Science.gov

Sample records for lactobacillus coryniformis cect5711

  1. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice.

    PubMed

    Toral, Marta; Gómez-Guzmán, Manuel; Jiménez, Rosario; Romero, Miguel; Sánchez, Manuel; Utrilla, María Pilar; Garrido-Mesa, Natividad; Rodríguez-Cabezas, María Elena; Olivares, Mónica; Gálvez, Julio; Duarte, Juan

    2014-07-01

    Obesity is associated with intestine dysbiosis and is characterized by a low-grade inflammatory status, which affects vascular function. In the present study, we evaluated the effects of a probiotic with immunomodulatory properties, Lactobacillus coryniformis CECT5711, in obese mice fed on an HFD (high-fat diet). The probiotic treatment was given for 12 weeks, and it did not affect the weight evolution, although it reduced basal glycaemia and insulin resistance. L. coryniformis administration to HFD-induced obese mice induced marked changes in microbiota composition and reduced the metabolic endotoxaemia as it decreased the LPS (lipopolysaccharide) plasma level, which was associated with a significant improvement in gut barrier disruption. Furthermore, it lowered TNFα (tumour necrosis factor α) expression in liver, improving the inflammatory status, and thus the glucose metabolism. Additionally, the probiotic reversed the endothelial dysfunction observed in obese mice when endothelium- and NO (nitric oxide)-dependent vasodilatation induced by acetylcholine in aortic rings was studied. It also restored the increased vessel superoxide levels observed in obese mice, by reducing NADPH oxidase activity and increasing antioxidant enzymes. Moreover, chronic probiotic administration for 2 weeks also improved endothelial dysfunction and vascular oxidative stress induced by in vivo administration of LPS in control mice fed on a standard chow diet. The results of the present study demonstrate an endothelial-protective effect of L. coryniformis CECT5711 in obese mice by increasing NO bioavailability, suggesting the therapeutic potential of this gut microbiota manipulation to prevent vasculopathy in obesity. PMID:24410749

  2. Characterization of a reuterin-producing Lactobacillus coryniformis strain isolated from a goat's milk cheese.

    PubMed

    Martín, R; Olivares, M; Marín, M L; Xaus, J; Fernández, L; Rodríguez, J M

    2005-10-25

    Lactobacillus coryniformis CECT 5711, a strain isolated from a goat's milk cheese, displayed a broad-spectrum antimicrobial activity; as a consequence, its ability to produce the antagonistic compounds associated to lactic acid bacteria, including bacteriocins, hydrogen peroxide, lactic acid, acetic acid, and reuterin (3-hydroxypropionaldehyde, 3-HPA) was investigated. Production of bacteriocins or hydrogen peroxide by this strain could not be detected. However, in addition to lactic acid and acetic acid, it produced reuterin and cobalamin, a cofactor required for conversion of glycerol to 3-HPA through a glycerol dehydratase. The gene encoding a glycerol dehydratase subunit was detected by PCR and the corresponding amplicon was sequenced. This strain showed a high survival after exposition to conditions simulating those existing in the gastrointestinal tract as well as a notable ability to adhere to intestinal cells, which suggests that its reuterin-producing ability may be used for the host benefit. In addition, the strain showed a strong beta-galactosidase activity. Production of biogenic amines and degradation of mucin could not be detected. PMID:15975679

  3. Evaluation of the impact on food safety of a Lactobacillus coryniformis strain from pickled vegetables with degradation activity against nitrite and other undesirable compounds.

    PubMed

    Fang, Fang; Feng, Tingting; Du, Guocheng; Chen, Jian

    2016-04-01

    Four strains of lactic acid bacteria showing antimicrobial activity against some food-spoilage microorganisms or pathogens, including both Gram-negative and -positive strains, were isolated from naturally fermented pickled vegetables and a traditional cheese product. Among these isolates, Lactobacillus coryniformis strain BBE-H3, characterised previously to be a non-biogenic amine producer, showed a high level of activity in degrading sodium nitrite and exhibited the ability to eliminate ethyl carbamate and one of its precursors, urea. The antimicrobial substance produced by L. coryniformis BBE-H3 was found to be active at an acidic pH range of 4.0-4.5. The antimicrobial activity of this strain decreased differentially after treatment with proteolytic enzymes (pepsin, papain, trypsin and proteinase K), implying this growth inhibitory compound is either a protein or a polypeptide. The results of this study show the suitability of L. coryniformis BBE-H3 as a starter in food manufacturing processes, and demonstrate its potential role in eliminating food origin carcinogens such as sodium nitrite and ethyl carbamate. PMID:26898528

  4. Production of lactate and acetate by Lactobacillus coryniformis subsp. torquens DSM 20004(T) in comparison with Lactobacillus amylovorus DSM 20531(T).

    PubMed

    Slavica, Anita; Trontel, Antonija; Jelovac, Nuša; Kosovec, Željka; Šantek, Božidar; Novak, Srđan

    2015-05-20

    Lactobacillus coryniformis subsp. torquens DSM20004(T) is a d-lactate producer, with a portion of the d-lactate higher than 99.9% of total lactic acid produced. Acetate was identified as the second end-product that appeared at the end of the exponential growth phase in MRS medium when glucose concentration dropped to 38.41mM (6.92g/L). The acetate production was prolonged to the stationary phase, while the concentration of d-lactate remained constant. Other end-products were not identified by HPLC method. The known metabolic pathways of glucose fermentation in lactic acid bacteria do not produce the particular combination of these two end-products, but besides lactate and acetate also formate, ethanol and CO2 are produced. For comparison, the production of lactate and acetate by a d-/l-lactate producer Lactobacillus amylovorus DSM 20531(T) was also investigated. This strain produced equimolar quantities of d- and l-lactate in the MRS medium. Acetate was produced only when initial concentration of glucose was 55.51mM (10g/L) and production started in the exponential phase when concentration of glucose dropped to 35.52mM (6.40g/L). Similar behavior was observed with the initial concentration of maltose of 29.21mM (10g/L). An unstructured mathematical model was established for the bioprocess simulation. PMID:25617683

  5. D-lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens.

    PubMed

    Nguyen, Cuong Mai; Kim, Jin-Seog; Song, Jae Kwang; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Kim, Jin-Cheol

    2012-12-01

    D-lactic acid production from dry biomass of the microalga, Hydrodictyon reticulatum, was carried out in a 5-l jar fermentor (initial pH 6, 34 °C using CaCO(3) as a neutralizing agent) through simultaneous saccharification and co-fermentation using the Lactobacillus coryniformis subsp. torquens. After 36 h, 36.6 g lactic acid/l was produced from 80 g H. reticulatum/l in the medium containing 3 g yeast extract/l and 3 g peptone/l in the absence of mineral salts. The maximum productivity, average productivity and yield were 2.38 g/l h, 1.02 g/l h and 45.8 %, respectively. The optical purity of D-Lactic acid ranged from 95.8-99.6 %. H. reticulatum is thus a promising biomass material for the production of D-Lactic acid. PMID:22932931

  6. Lactobacillus

    MedlinePlus

    ... in babies. Taking a specific Lactobacillus reuteri product (Probiotic Drops, BioGaia AB) 100 million CFUs once daily ... daily for 6 weeks. A specific lactobacillus combination probiotic containing viable lyophilized bacteria species including lactobacillus, bifidobacteria, ...

  7. Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41.

    PubMed

    Tashiro, Yukihiro; Kaneko, Wataru; Sun, Yanqi; Shibata, Keisuke; Inokuma, Kentaro; Zendo, Takeshi; Sonomoto, Kenji

    2011-03-01

    We isolated and characterized a D-lactic acid-producing lactic acid bacterium (D-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166?(T) and L. delbrueckii subsp. lactis JCM 1248?(T), which are also known as D-LAB, the QU 41 strain exhibited a high thermotolerance and produced D-lactic acid at temperatures of 50 C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on D-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l D-lactic acid was acquired with high optical purity (>99.9% of D-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve D-lactic acid productivity. At a dilution rate of 0.87 h(-1), the high cell density continuous culture exhibited the highest D-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date. PMID:21165615

  8. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera

    PubMed Central

    Alsterfjord, Magnus; Nilson, Bo; Butler, Èile; Vásquez, Alejandra

    2014-01-01

    We previously discovered a symbiotic lactic acid bacterial (LAB) microbiota in the honey stomach of the honeybee Apis mellifera. The microbiota was composed of several phylotypes of Bifidobacterium and Lactobacillus. 16S rRNA gene sequence analyses and phenotypic and genetic characteristics revealed that the phylotypes isolated represent seven novel species. One grouped with Lactobacillus kunkeei and the others belong to the Lactobacillus buchneri and Lactobacillus delbrueckiisubgroups of Lactobacillus. We propose the names Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov. for these novel species, with the respective type strains being Fhon13NT ( = DSM 26257T = CCUG 63287T), Bin4NT ( = DSM 26254T = CCUG 63291T), Hon2NT ( = DSM 26255T = CCUG 63289T), Hma8NT ( = DSM 26256T = CCUG 63629T), Hma2NT ( = DSM 26263T = CCUG 63633T), Bma5NT ( = DSM 26265T = CCUG 63301T) and Biut2NT ( = DSM 26262T = CCUG 63631T). PMID:24944337

  9. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera.

    PubMed

    Olofsson, Tobias C; Alsterfjord, Magnus; Nilson, Bo; Butler, Eile; Vásquez, Alejandra

    2014-09-01

    We previously discovered a symbiotic lactic acid bacterial (LAB) microbiota in the honey stomach of the honeybee Apis mellifera. The microbiota was composed of several phylotypes of Bifidobacterium and Lactobacillus. 16S rRNA gene sequence analyses and phenotypic and genetic characteristics revealed that the phylotypes isolated represent seven novel species. One grouped with Lactobacillus kunkeei and the others belong to the Lactobacillus buchneri and Lactobacillus delbrueckii subgroups of Lactobacillus. We propose the names Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov. for these novel species, with the respective type strains being Fhon13N(T) ( = DSM 26257(T) = CCUG 63287(T)), Bin4N(T) ( = DSM 26254(T) = CCUG 63291(T)), Hon2N(T) ( = DSM 26255(T) = CCUG 63289(T)), Hma8N(T) ( = DSM 26256(T) = CCUG 63629(T)), Hma2N(T) ( = DSM 26263(T) = CCUG 63633(T)), Bma5N(T) ( = DSM 26265(T) = CCUG 63301(T)) and Biut2N(T) ( = DSM 26262(T) = CCUG 63631(T)). PMID:24944337

  10. Lactobacillus Adhesion to Mucus

    PubMed Central

    Tassell, Maxwell L. Van; Miller, Michael J.

    2011-01-01

    Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host. PMID:22254114

  11. DNA probe for lactobacillus delbrueckii

    SciTech Connect

    Delley, M.; Mollet, B.; Hottinger, H. )

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  12. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  13. Rapid identification of Lactobacillus nantensis, Lactobacillus spicheri and Lactobacillus hammesii species using species-specific primers.

    PubMed

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-04-30

    Based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR), an identification tool for rapid differentiation of Lactobacillus nantensis, Lactobacillus spicheri and Lactobacillus hammesii, species isolated recently from French sourdough was developed. The DNA fragments containing ISRs were amplified with primers pairs 16S/p2 and 23S/p7. Clone libraries of the PCR-amplified rDNA with these primers were constructed using a pCR2.1 TA cloning kit and sequenced. The DNA sequences obtained were analyzed and species-specific primers were designed from these sequences. Two PCR amplicons, which were designated small ISR (S-ISR) and large ISR (L-ISR), were obtained for all Lactobacillus species studied. The L-ISR sequence reveale2d the presence of two tRNA genes, tRNAAla and tRNAIle. Species-specific primers designed allowed rapid identification of these species. The specificity of these primers was positively demonstrated as no response was obtained for more than 200 other species tested. PMID:18378031

  14. Genome Sequence of Lactobacillus versmoldensis KCTC 3814

    PubMed Central

    Kim, Dae-Soo; Choi, Sang-Haeng; Kim, Dong-Wook; Kim, Ryong Nam; Nam, Seong-Hyeuk; Kang, Aram; Kim, Aeri; Park, Hong-Seog

    2011-01-01

    Lactobacillus versmoldensis KCTC 3814 was isolated from raw fermented poultry salami. The species was present in high numbers and frequently dominated the lactic acid bacteria (LAB) populations of the products. Here, we announce the draft genome sequence of Lactobacillus versmoldensis KCTC 3814, isolated from poultry salami, and describe major findings from its annotation. PMID:21914893

  15. Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria.

    PubMed

    Tharmaraj, N; Shah, N P

    2003-07-01

    Nineteen bacteriological media were evaluated to assess their suitability to selectively enumerate Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus, bifidobacteria, and propionibacteria. Bacteriological media evaluated included Streptococcus thermophilus agar, pH modified MRS agar, MRS-vancomycine agar, MRS-bile agar, MRS-NaCl agar, MRS-lithium chloride agar, MRS-NNLP (nalidixic acid, neomycin sulfate, lithium chloride and paramomycine sulfate) agar, reinforced clostridial agar, sugar-based (such as maltose, galactose, sorbitol, manitol, esculin) media, sodium lactate agar, arabinose agar, raffinose agar, xylose agar, and L. casei agar. Incubations were carried out under aerobic and anaerobic conditions at 27, 30, 37, 43, and 45 degrees C for 24, 72 h, and 7 to 9 d. S. thermophilus agar and aerobic incubation at 37 degrees C for 24 h were suitable for S. thermophilus. L. delbrueckii ssp. bulgaricus could be enumerated using MRS agar (pH 4.58 or pH 5.20) and under anaerobic incubation at 45 degrees C for 72 h. MRS-vancomycine agar and anaerobic incubation at 43 degrees C for 72 h were suitable to enumerate L. rhamnosus. MRS-vancomycine agar and anaerobic incubation at 37 degrees C for 72 h were selective for L. casei. To estimate the counts of L. casei by subtraction method, counts of L. rhamnosus on MRS-vancomycine agar at 43 degrees C for 72 h under anaerobic incubation could be subtracted from total counts of L. casei and L. rhamnosus enumerated on MRS-vancomycine agar at 37 degrees C for 72 h under anaerobic incubation. L. acidophilus could be enumerated using MRS-agar at 43 degrees C for 72 h or Basal agar-maltose agar at 43 degrees C for 72 h or BA-sorbitol agar at 37 degrees C for 72 h, under anaerobic incubation. Bifidobacteria could be enumerated on MRS-NNLP agar under anaerobic incubation at 37 degrees C for 72 h. Propionibacteria could be enumerated on sodium lactate agar under anaerobic incubation at 30 degrees C for 7 to 9 d. A subtraction method was most suitable for counting propionibacteria in the presence of other lactic acid bacteria from a product. For this method, counts of lactic bacteria at d 3 on sodium lactate agar under anaerobic incubation at 30 degrees C were subtracted from counts at d 7 of lactic bacteria and propionibacteria. PMID:12906045

  16. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    PubMed

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture. PMID:26685674

  17. Lactobacillus: host-microbe relationships.

    PubMed

    O'Callaghan, John; O'Toole, Paul W

    2013-01-01

    Lactobacilli are a subdominant component of the human intestinal microbiota that are also found in other body sites, certain foods, and nutrient-rich niches in the free environment. They represent the types of microorganisms that mammalian immune systems have learned not to react to, which is recognized as a potential driving force in the evolution of the human immune system. Co-evolution of lactobacilli and animals provides a rational basis to postulate an association with health benefits. To further complicate a description of their host interactions, lactobacilli may rarely cause opportunistic infections in compromised subjects. In this review, we focus primarily on human-Lactobacillus interactions. We overview the microbiological complexity of this extraordinarily diverse genus, we describe where lactobacilli are found in or on humans, what responses their presence elicits, and what microbial interaction and effector molecules have been identified. The rare cases of Lactobacillus septicaemia are explained in terms of the host impairment required for such an outcome. We discuss possibilities for exploitation of lactobacilli for therapeutic delivery and mucosal vaccination. PMID:22102141

  18. Treatment of textile dyeing wastewater by biomass of Lactobacillus: Lactobacillus 12 and Lactobacillus rhamnosus.

    PubMed

    Sayilgan, Emine; Cakmakci, Ozgur

    2013-03-01

    The main purpose of this study was to investigate the effectiveness of Lactobacillus 12 and Lactobacillus rhamnosus as both cells and biomasses for the removal of dye from real textile dyeing wastewater. The removal experiments were conducted according to the Box-Behnken experimental design, and the regression equations for the removal of dye were determined by the Minitab 14 program. The optimum variables were found to be 10 g/L biomass concentration for biomasses, 3 for initial pH of the solution, and 20 °C for temperature with an observed dye removal efficiency of about 60 and 80 % with L. 12 and L. rhamnosus biomasses, respectively. Scanning electron microscopy and Fourier transform infrared spectroscopy images also showed that the biomass characteristics studied were favored by the sorption of the dye from the textile industry wastewater. Consequently, these biomasses may be considered as good biosorbents due to their effective yields and the lower cost of the removal of dyes from the effluents of the textile dyeing house. PMID:22684899

  19. Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli.

    PubMed

    Atassi, Fabrice; Brassart, Dominique; Grob, Philipp; Graf, Federico; Servin, Alain L

    2006-04-01

    The purpose of this study was to investigate the antibacterial activities of Lactobacillus jensenii KS119.1 and KS121.1, and Lactobacillus gasserii KS120.1 and KS124.3 strains isolated from the vaginal microflora of healthy women, against uropathogenic, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strains IH11128 and 7372 involved in recurrent cystitis. We observed that some of the Lactobacillus isolates inhibited the growth and decreased the viability of E. coli IH11128 and 7372. In addition, we observed that adhering Lactobacillus strains inhibited adhesion of E. coli IH11128 onto HeLa cells, and inhibited internalization of E. coli IH11128 within HeLa cells. PMID:16553843

  20. Gene replacement in Lactobacillus helveticus.

    PubMed Central

    Bhowmik, T; Fernández, L; Steele, J L

    1993-01-01

    An efficient method for gene replacement in Lactobacillus helveticus CNRZ32 was developed by utilizing pSA3 as an integration vector. This plasmid is stably maintained in CNRZ32 at 37 degrees C but is unstable at 45 degrees C. This method consisted of a two-step gene-targeting technique: (i) chromosomal integration of a plasmid carrying an internal deletion in the gene of interest via homologous recombination and (ii) excision of the vector and the wild-type gene via homologous recombination, resulting in gene replacement. By using this procedure, the chromosomal X-prolyl dipeptidyl aminopeptidase gene (pepXP) of CNRZ32 was successfully inactivated. Images PMID:8104928

  1. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. PMID:27001126

  2. Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species.

    PubMed

    McCracken, A; Turner, M S; Giffard, P; Hafner, L M; Timms, P

    2000-01-01

    Promoter-active fragments were isolated from the genome of the probiotic organism Lactobacillus rhamnosus strain GG using the promoter-probe vector pNZ272. These promoter elements, together with a promoter fragment isolated from the vaginal strain Lactobacillus fermentum BR11 and two previously defined promoters (Lactococcus lactis and Lactobacillus acidophilus ATCC 4356 slpA), were introduced into three strains of Lactobacillus. Primer-extension analysis was used to map the transcriptional start site for each promoter. All promoter fragments tested were functional in each of the three lactobacilli and a purine residue was used to initiate transcription in most cases. The promoter elements encompassed a 52- to 1,140-fold range in promoter activity depending on the host strain. Lactobacillus promoters were further examined by surveying previously mapped sequences for conserved base positions. The Lactobacillus hexamer regions (-35: TTgaca and -10: TAtAAT) closely resembled those of Escherichia coli and Bacillus subtilis, with the highest degree of agreement at the -10 hexamer. The TG dinucleotide upstream of the -10 hexamer was conserved in 26% of Lactobacillus promoters studied, but conservation rates differed between species. The region upstream of the -35 hexamer of Lactobacillus promoters showed conservation with the bacterial UP element. PMID:10896218

  3. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T). PMID:19126714

  4. Lactobacillus helveticus: the proteolytic system

    PubMed Central

    Griffiths, M. W.; Tellez, A. M.

    2012-01-01

    Lactobacillus helveticus is one of the species of lactic acid bacteria (LAB) most commonly used in the production of fermented milk beverages and some types of hard cheese. The versatile nature of this bacterium is based on its highly efficient proteolytic system consisting of cell-envelope proteinases (CEPs), transport system and intracellular peptidases. Besides use of L. helveticus in cheese processing, the production of fermented milk preparations with health promoting properties has become an important industrial application. Studies have shown that fermented dairy products are able to decrease blood pressure, stimulate the immune system, promote calcium absorption, and exert an anti-virulent effect against pathogens. These beneficial effects are produced by a variety of peptides released during the hydrolysis of milk proteins by the proteolytic system of L. helveticus, which provides the bacterium with its nutritional requirements for growth. In recent years, studies have focused on understanding the factors that affect the kinetics of milk protein hydrolysis by specific strains and have concentrated on the effect of pH, temperature, growth phase, and matrix composition on the bacterial enzymatic system. This review focuses on the role of the proteolytic system of L. helveticus in the production of bioactive compounds formed during fermentation of dairy products. Taking advantage of the powerful proteolytic system of this bacterium opens up future opportunities to search for novel food-derived compounds with potential health promoting properties. PMID:23467265

  5. Lactobacillus helveticus: the proteolytic system.

    PubMed

    Griffiths, M W; Tellez, A M

    2013-01-01

    Lactobacillus helveticus is one of the species of lactic acid bacteria (LAB) most commonly used in the production of fermented milk beverages and some types of hard cheese. The versatile nature of this bacterium is based on its highly efficient proteolytic system consisting of cell-envelope proteinases (CEPs), transport system and intracellular peptidases. Besides use of L. helveticus in cheese processing, the production of fermented milk preparations with health promoting properties has become an important industrial application. Studies have shown that fermented dairy products are able to decrease blood pressure, stimulate the immune system, promote calcium absorption, and exert an anti-virulent effect against pathogens. These beneficial effects are produced by a variety of peptides released during the hydrolysis of milk proteins by the proteolytic system of L. helveticus, which provides the bacterium with its nutritional requirements for growth. In recent years, studies have focused on understanding the factors that affect the kinetics of milk protein hydrolysis by specific strains and have concentrated on the effect of pH, temperature, growth phase, and matrix composition on the bacterial enzymatic system. This review focuses on the role of the proteolytic system of L. helveticus in the production of bioactive compounds formed during fermentation of dairy products. Taking advantage of the powerful proteolytic system of this bacterium opens up future opportunities to search for novel food-derived compounds with potential health promoting properties. PMID:23467265

  6. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain. PMID:26410554

  7. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains.

    PubMed Central

    Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N

    1997-01-01

    Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109

  8. Pyelonephritis and Bacteremia from Lactobacillus delbrueckii

    PubMed Central

    DuPrey, Kevin M.; McCrea, Leon; Rabinowitch, Bonnie L.; Azad, Kamran N.

    2012-01-01

    Lactobacilli are normal colonizers of the oropharynx, gastrointestinal tract, and vagina. Infection is rare, but has been reported in individuals with predisposing conditions. Here we describe the case of a woman with pyelonephritis and bacteremia in which Lactobacillus delbrueckii was determined to be the causative agent. PMID:23056967

  9. Draft Genome Sequence of Lactobacillus plantarum 2025

    PubMed Central

    Khlebnikov, Valentin C.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2016-01-01

    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain. PMID:26744375

  10. Draft Genome Sequence of Lactobacillus plantarum 2025.

    PubMed

    Karlyshev, Andrey V; Khlebnikov, Valentin C; Kosarev, Igor V; Abramov, Vyacheslav M

    2016-01-01

    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain. PMID:26744375

  11. Genome sequence of Lactobacillus crispatus ST1.

    PubMed

    Ojala, Teija; Kuparinen, Veera; Koskinen, J Patrik; Alatalo, Edward; Holm, Liisa; Auvinen, Petri; Edelman, Sanna; Westerlund-Wikström, Benita; Korhonen, Timo K; Paulin, Lars; Kankainen, Matti

    2010-07-01

    Lactobacillus crispatus is a common member of the beneficial microbiota present in the vertebrate gastrointestinal and human genitourinary tracts. Here, we report the genome sequence of L. crispatus ST1, a chicken isolate displaying strong adherence to vaginal epithelial cells. PMID:20435723

  12. Lactobacillus assisted synthesis of titanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Jha, Anal K.; Kulkarni, A. R.

    2007-05-01

    An eco-friendly lactobacillus sp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40 60 nm are found.

  13. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. PMID:26896862

  14. Lactobacillus salivarius 1077 (NRRL B-50053) bacteriocin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus salivarius 1077 (NRRL B-50053) was isolated from poultry intestinal materials after demonstrating in-vitro anti-Campylobacter jejuni activity. The isolate was then used for in-vitro fermentation. The protein content of the cell-free supernatant from the spent medium was precipitated ...

  15. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Franden, Mary Ann; Mc Millan, James D.; Finkelstein, Mark

    1998-01-01

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid.

  16. M-RTLV agar, a novel selective medium to distinguish Lactobacillus casei and Lactobacillus paracasei from Lactobacillus rhamnosus.

    PubMed

    Sakai, Takafumi; Oishi, Kenji; Asahara, Takashi; Takada, Toshihiko; Yuki, Norikatsu; Matsumoto, Kazumasa; Nomoto, Koji; Kushiro, Akira

    2010-05-15

    We developed a novel selective medium, modified-rhamnose-2,3,5-triphenyltetrazolium chloride-LBS-vancomycin agar (M-RTLV agar), that utilizes the fermentability of L-rhamnose to distinguish Lactobacillus casei and Lactobacillus paracasei from Lactobacillus rhamnosus. Whereas L. casei and L. paracasei formed red colonies on the M-RTLV agar, L. rhamnosus formed either pink-toned colonies or white colonies with a red spot. An intervention study was conducted to confirm the capability of M-RTLV agar to detect ingested L. casei when recovered from human feces. Subjects consumed one bottle daily of a fermented milk product (Yakult or Yakult Light, which contains L. casei strain Shirota; LcS) for 7 days. Diluents of the fecal samples were cultivated on M-RTLV agar. We were able to enumerate circular medium-sized red colonies, which were morphologically similar to L. casei/L. paracasei but clearly distinguishable from the remaining colonies owing to the color difference. These colonies were then subjected to enzyme-linked immunosorbent assay in order to identify the LcS. The viable counts of LcS were 6.6+/-0.7 log(10) CFU/g feces after intake of Yakult and 6.5+/-0.6 log(10) CFU/g feces after intake of Yakult Light (mean+/-SD). PMID:20385416

  17. [Penicillin-binding proteins of various strains of Lactobacillus].

    PubMed

    Griaznova, N S; Subbotina, N A; Beliavskaia, I V; Taisova, A S; Afonin, V I; Tiurin, M V; Shenderov, B A; Sazykina, Iu O; Navashin, S M

    1990-02-01

    Sensitivity of different species of Lactobacillus i.e. L. casei, L. plantarum, L. acidophillus, L. buchneri, L. jugurti and others to penicillins and cephalosporins of various generations was studied. Penicillin binding proteins (PBPs) of the Lactobacillus species were specified. It was shown that the number of PBPs depended on the Lactobacillus species. L. casei had the least number of PBPs (4) and L. brevis had the highest number of PBPs (11). Competition of 14C-benzylpenicillin with ampicillin, cefotaxime, ceftizoxime and cefoperazone for binding to separate PBPs in three strains of different Lactobacillus species was investigated. PMID:2110806

  18. A selective differential medium for Lactobacillus plantarum.

    PubMed

    Bujalance, Carmen; Jiménez-Valera, Maria; Moreno, Encarnacion; Ruiz-Bravo, Alfonso

    2006-09-01

    The quantification of exogenous lactobacilli in faecal samples is frequently required for the evaluation of the intestinal colonization by probiotic bacteria. In this study, a selective and differential medium, designated LPSM, was developed for the culture of exogenous Lactobacillus plantarum. In quantitative assays, LPSM showed a sensitivity similar to those of enriched and Lactobacillus-adapted media. The presence of ciprofloxacin made LPSM inhibitory to most intestinal bacteria, including endogenous acid lactic bacteria, whereas exogenous L. plantarum strains grew producing a yellow color caused by acid production from sorbitol in the presence of bromocresol purple. The results showed that LPSM is suitable for detection and enumeration of L. plantarum in faecal samples. PMID:16554099

  19. Dry sausage fermented by Lactobacillus rhamnosus strains.

    PubMed

    Erkkilä, S; Suihko, M L; Eerola, S; Petäjä, E; Mattila-Sandholm, T

    2001-02-28

    The ability of three probiotic Lactobacillus rhamnosus strains GG, E-97800 and LC-705 and one commercial Pediococcus pentosaceus starter strain (control) to produce dry sausage was studied. During the fermentation process the numbers of inoculated lactic acid bacteria increased from approx. 7 log10 to 8-9 log10 cfu/g and the pH values decreased from 5.6 to 4.9-5.0. The sensory test indicated that the dry sausages fermented by L. rhamnosus LC-705 were inferior to the control sausages. The presence of inoculated experimental strains as predominant organisms in the dry sausages was recognised on the basis of their genetic fingerprints by ribotyping. The concentrations of biogenic amines remained low during the ripening process. These results indicated that the studied Lactobacillus rhamnosus strains, especially strains GG and E-97800, are suitable for use as probiotic starter cultures in fermenting dry sausage. PMID:11252505

  20. Biofilm formation by vaginal Lactobacillus in vivo.

    PubMed

    Ventolini, G; Mitchell, E; Salazar, M

    2015-05-01

    Biofilm formation by nonpathogenic bacteria is responsible for their stable maintenance in vivo ecosystems as it promotes long-term permanence on the host's vaginal mucosa. Biofilm formation by Lactobacilli has been reported in vitro but not in vivo. We hypothesize the presence of biofilm formation in vivo could be also documented by microscope photographs (MP) of wet mounts obtained from uninfected vaginal samples satisfying rigorous scientific identification criteria. We analyzed 400 MP from our database, and we were able to determine that 12 MP from 6 different patients contained clues of the formation of biofilm by Lactobacilli. The most probable lactobacillus involved is presumed to be Lactobacillus jensenii. The documentation of biofilm formation by vaginal Lactobacilli at fresh wet mount preparation is significant and has several important clinical preventive and therapeutic implications. PMID:25725906

  1. Lactobacillus species: taxonomic complexity and controversial susceptibilities.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M

    2015-05-15

    The genus Lactobacillus is a taxonomically complex and is composed of over 170 species that cannot be easily differentiated phenotypically and often require molecular identification. Although they are part of the normal human gastrointestinal and vaginal flora, they can also be occasional human pathogens. They are extensively used in a variety of commercial products including probiotics. Their antimicrobial susceptibilities are poorly defined in part because of their taxonomic complexity and are compounded by the different methods recommended by Clinical Laboratory Standards Institute and International Dairy Foundation. Their use as probiotics for prevention of Clostridium difficile infection is prevalent among consumers worldwide but raises the question of will the use of any concurrent antibiotic effect their ability to survive. Lactobacillus species are generally acid resistant and are able to survive ingestion. They are generally resistant to metronidazole, aminoglycosides and ciprofloxacin with L. acidophilus being susceptible to penicillin and vancomycin, whereas L. rhamnosus and L. casei are resistant to metronidazole and vancomycin. PMID:25922408

  2. Genome Sequence of Lactobacillus cypricasei KCTC 13900 ▿

    PubMed Central

    Kim, Dae-Soo; Choi, Sang-Haeng; Kim, Dong-Wook; Kim, Ryong Nam; Nam, Seong-Hyeuk; Kang, Aram; Kim, Aeri; Park, Hong-Seog

    2011-01-01

    Lactobacillus cypricasei KCTC 13900 is important in the generation of particular flavors and in other ripening processes associated with specific cheeses. Here, we announce the draft genome sequence of Lactobacillus cypricasei KCTC 13900, isolated from cheeses, and describe major findings from its annotation. PMID:21742864

  3. Draft Genome Sequence of the Lactobacillus mucosae Strain Marseille

    PubMed Central

    Drissi, Fatima; Merhej, Vicky; Blanc-Tailleur, Caroline

    2015-01-01

    Lactobacillus mucosae strain Marseille, isolated from stool samples of a child suffering from a malnutrition disorder called Kwashiorkor, produces bacteriocin and seems to have specific carbohydrate and lipid metabolisms different from those of other Lactobacillus organisms. The draft genome sequence of this strain is presented here. PMID:26227603

  4. Lactobacillus and Lactobacillus cell-free culture supernatants modulate chicken macrophage activities.

    PubMed

    Quinteiro-Filho, W M; Brisbin, J T; Hodgins, D C; Sharif, S

    2015-12-01

    Lactobacilli are commensal microbes that reside in the intestines of several species, including chickens. Structural constituents of lactobacilli are able to stimulate the host immune system. Macrophages are crucial players in both innate and adaptive immune systems. Here, we investigated the effects of Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus salivarius and their cell-free culture supernatants on the pro-inflammatory gene expression profile, nitric oxide (NO) production and phagocytosis by chicken macrophages. Substantial differences were found among Lactobacillus strains in their capacity to induce pro-inflammatory cytokines. L. acidophilus only up-regulated interferon (IFN)-γ, while L. reuteri and L. salivarius up-regulated interleukin (IL)-1β, IL-6, IL-8 and IL-12 expression. Supernatant of L. salivarius up-regulated IL-1β, IL-8 and IFN-γ expression, while the other cell-free supernatants did not induce significant changes. Moreover, L. reuteri and L. salivarius increased macrophage phagocytosis, but all cell-free supernatants increased macrophage NO production and did not change phagocytosis activity. PMID:26679813

  5. Dominance of Lactobacillus acidophilus in the Facultative Jejunal Lactobacillus Microbiota of Fistulated Beagles

    PubMed Central

    Tang, Yurui; Manninen, Titta J. K.

    2012-01-01

    Lactobacilli were isolated from jejunal chyme from five fistulated beagles. Cultivable lactobacilli varied from 104 to 108 CFU/ml. Seventy-four isolates were identified by partial 16S rRNA gene sequencing and differentiated by repetitive element PCR (Rep-PCR), Lactobacillus acidophilus was dominant, and nearly 80% of 54 isolates shared the same DNA fingerprint pattern. PMID:22843523

  6. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1

    PubMed Central

    Leonard, Michael T.; Valladares, Ricardo B.; Ardissone, Alexandria; Gonzalez, Claudio F.; Lorca, Graciela L.

    2014-01-01

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model. PMID:24812223

  7. Complete Genome Sequences of Lactobacillus johnsonii Strain N6.2 and Lactobacillus reuteri Strain TD1.

    PubMed

    Leonard, Michael T; Valladares, Ricardo B; Ardissone, Alexandria; Gonzalez, Claudio F; Lorca, Graciela L; Triplett, Eric W

    2014-01-01

    We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model. PMID:24812223

  8. In vitro antagonistic growth effects of Lactobacillus fermentum and lactobacillus salivarius and their fermentative broth on periodontal pathogens

    PubMed Central

    Chen, Ling-Ju; Tsai, Hsiu-Ting; Chen, Wei-Jen; Hsieh, Chu-Yang; Wang, Pi-Chieh; Chen, Chung-Shih; Wang, Lina; Yang, Chi-Chiang

    2012-01-01

    As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis in vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, although different inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health. PMID:24031966

  9. Eruca sativa Might Influence the Growth, Survival under Simulated Gastrointestinal Conditions and Some Biological Features of Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus Strains

    PubMed Central

    Fratianni, Florinda; Pepe, Selenia; Cardinale, Federica; Granese, Tiziana; Cozzolino, Autilia; Coppola, Raffaele; Nazzaro, Filomena

    2014-01-01

    The growth and viability of three Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, after their passage through simulated gastric and pancreatic juices were studied as a function of their presence in the growth medium of rocket salad (Eruca sativa). The presence of E. sativa affected some of the biological properties of the strains. For example, L. acidophilus and L. plantarum worked more efficiently in the presence of E. sativa, increasing not only the antioxidant activity of the medium, but also their own antioxidant power and antimicrobial activity; L. rhamnosus was not affected in the same manner. Overall, the presence of vegetables might help to boost, in specific cases, some of the characteristics of lactobacilli, including antioxidant and antimicrobial power. PMID:25275269

  10. Divergence in codon usage of Lactobacillus species.

    PubMed Central

    Pouwels, P H; Leunissen, J A

    1994-01-01

    We have analyzed codon usage patterns of 70 sequenced genes from different Lactobacillus species. Codon usage in lactobacilli is highly biased. Both inter-species and intra-species heterogeneity of codon usage bias was observed. Codon usage in L. acidophilus is similar to that in L. helveticus, but dissimilar to that in L. bulgaricus, L. casei, L. pentosus and L. plantarum. Codon usage in the latter three organisms is not significantly different, but is different from that in L. bulgaricus. Inter-species differences in codon usage can, at least in part, be explained by differences in mutational drift. L. bulgaricus shows GC drift, whereas all other species show AT drift. L. acidophilus and L. helveticus rarely use NNG in family-box (a set of synonymous) codons, in contrast to all other species. This result may be explained by assuming that L. acidophilus and L. helveticus, but not other species examined, use a single tRNA species for translation of family-box codons. Differences in expression level of genes are positively correlated with codon usage bias. Highly expressed genes show highly biased codon usage, whereas weakly expressed genes show much less biased codon usage. Codon usage patterns at the 5'-end of Lactobacillus genes is not significantly different from that of entire genes. The GC content of codons 2-6 is significantly reduced compared with that of the remainder of the gene. The possible implications of a reduced GC content for the control of translation efficiency are discussed. PMID:8152923

  11. Lactobacillus mixtipabuli sp. nov. isolated from total mixed ration silage.

    PubMed

    Tohno, Masanori; Kitahara, Maki; Irisawa, Tomohiro; Ohmori, Hideyuki; Masuda, Takaharu; Ohkuma, Moriya; Tajima, Kiyoshi

    2015-06-01

    Using a polyphasic taxonomic approach, we investigated three bacterial strains - IWT30T, IWT8 and IWT75 - isolated from total mixed ration silage prepared in Hachimantai, Iwate, Japan. The isolates comprised Gram-stain positive, non-motile, non-spore-forming, catalase-negative, rod-shaped bacteria. Good growth occurred at 15-45 °C and at pH 4.0-7.5. Their major cellular fatty acids were C18:1ω9c and C19:1 cyclo 9,10.The G+C content of genomic DNA of strain IWT30T was 44.6 mol%. Comparative 16S rRNA gene sequence analysis showed that these novel strains belonged to the genus Lactobacillus. These strains shared 100 % 16S rRNA gene sequence similarity and were most closely related to the type strains of Lactobacillus silagei, Lactobacillus odoratitofui, Lactobacillus similis, Lactobacillus collinoides, Lactobacillus paracollinoides and Lactobacillus kimchicus, with sequence similarity values of 99.5, 98.8, 98.7, 97.8, 97.8 and 96.8 %, respectively. The level of DNA-DNA relatedness between these strains and their closest phylogenetic neighbours was less than 30 %. On the basis of additional phylogenetic analysis of pheS and rpoA gene sequences and phenotypic and chemotaxonomic characteristics, we conclude that these three strains represent a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus mixtipabuli sp. nov. The type strain is IWT30T ( = JCM 19805T = DSM 28580T). PMID:25807979

  12. Transmission of Lactobacillus jensenii and Lactobacillus acidophilus from mother to child at time of delivery.

    PubMed Central

    Carlsson, J; Gothefors, L

    1975-01-01

    The presence of Lactobacillus jensenii and Lactobacillus acidophilus has been studied in specimens from the rectum and vagina of the mother, from the mouth of the infant at the time of delivery, and from the mouth and rectum of infants six days of age. L. jensenii could be differentiated from other species of lactobacilli by the following combination of characteristics: production of only D-lactate, hydrolysis of arginine, and fermentation of cellobiose, galactose, and ribose, but not of lactose. L. jensenii and L. acidophilus were common inhabitants of the vagina. In spite of a contamination of the infant's mouth by L. jensenii and L. acidophilus during delivery, neither of these organisms became established in the mouth of the newborn infants. PMID:809467

  13. Draft Genome Sequence of Lactobacillus oryzae Strain SG293T

    PubMed Central

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Mochizuki, Takako; Kaminuma, Eli; Nakamura, Yasukazu

    2014-01-01

    We report the 1.86-Mb draft genome and annotation of Lactobacillus oryzae SG293T isolated from fermented rice grains. This genome information may provide further insights into the mechanisms underlying the fermentation of rice grains. PMID:25169865

  14. Lactobacillus insicii sp. nov., isolated from fermented raw meat.

    PubMed

    Ehrmann, Matthias A; Kröckel, Lothar; Lick, Sonja; Radmann, Pia; Bantleon, Annegret; Vogel, Rudi F

    2016-01-01

    The analysis of the bacterial microbiota of retain samples of pork salami revealed an isolate (strain TMW 1.2011T) that could neither be assigned to typical genera of starter organisms nor to any other known meat-associated species. Cells were Gram-stain-positive, short, straight rods occurring singly, in pairs or short chains. Phylogenetic analysis of the 16S rRNA gene sequence and specific phenotypic characteristics showed that strain TMW 1.2011T belonged to the phylogenetic Lactobacillus alimentarius group, and the closest neighbours were Lactobacillus nodensis JCM 14932T (97.8 % 16S rRNA gene sequence similarity), Lactobacillus tucceti DSM 20183T (97.4 %), 'Lactobacillus ginsenosidimutans' EMML 3041 (97.3 %), Lactobacillus versmoldensis DSM 14857T (96.9 %) and Lactobacillus furfuricola JCM 18764T (97.2 %). Similarities using partial gene sequences of the alternative chronometers pheS, dnaK and rpoA also support these relationships. DNA-DNA relatedness between the novel isolate and L. nodensis JCM 14932T, L. versmoldensis DSM 14857T and L. tucceti DSM 20183T, L. furfuricola JCM 18764T and 'L. ginsenosidimutans' EMML 3041 were below 70 % and the DNA G+C content was 36.3 mol%. The cell-wall peptidoglycan type is l-Lys-Gly-d-Asp. Based on phylogenetic, chemotaxonomic and physiological evidence, strain TMW 1.2011T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus insicii sp. nov. is proposed. The type strain is TMW 1.2011T ( = CECT 8802T = DSM 29801T). PMID:26486967

  15. Production and Regeneration of Lactobacillus casei Protoplasts

    PubMed Central

    Lee-Wickner, Lyang-Ja; Chassy, Bruce M.

    1984-01-01

    Methods for the production and regeneration of Lactobacillus casei protoplasts are described. Protoplasts of L. casei strains were obtained by treatment with mutanolysin or with mutanolysin and lysozyme together in a protoplast formation buffer containing 0.02 M HEPES (N-2-hydroxyethylpiperazine-N?-2-ethanesulfonic acid) (pH 7.0), 1 mM MgCl2, 0.5% gelatin, and 0.3 M raffinose. Cells were regenerated on a complex medium supplemented with bovine serum albumin, MgCl2, CaCl2, gelatin, and raffinose. Lengthy digestion with lytic enzymes inhibited the capacity of protoplasts to regenerate. The optimum conditions of protoplast formation varied from strain to strain. Using predetermined optimal conditions it was possible to prepare protoplasts of several L. casei strains and regenerate them with 10 to 40% efficiency. The methods were applicable to other species of lactobacilli as well. Images PMID:16346670

  16. High efficiency electrotransformation of Lactobacillus casei.

    PubMed

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements. PMID:25670703

  17. Bile resistance mechanisms in Lactobacillus and Bifidobacterium

    PubMed Central

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  18. Bile resistance mechanisms in Lactobacillus and Bifidobacterium.

    PubMed

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  19. Lactobacillus curieae sp. nov., isolated from stinky tofu brine.

    PubMed

    Lei, Xiao; Sun, Guipeng; Xie, Jingli; Wei, Dongzhi

    2013-07-01

    A lactic acid bacterium, strain CCTCC M 2011381(T), isolated from the brine of the traditional Chinese snack, stinky tofu, was studied to determine its taxonomic position. It was a Gram-stain-positive, non-motile, facultatively anaerobic rod-shaped bacterium that did not exhibit catalase activity. The DNA G+C content of the strain was 44.1 % and its peptidoglycan was characterized by the presence of meso-diaminopimelic acid. Levels of 16S rRNA gene sequence similarity between strain CCTCC M 2011381(T) and the most closely related species Lactobacillus senioris JCM 17472(T), Lactobacillus parafarraginis JCM 14109(T) and Lactobacillus diolivorans JCM 12183(T) were 96.5, 96.4 and 96.4 %, respectively. Combined with data from high-resolution genomic markers recA, rpoA and pheS, strain CCTCC M 2011381(T) was classified as representing a novel species. The strain could also be distinguished from other related species of the genus Lactobacillus by its physiological and biochemical characteristics. Based on the phylogenetic, physiological and biochemical data, it is proposed that the new isolate can be classified as representing a novel species of the genus Lactobacillus, for which the name Lactobacillus curieae sp. nov. (type strain CCTCC M 2011381(T) = S1L19(T) = JCM 18524(T)) is proposed. PMID:23223818

  20. Lactobacillus faecis sp. nov., isolated from animal faeces.

    PubMed

    Endo, Akihito; Irisawa, Tomohiro; Futagawa-Endo, Yuka; Salminen, Seppo; Ohkuma, Moriya; Dicks, Leon

    2013-12-01

    Three lactic acid bacteria were isolated from faeces of a jackal (Canis mesomelas) and raccoons (Procyron lotor). The isolates formed a subcluster in the Lactobacillus salivarius phylogenetic group, closely related to Lactobacillus animalis, Lactobacillus apodemi and Lactobacillus murinus, by phylogenetic analysis based on 16S rRNA and recA gene sequences. Levels of DNA-DNA relatedness revealed that the isolates belonged to the same taxon and were genetically separated from their phylogenetic relatives. The three strains were non-motile, obligately homofermentative and produced l-lactic acid as the main end-product from d-glucose. The strains metabolized raffinose. The major cellular fatty acids in the three strains were C16 : 0, C18 : 1ω9c and C19 : 1 cyclo 9,10. Based on the data provided, it is concluded that the three strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus faecis sp. nov. is proposed. The type strain is AFL13-2(T) ( = JCM 17300(T) = DSM 23956(T)). PMID:23907223

  1. Effect of Lactobacillus species on Streptococcus mutans biofilm formation.

    PubMed

    Ahmed, Ayaz; Dachang, Wu; Lei, Zhou; Jianjun, Liu; Juanjuan, Qiu; Yi, Xin

    2014-09-01

    Streptococcus mutans is the primary pathogen responsible for initiating dental caries and decay. The presence of sucrose, stimulates S. mutans to produce insoluble glucans to form oral biofilm also known as dental plaque to initiate caries lesion. The GtfB and LuxS genes of S. mutans are responsible for formation and maturation of biofilm. Lactobacillus species as probiotic can reduces the count of S. mutans. In this study effect of different Lactobacillus species against the formation of S. mutans biofilm was observed. Growing biofilm in the presence of sucrose was detected using 96 well microtiter plate crystal violet assay and biofilm formation by S. mutans in the presence of Lactobacillus was detected. Gene expression of biofilm forming genes (GtfB and LuxS) was quantified through Real-time PCR. All strains of Lactobacillus potently reduced the formation of S. mutans biofilm whereas Lactobacillus acidophilus reduced the genetic expression by 60-80%. Therefore, probiotic Lactobacillus species can be used as an alternative instead of antibiotics to decrease the chance of dental caries by reducing the count of S. mutans and their gene expression to maintain good oral health. PMID:25176247

  2. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability. PMID:22676388

  3. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  4. Molecular identification of Lactobacillus spp. associated with puba, a Brazilian fermented cassava food

    PubMed Central

    Crispim, S.M.; Nascimento, A.M.A.; Costa, P.S.; Moreira, J.L.S.; Nunes, A.C.; Nicoli, J.R.; Lima, F.L.; Mota, V.T.; Nardi, R.M.D.

