the extracellular medium, whereas the other retains PEP in the intracellular environment. The strain that secretes PEP into the extracellular medium is the most effective to degrade the 33-mer and is resistant to simulated gastrointestinal stress. Our results suggest that in the future, after more studies and clinical trials, an engineered food-grade Lactobacillus strain may be useful as a vector for in situ production of PEP in the upper small intestine of CD patients. PMID:24752841

  14. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase

    PubMed Central

    Alvarez-Sieiro, Patricia; Martin, Maria Cruz; Redruello, Begoña; del Rio, Beatriz; Ladero, Victor; Palanski, Brad A.; Khosla, Chaitan; Fernandez, Maria; Alvarez, Miguel A.

    2015-01-01

    Prolyl endopeptidases (PEP), a family of serine proteases with the ability to hydrolyze the peptide bond on the carboxyl side of an internal proline residue, are able to degrade immunotoxic peptides responsible for celiac disease (CD), such as a 33-residue gluten peptide (33-mer). Oral administration of PEP has been suggested as a potential therapeutic approach for CD, although delivery of the enzyme to the small intestine requires intrinsic gastric stability or advanced formulation technologies. We have engineered two food-grade Lactobacillus casei strains to deliver PEP in an in vitro model of small intestine environment. One strain secretes PEP into the extracellular medium, whereas the other retains PEP in the intracellular environment. The strain that secretes PEP into the extracellular medium is the most effective to degrade the 33-mer and is resistant to simulated gastrointestinal stress. Our results suggest that in a future, after more studies and clinical trials, an engineered food-grade Lactobacillus strain may be useful as a vector for in situ production of PEP in the upper small intestine of CD patients. PMID:24752841

  15. 454 pyrosequencing reveals changes in the faecal microbiota of adults consuming Lactobacillus casei Zhang.

    PubMed

    Zhang, Jiachao; Wang, Lifeng; Guo, Zhuang; Sun, Zhihong; Gesudu, Qimu; Kwok, Laiyu; Menghebilige; Zhang, Heping

    2014-06-01

    Probiotics are believed to help to maintain a healthy balance of the human gut microbiota. Lactobacillus casei Zhang (LcZ) is a novel potential probiotic isolated from the naturally fermented food koumiss. To better understand the impact of this potential probiotic on human intestinal microbiota, 24 subjects were randomly recruited for a longitudinal study: the subjects were required to consume LcZ for 28 days, and faecal samples were collected prior to, during and after the LcZ consumption phase. Alterations in the gut microbiota were monitored using 454 pyrosequencing and quantitative polymerase chain reaction(q-PCR) technologies. We found that the consumption of LcZ significantly altered the composition of intestinal microbiota (P < 0.001) and the gut microbiota diversity. Further analysis at the genus level revealed a positive correlation between LcZ and Prevotella, Lactobacillus, Faecalibacterium, Propionibacterium, Bifidobacterium and an unidentified genus from Bacteroidaceae and Lachnospiraceae and a negative correlation between LcZ administration and the presence of Clostridium, Phascolarctobacterium, Serratia, Enterococcus, Shigella and Shewanella. Furthermore, these changes were confirmed by q-PCR data. PMID:24702028

  16. Effect of Lactobacillus casei on the Production of Pro-Inflammatory Markers in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Zarfeshani, A; Khaza'ai, H; Mohd Ali, R; Hambali, Z; Wahle, K W J; Mutalib, M S A

    2011-12-01

    It has been demonstrated that probiotic supplementation has positive effects in several murine models of disease through influences on host immune responses. This study examined the effect of Lactobacillus casei strain Shirota (L. casei Shirota) on the blood glucose, C-reactive protein (CRP), Interleukin-6 (IL-6), Interleukin-4 (IL-4), and body weight among STZ-induced diabetic rats. Diabetes mellitus was induced by streptozotocin (STZ, 50 mg/kg BW) in male Sprague-Dawley rats. Streptozotocin caused a significant increase in the blood glucose levels, CRP, and IL-6. L. casei Shirota supplementation lowered the CRP and IL-6 levels but had no significant effect on the blood glucose levels, body weight, or IL-4. Inflammation was determined histologically. The presence of the innate immune cells was not detectable in the liver of L. casei Shirota-treated hyperglycemic rats. The probiotic L. casei Shirota significantly lowered blood levels of pro-inflammatory cytokines (IL-6, CRP) and neutrophils in diabetic rats, showing a lower risk of diabetes mellitus and its complications. PMID:26781677

  17. Immunogenicity of orally administrated recombinant Lactobacillus casei Zhang expressing Cryptosporidium parvum surface adhesion protein P23 in mice.

    PubMed

    Geriletu; Xu, Rihua; Jia, Honglin; Terkawi, Mohamad Alaa; Xuan, Xuenan; Zhang, Heping

    2011-05-01

    Cryptosporidium parvum, an intestinal apicomplexan parasite, is a significant cause of diarrheal diseases in both humans and animals. What is more, there is no promising strategy for controlling cryptosporidiosis. In this study, the P23 immunodominant surface protein of C. parvum sporozoites was stably expressed in the Lactobacillus casei Zhang strain and its immunogenicity was evaluated in a mouse model. The molecular weight (23 kDa) and immunogenicity of p23 gene expressed by L. casei Zhang were similar to that of the native P23 protein. Oral immunization with control L. casei Zhang and recombinant L. casei Zhang-p23 activated the mucosal immune system to elicit serum immunoglobulin G (IgG) and mucosal IgA in mice. Furthermore, the expression of cytokines such as IL-4, IL-6, and IFN-γ in splenocytes of mice was detected by real-time PCR after oral immunization. P23-specific immunocyte activation was also verified. These findings indicate that the live L. casei Zhang vector may be a new tool for the production of mucosal vaccines against cryptosporidiosis in animals. PMID:21336991

  18. Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Yebra, María J

    2011-07-20

    UDP-sugars are widely used as substrates in the synthesis of oligosaccharides catalyzed by glycosyltransferases. In the present work a metabolic engineering strategy aimed to direct the carbon flux towards UDP-glucose and UDP-galactose biosynthesis was successfully applied in Lactobacillus casei. The galU gene coding for UDP-glucose pyrophosphorylase (GalU) enzyme in L. casei BL23 was cloned under control of the inducible nisA promoter and it was shown to be functional by homologous overexpression. Notably, about an 80-fold increase in GalU activity resulted in approximately a 9-fold increase of UDP-glucose and a 4-fold increase of UDP-galactose. This suggested that the endogenous UDP-galactose 4-epimerase (GalE) activity, which inter-converts both UDP-sugars, is not sufficient to maintain the UDP-glucose/UDP-galactose ratio. The L. casei galE gene coding for GalE was cloned downstream of galU and the resulting plasmid was transformed in L. casei. The new recombinant strain showed about a 4-fold increase of GalE activity, however this increment did not affect that ratio, suggesting that GalE has higher affinity for UDP-galactose than for UDP-glucose. The L. casei strains constructed here that accumulate high intracellular levels of UDP-sugars would be adequate hosts for the production of oligosaccharides. PMID:21663774

  19. Cloning and expression of a codon-optimized gene encoding the influenza A virus nucleocapsid protein in Lactobacillus casei.

    PubMed

    Suebwongsa, Namfon; Panya, Marutpong; Namwat, Wises; Sookprasert, Saovaluk; Redruello, Begoña; Mayo, Baltasar; Alvarez, Miguel A; Lulitanond, Viraphong

    2013-06-01

    Lactic acid bacteria (LAB) species are envisioned as promising vehicles for the mucosal delivery of therapeutic and prophylactic molecules, including the development of oral vaccines. In this study, we report on the expression of a synthetic nucleocapsid (NP) gene of influenza A virus in Lactobacillus casei. The NP gene was re-designed based on the tRNA pool and the codon usage preference of L. casei BL23. The codon-optimized NP gene was then cloned and expressed in L. casei RCEID02 under the control of a constitutive promoter, that of the lactate dehydrogenase (ldh) gene. The synthetic NP gene was further expressed in L. casei EM116 under the control of an inducible promoter, that of the structural gene of nisin (nisA) from Lactococcus lactis. Based on Western blot analysis, the specific protein band of NP, with a molecular mass of 56.0 kDa, was clearly detected in both expression systems. Thus, our study demonstrates the success of expressing a codon-optimized influenza A viral gene in L. casei. The suitability of the recombinant LAB strains for immunization purposes is currently under evaluation. PMID:24400527

  20. Comparative evaluation of yogurt and low-fat cheddar cheese as delivery media for probiotic Lactobacillus casei.

    PubMed

    Sharp, M D; McMahon, D J; Broadbent, J R

    2008-09-01

    This study used Lactobacillus casei 334e, an erythromycin-resistant derivative of ATCC 334, as a model to evaluate viability and acid resistance of probiotic L. casei in low-fat Cheddar cheese and yogurt. Cheese and yogurt were made by standard methods and the probiotic L. casei adjunct was added at approximately 10(7) CFU/g with the starter cultures. Low-fat cheese and yogurt samples were stored at 8 and 2 degrees C, respectively, and numbers of the L. casei adjunct were periodically determined by plating on MRS agar that contained 5 microg/mL of erythromycin. L. casei 334e counts in cheese and yogurt remained at 10(7) CFU/g over 3 mo and 3 wk, respectively, indicating good survival in both products. Acid challenge studies in 8.7 mM phosphoric acid (pH 2) at 37 degrees C showed numbers of L. casei 334e in yogurt dropped from 10(7) CFU/g to less than 10(1) CFU/g after 30 min, while counts in cheese samples dropped from 10(7) CFU/g to about 10(5) after 30 min, and remained near 10(4) CFU/g after 120 min. As a whole, these data showed that low-fat Cheddar cheese is a viable delivery food for probiotic L. casei because it allowed for good survival during storage and helped protect cells against the very low pH that will be encountered during stomach transit. PMID:18803722

  1. Development of an Efficient In Vivo System (Pjunc-TpaseIS1223) for Random Transposon Mutagenesis of Lactobacillus casei

    PubMed Central

    Licandro-Seraut, Hélène; Brinster, Sophie; van de Guchte, Maarten; Scornec, Hélène; Maguin, Emmanuelle; Sansonetti, Philippe

    2012-01-01

    The random transposon mutagenesis system Pjunc-TpaseIS1223 is composed of plasmids pVI129, expressing IS1223 transposase, and pVI110, a suicide transposon plasmid carrying the Pjunc sequence, the substrate of the IS1223 transposase. This system is particularly efficient in Lactobacillus casei, as more than 10,000 stable, random mutants were routinely obtained via electroporation. PMID:22610425

  2. Utilization of Natural Fucosylated Oligosaccharides by Three Novel α-l-Fucosidases from a Probiotic Lactobacillus casei Strain ▿

    PubMed Central

    Rodríguez-Díaz, Jesús; Monedero, Vicente; Yebra, María J.

    2011-01-01

    Three putative α-l-fucosidases encoded in the Lactobacillus casei BL23 genome were cloned and purified. The proteins displayed different abilities to hydrolyze natural fucosyloligosaccharides like 2′-fucosyllactose, H antigen disaccharide, H antigen type II trisaccharide, and 3′-, 4′-, and 6′-fucosyl-GlcNAc. This indicated a possible role in the utilization of oligosaccharides present in human milk and intestinal mucosa. PMID:21097595

  3. Utilization of natural fucosylated oligosaccharides by three novel alpha-L-fucosidases from a probiotic Lactobacillus casei strain.

    PubMed

    Rodríguez-Díaz, Jesús; Monedero, Vicente; Yebra, María J

    2011-01-01

    Three putative α-L-fucosidases encoded in the Lactobacillus casei BL23 genome were cloned and purified. The proteins displayed different abilities to hydrolyze natural fucosyloligosaccharides like 2'-fucosyllactose, H antigen disaccharide, H antigen type II trisaccharide, and 3'-, 4'-, and 6'-fucosyl-GlcNAc. This indicated a possible role in the utilization of oligosaccharides present in human milk and intestinal mucosa. PMID:21097595

  4. Influence of two-component signal transduction systems of Lactobacillus casei BL23 on tolerance to stress conditions.

    PubMed

    Alcántara, Cristina; Revilla-Guarinos, Ainhoa; Zúñiga, Manuel

    2011-02-01

    Lactobacillus casei BL23 carries 17 two-component signal transduction systems. Insertional mutations were introduced into each gene encoding the cognate response regulators, and their effects on growth under different conditions were assayed. Inactivation of systems TC01, TC06, and TC12 (LCABL_02080-LCABL_02090, LCABL_12050-LCABL_12060, and LCABL_19600-LCABL_19610, respectively) led to major growth defects under the conditions assayed. PMID:21183633

  5. Theoretical insight into the heat shock response (HSR) regulation in Lactobacillus casei and L. rhamnosus.

    PubMed

    Rossi, Franca; Zotta, Teresa; Iacumin, Lucilla; Reale, Anna

    2016-08-01

    The understanding of the heat shock response (HSR) in lactobacilli from a regulatory point of view is still limited, though an increased knowledge on the regulation of this central stress response can lead to improvements in the exploitation of these health promoting microorganisms. Therefore the aim of this in silico study, that is the first to be carried out for members of the Lactobacillus genus, was predicting how HSR influences cell functions in the food associated and probiotic species Lactobacillus casei and Lactobacillus rhamnosus. To this purpose, thirteen whole genomes of these bacteria were analyzed to identify which genes involved in HSR are present. It was found that all the genomes share 25 HSR related genes, including those encoding protein repair systems, HSR repressors, HrcA and CtsR, and the positive regulators of HSR, alternative σ factors σ(32) and σ(24). Two genes encoding a σ(70)/σ(24) factor and a Lon protease, respectively, were found only in some genomes. The localization of the HSR regulators binding sites in genomes was analyzed in order to identify regulatory relationships driving HSR in these lactobacilli. It was observed that the binding site for the HrcA repressor is found upstream of the hrcA-grpE-dnaK-dnaJ and groES-groEL gene clusters, of two hsp genes, clpE, clpL and clpP, while the CtsR repressor binding site precedes the ctsR-clpC operon, clpB, clpE and clpP. Therefore the ClpE-ClpP protease complex is dually regulated by HrcA and CtsR. Consensus sequences for the promoters recognized by the HSR alternative σ factors were defined for L. casei and L. rhamnosus and were used in whole genome searches to identify the genes that are possibly regulated by these transcription factors and whose expression level is expected to increases in HSR. The results were validated by applying the same procedure of promoter consensus generation and whole genome search to an additional 11 species representative of the main Lactobacillus