    2013-01-01

    Puba or carim is a Brazilian staple food obtained by spontaneous submerged fermentation of cassava roots. A total of 116 lactobacilli and three cocci isolates from 20 commercial puba samples were recovered on de Man, Rogosa and Sharpe agar (MRS); they were characterized for their antagonistic activity against foodborne pathogens and identified taxonomically by classical and molecular methods. In all samples, lactic acid bacteria were recovered as the dominant microbiota (7.86 0.41 log10 CFU/g). 16S23S rRNA ARDRA pattern assigned 116 isolates to the Lactobacillus genus, represented by the species Lactobacillus fermentum (59 isolates), Lactobacillus delbrueckii (18 isolates), Lactobacillus casei (9 isolates), Lactobacillus reuteri (6 isolates), Lactobacillus brevis (3 isolates), Lactobacillus gasseri (2 isolates), Lactobacillus nagelii (1 isolate), and Lactobacillus plantarum group (18 isolates). recA gene-multiplex PCR analysis revealed that L. plantarum group isolates belonged to Lactobacillus plantarum (15 isolates) and Lactobacillus paraplantarum (3 isolates). Genomic diversity was investigated by molecular typing with rep (repetitive sequence)-based PCR using the primer ERIC2 (enterobacterial repetitive intergenic consensus). The Lactobacillus isolates exhibited genetic heterogeneity and species-specific fingerprint patterns. All the isolates showed antagonistic activity against the foodborne pathogenic bacteria tested. This antibacterial effect was attributed to acid production, except in the cases of three isolates that apparently produced bacteriocin-like inhibitory substances. This study provides the first insight into the genetic diversity of Lactobacillus spp. of puba. PMID:24159278

  5. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro.

    PubMed

    Escamilla, Juanita; Lane, Michelle A; Maitin, Vatsala

    2012-08-01

    Probiotics have been shown to have a preventative role in colorectal carcinogenesis but research concerning their prophylactic potential in the later stages of colorectal cancer, specifically metastasis is limited. This study explored the potential of cell-free supernatants (CFS) from 2 probiotic Lactobacillus sp., Lactobacillus casei and Lactobacillus rhamnosus GG, to inhibit colon cancer cell invasion by influencing matrix metalloproteinase-9 (MMP-9) activity and levels of the tight junction protein zona occludens-1 (ZO-1) in cultured metastatic human colorectal carcinoma cells. HCT-116 cells were treated with CFS from L. casei, L. rhamnosus, or Bacteroides thetaiotaomicron (a gut commensal); or with uninoculated bacterial growth media. Treatment with CFS from both Lactobacillus sp. decreased colorectal cell invasion but treatment with CFS from B. thetaiotaomicron did not. CFS from both Lactobacillus sp. decreased MMP-9 and increased ZO-1 protein levels. L. rhamnosus CFS also lowered MMP-9 activity. To begin elucidating the secreted bacterial factor conveying these responses, Lactobacillus sp. CFS were fractionated into defined molecular weight ranges and cell invasion assessed. Fractionation revealed that the inhibitory activity was contained primarily in the >100 kDa and 50-100 kDa fractions, suggesting the inhibitory compound may be a macromolecule such as a protein, nucleic acid, or a polysaccharide. PMID:22830611

  6. Whole-Genome Sequencing of Lactobacillus shenzhenensis Strain LY-73T

    PubMed Central

    Lin, Zhe; Liu, Zhaoshan; Yang, Rentao; Zou, Yuanqiang; Wan, Daiwei; Chen, Jing; Guo, Min; Zhao, Jiao; Fang, Chengxiang

    2013-01-01

    Lactobacillus shenzhenensis strain LY-73T is a novel species which was first isolated from fermented goods. Here, we report the draft genome sequence of Lactobacillus shenzhenensis LY-73T. PMID:24265500

  7. Molecular Analysis and Clinical Significance of Lactobacillus spp. Recovered from Clinical Specimens Presumptively Associated with Disease

    PubMed Central

    Martinez, Raquel M.; Hulten, Kristina G.; Bui, Uyen

    2014-01-01

    Lactobacillus spp. are part of the normal human flora and are generally assumed to be nonpathogenic. We determined the genotypic identification of >100 Lactobacillus isolates from clinical specimens in the context of presumed pathogenic potential (e.g., recovered as the single/predominant isolate from a sterile site or at ≥105 CFU/ml from urine). This study assessed the clinical significance and the frequency of occurrence of each Lactobacillus sp. We identified 16 species of Lactobacillus by 16S rRNA gene sequence analysis, 10 of which could not be associated with disease. While Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus paracasei were associated with infections, L. gasseri was also a common colonizing/contaminating species. Lactobacillus casei, Lactobacillus johnsonii, and Lactobacillus delbrueckii were associated with at least one infection. Species commonly used in probiotic products (e.g., L. rhamnosus and L. casei) were identical, by 16S rRNA gene sequencing, to our isolates associated with disease. Human isolates of Lactobacillus spp. have differing site associations and levels of clinical significance. Knowing the niche and pathogenic potential of each Lactobacillus sp. can be of importance to both clinical microbiology and the food and probiotic supplement industry. PMID:24131686

  8. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Franden, M.A.; McMillan, J.D.; Finkelstein, M.

    1998-08-25

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid. 4 figs.

  9. Characterization of Selected Lactobacillus Strains for Use as Probiotics

    PubMed Central

    Song, Minyu; Yun, Bohyun; Moon, Jae-Hak; Park, Dong-June; Lim, Kwangsei; Oh, Sejong

    2015-01-01

    The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products. PMID:26761878

  10. Evaluation of Lactobacillus strains for selected probiotic properties.

    PubMed

    Turková, Kristýna; Mavrič, Anja; Narat, Mojca; Rittich, Bohuslav; Spanová, Alena; Rogelj, Irena; Matijašić, Bojana Bogovič

    2013-07-01

    Eleven strains of Lactobacillus collected in the Culture Collection of Dairy Microorganisms (CCDM) were evaluated for selected probiotic properties such as survival in gastrointestinal fluids, antimicrobial activity, and competition with non-toxigenic Escherichia coli O157:H7 for adhesion on Caco-2 cells. The viable count of lactobacilli was reduced during 3-h incubation in gastric fluid followed by 3-h incubation in intestinal fluid. All strains showed antimicrobial activity and the three most effective strains inhibited the growth of at least 16 indicator strains. Antimicrobial metabolites of seven strains active against Lactobacillus and Clostridium indicator strains were found to be sensitive to proteinase K and trypsin, which indicates their proteinaceous nature. The degree of competitive inhibition of non-toxigenic E. coli O157:H7 adhesion on the surface of Caco-2 cells was strain-dependent. A significant decrease (P < 0.05) in the number of non-toxigenic E. coli O157:H7 adhering to Caco-2 cells was observed with all lactobacilli. Three strains were selected for additional studies of antimicrobial activity, i.e., Lactobacillus gasseri CCDM 215, Lactobacillus acidophilus CCDM 149, and Lactobacillus helveticus CCDM 82. PMID:23135901

  11. Genome sequence and analysis of Lactobacillus helveticus

    PubMed Central

    Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

    2013-01-01

    The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

  12. Lactobacillus salivarius: bacteriocin and probiotic activity.

    PubMed

    Messaoudi, S; Manai, M; Kergourlay, G; Prévost, H; Connil, N; Chobert, J-M; Dousset, X

    2013-12-01

    Lactic acid bacteria (LAB) antimicrobial peptides typically exhibit antibacterial activity against food-borne pathogens, as well as spoilage bacteria. Therefore, they have attracted the greatest attention as tools for food biopreservation. In some countries LAB are already extensively used as probiotics in food processing and preservation. LAB derived bacteriocins have been utilized as oral, topical antibiotics or disinfectants. Lactobacillus salivarius is a promising probiotic candidate commonly isolated from human, porcine, and avian gastrointestinal tracts (GIT), many of which are producers of unmodified bacteriocins of sub-classes IIa, IIb and IId. It is a well-characterized bacteriocin producer and probiotic organism. Bacteriocins may facilitate the introduction of a producer into an established niche, directly inhibit the invasion of competing strains or pathogens, or modulate the composition of the microbiota and influence the host immune system. This review gives an up-to-date overview of all L. salivarius strains, isolated from different origins, known as bacteriocin producing and/or potential probiotic. PMID:24010610

  13. Health-Promoting Properties of Lactobacillus helveticus

    PubMed Central

    Taverniti, Valentina; Guglielmetti, Simone

    2012-01-01

    Lactobacillus helveticus is an important industrial thermophilic starter that is predominantly employed in the fermentation of milk for the manufacture of several cheeses. In addition to its technological importance, a growing body of scientific evidence shows that strains belonging to the L. helveticus species have health-promoting properties. In this review, we synthesize the results of numerous primary literature papers concerning the ability of L. helveticus strains to positively influence human health. Several in vitro studies showed that L. helveticus possesses many common probiotic properties, such as the ability to survive gastrointestinal transit, adhere to epithelial cells, and antagonize pathogens. In vivo studies in murine models showed that L. helveticus could prevent gastrointestinal infections, enhance protection against pathogens, modulate host immune responses, and affect the composition of the intestinal microbiota. Interventional studies and clinical trials have also demonstrated a number of health-promoting properties of L. helveticus. Finally, several studies suggested that specific enzymatic activities of L. helveticus could indirectly benefit the human host by enhancing the bioavailability of nutrients, removing allergens and other undesired molecules from food, and producing bioactive peptides through the digestion of food proteins. In conclusion, this review demonstrates that in light of the scientific literature presented, L. helveticus can be included among the bacterial species that are generally considered to be probiotic. PMID:23181058

  14. Genome Instability in Lactobacillus rhamnosus GG

    PubMed Central

    Molenaar, Douwe; van IJcken, Wilfred; Venema, Koen

    2013-01-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies. PMID:23354703

  15. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity. PMID:26610803

  16. Probiotic features of two oral Lactobacillus isolates.

    PubMed

    Zavisic, Gordana; Petricevic, Sasa; Radulovic, Zeljka; Begovic, Jelena; Golic, Natasa; Topisirovic, Ljubisa; Strahinic, Ivana

    2012-01-01

    In this study, we checked lactobacilli strains of human origin for their potential as probiotic. Samples were collected from oral mucosa of 16 healthy individuals, out of which twenty isolates were obtained and two of them were selected and identified as Lactobacillus plantarum (G1) and L. casei (G3). Both isolates exhibited antagonistic action towards pathogenic microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Salmonella abony, and Clostridium sporogenes, but not on the growth of Candida albicans. The bacteriocin activity against Staphylococcus aureus ATCC 6358-P was shown only by L. plantarum G1. Moreover, the isolates G1 and G3 showed good viability in the acid gastric environment and in the gut environment containing bovine bile salts. The viability of G1 and G3 isolates in the gastrointestinal tract, and the adhesion to the intestinal mucosa were also confirmed in vivo. The biochemical tests of blood samples revealed lower levels of serum triglycerides and cholesterol, as well as reduced activity of alkaline phosphatase in all lactobacilli-treated Wistar rats, compared to control ones. No toxicity for NMRI Ham mice was observed. According to our experimental results, these findings imply that L. plantarum G1 and L. casei G3 could be characterized as potential probiotics. PMID:24031847

  17. Probiotic features of two oral Lactobacillus isolates

    PubMed Central

    Zavisic, Gordana; Petricevic, Sasa; Radulovic, Zeljka; Begovic, Jelena; Golic, Natasa; Topisirovic, Ljubisa; Strahinic, Ivana

    2012-01-01

    In this study, we checked lactobacilli strains of human origin for their potential as probiotic. Samples were collected from oral mucosa of 16 healthy individuals, out of which twenty isolates were obtained and two of them were selected and identified as Lactobacillus plantarum (G1) and L. casei (G3). Both isolates exhibited antagonistic action towards pathogenic microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Salmonella abony, and Clostridium sporogenes, but not on the growth of Candida albicans. The bacteriocin activity against Staphylococcus aureus ATCC 6358-P was shown only by L. plantarum G1. Moreover, the isolates G1 and G3 showed good viability in the acid gastric environment and in the gut environment containing bovine bile salts. The viability of G1 and G3 isolates in the gastrointestinal tract, and the adhesion to the intestinal mucosa were also confirmed in vivo. The biochemical tests of blood samples revealed lower levels of serum triglycerides and cholesterol, as well as reduced activity of alkaline phosphatase in all lactobacilli-treated Wistar rats, compared to control ones. No toxicity for NMRI Ham mice was observed. According to our experimental results, these findings imply that L. plantarum G1 and L. casei G3 could be characterized as potential probiotics. PMID:24031847

  18. Stress responses in probiotic Lactobacillus casei.

    PubMed

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics. PMID:24915363

  19. Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus

    PubMed Central

    De Angelis, Maria; Bottacini, Francesca; Fosso, Bruno; Kelleher, Philip; Calasso, Maria; Di Cagno, Raffaella; Ventura, Marco; Picardi, Ernesto; van Sinderen, Douwe; Gobbetti, Marco

    2014-01-01

    Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches. PMID:25264826

  20. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties.

    PubMed

    Aoudia, Nabil; Rieu, Aurélie; Briandet, Romain; Deschamps, Julien; Chluba, Johanna; Jego, Gaëtan; Garrido, Carmen; Guzzo, Jean

    2016-02-01

    Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1β and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains. PMID:26611169

  1. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)). PMID:16014493

  2. Vaginal Lactobacillus: biofilm formation in vivo – clinical implications

    PubMed Central

    Ventolini, Gary

    2015-01-01

    Vaginal lactobacilli provide protection against intrusive pathogenic bacteria. Some Lactobacillus spp. produce in vitro a thick, protective biofilm. We report in vivo formation of biofilm by vaginal Lactobacillus jensenii. The biofilm formation was captured in fresh wet-mount microscopic samples from asymptomatic patients after treatment for recurrent bacterial vaginitis. In vivo documentation of biofilm formation is in our opinion noteworthy, and has significant clinical implications, among which are the possibility to isolate, grow, and therapeutically utilize lactobacilli to prevent recurrent vaginal infections and preterm labor associated with vaginal microbial pathogens. PMID:25733930

  3. Vaginal Lactobacillus: biofilm formation in vivo - clinical implications.

    PubMed

    Ventolini, Gary

    2015-01-01

    Vaginal lactobacilli provide protection against intrusive pathogenic bacteria. Some Lactobacillus spp. produce in vitro a thick, protective biofilm. We report in vivo formation of biofilm by vaginal Lactobacillus jensenii. The biofilm formation was captured in fresh wet-mount microscopic samples from asymptomatic patients after treatment for recurrent bacterial vaginitis. In vivo documentation of biofilm formation is in our opinion noteworthy, and has significant clinical implications, among which are the possibility to isolate, grow, and therapeutically utilize lactobacilli to prevent recurrent vaginal infections and preterm labor associated with vaginal microbial pathogens. PMID:25733930

  4. Lactobacillus species shift in distal esophagus of high-fat-diet-fed rats

    PubMed Central

    Zhao, Xin; Liu, Xiao-Wei; Xie, Ning; Wang, Xue-Hong; Cui, Yi; Yang, Jun-Wen; Chen, Lin-Lin; Lu, Fang-Gen

    2011-01-01

    AIM: To analyze the microbiota shift in the distal esophagus of Sprague-Dawley rats fed a high-fat diet. METHODS: Twenty Sprague-Dawley rats were divided into high-fat diet and normal control groups of 10 rats each. The composition of microbiota in the mucosa from the distal esophagus was analyzed based on selective culture. A variety of Lactobacillus species were identified by molecular biological techniques. Bacterial DNA from Lactobacillus colonies was extracted, and 16S rDNA was amplified by PCR using bacterial universal primers. The amplified 16S rDNA products were separated by denaturing gradient gel electrophoresis (DGGE). Every single band was purified from the gel and sent to be sequenced. RESULTS: Based on mucosal bacterial culturing in the distal esophagus, Staphylococcus aureus was absent, and total anaerobes and Lactobacillus species were decreased significantly in the high-fat diet group compared with the normal control group (P < 0.01). Detailed DGGE analysis on the composition of Lactobacillus species in the distal esophagus revealed that Lactobacillus crispatus, Lactobacillus gasseri (L. gasseri) and Lactobacillus reuteri (L. reuteri) comprised the Lactobacillus species in the high-fat diet group, while the composition of Lactobacillus species in the normal control group consisted of L. gasseri, Lactobacillus jensenii and L. reuteri. CONCLUSION: High-fat diet led to a mucosal microflora shift in the distal esophagus in rats, especially the composition of Lactobacillus species. PMID:21912459

  5. Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195.

    PubMed

    Kaplan, Handan; Hutkins, Robert W

    2003-04-01

    Fermentation of fructooligosaccharides (FOS) and other oligosaccharides has been suggested to be an important property for the selection of bacterial strains used as probiotics. However, little information is available on FOS transport and metabolism by lactic acid bacteria and other probiotic bacteria. The objectives of this research were to identify and characterize the FOS transport system of Lactobacillus paracasei 1195. Radiolabeled FOS was synthesized enzymatically from [(3)H]sucrose and purified by column and thin-layer chromatography, yielding three main products: glucose (G) alpha-1,2 linked to two, three, or four fructose (F) units (GF(2), GF(3), and GF(4), respectively). FOS hydrolysis activity was detected only in cell extracts prepared from FOS- or sucrose-grown cells and was absent in cell supernatants, indicating that transport must precede hydrolysis. FOS transport assays revealed that the uptake of GF(2) and GF(3) was rapid, whereas little GF(4) uptake occurred. Competition experiments showed that glucose, fructose, and sucrose reduced FOS uptake but that other mono-, di-, and trisaccharides were less inhibitory. When cells were treated with sodium fluoride, iodoacetic acid, or other metabolic inhibitors, FOS transport rates were reduced by up to 60%; however, ionophores that abolished the proton motive force only slightly decreased FOS transport. In contrast, uptake was inhibited by ortho-vanadate, an inhibitor of ATP-binding cassette transport systems. De-energized cells had low intracellular ATP concentrations and had a reduced capacity to accumulate FOS. These results suggest that FOS transport in L. paracasei 1195 is mediated by an ATP-dependent transport system having specificity for a narrow range of substrates. PMID:12676703

  6. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  7. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  8. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Karska-Wysocki, Barbara; Bazo, Mari; Smoragiewicz, Wanda

    2010-10-20

    Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant microorganism and the principal nosocomial pathogen worldwide. The antibacterial activity of lactic acid bacteria against MRSA from ten human clinical isolates as well as MRSA standard strain ATCC 43300 was tested in vitro. The Lactobacillus (Lb.) strains (Lb. acidophilus CL1285(®) and Lb. casei LBC80R) as pure cultures, which came from commercial food products were employed. The growth inhibitory effect produced by the antimicrobial activity of the lactic acid bacteria on the MRSA strains was tested on solid medium using agar diffusion methods as well as a using a liquid medium procedure that contained a mixture of MRSA and lactic acid bacteria cultures. In the latter instance, we were able to demonstrate that the direct interaction of lactic acid bacteria and MRSA in such a mixture led to the elimination of 99% of the MRSA cells after 24 h of their incubation at 37°C. PMID:20116228

  9. In vivo gut transcriptome responses to Lactobacillus rhamnosus GG and Lactobacillus acidophilus in neonatal gnotobiotic piglets

    PubMed Central

    Kumar, Anand; Vlasova, Anastasia N; Liu, Zhe; Chattha, Kuldeep S; Kandasamy, Sukumar; Esseili, Malak; Zhang, Xiaoli; Rajashekara, Gireesh; Saif, Linda J

    2014-01-01

    Probiotics facilitate mucosal repair and maintain gut homeostasis. They are often used in adjunct with rehydration or antibiotic therapy in enteric infections. Lactobacillus spp have been tested in infants for the prevention or treatment of various enteric conditions. However, to aid in rational strain selection for specific treatments, comprehensive studies are required to delineate and compare the specific molecules and pathways involved in a less complex but biologically relevant model (gnotobiotic pigs). Here we elucidated Lactobacillus rhamnosus (LGG) and L. acidophilus (LA) specific effects on gut transcriptome responses in a neonatal gnotobiotic (Gn) pig model to simulate responses in newly colonized infants. Whole genome microarray, followed by biological pathway reconstruction, was used to investigate the host-microbe interactions in duodenum and ileum at early (day 1) and later stages (day 7) of colonization. Both LA and LGG modulated common responses related to host metabolism, gut integrity, and immunity, as well as responses unique to each strain in Gn pigs. Our data indicated that probiotic establishment and beneficial effects in the host are guided by: (1) down-regulation or upregulation of immune function-related genes in the early and later stages of colonization, respectively, and (2) alternations in metabolism of small molecules (vitamins and/or minerals) and macromolecules (carbohydrates, proteins, and lipids). Pathways related to immune modulation and carbohydrate metabolism were more affected by LGG, whereas energy and lipid metabolism-related transcriptome responses were prominently modulated by LA. These findings imply that identification of probiotic strain-specific gut responses could facilitate the rational design of probiotic-based interventions to moderate specific enteric conditions. PMID:24637605

  10. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.

    PubMed

    Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo

    2013-10-15

    Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. PMID:23987441

  11. Sequence of ornithine decarboxylase from Lactobacillus sp. strain 30a.

    PubMed Central

    Hackert, M L; Carroll, D W; Davidson, L; Kim, S O; Momany, C; Vaaler, G L; Zhang, L

    1994-01-01

    A gene encoding biodegradative ornithine decarboxylase from Lactobacillus sp. strain 30a was isolated from a genomic DNA library and sequenced. Primer extension analysis revealed two transcription initiation sites. The deduced amino acid sequence is compared with the amino acid sequences of five previously reported bacterial decarboxylases, and conserved pyridoxal phosphate motif residues are identified. PMID:7961515

  12. Genome Sequence of Lactobacillus plantarum Strain UCMA 3037

    PubMed Central

    Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias

    2013-01-01

    Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem. PMID:23704179

  13. Genome Sequence of Lactobacillus plantarum Strain UCMA 3037.

    PubMed

    Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias; Vernoux, Jean-Paul

    2013-01-01

    Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem. PMID:23704179

  14. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  15. Lactobacillus plantarum mediated fermentation of Psidium guajava L. fruit extract.

    PubMed

    Bhat, Ravish; Suryanarayana, Lakshminarayana Chikkanayakanahalli; Chandrashekara, Karunakara Alageri; Krishnan, Padma; Kush, Anil; Ravikumar, Puja

    2015-04-01

    Sixteen hour fermentation of the white flesh raw guava Lucknow 49 cultivar using Lactobacillus plantarum NCIM 2912 was taken up for enhancing the antioxidant potential. The fermented guava product with high antioxidant potential, total phenolic content and short and medium chain fatty acids can be used as functional food. PMID:25300190

  16. Nearly Complete Genome Sequence of Lactobacillus plantarum Strain NIZO2877

    PubMed Central

    Bayjanov, Jumamurat R.; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; Siezen, Roland; van Hijum, Sacha A. F. T.

    2015-01-01

    Lactobacillus plantarum is a versatile bacterial species that is isolated mostly from foods. Here, we present the first genome sequence of L. plantarum strain NIZO2877 isolated from a hot dog in Vietnam. Its two contigs represent a nearly complete genome sequence. PMID:26607887

  17. Draft Genome Sequence of Lactobacillus fermentum NB-22

    PubMed Central

    Shkoporov, A. N.; Efimov, B. A.; Pikina, A. P.; Borisova, O. Y.; Gladko, I. A.; Postnikova, E. A.; Lordkipanidze, A. E.; Kafarskaia, L. I.

    2015-01-01

    We announce here a draft genome sequence of Lactobacillus fermentum NB-22, a strain isolated from human vaginal microbiota. The assembled sequence consists of 190 contigs, joined into 137 scaffolds, and the total size is 2.01 Mb. PMID:26272572

  18. Draft Genome Sequence of Lactobacillus fermentum NB-22.

    PubMed

    Chaplin, A V; Shkoporov, A N; Efimov, B A; Pikina, A P; Borisova, O Y; Gladko, I A; Postnikova, E A; Lordkipanidze, A E; Kafarskaia, L I

    2015-01-01

    We announce here a draft genome sequence of Lactobacillus fermentum NB-22, a strain isolated from human vaginal microbiota. The assembled sequence consists of 190 contigs, joined into 137 scaffolds, and the total size is 2.01 Mb. PMID:26272572

  19. Role of transporter proteins in bile tolerance of Lactobacillus acidophilus.

    PubMed

    Pfeiler, Erika A; Klaenhammer, Todd R

    2009-09-01

    Lactobacillus acidophilus NCFM derivatives containing deletion mutations in the transporter genes LBA0552, LBA1429, LBA1446, and LBA1679 exhibited increased sensitivity to bile. These strains showed unique patterns of sensitivity to a variety of inhibitory compounds, as well as differential accumulations of ciprofloxacin and taurocholate. PMID:19633113

  20. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis. PMID:25095898

  1. Antibiotic susceptibility of potentially probiotic Lactobacillus species.

    PubMed

    Charteris, W P; Kelly, P M; Morelli, L; Collins, J K

    1998-12-01

    In recent years, the time-honored reputation of lactobacilli as promoters of gastrointestinal and female urogenital health has been qualified. This has occurred due to a rare association with human infection in the presence of certain predisposing factors and their potential to act as a source of undesirable antibiotic resistance determinants to other members of the indigenous microbiota. This necessitates greater caution in their selection for use in microbial adjunct nutrition and disease management (prophylaxis and therapy). It was against this background that 46 Lactobacillus strains from human and dairy sources were assayed for susceptibility to 44 antibiotics. All strains were resistant to a group of 14 antibiotics, which included inhibitors of cell wall synthesis (cefoxitin [30 microg] and aztreonam [30 microg]), protein synthesis (amikacin [30 microg], gentamicin [10 microg], kanamycin [30 microg], and streptomycin [10 microg]), nucleic acid synthesis (norfloxacin [10 microg], nalidixic acid [30 microg], sulphamethoxazole [100 microg], trimethoprim [5 microg], co-trimoxazole [25 microg], and metronidazole [5 microg]), and cytoplasmic membrane function (polymyxin B [300 microg] and colistin sulphate [10 microg]). All strains were susceptible to tetracycline (30 microg), chloramphenicol (30 microg), and rifampicin (5 microg). Four human strains and one dairy strain exhibited atypical resistance to a penicillin, bacitracin (10 microg), and/or nitrofurantoin (300 microg). One human strain was also resistant to erythromycin (15 microg) and clindamycin (2 microg). These resistances may have been acquired due to antibiotic exposure in vivo, but conclusive evidence is lacking in this regard. Seven microorganism-drug combinations were evaluated for beta-lactamase activity using synergy and nitrocefin tests. The absence of activity suggested that cell wall impermeability appeared responsible for beta-lactam resistance. The occurrence of a minority of lactobacilli with undesirable, atypical resistance to certain antibiotics demonstrates that not all strains are suitable for use as probiotics or bacteriotherapeutic agents. The natural resistance of lactobacilli to a wide range of clinically important antibiotics may enable the development of antibiotic/probiotic combination therapies for such conditions as diarrhea, female urogenital tract infection, and infective endocarditis. PMID:9874341

  2. The Effects of Two Lactobacillus plantarum Strains on Rat Lipid Metabolism Receiving a High Fat Diet

    PubMed Central

    Salaj, Rastislav; Štofilová, Jana; Šoltesová, Alena; Hertelyová, Zdenka; Hijová, Emília; Bertková, Izabela; Strojný, Ladislav; Kružliak, Peter

    2013-01-01

    The aim of our study was to evaluate the effects of the different probiotic strains, Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96, on lipid metabolism and body weight in rats fed a high fat diet. Compared with the high fat diet group, the results showed that Lactobacillus plantarum LS/07 reduced serum cholesterol and LDL cholesterol, but Lactobacillus plantarum Biocenol LP96 decreased triglycerides and VLDL, while there was no change in the serum HDL level and liver lipids. Both probiotic strains lowered total bile acids in serum. Our strains have no significant change in body weight, gain weight, and body fat. These findings indicate that the effect of lactobacilli on lipid metabolism may differ among strains and that the Lactobacillus plantarum LS/07 and Lactobacillus plantarum Biocenol LP96 can be used to improve lipid profile and can contribute to a healthier bowel microbial balance. PMID:24470789

  3. Characterization of Indigenous Lactobacillus Strains for Probiotic Properties

    PubMed Central

    Mojgani, Naheed; Hussaini, Fatimah; Vaseji, Narges

    2015-01-01

    Background: Probiotics are defined as adequate amount of live microorganisms able to confer health benefits on the host. Currently, most commercially available probiotic products in the market belong to genera Lactobacillus. Traditional dairy products are usually rich source of Lactobacillus strains with significant health benefits. In order to evaluate the probiotic potential of these bacteria, it is essential to assess their health benefits, efficacy, and safety. Objectives: The probiotic efficacy of two Lactobacillus strains namely Lactobacillus pentosus LP05 and L. brevis LB32 was evaluated. They were previously isolated from ewes’ milk in a rural area in East Azerbaijan, Iran. Materials and Methods: The selected isolates were tested for certain phenotypic characters and identified to genus and species level by 16S rRNA gene sequencing and species specific primers. Further analysis included acid and bile resistance, antagonistic activity, cholesterol removing ability, survival in simulated gastric and upper intestine contents, aggregation and coaggregation properties. Finally, the adhering ability of the selected Lactobacillus strains to epithelial cells was tested using Caco-2 cell lines. Results: The selected isolates tolerated bile salt concentrations ranging from 0.5% to 3%, however their coefficient of inhibition were varied. Both isolates hydrolyzed bile and grew at pH values of 3, 4, and 5, while isolate LP05 was not able to hydrolyze arginine. Based on 16s rRNA gene sequencing and species-specific primers, the isolates were identified as L. brevis LB32 and L. pentosus LP05. In contrast to simulated gastric conditions, the growth rate of the isolates in alkaline conditions of upper intestine increased significantly with the passage of time reaching its maximum in 24 hours. These 2 isolates inhibited the growth of Listeria monocytogenes, Salmonella enteritidis, Shigella dysenteriae, Staphylococcus aureus, and Streptococcus pneumonia. Furthermore, L. brevis LB32 was able to reduce approximately 86% of cholesterol compared to L. pentosus LP05, which showed only 69% of reduction. Higher aggregation and coaggregation percentage and adherence to Caco-2 cell line was observed in L. pentosus LP05 compared to L. brevis LB32. Conclusions: This research study proved the presence of viable probiotic LAB microflora in the ewe milk with enhanced health benefits. The 2 selected Lactobacillus strains could be exploited in dairy or pharmaceutical industry in future. PMID:25793099

  4. Survey of compound microsatellites in multiple Lactobacillus genomes.

    PubMed

    Basharat, Zarrin; Yasmin, Azra

    2015-12-01

    Distinct simple sequence repeats with 2 or more individual microsatellites joined together or lying adjacent to each other are identified as compound microsatellites. Investigation of such composite microsatellites in the genomes of genus Lactobacillus was the aim of this study. In silico inspection of microsatellite clustering in genomes of 14 Lactobacillus species revealed a wealth of compound microsatellites. All of the mined compound microsatellites were imperfect, were composed of variant motifs, and increased in all genomes, with maximum distance (dMAX) increments of 10 to 50. The majority of these repeats were present in the coding regions. A correlation of microsatellite to compound microsatellite density was detected. The difference established in compound microsatellite division among eukaryotes, Escherichia coli, and lactobacilli is suggestive of diverse genomic features and elementary distinction between creation and fixation methods of compound microsatellites among these organisms. PMID:26445296

  5. Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains.

    PubMed

    Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying

    2013-01-01

    The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing novel fermented foods. PMID:23894554

  6. Complete Genome Sequence of Probiotic Strain Lactobacillus acidophilus La-14.

    PubMed

    Stahl, Buffy; Barrangou, Rodolphe

    2013-01-01

    We present the 1,991,830-bp complete genome sequence of Lactobacillus acidophilus strain La-14 (SD-5212). Comparative genomic analysis revealed 99.98% similarity overall to the L. acidophilus NCFM genome. Globally, 111 single nucleotide polymorphisms (SNPs) (95 SNPs, 16 indels) were observed throughout the genome. Also, a 416-bp deletion in the LA14_1146 sugar ABC transporter was identified. PMID:23788546

  7. The effect of probiotics (Lactobacillus rhamnosus HN001, Lactobacillus paracasei LPC-37, and Lactobacillus acidophilus NCFM) on the availability of minerals from Dutch-type cheese.

    PubMed

    Aljewicz, Marek; Siemianowska, Ewa; Cichosz, Grażyna; Tońska, Elżbieta

    2014-01-01

    The use of probiotic cultures in the production of Dutch-type cheeses did not lead to significant changes in their chemical composition but it lowered their acidity. The availability of calcium and magnesium analyzed by in vitro enzymatic hydrolysis was 19 and 35%, respectively; the availability of phosphorus was significantly higher, at >90%. The use of probiotic cultures significantly increased the availability of calcium (~2.5%), phosphorus (~6%), and magnesium (~18%). The in vitro method supports accurate determination of the effect of the Lactobacillus spp. cultures on the availability of mineral compounds ingested with Dutch-type cheese. PMID:24913654

  8. Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains.

    PubMed

    Stoyancheva, Galina; Marzotto, Marta; Dellaglio, Franco; Torriani, Sandra

    2014-09-01

    The human vagina is a complex and dynamic ecosystem containing an abundance of microorganisms. In women of childbearing age, this system is dominated by Lactobacillus spp. In the present work, seventeen newly isolated vaginal strains were identified by 16S rDNA sequencing and were investigated for their antimicrobial properties. Twelve of the isolated Lactobacillus strains showed activity against one or more microorganisms. Six and five of them produced substances that inhibited the growth of two different Klebsiella strains and Staphylococcus aureus, respectively. Two lactobacilli strains were active against an Escherichia coli strain, one isolate was active against an Enterococus faecalis strain and another lactobacilli strain showed antimicrobial activity against a Candida parapsilosis strain. The nature of the active compounds was additionally studied, and the presence of bacteriocin-like substances was proved. The genes related to the bacteriocin production in three of the newly isolated strains were identified and sequenced. The presence of gassericin A operon in the genome of the species Lactobacillus crispatus was described for the first time. The presence of antimicrobial activity contributes to their possible use as potential probiotic strains after further research. PMID:24919535

  9. Diet alters probiotic Lactobacillus persistence and function in the intestine.

    PubMed

    Tachon, Sybille; Lee, Bokyung; Marco, Maria L

    2014-09-01

    We investigated the effects of host diet on the intestinal persistence and gene expression of Lactobacillus plantarum WCFS1 in healthy and health-compromised, 2,4,6-trinitrobenzene sulfonic acid (TNBS)-treated mice. Mice fed either a low-fat chow diet (CD) or high fat and sucrose Western diet (WD) received 10(9) L. plantarum WCFS1 cells for five consecutive days. Lactobacillus plantarum persistence was 10- to 100-fold greater in the intestines of WD-fed compared with CD-fed mice. TNBS, an intestinal irritant that induces the development of inflammatory bowel disease-like symptoms, resulted in up to a 10(4) -fold increase in L. plantarum survival in the digestive tract relative to healthy animals. Expression levels of 12 metabolic and gut-inducible L. plantarum genes were differentially affected by diet and TNBS administration. Pyrosequencing of 16S rRNA transcripts from the indigenous intestinal microbiota showed that WD resulted in significant reductions in proportions of metabolically active indigenous Lactobacillus species and increases in the Desulfovibrionaceae family. Feeding L. plantarum WCFS1 resulted in lower levels of colitis and higher concentrations of colonic IL-10 and IL-12 in WD and not CD-fed mice. Interactions between probiotics, nutritional components and the intestinal bacteria should be considered when examining for probiotic-mediated effects and elucidating mechanisms of probiotic function in the mammalian gut. PMID:24118739

  10. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery.

    PubMed

    Petricevic, Ljubomir; Domig, Konrad J; Nierscher, Franz Josef; Sandhofer, Michael J; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery. PMID:24875844

  11. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery

    PubMed Central

    Petricevic, Ljubomir; Domig, Konrad J.; Nierscher, Franz Josef; Sandhofer, Michael J.; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery. PMID:24875844

  12. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. PMID:26026241

  13. Peptidoglycan hydrolases as species-specific markers to differentiate Lactobacillus helveticus from Lactobacillus gallinarum and other closely related homofermentative lactobacilli.

    PubMed

    Jebava, Iva; Chuat, Victoria; Lortal, Sylvie; Valence, Florence

    2014-04-01

    We propose a new method that allows accurate discrimination of Lactobacillus helveticus from other closely related homofermentative lactobacilli, especially Lactobacillus gallinarum. This method is based on the amplification by PCR of two peptidoglycan hydrolytic genes, Lhv_0190 and Lhv_0191. These genes are ubiquitous and show high homology at the intra-species level. The PCR method gave two specific PCR products, of 542 and 747 bp, for 25 L. helveticus strains coming from various sources. For L. gallinarum, two amplicons were obtained, the specific 542 bp amplicon and another one with a size greater than 1,500 bp. No specific PCR products were obtained for 12 other closely related species of lactobacilli, including the L. acidophilus complex, L. delbrueckii, and L. ultunensis. The developed PCR method provided rapid, precise, and easy identification of L. helveticus. Moreover, it enabled differentiation between the two closely phylogenetically related species L. helveticus and L. gallinarum. PMID:24362553

  14. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  15. Synergistic impact of Lactobacillus fermentum, Lactobacillus plantarum and vincristine on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in mice

    PubMed Central

    ASHA; GAYATHRI, DEVARAJA

    2012-01-01

    Lactobacillus sp. is the most dominant probiotic strain of bacteria. Evidence indicates that the consumption of Lactobacillus sp. reduces the risk of colorectal cancer in animal models. The present study was carried out to determine whether administration of Lactobacillus fermentum/ Lactobacillus plantarum alone or in combination with vincristine have a synergistic impact on the control of colorectal cancer in an animal model. Mice with 1,2 dimethylhydrazine (DMH) hydrochloride-induced colon cancer were fed with L. fermentum and L. plantarum isolated along with vincristine. An increase in body weight, a decrease in ammonia concentration, a decrease in β glucosidase and β glucuronidase enzyme activity and a reduction in the number of crypts in the mice in the pre-carcinogen-induced group was noted when compared to these variables in the post-carcinogen-induced group. The body weight of the mice fed L. fermentum along with vincristine was increased (6.5 g), and was found to be 3.5 times higher compared to that of the control. A marked decrease in the ammonia concentration (240 mg), and β glucosidase (0.0023 IU) and β glucopyranose enzyme activity (0.0027 IU) was observed; 22.59% less ammonia concentration, 73.26% less β glucosidase activity and 56.46% less β glucuronidase enzyme activity was noted when compared to the control. A significant reduction in the number of aberrant crypt foci (ACF) (90%) was observed when compared to the control. Maximum protection was observed in the mice fed the probiotics and vincristine prior to cancer induction. Among the different dietary combinations tested in the present study, L. fermentum and vincristine showed a more extensive reduction in ammonia concentration, β glucosidase, β glucuronidase activity and the number of ACF. PMID:22970015

  16. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  17. Comparative Genomic and Functional Analysis of Lactobacillus casei and Lactobacillus rhamnosus Strains Marketed as Probiotics

    PubMed Central

    Douillard, François P.; Ribbera, Angela; Järvinen, Hanna M.; Kant, Ravi; Pietilä, Taija E.; Randazzo, Cinzia; Paulin, Lars; Laine, Pia K.; Caggia, Cinzia; von Ossowski, Ingemar; Reunanen, Justus; Satokari, Reetta; Salminen, Seppo; Palva, Airi

    2013-01-01

    Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities. PMID:23315726

  18. Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules

    PubMed Central

    Jalali, M.; Abedi, D.; Varshosaz, J.; Najjarzadeh, M.; Mirlohi, M.; Tavakoli, N.

    2012-01-01

    Freeze-drying is a common preservation technology in the pharmaceutical industry. Various studies have investigated the effect of different cryoprotectants on probiotics during freeze-drying. However, information on the effect of cryoprotectants on the stability of some Lactobacillus strains during freeze-drying seems scarce. Therefore, the aim of the present study was to establish production methods for preparation of oral capsule probiotics containing Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. Bulgaricus. It was also of interest to examine the effect of various formulations of cryoprotectant media containing skim milk, trehalose and sodium ascorbate on the survival rate of probiotic bacteria during freeze-drying at various storage temperatures. Without any cryoprotectant, few numbers of microorganisms survived. However, microorganisms tested maintained higher viability after freeze-drying in media containing at least one of the cryoprotectants. Use of skim milk in water resulted in an increased viability after lyophilization. Media with a combination of trehalose and skim milk maintained a higher percentage of live microorganisms, up to 82%. In general, bacteria retained a higher number of viable cells in capsules containing freeze-dried bacteria with sodium ascorbate after three months of storage. After this period, a marked decline was observed in all samples stored at 23°C compared to those stored at 4°C. The maximum survival rate (about 72-76%) was observed with media containing 6% skim milk, 8% trehalose and 4% sodium ascorbate. PMID:23181077

  19. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  20. Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules.

    PubMed

    Jalali, M; Abedi, D; Varshosaz, J; Najjarzadeh, M; Mirlohi, M; Tavakoli, N

    2012-01-01

    Freeze-drying is a common preservation technology in the pharmaceutical industry. Various studies have investigated the effect of different cryoprotectants on probiotics during freeze-drying. However, information on the effect of cryoprotectants on the stability of some Lactobacillus strains during freeze-drying seems scarce. Therefore, the aim of the present study was to establish production methods for preparation of oral capsule probiotics containing Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. Bulgaricus. It was also of interest to examine the effect of various formulations of cryoprotectant media containing skim milk, trehalose and sodium ascorbate on the survival rate of probiotic bacteria during freeze-drying at various storage temperatures. Without any cryoprotectant, few numbers of microorganisms survived. However, microorganisms tested maintained higher viability after freeze-drying in media containing at least one of the cryoprotectants. Use of skim milk in water resulted in an increased viability after lyophilization. Media with a combination of trehalose and skim milk maintained a higher percentage of live microorganisms, up to 82%. In general, bacteria retained a higher number of viable cells in capsules containing freeze-dried bacteria with sodium ascorbate after three months of storage. After this period, a marked decline was observed in all samples stored at 23°C compared to those stored at 4°C. The maximum survival rate (about 72-76%) was observed with media containing 6% skim milk, 8% trehalose and 4% sodium ascorbate. PMID:23181077

  1. PRODUCTION OF MANNITOL AND LACTIC ACID BY FERMENTATION WITH LACTOBACILLUS INTERMEDIUS NRRL B-3693

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus intermedius B-3693 was selected as a good producer of mannitol from 9 strains (Lactobacillus brevis B-1836, L. buchneri B-1860, L. cellobiosus B-1840, L. fermentum B-1915, L. intermedius B-3693, Leuconostoc amelibiosum B-742, L. citrovorum B-1147, L. mesenteroides subsp. dextranicum B-...

  2. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required. PMID:25930687

  3. Draft Genome Sequence of Lactobacillus gorillae Strain KZ01T, Isolated from a Western Lowland Gorilla.

    PubMed

    Tsuchida, Sayaka; Nezuo, Maiko; Tsukahara, Masatoshi; Ogura, Yoshitoshi; Hayashi, Tetsuya; Ushida, Kazunari

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus gorillae strain KZ01(T) isolated from a western lowland gorilla (Gorilla gorilla gorilla). This genome sequence will be helpful for the comparative genomics between human and nonhuman primate-associated Lactobacillus. PMID:26472838

  4. Draft Genome Sequence of Lactobacillus gorillae Strain KZ01T, Isolated from a Western Lowland Gorilla

    PubMed Central

    Tsuchida, Sayaka; Nezuo, Maiko; Tsukahara, Masatoshi; Ogura, Yoshitoshi; Hayashi, Tetsuya

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus gorillae strain KZ01T isolated from a western lowland gorilla (Gorilla gorilla gorilla). This genome sequence will be helpful for the comparative genomics between human and nonhuman primate-associated Lactobacillus. PMID:26472838

  5. Genome Sequence of Lactobacillus fabifermentans Strain T30PCM01, Isolated from Fermenting Grape Marc

    PubMed Central

    Treu, Laura; Vendramin, Veronica; Bovo, Barbara; Giacomini, Alessio; Corich, Viviana

    2014-01-01

    Here, we report the draft genome assembly of Lactobacillus fabifermentans strain T30PCM01 isolated from grape marc. Its genome is the largest (3.58 Mbp) among Lactobacillus species and reveals an enormous potential for carbohydrate utilization and transcriptional regulation. PMID:24558238

  6. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  7. Diversity and functional characterization of Lactobacillus spp. isolated throughout the ripening of a hard cheese.

    PubMed

    Bautista-Gallego, J; Alessandria, V; Fontana, M; Bisotti, S; Taricco, S; Dolci, P; Cocolin, L; Rantsiou, K

    2014-07-01

    The aim of this work was to study the Lactobacillus spp. intra- and inter- species diversity in a Piedmont hard cheese made of raw milk without thermal treatment and without addition of industrial starter, and to perform a first screening for potential functional properties. A total of 586 isolates were collected during the cheese production and identified by means of molecular methods: three hundred and four were identified as Lactobacillus rhamnosus, two hundred and forty as Lactobacillus helveticus, twenty six as Lactobacillus fermentum, eleven as Lactobacillus delbrueckii, three as Lactobacillus pontis, and two as Lactobacillus gasseri and Lactobacillus reuteri, respectively. A high genetic heterogeneity was detected by using the repetitive bacterial DNA element fingerprinting (rep-PCR) with the use of (GTG)5 primer resulting in eight clusters of L. helveticus and sixteen clusters in the case of L. rhamnosus. Most of isolates showed a high auto-aggregation property, low hydrophobicity values, and a general low survival to simulated digestion process. However, sixteen isolates showed promising functional characteristics. PMID:24819414

  8. A simple identification method for vaginal secretions using relative quantification of Lactobacillus DNA.

    PubMed

    Doi, Masanori; Gamo, Shinsuke; Okiura, Tatsuyuki; Nishimukai, Hiroaki; Asano, Migiwa

    2014-09-01

    In criminal investigations there are some cases in which identifying the presence of vaginal secretions provides crucial evidence in proving sexual assault. However, there are no methods for definitively identifying vaginal secretions. In the present study, we focused on Lactobacillus levels in vaginal secretions and developed a novel identification method for vaginal secretions by relative quantification based on real time PCR. We designed a Lactobacillus conserved region primer pair (LCP) by aligning 16S rRNA gene sequences from major vaginal Lactobacillus species (Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners and Lactobacillus jensenii), and selected the human specific primer pair (HSP) as an endogenous control for relative quantification. As a result, the ΔCt (ΔCt=Ct[LCP]-Ct[HSP]) values of vaginal secretions (11 out of 12 samples) were significantly lower than those of saliva, semen and skin surface samples, and it was possible to discriminate between vaginal secretions and other body fluids. For the one remaining sample, it was confirmed that the predominant species in the microflora was not of the Lactobacillus genus. The ΔCt values in this study were calculated when the total DNA input used from the vaginal secretions was 10pg or more. Additionally, the ΔCt values of samples up to 6-months-old, which were kept at room temperature, remained unchanged. Thus, we concluded in this study that the simple ΔCt method by real time PCR is a useful tool for detecting the presence of vaginal secretions. PMID:24905338

  9. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. PMID:26143437

  10. Evaluation of Antibacterial Activity of Lactobacillus Spp. on Selected Food Spoilage Bacteria.

    PubMed

    Sharma, Anurag; Gupta, Piyush; Bhattacharya, Susinjan

    2015-01-01

    This study was done to isolate Lactobacillus species from curd, amla/Indian gooseberry and orange and to assess their antagonistic ability against selected food spoilage bacteria, Escherichia coli, Pseudomonas spp. and Bacillus spp. isolated from natural food sources. In the approaches used, native Lactobacillus spp. were isolated from amla, orange and curd and identified by standard microbiological methods. Their antagonistic affect was tested by disc diffusion tests against three selected test isolates, Escherichia coli, Pseudomonas and Bacillus spp. isolated from tomato, pumpkin, cauliflower, lady's finger, carrot, and milk. There are recent patents also suggesting use of novel strains of Lactobacillus for microbial antagonism. In our present work, the lactobacilli isolated from different food sources showed varied ability to inhibit the growth of test isolates. The growth of test isolates was inhibited by Lactobacillus isolates with one of the Lactobacillus isolate from amla being the most potent inhibitor. PMID:25751004

  11. Draft Genome Sequences of Lactobacillus equicursoris CIP 110162T and Lactobacillus sp. Strain CRBIP 24.137, Isolated from Thoroughbred Racehorse Feces and Human Urine, Respectively

    PubMed Central

    Cousin, Sylvie; Loux, Valentin; Ma, Laurence; Creno, Sophie; Clermont, Dominique; Bizet, Chantal

    2013-01-01

    We report the draft genome sequences of strain Lactobacillus equicursoris CIP 110162T, isolated from racehorse breed feces, and Lactobacillus sp. strain CRBIP 24.137, isolated from human urine; the two strains are closely related. The total lengths of the 116 and 62 scaffolds are about 2.157 and 2.358 Mb, with G+C contents of 46 and 45% and 2,279 and 2,342 coding sequences (CDSs), respectively. PMID:23969063

  12. Screening of Lactobacillus strains of domestic goose origin against bacterial poultry pathogens for use as probiotics.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2014-10-01

    Lactobacilli are natural inhabitants of human and animal mucous membranes, including the avian gastrointestinal tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities, among which their antagonistic potential against pathogens plays a key role. A study was conducted to evaluate probiotic properties of Lactobacillus strains isolated from feces or cloacae of domestic geese. Among the 104 examined isolates, previously identified to the species level by whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and analysis of 16S-23S regions of rDNA, dominated Lactobacillus salivarius (35%), followed by Lactobacillus johnsonii (18%) and Lactobacillus ingluviei (11%). All lactobacilli were screened for antimicrobial activity toward Salmonella Enteritidis, Escherichia coli, Clostridium perfringens, Staphylococcus aureus, Pasteurella multocida, and Riemerella anatipestifer using the agar slab method and the well diffusion method. Lactobacillus salivarius and Lactobacillus plantarum exhibited particularly strong antagonism toward all of the indicator strains. In the agar slab method, the highest sensitivity to Lactobacillus was observed in R. anatipestifer and P. multocida, and the lowest in E. coli and S. aureus. The ability to produce H₂O₂was exhibited by 92% of isolates, but there was no correlation between the rate of production of this reactive oxygen species and the antimicrobial activity of Lactobacillus sp. All lactobacilli showed resistance to pH 3.0 and 3.5 and to 2% bile. The data demonstrate that Lactobacillus isolates from geese may have probiotic potential in reducing bacterial infections. The antibacterial activity of the selected lactobacilli is mainly due to lactic acid production by these bacteria. The selected Lactobacillus strains that strongly inhibited the growth of pathogenic bacteria, and were also resistant to low pH and bile salts, can potentially restore the balance of intestinal microflora in geese and could offer an alternative to antibiotic therapy. PMID:25104766

  13. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health

    PubMed Central

    Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah

    2015-01-01

    The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies. PMID:25859220

  14. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health.

    PubMed

    Petrova, Mariya I; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah

    2015-01-01

    The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies. PMID:25859220

  15. Adhesive and chemokine stimulatory properties of potentially probiotic Lactobacillus strains.

    PubMed

    Vizoso Pinto, María G; Schuster, Tobias; Briviba, Karlis; Watzl, Bernhard; Holzapfel, Wilhelm H; Franz, Charles M A P

    2007-01-01

    Five Lactobacillus plantarum strains and two Lactobacillus johnsonii strains, stemming either from African traditionally fermented milk products or children's feces, were investigated for probiotic properties in vitro. The relationship between the hydrophobic-hydrophilic cell surface and adhesion ability to HT29 intestinal epithelial cells was investigated, and results indicated that especially the L. johnsonii strains, which exhibited both hydrophobic and hydrophilic surface characteristics, adhered well to HT29 cells. Four L. plantarum and two L. johnsonii strains showed high adherence to HT29 cells, generally higher than that of the probiotic control strain Lactobacillus rhamnosus GG. Most strains with high adhesion ability also showed high autoaggregation ability. The two L. johnsonii strains coaggregated well with the intestinal pathogens Listeria monocytogenes Scott A, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Salmonella enterica serovar Typhimurium ATCC 14028. The L. plantarum BFE 1685 and L. johnsonii 6128 strains furthermore inhibited the adhesion of at least two of these intestinal pathogens in coculture with HT29 cells in a strain-dependent way. These two potential probiotic strains also significantly increased interleukin-8 (IL-8) chemokine production by HT29 cells, although modulation of other cytokines, such as IL-1, IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), and transforming growth factor beta (TGF-beta), did not occur. Altogether, our results suggested that L. plantarum BFE 1685 and L. johnsonii BFE 6128 showed good adherence, coaggregated with pathogens, and stimulated chemokine production of intestinal epithelial cells, traits that may be considered promising for their development as probiotic strains. PMID:17265871

  16. Antibiotic susceptibility of Lactobacillus strains isolated from domestic geese.

    PubMed

    Dec, M; Wernicki, A; Puchalski, A; Urban-Chmiel, R

    2015-01-01

    The aim of this study was to determine the antibiotic susceptibility of 93 Lactobacillus strains isolated from domestic geese raised on Polish farms. The minimal inhibitory concentration (MIC) of 13 antimicrobial substances was determined by the broth microdilution method. All strains were sensitive to the cell wall inhibitors ampicillin and amoxicillin (MIC ≤ 8 μg/ml). Resistance to inhibitors of protein synthesis and to fluoroquinolone inhibitors of replication was found in 44.1% and 60.2% of isolates, respectively; 26.9% strains were resistant to neomycin (MIC ≥ 64 μg/ml), 23.6% to tetracycline (MIC ≥ 32 μg/ml), 15% to lincomycin (MIC ≥ 64 μg/ml), 18.3% to doxycycline (MIC ≥ 32 μg/ml), 9.7% to tylosin (MIC ≥ 32 μg/ml), 56% to flumequine (MIC ≥ 256 μg/ml) and 22.6% to enrofloxacin (MIC ≥ 64 μg/ml). Bimodal distribution of MICs indicative of acquired resistance and unimodal distribution of the high MIC values indicative of intrinsic resistance were correlated with Lactobacillus species. Eleven (11.8%) strains displayed multiple resistance for at least three classes of antibiotics. Data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorisation of susceptible and resistant strains of Lactobacillus genus and help to assess the hazards associated with the occurrence of drug resistance among natural intestinal microflora. PMID:26105622

  17. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. [Lactobacillus sake; Lactobacillus curvatus; Lactobacillus farciminis; Staphylococcus aureus; Salmonella typimurium

    SciTech Connect

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.

  18. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics.

    PubMed

    Lhomme, Emilie; Orain, Servane; Courcoux, Philippe; Onno, Bernard; Dousset, Xavier

    2015-11-20

    Fourteen bakeries located in different regions of France were selected. These bakers use natural sourdough and organic ingredients. Consequently, different organic sourdoughs used for the manufacture of French bread were studied by the enumeration of lactic acid bacteria (LAB) and 16S rRNA sequencing of the isolates. In addition, after DNA extraction the bacterial diversity was assessed by pyrosequencing of the 16S rDNA V1-V3 region. Although LAB counts showed significant variations (7.6-9.5log10CFU/g) depending on the sourdough studied, their identification through a polyphasic approach revealed a large predominance of Lactobacillus sanfranciscensis in all samples. In ten sourdoughs, both culture and independent methods identified L. sanfranciscensis as the dominant LAB species identified. In the remaining sourdoughs, culture methods identified 30-80% of the LAB as L. sanfranciscensis whereas more than 95% of the reads obtained by pyrosequencing belonged to L. sanfranciscensis. Other sub-dominant species, such as Lactobacillus curvatus, Lactobacillus hammesii, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei, were also identified. Quantification of L. sanfranciscensis by real-time PCR confirmed the predominance of this species ranging from 8.24 to 10.38log10CFU/g. Regarding the acidification characteristics, sourdough and related bread physico-chemical characteristics varied, questioning the involvement of sub-dominant species or L. sanfranciscensis intra-species diversity and/or the role of the baker's practices. PMID:26051957

  19. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. PMID:26946538

  20. Fructooligosaccharides metabolism and effect on bacteriocin production in Lactobacillus strains isolated from ensiled corn and molasses.

    PubMed

    Muñoz, M; Mosquera, A; Alméciga-Díaz, C J; Melendez, A P; Sánchez, O F

    2012-06-01

    Fructo- (FOS) and galacto-oligosaccharides have been used to promote the growth of probiotics, mainly those from Lactobacillus genus. However, only few reports have evaluated the effect of prebiotics on bacteriocins activity and production. In this work, we characterized the effect of FOS supplementation on the growth, lactic and acetic acids production, and antimicrobial activity of crude extracts obtained from Lactobacillus strains isolated from ensiled corn and molasses. Seven out of 28 isolated Lactobacillus, belonging to Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus brevis, showed antimicrobial activity against Listeria innocua. Among them, the strain L. plantarum LE5 showed antimicrobial activity against Listeria monocytogenes and Enteroccocus faecalis; while the L. plantarum LE27 strain showed antimicrobial effect against L. monocytogenes, E. faecalis, Escherichia coli and Salmonella enteritidis. This antimicrobial activity in most of the cases was obtained only after FOS supplementation. In summary, these results show the feasibility to increase the antimicrobial activity of Lactobacillus bacteriocins by supplementing the growth medium with FOS. PMID:22342961

  1. A Decade of Experience in Primary Prevention of Clostridium difficile Infection at a Community Hospital Using the Probiotic Combination Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+).

    PubMed

    Maziade, Pierre-Jean; Pereira, Pascale; Goldstein, Ellie J C

    2015-05-15

    In August 2003, the 284-bed community hospital Pierre-Le Gardeur (PLGH) in Quebec experienced a major outbreak associated with the Clostridium difficile NAP1/027/BI strain. Augmented standard preventive measures (SPMs) were not able to control this outbreak. It was decided in February 2004 to give to every adult inpatient on antibiotics, without any exclusion, a probiotic (Bio-K+: Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2) within 12 hours of the antibiotic prescription. Augmented SPMs were continued. The use of the probiotic in addition to SPMs was associated with a marked reduction of C. difficile infection (CDI). During the 10 years of observation, 44 835 inpatients received Bio-K+, and the CDI rate at PLGH declined from 18.0 cases per 10,000 patient-days and remained at low mean levels of 2.3 cases per 10,000 patient-days. Additionally, 10-year data collected by the Ministry of Health in Quebec comparing the CDI rate between Quebec hospitals showed that CDI rates at PLGH were consistently and continuously lower compared with those at similar hospitals. Blood cultures were monitored at PLGH for Lactobacillus bacteremia through the 10 years' experience, and no Lactobacillus bacteremias were detected. Despite the limitation of an observational study, we concluded that the probiotic Bio-K+ was safe and effective in decreasing our primary CDI rate. PMID:25922400

  2. Bioactivity characterization of Lactobacillus strains isolated from dairy products.

    PubMed

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Khosroushahi, Ahmad Yari

    2015-10-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  3. Lactobacillus crispatus and its nonaggregating mutant in human colonization trials.

    PubMed

    Cesena, C; Morelli, L; Alander, M; Siljander, T; Tuomola, E; Salminen, S; Mattila-Sandholm, T; Vilpponen-Salmela, T; von Wright, A

    2001-05-01

    A wild-type Lactobacillus crispatus, showing a cell aggregation phenotype and its spontaneous nonaggregating mutant were compared for their in vitro adhesion properties to human ileal mucus and to a cultured human colonic cell line (Caco2) and for their in vivo colonization and adhesion potential with colonoscopy patients as volunteers in feeding trials. The wild-type strain adhered better to mucus or to Caco2 cells than did the mutant. Altogether, three human trials with the wild type and two with the mutant strain were performed. In two of the trials, the wild type could be recovered from either fecal samples or biopsies taken from the colon, while the mutant strain could not be demonstrated in either of the trials where it was used. The L. crispatus colonies recovered from the trials were often mixed, and several enterococci and lactobacillus strains coaggregating with L. crispatus wild type could be isolated. The results indicate that the surface-mediated properties, such as aggregation, of lactobacilli can have a role in adhesion and colonization. PMID:11384025

  4. Characterization of an intracellular oligopeptidase from Lactobacillus paracasei.

    PubMed Central

    Tobiassen, R O; Sørhaug, T; Stepaniak, L

    1997-01-01

    An intracellular oligopeptidase from Lactobacillus paracasei Lc-01 has been purified to homogeneity by Fast Flow Q Sepharose, hydroxyapatite, and Mono Q chromatography. The molecular mass of the enzyme was determined to be 140 kDa by gel filtration and approximately 30 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and SDS-capillary electrophoresis. The pI of the enzyme was at pH 4.5. The enzyme expressed maximum activity at pH 8.0 and 40 degrees C. Oligopeptidase activity on bradykinin was inhibited strongly by 1,10-phenantroline and EDTA and partly by p-chloromercuribenzoic acid but not by phosphoramidon or phenylmethylsulfonyl fluoride. Marked inhibition by beta-casein fragment 58 to 72 was demonstrated. The enzyme showed neither general aminopeptidase nor caseinolytic activity, and it degraded only oligopeptides between 8 and 13 amino acids. The enzyme readily hydrolyzed the Phe-Ser and Pro-Phe bonds of bradykinin; the Phe-His bond of angiotensin I; the Pro-Gln, Gln-Phe, and Phe-Gly bonds of substance P; and the Pro-Tyr bond of neurotensin. Weak activity toward the Ala-Tyr and Pro-Ser bonds of alpha(s1)-casein fragment 157 to 164, was observed. The N-terminal amino acid sequence of the oligopeptidase showed a high degree of homology to the lactacin B inducer from Lactobacillus acidophilus. PMID:9097425

  5. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli. PMID:26546316

  6. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    PubMed Central

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  7. Identification, technological and safety characterization of Lactobacillus sakei and Lactobacillus curvatus isolated from Argentinean anchovies (Engraulis anchoita).

    PubMed

    Belfiore, Carolina; Raya, Ral R; Vignolo, Graciela M

    2013-12-01

    In this study, the identification and characterization of Lactobacillus previously isolated from fresh anchovies (Engraulis anchoita) are investigated. 16S rDNA partial sequencing assigned all the isolates to belong to the Lactobacillus sakei/curvatus group. Fourteen out of 15 isolates were identified as L. sakei by phenotypic traits: they exhibited catalase activity and fermented melibiose, although only 10 of them hydrolyzed arginine. These results were confirmed by multiplex PCR-based restriction enzyme analysis with HindIII and by restriction fragment length polymorphic (RFLP) analysis of the 16S-23S rDNA intergenic spacer region with TaqI. Among identified isolates, four L. sakei strains and the sole L. curvatus strain showing sensitivity to chloramphenicol, erythromycin and tetracycline and exhibiting high tolerance to NaCl (10-18%) were unable to produce neither dextran nor biogenic amines. Based on technological and safety features, L. sakei SACB704 and L. curvatus SACB03a naturally present in fresh anchovies may be promising strains for the development of a starter culture to accelerate and control the fermentation of salt fermented anchovy-based products. PMID:23807916

  8. Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicans-colonized immunodeficient mice.

    PubMed

    Wagner, R D; Pierson, C; Warner, T; Dohnalek, M; Hilty, M; Balish, E

    2000-05-01

    Probiotic bacteria can protect immunodeficient mice from orogastric candidiasis but cause some pathology of their own. Severely immunodeficient patients may be at risk if fed viable probiotics, so this study evaluated the probiotic potential of nonviable probiotic bacteria to protect immunodeficient mice from Candida albicans infections. Heat-killed probiotic bacteria were fed to gnotobiotic bg/bg-nu/nu and bg/bg-nu/+ mice to ascertain if they could protect the mice from mucosal and systemic candidiasis. Both heat-killed Lactobacillus acidophilus (HKLA) and heat-killed Lactobacillus casei (HKLC), in comparison to control mice not fed the probiotic bacteria but challenged (oral) with C. albicans, suppressed the severity of orogastric candidiasis in bg/bg-nu/nu mice at 2 weeks after colonization with C. albicans, inhibited disseminated candidiasis in C. albicans-colonized bg/bg-nu/+ mice at 4 weeks after colonization, and suppressed the number of viable C. albicans in the alimentary tract. HKLA, but not HKLC, treatment inhibited disseminated candidiasis in bg/bg-nu/nu mice at 2 weeks after oral challenge and enhanced the proliferative responses of splenocytes from C. albicans-colonized bg/bg-nu/+ mice to C. albicans antigens. Neither HKLA nor HKLC were able to prolong the survival of gnotobiotic bg/bg-nu/nu mice after oral challenge with C. albicans. These results demonstrate that heat-killed lactobacilli can induce some (limited) protection (probiotic effect) against candidiasis in mice. PMID:10826722

  9. Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt

    PubMed Central

    Michael, Minto; Phebus, Randall K; Schmidt, Karen A

    2015-01-01

    A commercial plant extract (prepared from olive, garlic, onion and citrus extracts with sodium acetate (SA) as a carrier) was evaluated to extend the viability of yogurt starter and probiotic bacteria as a means to enhance the shelf life of live and active culture, probiotic nonfat yogurt. Yogurts prepared from three different formulas (0.5* plant extract, 0.25* SA, or no supplement) and cultures (yogurt starter plus Bifidobacterium animalis,Lactobacillus acidophilus, or both probiotics) were assessed weekly during 29 days of storage at 5°C. Supplemented yogurt mixes had greater buffering capacities than non-supplemented yogurt mixes. At the end of storage, Lactobacillus bulgaricus and L. acidophilus counts in supplemented yogurts were greater compared with non-supplemented yogurts. Supplementation did not affect Streptococcus thermophilus and B. animalis counts. Hence the greater buffering capacity of yogurt containing plant extract could enhance the longevity of the probiotics, L. bulgaricus and L. acidophilus, during storage. PMID:25650127

  10. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  11. Lactobacillus reuteri CRL 1098 and Lactobacillus acidophilus CRL 1014 differently reduce in vitro immunotoxic effect induced by Ochratoxin A.

    PubMed

    Mechoud, Mónica A; Juarez, Guillermo E; de Valdez, Graciela Font; Rodriguez, Ana V

    2012-12-01

    Ochratoxin A (OTA) is a widespread mycotoxin contaminating several food products which causes detrimental health effects. The ability of Lactobacillus reuteri CRL 1098 and Lactobacillus acidophilus CRL 1014 to prevent OTA effects on TNF-α and IL-10 production and apoptosis induction in human peripheral blood mononuclear cells (PBMC) was investigated. Membrane rafts participation in these responses was also evaluated. L. reuteri reduced by 29% the OTA inhibition of TNF-α production whereas L. acidophilus increased 8 times the TNF-α production by OTA treated-PBMC. Also, both bacteria reversed apoptosis induced by OTA by 32%. However, neither of the bacteria reversed the OTA inhibition on IL-10 production. On the other hand, the lactobacilli were less effective to reverse OTA effects on disrupted-rafts PBMC. This study shows that two lactobacilli strains can reduce some negative OTA effects, being membrane rafts integrity necessary to obtain better results. Also, the results highlight the potential capacity of some lactobacilli strains usually included in natural dietary components in milk-derived products and cereals feed, to reduce OTA toxicity once ingested by humans or animals. PMID:22975144

  12. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products.

    PubMed

    Sohail, Asma; Turner, Mark S; Prabawati, Elisabeth Kartika; Coombes, Allan G A; Bhandari, Bhesh

    2012-07-01

    This study investigated the effect of microencapsulation on the survival of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM and their acidification in orange juice at 25°C for nine days and at 4°C over thirty five days of storage. Alginate micro beads (10-40 μm) containing the probiotics were produced by a novel dual aerosol method of alginate and CaCl(2) cross linking solution. Unencapsulated L. rhamnosus GG was found to have excellent survivability in orange juice at both temperatures. However unencapsulated L. acidophilus NCFM showed significant reduction in viability. Encapsulation of these two bacteria did not significantly enhance survivability but did reduce acidification at 25°C and 4°C. In agreement with this, encapsulation of L. rhamnosus GG also reduced acidification in pear and peach fruit-based foods at 25°C, however at 4°C difference in pH was insignificant between free and encapsulated cells. In conclusion, L. rhamnosus GG showed excellent survival in orange juice and microencapsulation has potential in reducing acidification and possible negative sensory effects of probiotics in orange juice and other fruit-based products. PMID:22633536

  13. The structure and immunomodulatory activity on intestinal epithelial cells of the EPSs isolated from Lactobacillus helveticus sp. Rosyjski and Lactobacillus acidophilus sp. 5e2.

    PubMed

    Patten, Daniel A; Leivers, Shaun; Chadha, Marcus J; Maqsood, Mohammed; Humphreys, Paul N; Laws, Andrew P; Collett, Andrew

    2014-01-30

    The Lactic acid bacteria (LAB) Lactobacillus acidophilus sp. 5e2 and Lactobacillus helveticus sp. Rosyjski both secrete exopolysaccharides (EPSs) into their surrounding environments during growth. A number of EPSs have previously been shown to exhibit immunomodulatory activity with professional immune cells, such as macrophages, but only limited studies have been reported of their interaction with intestinal epithelial cells. An investigation of the immunomodulatory potential of pure EPSs, isolated from cultures of Lactobacillus acidophilus sp. 5e2 and Lactobacillus helveticus sp. Rosyjski, with the HT29-19A intestinal epithelial cell line are reported here. For the first time the structure of the EPS from Lactobacillus helveticus sp. Rosyjski which is a hetropolysaccharide with a branched pentasaccharide repeat unit containing d-glucose, d-galactose and N-acetyl-d-mannosamine is described. In response to exposure to lactobacilli EPSs HT29-19A cells produce significantly increased levels of the proinflammatory cytokine IL-8. Additionally, the EPSs differentially modulate the mRNA expression of Toll-like receptors. Finally, the pre-treatment of HT29-19A cells with the EPSs sensitises the cells to subsequent challenge with bacterial antigens. The results reported here suggest that EPSs could potentially play a role in intestinal homeostasis via a specific interaction with intestinal epithelial cells. PMID:24394883

  14. Efficacy of supercritical carbon dioxide for inactivating Lactobacillus plantarum in apple cider

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juice makers have traditionally used thermal pasteurization to prevent deterioration by spoilage bacteria such as Lactobacillus plantarum; however this thermal processing causes adverse effects on product quality such as undesirable taste and destruction of heat sensitive nutrients. For this reason,...

  15. Complete genome sequence of the probiotic Lactobacillus casei strain BL23.

    PubMed

    Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Bourand, Alexa; Loux, Valentin; Yebra, Maria Jesus; Monedero, Vicente; Correia, Karine; Jacques, Noémie; Beaufils, Sophie; Poncet, Sandrine; Joyet, Philippe; Milohanic, Eliane; Casarégola, Serge; Auffray, Yanick; Pérez-Martínez, Gaspar; Gibrat, Jean-François; Zagorec, Monique; Francke, Christof; Hartke, Axel; Deutscher, Josef

    2010-05-01

    The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar. PMID:20348264

  16. Complete Genome Sequence of the Probiotic Lactobacillus casei Strain BL23▿

    PubMed Central

    Mazé, Alain; Boël, Grégory; Zúñiga, Manuel; Bourand, Alexa; Loux, Valentin; Yebra, Maria Jesus; Monedero, Vicente; Correia, Karine; Jacques, Noémie; Beaufils, Sophie; Poncet, Sandrine; Joyet, Philippe; Milohanic, Eliane; Casarégola, Serge; Auffray, Yanick; Pérez-Martínez, Gaspar; Gibrat, Jean-François; Zagorec, Monique; Francke, Christof; Hartke, Axel; Deutscher, Josef

    2010-01-01

    The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar. PMID:20348264

  17. Antibiotic Resistances of Yogurt Starter Cultures Streptococcus thermophilus and Lactobacillus bulgaricus.

    PubMed

    Sozzi, T; Smiley, M B

    1980-11-01

    Twenty-nine strains of Lactobacillus bulgaricus and 15 strains of Streptococcus thermophilus were tested for resistance to 35 antimicrobial agents by using commercially available sensitivity disks. Approximately 35% of the isolates had uncharacteristic resistance patterns. PMID:16345654

  18. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)). PMID:25281727

  19. Bacterial Endocarditis Caused by Lactobacillus acidophilus Leading to Rupture of Sinus of Valsalva Aneurysm

    PubMed Central

    Loranger, Austin Mitchell; Bharatkumar, A.G.; Almassi, G. Hossein

    2016-01-01

    Lactobacillus acidophilus rarely causes bacterial endocarditis, because it usually resides in the mucosa of the vagina, gastrointestinal tract, and oropharynx. Moreover, sinus of Valsalva aneurysms are rare cardiac anomalies, either acquired or congenital. We present the case of a middle-aged man whose bacterial endocarditis, caused by Lactobacillus acidophilus, led to an aneurysmal rupture of the sinus of Valsalva into the right ventricular outflow tract. The patient underwent successful surgical repair, despite numerous complications and sequelae. PMID:27127435

  20. Bacterial Endocarditis Caused by Lactobacillus acidophilus Leading to Rupture of Sinus of Valsalva Aneurysm.

    PubMed

    Encarnacion, Carlos Omar; Loranger, Austin Mitchell; Bharatkumar, A G; Almassi, G Hossein

    2016-04-01

    Lactobacillus acidophilus rarely causes bacterial endocarditis, because it usually resides in the mucosa of the vagina, gastrointestinal tract, and oropharynx. Moreover, sinus of Valsalva aneurysms are rare cardiac anomalies, either acquired or congenital. We present the case of a middle-aged man whose bacterial endocarditis, caused by Lactobacillus acidophilus, led to an aneurysmal rupture of the sinus of Valsalva into the right ventricular outflow tract. The patient underwent successful surgical repair, despite numerous complications and sequelae. PMID:27127435

  1. Evaluation of profertility effect of probiotic Lactobacillus plantarum 2621 in a murine model

    PubMed Central

    Bhandari, Praveen; Prabha, Vijay

    2015-01-01

    Background & objectives: Urogenital infections of bacterial origin have a high incidence among the female population at reproductive age, affecting the fertility. Strains of Escherichia coli can colonize the vagina and replace natural microflora. Lactobacillus the predominant vaginal microorganism in healthy women, maintains the acidic vaginal pH which inhibits pathogenic microorganisms. Studies on Lactobacillus have shown that these can inhibit E. coli growth and vaginal colonization. An alternative therapeutic approach to antimicrobial therapy is to re-establish Lactobacillus in this microbiome through probiotic administration to resurge fertility. Therefore, the aim of the present study was to determine the capability of L. plantarum 2621 strain with probiotic properties, to prevent the vaginal colonization of E. coli causing agglutination of sperms and to evaluate its profertility effect in a murine model. Methods: Screened mice were divided into five groups i.e. control group, E. coli group, Lactobacillus group, prophylactic and therapeutic groups. The control group was infused with 20 µl PBS, E.coli group was administered with 106 cfu/20 µl E. coli, and probiotic group was administered with Lactobacillus (108 cfu/20 µl) for 10 consecutive days. In prophylactic group, the vagina was colonized with 10 consecutive doses of Lactobacillus (108 cfu/20 µl). After 24 h, it was followed by 10 day intravaginal infection with E. coli (106 cfu/20 µl) whereas for the therapeutic group vagina was colonized with (106 cfu/20 µl) E. coli for 10 consecutive days, followed by 10 day intravaginal administration with Lactobacillus after 24 h. Results: Upon mating and completion of gestation period, control, probiotic and the therapeutic groups had litters in contrast to the prophylactic group and the group administered with E. coli. Interpretation & conclusions: Results indicated that Lactobacillus intermitted colonization of pathogenic strains that resulted in reinforcement of natural microflora and resurge fertility. PMID:26261170

  2. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-05-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  3. Identification of Lactobacillus species using tDNA-PCR.

    PubMed

    Baele, Margo; Vaneechoutte, Mario; Verhelst, Rita; Vancanneyt, Marc; Devriese, Luc A; Haesebrouck, Freddy

    2002-08-01

    tDNA intergenic spacer PCR (tDNA-PCR) using consensus primers complementary to the conserved edges of the tRNA genes can amplify the intergenic spacers. Separation of the PCR products with capillary electrophoresis enables discrimination between fragments differing only one basepair in length. This method was applied to a collection of 82 Lactobacillus strains belonging to 37 species in order to evaluate the discriminatory power of this technique within this genus. Twenty-one species could be distinguished to species level on the basis of a unique tDNA fingerprint pattern. The other species grouped by two (e.g. L. fermentum and L. cellobiosus) or three (L. acidophilus, L. gallinarum and L. helveticus). Inclusion of the resulting fingerprints in a numerical database containing fingerprints of numerous other Gram-positive and Gram-negative species makes the identification of unknown strains possible. PMID:12031576

  4. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value and dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.

  5. Crystallographic studies of aspartate racemase from Lactobacillus sakei NBRC 15893.

    PubMed

    Fujii, Tomomi; Yamauchi, Takae; Ishiyama, Makoto; Gogami, Yoshitaka; Oikawa, Tadao; Hata, Yasuo

    2015-08-01

    Aspartate racemase catalyzes the interconversion between L-aspartate and D-aspartate and belongs to the PLP-independent racemases. The enzyme from the lactic acid bacterium Lactobacillus sakei NBRC 15893, isolated from kimoto, is considered to be involved in D-aspartate synthesis during the brewing process of Japanese sake at low temperatures. The enzyme was crystallized at 293?K by the sitting-drop vapour-diffusion method using 25%(v/v) PEG MME 550, 5%(v/v) 2-propanol. The crystal belonged to space group P3121, with unit-cell parameters a = b = 104.68, c = 97.29?, and diffracted to 2.6? resolution. Structure determination is under way. PMID:26249691

  6. Characterization of a Feruloyl Esterase from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species. PMID:23793626

  7. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed Central

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-01-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  8. Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages

    PubMed Central

    Casey, Eoghan; Mahony, Jennifer; O'Connell-Motherway, Mary; Bottacini, Francesca; Cornelissen, Anneleen; Neve, Horst; Heller, Knut J.; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    In this study, three phages infecting Lactobacillus delbrueckii subsp. bulgaricus, named Ld3, Ld17, and Ld25A, were isolated from whey samples obtained from various industrial fermentations. These phages were further characterized in a multifaceted approach: (i) biological and physical characterization through host range analysis and electron microscopy; (ii) genetic assessment through genome analysis; (iii) mass spectrometry analysis of the structural components of the phages; and (iv), for one phage, transcriptional analysis by Northern hybridization, reverse transcription-PCR, and primer extension. The three obtained phage genomes display high levels of sequence identity to each other and to genomes of the so-called group b L. delbrueckii phages c5, LL-Ku, and phiLdb, where some of the observed differences are believed to be responsible for host range variations. PMID:25002431

  9. Development of an integration mutagenesis system in Lactobacillus gasseri

    PubMed Central

    Selle, Kurt; Goh, Yong Jun; O'Flaherty, Sarah; Klaenhammer, Todd R

    2014-01-01

    Lactobacillus gasseri ATCC 33323 is a member of the acidophilus-complex group, microbes of human origin with significant potential for impacting human health based on niche-specific traits. In order to facilitate functional analysis of this important species, a upp-based counterselective chromosomal integration system was established and employed for targeting the lipoteichoic acid (LTA) synthesis gene, ltaS, in L. gasseri ATCC 33323. The ltaS gene encodes a phosphoglycerol transferase responsible for building the glycerol chain of LTA. No isogenic mutant bearing the deletion genotype was recovered, but an integration knockout mutant was generated with insertion inactivation at the ltaS locus. The ltaS deficient derivative exhibited an altered cellular morphology and significantly reduced ability to adhere to Caco-2 intestinal cell monolayers, relative to the wild-type parent strain. PMID:24837903

  10. Amylolytic Lactobacillus strains from Bulgarian fermented beverage boza.

    PubMed

    Petrova, Penka; Emanuilova, Milena; Petrov, Kaloyan

    2010-01-01

    The lactic acid fermentation is a worldwide method for cereal processing. Great diversity of fermented foods and drinks is produced with the participation of amylolytic lactic acid bacteria (ALAB). In the present study the ALAB content of the Bulgarian cereal beverage "boza" was investigated. Two strains, Bom 816 and N3, were found to possess significant amylolytic activity. The strains' identification was based on genetic criteria, namely amplified ribosomal DNA restriction analysis (ARDRA) and sequencing of the 16S rDNA. The strain Bom 816 belongs to the species Lactobacillus plantarum and N3 to Lactobacillus pentosus, being the first amylolytic representative of this species. Optimization of the media composition with starch as a sole carbon source was done. The starch hydrolysis was most efficient in medium containing 4 g/l yeast and 8 g/l meat extracts. Thus, L. plantarum Bom 816 consumed 14 g/l starch, while L. pentosus N3 consumed 17 g/l. The highest values of lactic acid reached were 9.5 g/l produced by Bom 816 and 5.5 g/l produced by N3. In the presence of yeast extract L. pentosus N3 formed 0.8-1 g/l succinic acid. Both strains produced mainly cell-bound enzymes with amylase activity, at a pH optimum of 5.5, ranging from 3-4 to 21 U/ml for L. pentosus N3 and from 0.5 to 11.5 U/ml for L. plantarum Bom 816, in dependence of the assay conditions. PMID:20469641

  11. Genetic Determinants of Reutericyclin Biosynthesis in Lactobacillus reuteri

    PubMed Central

    Lin, Xiaoxi B.; Lohans, Christopher T.; Duar, Rebbeca; Zheng, Jinshui; Vederas, John C.; Walter, Jens

    2015-01-01

    Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin. PMID:25576609

  12. Functional analysis of the Lactobacillus casei BL23 sortases.

    PubMed

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G; Monedero, Vicente

    2012-12-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  13. Lifestyle of Lactobacillus plantarum in the mouse caecum.

    PubMed

    Marco, Maria L; Peters, Theodorus H F; Bongers, Roger S; Molenaar, Douwe; van Hemert, Saskia; Sonnenburg, Justin L; Gordon, Jeffrey I; Kleerebezem, Michiel

    2009-10-01

    Lactobacillus plantarum is a common inhabitant of mammalian gastrointestinal tracts. Strains of L. plantarum are also marketed as probiotics intended to confer beneficial health effects upon delivery to the human gut. To understand how L. plantarum adapts to its gut habitat, we used whole genome transcriptional profiling to characterize the transcriptome of strain WCFS1 during colonization of the caeca of adult germ-free C57Bl/6 J mice fed a standard low-fat rodent chow diet rich in complex plant polysaccharides or a prototypic Western diet high in simple sugars and fat. Lactobacillus plantarum colonized the digestive tracts of these animals to high levels, although L. plantarum was found in 10-fold higher amounts in the caeca of mice fed the standard chow. Metabolic reconstructions based on the transcriptional data sets revealed that genes involved in carbohydrate transport and metabolism form the principal functional group that is upregulated in vivo compared with exponential phase cells grown in three different culture media, and that a Western diet provides a more nutritionally restricted, growth limiting milieu for the microbe in the distal gut. A set of bacterial genes encoding cell surface-related functions were differentially regulated in both groups of mice. This set included downregulated genes required for the d-alanylation of lipoteichoic acids, extracellular structures of L. plantarum that mediate interactions with the host immune system. These results, obtained in a reductionist gnotobiotic mouse model of the gut ecosystem, provide insights about the niches (professions) of this lactic acid bacterium, and a context for systematically testing features that affect epithelial and immune cell responses to this organism in the digestive tract. PMID:19638173

  14. Lactobacillus acidophilus upregulates intestinal NHE3 expression and function

    PubMed Central

    Singh, Varsha; Raheja, Geetu; Borthakur, Alip; Kumar, Anoop; Gill, Ravinder K.; Alakkam, Anas; Malakooti, Jaleh

    2012-01-01

    A major mechanism of electroneutral NaCl absorption in the human ileum and colon involves coupling of Na+/H+ and Cl−/HCO3− exchangers. Disturbances in these mechanisms have been implicated in diarrheal conditions. Probiotics such as Lactobacillus have been indicated to be beneficial in the management of gastrointestinal disorders, including diarrhea. However, the molecular mechanisms underlying antidiarrheal effects of probiotics have not been fully understood. We have previously demonstrated Lactobacillus acidophilus (LA) to stimulate Cl−/HCO3− exchange activity via an increase in the surface levels and expression of the Cl−/HCO3− exchanger DRA in vitro and in vivo. However, the effects of LA on NHE3, the Na+/H+ exchanger involved in the coupled electroneutral NaCl absorption, are not known. Current studies were, therefore, undertaken to investigate the effects of LA on the function and expression of NHE3 and to determine the mechanisms involved. Treatment of Caco2 cells with LA or its conditioned culture supernatant (CS) for 8–24 h resulted in a significant increase in Na+/H+ exchange activity, mRNA, and protein levels of NHE3. LA-CS upregulation of NHE3 function and expression was also observed in SK-CO15 cells, a human colonic adenocarcinoma cell line. Additionally, LA treatment increased NHE3 promoter activity, suggesting involvement of transcriptional mechanisms. In vivo, mice gavaged with live LA showed significant increase in NHE3 mRNA and protein expression in the ileum and colonic regions. In conclusion, LA-induced increase in NHE3 expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of probiotics. PMID:23086913

  15. Characterization of Two Virulent Phages of Lactobacillus plantarum

    PubMed Central

    Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea

    2012-01-01

    We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172

  16. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    PubMed

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. PMID:24961744

  17. Manufacture of probiotic Minas Frescal cheese with Lactobacillus casei Zhang.

    PubMed

    Dantas, Aline B; Jesus, Vitor F; Silva, Ramon; Almada, Carine N; Esmerino, E A; Cappato, Leandro P; Silva, Marcia C; Raices, Renata S L; Cavalcanti, Rodrigo N; Carvalho, Celio C; Sant'Ana, Anderson S; Bolini, Helena M A; Freitas, Monica Q; Cruz, Adriano G

    2016-01-01

    In this study, the addition of Lactobacillus casei Zhang in the manufacture of Minas Frescal cheese was investigated. Minas Frescal cheeses supplemented with probiotic bacteria (Lactobacillus casei Zhang) were produced by enzymatic coagulation and direct acidification and were subjected to physicochemical (pH, proteolysis, lactic acid, and acetic acid), microbiological (probiotic and lactic bacteria counts), and rheological analyses (uniaxial compression and creep test), instrumental color determination (luminosity, yellow intensity, and red intensity) and sensory acceptance test. The addition of L. casei Zhang resulted in low pH values and high proteolysis indexes during storage (from 5.38 to 4.94 and 0.470 to 0.702, respectively). Additionally, the cheese protocol was not a hurdle for growth of L. casei Zhang, as the population reached 8.16 and 9.02 log cfu/g by means of the direct acidification and enzymatic coagulation protocol, respectively, after 21 d of refrigerated storage. The rheology data showed that all samples presented a more viscous-like behavior, which rigidity tended to decrease during storage and lower luminosity values were also observed. Increased consumer acceptance was observed for the control sample produced by direct acidification (7.8), whereas the cheeses containing L. casei Zhang presented lower values for all sensory attributes, especially flavor and overall liking (5.37 and 4.61 for enzymatic coagulation and 5.57 and 4.72 for direct acidification, respectively). Overall, the addition of L. casei Zhang led to changes in all parameters and affected negatively the sensory acceptance. The optimization of L. casei Zhang dosage during the manufacturing of probiotic Minas Frescal cheese should be performed. PMID:26519974

  18. Functional Analysis of the Lactobacillus casei BL23 Sortases

    PubMed Central

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2012-01-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  19. Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei.

    PubMed

    Mercanti, Diego J; Rousseau, Geneviève M; Capra, María L; Quiberoni, Andrea; Tremblay, Denise M; Labrie, Simon J; Moineau, Sylvain

    2016-01-01

    Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts. PMID:26475105

  20. Health-promoting properties exhibited by Lactobacillus helveticus strains.

    PubMed

    Skrzypczak, Katarzyna; Gustaw, Waldemar; Waśko, Adam

    2015-01-01

    Many strains belonging to lactobacilli exert a variety of beneficial health effects in humans and some of the bacteria are regarded as probiotic microorganisms. Adherence and capabilities of colonization by Lactobacillus strains of the intestinal tract is a prerequisite for probiotic strains to exhibit desired functional properties. The analysis conducted here aimed at screening strains of Lactobacillus helveticus possessing a health-promoting potential. The molecular analysis performed, revealed the presence of a slpA gene encoding the surface S-layer protein SlpA (contributing to the immunostimulatory activity of L. helveticus M 92 probiotic strain) in all B734, DSM, T80, and T105 strains. The product of gene amplification was also identified in a Bifidobacterium animalis ssp. lactis BB12 probiotic strain. SDS-PAGE of a surface protein extract demonstrated the presence of a protein with a mass of about 50 kDa in all strains, which refers to the mass of the S-layer proteins. These results are confirmed by observations carried with transmission electron microscopy, where a clearly visible S-layer was registered in all the strains analyzed. The in vitro study results obtained indicate that the strongest adhesion capacity to epithelial cells (HT-29) was demonstrated by L. helveticus B734, while coaggregation with pathogens was highly diverse among the tested strains. The percentage degree of coaggregation was increasing with the incubation time. After 5 h of incubation, the strongest ability to coaggregate with Escherichia coli was expressed by T104. The T80 strain demonstrated a significant ability to co-aggregate with Staphylococcus aureus, while DSM with Bacillus subtilis. For B734, the highest values of co-aggregation coefficient was noted in samples with Salmonella. The capability of autoaggregation, antibiotic susceptibility, resistance to increasing salt concentrations, and strain survival in simulated small intestinal juice were also analyzed. PMID:26601325

  1. Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6.

    PubMed

    Ahire, Jayesh Jagannath; Mokashe, Narendra Uttamrao; Patil, Hemant Jagatrao; Chaudhari, Bhushan Liladhar

    2013-02-01

    Folate producing Lactobacillus sp. CD6 isolated from fermented milk showed 98% similarity with Lactobacillus helveticus based on 16S rRNA gene sequence analysis. It was found to produce a folic acid derivative 5-methyl tetrahydrofolate (5-MeTHF). The intracellular cell-free extract of strain demonstrated antioxidative activity with the inhibition rate of ascorbate autoxidation in the range of 27.5% ± 3.7%. It showed highest metal ion chelation ability for Fe(2+) (0.26 ± 0.06 ppm) as compared to Cu(2+). The DPPH (α,α-Diphenyl-β-Picrylhydrazyl) radical scavenging activity for intact cells were found to be 24.7% ± 10.9% proved its antioxidative potential. Furthermore, it demonstrated 14.89% inhibition of epinephrine autoxidation, 20.9 ± 1.8 μg cysteine equivalent reducing activity and 20.8% ± 0.9% hydroxyl radical scavenging effect. The strain was evaluated for probiotic properties as per WHO and FAO guidelines. It showed 90.61% survival at highly acidic condition (pH 2.0), 90.66% viability in presence of synthetic gastric juice and 68% survivability at 0.5% bile concentration for 24 h. It was susceptible to many antibiotics which reduces the prospect to offer resistance determinants to other organisms if administered in the form of probiotic preparations. It showed in vitro mucus binding and antimicrobial activity against enteric pathogens like Salmonella typhimurium (NCIM 2501), Streptococcus pyogenes (NCIM 2608), and Staphylococcus aureus (NCIM 5021) and moreover it showed non- hemolytic activity on sheep blood agar. PMID:24425884

  2. Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef.

    PubMed

    Kato, Y; Sakala, R M; Hayashidani, H; Kiuchi, A; Kaneuchi, C; Ogawa, M

    2000-05-01

    Lactobacillus algidus sp. nov. is described on the basis of 40 strains isolated as one of the predominant bacteria from five specimens of vacuum-packaged beef collected from different meat shops and stored at 2 degrees C for 3 weeks. These strains were quite uniform in the overall characteristics examined. They are facultatively anaerobic, psychrophilic, Gram-positive, non-spore-forming, non-motile, lactic acid-homofermentative rods. The cells occurred singly and in pairs on agar media and in rather long chains in broth media. They differed in several cultural and biochemical characteristics from the authentic meso-diaminopimelic acid-positive or psychrophilic lactic acid bacteria in the genera Lactobacillus, Carnobacterium and Brochothrix. The SDS-PAGE whole-cell protein pattern was clearly distinctive. DNA-DNA hybridization and phylogenetic analysis of 16S rDNA also failed to associate these strains closely with any of the validly described organisms used. The phylogenetic analysis showed that these strains are rather remotely but most closely related to Lactobacillus mali (93% sequence similarity), which belongs to the Lactobacillus casei/Pediococcus group. Therefore, these strains should be included in the genus Lactobacillus and considered to represent a new species, Lactobacillus algidus sp. nov. The type strain is M6A9T (= JCM 10491T). PMID:10843056

  3. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay

    PubMed Central

    Sepp, Epp; Songisepp, Epp; Claus, Sandrine P.; Mikelsaar, Marika

    2015-01-01

    We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population. PMID:26437083

  4. Lactobacillus sicerae sp. nov., a lactic acid bacterium isolated from Spanish natural cider.

    PubMed

    Puertas, Ana Isabel; Arahal, David R; Ibarburu, Idoia; Elizaquvel, Patricia; Aznar, Rosa; Dueas, M Teresa

    2014-09-01

    Strains CUPV261(T) and CUPV262 were isolated from ropy natural ciders of the Basque Country, Spain, in 2007. Cells are Gram-stain positive, non-spore-forming, motile rods, facultative anaerobes and catalase-negative. The strains are obligately homofermentative (final product dl-lactate) and produce exopolysaccharides from sucrose. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both isolates corresponded to the type strain of Lactobacillus vini (99.1?%), followed by Lactobacillus satsumensis (96.4?%), and Lactobacillus oeni (96.2?%), and for all other established species, 16S rRNA gene sequence similarities were below 96?%. The species delineation of strains CUPV261(T) and CUPV262 was evaluated through RAPD fingerprinting. In addition, a random partial genome pyrosequencing approach was performed on strain CUPV261(T) in order to compare it with the genome sequence of Lactobacillus vini DSM 20605(T) and calculate indexes of average nucleotide identity (ANI) between them. Results permit the conclusion that strains CUPV261(T) and CUPV262 represent a novel species of the genus Lactobacillus, for which the name Lactobacillus sicerae sp. nov. is proposed. The type strain is CUPV261(T) (?=?CECT 8227(T)?=?KCTC 21012(T)). PMID:24899655

  5. Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach

    PubMed Central

    Wilson, Charlotte M.; Loach, Diane; Lawley, Blair; Bell, Tracey; Sims, Ian M.; O'Toole, Paul W.; Zomer, Aldert

    2014-01-01

    Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut. PMID:25063664

  6. Analysis of Lactobacillus Products for Phages and Bacteriocins That Inhibit Vaginal Lactobacilli

    PubMed Central

    Pavlova, Sylvia I.; Mou, Susan M.; Ma, Wen-ge; Kiliç, Ali O.

    1997-01-01

    Objective: Bacterial vaginosis is associated with an unexplained loss of vaginal lactobacilli. Previously, we have identified certain vaginal lactobacilli-released phages that can inhibit in vitro other vaginal lactobacilli. However, there is no apparent route for phages to be transmitted among women. The purpose of this study was to identify whether certain Lactobacillus products commonly used by women release phages or bacteriocins that can inhibit vaginal lactobacilli. Methods: From 26 Lactobacillus products (2 acidophilus milks, 20 yogurts, 3 Lactobacillus pills, and 1 vaginal douche mix), lactobacilli were isolated with Rogosa SL agar (Difco, Detroit, MI). From these lactobacilli, phages and bacteriocins were induced with mitomycin C and tested against a collection of vaginal Lactobacillus strains. Results: From the 26 products, 43 Lactobacillus strains were isolated. Strains from 11 yogurts released phages, among which 7 inhibited vaginal lactobacilli. Eleven strains released bacteriocins that inhibited vaginal lactobacilli. While about one-half of the vaginal strains were lysed by bacteriocins, less than 20% were lysed by phages. Conclusions: Some vaginal lactobacilli were inhibited in vitro by phages or bacteriocins released from Lactobacillus products used by women, implying that vaginal lactobacilli may be reduced naturally due to phages or bacteriocins from the environment. PMID:18476145

  7. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.