  6. Validation of reference genes for real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang.

    PubMed

    Zhao, Wenjing; Li, Yan; Gao, Pengfei; Sun, Zhihong; Sun, Tiansong; Zhang, Heping

    2011-09-01

    Lactobacillus casei Zhang, a potential probiotic strain isolated from homemade koumiss in Inner Mongolia of China, has been sequenced and deposited in GenBank. Real-time quantitative PCR is one of the most widely used methods to study related gene expression levels of Lactobacillus casei Zhang. For accurate and reliable gene expression analysis, normalization of gene expression data using one or more appropriate reference genes is essential. We used three statistical methods (geNorm, NormFinder, and BestKeeper) to evaluate the expression levels of five candidate reference genes (GAPD, gyrB, LDH, 16s rRNA, and recA) under different culture conditions and different growth phases to find a suitable housekeeping gene which can be used as internal standard. The results showed that the best reference gene was GAPD, and a set of two genes, GAPD and gyrB (which were the most stable reference genes), is recommended for normalization of real-time quantitative PCR experiments under all the different experimental conditions tested. The systematic validation of candidate reference genes is important for obtaining reliable analysis results of real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang. PMID:21104423

  7. Lactobacillus casei secreting alpha-MSH induces the therapeutic effect on DSS-induced acute colitis in Balb/c Mice.

    PubMed

    Yoon, Sun-Woo; Lee, Chul-Ho; Kim, Jeong-Yoon; Kim, Jie-Youn; Sung, Moon-Hee; Poo, Haryoung

    2008-12-01

    The neuropeptide alpha-melanocyte-stimulating hormone (alpha- MSH) has anti-inflammatory property by downregulating the expressions of proinflammatory cytokines. Because alpha-MSH elicits the anti-inflammatory effect in various inflammatory disease models, we examined the therapeutic effect of oral administration of recombinant Lactobacillus casei, which secretes alpha-MSH (L. casei-alpha-MSH), on dextran sulfate sodium (DSS)-induced colitis in Balb/c mice. Thus, we constructed the alpha-MSH-secreting Lactobacillus casei by the basic plasmid, pLUAT-ss, which was composed of a PldhUTLS promoter and alpha-amylase signal sequence from Streptococcus bovis strain. Acute colitis was induced by oral administration of 5% DSS in drinking water for 7 days. To investigate the effect of L. casei-alpha-MSH on the colitis, L. casei or L. casei-alpha-MSH was orally administered for 7 days and their effects on body weight, mortality rate, cytokine production, and tissue myeloperoxidase (MPO) activity were observed. Administration of L. casei-alpha-MSH reduced the symptom of acute colitis as assessed by body weight loss (DSS alone: 14.45+/-0. 2 g; L. casei-alpha- MSH: 18.2+/-0.12 g), colitis score (DSS alone: 3.6+/-0.4; L. casei-alpha-MSH: 1.4+/-0.6), MPO activity (DSS alone: 42.7+/-4.5 U/g; L. casei-alpha-MSH: 10.25+/-0.5 U/g), survival rate, and histological damage compared with the DSS alone mice. L. casei-alpha-MSH-administered entire colon showed reduced in vitro production of proinflammatory cytokines and NF-kappaB activation. The alpha-MSH-secreting recombinant L. casei showed significant anti-inflammatory effects in the murine model of acute colitis and suggests a potential therapeutic role for this agent in clinical inflammatory bowel diseases. PMID:19131702

  8. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    SciTech Connect

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

  9. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress.

    PubMed

    Broadbent, Jeff R; Larsen, Rebecca L; Deibel, Virginia; Steele, James L

    2010-05-01

    This study investigated features of the acid tolerance response (ATR) in Lactobacillus casei ATCC 334. To optimize ATR induction, cells were acid adapted for 10 or 20 min at different pH values (range, 3.0 to 5.0) and then acid challenged at pH 2.0. Adaptation over a broad range of pHs improved acid tolerance, but the highest survival was noted in cells acid adapted for 10 or 20 min at pH 4.5. Analysis of cytoplasmic membrane fatty acids (CMFAs) in acid-adapted cells showed that they had significantly (P < 0.05) higher total percentages of saturated and cyclopropane fatty acids than did control cells. Specifically, large increases in the percentages of C(14:0), C(16:1n(9)), C(16:0), and C(19:0(11c)) were noted in the CMFAs of acid-adapted and acid-adapted, acid-challenged cells, while C(18:1n(9)) and C(18:1n(11)) showed the greatest decrease. Comparison of the transcriptome from control cells (grown at pH 6.0) against that from cells acid adapted for 20 min at pH 4.5 indicated that acid adaption invoked a stringent-type response that was accompanied by other functions which likely helped these cells resist acid damage, including malolactic fermentation and intracellular accumulation of His. Validation of microarray data was provided by experiments that showed that L. casei survival at pH 2.5 was improved at least 100-fold by chemical induction of the stringent response or by the addition of 30 mM malate or 30 mM histidine to the acid challenge medium. To our knowledge, this is the first report that intracellular histidine accumulation may be involved in bacterial acid resistance. PMID:20207759

  10. Characterization of nitrite degradation by Lactobacillus casei subsp. rhamnosus LCR 6013.

    PubMed

    Liu, Dong-mei; Wang, Pan; Zhang, Xin-yue; Xu, Xi-lin; Wu, Hui; Li, Li

    2014-01-01

    Nitrites are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. The nitrite degradation capacity of Lactobacillus casei subsp. rhamnosus LCR 6013 was investigated in pickle fermentation. After LCR 6013 fermentation for 120 h at 37°C, the nitrite concentration in the fermentation system was significantly lower than that in the control sample without the LCR 6013 strain. The effects of NaCl and Vc on nitrite degradation by LCR 6013 in the De Man, Rogosa and Sharpe (MRS) medium were also investigated. The highest nitrite degradations, 9.29 mg/L and 9.89 mg/L, were observed when NaCl and Vc concentrations were 0.75% and 0.02%, respectively in the MRS medium, which was significantly higher than the control group (p ≤ 0.01). Electron capture/gas chromatography and indophenol blue staining were used to study the nitrite degradation pathway of LCR 6013. The nitrite degradation products contained N2O, but no NH4(+). The LCR 6013 strain completely degraded all NaNO2 (50.00 mg/L) after 16 h of fermentation. The enzyme activity of NiR in the periplasmic space was 2.5 times of that in the cytoplasm. Our results demonstrated that L. casei subsp. rhamnosus LCR 6013 can effectively degrade nitrites in both the pickle fermentation system and in MRS medium by NiR. Nitrites are degraded by the LCR 6013 strain, likely via the nitrate respiration pathway (NO2(-)>NO->N2O->N2), rather than the aammonium formation pathway (dissimilatory nitrate reduction to ammonium, DNRA), because the degradation products contain N2O, but not NH4(+). PMID:24755671

  11. Efficient production and secretion of bovine β-lactoglobulin by Lactobacillus casei

    PubMed Central

    Hazebrouck, Stéphane; Pothelune, Laetitia; Azevedo, Vasco; Corthier, Gérard; Wal, Jean-Michel; Langella, Philippe

    2007-01-01

    Background Lactic acid bacteria (LAB) are attractive tools to deliver therapeutic molecules at the mucosal level. The model LAB Lactococcus lactis has been intensively used to produce and deliver such heterologous proteins. However, compared to recombinant lactococci, lactobacilli offer some advantages such as better survival in the digestive tract and immunomodulatory properties. Here, we compared different strategies to optimize the production of bovine β-lactoglobulin (BLG), a major cow's milk allergen, in the probiotic strain Lactobacillus casei BL23. Results Using a nisin-inducible plasmid system, we first showed that L. casei BL23 strain could efficiently secrete a reporter protein, the staphylococcal nuclease (Nuc), with the lactococcal signal peptide SPUsp45 fused to its N-terminus. The fusion of SPUsp45 failed to drive BLG secretion but led to a 10-fold increase of intracellular BLG production. Secretion was significantly improved when the synthetic propeptide LEISSTCDA (hereafter called LEISS) was added to the N-terminus of the mature moiety of BLG. Secretion rate of LEISS-BLG was 6-fold higher than that of BLG alone while intracellular production reached then about 1 mg/L of culture. The highest yield of secretion was obtained by using Nuc as carrier protein. Insertion of Nuc between LEISS and BLG resulted in a 20-fold increase in BLG secretion, up to 27 μg/L of culture. Furthermore, the lactococcal nisRK regulatory genes were integrated into the BL23 chromosome. The nisRK insertion allowed a decrease of BLG synthesis in uninduced cultures while BLG production increased by 50% after nisin induction. Moreover, modification of the induction protocol led to increase the proportion of soluble BLG to around 74% of the total BLG production. Conclusion BLG production and secretion in L. casei were significantly improved by fusions to a propeptide enhancer and a carrier protein. The resulting recombinant strains will be further tested for their ability to

  12. The Impact of Lactobacillus casei on the Composition of the Cecal Microbiota and Innate Immune System Is Strain Specific

    PubMed Central

    Aktas, Busra; De Wolfe, Travis J.; Safdar, Nasia; Darien, Benjamin J.; Steele, James L.

    2016-01-01

    The probiotic function to impact human health is thought to be related to their ability to alter the composition of the gut microbiota and modulate the human innate immune system. The ability to function as a probiotic is believed to be strain specific. Strains of Lactobacillus casei are commonly utilized as probiotics that when consumed alter the composition of the gut microbiota and modulate the host immune response. L. casei strains are known to differ significantly in gene content. The objective of this study was to investigate seven different L. casei strains for their ability to alter the murine gut microbiota and modulate the murine immune system. C57BL/6 mice were fed L. casei strains at a dose of 108 CFU/day/mouse for seven days and sacrificed 3.5h after the last administration. The cecal content and the ileum tissue were collected for microbiota analysis and immune profiling, respectively. While 5 of the L. casei strains altered the gut microbiota in a strain specific manner, two of the strains did not alter the overall cecal microbiota composition. The observed changes cluster into three groups containing between 1 and 2 strains. Two strains that did not affect the gut microbiota composition cluster together with the control in their impact on pattern recognition receptors (PRRs) expression, suggesting that the ability to alter the cecal microbiota correlates with the ability to alter PRR expression. They also cluster together in their impact on the expression of intestinal antimicrobial peptides (AMPs). This result suggests that a relationship exists between the capability of a L. casei strains to alter the composition of the gut microbiota, PRR regulation, and AMP regulation. PMID:27244133

  13. Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity.

    PubMed

    Cai, Hui; Rodríguez, Beatriz T; Zhang, Wei; Broadbent, Jeff R; Steele, James L

    2007-08-01

    Lactobacillus casei strains are lactic acid bacteria (LAB) that colonize diverse ecological niches, and have broad commercial applications. To probe their evolution and phylogeny, 40 L. casei strains were characterized; the strains included isolates from plant materials (n=9), human gastrointestinal tracts (n=7), human blood (n=1), cheeses from different geographical locations (n=22), and one strain of unknown origin. API biochemical testing identified niche-specific carbohydrate fermentation profiles. A multilocus sequence typing (MLST) scheme was developed for L. casei. Partial sequencing of six housekeeping genes (ftsZ, metRS, mutL, nrdD, pgm and polA) revealed between 11 (nrdD) and 20 (mutL) allelic types, as well as 36 sequence types. Phylogenetic analysis of MLST data by Reticulate and split decomposition analysis indicated frequent intra-species recombination. Purifying selection was detected, and is likely to have contributed to the evolution of certain L. casei genes. Pulsed-field gel electrophoresis (PFGE) using SfiI was able to discriminate all the isolates, even those not differentiated by MLST. Phylogenetic trees reconstructed based on the MLST data using minimum evolution algorithm, and the SfiI-PFGE restriction patterns using the unweighted-pair group method with arithmetic mean (UPGMA), revealed consensus clusters of strains specific to cheese and silage. Topological discrepancies between the MLST and PFGE trees were also observed, suggesting that intragenic point mutations have accumulated at a slower rate than indels and genome rearrangements in L. casei. The L. casei population analysed in this study demonstrated both a high level of phenotypic and genotypic diversity, as well as specificity to different ecological niches. PMID:17660430

  14. Protective effect of sucrose on the membrane properties of Lactobacillus casei Zhang subjected to freeze-drying.

    PubMed

    Li, Haiping; Lu, Meijun; Guo, Hongfang; Li, Wei; Zhang, Heping

    2010-04-01

    The purpose of this research was to investigate the influence of sucrose at 2.0, 4.0, and 8.0% as a protectant during freeze-drying on the viability and membrane properties of Lactobacillus casei Zhang. Membrane properties were determined using zeta potential, hydrophobicity, fluidity, and integrity before and after freeze-drying. Exposing L. casei Zhang to sucrose protected it from drastic changes in cell surface electrophoretic mobility and hydrophobicity in contrast with the untreated condition, and the effect was dose related. Sucrose caused an increase in membrane fluidity compared with the control sample. Moreover, 2.0% sucrose decreased the general polarization values less than 4.0 or 8.0% sucrose, while 4.0% sucrose and 8.0% sucrose had no significant difference in decreasing general polarization values (P < 0.05). L. casei Zhang freeze-dried in the presence of 2.0% sucrose retained up to 23.7% membrane integrity, whereas cells freeze-dried with 4.0 and 8.0% sucrose had 32.4 and 37.6% membrane integrity compared with that of L. casei Zhang before freeze-drying. Correspondingly, the number of survivors of L. casei Zhang, determined by the plate count method, decreased from 8.02 to 0.63 log CFU/ml after freeze-drying in the absence of sucrose. However, in the presence of 2.0, 4.0, and 8.0% sucrose, the numbers of survivors were 2.01, 2.87, and 3.20 log CFU/ml after freeze-drying, respectively. The present work suggested that sucrose was an effective membrane protectant at 2.0, 4.0, or 8.0% on the surface zeta potential, hydrophobicity, fluidity, and integrity of L. casei Zhang. PMID:20377961

  15. Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice.

    PubMed

    Chung, Y W; Choi, J H; Oh, T-Y; Eun, C S; Han, D S

    2008-01-01

    Probiotics, defined as live or attenuated bacteria or bacterial products, confer a significant health benefit to the host. Recently, they have been shown to be useful in the treatment of chronic inflammatory bowel disease and infectious colitis. In this study, we investigated the effect of probiotics on the development of experimental colitis using Toll-like receptor 4 (TLR-4) mutant (lps-/lps-) mice. TLR-4(lps-/lps-) and wild-type (WT) mice were given 2.5% dextran sulphate sodium (DSS) in drinking water to induce colitis with or without Lactobacillus casei pretreatment. Clinical and histological activity of DSS-colitis was attenuated markedly both in TLR-4(lps-/lps-) and WT mice pretreated with L. casei. Interestingly, histological activity was less severe in TLR-4(lps-/lps-) mice than in WT mice. The levels of myeloperoxidase activity and interleukin (IL)-12p40 were attenuated in pretreated TLR-4(lps-/lps-) mice after DSS administration. By contrast, transforming growth factor (TGF)-beta and IL-10 mRNA and protein expressions were increased markedly in pretreated TLR-4(lps-/lps-) mice. The current results suggest that L. casei has a preventive effect in the development of acute DSS-induced colitis and its action depends largely upon TLR-4 status. L. casei modulates the expression of inflammatory cytokines and down-regulates neutrophilic infiltration in the case of incomplete TLR-4 complex signalling. PMID:18005362

  16. A murine oral model for Mycobacterium avium subsp. paratuberculosis infection and immunomodulation with Lactobacillus casei ATCC 334.