    PubMed

    O'Sullivan, Daniel J; McSweeney, Paul L H; Cotter, Paul D; Giblin, Linda; Sheehan, Jeremiah J

    2016-04-01

    Nonstarter lactic acid bacteria are commonly implicated in undesirable gas formation in several varieties, including Cheddar, Dutch-, and Swiss-type cheeses, primarily due to their ability to ferment a wide variety of substrates. This effect can be magnified due to factors that detrimentally affect the composition or activity of starter bacteria, resulting in the presence of greater than normal amounts of fermentable carbohydrates and citrate. The objective of this study was to determine the potential for a facultatively heterofermentative Lactobacillus (Lactobacillus casei DPC6987) isolated from a cheese plant environment to promote gas defects in the event of compromised starter activity. A Swiss-type cheese was manufactured, at pilot scale and in triplicate, containing a typical starter culture (Streptococcus thermophilus and Lactobacillus helveticus) together with propionic acid bacteria. Lactobacillus helveticus populations were omitted in certain vats to mimic starter failure. Lactobacillus casei DPC6987 was added to each experimental vat at 4 log cfu/g. Cheese compositional analysis and X-ray computed tomography revealed that the failure of starter bacteria, in this case L. helveticus, coupled with the presence of a faculatively heterofermentative Lactobacillus (L. casei) led to excessive eye formation during ripening. The availability of excess amounts of lactose, galactose, and citrate during the initial ripening stages likely provided the heterofermentative L. casei with sufficient substrates for gas formation. The accrual of these fermentable substrates was notable in cheeses lacking the L. helveticus starter population. The results of this study are commercially relevant, as they demonstrate the importance of viability of starter populations and the control of specific nonstarter lactic acid bacteria to ensure appropriate eye formation in Swiss-type cheese. PMID:26805985

  8. Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria.

    PubMed

    Dave, R I; Shah, N P

    1996-09-01

    Fifteen media were evaluated to determine their suitability for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria using 5 to 6 strains of each of the four groups of organisms. Streptococcus thermophilus agar was found to be suitable for selective enumeration of S. thermophilus under aerobic incubation at 37 degrees C for 24 h. The MRS agar at pH 5.2 or reinforced clostridial agar at pH 5.3 could be used for the selective enumeration of L. delbrueckii ssp. bulgaricus when the incubation was carried out at 45 degrees C for > or = 72 h. However, the recovery of this organism was lower on MRS agar at pH 5.2 or reinforced clostridial agar at pH 5.3 than that obtained on MRS agar. The recovery of L. acidophilus and bifidobacteria on MRS agar and MRS-maltose agar was similar; MRS-maltose agar could be used to enumerate total counts of L. acidophilus and bifidobacteria. For selective enumeration of L. acidophilus, MRS-salicin agar or MRS-sorbitol agar could be used. For selective enumeration of bifidobacteria, MRS NNLP (nalidixic acid, neomycin sulfate, lithium chloride, and paromomycin sulfate) agar was suitable; however, determination of bifidobacteria by differential counts between L. acidophilus enumerated on MRS-salicin agar or MRS-sorbitol agar and the total counts of L. acidophilus and bifidobacteria obtained from MRS-maltose agar resulted in higher recovery of some strains of bifidobacteria. Other media that were evaluated in this study were not suitable for selective enumeration. PMID:8899517

  9. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.

    PubMed

    Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z

    2014-04-01

    The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. PMID:24290645

  10. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. PMID:25561329

  11. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli.

    PubMed

    Putaala, H; Barrangou, R; Leyer, G J; Ouwehand, A C; Hansen, E Bech; Romero, D A; Rautonen, N

    2010-09-01

    The complex microbial population residing in the human gastrointestinal tract consists of commensal, potential pathogenic and beneficial species, which are probably perceived differently by the host and consequently could be expected to trigger specific transcriptional responses. Here, we provide a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33 DCE-induced changes were overall more similar to those of B. lactis 420 than to L. acidophilus NCFM™, which is consistent with previously observed in vivo immunomodulation properties. In the gene ontology and pathway analyses both specific and unspecific changes were observed. Common to all was the regulation of apoptosis and adipogenesis, and lipid-metabolism related regulation by the probiotics. Specific changes such as regulation of cell-cell adhesion by B. lactis 420, superoxide metabolism by L. salivarius Ls-33, and regulation of MAPK pathway by L. acidophilus NCFM™ were noted. Furthermore, fundamental differences were observed between the pathogenic and probiotic treatments in the Toll-like receptor pathway, especially for adapter molecules with a lowered level of transcriptional activation of MyD88, TRIF, IRAK1 and TRAF6 by probiotics compared to EHEC. The results in this study provide insights into the relationship between probiotics and human intestinal epithelial cells, notably with regard to strain-specific responses, and highlight the differences between transcriptional responses to pathogenic and probiotic bacteria. PMID:21831765

  12. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt--a review.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2011-10-01

    Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥10(6) viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45°C for 72h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37°C for 72h. PMID:21807435

  13. Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics.

    PubMed

    Dubourg, Grégory; Elsawi, Ziena; Raoult, Didier

    2015-11-01

    The bacteriocin-mediated antimicrobial properties of Lactobacillus spp. have been widely studied, leading to the use of these micro-organisms in the food industry as preservative agents against foodborne pathogens. In an era in which antibiotic resistance is becoming a public health issue, the antimicrobial activity of Lactobacillus spp. could be used for the discovery of new potential antibiotics. Thus, it is essential to have an accurate method of screening the production of antimicrobial agents by prokaryotes. Many in vitro assays have been published to date, largely concerning but not limited to Lactobacillus spp. However, these methods mainly use the spot-on-the-lawn method, which is prone to contamination during the overlay stage, with protocols using methanol vapours or the reverse side agar technique being applied to avoid such contamination. In this study, a method combining the spot-on-the-lawn and well diffusion methods was tested, permitting clear identification of inhibition zones from eight Lactobacillus spp. towards clinical isolates of 12 species (11 bacteria and 1 yeast) commonly found in human pathology. Lactobacillus plantarum CIP 106786 and Lactobacillus rhamnosus CSUR P567 exhibited the widest antimicrobial activity, whereas Lactobacillus acidophilus strain DSM 20079 was relatively inactive. In addition, the putative MIC(50) of L. rhamnosus against Proteus mirabilis was estimated at 1.1×10(9)CFU/mL using culture broth dilution. In conclusion, considering the increasing cultivable bacterial human repertoire, these findings open the way of an effective method to screen in vitro for the production of potential antimicrobial compounds. PMID:26163158

  14. Loss of GD1-positive Lactobacillus correlates with inflammation in human lungs with COPD

    PubMed Central

    Sze, Marc A; Utokaparch, Soraya; Elliott, W Mark; Hogg, James C; Hegele, Richard G

    2015-01-01

    Objectives The present study assesses the relationship between contents of GD1 (glycerol dehydratase)-positive Lactobacillus, presence of Lactobacillus and the inflammatory response measured in host lung tissue in mild to moderate chronic obstructive pulmonary disease (COPD). We hypothesise that there will be a loss of GD1 producing Lactobacillus with increasing severity of COPD and that GD1 has anti-inflammatory properties. Setting Secondary care, 1 participating centre in Vancouver, British Columbia, Canada. Participants 74 individuals who donated non-cancerous portions of their lungs or lobes removed as treatment for lung cancer (normal lung function controls (n=28), persons with mild (GOLD 1) (n=21) and moderate (GOLD 2) COPD (n=25)). Outcome measures Primary outcome measure was GD1 positivity within each group and whether or not this impacted quantitative histological measures of lung inflammation. Secondary outcome measures included Lactobacillus presence and quantification, and quantitative histological measurements of inflammation and remodelling in early COPD. Results Total bacterial count (p>0.05) and prevalence of Lactobacillus (p>0.05) did not differ between groups. However, the GD1 gene was detected more frequently in the controls (14%) than in either mild (5%) or moderate (0%) COPD (p<0.05) samples. Macrophage and neutrophil volume fractions (0.012±0.005 (mean±SD) vs 0.026±0.017 and 0.005±0.002 vs 0.015±0.014, respectively) in peripheral lung tissue were reduced in samples positive for the GD1 gene (p<0.0035). Conclusions A reduction in GD1 positivity is associated with an increased tissue immune inflammatory response in early stage COPD. There is potential for Lactobacillus to be used as a possible therapeutic, however, validation of these results need to be completed before an anti-inflammatory role of Lactobacillus in COPD can be confirmed. PMID:25652802

  15. Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion.

    PubMed

    Shida, K; Kiyoshima-Shibata, J; Nagaoka, M; Watanabe, K; Nanno, M

    2006-09-01

    Some strains of lactobacilli can stimulate macrophages and dendritic cells to secrete IL-12, which plays a key role in activating innate immunity. We examined the IL-12-inducing ability of 47 Lactobacillus strains belonging to 10 species in mouse peritoneal macrophages, and characterized the properties important for the induction of IL-12. Although considerable differences in IL-12-inducing ability were observed among the strains tested, almost all strains belonging to the Lactobacillus casei group (L. casei, Lactobacillus rhamnosus, and Lactobacillus zeae) or to Lactobacillus fermentum induced high levels of IL-12. Phagocytosis of lactobacilli was necessary for IL-12 induction, and the strains with strong IL-12 induction were relatively resistant to lysis in the macrophages. The sensitivity of Lactobacillus strains to in vitro treatment with M-1 enzyme, a member of the N-acetylmuramidases, was negatively correlated with IL-12-inducing ability. Using a probiotic strain, L. casei strain Shirota (LcS), we showed that the cell wall of LcS could be digested by long-term treatment with a high dose of M-1 enzyme and that the IL-12-inducing ability was diminished according to the duration of the enzyme treatment. The soluble polysaccharide-peptidoglycan complex released from the cell wall of LcS did not induce IL-12, whereas the insoluble intact cell wall of LcS induced IL-12. These results suggest that the intact cell wall structure of lactobacilli is an important element in the ability to induce IL-12 and that Lactobacillus strains having a rigid cell wall resistant to intracellular digestion effectively stimulate macrophages to induce IL-12. PMID:16899663

  16. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese.

    PubMed

    Oberg, Craig J; Oberg, Taylor S; Culumber, Michele D; Ortakci, Fatih; Broadbent, Jeffery R; McMahon, Donald J

    2016-01-01

    A Gram-stain positive, rod-shaped, non-spore-forming strain (WDC04T), which may be associated with late gas production in cheese, was isolated from aged Cheddar cheese following incubation on MRS agar (pH 5.2) at 6 °C for 35 days. Strain WDC04T had 97 % 16S rRNA gene sequence similarity with Lactobacillus hokkaidonensis DSM 26202T, Lactobacillus oligofermentans 533, 'Lactobacillus danicus' 9M3, Lactobacillus suebicus CCUG 32233T and Lactobacillus vaccinostercus DSM 20634T. API 50 CH carbohydrate fermentation panels indicated strain WDC04T could only utilize one of the 50 substrates tested, ribose, although it does slowly utilize galactose. In the API ZYM system, strain WDC04T was positive for leucine arylamidase, valine arylamidase, cysteine arylamidase (weakly), naphthol-AS-BI-phosphohydrolase and β-galactosidase activities. Total genomic DNA was sequenced from strain WDC04T using a whole-genome shotgun strategy on a 454 GS Titanium pyrosequencer. The sequence was assembled into a 1.90 Mbp draft genome consisting of 105 contigs with preliminary genome annotation performed using the RAST algorithm (rast.nmpdr.org). Genome analysis confirmed the pentose phosphate pathway for ribose metabolism as well as galactose, N-acetylglucosamine, and glycerol fermentation pathways. Genomic analysis places strain WDC04T in the obligately heterofermentative group of lactobacilli and metabolic results confirm this conclusion. The result of genome sequencing, along with 16S rRNA gene sequence analysis, indicates WDC04T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus wasatchensis sp. nov. is proposed. The type strain is WDC04T ( = DSM 29958T = LMG 28678T). PMID:26475452

  17. Identification of a high-molecular-mass Lactobacillus epithelium adhesin (LEA) of Lactobacillus crispatus ST1 that binds to stratified squamous epithelium.

    PubMed

    Edelman, Sanna M; Lehti, Timo A; Kainulainen, Veera; Antikainen, Jenni; Kylväjä, Riikka; Baumann, Marc; Westerlund-Wikström, Benita; Korhonen, Timo K

    2012-07-01

    Lactobacilli belong to the normal gastrointestinal and genital tract microbiota of human and animal hosts. Adhesion is important for bacterial colonization; however, only a few Lactobacillus adhesins have been identified so far. We studied extracted surface proteins from an adhesive Lactobacillus crispatus strain, ST1, which efficiently colonizes the chicken alimentary tract, for their binding to tissue sections of the chicken crop, and identified a novel high-molecular-mass repetitive surface protein that shows specific binding to stratified squamous epithelium. The adhesin binds to both crop epithelium and epithelial cells from human vagina, and was named Lactobacillus epithelium adhesin (LEA). Expression of LEA is strain-specific among L. crispatus strains and corresponds directly to in vitro bacterial adhesion ability. The partial sequence of the lea gene predicts that the LEA protein carries an N-terminal YSIRK signal sequence and a C-terminal LPxTG anchoring motif, as well as a highly repetitive region harbouring 82 aa long repeats with non-identical sequences that show similarity to Lactobacillus Rib/alpha-like repeats. LEA-mediated epithelial adherence may improve bacterial colonization in the chicken crop and the human vagina, which are the natural environments for L. crispatus. PMID:22516222

  18. Lactobacillus fermentum ME-3 – an antimicrobial and antioxidative probiotic

    PubMed Central

    Mikelsaar, Marika; Zilmer, Mihkel

    2009-01-01

    The paper lays out the short scientific history and characteristics of the new probiotic Lactobacillus fermentum strain ME-3 DSM-14241, elaborated according to the regulations of WHO/FAO (2002). L. fermentum ME-3 is a unique strain of Lactobacillus species, having at the same time the antimicrobial and physiologically effective antioxidative properties and expressing health-promoting characteristics if consumed. Tartu University has patented this strain in Estonia (priority June 2001, patent in 2006), Russia (patent in 2006) and the USA (patent in 2007). The paper describes the process of the identification and molecular typing of this probiotic strain of human origin, its deposition in an international culture collection, and its safety assessment by laboratory tests and testing on experimental animals and volunteers. It has been established that L. fermentum strain ME-3 has double functional properties: antimicrobial activity against intestinal pathogens and high total antioxidative activity (TAA) and total antioxidative status (TAS) of intact cells and lysates, and it is characterized by a complete glutathione system: synthesis, uptake and redox turnover. The functional efficacy of the antimicrobial and antioxidative probiotic has been proven by the eradication of salmonellas and the reduction of liver and spleen granulomas in Salmonella Typhimurium-infected mice treated with the combination of ofloxacin and L. fermentum strain ME-3. Using capsules or foodstuffs enriched with L. fermentum ME-3, different clinical study designs (including double-blind, placebo-controlled, crossover studies) and different subjects (healthy volunteers, allergic patients and those recovering from a stroke), it has been shown that this probiotic increased the antioxidative activity of sera and improved the composition of the low-density lipid particles (LDL) and post-prandial lipids as well as oxidative stress status, thus demonstrating a remarkable anti-atherogenic effect. The elaboration of the probiotic L. fermentum strain ME-3 has drawn on wide international cooperative research and has taken more than 12 years altogether. The new ME-3 probiotic-containing products have been successfully marketed and sold in Baltic countries and Finland. PMID:19381356

  19. Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

    PubMed Central

    Wu, Jing-jing; Du, Rui-ping; Gao, Min; Sui, Yao-qiang; Xiu, Lei; Wang, Xiao

    2014-01-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  20. Naturally occurring lactic Acid bacteria isolated from tomato pomace silage.

    PubMed

    Wu, Jing-Jing; Du, Rui-Ping; Gao, Min; Sui, Yao-Qiang; Xiu, Lei; Wang, Xiao

    2014-05-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  1. Lantibiotics biosynthesis genes and bacteriocinogenic activity of Lactobacillus spp. isolated from raw milk and cheese.

    PubMed

    Perin, Luana Martins; Moraes, Paula Mendonça; Silva, Abelardo; Nero, Luís Augusto

    2012-05-01

    Lactobacillus species are usually used as starters for the production of fermented products, and some strains are capable of producing antimicrobial substances, such as bacteriocins. Because these characteristics are highly desirable, research are continually being performed for novel Lactobacillus strains with bacteriocinogenic potential for use by food industries. The aim of this study was to characterise the bacteriocinogenic potential and activity of Lactobacillus isolates. From a lactic acid bacteria culture collection obtained from raw milk and cheese, 27 isolates were identified by 16S rDNA as Lactobacillus spp. and selected for the detection of lantibiotics biosynthesis genes, bacteriocin production, antimicrobial spectra, and ideal incubation conditions for bacteriocin production. Based on the obtained results, 21 isolates presented at least one of the three lantibiotics biosynthesis genes (lanB, lanC or lamM), and 23 isolates also produced antimicrobial substances with sensitivity to at least one proteinase, indicating their bacteriocinogenic activity. In general, the isolates had broad inhibitory activity, mainly against Listeria spp. and Staphylococcus spp. strains, and the best antimicrobial performance of the isolates occurred when they were cultivated at 25 °C for 24 or 48 h or at 35 °C for 12 h. The present study identified the bacteriocinogenic potential of Lactobacillus isolates obtained from raw milk and cheese, suggesting their potential use as biopreservatives in foods. PMID:22447149

  2. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection. PMID:26340935

  3. Molecular detection of Lactobacillus species in the neovagina of male-to-female transsexual women

    PubMed Central

    Petricevic, Ljubomir; Kaufmann, Ulrike; Domig, Konrad J.; Kraler, Manuel; Marschalek, Julian; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    There is a general opinion that penile skin lined neovagina of transsexual women is not able to support the growth of lactobacilli. This study was undertaken to prove if lactobacilli strains could survive in neovagina and to characterise the most dominant Lactobacillus species. Sixty three male-to-female transsexual women without abnormal vaginal discharge, clinical signs of infection were recruited on an ongoing basis from among transsexual outpatients in an academic research institution and tertiary care centre. Neovaginal smears were taken for molecular Lactobacillus spp. profiling by denaturing gradient gel electrophoresis (PCR–DGGE). Lactobacillus species were detected from 47/63 transsexual women (75%). The 279 Lactobacillus signals detected by PCR-DGGE technique belonged to 13 different species. Lactobacilli of the L. delbrueckii group (L. gasseri, L. crispatus, L. johnsonii, L. iners, L. jensenii) were predominant. More than 90% of women harboured a combination of two or more neovaginal Lactobacillus species. In this study we report the frequent occurrence of lactobacilli from neovagina of transsexual women. Both, frequency and composition were similar to the normal lactic acid bacterial microflora in both women of reproductive age and postmenopausal women. PMID:24434849

  4. Absence of cholic acid 7 alpha-dehydroxylase activity in the strains of Lactobacillus and Bifidobacterium.

    PubMed

    Takahashi, T; Morotomi, M

    1994-11-01

    To investigate the presence of 7 alpha-dehydroxylase activity on bile acids in the bacterial strains of fermented milk products, 46 strains of Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus gasseri, Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium longum, Lactococcus lactis spp. lactis, and Streptococcus salivarius spp. thermophilus were tested for their ability to produce deoxycholic acid from cholic acid. The production of deoxycholic acid was quantitatively measured by radiochromatographic analysis in anaerobically prepared washed whole resting cells and by HPLC analysis in growing cultures. Resting whole cells from a positive control strain, Eubacterium lentum-like strain c-25, converted 81.7% of .2 mM cholic acid to deoxycholic acid and 3.7% to 7-keto-deoxycholic acid, when the cell suspension was incubated anaerobically at a concentration of 2 mg of protein/ml for 4 h at pH 7.3. However, none of the test strains investigated in this study was able to transform cholic acid under the same conditions. In growing cultures, 91.5% of 150 micrograms/ml of cholic acid was transformed to deoxycholic acid and 1.1% to 7-keto-deoxycholic acid by E. lentum-like c-25 after a 7-d anaerobic incubation. None of the test strains showed production of either deoxycholic acid or 7-keto-deoxycholic acid as growing cultures. PMID:7814703

  5. PCR monitoring of Lactobacillus and Bifidobacterium dynamics in fermentations by piglet intestinal microbiota.

    PubMed

    Moura, Patrícia; Simões, Fernanda; Gírio, Francisco; Loureiro-Dias, Maria C; Esteves, M Paula

    2007-04-01

    A new group-specific primer (Lact71R), targeting the 16S-23S rDNA intergenic spacer region of Lactobacillus, was tested in its specificity to amplify rDNA of lactobacilli from piglet intestinal origin by polymerase chain reaction (PCR). Lact71R and Lab0677F, a Lactobacillus group-specific primer targeting the 16S rDNA, generated a common amplicon by PCR with DNA from Lactobacillus and Pediococcus reference strains, but not from Weissella strains. Sequence analysis of clones obtained by PCR amplification with Lact71R and Lab0677F and total DNA isolated from the ileal, caecal and colonic contents of one piglet resulted in Lactobacillus and Lactobacillus-like sequences mainly retrieved from intestinal environments. The primer pair was further validated in a culture independent PCR-analysis to monitor broad fluctuations of lactobacilli populations in fructo-oligosaccharides (FOS) fermentations by piglet intestinal microbiota. Bifidobacterium genus-specific primers were also used for PCR titre determination throughout FOS fermentations, in parallel with lactate and short chain fatty acids (SCFA) quantification. Increases between PCR titres were correlated with lactate detection in early stages of fermentation. Based on the obtained results, a simple monitoring PCR approach is proposed, foreseeing its application to the study of the dynamics of specific bacterial populations in complex environments. PMID:17440917

  6. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study.

    PubMed

    Osterlund, P; Ruotsalainen, T; Korpela, R; Saxelin, M; Ollus, A; Valta, P; Kouri, M; Elomaa, I; Joensuu, H

    2007-10-22

    5-Fluorouracil (5-FU)-based chemotherapy is frequently associated with diarrhoea. We compared two 5-FU-based regimens and the effect of Lactobacillus and fibre supplementation on treatment tolerability. Patients diagnosed with colorectal cancer (n=150) were randomly allocated to receive monthly 5-FU and leucovorin bolus injections (the Mayo regimen) or a bimonthly 5-FU bolus plus continuous infusion (the simplified de Gramont regimen) for 24 weeks as postoperative adjuvant therapy. On the basis of random allocation, the study participants did or did not receive Lactobacillus rhamnosus GG supplementation (1-2 x 10(10) per day) and fibre (11 g guar gum per day) during chemotherapy. Patients who received Lactobacillus had less grade 3 or 4 diarrhoea (22 vs 37%, P=0.027), reported less abdominal discomfort, needed less hospital care and had fewer chemotherapy dose reductions due to bowel toxicity. No Lactobacillus-related toxicity was detected. Guar gum supplementation had no influence on chemotherapy tolerability. The simplified de Gramont regimen was associated with fewer grade 3 or 4 adverse effects than the Mayo regimen (45 vs 89%), and with less diarrhoea. We conclude that Lactobacillus GG supplementation is well tolerated and may reduce the frequency of severe diarrhoea and abdominal discomfort related to 5-FU-based chemotherapy. PMID:17895895

  7. Severe oral infection due to Lactobacillus rhamnosus during induction chemotherapy for acute myeloid leukemia.

    PubMed

    Ishihara, Yuko; Kanda, Junya; Tanaka, Kaori; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Kawamura, Koji; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Terasako-Saito, Kiriko; Kimura, Shun-Ichi; Kikuchi, Misato; Nakasone, Hideki; Yamazaki, Rie; Kako, Shinichi; Nishida, Junji; Watanabe, Kunitomo; Kanda, Yoshinobu

    2014-12-01

    We report a case of severe oral infection with a high fever due to Lactobacillus rhamnosus during induction chemotherapy for acute myeloid leukemia. The patient did not improve on treatment with meropenem, clindamycin, or vancomycin until neutrophil recovery. Since L. rhamnosus GG is used in dairy products, and the patient ingested dairy products daily before starting chemotherapy, we suspected an association between the ingestion of dairy products and the development of infection. Pulsed-field gel electrophoresis using two different restriction enzymes showed that the strain isolated from the patient was identical to the L. rhamnosus GG strain isolated from dairy products and ATCC #53103. This was confirmed by a PCR assay with species-specific L. rhamnosus GG primers. Since Lactobacillus infection, particularly L. rhamnosus infection, can be fatal in immunocompromised hosts, we should consider Lactobacillus as a causative organism when Gram-positive rods are detected during treatment with broad-spectrum antibiotics and vancomycin. The causal association between the ingestion of dairy products containing Lactobacillus and Lactobacillus infection in immunocompromised hosts warrants further study. PMID:25115834

  8. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    PubMed Central

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  9. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study

    PubMed Central

    Österlund, P; Ruotsalainen, T; Korpela, R; Saxelin, M; Ollus, A; Valta, P; Kouri, M; Elomaa, I; Joensuu, H

    2007-01-01

    5-Fluorouracil (5-FU)-based chemotherapy is frequently associated with diarrhoea. We compared two 5-FU-based regimens and the effect of Lactobacillus and fibre supplementation on treatment tolerability. Patients diagnosed with colorectal cancer (n=150) were randomly allocated to receive monthly 5-FU and leucovorin bolus injections (the Mayo regimen) or a bimonthly 5-FU bolus plus continuous infusion (the simplified de Gramont regimen) for 24 weeks as postoperative adjuvant therapy. On the basis of random allocation, the study participants did or did not receive Lactobacillus rhamnosus GG supplementation (1–2 × 1010 per day) and fibre (11 g guar gum per day) during chemotherapy. Patients who received Lactobacillus had less grade 3 or 4 diarrhoea (22 vs 37%, P=0.027), reported less abdominal discomfort, needed less hospital care and had fewer chemotherapy dose reductions due to bowel toxicity. No Lactobacillus-related toxicity was detected. Guar gum supplementation had no influence on chemotherapy tolerability. The simplified de Gramont regimen was associated with fewer grade 3 or 4 adverse effects than the Mayo regimen (45 vs 89%), and with less diarrhoea. We conclude that Lactobacillus GG supplementation is well tolerated and may reduce the frequency of severe diarrhoea and abdominal discomfort related to 5-FU-based chemotherapy. PMID:17895895

  10. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    PubMed Central

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  11. Starch-Binding Domain Affects Catalysis in Two Lactobacillus α-Amylases

    PubMed Central

    Rodríguez-Sanoja, R.; Ruiz, B.; Guyot, J. P.; Sanchez, S.

    2005-01-01

    A new starch-binding domain (SBD) was recently described in α-amylases from three lactobacilli (Lactobacillus amylovorus, Lactobacillus plantarum, and Lactobacillus manihotivorans). Usually, the SBD is formed by 100 amino acids, but the SBD sequences of the mentioned lactobacillus α-amylases consist of almost 500 amino acids that are organized in tandem repeats. The three lactobacillus amylase genes share more than 98% sequence identity. In spite of this identity, the SBD structures seem to be quite different. To investigate whether the observed differences in the SBDs have an effect on the hydrolytic capability of the enzymes, a kinetic study of L. amylovorus and L. plantarum amylases was developed, with both enzymes acting on several starch sources in granular and gelatinized forms. Results showed that the amylolytic capacities of these enzymes are quite different; the L. amylovorus α-amylase is, on average, 10 times more efficient than the L. plantarum enzyme in hydrolyzing all the tested polymeric starches, with only a minor difference in the adsorption capacities. PMID:15640201

  12. Bile tolerance and its effect on antibiotic susceptibility of probiotic Lactobacillus candidates.

    PubMed

    Hyacinta, Májeková; Hana, Kiňová Sepová; Andrea, Bilková; Barbora, Čisárová

    2015-05-01

    Before use in practice, it is necessary to precisely identify and characterize a new probiotic candidate. Eight animal lactobacilli and collection strain Lactobacillus reuteri CCM 3625 were studied from the point of saccharide fermentation profiles, bile salt resistance, antibiogram profiles, and influence of bile on sensitivity to antibiotics. Studied lactobacilli differed in their sugar fermentation ability determined by API 50CHL and their identification based on these profiles did not correspond with molecular-biological one in most cases. Survival of strains Lactobacillus murinus C and L. reuteri KO4b was not affected by presence of bile. The resistance of genus Lactobacillus to vancomycin and quinolones (ofloxacin, ciprofloxacin) was confirmed in all strains tested. This study provides the new information about oxgall (0.5 and 1 %) effect on the lactobacilli antibiotic susceptibility. Antibiotic profiles were not noticeably affected, and both bile concentrations tested had comparable impact on the lactobacilli antibiotic sensitivity. Interesting change was noticed in L. murinus C, where the resistance to cephalosporins was reverted to susceptibility. Similarly, susceptibility of L. reuteri E to ceftazidime arose after incubation in both concentration of bile. After influence of 1 % bile, Lactobacillus mucosae D lost its resistance to gentamicin. On the base of gained outcomes, the best probiotic properties manifested L. reuteri KO4b, Lactobacillus plantarum KG4, and L. reuteri E due to their survival in the presence of bile. PMID:25413644

  13. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kso, a Japanese Sugar-Vegetable Fermented Beverage.

    PubMed

    Chiou, Tai-Ying; Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-01

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. PMID:26769925

  14. Draft Genome Sequence of Lactobacillus farciminis NBRC 111452, Isolated from Kso, a Japanese Sugar-Vegetable Fermented Beverage

    PubMed Central

    Oshima, Kenshiro; Suda, Wataru; Hattori, Masahira; Takahashi, Tomoya

    2016-01-01

    Here, we report the draft genome sequence of the Lactobacillus farciminis strain NBRC 111452, isolated from kso, a Japanese sugar-vegetable fermented beverage. This genome information is of potential use in studies of Lactobacillus farciminis as a probiotic. PMID:26769925

  15. Draft Genome Sequence of Coccoid Lactobacillus equigenerosi NRIC 0697T Isolated from the Gastrointestinal Tracts of Healthy Thoroughbreds.

    PubMed

    Toh, Hidehiro; Nakano, Akiyo; Nguyen, Co Thi Kim; Mimura, Iyo; Arakawa, Kensuke; Tashiro, Kosuke; Kikusui, Takefumi; Morita, Hidetoshi

    2016-01-01

    Lactobacillus equigenerosi NRIC 0697(T) was isolated from the gastrointestinal tracts of healthy thoroughbreds. This strain produced unique spherical or oval cells, which is rare in the genus Lactobacillus. Here, we report the draft genome sequence of this strain. PMID:26847890

  16. Alleviating effects of Lactobacillus strains on pathogenic Vibrio parahaemolyticus-induced intestinal fluid accumulation in the mouse model.

    PubMed

    Yang, Zhen-Quan; Jin, Cai-Juan; Gao, Lu; Fang, Wei-Ming; Gu, Rui-Xia; Qian, Jian-Ya; Jiao, Xin-An

    2013-02-01

    The aim of this study was to evaluate the probiotic effects of Lactobacillus strains against Vibrio parahaemolyticus causing gastroenteritis. Six-week-old ICR mice were pretreated with four Lactobacillus strains at three dosages, and then challenged with V. parahaemolyticus TGqx01 (serotype O3:K6). The results showed that V. parahaemolyticus TGqx01 caused severe intestinal fluid accumulation (FA) and villi damage in control mice which were pretreated with phosphate-buffered saline. In contrast, significant alleviation of FA was seen in mice pretreated by with a high dose of Lactobacillus strains (P < 0.05, n = 6) but not in mice that received low-dose pretreatments. Among middle-dose treatments, two highly adhesive strains, Lactobacillus rhamnosus H15 and Lactobacillus brevis Y29-4, significantly decreased intestinal FA and villi damage in treated mice (P < 0.05). Two low-adhesive strains, Lactobacillus acidophilus Y14-3 and Lactobacillus fermentum F16-6, had no significant alleviating effects. At the same dosing levels, no significant differences in FA were observed in mice pretreated with strains with similar adhesive abilities but different antagonistic activities. Our findings suggest that Lactobacillus strains can alleviate V. parahaemolyticus-induced intestinal FA in mice, and the doses required for in vivo efficacy depend more on adhesive ability than on the antibacterial activity of strains. PMID:23210909

  17. Draft Genome Sequence of Coccoid Lactobacillus equigenerosi NRIC 0697T Isolated from the Gastrointestinal Tracts of Healthy Thoroughbreds

    PubMed Central

    Toh, Hidehiro; Nakano, Akiyo; Nguyen, Co Thi Kim; Mimura, Iyo; Arakawa, Kensuke; Tashiro, Kosuke; Kikusui, Takefumi

    2016-01-01

    Lactobacillus equigenerosi NRIC 0697T was isolated from the gastrointestinal tracts of healthy thoroughbreds. This strain produced unique spherical or oval cells, which is rare in the genus Lactobacillus. Here, we report the draft genome sequence of this strain. PMID:26847890

  18. A Hydrolase from Lactobacillus sakei Moonlights as a Transaminase

    PubMed Central

    Sinz, Quirin; Freiding, Simone; Vogel, Rudi F.

    2013-01-01

    Enzymatic transamination of amino acids yields ?-keto acids and is the initial step for the production of volatile compounds that contribute to the sensory perception of fermented foods such as salami. Lactobacillus sakei is one of the lactic acid bacterial strains commonly used in starter cultures. Although the genome sequence of L. sakei 23K lacks genes encoding typical branched-chain amino acid transaminases, transamination activity and the formation of amino acid-derived volatile metabolites could be demonstrated. A protein purified from L. sakei is held responsible for the transamination activity. By heterologous expression of the corresponding gene in Escherichia coli, we were able to characterize the transamination side activity of an enzyme annotated as a putative acylphosphatase (AcP). A transamination side activity of hen egg white lysozyme (HEWL) was also discovered. Both enzymes showed substrate specificity toward branched-chain and aromatic amino acids. AcP also accepted l-methionine. Activity was optimal at neutral pH for both enzymes, whereas AcP showed a significantly higher temperature optimum (55C) than that of HEWL (37C). Kinetic parameters revealed high affinity toward l-leucine for AcP (Km = 1.85 mM) and toward l-isoleucine for HEWL (Km = 3.79 mM). AcP seems to play a major role in the metabolism of amino acids in L. sakei. PMID:23354716

  19. In vitro antagonistic activity of Lactobacillus casei against Helicobacter pylori

    PubMed Central

    Enany, Shymaa; Abdalla, Salah

    2015-01-01

    Helicobacter pylori is one of the most common causes of chronic infections in humans. Curing H. pylori infection is difficult because of the habitat of the organism below the mucus adherent layer of gastric mucosa. Lactobacilli are known as acid-resistant bacteria and can remain in stomach for a long time than any other organism, we aimed in this study to examine the efficacy of Lactobacillus casei as a probiotic against H. pylori in humans. Particularly, L. casei was opted as it is considered to be one of the widely used probiotics in dairy products. One hundred and seven strains of H. pylori were isolated from dyspeptic patients and were tested for their antibiotic susceptibility to metronidazole (MTZ), clarithromycin (CLR), tetracycline (TET), and amoxicillin (AMX) by the disc diffusion method. The strains were examined for their susceptibility toward L. casei - present in fermented milk products - by well diffusion method. It was found that 74.7% strains were resistant to MTZ; 1.8% to MTZ, TET, and CLR; 3.7% to MTZ and CLR; 4.6% to MTZ and TET; and 0.9% were resistant to MTZ, TET, and AMX. The antibacterial activity of L. casei against H. pylori was determined on all the tested H. pylori isolates including antibiotic resistant strains with different patterns. Our study proposed the use of probiotics for the treatment of H. pylori infection as an effective approach. PMID:26691482

  20. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226.

    PubMed

    Li, Baokun; Tian, Fengwei; Liu, Xiaoming; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2011-11-01

    Freeze-drying is commonly used to preserve probiotics, but it could cause cell damage and loss of viability. The cryoprotectants play an important role in the conservation of viability during freeze-drying. In this study, we investigated the survival rates of Lactobacillus reuteri CICC6226 in the presence of cryoprotectants such as sucrose, trehalose, and reconstituted skim milk (RSM). In addition, we determined the activities of hexokinase (HK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and ATPases immediately following the freeze-drying. The results showed that the differences in HK and PK activities with and without the cryoprotectants during freeze-drying were not significant, but cell viability and activities of LDH and ATPase were significantly different (P<0.01) prior to and after freeze-drying. Meanwhile, the results showed that the maintenance of the membrane integrity and fluidity was improved in the presence of the 10% trehalose or 10% RSM than other treatments during freeze-drying. These results have provided direct biochemical and metabolic evidence of injured cell during freeze-drying. Freeze-drying damaged membrane structure and function of cell and inactivated enzymes (LDH and ATPases). The results imply that LDH and ATPases are key markers and could be used to evaluate the effect of cryoprotectants on viability and metabolic activities of L. reuteri CICC6226 during freeze-drying. PMID:21626024

  1. New types of antimicrobial compounds produced by Lactobacillus plantarum.

    PubMed

    Niku-Paavola, M L; Laitila, A; Mattila-Sandholm, T; Haikara, A

    1999-01-01

    New types of antimicrobial compounds were identified in the culture filtrate of Lactobacillus plantarum VTT E-78076. Activity was detected in the low molecular mass fraction separated by gel chromatography. This fraction totally inhibited the growth of the Gram-negative test organism, Pantoea agglomerans (Enterobacter agglomerans) VTT E-90396. Characteristic compounds from this fraction were identified by GC/MS-analysis and the identification was confirmed using pure commercial reference compounds in identical chromatographs and in antimicrobial tests. The active fraction included benzoic acid (CAS 65-85-0), 5-methyl-2,4-imidazolidinedione (CAS 616-03-5, methylhydantoin), tetrahydro-4-hydroxy-4-methyl-2H- pyran-2-one (CAS 674-26-0, mevalonolactone) and 3-(2-methylpropyl)-2,5-piperazinedione (CAS 5845-67-0, cyclo(glycyl-L-leucyl)). These compounds in concentrations of 10 ppm inhibited growth of the test organism by 10-15% when acting separately, but 100% when all were applied together with 1% lactic acid. The inhibition was 40% by 1% lactic acid alone. The compounds were also active against Fusarium avenaceum (Gibberella avenacea) VTT-D-80147. The inhibition was 10-15% by separate compounds in concentrations of 10 ppm and maximally 20% in combinations. Fungal growth was not inhibited by lactic acid. Inhibition by unfractionated Lact. plantarum culture filtrate was 37% and by the low molecular mass fraction, 27%. PMID:10200070

  2. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

    PubMed Central

    2014-01-01

    Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains. PMID:25186587

  3. Hemagglutination activity of Lactobacillus acidophilus group lactic acid bacteria.

    PubMed

    Yamada, M; Saito, T; Toba, T; Kitazawa, H; Uemura, J; Itoh, T

    1994-05-01

    The cells of 28 strains of the Lactobacillus acidophilus group were evaluated for hemagglutination (HA) activity. The activity was found in the surface layer (SL) protein fraction extracted by 2 M guanidine hydrochloride. The most SL proteins from the A group strains (L. acidophilus (A1), L. crispatus (A2), L. amylovorus (A3), and L. gallinarum (A4)) showed HA activity, but the proteins from the B group strains (L. gasseri (B1) and L. johnsonii (B2)) showed no activity. The SL proteins from the A group strains were composed in common of a main component having molecular mass of about 40-45 kDa on SDS-PAGE. The SL proteins from JCM 1034 strain that showed the highest HA activity was fractionated by CM-Toyopearl ion-exchange chromatography. The highest HA activity was detected in the major protein of 41 kDa. This protein was purified and shown to be composed of about 50% of hydrophobic amino acids. The HA activity of the protein (1034 lectin) was specifically inhibited by fetuin and bovine lactoferrin at the concentrations of 80 and 160 micrograms/ml, respectively. The removal of N-acetylneuraminic acid from fetuin significantly decreased the inhibitory activity. PMID:7517228

  4. Timely approaches to identify probiotic species of the genus Lactobacillus

    PubMed Central

    2013-01-01

    Over the past decades the use of probiotics in food has increased largely due to the manufacturer’s interest in placing “healthy” food on the market based on the consumer’s ambitions to live healthy. Due to this trend, health benefits of products containing probiotic strains such as lactobacilli are promoted and probiotic strains have been established in many different products with their numbers increasing steadily. Probiotics are used as starter cultures in dairy products such as cheese or yoghurts and in addition they are also utilized in non-dairy products such as fermented vegetables, fermented meat and pharmaceuticals, thereby, covering a large variety of products. To assure quality management, several pheno-, physico- and genotyping methods have been established to unambiguously identify probiotic lactobacilli. These methods are often specific enough to identify the probiotic strains at genus and species levels. However, the probiotic ability is often strain dependent and it is impossible to distinguish strains by basic microbiological methods. Therefore, this review aims to critically summarize and evaluate conventional identification methods for the genus Lactobacillus, complemented by techniques that are currently being developed. PMID:24063519

  5. Transport of Aminophosphonic Acids in Lactobacillus plantarum and Streptococcus faecalis

    PubMed Central

    Holden, Joseph T.; Van Balgooy, Josephus N. A.; Kittredge, James S.

    1968-01-01

    Aminophosphonic acids analogous to glutamic acid, aspartic acid, alanine, and valine were actively accumulated by Lactobacillus plantarum. Uptake was dependent on the availability of glucose and, in all cases, the estimated intracellular concentrations substantially exceeded extracellular levels. During uptake, there was little metabolism of tritiated 2-amino-3-phosphonopropionic acid (APP), the aspartic acid analogue, and a negligible incorporation of isotope from this substance into the nucleic acid, lipid, protein, or cell wall fractions of the cell. Competition studies with APP indicated that its transport in L. plantarum and in Streptococcus faecalis was antagonized only by structurally related compounds such as glutamic, aspartic, and cysteic acids. Kinetic studies showed that APP was taken up by a single catalytic system in S. faecalis. A mutant strain of this organism which lacks one of two kinetically distinguishable dicarboxylic amino acid transport systems failed to accumulate measurable amounts of APP. These experiments indicate that the aminophosphonic acids are accumulated by the amino acid transport systems in these bacteria with minimal metabolic changes. PMID:4971894

  6. Enteric coating of granules containing the probiotic Lactobacillus acidophilus.

    PubMed

    Pyar, Hassan; Peh, Kok-Khiang

    2014-06-01

    In the present study, a capsule formulation composed of enteric coated granules of Lactobacillus acidophilus ATCC 4962 was developed using Eudragit L30D-55 as enteric polymer. Optimization of the capsule formulation was achieved with a maximum viable cell count after 2 h of incubation in acid medium and disintegration time of 1 h in buffer pH 6.8. The amount of Eudragit L30D-55 in the capsules correlated with gastric juice resistance. The best protective qualities against artificial gastric juice were observed when capsules were prepared from granules composed of L. acidophilus, corn starch, lactose monohydrate, polyvinylpyrrolidone and coated with 12.5 % (m/V) of Eudragit L30D-55. Capsule formulation of L. acidophilus in edible broth medium suspension serves as a cheap alternative to the expensive freeze-drying procedure for preparing L. acidophilus. In addition, the enteric coating using Eudragit L30D-55 could protect probiotics from the acidic gastric environment and enhance the bioactivity of probiotics along with replacement of pathogenic microbes in human intestine. PMID:24914724

  7. Probiotic Properties of Lyophilized Cell Free Extract of Lactobacillus casei

    PubMed Central

    Saadatzadeh, Afrooz; Fazeli, Mohamma Reza; Jamalifar, Hossein; Dinarvand, Rassoul

    2013-01-01

    Background In recent years there have been considerable interests in the use of probiotic live cells for nutritional and therapeutic purposes. This strategy can be concomitant with some limitations such as survival of live cell during the GI-transit and their effective delivery to target tissues upon ingestion. Several attempts have been made to overcome these limitations such as their microencapsulation, spray-drying and lyophilization. Objectives In this study extract of cultured probiotics without cells was evaluated for its antimicrobial effects, antioxidant activity, and its stability. Materials and Methods In this work the potential of lyophilized-cell-free-probiotic-extract (LPE) as a suitable alternative strategy for the preparation of probiotic-products was investigated. The main aim of this study was to find out the antibacterial and antioxidant activity of LPE and also its stability. LPE was obtained by centrifugation and subsequent lyophilization of the collected supernatant from culture media of Lactobacillus casei. An enzymatic reagent-kit was used for detection of its content of lactic acid. Antibacterial test was performed using agar cup-plat-method, the DPPH scavenging -assay was used to determine its antioxidant activity and during a storage course, LPE was under a long-term stability study. Results Results showed that, LPE had more antipathogenic effects, antioxidant activity, and stability during storage-time when compared to fresh probiotic-extract. Conclusions Employing the LPE as a new approach, gives novel concept of probiotic-products in food and medical marketing. PMID:24624202

  8. Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps.

    PubMed

    Vong, Linda; Lorentz, Robert J; Assa, Amit; Glogauer, Michael; Sherman, Philip M

    2014-02-15

    Neutrophil extracellular traps (NETs) are an essential component of the antimicrobial repertoire and represent an effective means by which neutrophils capture, contain, and kill microorganisms. However, the uncontrolled or excessive liberation of NETs also damages surrounding cells and can contribute to disease pathophysiology. Alterations in the gut microbiota, as well as the presence of local and systemic markers of inflammation, are strongly associated with the manifestation of a spectrum of intestinal disorders, including chronic inflammatory bowel disease. Although probiotics exert beneficial effects on gut homeostasis, their direct effect on neutrophils, which are abundant in the setting of intestinal inflammation, remains unclear. In this study, we investigated the effects of nonpathogenic, enteropathogenic, and probiotic bacteria on the dynamics of NET formation. Using murine bone marrow-derived neutrophils and the neutrophil-differentiated human myeloid cell line d.HL-60, we demonstrate for the first time, to our knowledge, that probiotic Lactobacillus rhamnosus strain GG inhibits both PMA- and Staphylococcus aureus-induced formation of NETs. Moreover, probiotic L. rhamnosus strain GG had potent antioxidative activity: dampening reactive oxygen species production and phagocytic capacity of the neutrophils while protecting against cell cytotoxicity. Within the milieu of the gut, this represents a novel mechanism by which probiotics can locally dampen innate immune responses and confer desensitization toward luminal Ags. PMID:24465012

  9. Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization.

    PubMed

    Zhang, Kai; Ni, Ye

    2014-02-01

    Tyrosine decarboxylase (TDC, EC 4.1.1.25) is an enzyme that catalyzes the decarboxylation of l-tyrosine to produce tyramine and CO2. In this study, a 1881-bp tdc gene from Lactobacillus brevis was cloned and heterologously expressed in Escherichia coli BL21 (DE3). Glucose was discovered to play an important role in the soluble expression of rLbTDC. After optimization, recombinant TDC (rLbTDC) was achieved in excellent solubility and a yield of 224mg rLbTDC/L broth. The C-terminal His-Tagged rLbTDC was one-step purified with 90% recovery. Based on SDS-PAGE and gel filtration analysis, rLbTDC is a dimer composed of two identical subunits of approximately 70kDa. Using l-tyrosine as substrate, the specific activity of rLbTDC was determined to be 133.5U/mg in the presence of 0.2mM pyridoxal-5'-phosphate at 40°C and pH 5.0. The Km and Vmax values of rLbTDC were 0.59mM and 147.1μmolmin(-1)mg(-1), respectively. In addition to l-tyrosine, rLbTDC also exhibited decarboxylase activity towards l-DOPA. This study has demonstrated, for the first time, the soluble expression of tdc gene from L. brevis in heterologous host. PMID:24211777

  10. Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides.