    PubMed

    Cooney, Meagan A; Steele, James L; Steinberg, Howard; Talaat, Adel M

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) the causative agent of Johne's disease, is one of the most serious infectious diseases in dairy cattle worldwide. Due to the chronic nature of this disease and no feasible control strategy, it is essential to have an efficient animal model which is representative of the natural route of infection as well as a viable treatment option. In this report, we evaluated the effect of different doses of M. paratuberculosis in their ability to colonize murine tissues following oral delivery and the ability of Lactobacillus casei ATCC 334, a nascent probiotic, to combat paratuberculosis. Oral inoculation of mice was able to establish paratuberculosis in a dose-dependent manner. Two consecutive doses of approximately 10(9) CFU per mouse resulted in a disseminated infection, whereas lower doses were not efficient to establish infection. All inoculated mice were colonized with M. paratuberculosis, maintained infection for up to 24 weeks post infection and generated immune responses that reflect M. paratuberculosis infection in cattle. Notably, oral administration of L. casei ATCC 334 did not reduce the level of M. paratuberculosis colonization in treated animals. Interestingly, cytokine responses and histology indicated a trend for the immunomodulation and reduction of pathology in animals receiving L. casei ATCC 334 treatment. Overall, a reproducible oral model of paratuberculosis in mice was established that could be used for future vaccine experiments. Although the L. casei ATCC 334 was not a promising candidate for controlling paratuberculosis, we established a protocol to screen other probiotic candidates. PMID:24551602

  17. A murine oral model for Mycobacterium avium subsp. paratuberculosis infection and immunomodulation with Lactobacillus casei ATCC 334

    PubMed Central

    Cooney, Meagan A.; Steele, James L.; Steinberg, Howard; Talaat, Adel M.

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) the causative agent of Johne's disease, is one of the most serious infectious diseases in dairy cattle worldwide. Due to the chronic nature of this disease and no feasible control strategy, it is essential to have an efficient animal model which is representative of the natural route of infection as well as a viable treatment option. In this report, we evaluated the effect of different doses of M. paratuberculosis in their ability to colonize murine tissues following oral delivery and the ability of Lactobacillus casei ATCC 334, a nascent probiotic, to combat paratuberculosis. Oral inoculation of mice was able to establish paratuberculosis in a dose-dependent manner. Two consecutive doses of approximately 109 CFU per mouse resulted in a disseminated infection, whereas lower doses were not efficient to establish infection. All inoculated mice were colonized with M. paratuberculosis, maintained infection for up to 24 weeks post infection and generated immune responses that reflect M. paratuberculosis infection in cattle. Notably, oral administration of L. casei ATCC 334 did not reduce the level of M. paratuberculosis colonization in treated animals. Interestingly, cytokine responses and histology indicated a trend for the immunomodulation and reduction of pathology in animals receiving L. casei ATCC 334 treatment. Overall, a reproducible oral model of paratuberculosis in mice was established that could be used for future vaccine experiments. Although the L. casei ATCC 334 was not a promising candidate for controlling paratuberculosis, we established a protocol to screen other probiotic candidates. PMID:24551602

  18. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model.

    PubMed

    Gholami, Mahdi; Ghasemi-Niri, Seyedeh Farnaz; Maqbool, Faheem; Baeeri, Maryam; Memariani, Zahra; Pousti, Iraj; Abdollahi, Mohammad

    2016-06-01

    This study evaluated the effects of Pistacia atlantica (P. atlantica), butyrate, Lactobacillus casei (L. casei) and especially their combination therapy on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced rat colitis model. Rats were divided into seven groups. Four groups received oral P. atlantica, butyrate, L. casei and the combination of three agents for 10 consecutive days. The remaining groups were negative and positive controls and a sham group. Macroscopic and histopathological examinations were carried out along with determination of the specific biomarker of colonic oxidative stress, the myeloperoxidase (MPO). Compared with controls, the combination therapy exhibited a significant alleviation of colitis in terms of pathological scores and reduction of MPO activity (55%, p=0.0009). Meanwhile, the macroscopic appearance such as stool consistency, tissue and histopathological scores (edema, necrosis and neutrophil infiltration) were improved. Although single therapy by each P. atlantica, butyrate, and L. casei was partially beneficial in reduction of colon oxidative stress markers, the combination therapy was much more effective. In conclusion, the combination therapy was able to reduce the severity of colitis that is clear from biochemical markers. Future studies have to focus on clinical effects of this combination in management of human ulcerative colitis. Further molecular and signaling pathway studies will help to understand the mechanisms involved in the treatment of colitis and inflammatory diseases. PMID:26972417

  19. Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3

    PubMed Central

    Sharma, Deepansh; Singh Saharan, Baljeet

    2014-01-01

    Lactic acid bacteria (LAB) are ubiquitous and well-known commensal bacteria in the human and animal microflora. LAB are extensively studied and used in a variety of industrial and food fermentations. They are widely used for humans and animals as adjuvants, probiotic formulation, and dietary supplements and in other food fermentation applications. In the present investigation, LAB were isolated from raw milk samples collected from local dairy farms of Haryana, India. Further, the isolates were screened for simultaneous production of biosurfactants and bacteriocins. Biosurfactant produced was found to be a mixture of lipid and sugar similar to glycolipids. The bacteriocin obtained was found to be heat stable (5 min at 100°C). Further, DNA of the strain was extracted and amplified by the 16S rRNA sequencing using universal primers. The isolate Lactobacillus casei MRTL3 was found to be a potent biosurfactant and bacteriocin producer. It seems to have huge potential for food industry as a biopreservative and/or food ingredient. PMID:24669225

  20. Biological effects of probiotics: what impact does Lactobacillus casei shirota have on us?

    PubMed

    Nanno, M; Kato, I; Kobayashi, T; Shida, K

    2011-01-01

    Probiotics have been defined as live bacteria beneficial to the host when administered in adequate amounts. To evaluate the effect of probiotics on the prevention of carcinogenesis, Lactobacillus casei Shirota (LcS) was given to the patients who had undergone the resection of superficial bladder cancer, and administration of LcS significantly reduced the recurrence rate of bladder cancer. When LcS was given to the patients whose colonic polyps were surgically removed, the recurrence of colorectal cancer with moderate or severe atypia was suppressed. To assess the putative actions of LcS on innate immune responses, we examined the effect of LcS on natural killer (NK) cell activity in humans. Daily ingestion of fermented milk containing LcS restored NK cell activity in healthy subjects with low NK cell activity as well as human T lymphotropic virus (HTLV)-1-associated myelopathy patients. When peripheral blood mononuclear cells from healthy humans were cultured in the presence of heat-killed LcS, NK cell activity was augmented, which were partly mediated by monocyte-derived interleukin (IL)-12. These findings suggest that LcS may help the reinforcement of our defense system against cancer by modulating innate immune functions. PMID:21329565

  1. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota.

    PubMed

    Kwan, Tsz Him; Hu, Yunzi; Lin, Carol Sze Ki

    2016-10-01

    Food waste recycling via fungal hydrolysis and lactic acid (LA) fermentation has been investigated. Hydrolysates derived from mixed food waste and bakery waste were rich in glucose (80.0-100.2gL(-1)), fructose (7.6gL(-1)) and free amino nitrogen (947-1081mgL(-1)). In the fermentation with Lactobacillus casei Shirota, 94.0gL(-1) and 82.6gL(-1) of LA were produced with productivity of 2.61gL(-1)h(-1) and 2.50gL(-1)h(-1) for mixed food waste and bakery waste hydrolysate, respectively. The yield was 0.94gg(-1) for both hydrolysates. Similar results were obtained using food waste powder hydrolysate, in which 90.1gL(-1) of LA was produced with a yield and productivity of 0.92gg(-1) and 2.50gL(-1)h(-1). The results demonstrate the feasibility of an efficient bioconversion of food waste to LA and a decentralized approach of food waste recycling in urban area. PMID:26873283

  2. Lactobacillus casei Shirota protects from fructose-induced liver steatosis: a mouse model.

    PubMed

    Wagnerberger, Sabine; Spruss, Astrid; Kanuri, Giridhar; Stahl, Carolin; Schröder, Markus; Vetter, Walter; Bischoff, Stephan C; Bergheim, Ina

    2013-03-01

    To test the hypothesis that Lactobacillus casei Shirota (Lcs) protects against the onset of non-alcoholic fatty liver disease (NAFLD) in a mouse model of fructose-induced steatosis, C57BL/6J mice were either fed tap water or 30% fructose solution +/- Lcs for 8 weeks. Chronic consumption of 30% fructose solution led to a significant increase in hepatic steatosis as well as plasma alanine-aminotransferase (ALT) levels, which was attenuated by treatment with Lcs. Protein levels of the tight junction protein occludin were found to be markedly lower in both fructose treated groups in the duodenum, whereas microbiota composition in this part of the intestine was not affected. Lcs treatment markedly attenuated the activation of the Toll-like receptor (TLR) 4 signalling cascade found in the livers of mice only treated with fructose. Moreover, in livers of fructose fed mice treated with Lcs peroxisome proliferator-activated receptor (PPAR)-γ activity was markedly higher than in mice only fed fructose. Taken together, the results of the present study suggest that the dietary intake of Lcs protects against the onset of fructose-induced NAFLD through mechanisms involving an attenuation of the TLR-4-signalling cascade in the liver. PMID:22749137

  3. NMR studies of multiple conformations in complexes of Lactobacillus casei dihydrofolate reductase with analogues of pyrimethamine

    SciTech Connect

    Birdsall, B.; Tendler, S.J.B.; Feeney, J.; Carr, M.D. ); Arnold, J.R.P.; Thomas, J.A.; Roberts, G.C.K. ); Griffin, R.J.; Stevens, M.F.G. )

    1990-10-01

    {sup 1}H and {sup 19}F NMR signals from bound ligands have been assigned in one- and two-dimensional NMR spectra of complexes of Lactobacillus casei dihydrofolate reductase with various pyrimethamine analogues. The signals were identified mainly by correlating signals from bound and free ligands by using 2D exchange experiments. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues containing asymmetrically substituted aromatic rings exist as mixtures of two rotational isomers (an enantiomeric pair) because of this hindered rotation and the NMR spectra revealed that both isomers (forms A and B) bind to the enzyme with comparable, though unequal, binding energies. In this case two complete sets of bound proton signals were observed. The relative orientations of the two forms have been determined from NOE through-space connections between protons on the ligand and protein. Ternary complexes with NADP{sup {plus}} were also examined.

  4. Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk.

    PubMed

    Rochat, Tatiana; Gratadoux, Jean-Jacques; Gruss, Alexandra; Corthier, Gérard; Maguin, Emmanuelle; Langella, Philippe; van de Guchte, Maarten

    2006-08-01

    Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects. PMID:16885258

  5. Effect of immobilized Lactobacillus casei on the evolution of flavor compounds in probiotic dry-fermented sausages during ripening.

    PubMed

    Sidira, Marianthi; Kandylis, Panagiotis; Kanellaki, Maria; Kourkoutas, Yiannis

    2015-02-01

    The effect of immobilized Lactobacillus casei ATCC 393 on wheat grains on the generation of volatile compounds in probiotic dry-fermented sausages during ripening was investigated. For comparison reasons, sausages containing free L. casei cells or no starter culture were also included in the study. Samples were collected after 1, 28 and 45days of ripening and subjected to SPME GC/MS analysis. Both the probiotic culture and the ripening process affected significantly the concentration of all volatile compounds. The significantly highest content of total volatiles, esters, alcohols and miscellaneous compounds was observed in sausages containing the highest amount of immobilized culture (300g/kg of stuffing mixture) ripened for 45days. Principal component analysis of the semi-quantitative data revealed that primarily the concentration of the immobilized probiotic culture affected the volatile composition. PMID:25306510

  6. Genomic and Functional Characterization of the Unusual pLOCK 0919 Plasmid Harboring the spaCBA Pili Cluster in Lactobacillus casei LOCK 0919.

    PubMed

    Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Bagińska, Anna; Grynberg, Marcin; Nowak, Adriana; Cukrowska, Bożena; Kozakova, Hana; Bardowski, Jacek

    2016-01-01

    Here, we report the extensive bioinformatic and functional analyses of the unusual pLOCK 0919, a plasmid originating from the probiotic Lactobacillus casei LOCK 0919 strain. This plasmid is atypical because it harbors the spaCBA-srtC gene cluster encoding SpaCBA pili. We show that all other spaCBA-srtC sequences of the Lactobacillus genus that have been previously described and deposited in GenBank are present in the chromosomal DNA. Another important observation for pLOCK 0919 is that the spaCBA-srtC gene cluster and its surrounding genes are highly similar to the respective DNA region that is present in the most well-known and active SpaCBA pili producer, the probiotic Lactobacillus rhamnosus GG strain. Our results demonstrate that the spaCBA-srtC clusters of pLOCK 0919 and L. rhamnosus GG are genealogically similar, located in DNA regions that are rich in transposase genes and are poorly conserved among the publicly available sequences of Lactobacillus sp. In contrast to chromosomally localized pilus gene clusters from L. casei and Lactobacillus paracasei, the plasmidic spaC of L. casei LOCK 0919 is expressed and undergoes a slight glucose-induced repression. Moreover, results of series of in vitro tests demonstrate that L. casei LOCK 0919 has an adhesion potential, which is largely determined by the presence of the pLOCK 0919 plasmid. In particular, the plasmid occurrence positively influenced the hydrophobicity and aggregation abilities of L. casei LOCK 0919. Moreover, in vivo studies indicate that among the three Lactobacillus strains used to colonize the gastrointestinal tract of germ-free mice, already after 2 days of colonization, L. casei LOCK 0919 became the dominant strain and persisted there for at least 48 days. PMID:26637469

  7. Genomic and Functional Characterization of the Unusual pLOCK 0919 Plasmid Harboring the spaCBA Pili Cluster in Lactobacillus casei LOCK 0919

    PubMed Central

    Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Bagińska, Anna; Grynberg, Marcin; Nowak, Adriana; Cukrowska, Bożena; Kozakova, Hana; Bardowski, Jacek

    2016-01-01

    Here, we report the extensive bioinformatic and functional analyses of the unusual pLOCK 0919, a plasmid originating from the probiotic Lactobacillus casei LOCK 0919 strain. This plasmid is atypical because it harbors the spaCBA-srtC gene cluster encoding SpaCBA pili. We show that all other spaCBA-srtC sequences of the Lactobacillus genus that have been previously described and deposited in GenBank are present in the chromosomal DNA. Another important observation for pLOCK 0919 is that the spaCBA-srtC gene cluster and its surrounding genes are highly similar to the respective DNA region that is present in the most well-known and active SpaCBA pili producer, the probiotic Lactobacillus rhamnosus GG strain. Our results demonstrate that the spaCBA-srtC clusters of pLOCK 0919 and L. rhamnosus GG are genealogically similar, located in DNA regions that are rich in transposase genes and are poorly conserved among the publicly available sequences of Lactobacillus sp. In contrast to chromosomally localized pilus gene clusters from L. casei and Lactobacillus paracasei, the plasmidic spaC of L. casei LOCK 0919 is expressed and undergoes a slight glucose-induced repression. Moreover, results of series of in vitro tests demonstrate that L. casei LOCK 0919 has an adhesion potential, which is largely determined by the presence of the pLOCK 0919 plasmid. In particular, the plasmid occurrence positively influenced the hydrophobicity and aggregation abilities of L. casei LOCK 0919. Moreover, in vivo studies indicate that among the three Lactobacillus strains used to colonize the gastrointestinal tract of germ-free mice, already after 2 days of colonization, L. casei LOCK 0919 became the dominant strain and persisted there for at least 48 days. PMID:26637469

  8. Milk digesta and milk protein fractions influence the adherence of Lactobacillus gasseri R and Lactobacillus casei FMP to human cultured cells.

    PubMed

    Volstatova, Tereza; Havlik, Jaroslav; Potuckova, Miroslava; Geigerova, Martina

    2016-08-10

    Adhesion to the intestinal epithelium is considered an important feature of probiotic bacteria, which may increase their persistence in the intestine, allowing them to exert their beneficial health effect or promote the colonisation process. However, this feature might be largely dependent on the host specificity or diet. In the present study, we investigated the effect of selected milks and milk protein fractions on the ability of selected lactobacilli to adhere to the cells of an intestinal model based on co-culture Caco-2/HT29-MTX cell lines. Most milk digesta did not significantly affect bacterial adhesion except for UHT-treated milk and sheep milk. The presence of UHT-treated milk digesta reduced the adhesion of Lactobacillus gasseri R by 61% but not that of Lactobacillus casei FMP. However, sheep milk significantly increased the adherence of L. casei FMP (P < 0.05) but not of L. gasseri R. Among the protein fractions, rennet casein (RCN) and bovine serum albumin (BSA) showed reproducible patterns and strain-specific effects on bacterial adherence. While RCN reduced the adherence of L. gasseri R to <50% compared to the control, it did not have a significant effect on L. casei FMP. In contrast, BSA reduced L. casei FMP adherence to a higher extent than that of L. gasseri R. Whey protein (WH) tended to increase the adherence of both strains by 130%-180%. Recently, interactions between the host diet and its microbiota have attracted considerable interest. Our results may explain one of the aspects of the role of milk in the development of microbiota or support of probiotic supplements. Based on our data, we conclude that the persistence of probiotic strains supplemented as part of dairy food or constitutional microbiota in the gut might be affected negatively or positively by the food matrix through complex strain or concentration dependent effects. PMID:27435508

  9. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation

    PubMed Central

    2012-01-01

    Background The broad ecological distribution of L. casei makes it an insightful subject for research on genome evolution and lifestyle adaptation. To explore evolutionary mechanisms that determine genomic diversity of L. casei, we performed comparative analysis of 17 L. casei genomes representing strains collected from dairy, plant, and human sources. Results Differences in L. casei genome inventory revealed an open pan-genome comprised of 1,715 core and 4,220 accessory genes. Extrapolation of pan-genome data indicates L. casei has a supragenome approximately 3.2 times larger than the average genome of individual strains. Evidence suggests horizontal gene transfer from other bacterial species, particularly lactobacilli, has been important in adaptation of L. casei to new habitats and lifestyles, but evolution of dairy niche specialists also appears to involve gene decay. Conclusions Genome diversity in L. casei has evolved through gene acquisition and decay. Acquisition of foreign genomic islands likely confers a fitness benefit in specific habitats, notably plant-associated niches. Loss of unnecessary ancestral traits in strains collected from bacterial-ripened cheeses supports the hypothesis that gene decay contributes to enhanced fitness in that niche. This study gives the first evidence for a L. casei supragenome and provides valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible and industrially important lactic acid bacterium. Additionally, our data confirm the Distributed Genome Hypothesis extends to non-pathogenic, ecologically flexible species like L. casei. PMID:23035691

  10. Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using α-L-fucosidases from Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Carbajo, Rodrigo J; Pineda-Lucena, Antonio; Monedero, Vicente; Yebra, María J

    2013-06-01

    AlfB and AlfC α-l-fucosidases from Lactobacillus casei were used in transglycosylation reactions, and they showed high efficiency in synthesizing fucosyldisaccharides. AlfB and AlfC activities exclusively produced fucosyl-α-1,3-N-acetylglucosamine and fucosyl-α-1,6-N-acetylglucosamine, respectively. The reaction kinetics showed that AlfB can convert 23% p-nitrophenyl-α-l-fucopyranoside into fucosyl-α-1,3-N-acetylglucosamine and AlfC at up to 56% into fucosyl-α-1,6-N-acetylglucosamine. PMID:23542622

  11. Synthesis of Fucosyl-N-Acetylglucosamine Disaccharides by Transfucosylation Using α-l-Fucosidases from Lactobacillus casei

    PubMed Central

    Rodríguez-Díaz, Jesús; Carbajo, Rodrigo J.; Pineda-Lucena, Antonio; Monedero, Vicente

    2013-01-01

    AlfB and AlfC α-l-fucosidases from Lactobacillus casei were used in transglycosylation reactions, and they showed high efficiency in synthesizing fucosyldisaccharides. AlfB and AlfC activities exclusively produced fucosyl-α-1,3-N-acetylglucosamine and fucosyl-α-1,6-N-acetylglucosamine, respectively. The reaction kinetics showed that AlfB can convert 23% p-nitrophenyl-α-l-fucopyranoside into fucosyl-α-1,3-N-acetylglucosamine and AlfC at up to 56% into fucosyl-α-1,6-N-acetylglucosamine. PMID:23542622

  12. Daily intake of Lactobacillus casei Shirota increases natural killer cell activity in smokers.

    PubMed

    Reale, Marcella; Boscolo, Paolo; Bellante, Veronica; Tarantelli, Chiara; Di Nicola, Marta; Forcella, Laura; Li, Qing; Morimoto, Kanehisa; Muraro, Raffaella

    2012-07-01

    Dietary probiotics supplementation exerts beneficial health effects. Since cigarette smoking reduces natural killer (NK) activity, we evaluated the effect of Lactobacillus casei Shirota (LcS) intake on NK cytotoxic activity in male smokers. The double-blind, placebo-controlled, randomised study was conducted on seventy-two healthy Italian blue-collar male smokers randomly divided for daily intake of LcS powder or placebo. Before and after 3 weeks of intake, peripheral blood mononuclear cells were isolated and NK activity and CD16⁺ cells' number were assessed. Daily LcS intake for 3 weeks significantly increased NK activity (P < 0.001). The increase in NK activity was paralleled by an increase in CD16⁺ cells (P < 0.001). Before intake, NK cytotoxic activity inversely correlated with the number of cigarettes smoked (R - 0.064). LcS intake prevented the smoke-dependent expected NK activity reduction. The analysis of the distribution of changes in smoke-adjusted NK activity demonstrated that the positive variations were significantly associated with LcS intake, while the negative variations were associated with placebo intake (median value of distributions of differences, 20.98 lytic unit (LU)/10⁷ cells for LcS v. - 4.38 LU/10⁷ cells for placebo, P = 0.039). In conclusion, 3 weeks of daily LcS intake in Italian male smokers was associated with a higher increase in cytotoxic activity and CD16⁺ cells' number in comparison to the placebo intake group. PMID:22142891

  13. Survival of Lactobacillus casei strain Shirota in the intestines of healthy Chinese adults.

    PubMed

    Wang, Ran; Chen, Shanbin; Jin, Junhua; Ren, Fazheng; Li, Yang; Qiao, Zhenxing; Wang, Yue; Zhao, Liang

    2015-05-01

    Lactobacillus casei strain Shirota (LcS) is a widely used probiotic strain with health benefits. In this study, the survival of LcS in the intestines of healthy Chinese adults was assessed and the effects of LcS on stool consistency, stool SCFAs and intestinal microbiota evaluated. Subjects consumed 100 mL per day of a probiotic beverage containing 1.0 × 10(8) CFU/mL of LcS for 14 days. LcS were enumerated using a culture method and the colony identity confirmed by ELISA. Fourteen days after ingestion, the amount of LcS recovered from fecal samples was between 6.86 ± 0.80 and 7.17 ± 0.57 Log10 CFU/g of feces (mean ± SD). The intestinal microbiotas were analyzed by denaturing gradient gel electrophoresis. Principal component analysis showed that consuming LcS significantly changed fecal microbiota profiles. According to redundancy analysis, the amounts of 25 bacterial strains were significantly correlated with LcS intake (P < 0.05), 11 of them positively and fourteen negatively. Concentrations of acetic acid and propionic acid in feces were significantly lower during the ingestion period than during the baseline period (P < 0.05). These results confirm that LcS can survive passage through the gastrointestinal tract of Chinese people; however, they were found to have little ability to persist once their consumption had ceased. Furthermore, consumption of probiotic beverages containing LcS can modulate the composition of the intestinal microbiota on a long-term basis, resulting in decreased concentrations of SCFAs in the gut. PMID:25707300

  14. Lactobacillus casei Shirota enhances the preventive efficacy of soymilk in chemically induced breast cancer.

    PubMed

    Kaga, Chiaki; Takagi, Akimitsu; Kano, Mitsuyoshi; Kado, Shoichi; Kato, Ikuo; Sakai, Masashi; Miyazaki, Kouji; Nanno, Masanobu; Ishikawa, Fumiyasu; Ohashi, Yasuo; Toi, Masakazu

    2013-11-01

    Soy foods are known to be effective for breast cancer prevention. The habitual consumption of soy isoflavones in combination with the probiotic Lactobacillus casei Shirota (LcS) was shown to decrease the risk of breast cancer occurrence in our previous population-based case-controlled study among Japanese women. The present study aimed to elucidate the cooperative prevention mechanism of soymilk and LcS using an animal carcinogenic model. Female Sprague-Dawley rats received a high-fat, AIN-76A diet containing soymilk, LcS, both soymilk and LcS, or none and were orally exposed to 2-amino-1-methyl-6-penylimidazo[4,5-b]pyridine at a dose of 85 mg/kg bodyweight eight times for 2 weeks. The development of palpable mammary tumors was monitored for 17 weeks. Tumor tissues were immunohistochemically examined for estrogen receptor (ER)-α, Ki-67 and CD34. Compared with the control group, the incidence and multiplicity of mammary tumors were reduced by soymilk alone and soymilk in combination with LcS, while tumor volume was decreased by LcS alone and LcS in combination with soymilk. An immunohistochemical analysis revealed that soymilk in combination with LcS more effectively reduced the numbers of ER-α-positive and Ki-67-positive cells in tumors than soymilk alone and that both soymilk and LcS inhibited tumor angiogenesis. These results demonstrated that soymilk prevents the development of mammary tumors and that LcS suppresses tumor growth, potentially enhancing the preventive efficacy of soymilk. The habitual consumption of LcS in combination with soymilk might be a beneficial dietary style for breast cancer prevention. PMID:23992486

  15. Daily probiotic's (Lactobacillus casei Shirota) reduction of infection incidence in athletes.

    PubMed

    Gleeson, Michael; Bishop, Nicolette C; Oliveira, Marta; Tauler, Pedro

    2011-02-01

    The purpose of this study was to examine the effects of a probiotic supplement during 4 mo of winter training in men and women engaged in endurance-based physical activities on incidence of upper respiratory-tract infections (URTIs) and immune markers. Eighty-four highly active individuals were randomized to probiotic (n = 42) or placebo (n = 42) groups and, under double-blind procedures, received probiotic (PRO: Lactobacillus casei Shirota [LcS]) or placebo (PLA) daily for 16 wk. Resting blood and saliva samples were collected at baseline and after 8 and 16 wk. Weekly training and illness logs were kept. Fifty-eight subjects completed the study (n = 32 PRO, n = 26 PLA). The proportion of subjects on PLA who experienced 1 or more weeks with URTI symptoms was 36% higher than those on PRO (PLA 0.90, PRO 0.66; p = .021). The number of URTI episodes was significantly higher (p < .01) in the PLA group (2.1 ± 1.2) than in the PRO group (1.2 ± 1.0). Severity and duration of symptoms were not significantly different between treatments. Saliva IgA concentration was higher on PRO than PLA, significant treatment effect F(1, 54) = 5.1, p = .03; this difference was not evident at baseline but was significant after 8 and 16 wk of supplementation. Regular ingestion of LcS appears to be beneficial in reducing the frequency of URTI in an athletic cohort, which may be related to better maintenance of saliva IgA levels during a winter period of training and competition. PMID:21411836

  16. Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation.

    PubMed

    Wu, Chongde; He, Guiqiang; Zhang, Juan

    2014-10-01

    The aim of this study was to investigate the acid tolerance response (ATR) in Lactobacillus casei by a combined physiological and proteomic analysis. To optimize the ATR induction, cells were acid adapted for 1 h at different pHs, and then acid challenged at pH 3.5. The result showed that acid adaptation improved acid tolerance, and the highest survival was observed in cells adapted at pH 4.5 for 1 h. Analysis of the physiological data showed that the acid-adapted cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, and lower inner permeability compared with the cells without adaptation. Proteomic analysis was performed upon acid adaptation to different pHs (pH 6.5 vs. pH 4.5) using two-dimensional electrophoresis. A total of 24 proteins that exhibited at least 1.5-fold differential expression were identified. Four proteins (Pgk, LacD, Hpr, and Galm) involved in carbohydrate catabolism and five classic stress response proteins (GroEL, GrpE, Dnak, Hspl, and LCAZH_2811) were up-regulated after acid adaptation at pH 4.5 for 1 h. Validation of the proteomic data was performed by quantitative RT-PCR, and transcriptional regulation of all selected genes showed a positive correlation with the proteomic patterns of the identified proteins. Results presented in this study may be useful for further elucidating the acid tolerance mechanisms and may help in formulating new strategies to improve the industrial performance of this species during acid stress. PMID:25062817

  17. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei.