    PubMed

    Quiberoni, Andrea; Guglielmotti, Daniela M; Reinheimer, Jorge A

    2003-07-15

    The effect of several biocides and thermal treatments on the viability of four Lactobacillus delbrueckii phages was investigated. Time to achieve 99% inactivation of phages at 63 and 72 degrees C in three suspension media (Tris Magnesium Gelatin (TMG) buffer, Man Rogosa Sharpe (MRS) broth and reconstituted nonfat dry skim milk (RSM)) was calculated. Thermal resistance depended on the phage considered, but a marked heat-resistance was exhibited by one phage (Ib(3)) since its high titre suspensions were completely inactivated only after 45 min at 72 degrees C or 15 min at 90 degrees C. A clear protective effect of the milk was revealed when the three suspension media were compared. As regards to the effects of biocides on phages, only peracetic acid was found to be effective for inactivating high titre suspensions. Ethanol, even at a concentration of 100%, was not suitable to assure no surviving phage particles and isopropanol turned out to be less effective than ethanol. Sodium hypochlorite at 200-400 ppm inactivated the phages completely, except phage Ib(3), which was only destroyed after treatments with 1200 ppm. The diversity observed in the heat and biocide resistance of L. delbrueckii phages is useful to establish a basis for adopting the most effective thermal and chemical treatments for inactivating them in dairy plants and laboratory environments. PMID:12781954

  11. Molecular Diversity within Lactobacillus helveticus as Revealed by Genotypic Characterization

    PubMed Central

    Giraffa, Giorgio; Gatti, Monica; Rossetti, Lia; Senini, Lucia; Neviani, Erasmo

    2000-01-01

    Lactobacillus helveticus is a homofermentative thermophilic lactic acid bacterium that is used in the manufacture of Swiss type and long-ripened Italian cheeses, such as Emmental, Grana, and Provolone cheeses. Substantial differences in several technologically important characteristics are found among L. helveticus strains isolated from natural dairy starter cultures. In the present study we investigated the genotypic diversity of 74 strains isolated from different dairy cultures used for manufacturing Grana and Provolone cheeses and six collection strains. A restriction fragment length polymorphism analysis of both total genomic DNA and the 16S rRNA gene (ribotyping) was used as genotypic fingerprinting. A multivariate statistical analysis of the data enabled us to identify significant genotypic heterogeneity in L. helveticus. We found that genotypic fingerprinting could be used to distinguish strains; in particular, it was possible to associate the presence of specific strain genotypes with dairy ecosystem sources (e.g., Grana or Provolone cheese). Our data contribute to the description of microbial heterogeneity in L. helveticus and provide a more solid basis for understanding the functional and ecological significance of the presence of different L. helveticus biotypes in natural dairy starter cultures. PMID:10742197

  12. Lactobacillus equigenerosi Strain Le1 Invades Equine Epithelial Cells

    PubMed Central

    Botha, Marlie; Botes, Marelize; Loos, Ben; Smith, Carine

    2012-01-01

    Lactobacillus equigenerosi strain Le1, a natural inhabitant of the equine gastrointestinal tract, survived pH 3.0 and incubation in the presence of 1.5% (wt/vol) bile salts for at least 2 h. Strain Le1 showed 8% cell surface hydrophobicity, 60% auto-aggregation, and 47% coaggregation with Clostridium difficile C6. Only 1% of the cells adhered to viable buccal epithelial cells and invaded the cells within 20 min after contact. Preincubation of strain Le1 in a buffer containing pronase prevented adhesion to viable epithelial cells. Preincubation in a pepsin buffer delayed invasion from 20 min to 1 h. Strain Le1 did not adhere to nonviable epithelial cells. Administration of L. equigenerosi Le1 (1 × 109 CFU per 50 kg body weight) to healthy horses did not increase white blood cell numbers. Differential white blood cell counts and aspartate aminotransferase levels remained constant. Glucose, lactate, cholesterol, and urea levels remained constant during administration with L. equigenerosi Le1 but decreased during the week after administration. PMID:22504808

  13. Functional genomics of Lactobacillus casei establishment in the gut

    PubMed Central

    Licandro-Seraut, Hélène; Scornec, Hélène; Pédron, Thierry; Cavin, Jean-François; Sansonetti, Philippe J.

    2014-01-01

    Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis. PMID:25024222

  14. In vitro antagonistic activity of Lactobacillus casei against Helicobacter pylori.

    PubMed

    Enany, Shymaa; Abdalla, Salah

    2015-01-01

    Helicobacter pylori is one of the most common causes of chronic infections in humans. Curing H. pylori infection is difficult because of the habitat of the organism below the mucus adherent layer of gastric mucosa. Lactobacilli are known as acid-resistant bacteria and can remain in stomach for a long time than any other organism, we aimed in this study to examine the efficacy of Lactobacillus casei as a probiotic against H. pylori in humans. Particularly, L. casei was opted as it is considered to be one of the widely used probiotics in dairy products. One hundred and seven strains of H. pylori were isolated from dyspeptic patients and were tested for their antibiotic susceptibility to metronidazole (MTZ), clarithromycin (CLR), tetracycline (TET), and amoxicillin (AMX) by the disc diffusion method. The strains were examined for their susceptibility toward L. casei - present in fermented milk products - by well diffusion method. It was found that 74.7% strains were resistant to MTZ; 1.8% to MTZ, TET, and CLR; 3.7% to MTZ and CLR; 4.6% to MTZ and TET; and 0.9% were resistant to MTZ, TET, and AMX. The antibacterial activity of L. casei against H. pylori was determined on all the tested H. pylori isolates including antibiotic resistant strains with different patterns. Our study proposed the use of probiotics for the treatment of H. pylori infection as an effective approach. PMID:26691482

  15. Adhesion of Lactobacillus amylovorus to Insoluble and Derivatized Cornstarch Granules

    PubMed Central

    Imam, Syed H.; Harry-O'Kuru, R. E.

    1991-01-01

    Approximately 70% of the cells in a suspension of the amylolytic bacterium Lactobacillus amylovorus bind to cornstarch granules within 30 min at 25C. More than 60% of the bound bacteria were removed by formaldehyde (2%) or glycine (1 M) at pH 2.0. More than 90% of the bound bacteria were removed by MgCl2 (2 M; pH 7.0). Binding of L. amylovorus to cornstarch was inhibited in heat-killed cells and in cells that had been pretreated with glutaraldehyde, formaldehyde, sodium azide, trypsin, or 1% soluble potato starch. Bacterial binding to cornstarch appeared to correlate with both the concentration of cornstarch in the suspension and the amylose content in the granules. The ability of L. amylovorus to adhere to cornstarch granules was reduced for granules that had been extracted with HCl-ethanol, HCl-methanol, HCl-propanol, or HCl-butanol. Chemical derivatization of cornstarch resulted in a wide variety of adhesion responses by these bacteria. For example, 2-O-butyl starch (degree of substitution, 0.09) enhanced adhesion, whereas two palmitate starches (degree of substitution, 0.48 and 0.09) exhibited reduced adhesion activities. 2-O-(2-hydroxybutyl) starch and starch-poly(ethylene-co-acrylic acid) ester showed adhesion activities similar to those of the nonderivatized starch controls. Images PMID:16348460

  16. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri.

    PubMed

    Oh, Jee-Hwan; van Pijkeren, Jan-Peter

    2014-01-01

    Clustered regularly interspaced palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) nuclease protect bacteria and archeae from foreign DNA by site-specific cleavage of incoming DNA. Type-II CRISPR-Cas systems, such as the Streptococcus pyogenes CRISPR-Cas9 system, can be adapted such that Cas9 can be guided to a user-defined site in the chromosome to introduce double-stranded breaks. Here we have developed and optimized CRISPR-Cas9 function in the lactic acid bacterium Lactobacillus reuteri ATCC PTA 6475. We established proof-of-concept showing that CRISPR-Cas9 selection combined with single-stranded DNA (ssDNA) recombineering is a realistic approach to identify at high efficiencies edited cells in a lactic acid bacterium. We show for three independent targets that subtle changes in the bacterial genome can be recovered at efficiencies ranging from 90 to 100%. By combining CRISPR-Cas9 and recombineering, we successfully applied codon saturation mutagenesis in the L. reuteri chromosome. Also, CRISPR-Cas9 selection is critical to identify low-efficiency events such as oligonucleotide-mediated chromosome deletions. This also means that CRISPR-Cas9 selection will allow identification of recombinant cells in bacteria with low recombineering efficiencies, eliminating the need for ssDNA recombineering optimization procedures. We envision that CRISPR-Cas genome editing has the potential to change the landscape of genome editing in lactic acid bacteria, and other Gram-positive bacteria. PMID:25074379

  17. CRISPR–Cas9-assisted recombineering in Lactobacillus reuteri

    PubMed Central

    Oh, Jee-Hwan; van Pijkeren, Jan-Peter

    2014-01-01

    Clustered regularly interspaced palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) nuclease protect bacteria and archeae from foreign DNA by site-specific cleavage of incoming DNA. Type-II CRISPR–Cas systems, such as the Streptococcus pyogenes CRISPR–Cas9 system, can be adapted such that Cas9 can be guided to a user-defined site in the chromosome to introduce double-stranded breaks. Here we have developed and optimized CRISPR–Cas9 function in the lactic acid bacterium Lactobacillus reuteri ATCC PTA 6475. We established proof-of-concept showing that CRISPR–Cas9 selection combined with single-stranded DNA (ssDNA) recombineering is a realistic approach to identify at high efficiencies edited cells in a lactic acid bacterium. We show for three independent targets that subtle changes in the bacterial genome can be recovered at efficiencies ranging from 90 to 100%. By combining CRISPR–Cas9 and recombineering, we successfully applied codon saturation mutagenesis in the L. reuteri chromosome. Also, CRISPR–Cas9 selection is critical to identify low-efficiency events such as oligonucleotide-mediated chromosome deletions. This also means that CRISPR–Cas9 selection will allow identification of recombinant cells in bacteria with low recombineering efficiencies, eliminating the need for ssDNA recombineering optimization procedures. We envision that CRISPR–Cas genome editing has the potential to change the landscape of genome editing in lactic acid bacteria, and other Gram-positive bacteria. PMID:25074379

  18. The Adsorption of Ochratoxin A by Lactobacillus Species

    PubMed Central

    Piotrowska, Małgorzata

    2014-01-01

    The objective of this study was to examine ochratoxin A (OTA) binding by three lactic acid bacteria (LAB) species: Lactobacillus plantarum, L. brevis, and L. sanfranciscensis. Experiments were conducted using MRS medium and PBS buffer contaminated with 1000 ng/mL OTA and inoculated with live or thermally inactivated bacterial biomass at a concentration of 1 or 5 mg dry weight/mL. It was found that, depending on the strain and biomass density, live bacterial cells reduced OTA content by 16.9% to 35% in MRS medium and by 14.8% to 26.4% in PBS after 24 h of contact. OTA binding was higher in the case of thermally inactivated bacterial biomass (46.2% to 59.8%). The process is very rapid: OTA was removed from PBS as early as after 30 min of contact. The binding of the toxin by cells was partially reversible under the treatment by water and 1 M HCl. The results show that OTA is adsorbed to the surface structures of the cell wall, which is promoted not only by the hydrophobic properties of the cell wall, but also by electron donor-acceptor and Lewis acid-base interactions. PMID:25247265

  19. Variability of S-layer proteins in Lactobacillus helveticus strains.

    PubMed

    Waśko, Adam; Polak-Berecka, Magdalena; Kuzdraliński, Adam; Skrzypek, Tomasz

    2014-02-01

    The presence of S-layer proteins in the cell envelope of Lactobacillus helveticus may be technologically important. S-layer proteins are the adhesion site for cell envelope proteinase, which forms the proteolytic pathway in bacteria. Eleven strains of L. helveticus were examined for the presence of S-layer proteins and slpH genes. S-layer proteins from six strains were identified and sequenced. Multiple alignments of the deduced amino acid sequences demonstrated a strong sequence conservation of all Slp studied. Transmission Electron Microscopy analysis of the cells revealed the typical cell wall architecture of the S-layer. This is the first report on characterisation of glycosylated S-layer proteins from different strains of L. helveticus. The amino acid composition, the secondary structure, and the physical properties of these proteins were found to be quite similar to those of S-layer proteins from other lactobacilli. However, PCR analysis revealed that five of the examined strains of L. helveticus did not have slpH genes. This finding suggests that S-layer protein genes cannot be considered as housekeeping genes and cannot be used as molecular markers for L. helveticus. PMID:24269654

  20. Proteolytic activity of probiotic strain Lactobacillus helveticus M92.

    PubMed

    Beganović, Jasna; Kos, Blaženka; Leboš Pavunc, Andreja; Uroić, Ksenija; Džidara, Petra; Šušković, Jagoda

    2013-04-01

    The aim of this research was to investigate the potential of previously defined probiotic strain Lactobacillus helveticus M92 as functional starter culture for fermented dairy products. Therefore, proteolytic activity of L. helveticus M92 was investigated and compared with those of different representatives of probiotic and starter culture strains. Cluster analysis of AFLP fingerprints showed a difference of L. helveticus M92 compared to five other L. helveticus strains, but the percentage of similarity confirmed the identification on species level. Casein hydrolysis by L. helveticus M92 was monitored by agar-well diffusion test, SDS-PAGE and Anson's method. L. helveticus M92 exhibited the highest proteolytic activity among tested probiotic and starter cultures strains with the fastest acidification rate and the highest pH decrease after overnight incubation in skim milk. The presence of prtH2 gene was confirmed by PCR amplification with specific primers, while PCR product was not obtained after amplification with primers specific to prtH. Furthermore, SDS-PAGE LC-MS/MS analysis of insoluble proteome of L. helveticus M92 enabled identification of several proteins involved in proteolytic system of L. helveticus such as protease PrtM as well as proteins involved in Opp peptide transport system and the intracellular peptidases PepE, PepN, and PepQ. PMID:23454496

  1. Lactobacillus acidophilus—Rutin Interplay Investigated by Proteomics

    PubMed Central

    Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna

    2015-01-01

    Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus. PMID:26544973

  2. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success.

    PubMed

    Bull, Matthew; Plummer, Sue; Marchesi, Julian; Mahenthiralingam, Eshwar

    2013-12-01

    Lactobacillus acidophilus is a commercially significant bacterial probiotic, originally isolated from the human gastrointestinal tract and designated Bacillus acidophilus in 1900. Throughout the development of methods to identify and characterise bacteria, L. acidophilus has undergone multiple taxonomic revisions and is now the type species of a phylogenetic subgroup in the highly diverse and heterogeneous Lactobacillus genus. As a result of the limitations of differentiating phenotypically similar species by morphological and biochemical means and revisionary nature of Lactobacillus taxonomy, the characterisation of L. acidophilus has struggled with misidentification and misrepresentation. In contrast, due to its global use as a probiotic supplement in functional foods, L. acidophilus sensu stricto is now one of the most well-characterised Lactobacillus species. Here, we establish the provenance of L. acidophilus strains, unpicking historical and current misidentifications of L. acidophilus, and reviewing the probiotic, genomic and physiological characteristics of this important Lactobacillus species. PMID:24152174

  3. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells.

    PubMed

    Chauvière, G; Coconnier, M H; Kernéis, S; Fourniat, J; Servin, A L

    1992-08-01

    Twenty-five strains of lactobacilli were tested for their ability to adhere to human enterocyte-like Caco-2 cells in culture. Seven Lactobacillus strains adhered well to the Caco-2 cells, of which three possessed calcium-independent adhesion properties. A high level of calcium-independent adhesion was observed with the human stool isolate Lactobacillus acidophilus strain LB. Scanning electron microscopy revealed that this strain adhered to the apical brush border of the cells. Adhesion increased in parallel with the morphological and functional differentiation of the Caco-2 cells. Two Lactobacillus components were involved in this adhesion. One was protease-resistant and bacterial-surface-associated; the other was heat-stable, extracellular and protease-sensitive. PMID:1527509

  4. Evaluation in vitro of the antagonistic substances produced by Lactobacillus spp. isolated from chickens

    PubMed Central

    Lima, Edna T.; Andreatti Filho, Raphael L.; Okamoto, Adriano S.; Noujaim, José C.; Barros, Mércia R.; Crocci, Adalberto J.

    2007-01-01

    To determine the inhibitory capacity of lactic acid bacteria due to the action of antagonistic substances, we tested 474 isolates of Lactobacillus from the crop and cecum of chickens against gram-positive and gram-negative indicator microorganisms by the spot-on-the-lawn and well-diffusion antagonism methods. Of the 474 isolates, 265 demonstrated antimicrobial activity against the indicator microorganisms. Isolates identified as L. reuteri, L. salivarius, or Lactobacillus spp. inhibited Enterococcus faecalis, E. faecium, Listeria monocytogenes, and Salmonella spp. but not L. casei, L. delbrueckii, L. fermentum, or L. helveticus by the well-diffusion simultaneous antagonism method under anaerobic incubation conditions. The antagonistic substances produced by some of the Lactobacillus isolates were inactivated after treatment by proteolytic enzymes, which suggested that the substances could be antimicrobial peptides or bacteriocins. PMID:17479773

  5. Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production.

    PubMed

    Ho, P S; Kwang, J; Lee, Y K

    2005-02-01

    Lactobacillus casei strain Shirota was selected as a bacterial carrier for the development of live mucosal vaccines against coronavirus. A 75 kDa fragment of transmissible gastroenteritis coronavirus (TGEV) spike glycoprotein S was used as the model coronavirus antigen. The S glycoprotein was cloned into a Lactobacillus/E. coli shuttle vector (pLP500) where expression and secretion of the glycoprotein S from the recombinant lactobacilli was detected via immunoblotting. Oral immunization of BALB/c mice with recombinant LcS that constitutively expresses the 75 kDa fragment of the glycoprotein S, induced both local mucosal and systemic immune responses against TGEV. Maximum titers of IgG (8.38+/-0.19 ng/ml of serum) and IgA (64.82+/-2.9 ng/ml of intestinal water) were attained 32 days post oral inturbation. The induced antibodies demonstrated neutralizing effects on TGEV infection. PMID:15661381

  6. Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans.

    PubMed

    Filoche, S K; Anderson, S A; Sissons, C H

    2004-10-01

    The ability of oral bacteria to integrate within a biofilm is pivotal to their survival. A dependence on the amount of biofilm growth by noncoaggregating Lactobacillus rhamnosus and Lactobacillus plantarum on coculture with Actinomyces naeslundii, Actinomyces gerencseriae, Streptococcus mutans and Veillonella parvula was investigated using an artificial-mouth culture system. Biofilm formation by the lactobacilli in mono-culture was poor. In coculture with Actinomyces species the amount of L. rhamnosus increased 7-20 times and L. plantarum 4-7 times compared to its mono-culture biofilm. S. mutans also promoted substantial biofilm growth of lactobacilli but V. parvula had no effect. We conclude that these Actinomyces species promoted growth of key Lactobacillus species in a biofilm, as did S. mutans to a smaller extent, and that the ability of individual bacteria to form mono-culture biofilms is not necessarily an indicator of their survival and pathogenic potential in a complex multispecies biofilm community. PMID:15327645

  7. Bacteriocins from Lactobacillus plantarum production, genetic organization and mode of action

    PubMed Central

    Todorov, Svetoslav D.

    2009-01-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented. PMID:24031346

  8. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  9. Isolation and microencapsulation of Lactobacillus spp. from corn silage for probiotic application

    PubMed Central

    Kasra – Kermanshahi, R; Fooladi, J; Peymanfar, S

    2010-01-01

    Background and Objectives Probiotics including strains of Lactobacillus spp. are living microorganisms including which are beneficial to human and animals health. In this study, Lactobacillus has been isolated from corn silage in a cold region of Iran by anaerobic culture. Materials and Methods The bacteriological and biochemical standard methods were used for identification and phenotypic characterization of isolated organism. To increase the stability of organism in the environment, we used microencapsulation technique using stabilizer polymers (Alginate and Chitosan). Results The isolated Lactobacillus spp. was able to ferment tested carbohydrates and grow at 10°C–50°C. Using microencapsulation, the stability and survival of this bacterium increased. Conclusion microencapsulation of lactic acid bacteria with alginate and chitosan coating offers an effective way of delivering viable bacterial cells to the colon and maintaining their survival during refrigerated storage. PMID:22347557

  10. Behavioral Predictors of Colonization with Lactobacillus crispatus or Lactobacillus jensenii after Treatment for Bacterial Vaginosis: A Cohort Study

    PubMed Central

    Mitchell, Caroline; Manhart, Lisa E.; Thomas, Kathy; Fiedler, Tina; Fredricks, David N.; Marrazzo, Jeanne

    2012-01-01

    Objective: Evaluate predictors of vaginal colonization with lactobacilli after treatment for bacterial vaginosis (BV). Methods. Vaginal fluid specimens from women with BV underwent qPCR for Lactobacillus crispatus, L. jensenii, and L. iners pre- and posttreatment. Results. Few women with BV were colonized with L. crispatus (4/44, 9%) or L. jensenii (1/44, 2%), though all had L. iners. One month posttreatment 12/44 (27%) had L. crispatus, 12/44 (27%) L. jensenii, and 43/44 (98%) L. iners. Presence of L. jensenii posttreatment was associated with cure (Risk Ratio (RR) 1.67; 95% CI 1.09–2.56); L. crispatus showed a similar trend (RR 1.41; 95% CI 0.89–2.24, P = 0.14). Receptive oral sex was associated with 2.2-log10 lower concentration of L. crispatus (95% CI −4.38, −.02), and digital-vaginal sex with 2.6-log10 lower concentration (95% CI −4.87, −.33). Conclusion. One month after BV treatment, few women established colonization with L. crispatus or L. jensenii. Few behaviors were associated with colonization. PMID:22693410

  11. Development of an Escherichia coli-Lactobacillus casei shuttle vector for heterologous protein expression in Lactobacillus casei.

    PubMed

    Suebwongsa, Namfon; Lulitanond, Viraphong; Mayo, Baltasar; Yotpanya, Panjamaporn; Panya, Marutpong

    2016-01-01

    There is an increasing interest to develop various lactic acid bacteria (LAB) species as mucosal delivery vehicles, for which the development of a variety of cloning and expression systems for these bacteria is of primary importance. This study reports the complete nucleotide sequence of the cryptic plasmid pRCEID7.6 derived from the chicken probiotic LAB strain Lactobacillus casei TISTR1341. Sequence analysis and comparison showed that pRCEID7.6 is composed of nine putative open reading frames. The replicon origin of pRCEID7.6 consisted of untranslated origin of replication and translated replication protein B sequences. This region was used to construct Escherichia coli/L. casei shuttle vectors carrying erythromycin and chloramphenicol resistance genes as selective markers. Segregation and structural stability of the vectors in L. casei was sufficient for most genetic applications. The feasibility of this vector for heterologous protein expression in L. casei was determined by cloning in pRCEID-LC7.6, the gene encoding the nucleocapsid protein (NP), from the influenza A virus under the control of the homologous promoter from the lactate dehydrogenase gene. L. casei carrying this recombinant plasmid was shown to successfully express the NP protein. Therefore, this shuttle vector can be used for further study in the development of mucosal delivery vehicles. PMID:27026866

  12. Association between Obesity and Cervical Microflora Dominated by Lactobacillus iners in Korean Women

    PubMed Central

    Oh, Hea Young; Seo, Sang-Soo; Kong, Ji-Sook; Lee, Jae-Kwan

    2015-01-01

    Lactobacillus spp. are associated with the maintenance of reproductive health, but obesity reduces fertility and is a risk factor for obstetric and neonatal complications. We assessed the association between obesity and the cervical Lactobacillus composition, which has not been examined previously. Pyrosequencing was performed using cervical swabs collected from 76 normal participants with negative results for cervical intraepithelial neoplasia (CIN) and 57 participants with CIN, based on histological examinations. Cluster analysis of nine Lactobacillus spp. was performed, and five cluster types were identified. The association between obesity and the Lactobacillus community was assessed by logistic regression analysis after adjustment for confounding factors. The proportion of Lactobacillus iners increased and that of Lactobacillus crispatus decreased according to body mass index (BMI) categories, i.e., underweight (BMI of <18.5 kg m−2), normal weight (BMI of 18.5 to 22.9 kg m−2), overweight (BMI of 23.0 to 24.9 kg m−2), and obese (BMI of ≥25 kg m−2). The L. iners-dominant type had a significant association with obesity (odds ratio [OR], 7.55 [95% confidence interval [CI], 1.18 to 48.2]), compared to the L. crispatus-dominant type. The group with high values for the ratio obtained by dividing the relative abundance of L. iners by that of L. crispatus had a significant association with obesity (OR, 6.54 [95% CI, 1.22 to 35.1]), compared to the low-ratio group. Associations between obesity and the L. iners/L. crispatus ratio were observed among young women (OR, 6.26 [95% CI, 1.15 to 33.9]) but not older women and in the normal group (OR, 6.97 [95% CI, 1.20 to 70.4]) but not the CIN group. Obesity was associated with cervical microflora dominated by L. iners in reproductive-age women without dysplasia. PMID:26269625

  13. Evaluation of Phytate-Degrading Lactobacillus Culture Administration to Broiler Chickens

    PubMed Central

    Askelson, Tyler E.; Campasino, Ashley; Lee, Jason T.

    2014-01-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics. PMID:24271165

  14. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    PubMed Central

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  15. Lactobacillus GG does not affect D-lactic acidosis in diarrheic calves, in a clinical setting.

    PubMed

    Ewaschuk, Julia B; Zello, Gordon A; Naylor, Jonathan M

    2006-01-01

    D-lactate, produced by gastrointestinal fermentation, is a major contributor to metabolic acidosis in diarrheic calves. Lactobacillus rhamnosus GG survives gastrointestinal transit in the neonatal calf and does not produce D-lactate. To determine whether this probiotic reduces gastrointestinal D-lactate production or severity of diarrhea or both, 48 calves (mean, 11 days old; range, 2-30 days) admitted to the clinic for treatment of diarrhea were randomly allocated to 2 groups. The experimental group was given Lactobacillus rhamnosus GG (1 x 10(11) cfu/d) PO, dissolved in milk or oral electrolyte solution, in addition to clinic treatment protocols; the other group served as a control. Serum and fecal samples were obtained at admission and at 24 and 48 hours after initial administration of Lactobacillus rhamnosus GG. All samples were analyzed for D- and L-lactate by using high-pressure liquid chromatography. Feces were also analyzed for pathogens, Lactobacillus rhamnosus GG recovery, and dry matter. D-lactic acidemia (>3 mmol/L) was present in 37/48 calves at admission. Lactobacillus rhamnosus GG was recovered in the feces of 13 experimental calves and 0 control calves 24 hours after administration. No difference in serum or fecal D- or L-lactate between the groups was detected at any time point. After therapy, D-lactic acidosis was absent at 48 hours in all but 1 calf. No relation between fecal pathogen (viral, bacterial, or protozoal) and degree of D-lactic acidosis was observed. The reduction in mortality and greater fecal dry matter in Lactobacillus rhamnosus GG-treated calves was not statistically significant. PMID:16734098

  16. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).

    PubMed

    Volokhov, Dmitriy V; Amselle, Megan; Beck, Brian J; Popham, David L; Whittaker, Paul; Wang, Hua; Kerrigan, Elizabeth; Chizhikov, Vladimir E

    2012-09-01

    Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese (Branta canadensis) in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S-23S intergenic transcribed spacer region (ITS), partial 23S rRNA, rpoB, rpoC, rpoA and pheS gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus saniviri. In comparison to L. casei ATCC 393(T), L. paracasei ATCC 25302(T), L. rhamnosus ATCC 7469(T) and L. saniviri DSM 24301(T), the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for l-proline arylamidase and l-pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between L. saniviri and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus brantae sp. nov. is proposed. The type strain is SL1108(T) (= ATCC BAA-2142(T) = LMG 26001(T) = DSM 23927(T)) and two additional strains are SL1170 and SL60106. PMID:22021580

  17. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  18. Effect of orally administered Lactobacillus brevis HY7401 in a food allergy mouse model.

    PubMed

    Lee, Jeongmin; Bang, Jieun; Woo, Hee-Jong

    2013-11-28

    We had found that orally administered Lactobacillus species were effective immune modulators in ovalbumin (OVA)-sensitized mice. To validate these findings, we investigated the effects of orally administered Lactobacillus brevis HY7401 in OVA-T cell receptor transgenic mice. This strain showed a tendency to induce Th1 cytokines and inhibit Th2 cytokines. All assayed isotypes of OVA-specific antibody were effectively reduced. Systemic anaphylaxis was also relatively reduced with the probiotic administration. These results reveal that L. brevis HY7401 might be useful to promote anti-allergic processes through oral administration. PMID:23985541

  19. Probiotics in digestive diseases: focus on Lactobacillus GG.

    PubMed

    Pace, F; Pace, M; Quartarone, G

    2015-12-01

    Probiotics are becoming increasingly important in basic and clinical research, but they are also a subject of considerable economic interest due to their expanding popularity. They are live micro-organisms which, when administered in adequate amounts, confer a health benefit to the host. From this very well-known definition, it is clear that, unlike drugs, probiotics might be useful in healthy subjects to reduce the risk of developing certain diseases or to optimise some physiological functions. They also may offer some advantages in already ill persons in relieving symptoms and signs, e.g. people with acute diarrhea. According to current definitions, probiotics should survive both gastric acid and bile to reach the small intestine and colon, where they exert their effects. Many of these are available in a lyophilized (freeze-dried) pill form, though some are available in yogurt or as packets (sachets), which can be mixed into non-carbonated drinks. The present review focuses on three main issues: 1) understanding why, at present, probiotics are so interesting for doctors and consumers; 2) reviewing the available data on probiotic use in digestive diseases, in particular irritable bowel syndrome (IBS), (prevention of) infectious diarrhea, inflammatory bowel disease (IBD), non-alcoholic fatty liver disease (NAFLD), and colorectal cancer (CRC); 3) highlighting the individual profile of Lactobacillus GG (LGG) in the above contexts, providing an assessment as well as recommendations on its use in gastro-intestinal tract (GIT) disorders. Research studies conducted in animals and humans with the main probiotics strains for GIT diseases, and published from the early 1990s to 2014 have been considered. PubMed, Medline and Ovid were the main sources adopted for data retrieving. The increasing attention on probiotics is a direct consequence of the improvement in the techniques for studying microbiota. Until recently, its composition has been analysed by culture-based methods that use differential media to select for specific populations of bacteria according to their metabolic requirements. Lactobacillus and Bifidobacterium species are by and large the most commonly used probiotics. Strictly speaking, however, the term "probiotic" should be reserved for live microbes that have been shown in controlled human studies to provide a health benefit. Taking into account patients suffering from the most common gastrointestinal diseases, in whose establishment the GI microbiota plays a key role, probiotics have to be considered as very promising agents, capable of beneficially modulating the intestinal ecosystem, which is perturbed in cases of dysbiosis. Although more clinical data are still needed to better assess the clinical relevance of probiotics, to date, procariota such as Bifidobacteria and Lactobacilli strains, and eucariota such as some Saccharomyces strains are among the most widely used agents in GIT disorders. LGG is a well-known probiotic strain that was isolated more than 20 years ago by Goldin and Gorbach from a faecal sample of a healthy adult, based on several selection criteria: high adhesion in vitro, high resistance against gastric acidity and high antimicrobial activity against pathogens such as Salmonella. In vivo studies have also shown a good persistence of LGG in the human GIT. Since its isolation, LGG has become one of the best clinically documented probiotic strains. A growing body of evidence suggests benefits such as prevention and relief of various types of diarrhoea, and treatment of relapsing Clostridium difficile colitis. Thus, with respect to both adaptation to the GIT and probiotic effects, LGG can be regarded as a prototypical probiotic strain. PMID:26657927

  20. Production and properties of alpha-glucosidase from Lactobacillus acidophilus.

    PubMed Central

    Li, K B; Chan, K Y

    1983-01-01

    Lactobacillus acidophilus IFO 3532 was found to produce only intracellular alpha-glucosidase (alpha-D-glucoside glucohydrolase; EC 3.2.1.20). Maximum enzyme production was obtained in a medium containing 2% maltose as inducer at 37 degrees C and at an initial pH of 6.5. The enzyme was formed in the cytoplasm and accumulated as a large pool during the logarithmic growth phase. Enzyme production was strongly inhibited by 4 microM CuSO4, 40 microM CoCl2, and beef extract; MnSO4 and the presence of proteose peptone and yeast extract in the medium greatly enhanced enzyme production. A 16.6-fold purification of alpha-glucosidase was achieved by (NH4)2SO4 fractionation and DEAE-cellulose column chromatography. The enzyme showed high specificity for maltose. The Km for alpha-p-nitrophenyl-beta-D-glucopyranoside was 11.5 mM, and the Vmax for alpha-p-nitrophenyl-beta-D-glucopyranoside hydrolysis was 12.99 mumol/min per mg of protein. The optimal pH and temperature for enzyme activity were 5.0 and 37 degrees C, respectively. The enzyme activity was inhibited by Hg2+, Cu2+, Ni2+, Zn2+, Ca2+, Co2+, urea, rose bengal, and 2-iodoacetamide, whereas Mn2+, Mg2+, L-cysteine, L-histidine, Tris, and EDTA stimulated enzyme activity. Transglucosylase activity was present in the partially purified enzyme, and isomaltose was the only glucosyltransferase product. Amylase activity in the purified preparation was relatively weak, and no isomaltase activity was detected. PMID:6419677

  1. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis

    PubMed Central

    2010-01-01

    Background Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish. Results Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall two-dimensional gel electrophoresis (2-DE) protein expression pattern was similar for the different strains, though distinct differences were seen between the two subspecies (sakei and carnosus), and a variation of about 20% in the number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher expression of stress related proteins growing on both carbon sources. Conclusions It is obvious from the data obtained in this study that the proteomic approach efficiently identifies differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application point of view, an understanding of regulatory mechanisms, actions of catabolic enzymes and proteins, and preference of carbon source is of great importance. PMID:20412581

  2. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum.

    PubMed Central

    Glaasker, E; Konings, W N; Poolman, B

    1996-01-01

    Bacteria respond to changes in medium osmolarity by varying the concentrations of specific solutes in order to maintain constant turgor pressure. The cytoplasmic pools of K+, proline, glutamate, alanine, and glycine of Lactobacillus plantarum ATCC 14917 increased when the osmolarity of the growth media was raised from 0.20 to 1.51 osmol/kg by KCL. When glycine-betaine was present in a high-osmolarity chemically defined medium, it was accumulated to a high cytoplasmic concentration, while the concentrations of most other osmotically important solutes decreased. These observations, together with the effects of glycine-betaine on the specific growth rate under high-osmolarity conditions, suggest that glycine-betaine is preferentially accumulated in L. plantarum. Uptake of glycine-betaine, proline, glutamate, and alanine was studied in cells that were alternately exposed to hyper- and hypo-osmotic stresses. The rate of uptake of proline and glycine-betaine increased instantaneously upon increasing the osmolarity, whereas that of other amino acids did not. This activation occurred also under conditions in which protein synthesis was inhibited was most pronounced when cells were pregrown at high osmolarity. The duration of net transport was a function of the osmotic strength of the assay medium. Glutamate uptake was not activated by an osmotic upshock, and the uptake of alanine was low under all conditions tested. When cells were subjected to osmotic downshock, a rapid efflux of accumulated glycine-betaine, proline, and alanine occurred whereas the pools of other amin acids remained unaffected. The results indicate that osmolyte efflux is, at least to some extent, mediated via specific osmotically regulated efflux systems and not via nonspecific mechanisms as has been suggested previously. PMID:8550485

  3. Ultrastructure of the Membrane System in Lactobacillus plantarum

    PubMed Central

    Kakefuda, Tsuyoshi; Holden, Joseph T.; Utech, Nedra M.

    1967-01-01

    Electron microscopic study of Lactobacillus plantarum revealed mesosomes in different stages of maturation and structural relation with other cell organelles. Small, immature mesosomes were bounded by a prominent electron-dense layer with another extremely faint layer on the outside. This corresponds to the appearance of the cytoplasmic membrane. Large mature mesosomes were surrounded by a triple-layered unit membrane having electron-opaque layers of approximately equal density, suggesting that the composition of the boundary membrane alters during development of this structure. Three-dimensional observations derived from serial sections indicated that mesosomes always maintain a connection between the cytoplasmic membrane and the comparable layers of their boundary. The cytoplasmic membrane also consisted of a triple-layered unit membrane, the innermost layer of which was less electron-opaque and was usually hidden by the relatively dense background of the cytoplasm. The innermost layer of the cytoplasmic membrane was most clearly seen in plasmolyzed cells. Only mature mesosomes made distinct contacts with, or were partially immersed in, the nucleoplasm. The boundary of such mesosomes frequently seemed to be discontinuous, suggesting that the mesosome interior was in direct contact with the nucleoplasm. Mesosomes involved in cross-wall formation at a division plane increased in size and passed through a sequence of positions which led ultimately to an association with the nucleoplasms of the daughter cells. The inner surface of the cell wall was lined by a thin, electron-dense layer whose composition and function are unknown. Under the cultural conditions used, this organism regularly contained a polyphosphate granule. Images PMID:6020418

  4. Resistance of functional Lactobacillus plantarum strains against food stress conditions.

    PubMed

    Ferrando, Verónica; Quiberoni, Andrea; Reinhemer, Jorge; Suárez, Viviana

    2015-06-01

    The survival of three Lactobacillus plantarum strains (Lp 790, Lp 813 and Lp 998) with functional properties was studied taking into account their resistance to thermal, osmotic and oxidative stress factors. Stress treatments applied were: 52 °C-15 min (Phosphate Buffer pH 7, thermal shock), H2O2 0.1% (p/v) - 30 min (oxidative shock) and NaCl aqueous solution at 17, 25 and 30% (p/v) (room temperature - 1 h, osmotic shock). The osmotic stress was also evaluated on cell growth in MRS broth added of 2, 4, 6, 8 and 10% (p/v) of NaCl, during 20 h at 30 °C. The cell thermal adaptation was performed in MRS broth, selecting 45 °C for 30 min as final conditions for all strains. Two strains (Lp 813 and Lp 998) showed, in general, similar behaviour against the three stress factors, being clearly more resistant than Lp 790. An evident difference in growth kinetics in presence of NaCl was observed between Lp 998 and Lp 813, Lp998 showing a higher optical density (OD570nm) than Lp 813 at the end of the assay. Selected thermal adaptation improved by 2 log orders the thermal resistance of both strains, but cell growth in presence of NaCl was enhanced only in Lp 813. Oxidative resistance was not affected with this thermal pre-treatment. These results demonstrate the relevance of cell technological resistance when selecting presumptive "probiotic" cultures, since different stress factors might considerably affect viability or/and performance of the strains. The incidence of stress conditions on functional properties of the strains used in this work are currently under research in our group. PMID:25790993

  5. Lactobacillus GG bacteria ameliorate arthritis in Lewis rats.

    PubMed

    Baharav, Ehud; Mor, Felix; Halpern, Marisa; Weinberger, Abraham

    2004-08-01

    Probiotic bacteria have beneficial effects in infectious and inflammatory diseases, principally in bowel disorders. In the case of chronic progressive autoimmune arthritides, a major goal of treatment is to reduce inflammation. We hypothesized that probiotic bacteria would ameliorate inflammation found in arthritis models. To assess this effect, Lewis rats were injected with 50 microg bovine alpha-tropomyosin (TRM) or complete Freund's adjuvant (CFA) to induce tropomyosin arthritis (TA) or adjuvant arthritis (AA), respectively. In both models, the rats were divided into 6 groups and fed 0.5 mL/d of the following suspensions: 1) heat-killed Lactobacillus GG (LGG) bacteria; 2) live LGG, both 10(11) colony-forming units (cfu)/L; 3) sterilized milk; 4) plain yogurt; 5) yogurt containing 10(11) cfu/L LGG; or 6) sterilized water. In the disease-prevention experiments, feeding started 1 wk before or after disease induction. In the therapeutic experiments, feeding was initiated at the onset of clinical arthritis. In all experiments, there were significant interactions between time and treatment (P < 0.001), except for milk, which had no effect in the therapeutic experiment. Histologically, rats fed yogurt containing LGG had a milder inflammation in all experiments (P < 0.05), whereas rats fed plain yogurt exhibited a moderate inflammatory score only in the prevention experiments. Anti-TRM antibody titers were not affected by any of the treatments in any of the experiments. Ingestion of live or heat-killed human LGG had a clinically beneficial effect on experimental arthritis. Our observation of the remarkable preventive and curative effect on arthritis using commercial yogurts containing lactobacilli, especially LGG, suggests the need for investigation of these agents in arthritic patients. PMID:15284384

  6. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    PubMed

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity. PMID:27139829

  7. Lipoteichoic acid-deficient Lactobacillus acidophilus regulates downstream signals.

    PubMed

    Saber, Rana; Zadeh, Mojgan; Pakanati, Krishna C; Bere, Praveen; Klaenhammer, Todd; Mohamadzadeh, Mansour

    2011-03-01

    The trillions of microbes residing within the intestine induce critical signals that either regulate or stimulate host immunity via their bacterial products. To better understand the immune regulation elicited by lipoteichoic acid (LTA)-deficient Lactobacillus acidophilus NCFM in steady state and induced inflammation, we deleted phosphoglycerol transferase gene, which synthesizes LTA in L. acidophilus NCFM. In vitro and in vivo experiments were conducted in order to compare the immune regulatory properties of the L. acidophilus strain deficient in LTA (NCK2025) with its wild-type parent (NCK56) in C57BL/6, C57BL/6 recombination-activation gene 1-deficient (Rag1 (-/-)) and C57BL/6 Rag1(-/-)IL-10(-/-) mice. We demonstrate that NCK2025 significantly activates the phosphorylation of Erk1/2 but downregulates the phosphorylation of Akt1, cytosolic group IV PLA2 and p38 in mouse dendritic cells. Similarly, mice treated orally with NCK2025 exhibit decreased phosphorylation of inflammatory signals (Akt1, cytosolic group IV PLA2 or P38) but upregulate Erk1/2-phosphorylation in colonic epithelial cells in comparison with mice treated with NCK56. In addition, regulation of pathogenic CD4+ T cell induced colitis by NCK2025 was observed in Rag1 (-/-) but not Rag1(-/-)IL-10 (-/-) mice suggests a critical role of IL-10 that may be tightly regulated by Erk1/2 signaling. These data highlight the immunosuppressive properties of NCK2025 to deliver regulatory signals in innate cells, which results in the mitigation of T-cell-induced colitis in vivo. PMID:21395377

  8. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM.

    PubMed

    Buck, B Logan; Altermann, Eric; Svingerud, Tina; Klaenhammer, Todd R

    2005-12-01

    Lactobacilli are major inhabitants of the normal microflora of the gastrointestinal tract, and some select species have been used extensively as probiotic cultures. One potentially important property of these organisms is their ability to interact with epithelial cells in the intestinal tract, which may promote retention and host-bacterial communication. However, the mechanisms by which they attach to intestinal epithelial cells are unknown. The objective of this study was to investigate cell surface proteins in Lactobacillus acidophilus that may promote attachment to intestinal tissues. Using genome sequence data, predicted open reading frames were searched against known protein and protein motif databases to identify four proteins potentially involved in adhesion to epithelial cells. Homologous recombination was used to construct isogenic mutations in genes encoding a mucin-binding protein, a fibronectin-binding protein, a surface layer protein, and two streptococcal R28 homologs. The abilities of the mutants to adhere to intestinal epithelial cells were then evaluated in vitro. Each strain was screened on Caco-2 cells, which differentiate and express markers characteristic of normal small-intestine cells. A significant decrease in adhesion was observed in the fibronectin-binding protein mutant (76%) and the mucin-binding protein mutant (65%). A surface layer protein mutant also showed reduction in adhesion ability (84%), but the effect of this mutation is likely due to the loss of multiple surface proteins that may be embedded in the S-layer. This study demonstrated that multiple cell surface proteins in L. acidophilus NCFM can individually contribute to the organism's ability to attach to intestinal cells in vitro. PMID:16332821

  9. Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco.

    PubMed Central

    Neubauer, H; Glaasker, E; Hammes, W P; Poolman, B; Konings, W N

    1994-01-01

    Lactobacillus sanfrancisco LTH 2581 can use only glucose and maltose as sources of metabolic energy. In maltose-metabolizing cells of L. sanfrancisco, approximately half of the internally generated glucose appears in the medium. The mechanisms of maltose (and glucose) uptake and glucose excretion have been investigated in cells and in membrane vesicles of L. sanfrancisco in which beef heart cytochrome c oxidase had been incorporated as a proton-motive-force-generating system. In the presence of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and cytochrome c, the hybrid membranes facilitated maltose uptake against a concentration gradient, but accumulation of glucose could not be detected. Similarly, in intact cells of L. sanfrancisco, the nonmetabolizable glucose analog alpha-methylglucoside was taken up only to the equilibration level. Selective dissipation of the components of the proton and sodium motive force in the hybrid membranes indicated that maltose is transported by a proton symport mechanism. Internal [14C]maltose could be chased with external unlabeled maltose (homologous exchange), but heterologous maltose/glucose exchange could not be detected. Membrane vesicles of L. sanfrancisco also catalyzed glucose efflux and homologous glucose exchange. These activities could not be detected in membrane vesicles of glucose-grown cells. The results indicate that maltose-grown cells of L. sanfrancisco express a maltose-H+ symport and glucose uniport system. When maltose is the substrate, the formation of intracellular glucose can be more rapid than the subsequent metabolism, which leads to excretion of glucose via the uniport system. PMID:8188601

  10. Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments.

    PubMed

    Quiberoni, A; Suárez, V B; Reinheimer, J A

    1999-08-01

    The effect of several biocides and thermal treatments on the viability of four Lactobacillus helveticus phages was investigated. Times to achieve 99% inactivation of phages at 63 degrees C and 72 degrees C in three suspension media were calculated. The three suspension media were tris magnesium gelatin buffer (10 mM Tris-HCl, 10 mM MgSO4, and 0.1% wt/vol gelatin), reconstituted skim milk sterile reconstituted commercial nonfat dry skim milk, and Man Rogosa Sharpe broth. The thermal resistance depended on the phage considered, but a treatment of 5 min at 90 degrees C produced a total inactivation of high titer suspensions of all phages studied. The results obtained for the three tested media did not allow us to establish a clear difference among them, since some phages were more heat resistant in Man Rogosa Sharpe broth and others in tris magnesium gelatin buffer. From the investigation on biocides, we established that sodium hypochlorite at a concentration of 100 ppm was very effective in inactivating phages. The suitability of ethanol 75%, commonly used to disinfect utensils and laboratory equipment, was confirmed. Isopropanol turned out to be, in general, less effective than ethanol at the assayed concentrations. In contrast, peracetic acid (0.15%) was found to be an effective biocide for the complete inactivation of all phages studied after 5 min of exposure. The results allowed us to establish a basis for adopting the most effective thermal and chemical treatments for inactivating phages in dairy plant and laboratory environments. PMID:10456743

  11. Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia.

    PubMed

    Choi, Il-Dong; Kim, Sung-Hwan; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Hong, Seong Soo; Sim, Jae-Hun; Ahn, Young-Tae

    2016-03-28

    The triglyceride-lowering effect of probiotics Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 were investigated. Male SD Wistar rats were randomly divided into three groups and fed high-fat diet (HFD), HFD and probiotics (5 X 10(9) CFU/day of L. plantarum KY1032 and 5 X 10(9) CFU/day of L. curvatus HY7601), or normal diet for 6 weeks. Probiotic treatment significantly lowered the elevated plasma triglyceride and increased plasma free fatty acid, glycerol, and plasma apolipoprotein A-V (ApoA-V) levels. The probiotic-treated group showed elevated hepatic mRNA expression of PPARα, bile acid receptor (FXR), and ApoA-V. These results demonstrate that L. plantarum KY1032 and L. curvatus HY7601 lower triglycerides in hypertriglyceridemic rats by upregulating ApoA-V, PPARα, and FXR. PMID:26699746

  12. Lactobacillus plantarum and Lactobacillus buchneri as expression systems: evaluation of different origins of replication for the design of suitable shuttle vectors.

    PubMed

    Spath, Katharina; Heinl, Stefan; Egger, Esther; Grabherr, Reingard

    2012-09-01

    The objectives of this study were to establish transformation protocols for Lactobacillus plantarum CD033 and Lactobacillus buchneri CD034, two industrial silage strains and to test the influence of selected origins of replication on plasmid copy number, plasmid stability, and plasmid incompatibility in these strains. Electro-transformation protocols were optimized by examination of the influence of different electroporation solutions and cell wall weakening agents on transformation efficiency. Using Lithium acetate as cell wall weakening agent, we could achieve transformation efficiencies of 8נ10(4) transformants per 1?g DNA for L. buchneri CD034 which is to our knowledge the highest described for this species up to now. In order to test feasibility of previously described origins of replication derived from Bacillus subtilis, L. plantarum, Lactococcus lactis, and two novel L. buchneri CD034 plasmids to drive replication in our two selected Lactobacillus strains, six shuttle vectors were constructed. Results indicate that, in terms of stable propagation and high gene copy numbers (up to 238 copies/chromosome), the most suitable origins of replication for the construction of expression vectors for the selected silage strains were the ones derived from the novel L. buchneri CD034 plasmids. PMID:22081307

  13. Genetic diversity within Lactobacillus sakei and Lactobacillus curvatus and design of PCR primers for its detection using randomly amplified polymorphic DNA.