    PubMed

    Gao, Xiuzhen; Ren, Jie; Wu, Qiaqing; Zhu, Dunming

    2012-06-10

    Carbon-carbon double bond of α,β-unsaturated carbonyl compounds can be reduced by enoate reductase (ER), which is an important reaction in fine chemical synthesis. A putative enoate reductase gene from Lactobacillus casei str. Zhang was cloned into pET-21a+ and expressed in Escherichia coli BL21 (DE3) host cells. The encoded enzyme (LacER) was purified by ammonium sulfate precipitation and treatment in an acidic buffer. This enzyme was identified as a NADH-dependent enoate reductase, which had a K(m) of 0.034 ± 0.006 mM and k(cat) of (3.2 ± 0.2) × 10³ s⁻¹ toward NADH using 2-cyclohexen-1-one as the substrate. Its K(m) and k(cat) toward substrate 2-cyclohexen-1-one were 1.94 ± 0.04 mM and (8.4 ± 0.2) × 10³ s⁻¹, respectively. The enzyme showed a maximum activity at pH 8.0-9.0. The optimum temperature of the enzyme was 50-55°C, and LacER was relatively stable below 60 °C. The enzyme was active toward aliphatic alkenyl aldehyde, ketones and some cyclic anhydrides. Substituted groups of cyclic α,β-unsaturated ketones and its ring size have positive or negative effects on activity. (R)-(-)-Carvone was reduced to (2R,5R)-dihydrocarvone with 99% conversion and 98% (diasteromeric excess: de) stereoselectivity, indicating a high synthetic potential of LacER in asymmetric synthesis. PMID:22579387

  18. The type strain of Lactobacillus casei is ATCC 393, ATCC 334 cannot serve as the type because it represents a different taxon, the name Lactobacillus paracasei and its subspecies names are not rejected and the revival of the name 'Lactobacillus zeae' contravenes Rules 51b (1) and (2) of the International Code of Nomenclature of Bacteria. Opinion 82.

    PubMed

    2008-07-01

    The Judicial Commission affirms that typification of Lactobacillus casei is based on ATCC 393, that ATCC 334 is a member of a different taxon and that the publication rejecting the name Lactobacillus paracasei (and its included subspecies) together with the revival of the name 'Lactobacillus zeae' contravenes Rules 51b (1) and (2) of the International Code of Nomenclature of Bacteria. PMID:18599731

  19. Incorporation of Lactobacillus casei in Iranian ultrafiltered Feta cheese made by partial replacement of NaCl with KCl.

    PubMed

    Karimi, R; Mortazavian, A M; Karami, M

    2012-08-01

    Probiotic Iranian ultrafiltered Feta cheese was produced from ultrafiltration of milk with a volumetric concentration factor of 4.5:1. The heat-treated retentates were inoculated with 10(7) cfu of Lactobacillus casei LAFTI L26/mL. A mesophilic-thermophilic mixed culture of Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Streptococcus thermophilus was also used. Three percent (wt/wt) salt with different ratios of NaCl:KCl (100% NaCl, 50% NaCl:50% KCl, 75% NaCl:25% KCl, and 25% NaCl:75% KCl) were used in cheese formulation. The viability of L. casei was determined in treatments during the ripening period (90d at 5°C) within 15-d intervals. The pH, titratable acidity, and redox potential changes were monitored throughout the mentioned period. The mean pH drop rate, mean acidity increase rate, and mean redox potential increase rate were calculated at the end of the storage period. Also, total nitrogen, water-soluble nitrogen, lactic acid, and acetic acid concentrations, and syneresis and sensory characteristics of the product were measured during the mentioned period every 30d. The maximum viability of L. casei was observed within d 15 to 30 of the ripening period in the treatment containing the lowest amount of sodium. Addition of KCl enhanced syneresis. Cheeses with NaCl alone and with only 25% replacement by KCl have the highest sensory acceptability. PMID:22818434

  20. Antitumoural activity of a cytotoxic peptide of Lactobacillus casei peptidoglycan and its interaction with mitochondrial-bound hexokinase.

    PubMed

    Fichera, Giuseppe A; Fichera, Marco; Milone, Giuseppe

    2016-08-01

    In a previous study, we reported the cytotoxic activity against various tumour cells of the peptidoglycan of Lactobacillus casei. To isolate the most active components, we performed column-chromatography separation of the peptidoglycan complex and tested the related fractions for their cytotoxic activity. The most active fractions were then lyophilized and the residue was analysed by gas chromatography for its amino acid content and composition. On the basis of the known chemical formula of the basic peptidic component of the peptidoglycan complex of L. casei, a peptide was then synthesized [Europ. (CH-DE-FR-GB) Patent number 1217005; IT number 01320177] and its cytotoxicity was tested against tumoural and normal cells. The synthetic peptide was found to impair the entire metabolism of cultured tumour cells and to restore the apoptotic process. By contrast, normal cells appeared to be stimulated rather than inhibited by the peptide, whereas primary mouse embryo fibroblasts behaved similarly to tumour cells. On the basis of these results, L. casei peptidoglycan fragments and their constituent basic peptide might be applicable as potent antitumour agents. PMID:27101258

  1. The Influence of Probiotic Lactobacillus casei in Combination with Prebiotic Inulin on the Antioxidant Capacity of Human Plasma

    PubMed Central

    Kleniewska, Paulina; Hoffmann, Arkadiusz; Pniewska, Ewa

    2016-01-01

    The aim of the present study was to assess whether probiotic bacteria Lactobacillus casei (4 × 108 CFU) influences the antioxidant properties of human plasma when combined with prebiotic Inulin (400 mg). Experiments were carried out on healthy volunteers (n = 32). Volunteers were divided according to sex (16 male and 16 female) and randomly assigned to synbiotic and control groups. Blood samples were collected before synbiotic supplementation and after 7 weeks, at the end of the study. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, and the ferric reducing ability of plasma (FRAP) in human plasma were examined. The administration of synbiotics containing L. casei plus Inulin resulted in a significant increase in FRAP values (p = 0.00008) and CAT activity (p = 0.02) and an insignificant increase in SOD and GPx activity compared to controls. Synbiotics containing L. casei (4 × 108 CFU) with prebiotic Inulin (400 mg) may have a positive influence on human plasma antioxidant capacity and the activity of selected antioxidant enzymes. PMID:27066188

  2. Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon.

    PubMed

    Nissen, Lorenzo; Pérez-Martínez, Gaspar; Yebra, María J

    2005-08-01

    Sorbitol is claimed to have important health-promoting effects and Lactobacillus casei is a lactic acid bacterium relevant as probiotic and used as a cheese starter culture. A sorbitol-producing L. casei strain might therefore be of considerable interest in the food industry. A recombinant strain of L. casei was constructed by the integration of a d-sorbitol-6-phosphate dehydrogenase-encoding gene (gutF) in the chromosomal lactose operon (strain BL232). gutF expression in this strain followed the same regulation as that of the lac genes, that is, it was repressed by glucose and induced by lactose. (13)C-nuclear magnetic resonance analysis of supernatants of BL232 resting cells demonstrated that, when pre-grown on lactose, cells were able to synthesize sorbitol from glucose. Inactivation of the l-lactate dehydrogenase gene in BL232 led to an increase in sorbitol production, suggesting that the engineered route provides an alternative pathway for NAD(+) regeneration. PMID:16002237

  3. Antitumoural activity of a cytotoxic peptide of Lactobacillus casei peptidoglycan and its interaction with mitochondrial-bound hexokinase

    PubMed Central

    Fichera, Giuseppe A.; Milone, Giuseppe

    2016-01-01

    In a previous study, we reported the cytotoxic activity against various tumour cells of the peptidoglycan of Lactobacillus casei. To isolate the most active components, we performed column-chromatography separation of the peptidoglycan complex and tested the related fractions for their cytotoxic activity. The most active fractions were then lyophilized and the residue was analysed by gas chromatography for its amino acid content and composition. On the basis of the known chemical formula of the basic peptidic component of the peptidoglycan complex of L. casei, a peptide was then synthesized [Europ. (CH-DE-FR-GB) Patent number 1217005; IT number 01320177] and its cytotoxicity was tested against tumoural and normal cells. The synthetic peptide was found to impair the entire metabolism of cultured tumour cells and to restore the apoptotic process. By contrast, normal cells appeared to be stimulated rather than inhibited by the peptide, whereas primary mouse embryo fibroblasts behaved similarly to tumour cells. On the basis of these results, L. casei peptidoglycan fragments and their constituent basic peptide might be applicable as potent antitumour agents. PMID:27101258

  4. Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis.

    PubMed

    Wu, R; Sun, Z; Wu, J; Meng, H; Zhang, H

    2010-08-01

    Lactobacillus casei Zhang, isolated from koumiss in Inner Mongolia of China, is known from previous findings to be tolerant to bile salts. Bile salts secreted by mammals act as a natural antibacterial barrier and may serve as a component of innate immunity, as they have limited antagonistic effect against resident microflora. In this work, we compared the growth and protein expression patterns of L. casei Zhang with and without bile salts. Twenty-six proteins were found to be differentially expressed using 2-dimensional gel electrophoresis. Peptide mass fingerprinting was used to identify these proteins. Further verification by using real-time, quantitative reverse transcription-PCR and bioinformatics analysis showed that the implicated pathways are involved with a complex physiological response under bile salts stress, particularly including cell protection (DnaK and GroEL), modifications in cell membranes (NagA, GalU, and PyrD), and key components of central metabolism (PFK, PGM, CysK, LuxS, PepC, and EF-Tu). These results provide insight on the protein expression pattern of L. casei under bile salts stress and offer a new perspective for the molecular mechanisms involved in stress tolerance and adaptation of bacteria. PMID:20655455

  5. Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells

    PubMed Central

    2014-01-01

    Background Clostridium difficile is the main cause of hospital-acquired diarrhea and colitis known as C. difficile-associated disease (CDAD).With increased severity and failure of treatment in CDAD, new approaches for prevention and treatment, such as the use of probiotics, are needed. Since the pathogenesis of CDAD involves an inflammatory response with a massive influx of neutrophils recruited by interleukin (IL)-8, this study aimed to investigate the probiotic effects of Lactobacillus spp. on the suppression of IL-8 production in response to C. difficile infection. Results We screened Lactobacillus conditioned media from 34 infant fecal isolates for the ability to suppress C. difficile-induced IL-8 production from HT-29 cells. Factors produced by two vancomycin-resistant lactobacilli, L. rhamnosus L34 (LR-L34) and L.casei L39 (LC-L39), suppressed the secretion and transcription of IL-8 without inhibiting C. difficile viability or toxin production. Conditioned media from LR-L34 suppressed the activation of phospho-NF-κB with no effect on phospho-c-Jun. However, LC-L39 conditioned media suppressed the activation of both phospho-NF-κB and phospho-c-Jun. Conditioned media from LR-L34 and LC-L39 also decreased the production of C. difficile-induced GM-CSF in HT-29 cells. Immunomodulatory factors present in the conditioned media of both LR-L34 and LC-L39 are heat-stable up to 100°C and > 100 kDa in size. Conclusions Our results suggest that L. rhamnosus L34 and L. casei L39 each produce factors capable of modulating inflammation stimulated by C. difficile. These vancomycin-resistant Lactobacillus strains are potential probiotics for treating or preventing CDAD. PMID:24989059

  6. Does Short-Term High Dose Probiotic Supplementation Containing Lactobacillus casei Attenuate Exertional-Heat Stress Induced Endotoxaemia and Cytokinaemia?

    PubMed

    Gill, Samantha K; Allerton, Dean M; Ansley-Robson, Paula; Hemmings, Krystal; Cox, Martin; Costa, Ricardo J

    2016-06-01

    The study aimed to determine if short-term high dose probiotic supplementation containing Lactobacillus casei (L.casei) attenuates the commonly reported exertional-heat stress (EHS) induced endotoxinaemia and cytokinaemia. Eight endurance trained male volunteers (mean± SD: age 26 ± 6 y, nude body mass 70.2 ± 8.8 kg, height 1.75 ± 0.05 m, VO2max 59 ± 5 ml·kg-1·min-1) completed a blinded randomized cross-over design, whereby oral ingestion of a commercially available probiotic beverage containing L.casei (volume equivalent for ×1011 colony forming units·day-1) (PRO) or placebo (PLA) was consumed for 7 consecutive days before exposure to EHS, which comprised of 2h running exercise at 60% VO2max in hot ambient conditions (34.0 °C and 32% RH). Blood samples were collected at baseline (7 days before EHS), pre-EHS, post-EHS (1 hr, 2 hr, 4 hr, and at 24 hr). Plasma samples were analyzed for gram-negative bacterial endotoxin, cytokine profile (IL-6, IL-1β, TNF-α, IFN-γ, IL-8, and IL-10) and plasma osmolality. Plasma osmolality did not differ between trials. Seven days of L.casei supplementation did not show significant changes in resting circulatory endotoxin concentration or plasma cytokine profile compared with PLA. A main effect of time was observed for IL-6, TNF-α, IL-10 and IL-8; whereby levels increased in response to EHS (p < .05). Relative to pre-EHS concentrations, higher plasma concentrations of endotoxin (p = .05), and a trend for higher plasma TNF-α concentration (p = .09) was observed on PRO compared with PLA throughout recovery. Short-term high dose supplementation of a probiotic beverage containing L.casei before EHS did not attenuate EHS induced endotoxaemia and cytokinaemia; nor is it more positively favorable over a placebo. PMID:26568577

  7. Identification and characterization of a strain-dependent cystathionine beta/gamma-lyase in Lactobacillus casei potentially involved in cysteine biosynthesis.

    PubMed

    Irmler, Stefan; Schäfer, Heike; Beisert, Beata; Rauhut, Doris; Berthoud, Hélène

    2009-06-01

    The trans-sulfuration pathways allow the interconversion of cysteine and methionine with the intermediary formation of cystathionine and homocysteine. The genome database of Lactobacillus casei ATCC 334 provides evidence that this species cannot synthesize cysteine from methionine via the trans-sulfuration pathway. However, several L. casei strains use methionine as the sole sulfur source, which implies that these strains can convert methionine to cysteine. Cystathionine synthases and lyases play a crucial role in the trans-sulfuration pathway. By applying proteomic techniques, we have identified a protein in cell-free extracts of L. casei, which showed high homology to a gene product encoded in the genome of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus and Lactobacillus helveticus but not in the genome of L. casei ATCC 334. The presence of the gene was only found in strains able to grow on methionine as the sole sulfur source. Moreover, two gene variants were identified. Both gene variants were cloned and expressed heterologously in Escherichia coli. The recombinant enzymes exhibited cystathionine lyase activity in vitro and also cleaved cysteine, homocysteine and methionine releasing volatile sulfur compounds. PMID:19473252

  8. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): Characterization, Manufacture, Mechanisms of Action, and Quality Control of a Specific Probiotic Combination for Primary Prevention of Clostridium difficile Infection.

    PubMed

    Auclair, Julie; Frappier, Martin; Millette, Mathieu

    2015-05-15

    A specific probiotic formulation composed of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+) has been marketed in North America since 1996. The strains and the commercial products have been evaluated for safety, identity, gastrointestinal survival, and stability throughout shelf life. The capacity of both the fermented beverages and the capsules to reduce incidences of antibiotic-associated diarrhea and Clostridium difficile infection (CDI) has been demonstrated in human clinical trials. Individual strains and the finished products have shown antimicrobial activity against C. difficile and toxin A/B neutralization capacity in vitro. The use of this specific probiotic formulation as part of a bundle of preventive measures to control CDI in healthcare settings is discussed. PMID:25922399

  9. Expression of Lactobacillus casei ATCC 393 beta-galactosidase encoded by plasmid pLZ15 in Lactococcus lactis CNRZ 1123.

    PubMed

    Hemme, D; Gaier, W; Winters, D A; Foucaud, C; Vogel, R F

    1994-11-01

    Lactococcus lactis subsp. lactis CNRZ 1123, a Lac- derivative of CNRZ 1122 was transformed by electroporation with the Lactobacillus casei ATCC 393 plasmid pLZ15, which bears a beta-galactosidase gene. The transformants expressed a constitutive beta-galactosidase activity at a higher level than in Lact. casei, and in the cell-free extract two additional protein bands were detected by SDS-PAGE which could correspond to lactose metabolism enzymes. Both plasmid and beta-gal activity were stable in Lactococcus after 100 generations in glucose-containing medium. PMID:7765447

  10. Heterologous Expression of Mannanase and Developing a New Reporter Gene System in Lactobacillus casei and Escherichia coli.

    PubMed

    Lin, Jinzhong; Zou, Yexia; Ma, Chengjie; She, Qunxin; Liang, Yunxiang; Chen, Zhengjun; Ge, Xiangyang

    2015-01-01

    Reporter gene systems are useful for studying bacterial molecular biology, including the regulation of gene expression and the histochemical analysis of protein products. Here, two genes, β-1,4-mannanase (manB) from Bacillus pumilus and β-glucuronidase (gusA) from Escherichia coli K12, were cloned into the expression vector pELX1. The expression patterns of these reporter genes in Lactobacillus casei were investigated by measuring their enzymatic activities and estimating their recombinant protein yields using western blot analysis. Whereas mannanase activity was positively correlated with the accumulation of ManB during growth, GusA activity was not; western blot analysis indicated that while the amount of GusA protein increased during later growth stages, GusA activity gradually decreased, indicating that the enzyme was inactive during cell growth. A similar trend was observed in E. coli JM109. We chose to use the more stable mannanase gene as the reporter to test secretion expression in L. casei. Two pELX1-based secretion vectors were constructed: one carried the signal peptide of the unknown secretion protein Usp45 from Lactococcus lactis (pELSH), and the other contained the full-length SlpA protein from the S-layer of L. acidophilus (pELWH). The secretion of ManB was detected in the supernatant of the pELSH-ManB transformants and in the S-layer of the cell surface of the pELWH-ManB transformants. This is the first report demonstrating that the B. pumilus manB gene is a useful reporter gene in L. casei and E.coli. PMID:26562012

  11. Heterologous Expression of Mannanase and Developing a New Reporter Gene System in Lactobacillus casei and Escherichia coli

    PubMed Central

    Lin, Jinzhong; Zou, Yexia; Ma, Chengjie; She, Qunxin; Liang, Yunxiang; Chen, Zhengjun; Ge, Xiangyang

    2015-01-01

    Reporter gene systems are useful for studying bacterial molecular biology, including the regulation of gene expression and the histochemical analysis of protein products. Here, two genes, β-1,4-mannanase (manB) from Bacillus pumilus and β-glucuronidase (gusA) from Escherichia coli K12, were cloned into the expression vector pELX1. The expression patterns of these reporter genes in Lactobacillus casei were investigated by measuring their enzymatic activities and estimating their recombinant protein yields using western blot analysis. Whereas mannanase activity was positively correlated with the accumulation of ManB during growth, GusA activity was not; western blot analysis indicated that while the amount of GusA protein increased during later growth stages, GusA activity gradually decreased, indicating that the enzyme was inactive during cell growth. A similar trend was observed in E. coli JM109. We chose to use the more stable mannanase gene as the reporter to test secretion expression in L. casei. Two pELX1-based secretion vectors were constructed: one carried the signal peptide of the unknown secretion protein Usp45 from Lactococcus lactis (pELSH), and the other contained the full-length SlpA protein from the S-layer of L. acidophilus (pELWH). The secretion of ManB was detected in the supernatant of the pELSH-ManB transformants and in the S-layer of the cell surface of the pELWH-ManB transformants. This is the first report demonstrating that the B. pumilus manB gene is a useful reporter gene in L. casei and E.coli. PMID:26562012

  12. Malic Enzyme and Malolactic Enzyme Pathways Are Functionally Linked but Independently Regulated in Lactobacillus casei BL23

    PubMed Central

    Landete, José María; Ferrer, Sergi; Monedero, Vicente

    2013-01-01

    Lactobacillus casei is the only lactic acid bacterium in which two pathways for l-malate degradation have been described: the malolactic enzyme (MLE) and the malic enzyme (ME) pathways. Whereas the ME pathway enables L. casei to grow on l-malate, MLE does not support growth. The mle gene cluster consists of three genes encoding MLE (mleS), the putative l-malate transporter MleT, and the putative regulator MleR. The mae gene cluster consists of four genes encoding ME (maeE), the putative transporter MaeP, and the two-component system MaeKR. Since both pathways compete for the same substrate, we sought to determine whether they are coordinately regulated and their role in l-malate utilization as a carbon source. Transcriptional analyses revealed that the mle and mae genes are independently regulated and showed that MleR acts as an activator and requires internalization of l-malate to induce the expression of mle genes. Notwithstanding, both l-malate transporters were required for maximal l-malate uptake, although only an mleT mutation caused a growth defect on l-malate, indicating its crucial role in l-malate metabolism. However, inactivation of MLE resulted in higher growth rates and higher final optical densities on l-malate. The limited growth on l-malate of the wild-type strain was correlated to a rapid degradation of the available l-malate to l-lactate, which cannot be further metabolized. Taken together, our results indicate that L. casei l-malate metabolism is not optimized for utilization of l-malate as a carbon source but for deacidification of the medium by conversion of l-malate into l-lactate via MLE. PMID:23835171

  13. Malic enzyme and malolactic enzyme pathways are functionally linked but independently regulated in Lactobacillus casei BL23.

    PubMed

    Landete, José María; Ferrer, Sergi; Monedero, Vicente; Zúñiga, Manuel

    2013-09-01

    Lactobacillus casei is the only lactic acid bacterium in which two pathways for l-malate degradation have been described: the malolactic enzyme (MLE) and the malic enzyme (ME) pathways. Whereas the ME pathway enables L. casei to grow on l-malate, MLE does not support growth. The mle gene cluster consists of three genes encoding MLE (mleS), the putative l-malate transporter MleT, and the putative regulator MleR. The mae gene cluster consists of four genes encoding ME (maeE), the putative transporter MaeP, and the two-component system MaeKR. Since both pathways compete for the same substrate, we sought to determine whether they are coordinately regulated and their role in l-malate utilization as a carbon source. Transcriptional analyses revealed that the mle and mae genes are independently regulated and showed that MleR acts as an activator and requires internalization of l-malate to induce the expression of mle genes. Notwithstanding, both l-malate transporters were required for maximal l-malate uptake, although only an mleT mutation caused a growth defect on l-malate, indicating its crucial role in l-malate metabolism. However, inactivation of MLE resulted in higher growth rates and higher final optical densities on l-malate. The limited growth on l-malate of the wild-type strain was correlated to a rapid degradation of the available l-malate to l-lactate, which cannot be further metabolized. Taken together, our results indicate that L. casei l-malate metabolism is not optimized for utilization of l-malate as a carbon source but for deacidification of the medium by conversion of l-malate into l-lactate via MLE. PMID:23835171

  14. Free and immobilized Lactobacillus casei ATCC 393 on whey protein as starter cultures for probiotic Feta-type cheese production.

    PubMed

    Dimitrellou, Dimitra; Kandylis, Panagiotis; Sidira, Marianthi; Koutinas, Athanasios A; Kourkoutas, Yiannis

    2014-01-01

    The use of free and immobilized Lactobacillus casei ATCC 393 on whey protein as starter culture in probiotic Feta-type cheese production was evaluated. The probiotic cultures resulted in significantly higher acidity; lower pH; reduced counts of coliforms, enterobacteria, and staphylococci; and improved quality characteristics compared with cheese with no culture. Microbiological and strain-specific multiplex PCR analysis showed that both free and immobilized L. casei ATCC 393 were detected in the novel products at levels required for conferring a probiotic effect at the end of the ripening. The effect of starter culture on production of volatile compounds was investigated by the solid-phase microextraction gas chromatography-mass spectrometry analysis technique. The immobilized cells resulted in an improved profile of aroma-related compounds and the overall high quality of the novel products was ascertained by the preliminary sensory test. Finally, the high added value produced by exploitation of whey, which is an extremely polluting industrial waste, was highlighted and assessed. PMID:24931523

  15. Peptide and amino acid metabolism is controlled by an OmpR-family response regulator in Lactobacillus casei.

    PubMed

    Alcántara, Cristina; Bäuerl, Christine; Revilla-Guarinos, Ainhoa; Pérez-Martínez, Gaspar; Monedero, Vicente; Zúñiga, Manuel

    2016-04-01

    A Lactobacillus casei BL23 strain defective in an OmpR-family response regulator encoded by LCABL_18980 (PrcR, RR11), showed enhanced proteolytic activity caused by overexpression of the gene encoding the proteinase PrtP. Transcriptomic analysis revealed that, in addition to prtP expression, PrcR regulates genes encoding peptide and amino acid transporters, intracellular peptidases and amino acid biosynthetic pathways, among others. Binding of PrcR to twelve promoter regions of both upregulated and downregulated genes, including its own promoter, was demonstrated by electrophoretic mobility shift assays showing that PrcR can act as a transcriptional repressor or activator. Phosphorylation of PrcR increased its DNA binding activity and this effect was abolished after replacement of the phosphorylatable residue Asp-52 by alanine. Comparison of the transcript levels in cells grown in the presence or absence of tryptone in the growth medium revealed that PrcR activity responded to the presence of a complex amino acid source in the growth medium. We conclude that the PrcR plays a major role in the control of the peptide and amino acid metabolism in L. casei BL23. Orthologous prcR genes are present in most members of the Lactobacillaceae and Leuconostocaceae families. We hypothesize that they play a similar role in these bacterial groups. PMID:26711440

  16. Lactobacillus casei extract induces apoptosis in gastric cancer by inhibiting NF-κB and mTOR-mediated signaling.

    PubMed

    Hwang, Jeong Won; Baek, Young-Mi; Yang, Kyeong Eun; Yoo, Hwa-Seung; Cho, Chong-Kwan; Lee, Yeon-Weol; Park, Junsoo; Eom, Chi-Yong; Lee, Zee-Won; Choi, Jong-Soon; Jang, Ik-Soon

    2013-03-01

    Lactobacillus casei extract (LBX) has been reported to prevent gastric cancer, but the underlying mechanism remains unclear. The proliferation and cell death of gastric cancer KATO3 cells were examined after treatment with LBX for various times and at various doses. LBX inhibited the growth of gastric cancer cells and induced apoptosis by inactivating NF-κB promoter activity. Apoptosis induced by LBX, however, is not directly associated with the intrinsic mitochondrial pathway. Immunoblot analysis revealed that LBX decreased the expressions of NF-κB and IκB. The reduced NF-κB levels led to the decreased phosphorylation of mTOR signaling components, such as PI3K, Akt, and (p70)S6 kinase. These results showed for the first time that LBX induced apoptosis in gastric cancer cells by inhibiting NF-κB and mTOR-mediated signaling. PMID:22505595

  17. Differential expression of cro, the lysogenic cycle repressor determinant of bacteriophage A2, in Lactobacillus casei and Escherichia coli.

    PubMed

    Escobedo, Susana; Rodríguez, Isabel; García, Pilar; Suárez, Juan E; Carrasco, Begoña

    2014-04-01

    Expression of bacteriophage A2-encoded cro in Escherichia coli gives rise to two co-linear polypeptides, Cro and Cro*, which were proposed to form a regulatory tandem to modulate the frequency with which the phage would choose between the lytic and the lysogenic cycles. In this communication, it is reported that Cro is the canonical product of the gene cro while Cro* results from a -1 ribosome frameshift during translation and is twelve amino acids shorter than Cro. However, frameshifting was not observed during phage development in Lactobacillus casei. Furthermore, wild type phages and cro-frameshifting negative mutants present the same phenotype, thus corroborating that only the canonical form of Cro is needed to produce a viable phage progeny. PMID:24457071

  18. Oral immunization of mice against Clostridium perfringens epsilon toxin with a Lactobacillus casei vector vaccine expressing epsilon toxoid.

    PubMed

    Alimolaei, Mojtaba; Golchin, Mehdi; Daneshvar, Hamid

    2016-06-01

    Clostridium perfringens type D infects ruminants and causes the enterotoxemia disease by ε-toxin. A mutated ε-toxin gene lacking toxicity was designed, synthesized, and cloned into the pT1NX vector and electroporated into Lactobacillus casei competent cells to yield LC-pT1NX-ε recombinant strain. BALB/c mice, immunized orally with this strain, highly induced mucosal, humoral, and cell-mediated immune responses and developed a protection against 200 MLD/ml of the activated ε-toxin. This study showed that the LC-pT1NX-ε could be a promising vaccine candidate against the enterotoxemia disease. PMID:27012151

  19. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    PubMed Central

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  20. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents.

    PubMed

    Liévin-Le Moal, Vanessa; Servin, Alain L

    2014-04-01

    A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  1. Effect of probiotic-fermented milk administration on gastrointestinal survival of Lactobacillus casei ATCC 393 and modulation of intestinal microbial flora.

    PubMed

    Sidira, Marianthi; Galanis, Alex; Ypsilantis, Petros; Karapetsas, Athanasios; Progaki, Zoi; Simopoulos, Constantinos; Kourkoutas, Yiannis

    2010-01-01

    The aim of the present study was to assess the survival of free and immobilized Lactobacillus casei ATCC 393 on apple pieces, contained in probiotic-fermented milk, after gastrointestinal (GI) transit and to investigate the potential regulation of intestinal microbial flora in a rat model. In in vitro GI stress tolerance tests, immobilized L. casei ATCC 393 exhibited significantly higher survival rates compared to free cells. At a second stage, probiotic-fermented milk produced by either free or immobilized cells was administered orally at a single dose or daily for 9 days in Wistar rats. By 12 h after single-dose administration, both free and immobilized cells were detected by microbiological and molecular analysis at levels ≥6 logCFU/g of feces. Moreover, daily administration led to significant reduction of staphylococci, enterobacteria, coliforms and streptococci counts. In conclusion, L. casei ATCC 393 contained in fermented milk survived GI transit and modulated intestinal microbiota. PMID:21160205

  2. Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid.