    PubMed

    Berthier, F; Ehrlich, S D

    1999-07-01

    The genotypic and phenotypic diversity among isolates of the Lactobacillus curvatus/Lactobacillus graminis/Lactobacillus sakei group was evaluated by comparing RAPD data and results of biochemical tests, such as hydrolysis of arginine, D-lactate production, melibiose and xylose fermentation, and the presence of haem-dependent catalase. Analyses were applied to five type strains and to a collection of 165 isolates previously assigned to L. sakei or L. curvatus. Phenotypic and RAPD data were compared with each other and with previous DNA-DNA hybridization data. The phenotypic and genotypic separation between L. sakei, L. curvatus and L. graminis was clear, and new insights into the detailed structure within L. sakei and L. curvatus were obtained. Individual strains could be typed by RAPD and, after the elimination of similar or identical isolates, two sub-groups in both L. curvatus and L. sakei were defined. The presence or absence of catalase activity further distinguished the two L. curvatus sub-groups. By cloning and sequencing specific RAPD products, pairs of PCR primers were developed that can be used to specifically detect L. curvatus, L. sakei and each of the L. sakei sub-groups. PMID:10425756

  14. Antimicrobial Activity of Lactobacillus spp. Isolated From Fecal Flora of Healthy Breast-Fed Infants Against Diarrheagenic Escherichia coli

    PubMed Central

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Lashani, Elahe; Tajabadi Ebrahimi, Maryam

    2015-01-01

    Background: Among the enteric pathogens, diarrheagenic Escherichia coli are important causes of diarrhea in children in both developing and industrialized countries. Some Lactobacillus species are commonly used as probiotics, with effects especially against acute diarrhea in childhood. Objectives: The aim of this study was to explore antimicrobial activity of Lactobacillus strains isolated from fecal flora of healthy breast-fed infants against five diarrheagenic E. coli pathotypes such as enteroaggregative E. coli (EAEC), enterohaemorrhagic E. coli (EHEC) enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). Materials and Methods: Fecal samples were collected from seven healthy breast-fed infants between 1 to 18 months of age in Tehran city, Iran. Identification of Lactobacillus isolates was performed by biochemical and 16S rRNA gene sequencing methods. An agar well diffusion assay was used for detection of antimicrobial activity of Lactobacillus isolates against five diarrheagenic E. coli pathotypes. Results: A total of 20 Lactobacillus isolates were identified from stool samples. Lactobacillus fermentum was the most frequently isolated strain, followed by L. plantarum and L. rhamnosus. Seven Lactobacillus strains including L. fermentum (four isolates), L. paracasei (one isolate), L. plantarum (one isolate) and L. rhamnosus (one isolate) had a mild inhibitory activity against diarrheagenic E. coli. The mechanism of inhibitory activity of Lactobacillus strains appeared to be due to the production of organic acids or hydrogen peroxide. Conclusions: Our findings show that Lactobacillus strains with human origin had a mild inhibitory activity against the diarrheagenic E. coli, and these strains may be useful as probiotic candidates in prevention of intestinal infections caused by diarrheagenic E. coli. PMID:26865944

  15. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    PubMed

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (P<0.01). B. subtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (P<0.05). The viability of Lactobacillus increased when co-cultured with B. subtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (P<0.05). The role of Bacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended. PMID:26259891

  16. Colon-specific delivery of lactobacillus rhamnosus GG using pectin hydrogel beads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The probiotic bacteria, Lactobacillus rhamnosus GG (LGG), has shown beneficial effects on human health, and is accepted by increasing populations for the prevention and treatment of irritable bowel diseases. To increase the bioavailability and efficacy of LGG, the probiotic was encapsulated in hydro...

  17. Genome Sequence of Rough and Smooth Variants of Pleomorphic Strain Lactobacillus farciminis CNCM-I-3699

    PubMed Central

    Tareb, R.; Bernardeau, M.

    2015-01-01

    The probiotic Lactobacillus farciminis CNCM-I-3699 is a pleomorphic strain exhibiting smooth and rough variants. We report their complete genomes consisting of a chromosome of 2, 4 Mb and a plasmid of 6,417 bp. The smooth variant differs by the presence of an additional plasmid of 35,418 bp. PMID:26383668

  18. Draft Genome Sequence of Lactobacillus panis DSM 6035T, First Isolated from Sourdough

    PubMed Central

    Zhu, Yixin; Fang, Daiqiong; Shi, Ding; Li, Ang; Lv, Longxian; Yan, Ren; Yao, Jian; Hua, Dasong; Hu, Xinjun; Guo, Feifei; Wu, Wenrui; Guo, Jing; Chen, Yanfei; Jiang, Xiawei; Chen, Xiaoxiao

    2015-01-01

    We report a draft genome sequence of Lactobacillus panis DSM 6035T, isolated from sourdough. The genome of this strain is 2,082,789 bp long, with 47.9% G+C content. A total of 2,047 protein-coding genes were predicted. PMID:26205855

  19. Draft Genome Sequence of Lactobacillus panis DSM 6035T, First Isolated from Sourdough.

    PubMed

    Zhu, Yixin; Fang, Daiqiong; Shi, Ding; Li, Ang; Lv, Longxian; Yan, Ren; Yao, Jian; Hua, Dasong; Hu, Xinjun; Guo, Feifei; Wu, Wenrui; Guo, Jing; Chen, Yanfei; Jiang, Xiawei; Chen, Xiaoxiao; Li, Lanjuan

    2015-01-01

    We report a draft genome sequence of Lactobacillus panis DSM 6035(T), isolated from sourdough. The genome of this strain is 2,082,789 bp long, with 47.9% G+C content. A total of 2,047 protein-coding genes were predicted. PMID:26205855

  20. Genome Sequence of Rapid Beer-Spoiling Isolate Lactobacillus brevis BSO 464.

    PubMed

    Bergsveinson, Jordyn; Pittet, Vanessa; Ewen, Emily; Baecker, Nina; Ziola, Barry

    2015-01-01

    The genome of brewery-isolate Lactobacillus brevis BSO 464 was sequenced and assembly produced a chromosome and eight plasmids. This bacterium tolerates dissolved CO2/pressure and can rapidly spoil packaged beer. This genome is useful for analyzing the genetics associated with beer spoilage by lactic acid bacteria. PMID:26634759

  1. Labeling quality and molecular characterization studies of products containing Lactobacillus spp. strains.

    PubMed

    Blandino, Giovanna; Fazio, Davide; Petronio, Giulio Petronio; Inturri, Rosanna; Tempera, Gianna; Furneri, Pio Maria

    2016-03-01

    The objective of the study was to characterize at species level by phenotypic and different molecular methods the strains of Lactobacillus spp. used as constituents of five oral and four vaginal products. Susceptibilities to representative antibiotics were evaluated. In addition, total viable counts at mid and 3 months to deadline of shelf life, in the different formulations and the presence of eventual contaminant microorganisms were investigated.In all oral products the molecular characterization at species level of the strains of Lactobacillus spp. confirmed the strains stated on the label, except for one strain cited on the label as Lactobacillus casei, that our study characterized as Lactobacillus paracasei. In oral products total viable cell content complied with content claimed on the label. In three out four vaginal products (one product claimed "bacillo di Döderlein"), molecular characterization complied with the bacterial name stated on the label. Two vaginal products reported viable counts on the label that were confirmed by our study. The other vaginal products, which did not report bacterial counts on the label, showed a similar decrease of viable counts at different dates to deadline compared to the others. From all the tested products, contaminant microorganisms and acquired resistance to representative antibiotics by the probiotic strains were not detected. PMID:26667227

  2. Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries

    PubMed Central

    Byun, Roy; Nadkarni, Mangala A.; Chhour, Kim-Ly; Martin, F. Elizabeth; Jacques, Nicholas A.; Hunter, Neil

    2004-01-01

    Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion. PMID:15243071

  3. Draft Genome Sequence of the Respiration-Competent Strain Lactobacillus casei N87.

    PubMed

    Zotta, Teresa; Ricciardi, Annamaria; Parente, Eugenio; Reale, Anna; Ianniello, Rocco G; Bassi, Daniela

    2016-01-01

    Lactobacillus casei is used as a starter, adjunct, and/or probiotic culture in the production of fermented and functional foods. Here, we report the draft genome sequence of the respiration-competent strain L. casei N87, isolated from infant feces. This genome information may be useful for the study of respiratory metabolism in lactic acid bacteria. PMID:27151805

  4. Identification of Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus by rDNA-based techniques.

    PubMed

    Chenoll, E; Macián, M C; Aznar, R

    2003-11-01

    Ribosomal DNA-based techniques including the analysis of profiles generated by ISR amplification, ISR restriction and ARDRA have been evaluated as molecular tools for identifying Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus. They have been applied for the molecular characterization of 91 strains with the following identities: eight Carnobacterium including the eight type species of the genus; 61 Lactobacillus including 40 type strains out of 45 species, 13 Leuconostoc, out of them 11 are type strains and three are subspecies of Lc. mesenteroides; and nine strains representing the six species of genus Pediococcus. The genetic relationship displayed between these species by rrn-based profiles is sustained by their phylogenetic relationships and can therefore be considered useful for taxonomic purposes. Profiles obtained by ISR amplification allowed identification at genus level of Carnobacterium and Leuconostoc, and even at species level in genus Carnobacterium. Genera Lactobacillus and Pediococcus could not be distinguished from each other by applying this technique. The Lactobacillus species analysed here (45) were differentiated using ARDRA-DdeI and ISR-DdeI profiles, sequentially, and Pediococcus species by ISR-DdeI profiles. It was necessary to combine profiles generated by restriction of ISR-DdeI, ARDRA-DdeI and ARDRA-HaeIII in order to complete the identification of Leuconostoc species. PMID:14666983

  5. Impact of two probiotic Lactobacillus strains feeding on fecal lactobacilli and weight gains in chicken.

    PubMed

    Lan, Pham Thi Ngoc; Binh, Le Thanh; Benno, Yoshimi

    2003-02-01

    Two probiotic strains, Lactobacillus agilis JCM 1048 and L. salivarius subsp. salicinius JCM 1230 isolated from chicken intestine, exhibited probiotic characteristics that can be applied for chicken production. After 7 days of probiotic feeding (FD7), the count of intestinal lactobacilli in the probiotic group (group P, n=10) was significantly (p<0.05) higher than that in the control group (group C, n=9). After 40 days of probiotic feeding (FD40), the lactobacilli and enterococci counts were stable but the Enterobacteriaceae number was significantly reduced (p<0.05). A total of 163 isolated lactobacilli were identified as the L. acidophilus/gallinarum group (49.7%), L. agilis (30.7%), L. salivarius (9.2%), L. reuteri (9.2%), and Lactobacillus spp. (1.2%). The probiotic lactobacilli positively affected the Lactobacillus biota in chickens at FD7, with a significant increase in the number (p<0.05) of L. agilis and group P. The viable counts of each Lactobacillus species at FD40, however, showed no differences between two groups. An increasing incidence of L. agilis was also noted with probiotic feeding. The probiotic effect of two strains resulted in significantly increased weight gains (10.7%) of group P in comparison with group C at FD40 (p<0.01). PMID:12682864

  6. Draft Genome Sequence of a Probiotic Strain, Lactobacillus fermentum UCO-979C.

    PubMed

    Karlyshev, Andrey V; Villena, Julio; Gonzalez, Carlos; Albarracin, Leonardo; Barros, Javier; Garcia, Apolinaria

    2015-01-01

    This report describes a draft genome sequence of Lactobacillus fermentum strain UCO-979C. The reads generated by a Ion Torrent PGM were assembled into contigs, with a total size of 2.01 Mb. The data were annotated using the NCBI GenBank and RAST servers. Specific features of the genome are highlighted. PMID:26659681

  7. Genome Sequence of Lactobacillus gastricus PS3, a Strain Isolated from Human Milk.

    PubMed

    Martín, Virginia; Cárdenas, Nivia; Jiménez, Esther; Maldonado, Antonio; Rodríguez, Juan Miguel; Fernández, Leonides

    2013-01-01

    Lactobacillus gastricus is a mostly unknown lactobacilli species associated with mucosal surfaces. We present the draft annotated genome sequence of L. gastricus strain PS3, isolated from a human milk sample, to provide new insights into its biology and to characterize those genes related to advantageous technological and beneficial properties. PMID:23846278

  8. Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus brevis ATCC 367 is able to metabolize xylose into lactate and acetate but not ethanol. In an attempt to transform L. brevis into an ethanologen that uses xylose, a Gram-positive gene for pyruvate decarboxylase (PDC) was introduced. This enzyme catalyzes the decarboxylation of pyruvat...

  9. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Reduced yields of ethanol due to bacterial contamination in fermentation cultures weakens the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predomin...

  10. Accumulation of polyphosphate in Lactobacillus spp. and its involvement in stress resistance.

    PubMed

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel; Monedero, Vicente

    2014-03-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  11. Carbohydrate utilization and detection of a nucleotide hydrolase in Lactobacillus buchneri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus buchneri strains NRRL 1837, DSM 5987, and NRRL B-30929 were examined for capacity to metabolize various carbohydrates via growth and fermentation analyses. Carbon sources used for this study included D-melibiose, inosine, uridine, D-melezitose, maltotriose, N-acetyl-D-glucosamine, suc...

  12. Colonization of the mouse upper gastrointestinal tract by lactobacillus murinus: a histological, immunocytochemical, and ultrastructural study.

    PubMed

    Almirón, Marta; Traglia, Germán; Rubio, Andrea; Sanjuan, Norberto

    2013-10-01

    Lactobacillus is normally present in animals and humans colonizing several epithelia, mainly those belonging to the upper gastrointestinal tract. Most of the information about the distribution of Lactobacillus in mice has been obtained by bacterial culture and characterization, and only few reports have described the direct presence of these bacteria in tissues, especially in the gastric mucosa. In this study, we have characterized and evaluated the location and detailed relationship between Lactobacillus and epithelia using a combination of histological, molecular, immunocytochemical and ultrastructural methods. Normal Balb/c mice were sacrificed to study esophagus and stomach. Partial 16S rRNA gene sequencing, Gram, and P.A. Schiff staining allowed us to demonstrate that Lactobacillus murinus isolated from each animal colonize not only the epithelium of the forestomach but also that belonging to the distal esophagus. The pattern of colonization was linear over the keratinized epithelium, and also in a vertical way of focal bacterial aggregates. This was confirmed by transmission electron microscopy, and the nature of bacteria was further assessed by immunocytochemistry. Our results indicate that L. murinus can colonize the stomach and the esophagus epithelia in a biofilm-like manner, possibly acting as a defense barrier against colonization by other bacteria. PMID:23689939

  13. Genome Sequence of Rapid Beer-Spoiling Isolate Lactobacillus brevis BSO 464

    PubMed Central

    Bergsveinson, Jordyn; Pittet, Vanessa; Ewen, Emily; Baecker, Nina

    2015-01-01

    The genome of brewery-isolate Lactobacillus brevis BSO 464 was sequenced and assembly produced a chromosome and eight plasmids. This bacterium tolerates dissolved CO2/pressure and can rapidly spoil packaged beer. This genome is useful for analyzing the genetics associated with beer spoilage by lactic acid bacteria. PMID:26634759

  14. Accumulation of Polyphosphate in Lactobacillus spp. and Its Involvement in Stress Resistance

    PubMed Central

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel

    2014-01-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  15. Use of a lactobacillus-based probiotic culture to reduce Salmonella in day of hatch broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A commercially available Lactobacillus probiotic (FM-B11™ Ivesco LLC) (B11) significantly reduced Salmonella recovery from day-of-hatch chicks in several studies. For all experiments, day-of-hatch male broiler chicks (n=40 per pen) were challenged with approximately 10**4 cfu per chick of Salmonell...

  16. Novel antibacterial polypeptide produced by Lactobacillus paracasei strain NRRL B-50314

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the production and characterization of a novel antibacterial polypeptide, designated as laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. The crude laparaxin has antibacterial activity against a range of Gram-positive bacteria including the following: lactic a...

  17. Novel antibacterial polypeptide laparaxin produced by Lactobacillus paracasei strain NRRL B-50314 via fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the production and characterization of a novel antibacterial polypeptide, designated laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. Crude laparaxin has antibacterial activity against a wide variety of Gram-positive bacteria, including: lactic acid bacteria ...

  18. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG.

    PubMed

    Pessi, T; Sütas, Y; Hurme, M; Isolauri, E

    2000-12-01

    Oral Lactobacillus rhamnosus GG ingestion for 5 days to 4 weeks has been shown to alleviate clinical symptoms of gastrointestinal inflammation and atopic dermatitis. To determine whether oral Lactobacillus rhamnosus GG may act by generating immunosuppressive mediator in atopic children. Lactobacillus rhamnosus GG (ATCC 53103) at a daily dose of 2 x 1010 cfu was added for 4 weeks to the diets of nine children (mean age, 21 months) with atopic dermatitis. Blood and faecal samples were collected before supplementation and at early (2 weeks) and late stage (4 and 8 weeks from the beginning). The concentrations of interleukin-6 (IL-6), IL-10, IL-12, tumour necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma) in sera, as well as the production of IL-2, IL-4, IL-10 and IFNgamma in mitogen-induced peripheral blood mononuclear cells, were assessed. Secretory IgA and TNFalpha were also determined in faeces. The serum IL-10 concentration differed significantly between before, early and late samples (P < 0.001) due to the elevation of serum IL-10 in the later phase of oral Lactobacillus rhamnosus GG ingestion. The enhancement of IL-10 production in mitogen-induced cultures preceded the rise in serum IL-10. The enhanced IL-10 generation in vivo substantiates the anti-inflammatory properties of specific probiotic bacteria strains, and provides an additional reason for considering such treatments for patients with intestinal inflammation. PMID:11122221

  19. Proteomic Analyses of Ethanol Tolerance in Lactobacillus buchneri NRRL B-30929

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lactobacillus buchneri NRRL B-30929 strain, isolated from a fuel ethanol production facility, exhibits high tolerance to environmental ethanol concentrations. In this study, the ethanol tolerance trait was elucidated at the molecular level by using proteomics comparison and analyses. Cellular p...

  20. Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota.

    PubMed

    Rossi, Maddalena; Martínez-Martínez, Daniel; Amaretti, Alberto; Ulrici, Alessandro; Raimondi, Stefano; Moya, Andrés

    2016-06-01

    The genus Lactobacillus includes over 215 species that colonize plants, foods, sewage and the gastrointestinal tract (GIT) of humans and animals. In the GIT, Lactobacillus population can be made by true inhabitants or by bacteria occasionally ingested with fermented or spoiled foods, or with probiotics. This study longitudinally surveyed Lactobacillus species and strains in the feces of a healthy subject through whole genome sequencing (WGS) data-mining, in order to identify members of the permanent or transient populations. In three time-points (0, 670 and 700 d), 58 different species were identified, 16 of them being retrieved for the first time in human feces. L. rhamnosus, L. ruminis, L. delbrueckii, L. plantarum, L. casei and L. acidophilus were the most represented, with estimated amounts ranging between 6 and 8 Log (cells g(-1) ), while the other were detected at 4 or 5 Log (cells g(-1) ). 86 Lactobacillus strains belonging to 52 species were identified. 43 seemingly occupied the GIT as true residents, since were detected in a time span of almost 2 years in all the three samples or in 2 samples separated by 670 or 700 d. As a whole, a stable community of lactobacilli was disclosed, with wide and understudied biodiversity. PMID:27043715

  1. Bacteriophage endolysins expressed in yeast kill strains of Lactobacillus that contaminate fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Species of Lactobacillus are the predominant contaminants that reduce ethanol yields and cause “stuck” fermentations, decreasing the profitability of biofuel production with expen...

  2. Draft Genome Sequence of Lactobacillus sp. Strain TCF032-E4, Isolated from Fermented Radish

    PubMed Central

    Chen, Meng; Horvath, Philippe

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus sp. strain TCF032-E4 (= CCTCC AB2015090 = DSM 100358), isolated from a Chinese fermented radish. The total length of the 57 contigs is about 2.9 Mb, with a G+C content of 43.5 mol% and 2,797 predicted coding sequences (CDSs). PMID:26227596

  3. Draft Genome Sequence of Lactobacillus hominis Strain CRBIP 24.179T, Isolated from Human Intestine

    PubMed Central

    Cousin, Sylvie; Creno, Sophie; Ma, Laurence; Clermont, Dominique; Loux, Valentin; Bizet, Chantal

    2013-01-01

    We report the draft genome sequence of the strain Lactobacillus hominis CRBIP 24.179T, isolated from a human clinical sample. The total length of the 28 contigs is about 1.9 Mb, with a G+C content of 37% and 1,983 coding sequences. PMID:23969062

  4. Draft Genome Sequence of Lactobacillus gigeriorum CRBIP 24.85T, Isolated from a Chicken Crop

    PubMed Central

    Ma, Laurence; Creno, Sophie; Clermont, Dominique; Loux, Valentin; Bizet, Chantal; Bouchier, Christiane

    2012-01-01

    We report the draft genome of the strain Lactobacillus gigeriorum CRBIP 24.85T, isolated from a chicken crop. The total length of the 60 scaffolds is about 1.9 Mb, with a GC content of 38% and 2,062 protein-coding sequences (CDS). PMID:23045490

  5. Draft Genome Sequence of Lactobacillus pasteurii CRBIP 24.76T

    PubMed Central

    Cousin, Sylvie; Clermont, Dominique; Creno, Sophie; Ma, Laurence; Loux, Valentin; Bizet, Chantal

    2013-01-01

    We report the draft genome sequence of the type strain Lactobacillus pasteurii CRBIP 24.76, which is closely related to L. gigeriorum CRBIP 24.85T, isolated from a chicken crop. The total length of the 29 contigs is about 1.9 Mb, with a G+C content of 40% and 1,946 coding sequences. PMID:23969061

  6. Complete Resequencing and Reannotation of the Lactobacillus plantarum WCFS1 Genome

    PubMed Central

    Francke, Christof; Renckens, Bernadet; Boekhorst, Jos; Wels, Michiel; Kleerebezem, Michiel; van Hijum, Sacha A. F. T.

    2012-01-01

    There is growing interest in the beneficial effects of Lactobacillus plantarum on human health. The genome of L. plantarum WCFS1, first sequenced in 2001, was resequenced using Solexa technology. We identified 116 nucleotide corrections and improved function prediction for nearly 1,200 proteins, with a focus on metabolic functions and cell surface-associated proteins. PMID:22156394

  7. Genome sequence of Lactobacillus ruminis SPM0211, isolated from a fecal sample from a healthy Korean.

    PubMed

    Lee, Sunghee; Cho, Yong-Joon; Lee, Anne Hayoung; Chun, Jongsik; Ha, Nam-Joo; Ko, GwangPyo

    2011-09-01

    Lactobacillus ruminis SPM0211 is a potential probiotic strain that shows antimicrobial activity against emerging pathogens. Here we present the draft genomic sequence of L. ruminis SPM0211, isolated from a fecal sample from a healthy Korean and describe both the common and unique features of this strain. PMID:21742873

  8. Preparation of a Lactobacillus plantarum starter culture for cucumber fermentations that can meet kosher guidelines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method is described for growth of a Lactobacillus plantarum starter culture in jars of commercially available pasteurized fresh-pack kosher dill cucumbers so that jars can be used to inoculate commercial scale cucumber fermentation tanks. A procedure is also described to transfer lactic acid bacte...

  9. Lactobacillus plantarum MTD/1, Its Impact on Silage and In vitro Rumen Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to quantify the impact of Lactobacillus plantarum MTD/1 on silage and in vitro rumen fermentation on alfalfa and corn silage. Four trials were conducted in alfalfa in second (35 and 32% DM) and third harvest (38 and 31% DM), and two in forage corn, hybrids Mycogen 797...

  10. Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population

    PubMed Central

    Lê, Kim-Anne; Li, Yan; Xu, Xiaojing; Yang, Wanting; Liu, Tingting; Zhao, Xiaoning; Tang, Yongming Gorge; Cai, Dehong; Go, Vay Liang W.; Pandol, Stephen; Hui, Hongxiang

    2013-01-01

    Background: The connection between gut microbiota and metabolism and its role in the pathogenesis of diabetes are increasingly recognized. The objective of this study was to quantitatively measure Bifidobacterium and Lactobacillus species, members of commensal bacteria found in human gut, in type 2 diabetic patients (T2D) patients from Southern China. Methods: Fifty patients with T2D and thirty control individuals of similar body mass index (BMI) were recruited from Southern China. T2D and control subjects were confirmed with both oral glucose tolerance test (OGTT) and HbA1c measurements. Bifidobacterium and Lactobacillus species in feces were measured by real-time quantitative PCR. Data were analyzed with STATA 11.0 statistical software. Results: In comparison to control subjects T2D patients had significantly more total Lactobacillus (+18%), L. bugaricus (+13%), L. rhamnosum (+37%) and L. acidophilus (+48%) (P < 0.05). In contrast, T2D patients had less amounts of total Bifidobacteria (−7%) and B. adolescentis (−12%) (P < 0.05). Cluster analysis showed that gut microbiota pattern of T2D patients is characterized by greater numbers of L. rhamnosus and L. acidophillus, together with lesser numbers of B. adolescentis (P < 0.05). Conclusion: The gut microflora in T2D patients is characterized by greater numbers of Lactobacillus and lesser numbers of Bifidobacterium species. PMID:23386831

  11. Effect of Lactobacillus strains and Saccharomyces boulardii on persistent diarrhea in children.

    PubMed

    Gaón, David; García, Hugo; Winter, Luis; Rodríguez, Nora; Quintás, Ricardo; González, Silvia N; Oliver, Guillermo

    2003-01-01

    The efficacy of probiotics on persistent diarrhea remains uncertain. The purpose of this study was to evaluate the effect of Lactobacillus sp and Saccharomyces boulardii on persistent diarrhea in children. In a double-blind trial eighty-nine children, aged 6-24 months were randomly distributed to receive pasteurized cow milk containing 2 viable lyophilized strains Lactobacillus casei and Lactobacillus acidophillus strains CERELA, (10(10)-10(12) colony-forming units per g) (n = 30), or lyophilized S. boulardii, (10(10)-10(12) colony forming units per g) (n = 30) or pasteurized cow milk as placebo (n = 29); on each diet 175 g was given twice a day for a 5 day period. Number of depositions, duration of illness and frequency of vomiting were considered. Enteric pathogens were isolated from stools in 40% of the patients, 27% had rotavirus. Lactobacillus and S. boulardii significantly reduced the number of depositions (p < 0.001) and diarrheal duration (p < 0.005). Similarly both significantly (p < 0.002) reduced vomiting as compared with placebo. There was no difference between treatments depending on rotavirus status. In conclusion, L. casei and L. acidophillus strains CERELA and S. boulardii are useful in the management of persistent diarrhea in children. PMID:14518142

  12. Complete Genome Sequence of Lactobacillus acidophilus MN-BM-F01.

    PubMed

    Yang, Lan; Chen, Yun; Li, Zhiwei; Shi, Yudong; Li, Zhouyong; Zhao, Xiaohui

    2016-01-01

    Lactobacillus acidophilus MN-BM-F01 was originally isolated from a traditional fermented dairy product in China. The characteristics of this bacterium are its low post-acidification ability and high acid-producing rate. Here, we report the main genome features of L. acidophilus MN-BM-F01. PMID:26868391

  13. Genome Sequence of Lactobacillus gastricus PS3, a Strain Isolated from Human Milk

    PubMed Central

    Martín, Virginia; Cárdenas, Nivia; Jiménez, Esther; Maldonado, Antonio; Rodríguez, Juan Miguel

    2013-01-01

    Lactobacillus gastricus is a mostly unknown lactobacilli species associated with mucosal surfaces. We present the draft annotated genome sequence of L. gastricus strain PS3, isolated from a human milk sample, to provide new insights into its biology and to characterize those genes related to advantageous technological and beneficial properties. PMID:23846278

  14. Conversion of Biomass Hydrolysates and Other Substrates to Ethanol and Other Chemicals by Lactobacillus buchneri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Lactobacillus buchneri strain NRRL B-30929 can convert xylose and glucose into ethanol and chemicals. In this paper, L. buchneri NRRL B-30929 was initially compared with the type strains L. buchneri NRRL 1837 and DSM 5987 for growth and fermentation using single substrate derived from plant mater...

  15. Degradation of ascorbic acid and potassium sorbate by different Lactobacillus species isolated from packed green olives.

    PubMed

    Montaño, Alfredo; Sánchez, Antonio Higinio; Casado, Francisco Javier; Beato, Víctor Manuel; de Castro, Antonio

    2013-05-01

    The aim of this research was to ascertain the lactic acid bacteria responsible for the degradation of ascorbic acid and/or potassium sorbate, isolated from packed green olives where these additives had diminished. A total of 14 isolates were recovered from samples of different green olive containers. According to partial sequencing of the 16S rRNA coding gene, Lactobacillus parafarraginis, Lactobacillus rapi, Lactobacillus pentosus, Lactobacillus paracollinoides, and Pediococcus ethanolidurans were identified. With the exception of L. pentosus and L. paracollinoides, the other species had not been mentioned in table olives before this study. Only three of the 14 isolates metabolized ascorbic acid in MRS broth, and the products from ascorbic acid in modified MRS broth without carbon sources were acetic and lactic acids. Except for the two L. rapi and the two P. ethanolidurans strains, the remaining 10 isolates depleted potassium sorbate added into MRS broth to some extent. The product generated by three of these strains was confirmed to be trans-4-hexenoic acid. The degradation of ascorbate or sorbate by lactic acid bacteria should be taken into account when these additives are used in food products where this group of bacteria may be present. PMID:23498172

  16. The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several starter cultures used in the production of fermented beverages were screened for lactic acid bacteria that produced water-insoluble polysaccharides from sucrose. The strain producing the greatest amount was identified as Lactobacillus satsumensis by its 16S RNA sequence. This strain produc...

  17. Proteomic Approach for Molecular Mechanisms under Ethanol Stress in Lactobacillus buchneri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria have potential to serve as microbial catalysts for production of fuels and chemicals from lignocellulosic biomass. Lactobacillus buchneri NRRL B-30929 is a novel strain that belongs to the hetero-fermentative group of lactic acid bacteria. It was isolated from a fuel ethanol p...

  18. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus buchneri has recently been associated with anaerobic spoilage of fermented cucumbers due to its ability to metabolize lactic acid into acetic acid and 1,2-propanediol. However, we have limited knowledge of other chemical components in fermented cucumber that may be related to spoilage ...

  19. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Probiotics have shown beneficial effects on human health. To increase the efficacy of probiotic applications, we used Lactobacillus rhamnosus GG (LGG) as a probiotic model to investigate approaches to enhance the bioavailability of probiotics. LGG was encapsulated in hydrogel beads containing pectin...

  20. Draft Genome Sequence of the Respiration-Competent Strain Lactobacillus casei N87

    PubMed Central

    Ricciardi, Annamaria; Parente, Eugenio; Reale, Anna; Ianniello, Rocco G.

    2016-01-01

    Lactobacillus casei is used as a starter, adjunct, and/or probiotic culture in the production of fermented and functional foods. Here, we report the draft genome sequence of the respiration-competent strain L. casei N87, isolated from infant feces. This genome information may be useful for the study of respiratory metabolism in lactic acid bacteria. PMID:27151805

  1. Effect of LGG yoghurt on Streptococcus mutans and Lactobacillus spp. salivary counts in children.

    PubMed

    Glavina, Domagoj; Gorseta, Kristina; Skrinjarić, Ilija; Vranić, Dubravka Negovetić; Mehulić, Ketij; Kozul, Karlo

    2012-03-01

    The aim of this study was to establish effect of 14 day consumption of commercially available yoghurt containing Lactobacillus rhamnosus ATCC53103 - LGG (Bioaktiv LGG, Dukat, Croatia) on Streptococcus mutans and Lactobacillus spp. salivary counts in children. Twenty five patients, 6-10 yr old participated in the study. At the inclusion in the study caries risk for every patient was evaluated. The saliva samples were tested with chair side kits for saliva buffer capacity (CRT buffer, Vivadent, Schaan, Liechtenstein), S. Mutans and Lactobacillus counts (CRT bacteria test, Vivadent, Schaan, Liechtenstein). Seven, 14 and 30d after yoghurt consumption saliva samples were tested again with CRT buffer and CRT bacteria tests. Obtained data were analyzed using chi2 and Kruskal-Wallis tests. Results showed significant increase in saliva buffer capacity 30d after yoghurt consumption. S. Mutans salivary counts were significantly decreased after 30d. Significant differences in Lactobacillus counts were not observed. It could be concluded that daily consumption of yoghurt containing LGG have an inhibitory effect on oral pathogenic bacteria and may be beneficial in caries prevention. PMID:22816209

  2. Effect of malic acid on the growth kinetics of Lactobacillus plantarum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fermentation kinetics of Lactobacillus plantarum was studied in a specially designed broth formulated from commercially available, dehydrated components (YTA - yeast extract, trypticase, and ammonium sulfate) in batch and continuous culture. During batch growth in the absence of malic acid in t...

  3. Complete Genome Sequence for Lactobacillus helveticus CNRZ 32, an Industrial Cheese Starter and Cheese Flavor Adjunct.

    PubMed

    Broadbent, Jeff R; Hughes, Joanne E; Welker, Dennis L; Tompkins, Thomas A; Steele, James L

    2013-01-01

    Lactobacillus helveticus is a lactic acid bacterium widely used in the manufacture of cheese and for production of bioactive peptides from milk proteins. We present the complete genome sequence for L. helveticus CNRZ 32, a strain particularly recognized for its ability to reduce bitterness and accelerate flavor development in cheese. PMID:23969047

  4. Complete Genome Sequence of Lactobacillus acidophilus MN-BM-F01

    PubMed Central

    Yang, Lan; Li, Zhiwei; Shi, Yudong; Li, Zhouyong; Zhao, Xiaohui

    2016-01-01

    Lactobacillus acidophilus MN-BM-F01 was originally isolated from a traditional fermented dairy product in China. The characteristics of this bacterium are its low post-acidification ability and high acid-producing rate. Here, we report the main genome features of L. acidophilus MN-BM-F01. PMID:26868391

  5. Draft Genome Sequence of the Probiotic Strain Lactobacillus acidophilus ATCC 4356

    PubMed Central

    Palomino, Maria Mercedes; Allievi, Mariana C.; Fina Martin, Joaquina; Waehner, Pablo M.; Prado Acosta, Mariano; Sanchez Rivas, Carmen

    2015-01-01

    We present the 1,956,699-bp draft genome sequence of Lactobacillus acidophilus strain ATCC 4356. Comparative genomic analysis revealed 99.96% similarity with L. acidophilus NCFM NC_006814.3 and 99.97% with La-14 NC_021181.2 genomes. PMID:25593259

  6. Complete Genome Sequence of Lactobacillus acidophilus FSI4, Isolated from Yogurt

    PubMed Central

    Iartchouk, Oleg; Kozyavkin, Sergei; Karamychev, Valeri

    2015-01-01

    A new Lactobacillus acidophilus strain, FSI4, isolated from yogurt, was isolated and sequenced in our laboratory. Our data, although supportive of previous conclusions regarding the remarkable stability of L. acidophilus species, indicate accumulating mutations in commercial L. acidophilus strains that warrant further study of the effect of damaged genes on the competitiveness of these bacteria in gut microbiota. PMID:25858829

  7. Draft Genome Sequence of the Probiotic Strain Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, Maria Mercedes; Allievi, Mariana C; Fina Martin, Joaquina; Waehner, Pablo M; Prado Acosta, Mariano; Sanchez Rivas, Carmen; Ruzal, Sandra M

    2015-01-01

    We present the 1,956,699-bp draft genome sequence of Lactobacillus acidophilus strain ATCC 4356. Comparative genomic analysis revealed 99.96% similarity with L. acidophilus NCFM NC_006814.3 and 99.97% with La-14 NC_021181.2 genomes. PMID:25593259

  8. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four alfalfa trials, one corn, and one bmr corn were treated with no inoculant (Control), Lactobacillus plantarum (MTD/1) and formic acid (FA), ensiled in 1-L mini-silos, and fermented for 60 d at room temperature (22 C). Mini-silos were opened and analyzed for fermentation characteristics and solub...

  9. Draft Genome Sequence of the Mannitol-Producing Strain Lactobacillus mucosae CRL573

    PubMed Central

    Bleckwedel, Juliana; Terán, Lucrecia C.; Bonacina, Julieta; Saavedra, Lucila

    2014-01-01

    Lactobacillus mucosae CRL573, isolated from child fecal samples, efficiently converts fructose and/or sucrose into the low-calorie sugar mannitol when cultured in modified MRS medium at pH 5.0. Also, the strain is capable of producing bacteriocin. The draft genome sequence of this strain with potential industrial applications is presented here. PMID:25502678

  10. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations

    SciTech Connect

    Nakamura, L.K.

    1981-01-01

    The morphology, physiology and fermentation characteristics of this hitherto unrecognized species are described. The new Lactobacillus species can be differentiated from L. acidophilus, L. jensenii, and L. leichmannii on the basis of starch fermentation, G + C content, vitamin requirements and stereoisomerism of lactic acid produced. The type strain of L. amylovorus is NRRL B-4540. (Refs. 39).

  11. Draft Genome Sequence of a Probiotic Strain, Lactobacillus fermentum UCO-979C

    PubMed Central

    Villena, Julio; Gonzalez, Carlos; Albarracin, Leonardo; Barros, Javier

    2015-01-01

    This report describes a draft genome sequence of Lactobacillus fermentum strain UCO-979C. The reads generated by a Ion Torrent PGM were assembled into contigs, with a total size of 2.01 Mb. The data were annotated using the NCBI GenBank and RAST servers. Specific features of the genome are highlighted. PMID:26659681

  12. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  13. Inactivation of Lactobacillus plantarum in apple cider using radio frequency electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) processing is effective at inactivating Gram negative bacteria in fruit juices at moderately low temperatures, but has yet to be shown to be effective at reducing Gram positive bacteria. Lactobacillus plantarum ATCC 49445, a Gram positive bacterium, was inocula...

  14. Characteristics of Lactobacillus and Gardnerella vaginalis from women with or without bacterial vaginosis and their relationships in gnotobiotic mice.

    PubMed

    Teixeira, G S; Carvalho, F P; Arantes, R M E; Nunes, A C; Moreira, J L S; Mendonça, M; Almeida, R B; Farias, L M; Carvalho, M A R; Nicoli, J R

    2012-08-01

    The objectives of the present study were to evaluate in vitro the production of antagonistic compounds against Gardnerella vaginalis by Lactobacillus strains isolated from women with or without bacterial vaginosis (BV), and to select one of the better Lactobacillus producers of such a substance to be tested in vivo using a gnotobiotic animal model challenged with one of the more sensitive G. vaginalis isolates. A total of 24 isolates from women with and without BV were identified as G. vaginalis. A higher frequency (P<0.05) of this bacterium was observed in women with BV (56.7%) when compared to healthy women (17.6%). A total of 86 strains of Lactobacillus were obtained from healthy women and women with BV. Lactobacillus strains were more frequently present (P<0.05) in healthy women (97.5%) than in women with BV (76.7%). Lactobacillus crispatus was the predominating strain in both healthy women and women with BV. Lactobacillus jensenii, Lactobacillus johnsonii, Lactobacillus gasseri and Lactobacillus vaginalis were isolated with an intermediate frequency in the two groups. In vitro antagonism assays were performed using as indicators 17 reference strains and the G. vaginalis strains isolated from women with BV and from healthy women. Lactobacillus isolated from healthy women showed the higher antagonistic activity against all the indicator strains when compared with isolates from women with BV. Concerning the indicator strains, G. vaginalis found in women with BV was more resistant to the antagonism, particularly when Lactobacillus isolates from women with BV were used as producer strains. A high vaginal population level of G. vaginalis was obtained by intravaginal inoculation of germ-free mice, and this colonization was accompanied by vaginal histopathological lesions. A tenfold decrease in vaginal population level of G. vaginalis and a reduction of histological lesions were observed when the pathogenic challenge was performed in mice previously monoassociated with an L. johnsonii strain. Concluding, results of the present study suggest that progression of G. vaginalis-associated BV depends in part on a simultaneous presence of Lactobacillus populations with a low antagonistic capacity and of a G. vaginalis strain with a high resistance to this antagonism. The results could also explain why G. vaginalis is frequently found in the vaginal ecosystem of healthy women. PMID:22539000

  15. Global transcriptome response in Lactobacillus sakei during growth on ribose

    PubMed Central

    2011-01-01

    Background Lactobacillus sakei is valuable in the fermentation of meat products and exhibits properties that allow for better preservation of meat and fish. On these substrates, glucose and ribose are the main carbon sources available for growth. We used a whole-genome microarray based on the genome sequence of L. sakei strain 23K to investigate the global transcriptome response of three L. sakei strains when grown on ribose compared with glucose. Results The function of the common regulated genes was mostly related to carbohydrate metabolism and transport. Decreased transcription of genes encoding enzymes involved in glucose metabolism and the L-lactate dehydrogenase was observed, but most of the genes showing differential expression were up-regulated. Especially transcription of genes directly involved in ribose catabolism, the phosphoketolase pathway, and in alternative fates of pyruvate increased. Interestingly, the methylglyoxal synthase gene, which encodes an enzyme unique for L. sakei among lactobacilli, was up-regulated. Ribose catabolism seems closely linked with catabolism of nucleosides. The deoxyribonucleoside synthesis operon transcriptional regulator gene was strongly up-regulated, as well as two gene clusters involved in nucleoside catabolism. One of the clusters included a ribokinase gene. Moreover, hprK encoding the HPr kinase/phosphatase, which plays a major role in the regulation of carbon metabolism and sugar transport, was up-regulated, as were genes encoding the general PTS enzyme I and the mannose-specific enzyme II complex (EIIman). Putative catabolite-responsive element (cre) sites were found in proximity to the promoter of several genes and operons affected by the change of carbon source. This could indicate regulation by a catabolite control protein A (CcpA)-mediated carbon catabolite repression (CCR) mechanism, possibly with the EIIman being indirectly involved. Conclusions Our data shows that the ribose uptake and catabolic machinery in L. sakei is highly regulated at the transcription level. A global regulation mechanism seems to permit a fine tuning of the expression of enzymes that control efficient exploitation of available carbon sources. PMID:21702908

  16. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei

    PubMed Central

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2015-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  17. Survival of Lactobacillus plantarum in model solutions and fruit juices.

    PubMed

    Nualkaekul, Sawaminee; Charalampopoulos, Dimitris

    2011-03-30

    The aim of the work was to study the survival of Lactobacillus plantarum NCIMB 8826 in model solutions and develop a mathematical model describing its dependence on pH, citric acid and ascorbic acid. A Central Composite Design (CCD) was developed studying each of the three factors at five levels within the following ranges, i.e., pH (3.0-4.2), citric acid (6-40 g/L), and ascorbic acid (100-1000 mg/L). In total, 17 experimental runs were carried out. The initial cell concentration in the model solutions was approximately 1 × 10(8)CFU/mL; the solutions were stored at 4°C for 6 weeks. Analysis of variance (ANOVA) of the stepwise regression demonstrated that a second order polynomial model fits well the data. The results demonstrated that high pH and citric acid concentration enhanced cell survival; one the other hand, ascorbic acid did not have an effect. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate, cranberry and lemon juice. The model predicted well the cell survival in orange, blackcurrant and pineapple, however it failed to predict cell survival in grapefruit and pomegranate, indicating the influence of additional factors, besides pH and citric acid, on cell survival. Very good cell survival (less than 0.4 log decrease) was observed after 6 weeks of storage in orange, blackcurrant and pineapple juice, all of which had a pH of about 3.8. Cell survival in cranberry and pomegranate decreased very quickly, whereas in the case of lemon juice, the cell concentration decreased approximately 1.1 logs after 6 weeks of storage, albeit the fact that lemon juice had the lowest pH (pH~2.5) among all the juices tested. Taking into account the results from the compositional analysis of the juices and the model, it was deduced that in certain juices, other compounds seemed to protect the cells during storage; these were likely to be proteins and dietary fibre In contrast, in certain juices, such as pomegranate, cell survival was much lower than expected; this could be due to the presence of antimicrobial compounds, such as phenolic compounds. PMID:21411170

  18. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei.

    PubMed

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2016-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  19. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

    PubMed Central

    Kasraei, Shahin; Sami, Lida; Hendi, Sareh; AliKhani, Mohammad-Yousef; Rezaei-Soufi, Loghman

    2014-01-01

    Objectives Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30). The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683) and Lactobacillus (PTCC 1643) were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at 37℃ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05). The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05). There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus. PMID:24790923

  20. Importance of Molecular Methods to Determine Whether a Probiotic is the Source of Lactobacillus Bacteremia.

    PubMed

    Aroutcheva, Alla; Auclair, Julie; Frappier, Martin; Millette, Mathieu; Lolans, Karen; de Montigny, Danielle; Carrière, Serge; Sokalski, Stephen; Trick, William E; Weinstein, Robert A

    2016-03-01

    There has been an increasing interest in the use of probiotic products for the prevention of Clostridium difficile infection (CDI). Bio-K+(®) is a commercial probiotic product comprising three strains of lactobacilli-Lactobacillus acidophilus CL1285(®), Lact. casei LBC80R(®) and Lact. rhamnosus CLR2(®)-that have been applied to prevent CDI. Generally considered as safe, lactobacilli have potential to cause bacteremia, endocarditis and other infections. The source of Lactobacillus bacteremia can be normal human flora or lactobacilli-containing probiotic. The aim of this study was to assess whether probiotic lactobacilli caused bacteremia and to show the value of molecular identification and typing techniques to determine probiotic and patient strain relatedness. We report an episode of Lactobacillus bacteremia in a 69-year-old man admitted to a hospital with severe congestive heart failure. During his hospitalization, he required long-term antibiotic therapy. Additionally, the patient received Bio-K+(®) probiotic as part of a quality improvement project to prevent CDI. Subsequently, Lactobacillus bacteremia occurred. Two independent blinded laboratory evaluations, using pulse field gel electrophoresis, 16S rRNA gene sequencing and DNA fingerprint analysis (rep-PCR), were performed to determine whether the recovered Lact. acidophilus originated from the probiotic product. Ultimately, the patient strain was identified as Lact. casei and both laboratories found no genetic relation between the patient's strain and any of the probiotic lactobacilli. This clinical case of lactobacillus bacteremia in the setting of probiotic exposure demonstrates the value of using discriminatory molecular methods to clearly determine whether there were a link between the patient's isolate and the probiotic strains. PMID:26915093

  1. PRODUCTION OF MANNITOL BY LACTOBACILLUS INTERMEDIUS NRRL B-3693 IN FED-BATCH AND CONTINUOUS CELL-RECYCLE FERMENTATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved fermentation processes were developed for the production of mannitol by a heterofermentative lactic acid bacterium (Lactobacillus intermedius NRRL B-3693). A fed-batch fermentation protocol overcame limitations caused by high substrate concentrations. The process was developed using prima...

  2. PEDIOCIN PRODUCTION IN MILK BY PEDIOCOCCUS ACIDILACTICI IN CO-CULTURE WITH STREPTOCOCCUS THERMOPHILUS AND LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of pediocin in milk by Pediococcus acidilactici was evaluated in co-culture with the dairy fermentation cultures Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis. The cultures were tested singly or in different combinations...

  3. Characterization of a bovine isolate Lactobacillus mucosae DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: Identification of exopolysaccharide (EPS)-producing lactobacilli as EPS production is potentially a very important trait among probiotic lactobacilli from technological and health promoting perspectives. Methods and Results: Characterization of EPS-producing Lactobacillus mucosae DPC 6426 in de...

  4. Enzymatic fractionation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cumulative effect of peptidase and protease activities associated with cells of Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB) was evaluated on the milk-protein based antimicrobial peptides casocidin and isracidin. Reaction mixtures of casocidin or isracidin...

  5. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. PMID:26709174

  6. Assessment and comparison of probiotic potential of four Lactobacillus species isolated from feces samples of Iranian infants.