    PubMed

    Palomino, Maria Mercedes; Allievi, Mariana C; Gründling, Angelika; Sanchez-Rivas, Carmen; Ruzal, Sandra M

    2013-11-01

    The probiotic Gram-positive bacterium Lactobacillus casei BL23 is naturally confronted with salt-stress habitats. It has been previously reported that growth in high-salt medium, containing 0.8 M NaCl, leads to modifications in the cell envelope of this bacterium. In this study, we report that L. casei BL23 has an increased ability to form biofilms and to bind cations in high-salt conditions. This behaviour correlated with modifications of surface properties involving teichoic acids, which are important cell wall components. We also showed that, in these high-salt conditions, L. casei BL23 produces less of the cell wall polymer lipoteichoic acid (LTA), and that this anionic polymer has a shorter mean chain length and a lower level of d-alanyl-substitution. Analysis of the transcript levels of the dltABCD operon, encoding the enzymes required for the incorporation of d-alanine into anionic polymers, showed a 16-fold reduction in mRNA levels, which is consistent with a decrease in d-alanine substitutions on LTA. Furthermore, a 13-fold reduction in the transcript levels was observed for the gene LCABL_09330 coding for a putative LTA synthase. To provide further experimental evidence that LCABL_09330 is a true LTA synthase (LtaS) in L. casei BL23, the enzymic domain was cloned and expressed in E. coli. The purified protein was able to hydrolyse the membrane lipid phosphatidylglycerol as expected for an LTA synthase enzyme, and hence LCABL_09330 was renamed LtaS. The purified enzyme showed Mn(2+)-ion dependent activity, and its activity was modulated by differences in NaCl concentration. The decrease in both ltaS transcript levels and enzyme activity observed in high-salt conditions might influence the length of the LTA backbone chain. A putative function of the modified LTA structure is discussed that is compatible with the growth under salt-stress conditions and with the overall envelope modifications taking place during this stress condition. PMID:24014660

  3. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells.

    PubMed

    Tiptiri-Kourpeti, Angeliki; Spyridopoulou, Katerina; Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 10(9) CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 10(9) CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  4. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells

    PubMed Central

    Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E.; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S.; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  5. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus

    PubMed Central

    Nancib, Aicha; Nancib, Nabil; Boubendir, Abdelhafid; Boudrant, Joseph

    2015-01-01

    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained. PMID:26413076

  6. Comparison of Ribotyping, Randomly Amplified Polymorphic DNA Analysis, and Pulsed-Field Gel Electrophoresis in Typing of Lactobacillus rhamnosus and L. casei Strains

    PubMed Central

    Tynkkynen, Soile; Satokari, Reetta; Saarela, Maria; Mattila-Sandholm, Tiina; Saxelin, Maija

    1999-01-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively. PMID:10473394

  7. Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains.

    PubMed

    Tynkkynen, S; Satokari, R; Saarela, M; Mattila-Sandholm, T; Saxelin, M

    1999-09-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively. PMID:10473394

  8. Effect of encapsulated Lactobacillus casei 01 along with pressurized-purple-rice drinks on colonizing the colon in the digestive model.

    PubMed

    Worametrachanon, Srivilai; Apichartsrangkoon, Arunee; Chaikham, Pittaya; Van den Abbeele, Pieter; Van de Wiele, Tom; Wirjantoro, Tri Indrarini

    2014-06-01

    The objective of the study was to examine the influence of encapsulated Lactobacillus casei 01 combining with two types of pressurized-purple-rice drinks on colonizing the colon using a simulator of the human intestinal microbial ecosystem. Subsequently, the metabolic products of colon bacteria and various microflora were determined. The finding revealed that acetate which was the predominant short-chain fatty acid (SCFA) was found in both proximal and distal colons, while the combination of encapsulated L. casei 01 and germinated-purple-rice drinks gave rise to highest formation of SCFA. Significant impact of rice drinks could be observed on reducing ammonia production. The quantitative polymerase chain reaction analysis demonstrated that encapsulated L. casei 01 and encapsulated L. casei 01 plus rice drinks markedly increased concentration of colon lactobacilli and bifidobacteria by 2 and 1 log 16S rRNA gene copies/mL, respectively. On the contrary, undesirable bacteria such as clostridia and coliforms were significantly reduced with the influence of encapsulated L. casei 01 plus purple-rice drinks. PMID:24615387

  9. Transposon Mutagenesis of Probiotic Lactobacillus casei Identifies asnH, an Asparagine Synthetase Gene Involved in Its Immune-Activating Capacity

    PubMed Central

    Ito, Masahiro; Kim, Yun-Gi; Tsuji, Hirokazu; Takahashi, Takuya; Kiwaki, Mayumi; Nomoto, Koji; Danbara, Hirofumi; Okada, Nobuhiko

    2014-01-01

    Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139. PMID:24416179

  10. Comparative analysis of the gene expression profile of probiotic Lactobacillus casei Zhang with and without fermented milk as a vehicle during transit in a simulated gastrointestinal tract.

    PubMed

    Wang, Jicheng; Zhong, Zhi; Zhang, Wenyi; Bao, Qiuhua; Wei, Aibin; Meng, He; Zhang, Heping

    2012-06-01

    Studies have found that the survival of probiotics could be strongly enhanced with dairy products as delivery vehicles, but the molecular mechanism by which this might occur has seldom been mentioned. In this study, microarray technology was used to detect the gene expression profile of Lactobacillus casei Zhang with and without fermented milk used as a delivery vehicle during transit in simulated gastrointestinal juice. Numerous genes of L. casei Zhang in strain suspension were upregulated compared to those from L. casei Zhang in fermented milk. These data might indicate that L. casei Zhang is stimulated directly without the protection of fermented milk, and the high-level gene expression observed here may be a stress response at the transcriptional level. A large proportion of genes involved in translation and cell division were downregulated in the bacteria that were in strain suspension during transit in simulated intestinal juice. This may impede protein biosynthesis and cell division and partially explain the lower viability of L. casei Zhang during transit in the gastrointestinal tract without the delivery vehicle. PMID:22564557

  11. [Development and use of periodontal dressing of collagen and Lactobacillus casei 37 cell suspension in combined treatment of periodontal disease of inflammatory origin (a microbiological study)].

    PubMed

    Volozhin, A I; Il'in, V K; Maksimovskiĭ, Iu M; Sidorenko, A B; Istranov, L P; Tsarev, V N; Istranova, E V; Aboiants, R K

    2004-01-01

    Periodontal dressing consisting of collagen and Lactobacillus casei 37 cell suspension (cell concentration 108 cells/ml) was created and used in combined treatment of patients with chronic generalized parodontitis. Efficacy of the developed isolation was explained by a considerable decrease of the number and frequency of isolation of aggressive microbial representatives (pigment synthesizing Bacteroids, Actinomyces and Str. intermedius) in periodontal pockets and also Fungus (Candida albicans). This periodontal dressing provided remission up to 10-12 months. PMID:15602477

  12. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance.

    PubMed

    Wu, Chongde; Zhang, Juan; Chen, Wei; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-01-01

    Lactobacillus casei has traditionally been recognized as a probiotic and frequently used as an adjunct culture in fermented dairy products, where acid stress is an environmental condition commonly encountered. In the present study, we carried out a comparative physiological and proteomic study to investigate lactic-acid-induced alterations in Lactobacillus casei Zhang (WT) and its acid-resistant mutant. Analysis of the physiological data showed that the mutant exhibited 33.8% higher glucose phosphoenolpyruvate:sugar phosphotransferase system activity and lower glycolytic pH compared with the WT under acidic conditions. In addition, significant differences were detected in both cells during acid stress between intracellular physiological state, including intracellular pH, H(+)-ATPase activity, and intracellular ATP pool. Comparison of the proteomic data based on 2D-DIGE and i-TRAQ indicated that acid stress invoked a global change in both strains. The mutant protected the cells against acid damage by regulating the expression of key proteins involved in cellular metabolism, DNA replication, RNA synthesis, translation, and some chaperones. Proteome results were validated by Lactobacillus casei displaying higher intracellular aspartate and arginine levels, and the survival at pH 3.3 was improved 1.36- and 2.10-fold by the addition of 50-mM aspartate and arginine, respectively. To our knowledge, this is the first demonstration that aspartate may be involved in acid tolerance in Lactobacillus casei. Results presented here may help us understand acid resistance mechanisms and help formulate new strategies to enhance the industrial applications of this species. PMID:22159611

  13. Lectin Microarray Reveals Binding Profiles of Lactobacillus casei Strains in a Comprehensive Analysis of Bacterial Cell Wall Polysaccharides▿†

    PubMed Central

    Yasuda, Emi; Tateno, Hiroaki; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki

    2011-01-01

    We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS. PMID:21602390

  14. Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides.

    PubMed

    Yasuda, Emi; Tateno, Hiroaki; Hirabayashi, Jun; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki

    2011-07-01

    We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS. PMID:21602390

  15. The D-Alanyl carrier protein in Lactobacillus casei: cloning, sequencing, and expression of dltC.

    PubMed

    Debabov, D V; Heaton, M P; Zhang, Q; Stewart, K D; Lambalot, R H; Neuhaus, F C

    1996-07-01

    The incorporation of D-alanine into membrane-associated D-alanyl-lipoteichoic acid in Lactobacillus casei requires the 56-kDa D-alanine-D-alanyl carrier protein ligase (Dcl) and the 8.9-kDa D-alanyl carrier protein (Dcp). To identify and isolate the gene encoding Dcp, we have cloned and sequenced a 4.3-kb chromosomal fragment that contains dcl (dltA). In addition to this gene, the fragment contains three other genes, dltB, d1tC, and a partial dltD gene. dltC (246 nucleotides) was subcloned from this region and expressed in Escherichia coli. The product was identified as apo-Dcp lacking the N-terminal methionine (8,787.9 Da). The in vitro conversion of the recombinant apo-Dcp to holo-Dcp by recombinant E. coli holo-ACP synthase provided Dcp which accepts activated D-alanine in the reaction catalyzed by Bcl. The recombinant D-alanyl-Dcp was functionally identical to native D-alanyl-Dcp in the incorporation of D-alanine into lipoteichoic acid. L. casei Dcp is 46% identical to the putative product of dltC in the Bacillus subtilis dlt operon (M. Perego, P. Glaser, A. Minutello, M. A. Strauch, K. Leopold, and W. Fischer, J. Biol. Chem. 270:15598-15606, 1995), and therefore, this gene also encodes Dcp. Comparisons of the primary sequences and predicted secondary structures of the L. casei and B. subtilis Dcps with that of the E. coli acyl carrier protein (ACP) were undertaken together with homology modeling to identify the functional determinants of the donor and acceptor specificities of Dcp. In the region of the phospho-pantetheine attachment site, significant similarity between Dcps and ACPs was observed. This similarity may account for the relaxed acceptor specificity of the Dcps and ACPs in the ligation Of D-alanine catalyzed by Dcl. In contrast, two Dcp consensus sequences, KXXVLDXLA and DXVKXNXD, share little identity with the rest of the ACP family and, thus, may determine the donor specificity of D-alanyl-Dcp in the D-alanylation of membrane-associated D

  16. Characterization of the cysK2-ctl1-cysE2 gene cluster involved in sulfur metabolism in Lactobacillus casei.

    PubMed

    Bogicevic, Biljana; Irmler, Stefan; Portmann, Reto; Meile, Leo; Berthoud, Hélène

    2012-01-16

    The up- and downstream regions of ctl1 and ctl2 that encode a cystathionine lyase were analyzed in various Lactobacillus casei strains. ctl1 and ctl2 were found to be part of a gene cluster encoding two other open reading frames. One of the two open reading frames precedes ctl1 and encodes a putative cysteine synthase. The other open reading frame lies downstream of ctl1 and encodes a putative serine acetyltransferase. The gene cluster is not present in the publicly available genome sequences of L. casei ATCC 334, BL23 and Zhang. Apparently, the gene cluster was acquired by a horizontal gene transfer event and can also be found in other lactic acid bacteria such as Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. RT-PCR was used to analyze the expression of the gene cluster. Additionally, an mass spectrometry-based selected reaction monitoring method was developed for quantifying Ctl1 in a cell-free extract of lactic acid bacteria. The gene cluster cysK2-ctl1-cysE2 was expressed as single transcript, and expression was down-regulated by cysteine. In addition, cystathionine lyase activity present in cell-free extracts disappeared when L. casei was grown in the presence of cysteine. Whereas the transcript and the gene product of ctl1 protein were found in all studied ctl1(+)L. casei strains, only the transcript but not the protein or cystathionine lyase activity was detected in L. helveticus FAM2888, L. delbrueckii subsp. bulgaricus ATCC 11842 and S. thermophilus FAM17014, which actually possess a homolog of the cysK2-ctl1-cysE2 gene cluster. PMID:21745695

  17. Effect of Lactobacillus strains (L. casei and L. Acidophillus Strains cerela) on bacterial overgrowth-related chronic diarrhea.

    PubMed

    Gaon, David; Garmendia, Carmen; Murrielo, Norberto O; de Cucco Games, Alfredo; Cerchio, Angel; Quintas, Ricardo; González, Silvia N; Oliver, Guillermo

    2002-01-01

    Small bowel bacterial overgrowth and related diarrhea is a condition that frequently accompanies anatomic disorders, surgically created blind loops or strictures with partial small bowel obstruction and although it is often controlled with antimicrobial therapy, alternative treatment may be needed. The aim of this study was to evaluate the efficacy of an oral probiotic preparation of 2 viable lyophilized strains of lactobacilli (1.5 g each) compared with placebo. Twenty two patients with proven overgrowth and chronic diarrhea are described. In random order and double-blind fashion, 2 groups of patients received identical capsules with both Lactobacillus casei and L. acidophillus strains CERELA (12 patients) (LC) and placebo (10 patients) (P) during three consecutive periods of 7 days each followed by a similar three periods of control after withdrawal. At the end of each period the mean daily number of stools, glucose breath H2 test, and symptoms were considered. Lactobacillus were investigated in feces in both groups at day 0 (baseline), on day 21 of treatment with LC and P and on day 21 after withdrawal. Compared with P a significant reduction in mean daily number of stools was achieved with LC (p < 0.005) at 15 days, and (p < 0.0005) at 21 days and the effect was sustained at 7 days and 15 days (p < 0.005) after withdrawal. With respect to breath H2 level a significant decrease in H2 concentration was noted at 7 days (p < 0.005) at 15 days, and 21 days (p < 0.0001) with LC and only a significant decrease (p < 0.005) was observed at 7 days after withdrawal. No significant changes were observed with respect to symptoms. The Lactobacillus CERELA strains were isolated from the feces in all patients LC (n = 12) on day 21, and by contrast no Lactobacillus were observed except in two patients out of seven patients after withdrawal. In summary, this study provides evidence that LC are effective for treatment of bacterial overgrowth--related chronic diarrhea, and suggest

  18. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.