    PubMed

    Halimi, Shahnaz; Mirsalehian, Akbar

    2016-02-01

    The probiotic potential of Lactobacillus species isolated from infant feces was investigated. For this study, the antibiotic susceptibility, tolerance in gut-related conditions, antimicrobial activity, and ability to adhere to a human colorectal adenocarcinoma cell line (Caco-2 cells) of four common Lactobacillus species (Lactobacillus paracasei [n?=?15], Lactobacillus rhamnosus [n?=?45], Lactobacillus gasseri [n?=?20] and Lactobacillus fermentum [n?=?18]) were assessed. Most isolates that which were sensitive to imipenem, ampicillin, gentamycin, erythromycin and tetracycline were selected for other tests. L. gasseri isolates had the greatest sensitivity to gastric and intestinal fluids (<10% viability). L. fermentum (FH5, FH13 and FH18) had the highest adhesion to Caco-2 cells. The lowest antibacterial activity against pathogenic bacteria was shown by L. gasseri strains in spot tests. Furthermore, non-adjusted cell-free culture supernatants with low pH had greater antimicrobial activity, which was related to organic acid. The results showed that some isolates of L. rhamnosus and L. fermentum are suitable for use as a probiotic. PMID:26648174

  7. In Vitro Prevention of Salmonella Lipopolysaccharide-Induced Damages in Epithelial Barrier Function by Various Lactobacillus Strains

    PubMed Central

    Chiang Chiau, Jen-Shiu; Chan, Wai-Tao; Jiang, Chun-Bin; Cheng, Mei-Lien; Liu, Hsuan-Liang

    2013-01-01

    Background. Lactobacillus shows beneficial anti-inflammatory effects on Salmonella infection. The maintenance of the tight junction (TJ) integrity plays an importance role in avoiding bacterial invasion. Whether Lactobacillus could be used to regulate the TJ protein expression and distribution in inflamed intestinal epithelial cells was determined. Methods. Using the transwell coculture model, Salmonella lipopolysaccharide (LPS) was apically added to polarized Caco-2 cells cocultured with peripheral blood mononuclear cells in the basolateral compartment. LPS-stimulated Caco-2 cells were incubated with various Lactobacillus strains. TJ integrity was determined by measuring transepithelial electrical resistance across Caco-2 monolayer. Expression and localization of TJ proteins (zonula-occludens- (ZO-) 1) were determined by Western blot and immunofluorescence microscopy. Results. Various strains of Lactobacillus were responsible for the different modulations of cell layer integrity. LPS was specifically able to disrupt epithelial barrier and change the location of ZO-1. Our data demonstrate that Lactobacillus could attenuate the barrier disruption of intestinal epithelial cells caused by Salmonella LPS administration. We showed that Lactobacillus strains are associated with the maintenance of the tight junction integrity and appearance. Conclusion. In this study we provide insight that live probiotics could improve epithelial barrier properties and this may explain the potential mechanism behind their beneficial effect in vivo. PMID:23840201

  8. In vitro probiotic characterization of Lactobacillus strains from fermented radish and their anti-adherence activity against enteric pathogens.

    PubMed

    Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2015-11-01

    In this study, we evaluated the probiotic properties of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus fermentum strains isolated from fermented radish. All the strains survived the simulated oro-gastrointestinal transit condition and showed significantly higher adherence to Caco-2 cells compared with the probiotic strain Lactobacillus rhamnosus GG. The strains showed broad-spectrum antimicrobial activity, autoaggregation, and coaggregation capacity with pathogens. Furthermore, the Lactobacillus strains inhibited the adherence of Yersinia enterocolitica subsp. enterocolitica, Shigella boydii, and Salmonella choleraesuis to the Caco-2 cell line. The strains possessed bile salt hydrolase activity and their cholesterol-lowering activity in vitro was above 50% in the presence of bile. Strains of L. plantarum and L. pentosus possessed the plantaricin-encoding plnEF gene. In addition, the Lactobacillus strains maintained about 80% cell viability after freeze-drying in the presence of a combination of 5% skim milk and 5% maltodextrin as cryoprotectant, and 70% recovery of cell viability was observed in the absence of any cryoprotectant. PMID:26382558

  9. Lactobacillus vespulae sp. nov., isolated from gut of a queen wasp (Vespula vulgaris).

    PubMed

    Hoang, Van-An; Kim, Yeon-Ju; Nguyen, Ngoc-Lan; Kim, Si-Kwan; Yang, Deok-Chun

    2015-10-01

    A Gram-stain-positive, oxidase- and catalase-negative, rod-shaped, facultatively anaerobic bacterial strain, DCY75T, was isolated from a queen wasp (Vespula vulgaris). Growth occurred at 4–37 °C (optimum, 30 °C), at pH 3.5–8.0 (optimum, pH 5.0–6.0) and with ≤ 7.0 % (w/v) NaCl. Strain DCY75T produced gas during growth on glucose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DCY75T belonged to the genus Lactobacillus and was closely related to Lactobacillus sanfranciscensis ATCC 27651T and Lactobacillus lindneri DSM 20690T at sequence similarities of 96.7 and 96.4 %, respectively. A comparison of two housekeeping genes, pheS and rpoA, revealed that strain DCT75T was well separated from other species of the genus Lactobacillus. Strain DCY75T produced d- and l-lactic acid isomers in a ratio of 22.5 : 77.5 (v/v). The major fatty acids were summed feature 8 (comprising C18 :  1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω9c and C18 : 0.The peptidoglycan structure was of the A4α (l-Lys–d-Asp) type. Cell-wall sugars were glucose, galactose and ribose. The DNA G+C content was 35.5 ± 1.3 mol%. Based on phenotypic and genotypic properties, strain DCY75T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus vespulae sp. nov. is proposed. The type strain is DCY75T ( = KCTC 21023T = JCM 19742T). PMID:26297032

  10. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious peptides to enteric lactobacilli including L. gasseri after peptic digestion in the gastrointestinal tract. This is the first report showing peptide requirement of L. gasseri and efficacy of pepsinolysis on the growth of L. gasseri and its relatives in milk. This study would contribute to increasing usability of L. gasseri and its relatives as probiotics in dairy foods. PMID:25529420

  11. Clinical characteristics of bacteraemia caused by Lactobacillus spp. and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2000-2014.

    PubMed

    Lee, Meng-Rui; Tsai, Chia-Jung; Liang, Sheng-Kai; Lin, Ching-Kai; Huang, Yu-Tsung; Hsueh, Po-Ren

    2015-10-01

    The clinical characteristics of 89 patients with Lactobacillus bacteraemia treated at a university-affiliated hospital in northern Taiwan during 2000-2014 were retrospectively evaluated. Lactobacillus spp. were identified by 16S rRNA sequencing analysis and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antimicrobial susceptibilities of the isolates were determined by broth microdilution. The most commonly isolated species was Lactobacillus salivarius (n = 21), followed by Lactobacillus paracasei (n = 16) and Lactobacillus fermentum (n = 13). Excluding three isolates with lower 16S rRNA sequence similarity, MALDI-TOF/MS provided correct identification for 84.9% (73/86) of Lactobacillus isolates. Concordant identification was lowest for Lactobacillus casei (11%). The main infection foci were intra-abdominal infection (49%) and catheter-related bloodstream infection (17%). Only one-half of the patients received adequate antibiotic treatment during the bacteraemic episode. The majority of patients with Lactobacillus bacteraemia were immunocompromised. The 7-day and in-hospital mortality rates were 21% and 62%, respectively, and underlying malignancy was associated with a higher in-hospital mortality rate (odds ratio = 2.666). There were no significant differences in mortality (7-day, 14-day, 30-day and in-hospital) among patients with bacteraemia due to different Lactobacillus spp. Minimum inhibitory concentrations were highest for glycopeptides, cephalosporins and fluoroquinolones and were lowest for carbapenems and aminopenicillins. Lactobacillus bacteraemia was associated with a high mortality rate, and patient outcome was associated with underlying malignancy. MALDI-TOF/MS was able to accurately identify 84.9% of the Lactobacillus isolates, and L. salivarius was the predominant pathogen. The accuracy rate for identification of Lactobacillus spp. by MALDI-TOF/MS was lowest for L. casei. PMID:26298673

  12. A mild pulsed electric field condition that improves acid tolerance, growth, and protease activity of Lactobacillus acidophilus LA-K and Lactobacillus delbrueckii subspecies bulgaricus LB-12.

    PubMed

    Najim, N; Aryana, Kayanush J

    2013-06-01

    Pulsed electric field (PEF) processing involves the application of pulses of voltage for less than 1 s to fluid products placed between 2 electrodes. The effect of mild PEF on beneficial characteristics of probiotic bacteria Lactobacillus acidophilus and Lactobacillus delbrueckii ssp. bulgaricus is not clearly understood. The objective of this study was to determine the influence of mild PEF conditions on acid tolerance, growth, and protease activity of Lb. acidophilus LA-K and Lactobacillus delbrueckii ssp. bulgaricus LB-12. A pilot plant PEF system (OSU-4M; The Ohio State University, Columbus) was used. The PEF treatments were positive square unipolar pulse width of 3 µs, pulse period of 0.5s, electric field strength of 1 kV/cm, delay time of 20 µs, flow rate of 60 mL/min, and 40.5°C PEF treatment temperature. Both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 subjected to mild PEF conditions were acid tolerant until the end of the 120 min of incubation, unlike the Lb. bulgaricus control, which was not acid tolerant after 30 min. The mild PEF-treated Lb. acidophilus LA-K and Lb. bulgaricus LB-12 reached the logarithmic phase of growth an hour earlier than the control. Mild PEF conditions studied significantly improved acid tolerance, exponential growth, and protease activity of both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 compared with the control. The mild PEF conditions studied can be recommended for pretreating cultures to enhance these desirable attributes. PMID:23587394

  13. Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells

    PubMed Central

    2014-01-01

    Background Clostridium difficile is the main cause of hospital-acquired diarrhea and colitis known as C. difficile-associated disease (CDAD).With increased severity and failure of treatment in CDAD, new approaches for prevention and treatment, such as the use of probiotics, are needed. Since the pathogenesis of CDAD involves an inflammatory response with a massive influx of neutrophils recruited by interleukin (IL)-8, this study aimed to investigate the probiotic effects of Lactobacillus spp. on the suppression of IL-8 production in response to C. difficile infection. Results We screened Lactobacillus conditioned media from 34 infant fecal isolates for the ability to suppress C. difficile-induced IL-8 production from HT-29 cells. Factors produced by two vancomycin-resistant lactobacilli, L. rhamnosus L34 (LR-L34) and L.casei L39 (LC-L39), suppressed the secretion and transcription of IL-8 without inhibiting C. difficile viability or toxin production. Conditioned media from LR-L34 suppressed the activation of phospho-NF-κB with no effect on phospho-c-Jun. However, LC-L39 conditioned media suppressed the activation of both phospho-NF-κB and phospho-c-Jun. Conditioned media from LR-L34 and LC-L39 also decreased the production of C. difficile-induced GM-CSF in HT-29 cells. Immunomodulatory factors present in the conditioned media of both LR-L34 and LC-L39 are heat-stable up to 100°C and > 100 kDa in size. Conclusions Our results suggest that L. rhamnosus L34 and L. casei L39 each produce factors capable of modulating inflammation stimulated by C. difficile. These vancomycin-resistant Lactobacillus strains are potential probiotics for treating or preventing CDAD. PMID:24989059

  14. Administration of probiotics Lactobacillus rhamnosus GG and Lactobacillus gasseri K7 during pregnancy and lactation changes mouse mesenteric lymph nodes and mammary gland microbiota.

    PubMed

    Treven, P; Mrak, V; Bogovič Matijašić, B; Horvat, S; Rogelj, I

    2015-04-01

    The milk and mammary gland (MG) microbiome can be influenced by several factors, such as mode of delivery, breastfeeding, maternal lifestyle, health status, and diet. An increasing number of studies show a variety of positive effects of consumption of probiotics during pregnancy and breastfeeding on the mother and the newborn. The aim of this study was to investigate the effect of oral administration of probiotics Lactobacillus gasseri K7 (LK7) and Lactobacillus rhamnosus GG (LGG) during pregnancy and lactation on microbiota of the mouse mesenteric lymph nodes (MLN), MG, and milk. Pregnant FVB/N mice were fed skim milk or probiotics LGG or LK7 resuspended in skim milk during gestation and lactation. On d 3 and 8 postpartum, blood, feces, MLN, MG, and milk were analyzed for the presence of LGG or LK7. The effects of probiotics on MLN, MG, and milk microbiota was evaluated by real-time PCR and by 16S ribosomal DNA 454-pyrosequencing. In 5 of 8 fecal samples from the LGG group and in 5 of 8 fecal samples from the LK7 group, more than 1 × 10(3) of live LGG or LK7 bacterial cells were detected, respectively, whereas no viable LGG or LK7 cells were detected in the control group. Live lactic acid bacteria but no LGG or LK7 were detected in blood, MLN, and MG. Both probiotics significantly increased the total bacterial load as assessed by copies of 16S ribosomal DNA in MLN, and a similar trend was observed in MG. Metagenomic sequencing revealed that both probiotics increased the abundance of Firmicutes in MG, especially the abundance of lactic acid bacteria. The Lactobacillus genus appeared exclusively in MG from probiotic groups. Both probiotics influenced MLN microbiota by decreasing diversity (Chao1) and increasing the distribution of species (Shannon index). The LGG probiotic also affected the MG microbiota as it increased diversity and distribution of species and proportions of the genera Lactobacillus and Bifidobacterium. These results provide evidence that probiotics can modulate the bacterial composition of MLN and MG microbiota in ways that could improve the health of the MG and, ultimately, the health of the newborn. PMID:25622869

  15. Expression of cbsA Encoding the Collagen-Binding S-Protein of Lactobacillus crispatus JCM5810 in Lactobacillus casei ATCC 393T

    PubMed Central

    Martínez, Beatriz; Sillanpää, Jouko; Smit, Egbert; Korhonen, Timo K.; Pouwels, Peter H.

    2000-01-01

    The cbsA gene encoding the collagen-binding S-layer protein of Lactobacillus crispatus JCM5810 was expressed in L. casei ATCC 393T. The S-protein was not retained on the surface of the recombinant bacteria but was secreted into the medium. By translational fusion of CbsA to the cell wall sorting signal of the proteinase, PrtP, of L. casei, CbsA was presented at the surface, rendering the transformants able to bind to immobilized collagens. PMID:11073938

  16. Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats

    PubMed Central

    Han, Xufeng; Wang, Lei; Li, Wei; Li, Bibo; Yang, Yuxin; Yan, Hailong; Qu, Lei; Chen, Yulin

    2015-01-01

    The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum. PMID:26413069

  17. Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya.

    PubMed

    Mathara, Julius Maina; Schillinger, Ulrich; Guigas, Claudia; Franz, Charles; Kutima, Phillip Museve; Mbugua, Samuel K; Shin, H-K; Holzapfel, Wilhelm H

    2008-08-15

    In this study functional characteristics of 23 representative Lactobacillus strains isolated from the Maasai traditional fermented milk 'Kule naoto' were determined. The Lb. acidophilus group strains showed resistance to gastric juice and bile. In addition, some Lb. acidophilus strains expressed bile salt hydrolase activity, and had ability to assimilate cholesterol in vitro. In-vitro adhesion to HT29 MTX cells of up to 70% was recorded. Lb. fermentum strains showed almost 100% survival under simulated stomach acidic conditions and physiological salt concentrations of bile salts, hydrophobicity values were over 80%. Most strains of the Lb. casei and Lb. acidophilus groups showed aggregation abilities of above 50%. Many strains expressed a protective effect against N-methyl-N'-nitro-N-nitrosoguanidine induced DNA damage according to the 'comet assay' and none was virulent. The antibiotic minimum inhibitory concentration of selected strains was established. According to these results, the Lactobacillus spp associated with 'Kule naoto', contain potentially probiotic (functional) strains. PMID:18539351

  18. Genetic characterization and physiological role of endopeptidase O from Lactobacillus helveticus CNRZ32.

    PubMed

    Chen, Y S; Steele, J L

    1998-09-01

    A previously identified insert expressing an endopeptidase from a Lactobacillus helveticus CNRZ32 genomic library was characterized. Nucleotide sequence analysis revealed an open reading frame of 1,941 bp encoding a putative protein of 71.2 kDa which contained a zinc-protease motif. Protein homology searches revealed that this enzyme has 40% similarity with endopeptidase O (PepO) from Lactococcus lactis P8-2-47. Northern hybridization revealed that pepO is monocistronic and is expressed throughout the growth phase. CNRZ32 derivatives lacking PepO activity were constructed via gene replacement. Enzyme assays revealed that the PepO mutant had significantly reduced endopeptidase activity when compared to CNRZ32 with two of the three substrates examined. Growth studies indicated that PepO has no detectable effect on growth rate or acid production by Lactobacillus helveticus CNRZ32 in amino acid defined or skim milk medium. PMID:9726890

  19. Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats.

    PubMed

    Han, Xufeng; Wang, Lei; Li, Wei; Li, Bibo; Yang, Yuxin; Yan, Hailong; Qu, Lei; Chen, Yulin

    2015-01-01

    The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum. PMID:26413069

  20. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate.

    PubMed Central

    Handwerger, S; Pucci, M J; Volk, K J; Liu, J; Lee, M S

    1994-01-01

    The emergence of acquired high-level resistance among Enterococcus species has renewed interest in mechanisms of resistance to glycopeptide antibiotics in gram-positive bacteria. In Enterococcus faecalis and Enterococcus faecium, resistance is encoded by the van gene cluster and is due to the production of a peptidoglycan precursor terminating in D-alanyl-D-lactate, to which vancomycin does not bind. Most Leuconostoc and many Lactobacillus species are intrinsically resistant to high levels of glycopeptide antibiotics, but the mechanism of resistance has not been elucidated. To determine whether the mechanisms of resistance are similar in intrinsically resistant bacteria, cytoplasmic peptidoglycan precursors were isolated from Leuconostoc mesenteroides and Lactobacillus casei and analyzed by mass spectrometry, revealing structures consistent with UDP-N-acetylmuramyl-L-Ala-D-Glu-L-Lys-(L-Ala)-D-Ala-D-lactate and UDP-N-acetylmuramyl-L-Ala-D-Glu-L-Lys-D-Ala-D-lactate, respectively. PMID:8282706

  1. Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora.

    PubMed

    Reid, G; Beuerman, D; Heinemann, C; Bruce, A W

    2001-12-01

    Forty-two healthy women were randomized to receive one of three encapsulated Lactobacillus rhamnosus GR-1 plus Lactobacillus fermentum RC-14 probiotic dosage regimens or L. rhamnosus GG by mouth each day for 28 days. However, the vaginal flora, assessed by Nugent scoring, was only normal in 40% of the cases, and 14 patients had asymptomatic bacterial vaginosis. Treatment with L. rhamnosus GR-1/L. fermentum RC-14 once and twice daily correlated with a healthy vaginal flora in up to 90% of patients, and 7/11 patients with bacterial vaginosis converted to normal or intermediate scores within 1 month. Ingestion of L. rhamnosus GG failed to have an effect. This study confirms the potential efficacy of orally administered lactobacilli as a non-chemotherapeutic means to restore and maintain a normal urogenital flora, and shows that over 10(8) viable organisms per day is the required dose. PMID:11750220

  2. Purification and characterization of a novel exopolysaccharides produced by Lactobacillus sp. Ca6.

    PubMed

    Trabelsi, Imen; Slima, Sirine Ben; Chaabane, Hela; Riadh, Ben Salah

    2015-03-01

    This study was undertaken to investigate the ability of ten lactic acid bacterial strains to produce exopolysaccharides (EPS) on MRS broth containing 4% sucrose. A maximum EPS production yield of 2.4 g/l was obtained by strain Lactobacillus sp. Ca6. The results from thin layer chromatography (TLC) and high performance chromatography (HPLC) analyses showed that the EPS produced was a polymer of glucose. Further FTIR spectroscopic analysis revealed the presence of carboxyl, hydroxyl and amide groups corresponding to a typical EPS. In addition to EPS production, Lactobacillus sp. Ca6 displayed good probiotic properties (antimicrobial activities and sensitivity to several antibiotics) and resistance to acidic condition (pH 2) and 5% bile bovine. Overall, the findings indicate that this strain has a number of promising properties that make it a potential promising candidate for future application as a food additive. PMID:25597428

  3. Production and Mode of Action of Lactocin 27: Bacteriocin from a Homofermentative Lactobacillus

    PubMed Central

    Upreti, G. C.; Hinsdill, R. D.

    1975-01-01

    Lactobacillus helveticus strain LP27 produced a bacteriocin, lactocin 27, in dialyzable and nondialyzable forms. No evidence was obtained to indicate that lactocin 27 was under the control of extrachromosomal plasmids. Lactocin 27 had a bacteriostatic effect on the indicator, Lactobacillus helveticus strain LS18. It inhibited primarily protein synthesis without affecting deoxyribonucleic acid and ribonucleic acid synthesis or adenosine 5′-triphosphate levels. Treatment of susceptible cells with the lactocin did not cause leakage of ultraviolet-absorbing material, but caused the efflux of potassium ions and the influx of sodium ions. It adsorbed non-specifically to various bacterial species irrespective of their susceptibility to lactocin 27. However, the presence of specific receptors has not been ruled out. Images PMID:1137365

  4. Microbial ketonization of ginsenosides F1 and C-K by Lactobacillus brevis.

    PubMed

    Jin, Yan; Jung, Sun Young; Kim, Yeon-Ju; Lee, Dae-Young; Min, Jin-Woo; Wang, Chao; Yang, Deok-Chun

    2014-12-01

    Ginsenosides are the major pharmacological components in ginseng. We isolated lactic acid bacteria from Kimchi to identify microbial modifications of ginsenosides. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain DCY65-1 belongs to the genus Lactobacillus and is most closely related to Lactobacillus brevis. On the basis of TLC and HPLC analysis, we found two metabolic pathways: F1 → 6α,12β-dihydroxydammar-3-one-20(S)-O-β-D-glucopyranoside and C-K → 12β-hydroxydammar-3-one-20(S)-O-β-D-glucopyranoside. These results suggest that strain DCY65-1 is capable of potent ketonic decarboxylation, ketonizing the hydroxyl group at C-3. The F1 metabolite had a more potent inhibitory effect on mushroom tyrosinase than did the substrate. Therefore, the F1 and C-K derivatives may be more pharmacologically active compounds, which should be further characterized. PMID:25262121

  5. Characterization of an Inhibitor for Lactobacillus bulgaricus in Tomato Juice1

    PubMed Central

    Cogan, T. M.; Gilliland, S. E.; Speck, M. L.

    1968-01-01

    Tomato juice (serum) added to milk in high concentration caused inhibition of acid production by Lactobacillus bulgaricus. The inhibitor was partially purified by adsorption on charcoal. Further isolation and purification involved paper chromatography in two different solvent systems. Ultraviolet-absorption spectra and thin-layer chromatography were used in characterization studies. The inhibitor was found to be a xylose- and adenine-containing nucleotide. PMID:5695537

  6. Assessment of Characteristics and Functional Properties of Lactobacillus Species Isolated from Kimchi for Dairy Use

    PubMed Central

    Baick, Seung-Chun

    2015-01-01

    The objective of this study was to identify lactic acid bacteria (LAB) isolated from kimchi and to evaluate its characteristics and functional properties for application in fermented dairy products as a probiotic or commercial starter culture. Eight stains isolated from kimchi were selected through an investigation of phenotypic characteristics. Two strains (DK211 and DK303) were identified as Lactobacillus plantarum, another two (DK207 and DK215) as Lactobacillus paracasei, and one (DK301) as Lactobacillus sakei. The remaining three strains were identified as species of Weissella. All selected Lactobacillus strains had acid and bile tolerance, even though there was wide variation in the ability of each strain. DK303 showed a remarkably higher proteolytic activity. There were no significant differences in β-galactosidase activity among the tested strains, except that DK301 showed no activity. Auto-aggregation varied between 82.1 and 90.0%, and hydrophobicity values ranged from 0.5 to 51.6%.The strongest auto-aggregation and hydrophobicity were observed in DK211. All selected strains showed better 1,1-diphenyl-2-picrylhydrzyl (DPPH) scavenging activity than commercial strains. DK211, DK215, DK301, and DK303 had effective inhibitory activity against all pathogens tested except E. coli. When selected strains were used for yogurt preparation as a single starter culture, the time required to reach target titratable acidity (0.9) was 11-12 h. The yogurt fermented with DK211 had favorable panelists ratings for most sensory attributes, which were comparable with yogurt fermented with a commercial strain. The results suggest that strains isolated from kimchi could be potential probiotic and starter cultures for use in yogurt manufacturing. PMID:26761848

  7. Lactobacillus rhamnosus GG bacteremia associated with probiotic use in a child with short gut syndrome.

    PubMed

    De Groote, Mary Ann; Frank, Daniel N; Dowell, Elaine; Glode, Mary P; Pace, Norman R

    2005-03-01

    Probiotic agents are increasingly used for the treatment and prevention of a variety of infectious and inflammatory conditions. They are generally safe, but complications of probiotic use can occur. In this report, we describe bacteremia after ingestion of a Lactobacillus rhamnosus GG probiotic tablet in a child with short gut syndrome. We used sequencing of the ribosomal operon region and strain typing with pulsed field electrophoresis of the isolates to show identity between the tablet and bloodstream isolates. PMID:15750472

  8. Genome Sequence of Lactobacillus brevis Strain D6, Isolated from Smoked Fresh Cheese

    PubMed Central

    Uroić, Ksenija; Hynönen, Ulla; Kos, Blaženka; Šušković, Jagoda

    2016-01-01

    The autochthonous Lactobacillus brevis strain D6, isolated from smoked fresh cheese, carries a 45-kDa S-layer protein. Strain D6 has shown adhesion to extracellular matrix proteins and to Caco-2 intestinal epithelial cells, as well as immunomodulatory potential and beneficial milk technological properties. Hence, it could be used as a potential probiotic starter culture for cheese production. PMID:27056237

  9. Coexpression and Secretion of Endoglucanase and Phytase Genes in Lactobacillus reuteri

    PubMed Central

    Wang, Lei; Yang, Yuxin; Cai, Bei; Cao, Pinghua; Yang, Mingming; Chen, Yulin

    2014-01-01

    A multifunctional transgenic Lactobacillus with probiotic characteristics and an ability to degrade β-glucan and phytic acid (phytate) was engineered to improve nutrient utilization, increase production performance and decrease digestive diseases in broiler chickens. The Bacillus subtilis WL001 endoglucanase gene (celW) and Aspergillus fumigatus WL002 phytase gene (phyW) mature peptide (phyWM) were cloned into an expression vector with the lactate dehydrogenase promoter of Lactobacillus casei and the secretion signal peptide of the Lactococcus lactis usp45 gene. This construct was then transformed into Lactobacillus reuteri XC1 that had been isolated from the gastrointestinal tract of broilers. Heterologous enzyme production and feed effectiveness of this genetically modified L. reuteri strain were investigated and evaluated. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that the molecular mass of phyWM and celW was approximately 48.2 and 55 kDa, respectively, consistent with their predicted molecular weights. Endoglucanase and phytase activities in the extracellular fraction of the transformed L. reuteri culture were 0.68 and 0.42 U/mL, respectively. Transformed L. reuteri improved the feed conversion ratio of broilers from 21 to 42 days of age and over the whole feeding period. However, there was no effect on body weight gain and feed intake of chicks. Transformed L. reuteri supplementation improved levels of ash, calcium and phosphorus in tibiae at day 21 and of phosphorus at day 42. In addition, populations of Escherichia coli, Veillonella spp. and Bacteroides vulgatus were decreased, while populations of Bifidobacterium genus and Lactobacillus spp. were increased in the cecum at day 21. PMID:25050780

  10. Draft Genome Sequence of Lactobacillus plantarum WLPL04, Isolated from Human Breast Milk

    PubMed Central

    Tao, XueYing; Jiang, Meiling; Zhang, Feng; Xu, Feng

    2015-01-01

    Lactobacillus plantarum WLPL04, a novel strain, was isolated from a breast milk sample from a healthy woman and demonstrated several probiotic functions. Here, we present the draft genome sequence of this strain, which contains 3,192,587 bp, a G+C content of 44.52%, 3,158 protein-coding genes, and 53 tRNA genes. PMID:26659683

  11. Identification of a Stimulant for Lactobacillus casei Produced by Streptococcus lactis

    PubMed Central

    Branen, A. L.; Keenan, T. W.

    1970-01-01

    A compound stimulatory to the growth of Lactobacillus casei was isolated from cell extracts of Streptococcus lactis, purified, and characterized. The stimulant was identified as a small peptide with a molecular weight of approximately 4,500 daltons. The purified peptide gave negative tests for nucleic acids, phosphorus, glucosamine, and carbohydrates. Sixteen amino acids were detected in acid hydrolysates of this peptide. Serine, proline, glycine, alanine, leucine, and glutamic acid were present in hydrolysates in greatest abundance. PMID:5485084

  12. Relative Ability of Orally Administered Lactobacillus murinus To Predominate and Persist in the Porcine Gastrointestinal Tract

    PubMed Central

    Gardiner, Gillian E.; Casey, Pat G.; Casey, Garrett; Lynch, P. Brendan; Lawlor, Peadar G.; Hill, Colin; Fitzgerald, Gerald F.; Stanton, Catherine; Ross, R. Paul

    2004-01-01

    Five porcine-derived Lactobacillus or Pediococcus isolates administered to pigs (n = 4), either singly or as a combination at ∼1010 CFU per day varied with respect to intestinal survival and persistence. Two Lactobacillus murinus strains survived best and were excreted at ∼107 to 108 CFU/g of feces. In contrast, Pediococcus pentosaceus DPC6006 had the lowest fecal count at ∼105 CFU/g and was excreted at a significantly lower level than both L. murinus strains. Fecal L. murinus DPC6003 counts were also significantly higher than both Lactobacillus salivarius DPC6005 and Lactobacillus pentosus DPC6004 (∼106 CFU/g). The L. murinus strains persisted for at least 9 days postadministration in both the feces and the cecum. Animals fed a combination of all five strains excreted ∼107 CFU of the administered strains/g, with L. murinus predominating, as determined by randomly amplified polymorphic DNA PCR. Postadministration, variation was observed between animals fed the strain combination, but in general, L. murinus DPC6002 and DPC6003 and L. pentosus DPC6004 predominated in the feces and the cecum while P. pentosaceus DPC6006 was detected only in the cecum. Fifteen days after the start of culture administration, mean fecal Enterobacteriaceae counts were significantly lower in some of the treatment groups. In addition, when mean preadministration counts were compared with those obtained after 21 days of culture administration, Enterobacteriaceae counts were reduced by ∼87 to 98% in pigs fed L. salivarius DPC6005, P. pentosaceus DPC6006, L. pentosus DPC6004, and the culture mix. In conclusion, the porcine intestinal isolates have potential as probiotic feed additives for pigs, with differences in strain performance highlighting the advantages of using culture combinations. PMID:15066778

  13. Genome Sequence of Lactobacillus brevis Strain D6, Isolated from Smoked Fresh Cheese.

    PubMed

    Kant, Ravi; Uroić, Ksenija; Hynönen, Ulla; Kos, Blaženka; Šušković, Jagoda; Palva, Airi

    2016-01-01

    The autochthonousLactobacillus brevisstrain D6, isolated from smoked fresh cheese, carries a 45-kDa S-layer protein. Strain D6 has shown adhesion to extracellular matrix proteins and to Caco-2 intestinal epithelial cells, as well as immunomodulatory potential and beneficial milk technological properties. Hence, it could be used as a potential probiotic starter culture for cheese production. PMID:27056237

  14. Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces

    PubMed Central

    Park, Sun-Young; Cho, Seong-A; Kim, Sae-Hun; Lim, Sang-Dong

    2014-01-01

    Obesity is strongly associated with several metabolic and chronic diseases and has become a major public health problem of worldwide concern. This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum Q180. Lactobacillus plantarum Q180 was isolated from the faces of healthy adults and found to have a lipase inhibitory activity of 83.61±2.32% and inhibited adipocyte differentiation of 3T3-L1 cells (14.63±1.37%) at a concentration of 100 μg/mL. The strain was investigated for its physiological characteristics. The optimum growth temperature of L. plantarum Q180 was 37℃. Lactobacillus plantarum Q180 showed higher sensitivity to novobiocin in a comparison of fifteen different antibiotics and showed the highest resistance to rifampicin, polymyxin B and vancomycin. The strain showed higher β-galactosidase and N-acetyl-β-glucosaminidase activities. It also did not produce carcinogenic enzymes such as β-glucuronidase. The survival rate of L. plantarum Q180 in MRS broth containing 0.3% bile was 97.8%. Moreover, the strain showed a 97.2% survival rate after incubation for 3 h in pH 2.0. Lactobacillus plantarum Q180 was displayed resistance to Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus with rates of 55.6%, 38.0% and 47.6%, respectively. These results demonstrate that L. plantarum Q180 has potential as a probiotic with anti-obesity effects. PMID:26761499

  15. Reduction of Lactobacillus in the milks of cows with subclinical mastitis.

    PubMed

    Qiao, J; Kwok, L; Zhang, J; Gao, P; Zheng, Y; Guo, Z; Hou, Q; Huo, D; Huang, W; Zhang, H

    2015-01-01

    Clinical and subclinical bovine mastitis are the most frequent diseases encountered on dairy farms worldwide, which cause significant economic loss and veterinary cost. The mastitic disease status is associated with increases in both milk bacterial pathogens and somatic cell count (SCC). Although it is well established that the mastitic pathogens generally correlate with the milk SCC, to our knowledge, the correlation between the probiotic genus, Lactobacillus, and the mastitic causative bacteria and SCC have not been determined previously. Thus, in this study, milk samples from 12 mild and 28 severe subclinical mastitic dairy cows were collected from the same farm. The overall milk bacterial load was quantified with the total plate count method. The Lactobacillus genus and 4 common clinical and subclinical mastitic pathogens (Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Trueperella pyogenes) in the sampled milk were enumerated by quantitative PCR. Mild and severe subclinical mastitic samples were distinctly separated on the principal component analysis score plot generated based on the quantities of these 5 target bacteria, suggesting that clear differences existed in the microbiological composition between the two sample groups. Based on comparison with the pairwise Mann-Whitney test, the mild subclinical mastitic dairy cows had a significantly higher amounts of lactobacilli (P=0.0175), but lower E. coli (P=0.0002), S. aureus (P<0.0001), S. agalactiae (P=0.0001) and T. pyogenes (P=0.0044) quantities, while an opposite trend occurred in the severe subclinical mastitic group. The negative correlation between Lactobacillus and the pathogenic bacteria, as well as the SCC, was confirmed with Spearman correlation analysis. Data generated from the current study may hint to a close relationship between Lactobacillus and the health of bovine udder. PMID:25711409

  16. Lung abscess and pleuritis caused by Lactobacillus rhamnosus in an immunocompetent patient.

    PubMed

    Shoji, Hisashi; Yoshida, Koichiro; Niki, Yoshihito

    2010-02-01

    A 79-year-old man consulted us because of left chest pain and fever ranging from 38.0 to 38.9 °C. A chest computed tomography scan showed a mass lesion (φ40 mm) in the left lingular segment, and inflammatory markers were elevated. He was admitted with a diagnosis of lung abscess, and panipenem/betamipron was administered at a dose of 2 g/day, after which the symptoms showed slight transient resolution. However, his body temperature increased again, to more than 39.0 °C, on the eighth day of hospitalization, and a chest radiograph suggested pleuritis as a complication. The antibiotics were changed to teicoplanin (TEIC; 400 mg/day) and meropenem (2.0 g/day). Thoracic drainage and pleural lavage were initiated at the same time. Lactobacillus spp. was detected from the pleural effusion by culture and was considered to be the causative organism, and it was resistant to TEIC. Therefore, the antibiotic was changed, to clindamycin, to which the bacteria was susceptible. No subsequent fever or pleural fluid retention was observed. The patient’s course was good, and he was discharged on day 45 of hospitalization. Subsequently, the causative organism was identified as Lactobacillus rhamnosus by the 16s rRNA sequence. Lactobacillus rhamnosus is rarely pathogenic in humans. Lactobacillus rhamnosus infection mostly occurs in immunosuppressed patients, and only a few cases have been reported in immunocompetent patients. In the present case, the patient was not immunodeficient; however, his lung had an impaired local immunosystem, due to emphysema. PMID:20072798

  17. Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses.

    PubMed

    Caggia, C; De Angelis, M; Pitino, I; Pino, A; Randazzo, C L

    2015-09-01

    In the present study 177 Lactobacillus spp. strains, isolated from Ragusano and Pecorino Siciliano cheeses, were in vitro screened for probiotic traits, and their characteristics were compared to those of Lactobacillus rhamnosus GG, commercial strain. Based on acidic and bile salt resistance, thirteen Lactobacillus strains were selected. The multiplex-PCR application revealed that nine strains belonged to L. rhamnosus species and four to Lactobacillus paracasei species. All selected strains were further investigated for transit tolerance in simulated upper gastrointestinal tract (GI), for adhesion capacity to human intestinal cell lines, for hydrophobicity, for co-aggregation and auto-aggregation and for antimicrobial activities. Moreover, antibiotic resistance, hemolytic and bile salt hydrolase activities were investigated for safety assessment. Viable counts after simulated gastric and duodenal transit revealed that overall the selected lactobacilli tolerated better pancreatic juice and bile salts than acidic juice. In particular, three L. rhamnosus strains (FS10, FS2, and PS11) and one L. paracasei strain (PM8) increased their cell density after the simulated GI transit. The same strains showed also high percentage of auto-aggregation and co-aggregation with Escherichia coli. All strains were effective against both Staphylococcus aureus and E. coli and variability was achieved versus Listeria monocytogenes and Enterococcus faecalis used as pathogenic indicator strains. Different behavior was revealed by strains for adhesion ability and hydrophobicity, which are not always linked each other and are strongly strain-dependent. From the safety point of view, no isolate showed hemolytic and bile salt hydrolase activities, except one, and most of the strains were sensitive to a broad range of clinical antibiotics. This work showed that the L. rhamnosus FS10 and the L. paracasei PM8 are good promising probiotic candidates for further in vivo investigations. PMID:25998823

  18. Complete genome sequence of Lactobacillus helveticus MB2-1, a probiotic bacterium producing exopolysaccharides.

    PubMed

    Li, Wei; Xia, Xiudong; Chen, Xiaohong; Rui, Xin; Jiang, Mei; Zhang, Qiuqin; Zhou, Jianzhong; Dong, Mingsheng

    2015-09-10

    Lactobacillus helveticus MB2-1 is a probiotic bacterium producing exopolysaccharides (EPS), which was isolated from traditional Sayram ropy fermented milk in southern Xinjiang, China. The genome consists of a circular 2,084,058bp chromosome with no plasmid. The genome sequence indicated that this strain includes a 15.20kb gene cluster involved in EPS biosynthesis. Genome sequencing information has provided the basis for understanding the potential molecular mechanism behind the EPS production. PMID:26065338

  19. Draft Genome Sequence of Lactobacillus plantarum Lp90 Isolated from Wine

    PubMed Central

    Lamontanara, Antonella; Caggianiello, Graziano; Orrù, Luigi; Capozzi, Vittorio; Michelotti, Vania; Bayjanov, Jumamurat R.; Renckens, Bernadet; van Hijum, Sacha A. F. T.; Cattivelli, Luigi

    2015-01-01

    Here, we describe the draft genome sequence and annotation of Lactobacillus plantarum strain Lp90, the first sequenced genome of a L. plantarum strain isolated from wine. This strain has a noticeable ropy phenotype and showed potential probiotic properties. The genome consists of 3,324,076 bp (33 contigs) and contains 3,155 protein coding genes, 34 pseudogenes, and 84 RNA genes. PMID:25767234

  20. Complete genome sequence of Lactobacillus helveticus H9, a probiotic strain originated from kurut.

    PubMed

    Chen, Yongfu; Zhang, Wenyi; Sun, Zhihong; Meng, Bilighe; Zhang, Heping

    2015-01-20

    Lactobacillus helveticus H9 is a probiotic strain that is able to produce antihypertensive peptides during milk fermentation. Its genome has a circular 1.87Mb chromosome. Comparative genomic analysis revealed that the component of proteinases, peptide transport systems and peptidases in L. helveticus appeared to be strain-specific. Such information may help us to understand how the proteolytic system is related to its probiotic properties. PMID:25499075

  1. The impact of prulifloxacin on vaginal lactobacillus microflora: an in vivo study.

    PubMed

    Tempera, G; Furneri, P M; Cianci, A; Incognito, T; Marano, M R; Drago, F

    2009-12-01

    The aim of this study was to evaluate the in vivo effect of a repeated-dose regimen with prulifloxacin in comparison to amoxicillin/clavulanate on vaginal lactobacillus microflora. Thirty healthy female volunteers were treated with prulifloxacin or amoxicillin/clavulanate in this open, randomized, parallel-group, repeated-dose study. Vaginal signs and symptoms were assessed at the first doctor's Visit 0 (3 weeks prior to the start of the study), and subsequent examinations (1, 3, 5, 6, 7 and 8) (followup). Some volunteers treated with amoxicillin-clavulanate showed increased pH values and 73.3% of them had lower lactobacillus flora at Visit 3. this reduction was still present in 66.7% 3 days after the last dose and in 26.7% of subjects at the follow-up, about 7 - 13 days after the last dose. The situation was completely normalized at the second follow-up about one month after treatment stop. On the contrary, the repeated administration of prulifloxacin 600 mg tablets affected neither the pH nor the lactobacillus component of the vaginal flora in healthy fertile women. The oral administration of prulifloxacin may have advantages over some other antimicrobial agents because it preserves the normal vaginal microbiota in healthy women. PMID:20071288

  2. Preliminary Evaluation of Probiotic Properties of Lactobacillus Strains Isolated from Sardinian Dairy Products

    PubMed Central

    Pisano, Maria Barbara; Viale, Silvia; Conti, Stefania; Deplano, Maura; Melis, Maria Paola; Deiana, Monica

    2014-01-01

    Twenty-three Lactobacillus strains of dairy origin were evaluated for some functional properties relevant to their use as probiotics. A preliminary subtractive screening based on the abilities to inhibit the growth of microbial pathogens and hydrolyze conjugated bile salts was applied, and six strains were selected for further characterization including survival under gastrointestinal environmental conditions, adhesion to gut epithelial tissue, enzymatic activity, and some safety properties. All selected strains maintained elevated cell numbers under conditions simulating passage through the human gastrointestinal tract, well comparable to the values obtained for the probiotic strain Lactobacillus rhamnosus GG, and were able to adhere to Caco-2 cells to various extents (from 3 to 20%). All strains exhibited high aminopeptidase, and absent or very low proteolytic and strong β-galactosidase activities; none was found to be haemolytic or to produce biogenic amines and all were susceptible to tetracycline, chloramphenicol, erythromycin, ampicillin, and amoxicillin/clavulanic acid. Our results indicate that the Lactobacillus strains analyzed could be considered appropriate probiotic candidates, due to resistance to GIT simulated conditions, antimicrobial activity, adhesion to Caco-2 cell-line, and absence of undesirable properties. They could be used as adjunct cultures for contributing to the quality and health related functional properties of dairy products. PMID:25054135

  3. Mouse intravaginal infection with Trichomonas vaginalis and role of Lactobacillus acidophilus in sustaining infection.

    PubMed Central

    McGrory, T; Garber, G E

    1992-01-01

    Recent work with a mouse model of Trichomonas vaginalis infection indicated that only 25% of mice harbor Lactobacillus spp. and that T. vaginalis infection rates fall rapidly after 7 days postinfection. In women infected with T. vaginalis, there is a disruption of the Lactobacillus population, which usually predominates. In an attempt to establish a better mouse intravaginal infection that resembles human disease, we established Lactobacillus acidophilus in estrogenized BALB/c mice. T. vaginalis was then inoculated intravaginally into mice previously infected with L. acidophilus and into mice in an untreated group. From 52 mice, 50-microliters vaginal washes were collected, cultured, and examined daily for live trichomonads after inoculation. Although initial infectivity in the two groups was comparable (79 to 83%), L. acidophilus-infected mice showed greater duration of infection. At day 24 postinfection, 69% of L. acidophilus-infected mice were still infected with T. vaginalis compared with only 11% of untreated mice (P = 0.002). The addition of L. acidophilus did not significantly alter the resident mouse vaginal flora. By the addition of L. acidophilus, the mouse will be valuable for studying factors involved in T. vaginalis infectivity and pathogenicity. PMID:1587604

  4. Probiotic Potential and Safety Properties of Lactobacillus plantarum from Slovak Bryndza Cheese

    PubMed Central

    Belicová, Anna; Mikulášová, Mária; Dušinský, Roman

    2013-01-01

    One hundred and twenty-five acid-resistant presumptive lactobacilli were isolated from Slovak Bryndza cheese and screened for their antimicrobial activity against eight bacterial pathogens using spot agar assay. Out of twenty-six Lactobacillus strains with strong inhibition activity, twenty were identified as Lactobacillus plantarum and six as Lactobacillus fermentum. The most active eleven L. plantarum isolates were further characterized in vitro for some probiotic and safety properties. Only three isolates K10, K21, and ZS07 showed the ability to grow over 50% in the presence of 0.3% bile. Strong deconjugation efficiency was determined for CK06 and K21. The highest β-galactosidase activity was shown in isolates ZS11, B01, CK06, and ZS07. Only three of the strains had the ability to produce tyramine: CK06, LM1, and ZS11. Strains K09, K21, ZS11, and ZS15 were susceptible to all tested antibiotics. Analysis of the results confirmed the L. plantarum isolates ZS07 and K21 as the most suitable for probiotic use, due to their desirable probiotic and safety characteristics. PMID:24093103

  5. Development of a Lactobacillus Specific T-RFLP Method to Determine Lactobacilli Diversity in Complex Samples

    PubMed Central

    Chen, Long; Teasdale, Matt T.; Kaczmarczyk, Melissa M.; Freund, Gregory G.; Miller, Michael J.

    2012-01-01

    Terminal restriction fragment length polymorphism (T-RFLP) analysis has been widely used for studying microbial communities. However, most T-RFLP assays use 16S rDNA as the target and are unable to accurately characterize a microbial subpopulation. In this study, we developed a novel T-RFLP protocol based on Lactobacillus hsp60 to rapidly characterize and compare lactobacilli composition. The theoretical terminal restriction fragment (TRF) profiles were calculated from 769 Lactobacillus hsp60 sequences from online databases. In silico digestion with restriction endonucleases AluI and TacI on hsp60 amplicons generated 83 distinct TRF patterns, of which, 70 were species specific. To validate the assay, five previously sequenced lactobacilli were cultured independently, mixed at known concentrations and subjected to analysis by T-RFLP. All five strains generated the predicted TRFs and a qualitative consistent relationship was revealed. We performed the T-RFLP protocol on fecal samples from mice fed 6 different diets (n=4). Principal component analysis and agglomerative hierarchical clustering revealed that the lactobacilli community was strongly connected to dietary supplementation. Our study demonstrates the potential for using Lactobacillus specific T-RFLP to characterize lactobacilli communities in complex samples. PMID:22981747

  6. Lactobacillus Proteins Are Associated with the Bactericidal Activity against E. coli of Female Genital Tract Secretions

    PubMed Central

    Kalyoussef, Sabah; Nieves, Edward; Dinerman, Ellen; Carpenter, Colleen; Shankar, Viswanathan; Oh, Jamie; Burd, Berta; Angeletti, Ruth H.; Buckheit, Karen W.; Fredricks, David N.; Madan, Rebecca P.; Keller, Marla J.; Herold, Betsy C.