    PubMed

    Song, Li; Cui, Hongyu; Tang, Lijie; Qiao, Xinyuan; Liu, Min; Jiang, Yanping; Cui, Wen; Li, Yijing

    2014-07-01

    Integration plasmids are often used in constructing chromosomal mutations, as it enables the alternation of genes at any location by integration or replacement. Food-grade integration vectors can integrate into the host genome without introducing any selectable markers or residual bases, and the recombination often happens in non-coding region. In this study we used the temperature-sensitive pWV01 replicon to construct 2 chloramphenicol-resistant integration plasmids (pGBHC32-upp) containing the uracil phosphoribosyl transferase (upp) gene as a counterselective marker for Lactobacillus casei (L. casei) ATCC393 and Lactococcus lactis (L. lactis) MG1363. We then ligated the designed homologous arms to the pGBHC32-upp plasmids to allow their integration to the bacterial chromosome, and selected upp deletion mutants of L. casei ATCC393 and L. lactis MG1363 in the presence of 5-fluorouracil (5-FU). Analysis of genetic stability, growth curve, carbon utilization and scanning electronic microscopy showed that, except for 5-FU resistance, there were no significant differences between the wild type and mutant lactic acid bacteria. The integration system and the upp deletion strains could be used in the insertion or deletion of genes at any location of the chromosome of both L. casei ATCC 393 and L. lactis MG1363, and the homologous recombination would not introduce any selectable markers or residual bases. These mutant strains can be further investigated for heterologous protein expression and construction of a live mucosal vaccine carrier. PMID:24798148

  19. Regulation of metabolic flux in Lactobacillus casei for lactic acid production by overexpressed ldhL gene with two-stage oxygen supply strategy.

    PubMed

    Ge, Xiang-Yang; Xu, Yan; Chen, Xiang; Zhang, Long-Yun

    2015-01-01

    This study describes a novel strategy to regulate the metabolic flux for lactic acid production in Lactobacillus casei. The ldhL gene encoding L-lactate dehydrogenase (L-LDH) was overexpressed in L. casei, and a two-stage oxygen supply strategy (TOS) that maintained a medium oxygen supply level during the early fermentation phase, and a low oxygen supply level in the later phase was carried out. As a consequence, a maximum L-LDH activity of 95.6 U/ml was obtained in the recombinant strain, which was over 4-fold higher than that of the initial strain. Under the TOS for L. casei (pMG-ldhL), the maximum lactic acid concentration of 159.6 g/l was obtained in 36 h, corresponding to a 62.8% increase. The results presented here provide a novel way to regulate the metabolic flux of L. casei for lactic acid production in different fermentation stages, which is available to enhance organic acid production in other strains. PMID:25179900

  20. The glycolytic genes pfk and pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system and repressed by CcpA.

    PubMed

    Viana, Rosa; Pérez-Martínez, Gaspar; Deutscher, Josef; Monedero, Vicente

    2005-09-01

    In Lactobacillus casei BL23, phosphofructokinase activity was higher in cells utilizing sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The phosphofructokinase gene (pfk) was cloned from L. casei and shown to be clustered with the gene encoding pyruvate kinase (pyk). pfk and pyk genes are cotranscribed and induced upon growth on sugars transported by the PTS. Contrarily to the model proposed for Lactococcus lactis, where the global catabolite regulator protein (CcpA) is involved in PTS-induced transcription of pfk and pyk, a ccpA mutation resulted in a slight increase in pfk-pyk expression in L. casei. This weak regulation was evidenced by CcpA binding to a region of the pfk-pyk promoter which contained two cre sequences significantly deviated from the consensus. The PTS induction of pfk-pyk seems to be counteracted by the CcpA-mediated repression. Our results suggest that the need to accommodate the levels of pfk-pyk mRNA to the availability of sugars is fulfilled in L. casei by a PTS/CcpA-mediated signal transduction different from L. lactis. PMID:16075200

  1. Screening sourdough samples for gliadin-degrading activity revealed Lactobacillus casei strains able to individually metabolize the coeliac-disease-related 33-mer peptide.

    PubMed

    Alvarez-Sieiro, Patricia; Redruello, Begoña; Ladero, Victor; Martín, Maria Cruz; Fernández, María; Alvarez, Miguel A

    2016-05-01

    A selective culture medium containing acid-hydrolyzed gliadins as the sole nitrogen source was used in the search for sourdough-indigenous lactic acid bacteria (LAB) with gliadin-metabolizing activity. Twenty gliadin-degrading LAB strains were isolated from 10 sourdoughs made in different ways and from different geographical regions. Fifteen of the 20 isolated strains were identified as Lactobacillus casei, a species usually reported as subdominant in sourdough populations. The other 5 gliadin-degrading strains belonged to the more commonly encountered sourdough species Leuconostoc mesenteroides and Lactobacillus plantarum. All these strains were shown to be safe in terms of their resistance to antimicrobial agents. When individually incubated with the α2-gliadin-derived immunotoxic 33-mer peptide (97.5 ppm), half of the L. casei strains metabolized at least 50% of it within 24 h. One strain metabolized 82% of the 33-mer peptide within 8 h and made it fully disappear within 12 h. These results reveal for the first time the presence in sourdough of proteolytic L. casei strains with the capacity to individually metabolize the coeliac-disease-related 33-mer peptide. PMID:27021684

  2. Dysregulated Circulating Dendritic Cell Function in Ulcerative Colitis Is Partially Restored by Probiotic Strain Lactobacillus casei Shirota

    PubMed Central

    Mann, Elizabeth R.; You, Jialu; Horneffer-van der Sluis, Verena; Omar Al-Hassi, Hafid; Landy, Jon; Peake, Simon T.; Thomas, Linda V.; Tee, Cheng T.; Hart, Ailsa L.; Knight, Stella C.

    2013-01-01

    Background. Dendritic cells regulate immune responses to microbial products and play a key role in ulcerative colitis (UC) pathology. We determined the immunomodulatory effects of probiotic strain Lactobacillus casei Shirota (LcS) on human DC from healthy controls and active UC patients. Methods. Human blood DC from healthy controls (control-DC) and UC patients (UC-DC) were conditioned with heat-killed LcS and used to stimulate allogeneic T cells in a 5-day mixed leucocyte reaction. Results. UC-DC displayed a reduced stimulatory capacity for T cells (P < 0.05) and enhanced expression of skin-homing markers CLA and CCR4 on stimulated T cells (P < 0.05) that were negative for gut-homing marker β7. LcS treatment restored the stimulatory capacity of UC-DC, reflecting that of control-DC. LcS treatment conditioned control-DC to induce CLA on T cells in conjunction with β7, generating a multihoming profile, but had no effects on UC-DC. Finally, LcS treatment enhanced DC ability to induce TGFβ production by T cells in controls but not UC patients. Conclusions. We demonstrate a systemic, dysregulated DC function in UC that may account for the propensity of UC patients to develop cutaneous manifestations. LcS has multifunctional immunoregulatory activities depending on the inflammatory state; therapeutic effects reported in UC may be due to promotion of homeostasis. PMID:23970814

  3. Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production

    PubMed Central

    Dong, H; Rowland, I; Tuohy, K M; Thomas, L V; Yaqoob, P

    2010-01-01

    Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8+ and CD56+ subsets in the absence of any other stimulus. LcS also induced production of interleukin (IL)-1β, IL-6, tumour necrosis factor (TNF)-α, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1β production but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-α and IL-12 production. Monocyte depletion reduced significantly the impact of LcS on lymphocyte activation, cytokine production and natural killer (NK) cell activity. In conclusion, LcS activated cytotoxic lymphocytes preferentially in both the innate and specific immune systems, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both proinflammatory and anti-inflammatory cytokine production in the absence of LPS, but in some cases inhibited LPS-induced cytokine production. Monocytes play an important role in LcS-induced immunological responses. PMID:20456417

  4. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection. PMID:26825016

  5. Characterization of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334.

    PubMed

    Kuo, Yang-Cheng; Liu, Cheng-Feng; Lin, Jhao-Fen; Li, An-Chieh; Lo, Ta-Chun; Lin, Thy-Hou

    2013-01-01

    Several putative class II bacteriocin-like genes were identified in Lactobacillus casei ATCC 334, all of which might encode peptides with a double-glycine leader. Six peptides encoded by these genes were heterologously expressed in Escherichia coli and then partially purified in order to test their bacteriocin activity. The results revealed that the mature LSEI_2163 peptide was a class IId bacteriocin that exhibited antimicrobial activity against some lactobacilli and several Listeria species. Similarly, mature LSEI_2386 was a putative pheromone peptide that also had significant bacteriocin activity against several Listeria species. The activities of both peptides tolerated 121°C for 30 min but not treatment with proteinase K or trypsin. The two Cys residues located at positions 4 and 24 in the mature LSEI_2163 peptide were shown by mass spectrometry to form a disulfide bridge, which was required for optimal antibacterial activity. However, replacement of one or both Cys with Ser would cause significant reduction of the antibacterial activity, the reduction being greater when only one of the Cys residues (C4S) was replaced than when both (C4S/C24S) were replaced. PMID:22688903

  6. Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study

    PubMed Central

    Lemesch, Sandra; Trajanoski, Slave; Bashir, Mina; Horvath, Angela; Tawdrous, Monika; Stojakovic, Tatjana; Fauler, Günter; Fickert, Peter; Högenauer, Christoph; Klymiuk, Ingeborg; Stiegler, Philipp; Lamprecht, Manfred; Pieber, Thomas R.; Tripolt, Norbert J.; Sourij, Harald

    2015-01-01

    Metabolic syndrome is associated with disturbances in gut microbiota composition. We aimed to investigate the effect of Lactobacillus casei Shirota (LcS) on gut microbiota composition, gut barrier integrity, intestinal inflammation and serum bile acid profile in metabolic syndrome. In a single-centre, prospective, randomised controlled pilot study, 28 subjects with metabolic syndrome received either LcS for 12 weeks (n = 13) or no LcS (n = 15). Data were compared to healthy controls (n = 16). Gut microbiota composition was characterised from stool using 454 pyrosequencing of 16S rRNA genes. Serum bile acids were quantified by tandem mass spectrometry. Zonulin and calprotectin were measured in serum and stool by ELISA. Bacteroidetes/Firmicutes ratio was significantly higher in healthy controls compared to metabolic syndrome but was not influenced by LcS. LcS supplementation led to enrichment of Parabacteroides. Zonulin and calprotectin were increased in metabolic syndrome stool samples but not influenced by LcS supplementation. Serum bile acids were similar to controls and not influenced by LcS supplementation. Metabolic syndrome is associated with a higher Bacteroidetes/Firmicutes ratio and gut barrier dysfunction but LcS was not able to change this. LcS administration was associated with subtle microbiota changes at genus level. Trial Registration ClinicalTrials.gov NCT01182844 PMID:26509793

  7. Fermented milk containing Lactobacillus casei strain Shirota reduces incidence of hard or lumpy stools in healthy population.

    PubMed

    Sakai, Takafumi; Makino, Hiroshi; Ishikawa, Eiji; Oishi, Kenji; Kushiro, Akira

    2011-06-01

    The objective of the present study was to investigate the efficacy of fermented milk containing Lactobacillus casei strain Shirota (LcS) in a healthy population. Healthy subjects with Bristol Stool Form Scale (BS) score < 3.0 were randomized to fermented milk treatment for 3 weeks or non-intervention control. The primary endpoint was the proportion of subjects that produced hard or lumpy stools (HLS) ≥ 25% of bowel movements (H-HLS). Secondary endpoints included changes in BS score, constipation-related symptom scores and stool parameters. Efficacy was analyzed in 39 subjects. After 3 weeks of treatment the proportion of H-HLS subjects had significantly decreased from 73.7% to 36.8%, whereas in the control group the proportion had increased from 75.0% to 85.0% during the same period (P = 0.002). The BS score was significantly improved after the treatment compared with the control (P < 0.001). In conclusion, daily consumption of fermented milk containing LcS reduced the incidence of HLS. PMID:21322768

  8. Biosynthesis of D-alanyl-lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues

    SciTech Connect

    Childs, W.C. 3d.; Taron, D.J.; Neuhaus, F.C.

    1985-06-01

    Lipoteichoic acid (LTA) from Lactobacillus casei contains poly(glycerophosphate) substituted with D-alanyl ester residues. The distribution of these residues in the in vitro-synthesized polymer is uniform. Esterification of LTA with D-alanine may occur in one of two modes: (i) addition at random or (ii) addition at a defined locus in the poly(glycerophosphate) chain followed by redistribution of the ester residues. A time-dependent transacylation of these residues from D-(/sup 14/C)alanyl-lipophilic LTA to hydrophilic acceptor was observed. The hydrophilic acceptor was characterized as D-alanyl-hydrophilic LTA. This transacylation requires neither ATP nor the D-alanine incorporation system, i.e., the D-alanine activating enzyme and D-alanine:membrane acceptor ligase. No evidence for an enzyme-catalyzed transacylation reaction was observed. The authors propose that this process of transacylation may be responsible for the redistribution of D-alanyl residues after esterification to the poly(glycerophosphate). As a result, it is difficult to distinguish between these proposed modes of addition.

  9. Enhancement of L-lactic acid production in Lactobacillus casei from Jerusalem artichoke tubers by kinetic optimization and citrate metabolism.

    PubMed

    Ge, Xiang-Yang; Qian, He; Zhang, Wei-Guo

    2010-01-01

    Efficient L-lactic acid production from Jerusalem artichoke tubers by Lactobacillus casei G-02 using simultaneous saccharification and fermentation (SSF) in fed-batch culture is demonstrated. The kinetic analysis in the SSF signified that the inulinase activity was subjected to product inhibition, while the fermentation activity of G-02 was subjected to substrate inhibition. It was also found that the intracellularly NOX activity was enhanced by the citrate metabolism, which increased the carbon flux of Embden-Meyerhof-Parnas (EMP) pathway dramatically, and resulted more ATP production. As a result, when the SSF was carried out at 40 degrees after the initial hydrolysis of 1 h with supplemented sodium citrate of 10g/L, L-lactic acid concentration of 141.5 g/L was obtained in 30 h with a volumetric productivity of 4.7 g/L/h. The conversion efficiency and product yield were 93.6% of the theoretical lactic acid yield and 52.4 g lactic acid/100 g Jerusalem artichoke flour, respectively. Such a high concentration of lactic acid with high productivity from Jerusalem artichoke has not been reported previously, and hence G-02 could be a potential candidate for economical production of L-lactic acid from Jerusalem artichoke at a commercial scale. PMID:20134240

  10. Improvement of L-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature.

    PubMed

    Ge, Xiang-Yang; Yuan, Jian; Qin, Hao; Zhang, Wei-Guo

    2011-01-01

    L-Lactic acid production by Lactobacillus casei was used as a model to study the mechanism of substrate inhibition and the strategy for enhancing L-lactic acid production. It was found that the concentration of cell growth and L-lactate decreased with the increase of glucose concentration and fermentation temperature. To enhance the osmotic stress resistance of the strain at high temperature, a mutant G-03 was screened and selected with 360 g/L glucose at 45°C as the selective criterion. To further increase the cell growth for lactic acid production, 3 g/L of biotin was supplemented to the medium. As a result, L: -lactate concentration by the mutant G-03 reached 198.2 g/L (productivity of 5.5 g L(-1) h(-1)) at 41°C in a 7-L fermentor with 210 g/L glucose as carbon source. L: -Lactate concentration and productivity of mutant G-03 were 115.2% and 97.8% higher than those of the parent strain, respectively. The strategy for enhancing L: -lactic acid production by increasing osmotic stress resistance at high temperature may provide an alternative approach to enhance organic acid production with other strains. PMID:20857288