    2012-01-01

    Background Female genital tract secretions are bactericidal for Escherichia (E.) coli ex vivo. However, the intersubject variability and molecules that contribute to this activity have not been defined. Methods The bactericidal activity and concentration of immune mediators in cervicovaginal lavage (CVL) collected from 99 healthy women were determined. Results CVL reduced the number of E. coli colonies by 68% [−26, 100] (median [range]). CVL were active against laboratory and clinical isolates of E. coli, but were inactive against Lactobacillus species. Bactericidal activity correlated with the concentration of protein recovered (p<0.001), but not with cytokines, chemokines or antimicrobial peptides. Four CVL with>90% inhibitory activity (active) and two with<30% activity were subjected to MS/MS proteomic analysis. 215 proteins were identified and six were found exclusively in active samples. Four of these corresponded to Lactobacillus crispatus or jensenii proteins. Moreover, culture supernatants from Lactobacillus jensenii were bactericidal for E. coli. Conclusion Both host and commensal microbiota proteins contribute to mucosal defense. Identification of these proteins will facilitate the development of strategies to maintain a healthy vaginal microbiome and prevent colonization with pathogenic bacteria such as E. coli that increase the risk for urinary tract infections, preterm labor and perinatal infection. PMID:23185346

  7. Development of a highly efficient protein-secreting system in recombinant Lactobacillus casei.

    PubMed

    Kajikawa, Akinobu; Ichikawa, Eiko; Igimi, Shizunobu

    2010-02-01

    The available techniques for heterologous protein secretion in Lactobacillus strains are limited. The aim of the present study was to develop an efficient protein-secretion system using recombinant lactobacilli for various applications such as live delivery of biotherapeutics. For the construction of expression vectors, the Lactobacillus brevis slpA promoter, Lactobacillus casei prtP signal sequence, and mouse IL-10 sequences were used as a model system. Interestingly, the slpA promoter exhibited strong activity in L. casei contrary to previous observations. In order to stabilize replication of the plasmid in E. coli, a removable terminator sequence was built into the promoter region. For the improvement of secretion efficiency, a DTNSD oligopeptide was added to the cleavage site of signal peptidase. The resulting plasmids provided remarkably efficient IL-10 secretion. Accumulation of the protein in the culture supernatant varied widely according to the pH conditions. By analysis of the secreted protein, formation of homodimers and biological activity, IL-10 was confirmed to be functional. The presently constructed plasmids could be useful tools for heterologous protein-secretion in L. casei. PMID:20208444

  8. Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens

    PubMed Central

    2013-01-01

    Background Aquaculture is one amongst the growing and major food producing sectors. Shrimp culture is one of the subsectors of aquaculture that attracts more attention because of the economic interest. However, the shrimp culture systems have been facing severe consequences and economical losses due to disease outbreaks. Risk of disease outbreak can be combated with the application of probiotics. For economically viable production of such probiotic products, the present study provides information on the optimization and partial purification of bacteriocin produced by a goat milk isolate Lactobacillus sp. MSU3IR against the shrimp bacterial pathogens. Results Bacteriocin production was estimated as a measure of bactericidal activity (arbitrary Unit/ml) over the test strains. The optimum culture conditions and media components for maximum bacteriocin production by Lactobacillus sp. MSU3IR were: pH: 5.0, temperature: 30°C, carbon source: lactose; nitrogen source: ammonium acetate; NaCl: 3.0% and surfactant: Tween 80. MRS medium was found to extend better bacteriocin production than other tested media. Upon partial purification of bacteriocin, the SDS-PAGE analysis had manifested the presence of two peptide bands with the molecular weight of 39.26 and 6.38 kDa, respectively. Conclusion The present results provide baseline trend for the statistical optimization, scale up process and efficient production of bacteriocin by the candidate bacterial strain Lactobacillus sp. MSU3IR which could be used to replace the usage of conventional chemotherapeutics in shrimp culture systems. PMID:23725298

  9. Orthogonal array deciphering MRS medium requirements for isolated Lactobacillus rhamnosus ZY with cell properties characterization.

    PubMed

    Zhang, Yu; Ng, I-Son; Yao, Chuanyi; Lu, Yinghua

    2014-09-01

    Lactobacillus rhamnosus is a well-known lactic acid bacterium (LAB), but a new ZY strain was isolated for the first time from commercial probiotic powder recently. Although many studies have focused on developing cost-effective media for the production of LAB, the de Man, Rogosa and Sharpe (MRS) medium is still the most common medium for bioprocesses. The aim of the current study is to decipher the composition of MRS based on a statistical approach, which will allow a higher biomass of Lactobacillus to be obtained. In Taguchi's approach, an L27 orthogonal array was adopted to evaluate the significance of 10 ingredients in MRS, in which the effects of the components were ranked according to their effect on biomass at OD600 as dextrose > MnSO4·H2O > beef extract > CH3COONa > MgSO4 > yeast extract > proteose peptone > K2HPO4 > ammonium citrate > Tween 80. Although the individual trace elements of ammonium citrate, K2HPO4, CH3COONa and MgSO4 in MRS had an insignificant influence on the biomass after statistical analysis, the total elimination of trace elements would predominantly affect the cell growth of Lactobacillus. Further characterization of the cell properties through attenuated total reflectance of Fourier transform infrared (ATR-FTIR) spectroscopy and protein identification via SDS-PAGE coupled with tandem mass spectrometry implied that dextrose as major carbon source in MRS played the most crucial role for L. rhamnosus production. PMID:24721122

  10. The role of Candida albicans hyphae and Lactobacillus in denture-related stomatitis.

    PubMed

    Bilhan, Hakan; Sulun, Tonguç; Erkose, Gonca; Kurt, Hanefi; Erturan, Zayre; Kutay, Omer; Bilgin, Tayfun

    2009-12-01

    Denture-related stomatitis (DRS) is still a dilemma in removable prosthodontics. The aim of this study was to investigate the relationship of DRS with the presence of Candida albicans hyphae and Lactobacillus. A total of 91 patients wearing maxillary and mandibular complete dentures were included in the present study and tested mycologically as well as bacteriologically. A statistically significant association of DRS was found with denture age (p = 0.003) and continuous denture wearing (p = 0.015). Presence of C. albicans hyphae was shown to be significantly higher in DRS cases (p < 0.01), and there was a statistically significant positive correlation between presence of hyphae and C. albicans (p < 0.01). Another interesting finding was that DRS patients showed higher Lactobacillus counts in their saliva (p = 0.04), as well as in the palate (p = 0.028). C. albicans is an important factor in the development of DRS. Hyphae seem to facilitate the rise of C. albicans counts and be related to the inflammatory response of the tissues. Lactobacillus seems to play an important role in the presence of DRS, as well. In agreement with many other studies, the results of this study confirm the importance of denture age and continuous denture wearing in the development of DRS. PMID:19101740

  11. Application of Lactobacillus immobilized by Activated Carbon Fiber in Fermentation of Lactic Acid in Starch Wastewater

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Wang, Peng; Chi, Guoda; Huang, Chenyong

    2010-11-01

    Activated carbon fibers (ACF) as the carrier of Lactobacillus was introduced into fermenting system, and a method of modifying the surface of ACF by HNO3-Fe (III) was established. Factors that affect ACF carrier's effect on immobilization of Lactobacillus were studied. HCl, H2SO4, HNO3 and FeCl3 solutions were respectively used to modify the surface properties of ACF. The amount of Fe (III) carried on ACF surface was 0.1563 mol/kg after ACF surface was modified by HNO3 for 5 h and then by 0.1 mol/L FeCl3 for 4 h, when the thickness of Lactobacillus on a single silk of carrier reached 40 μm. When ACF modified by HNO3-Fe (III) was applied in the fermentation of lactic acid in starch industry wastewater, the fermentation period reduced by 8 h and the output of L-lactic acid was 65.5 g/L, which was 3.3% more than that fermented without the carrier.

  12. Characterization of pR18, a novel rolling-circle replication plasmid from Lactobacillus plantarum.

    PubMed

    Jalilsood, Tannaz; Baradaran, Ali; Ling, Foo Hooi; Mustafa, Shuhaimi; Yusof, Khatijah; Rahim, Raha Abdul

    2014-05-01

    Lactobacillus plantarum PA18, a strain originally isolated from the leaves of Pandanus amaryllifolius, contains a pR18 plasmid. The pR18 plasmid is a 3211bp circular molecule with a G+C content of 35.8%. Nucleotide sequence analysis revealed two putative open reading frames, ORF1 and ORF2, in which ORF2 was predicted (317 amino acids) to be a replication protein and shared 99% similarity with the Rep proteins of pLR1, pLD1, pC30il, and pLP2000, which belong to the RCR pC194/pUB110 family. Sequence analysis also indicated that ORF1 was predicted to encode linA, an enzyme that enzymatically inactivates lincomycin. The result of Southern hybridization and mung bean nuclease treatment confirmed that pR18 replicated via the RCR mechanism. Phylogenetic tree analysis of pR18 plasmid proteins suggested that horizontal transfer of antibiotic resistance determinants without genes encoding mobilization has not only occurred between Bacillus and Lactobacillus but also between unrelated bacteria. Understanding this type of transfer could possibly play a key role in facilitating the study of the origin and evolution of lactobacillus plasmids. Quantitative PCR showed that the relative copy number of pR18 was approximately 39 copies per chromosome equivalent. PMID:24785193

  13. Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage {Phi}AQ113.

    PubMed

    Zago, Miriam; Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-08-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism. PMID:23728811

  14. The effect of Lactobacillus bacteria supplement on sepsis and its complications in patients with acute burns.

    PubMed

    Koren, Lior; Gurfinkel, Reuven; Glezinger, Ronen; Perry, Zvi Howard; Lev-Ari, Sandra; Rosenberg, Lior

    2007-08-01

    Sepsis as a result of bacterial translocation from the gastrointestinal tract (GIT) is a known associate of morbidity and mortality in patients with severe burns. This translocation is influenced by the GIT flora. Oral consumption of Lactobacillus bacteria was previously shown to reduce translocation. We conducted a retrospective cohort study on a series of 56 patients with burns admitted to Soroka University Medical Center in Beer-Sheva, Israel. Those 56 patients included 28 who were given lactobacillus supplements and 28 who were not. The parameters that were compared between the groups evaluated the level of sepsis and its complications. The parameters of morbidity during hospitalization were significantly higher in the treatment group; however, their mortality was lower. That difference in mortality between the groups was not significant as a whole (p=0.071), but it was significant in the subgroup analysis of 41-70% total body surface area burned. In that subgroup there were zero cases of death in the treatment group versus five cases in the control group (p=0.005). Our findings suggest that in acute burns, lactobacillus bacteria food additives may be clinically beneficial in patients with total burned body surface area of 41-70%. PMID:17482370

  15. Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments.

    PubMed Central

    Chan, R C; Reid, G; Irvin, R T; Bruce, A W; Costerton, J W

    1985-01-01

    Previous studies have shown that indigenous bacteria isolated from cervical, vaginal, and urethral surfaces of healthy women are able to adhere to human uroepithelial cells in vitro. Furthermore, these organisms were found to block the adherence of uropathogenic bacteria to uroepithelial cells from women with and without a history of urinary tract infections. In the present study, complete or partial inhibition of the adherence of gram-negative uropathogens was achieved by preincubating the uroepithelial cells with bacterial cell wall fragments isolated from a Lactobacillus strain. Competitive exclusion was most effective with whole viable cells and less effective with cell wall fragments obtained by sonication, extraction with sodium dodecyl sulfate, and treatment with sodium dodecyl sulfate and acid. Analysis of the Lactobacillus cell wall preparations suggested that lipoteichoic acid was responsible for the adherence of the Lactobacillus cells to uroepithelial cells but that steric hindrance was the major factor in preventing the adherence of uropathogens. This conclusion was also supported by blockage studies with reconstituted lipoteichoic acid-peptidoglycan, which was more effective at blocking adherence than lipoteichoic acid or peptidoglycan alone. The results suggest that the normal flora of the urinary tract may be used to protect against the attachment of uropathogens to the surfaces of uroepithelial cells. The long-term implications of these findings may lead to alternative methods for the management and prevention of recurrent urinary tract infections in females. Images PMID:3917428

  16. Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2015-08-01

    The aim of the current study was to investigate the effect of varying sodium chloride concentrations (0-5%) on viability and membrane integrity of three probiotic bacteria, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum, using conventional technique and flow cytometry. Double staining of cells by carboxyfluorescein diacetate (cFDA) and propidium iodide (PI) enabled to evaluate the effect of NaCl on cell esterase activity and membrane integrity. Observations from conventional culture technique were compared with findings from flow cytometric analysis on the metabolic activities of the cells and a correlation was observed between culturability and dye extrusion ability of L. casei and B. longum. However, a certain population of L. acidophilus was viable as per the plate count method but its efflux activity was compromised. Esterase activity of most bacteria reduced significantly (P < 0.05) during one week storage at NaCl concentrations greater than 3.5%. The study revealed that L. casei was least affected by higher NaCl concentrations among the three probiotic bacteria, as opposed to B. longum where the cF extrusion performance was greatly reduced during 1 wk storage. The metabolic activity and salt resistance of L. casei was found to be highest among the bacteria studied. PMID:25846931

  17. Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats.

    PubMed

    Yadav, Hariom; Jain, Shalini; Sinha, Pushpalata Ravindra

    2008-05-01

    In this study, the effect of dahi containing probiotic Lactobacillus acidophilus NCDC14 and Lactobacillus casei NCDC19 (73 x 10(8) cfu/g) on progression of streptozotocin (STZ)-induced diabetes in rats (15 g/day/rat) for 28 days was investigated. Feeding of probiotic dahi significantly suppressed the incremental peaks and area under the curve and delayed reduction of insulin secretion during oral glucose tolerance test more than skim milk or control dahi. The feeding of milk products reduced the total cholesterol, triglycerides, LDL and VLDL-cholesterol and increased HDL-cholesterol levels (P<0.05). Moreover, probiotic dahi significantly suppressed STZ-induced oxidative damage in pancreatic tissues by inhibiting the lipid peroxidation and formation of nitric oxide, and preserving antioxidant pool such as glutathione content and activities of superoxide dismutase, catalase and glutathione peroxidase. The results suggest that the supplementation of probiotic Lb. acidophilus and Lb. casei with dahi cultures increased the efficacy of dahi to suppress STZ-induced diabetes in rats by inhibiting depletion of insulin as well as preserving diabetic dyslipidemia, and inhibiting lipid peroxidation and nitrite formation. This may empower antioxidant system of beta-cells and may slow down the reduction of insulin and elevation of blood glucose levels. PMID:18474136

  18. Effectiveness of Lactobacillus helveticus and Lactobacillus rhamnosus for the management of antibiotic-associated diarrhoea in healthy adults: a randomised, double-blind, placebo-controlled trial.

    PubMed

    Evans, Malkanthi; Salewski, Ryan P; Christman, Mary C; Girard, Stephanie-Anne; Tompkins, Thomas A

    2016-07-01

    Broad-spectrum antibiotic use can disrupt the gastrointestinal microbiota resulting in diarrhoea. Probiotics may be beneficial in managing this type of diarrhoea. The aim of this 10-week randomised, double-blind, placebo-controlled, parallel study was to investigate the effect of Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011 supplementation on antibiotic-associated diarrhoea in healthy adults. Subjects were randomised to receive 1 week of amoxicillin-clavulanic acid (875 mg/125 mg) once per day, plus a daily dose of 8×109 colony-forming units of a multi-strain probiotic (n 80) or placebo (n 80). The probiotic or placebo intervention was maintained for 1 week after completion of the antibiotic. Primary study outcomes of consistency and frequency of bowel movements were not significantly different between the probiotic and placebo groups. The secondary outcomes of diarrhoea-like defecations, Gastrointestinal Symptoms Rating Scale scores, safety parameters and adverse events were not significantly different between the probiotic intervention and the placebo. A post hoc analysis on the duration of diarrhoea-like defecations showed that probiotic intervention reduced the length of these events by 1 full day (probiotic, 2·70 (sem 0·36) d; placebo, 3·71 (sem 0·36) d; P=0·037; effect size=0·52). In conclusion, this study provides novel evidence that L. helveticus R0052 and L. rhamnosus R0011 supplementation significantly reduced the duration of diarrhoea-like defecations in healthy adults receiving antibiotics. PMID:27169634

  19. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage.

    PubMed

    Jofré, A; Aymerich, T; Garriga, M

    2015-01-01

    The production of long shelf-life highly concentrated dried probiotic/starter cultures is of paramount importance for the food industry. The aim of the present study was to evaluate the protective effect of glucose, lactose, trehalose, and skim milk applied alone or combined upon the survival of potentially probiotic Lactobacillus rhamnosus CTC1679, Lactobacillus casei/paracasei CTC1677 and L. casei/paracasei CTC1678 during freeze-drying and after 39 weeks of storage at 4 and 22 °C. Immediately after freeze-drying, the percentage of survivors was very high (≥ 94%) and only slight differences were observed among strains and cryoprotectants. In contrast, during storage, survival in the dried state depended on the cryoprotectant, temperature and strain. For all the protectants assayed, the stability of the cultures was remarkably higher when stored under refrigeration (4 °C). Under these conditions, skim milk alone or supplemented with trehalose or lactose showed the best performance (reductions ≤ 0.9 log units after 39 weeks of storage). The lowest survival was observed during non-refrigerated storage and with glucose and glucose plus milk; no viable cells left at the end of the storage period. Thus, freeze-drying in the presence of appropriate cryoprotectants allows the production of long shelf-life highly concentrated dried cultures ready for incorporation in high numbers into food products as starter/potential probiotic cultures. PMID:25380798

  20. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli

    PubMed Central

    Million, M; Angelakis, E; Maraninchi, M; Henry, M; Giorgi, R; Valero, R; Vialettes, B; Raoult, D

    2013-01-01

    Background: Genus and species level analysis is the best way to characterize alterations in the human gut microbiota that are associated with obesity, because the clustering of obese and lean microbiotas increases with the taxonomic depth of the analysis. Bifidobacterium genus members have been associated with a lean status, whereas different Lactobacillus species are associated both with a lean and an obese status. Objectives and methods: We analyzed the fecal concentrations of Bacteroidetes, Firmicutes, Methanobrevibacter smithii, the genus Lactobacillus, five other Lactobacillus species previously linked with lean or obese populations, Escherichia coli and Bifidobacterium animalis in 263 individuals, including 134 obese, 38 overweight, 76 lean and 15 anorexic subjects to test for the correlation between bacterial concentration and body mass index (BMI). Of these subjects, 137 were used in our previous study. Findings: Firmicutes were found in >98.5%, Bacteroidetes in 67%, M. smithii in 64%, E. coli in 51%, Lactobacillus species between 17 and 25% and B. animalis in 11% of individuals. The fecal concentration of Lactobacillus reuteri was positively correlated with BMI (coefficient=0.85; 95% confidence interval (CI) 0.12–0.58; P=0.02) in agreement with what was reported for Lactobacillus sakei. As reported, B. animalis (coefficient=−0.84; 95% CI −1.61 to −0.07; P=0.03) and M. smithii (coefficient=−0.43, 95% CI −0.90 to 0.05; P=0.08) were negatively associated with the BMI. Unexpectedly, E. coli was found here for the first time to negatively correlate with the BMI (coefficient=−1.05; 95% CI −1.60 to −0.50; P<0.001). Conclusion: Our findings confirm the specificity of the obese microbiota and emphasize the correlation between the concentration of certain Lactobacillus species and obesity. PMID:23459324

  1. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii

    PubMed Central

    Million, M; Maraninchi, M; Henry, M; Armougom, F; Richet, H; Carrieri, P; Valero, R; Raccah, D; Vialettes, B; Raoult, D

    2012-01-01

    Background: Obesity is associated with increased health risk and has been associated with alterations in bacterial gut microbiota, with mainly a reduction in Bacteroidetes, but few data exist at the genus and species level. It has been reported that the Lactobacillus and Bifidobacterium genus representatives may have a critical role in weight regulation as an anti-obesity effect in experimental models and humans, or as a growth-promoter effect in agriculture depending on the strains. Objectives and methods: To confirm reported gut alterations and test whether Lactobacillus or Bifidobacterium species found in the human gut are associated with obesity or lean status, we analyzed the stools of 68 obese and 47 controls targeting Firmicutes, Bacteroidetes, Methanobrevibacter smithii, Lactococcus lactis, Bifidobacterium animalis and seven species of Lactobacillus by quantitative PCR (qPCR) and culture on a Lactobacillus-selective medium. Findings: In qPCR, B. animalis (odds ratio (OR)=0.63; 95% confidence interval (CI) 0.39–1.01; P=0.056) and M. smithii (OR=0.76; 95% CI 0.59–0.97; P=0.03) were associated with normal weight whereas Lactobacillus reuteri (OR=1.79; 95% CI 1.03–3.10; P=0.04) was associated with obesity. Conclusion: The gut microbiota associated with human obesity is depleted in M. smithii. Some Bifidobacterium or Lactobacillus species were associated with normal weight (B. animalis) while others (L. reuteri) were associated with obesity. Therefore, gut microbiota composition at the species level is related to body weight and obesity, which might be of relevance for further studies and the management of obesity. These results must be considered cautiously because it is the first study to date that links specific species of Lactobacillus with obesity in humans. PMID:21829158

  2. Practical identification of human originated Lactobacillus species by amplified ribosomal DNA restriction analysis (ARDRA) for probiotic use.

    PubMed

    Öztürk, Mehmet; Meterelliyöz, Merve

    2015-08-01

    Probiotics are gaining popularity and increasing the importance of their accurate speciation. Lactobacillus species are commonly used as probiotic strains mostly of clinical importance. Present knowledge indicates that at least 14 Lactobacillus species are associated with the human intestinal tract. Currently, researchers are interested in developing efficient techniques for screening and selecting probiotics bacteria, but unfortunately most of these methods are time-consuming, labor-intensive and costly. The aim of this study is to develop reliable, rapid and accurate method to identify 14 references Lactobacillus species that could have been found in the human alimentary tract by 16S ribosomal DNA restriction analysis. In this study, to develop an effective method for the genotype-based identification of the reference Lactobacillus species, 1.5 kb of 16S rRNA nucleotide sequences of 14 Lactobacillus were collected from the Gene Bank aligned, in silico restricted and analyzed in respect to their 16S-rRNA restriction fragment polymorphism. In silico restriction profiles of 16S-rRNA indicated that FspBI, HinfI and DraI restriction enzymes (RE) are convenient for differentiation of 14 Lactobacillus species in human intestinal tract except Lb. casei and Lb. paracasei. The patterns of our experimental findings obtained from 16S PCR-ARDRA completely confirmed our in silico patterns. The present work demonstrated that 16S PCR-ARDRA method with FspBI, HinfI and DraI RE is a rapid, accurate and reliable method for the identification of Lactobacillus species from human alimentary tract, especially during the identification of large numbers of isolates and any laboratory equipped with a thermo cycler for probiotic use. PMID:25860079

  3. Probiotic potential of lactobacillus strains isolated from sorghum-based traditional fermented food.

    PubMed

    Rao, K Poornachandra; Chennappa, G; Suraj, U; Nagaraja, H; Raj, A P Charith; Sreenivasa, M Y

    2015-06-01

    Sorghum-based traditional fermented food was screened for potential probiotic lactic acid bacteria. The isolates were identified by biochemical, physiological and genetic methods. Species identification was done by 16s rRNA sequence analysis. The functional probiotic potential of the two Lactobacillus species viz., Lactobacillus plantarum (Lact. plantarum) and Lactobacillus pentosus (Lact. pentosus) was assessed by different standard parameters. The strains were tolerant to pH 2 for 1 h and resistant to methicillin, kanamycin, vancomycin and norfloxacin. Two (Lact. plantarum COORG-3 and Lact. pentosus COORG-8) out of eight isolates recorded the cell surface hydrophobicity to be 59.12 and 64.06%, respectively. All the strains showed tolerance to artificial duodenum juice (pH 2) for 3 h, positive for bile salt hydrolase test and negative for haemolytic test. The neutralized cell-free supernatant of the strains Lact. pentosus COORG-4, Lact. plantarum COORG-1, Lact. plantarum COORG-7, Lact. pentosus COORG-8 and Lact. plantarum COORG-3 showed good antibiofilm activity. Lact. pentosus COORG-8 exhibited 74% activity against Pseudomonas aeruginosa-MTCC 7903 and Lact. plantarum COORG-7 showed 68% inhibition of biofilm against Klebsiella pneumonia MTCC 7407. Three (Lact. plantarum COORG-7, Lact. pentosus COORG-5 and Lact. pentosus COORG 8) out of eight isolates exhibited a good antimicrobial activity against Listeria monocytogenes and five isolates (Lact. pentosus COORG 2, Lact. plantarum COORG 1, Lact. plantarum COORG 4, Lact. pentosus COORG 3 and Lact. plantarum COORG 6) are active against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella pneumonia, Enterococcus faecalis. The study also evaluated the cholesterol lowering property of the Lactobacillus strains using hen egg yolk as the cholesterol source. The cholesterol in hen egg yolk was assimilated by 74.12 and 68.26% by Lact. plantarum COORG 4 and Lact. pentosus COORG 7, respectively. The results of the present study suggest that the Lactobacillus strains isolated and characterized from sorghum-based fermented product may be used as probiotic strains for therapeutic applications. PMID:25666113

  4. Human α-amylase Present in Lower-Genital-Tract Mucosal Fluid Processes Glycogen to Support Vaginal Colonization by Lactobacillus

    PubMed Central

    Spear, Gregory T.; French, Audrey L.; Gilbert, Douglas; Zariffard, M. Reza; Mirmonsef, Paria; Sullivan, Thomas H.; Spear, William W.; Landay, Alan; Micci, Sandra; Lee, Byung-Hoo; Hamaker, Bruce R.

    2014-01-01

    Lactobacillus colonization of the lower female genital tract provides protection from the acquisition of sexually transmitted diseases, including human immunodeficiency virus, and from adverse pregnancy outcomes. While glycogen in vaginal epithelium is thought to support Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize glycogen in vitro. This study investigated how glycogen could be utilized by vaginal lactobacilli in the genital tract. Several Lactobacillus isolates were confirmed to not grow in glycogen, but did grow in glycogen-breakdown products, including maltose, maltotriose, maltopentaose, maltodextrins, and glycogen treated with salivary α-amylase. A temperature-dependent glycogen-degrading activity was detected in genital fluids that correlated with levels of α-amylase. Treatment of glycogen with genital fluids resulted in production of maltose, maltotriose, and maltotetraose, the major products of α-amylase digestion. These studies show that human α-amylase is present in the female lower genital tract and elucidates how epithelial glycogen can support Lactobacillus colonization in the genital tract. PMID:24737800

  5. Orally administered ovine serum immunoglobulins modulate the intestinal levels of Lactobacillus and enterobacteria in the growing rat.

    PubMed

    Balan, P; Han, K-S; Lawley, B; Moughan, P J

    2013-08-01

    The aim was to determine whether orally administered ovine serum immunoglobulins modulate the gut microbiota in the growing rat. Thirty Sprague-Dawley male rats were used in a 21-d study and fed either a basal control diet (control; no immunoglobulin) or a similar diet containing freeze-dried ovine immunoglobulin (ovine Ig) with 15 individually fed rats per diet. Bacterial DNA isolated from ileal and colonic digesta were subjected to PCR-denaturing gradient gel electrophoresis (PCR-DGGE). In the ileum, the DGGE band number and diversity index were greater (P < 0.05) for rats fed the ovine Ig than those fed the control diet. The DNA sequencing of a selected DGGE band in the ovine Ig-fed rats revealed 99% similarity to the Lactobacillus strains. The quantitative PCR data revealed that supplementation of the diet with the ovine Ig fraction supported the growth of Lactobacillus and conversely decreased the number of enterobacteria in ileal and colonic digesta. Inclusion of the ovine Ig fraction led to a greater (P < 0.05) ratio for total Lactobacillus to total bacteria and total Lactobacillus to enterobacteria. The results from the present study show that dietary supplementation with ovine Ig may alter the intestinal environment by a specific enrichment of Lactobacillus strains and depletion of enterobacteria. PMID:23658346

  6. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v.

    TOXLINE Toxicology Bibliographic Information

    Molin G

    2001-02-01

    Lactic acid fermentation is the simplest and safest way of preserving food and has probably always been used by humans. Species such as Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus acidophilus, and Lactobacillus salivarius are common in the human mucosa, from the mouth to the rectum. In food, L. paracasei and L. rhamnosus are usually associated with dairy products whereas L. plantarum is found in fermented foods of plant origin. A probiotic food product containing no milk constituent was launched in Sweden in 1994. The product is a lactic acid fermented oatmeal gruel that is mixed in a fruit drink. It contains approximately 5 x 10(10) colony-forming units of L. plantarum 299v/L. The strain L. plantarum 299v originates from the human intestinal mucosa and has been shown in rats to decrease translocation, improve mucosal status, improve liver status, improve the immunologic status of the mucosa, and reduce mucosal inflammation. In humans, L. plantarum 299v can increase the concentration of carboxylic acids in feces and decrease abdominal bloating in patients with irritable bowel disease. It can also decrease fibrinogen concentrations in blood. Should probiotics be administrated through foods, the probiotic organism must remain vigorous in the food until consumption and the food must remain palatable, ie, the food carrier and the organism must suit each other. L. plantarum 299v not only affects the bacterial flora of the intestinal mucosa but may also regulate the host's immunologic defense. The mechanisms involved need to be clarified.

  7. Relative Catalytic Efficiency of ldhL- and ldhD-Encoded Products Is Crucial for Optical Purity of Lactic Acid Produced by Lactobacillus Strains

    PubMed Central

    Zheng, Zhaojuan; Sheng, Binbin; Zhang, Haiwei; Gao, Chao; Su, Fei

    2012-01-01

    NAD-dependent l- and d-lactate dehydrogenases coexist in Lactobacillus genomes and may convert pyruvic acid into l-lactic acid and d-lactic acid, respectively. Our findings suggest that the relative catalytic efficiencies of ldhL- and ldhD-encoded products are crucial for the optical purity of lactic acid produced by Lactobacillus strains. PMID:22344644

  8. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the human NK-cell activity.

    PubMed

    Takeda, Kazuyoshi; Okumura, Ko

    2007-03-01

    Nine healthy middle-aged and 10 elderly volunteers drank fermented milk containing 4 x 10(10) live cells of Lactobacillus casei strain Shirota daily for 3 wk, and their natural killer (NK) activity and other immunological functions were examined. In the experiments with middle-aged volunteers, NK activity significantly increased (P<0.01) 3 wk after the start of intake, elevated NK cell activity remained for the next 3 wk, and this effect was particularly prominent in the low-NK-activity individuals. In the experiments with elderly volunteers, NK activity significantly decreased (P<0.01) in the control group 3 wk after the start of intake; however, the intake of Lactobacillus casei strain Shirota maintained the NK activity. These results suggest that daily intake of Lactobacillus casei strain Shirota provides a positive effect on NK-cell activity. PMID:17311976

  9. Novel Phage Group Infecting Lactobacillus delbrueckii subsp. lactis, as Revealed by Genomic and Proteomic Analysis of Bacteriophage Ldl1

    PubMed Central

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 ± 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species. PMID:25501478

  10. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    PubMed

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species. PMID:25501478

  11. Lactobacillus Endocarditis with Prosthetic Material: A Case Report on Non-Surgical Management with Corresponding Literature Review

    PubMed Central

    Botros, Mena; Mukundan, Deepa

    2014-01-01

    Lactobacilli are rod shaped gram positive bacteria that naturally colonize the human gastrointestinal and genitourinary tracts and occasionally cause disease in humans. Lactobacillus infections are found in patients who are immunocompromized or have severe comorbidities. We report Lactobacillus endocarditis in a 17-year-old adolescent girl with cardiac prosthetic material following surgical correction for complex cyanotic congenital heart disease. Accurate identification of the organism can be delayed. Despite in vivo susceptibility to vancomycin, our patient clinically failed vancomycin therapy but ultimately responded to a six-week course of penicillin, in addition to a 4-week course of clindamycin and gentamicin. She recovered without the need for surgical intervention and has been symptom free for one year. Upon review of the literature, we found that Lactobacillus endocarditis has not been reported in a pediatric patient with complex cyanotic congenital heart disease. PMID:25276330

  12. The PAV trial: Does lactobacillus prevent post-antibiotic vulvovaginal candidiasis? Protocol of a randomised controlled trial [ISRCTN24141277

    PubMed Central

    Pirotta, Marie; Gunn, Jane; Chondros, Patty; Grover, Sonia; Hurley, Susan; Garland, Suzanne

    2004-01-01

    Background Complementary and alternative medicines are used by many consumers, and increasingly are being incorporated into the general practitioner's armamentarium. Despite widespread usage, the evidence base for most complementary therapies is weak or non-existent. Post-antibiotic vulvovaginitis is a common problem in general practice, for which complementary therapies are often used. A recent study in Melbourne, Australia, found that 40% of women with a past history of vulvovaginitis had used probiotic Lactobacillus species to prevent or treat post-antibiotic vulvovaginitis. There is no evidence that this therapy is effective. This study aims to test whether oral or vaginal lactobacillus is effective in the prevention of post-antibiotic vulvovaginitis. Methods/design A randomised placebo-controlled blinded 2 × 2 factorial design is being used. General practitioners or pharmacists approach non-pregnant women, aged 18–50 years, who present with a non-genital infection requiring a short course of oral antibiotics, to participate in the study. Participants are randomised in a four group factorial design either to oral lactobacillus powder or placebo and either vaginal lactobacillus pessaries or placebo. These interventions are taken while on antibiotics and for four days afterwards or until symptoms of vaginitis develop. Women self collect a vaginal swab for culture of Candida species and complete a survey at baseline and again four days after completing their study medications. The sample size (a total of 496 – 124 in each factorial group) is calculated to identify a reduction of half in post-antibiotic vulvovaginitis from 23%, while allowing for a 25% drop-out. An independent Data Monitoring Committee is supervising the trial. Analysis will be intention-to-treat, with two pre-specified main comparisons: (i) oral lactobacillus versus placebo and (ii) vaginal lactobacillus versus placebo. PMID:15046642

  13. Fluorescence in situ Hybridization method using Peptide Nucleic Acid probes for rapid detection of Lactobacillus and Gardnerella spp.

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331

  14. Lactobacillus rhamnosus BFE 5264 and Lactobacillus plantarum NR74 Promote Cholesterol Excretion Through the Up-Regulation of ABCG5/8 in Caco-2 Cells.

    PubMed

    Yoon, Hong-Sup; Ju, Jae-Hyun; Kim, Hannah; Lee, Jieun; Park, Hyun-Joon; Ji, Yosep; Shin, Hyeun-Kil; Do, Myoung-Sool; Lee, Jung-Min; Holzapfel, Wilhelm

    2011-12-01

    The effect of two putative probiotic strains, Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74, on the control of cholesterol efflux in enterocytes was assessed by focusing on the promotion of ATP-binding cassette sub-family G members 5 and 8 (ABCG5 and ABCG8). Differentiated Caco-2 enterocytes were treated with live bacteria, heat-killed bacteria, a bacterial cell wall fraction, and metabolites and were subjected to cholesterol uptake assay, mRNA analysis, and protein analyses. Following LXR-transfection by incubation with CHO-K1 cells in DNA-lipofectin added media, the luciferase assay was conducted for LXR analysis. Treatment of Caco-2 cells with L. rhamnosus BFE5264 (isolated from traditional fermented Maasai milk) and L. plantarum NR74 (isolated from Korean kimchi) resulted in the up-regulation of LXR, concomitantly with the elevated expression of ABCG5 and ABCG8. This was associated with the promotion of cholesterol efflux at significantly higher levels compared to the positive control strain L. rhamnosus GG (LGG). The experiment with CHO-K1 cells confirmed up-regulation of LXR-beta by the test strains, and treatment with the live L. rhamnosus BFE5264 and L. plantarum NR74 strains significantly increased cholesterol efflux. Heat-killed cells and cell wall fractions of both LAB strains induced the upregulation of ABCG5/8 through LXR activation. By contrast, LAB metabolites did not show any effect on ABCG5/8 and LXR expression. Data from this study suggest that LAB strains, such as L. rhamnosus BFE5264 and L. plantarum NR74, may promote cholesterol efflux in enterocytes, and thus potentially contribute to the prevention of hypercholesterolemia and atherosclerosis. PMID:26781680

  15. Distinct Immunomodulation of Bone Marrow-Derived Dendritic Cell Responses to Lactobacillus plantarum WCFS1 by Two Different Polysaccharides Isolated from Lactobacillus rhamnosus LOCK 0900

    PubMed Central

    Jachymek, Wojciech; Srutkova, Dagmar; Brzozowska, Ewa; Kozakova, Hana; Gamian, Andrzej

    2014-01-01

    The structures of polysaccharides (PS) isolated from Lactobacillus rhamnosus LOCK 0900 and results from stimulation of mouse bone marrow-derived dendritic cells (BM-DC) and human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR) upon exposure to these antigens were studied. L. rhamnosus LOCK 0900 produces PS that differ greatly in their structure. The polymer L900/2, with a high average molecular mass of 830 kDa, is a branched heteropolysaccharide with a unique repeating unit consisting of seven sugar residues and pyruvic acid, whereas L900/3 has a low average molecular mass of 18 kDa and contains a pentasaccharide repeating unit and phosphorus. Furthermore, we found that both described PS neither induce cytokine production and maturation of mouse BM-DC nor induce signaling through TLR2/TLR4 receptors. However, they differ profoundly in their abilities to modulate the BM-DC immune response to the well-characterized human isolate Lactobacillus plantarum WCFS1. Exposure to L900/2 enhanced interleukin-10 (IL-10) production induced by L. plantarum WCFS1, while in contrast, L900/3 enhanced the production of IL-12p70. We conclude that PS, probably due to their chemical features, are able to modulate the immune responses to third-party antigens. The ability to induce regulatory IL-10 by L900/2 opens up the possibility to use this PS in therapy of inflammatory conditions, such as inflammatory bowel disease, whereas L900/3 might be useful in reverting the antigen-dependent Th2-skewed immune responses in allergies. PMID:25107979

  16. Microbial counts, fermentation products, and aerobic stability of whole crop corn and a total mixed ration ensiled with and without inoculation of Lactobacillus casei or Lactobacillus buchneri.

    PubMed

    Nishino, N; Wada, H; Yoshida, M; Shiota, H

    2004-08-01

    Whole crop corn (DM 29.2%) and a total mixed ration (TMR, DM 56.8%) containing wet brewers grains, alfalfa hay, dried beet pulp, cracked corn, soybean meal, and molasses at a ratio of 5:1:1:1:1:1 on fresh weight basis, were ensiled with and without Lactobacillus casei or Lactobacillus buchneri in laboratory silos. The effects of inoculation on microbial counts, fermentation products, and aerobic stability were determined after 10 and 60 d. Untreated corn silage was well preserved with high lactic acid content, whereas large numbers of remaining yeasts resulted in low stability on exposure to air. Inoculation with L. casei suppressed heterolactic fermentation, but no improvements were found in aerobic stability. The addition of L. buchneri markedly enhanced the aerobic stability, while not affecting the DM loss and NH3-N production. Large amounts of ethanol were found when the TMR was ensiled, and the content of ethanol overwhelmed that of lactic acid in untreated silage. This fermentation was related to high yeast populations and accounted for a large loss of DM found in the initial 10 d. The ethanol production decreased when inoculated with L. casei and L. buchneri, but the effects diminished at 60 d of ensiling. Inoculation with L. buchneri lowered the yeasts in TMR silage from the beginning of storage; however, the populations decreased to undetectable levels when stored for 60 d, regardless of inoculation. No heating was observed in TMR silage during aerobic deterioration test for 7 d. This stability was achieved even when a high population of yeasts remained and was not affected by either inoculation or ensiling period. The results indicate that inoculation with L. buchneri can inhibit yeast growth and improve aerobic stability of corn and TMR silage; however, high stability of TMR silage can be obtained even when no treatments were made and high population (>10(5) cfu/g) of yeasts were detected. PMID:15328280

  17. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 exhibit strong antifungal effects against vulvovaginal candidiasis-causing Candida glabrata isolates

    PubMed Central

    Chew, SY; Cheah, YK; Seow, HF; Sandai, D; Than, LTL

    2015-01-01

    Aims This study investigates the antagonistic effects of the probiotic strains Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 against vulvovaginal candidiasis (VVC)-causing Candida glabrata. Methods and Results Growth inhibitory activities of Lact. rhamnosus GR-1 and Lact. reuteri RC-14 strains against C. glabrata were demonstrated using a spot overlay assay and a plate-based microtitre assay. In addition, these probiotic lactobacilli strains also exhibited potent candidacidal activity against C. glabrata, as demonstrated by a LIVE/DEAD yeast viability assay performed using confocal laser scanning microscopy. The metabolic activities of all C. glabrata strains were completely shut down in response to the challenges by the probiotic lactobacilli strains. In addition, both probiotic lactobacilli strains exhibited strong autoaggregation and coaggregation phenotypes in the presence of C. glabrata, which indicate that these lactobacilli strains may exert their probiotic effects through the formation of aggregates and, thus the consequent prevention of colonization by C. glabrata. Conclusions Probiotic Lact. rhamnosus GR-1 and Lact. reuteri RC-14 strains exhibited potent antagonistic activities against all of the tested C. glabrata strains. These lactobacilli exhibited antifungal effects, including those attributed to their aggregation abilities, and their presence caused the cessation of growth and eventual cell death of C. glabrata. Significance and Impact of the Study This is the first study to report on the antagonistic effects of these probiotic lactobacilli strains against the non-Candida albicans Candida (NCAC) species C. glabrata. PMID:25688886

  18. Effects of the Peptide Pheromone Plantaricin A and Cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the Exoproteome and the Adhesion Capacity of Lactobacillus plantarum DC400

    PubMed Central

    Calasso, Maria; Di Cagno, Raffaella; Campanella, Daniela; Minervini, Fabio; Gobbetti, Marco

    2013-01-01

    This study aimed at investigating the extracellular and cell wall-associated proteins (exoproteome) of Lactobacillus plantarum DC400 when cultivated on modified chemically defined medium (CDM) supplemented with the chemically synthesized pheromone plantaricin A (PlnA) or cocultured with L. plantarum DPPMA20 or Lactobacillus sanfranciscensis DPPMA174. Compared to monoculture, two-dimensional gel electrophoresis (2-DE) analysis showed that the exoproteome of L. plantarum DC400 was affected by PlnA and cocultivation with strains DPPMA20 and, especially, DPPMA174. The highest similarity of the 2-DE maps was found between DC400 cells cultivated in monoculture and in coculture with strain DPPMA20. Almost all extracellular proteins (22 spots) and cell wall-associated proteins (40 spots) which showed decreased or increased levels of synthesis during growth in CDM supplemented with PlnA and/or in coculture with strain DPPMA20 or DPPMA174 were identified. On the basis of the sequences in the Kyoto Encyclopedia of Genes and Genomes database, changes to the exoproteome concerned proteins involved in quorum sensing (QS), the transport system, stress response, carbohydrate metabolism and glycolysis, oxidation/reduction processes, the proteolytic system, amino acid metabolism, cell wall and catabolic processes, and cell shape, growth, and division. Cultivation with PlnA and cocultivation with strains DPPMA20 and, especially, DPMMA174 markedly increased the capacity of L. plantarum DC400 to form biofilms, to adhere to human Caco-2 cells, and to prevent the adhesion of potential intestinal pathogens. These phenotypic traits were in part related to oversynthesized moonlighting proteins (e.g., DnaK and GroEL, pyruvate kinase, enolase, and glyceraldehyde-3-phosphate dehydrogenase) in response to QS mechanisms and interaction with L. plantarum DPPMA20 and, especially, L. sanfranciscensis DPPMA174. PMID:23396346

  19. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in Diet-Induced Obese Mice Is Associated with Gut Microbial Changes and Reduction in Obesity

    PubMed Central

    Park, Se-Hoon; Huh, Chul-Sung; Yoo, Sae-Rom; Yu, Rina; Sung, Mi-Kyung; McGregor, Robin A.; Choi, Myung-Sook

    2013-01-01

    Objective To investigate the functional effects of probiotic treatment on the gut microbiota, as well as liver and adipose gene expression in diet-induced obese mice. Design Male C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks to induce obesity, and then randomized to receive HFD+probiotic (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, n = 9) or HFD+placebo (n = 9) for another 10 weeks. Normal diet (ND) fed mice (n = 9) served as non-obese controls. Results Diet-induced obese mice treated with probiotics showed reduced body weight gain and fat accumulation as well as lowered plasma insulin, leptin, total-cholesterol and liver toxicity biomarkers. A total of 151,061 pyrosequencing reads for fecal microbiota were analyzed with a mean of 6,564, 5,274 and 4,464 reads for the ND, HFD+placebo and HFD+probiotic groups, respectively. Gut microbiota species were shared among the experimental groups despite the different diets and treatments. The diversity of the gut microbiota and its composition were significantly altered in the diet-induced obese mice and after probiotic treatment. We observed concurrent transcriptional changes in adipose tissue and the liver. In adipose tissue, pro-inflammatory genes (TNFα, IL6, IL1β and MCP1) were down-regulated in mice receiving probiotic treatment. In the liver, fatty acid oxidation-related genes (PGC1α, CPT1, CPT2 and ACOX1) were up-regulated in mice receiving probiotic treatment. Conclusions The gut microbiota of diet-induced obese mice appears to be modulated in mice receiving probiotic treatment. Probiotic treatment might reduce diet-induced obesity and modulate genes associated with metabolism and inflammation in the liver and adipose tissue. PMID:23555678

  20. Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of fecal lactobacilli and Clostridium difficile in the elderly.

    PubMed

    Lahtinen, Sampo J; Forssten, Sofia; Aakko, Juhani; Granlund, Linda; Rautonen, Nina; Salminen, Seppo; Viitanen, Matti; Ouwehand, Arthur C

    2012-02-01

    Aging is associated with alterations in the intestinal microbiota and with immunosenescence. Probiotics have the potential to modify a selected part of the intestinal microbiota as well as improve immune functions and may, therefore, be particularly beneficial to elderly consumers. In this randomized, controlled cross-over clinical trial, we assessed the effects of a probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM on the intestinal microbiota and fecal immune markers of 31 elderly volunteers and compared these effects with the administration of the same cheese without probiotics. The probiotic cheese was found to increase the number of L. rhamnosus and L. acidophilus NCFM in the feces, suggesting the survival of the strains during the gastrointestinal transit. Importantly, probiotic cheese administration was associated with a trend towards lower counts of Clostridium difficile in the elderly, as compared with the run-in period with the plain cheese. The effect was statistically significant in the subpopulation of the elderly who harbored C. difficile at the start of the study. The probiotic cheese was not found to significantly alter the levels of the major microbial groups, suggesting that the microbial changes conferred by the probiotic cheese were limited to specific bacterial groups. Despite that the administration of the probiotic cheese to the study population has earlier been shown to significantly improve the innate immunity of the elders, we did not observe measurable changes in the fecal immune IgA concentrations. No increase in fecal calprotectin and β-defensin concentrations suggests that the probiotic treatment did not affect intestinal inflammatory markers. In conclusion, the administration of probiotic cheese containing L. rhamnosus HN001 and L. acidophilus NCFM, was associated with specific changes in the intestinal microbiota, mainly affecting specific subpopulations of intestinal lactobacilli and C. difficile, but did not have significant effects on the major microbial groups or the fecal immune markers. PMID:21264685

  1. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages.

    PubMed

    Filya, I

    2003-11-01

    The effect of Lactobacillus buchneri, alone or in combination with Lactobacillus plantarum, on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages was studied under laboratory conditions. The inoculants were applied at 1 x 10(6) cfu/g. Silages with no additives served as control. After treatment, the chopped forages were ensiled in 1.5-L anaerobic jars. Three jars per treatment were sampled on d 2, 4, 8, 15, and 90. After 90 d of storage, the silages were subjected to an aerobic stability test lasting 5 d, in which CO2 production, as well as chemical and microbiological parameters, was measured to determine the extent of aerobic deterioration. At the end of the ensiling period (d 90), the L. buchneri- and L. buchneri + L. plantarum-inoculated silages had significantly higher levels of acetic acid than the control and L. plantarum-inoculated silages. Therefore, yeast activity was impaired in the L. buchneri- and L. buchneri + L. plantarum-inoculated silages. As a result, L. buchneri, alone or in combination with L. plantarum, improved aerobic stability of the low dry matter corn and sorghum silages. The combination of L. buchneri and L. plantarum reduced ammonia N concentrations and fermentation losses in the silages compared with L. buchneri alone. However, L. buchneri, L. plantarum, and a combination of L. buchneri + L. plantarum did not effect in situ rumen dry matter, organic matters, or neutral detergent fiber degradability of the silages. The L. buchneri was very effective in protecting the low dry matter corn and sorghum silages exposed to air under laboratory conditions. The use of L. buchneri, alone or in combination with L. plantarum, as a silage inoculant can improve the aerobic stability of low dry matter corn and sorghum silages by inhibition of yeast activity. PMID:14672188

  2. Genetic screening of Lactobacillus sakei and Lactobacillus curvatus strains for their peptidolytic system and amino acid metabolism, and comparison of their volatilomes in a model system.

    PubMed

    Freiding, Simone; Gutsche, K Amelie; Ehrmann, Matthias A; Vogel, Rudi F

    2011-07-01

    A total of 51 Lactobacillus sakei and 28 Lactobacillus curvatus strains from different origins were screened for their potential to produce biogenic amines (BAs), and for their diversity of peptidolytic systems and specific aminotransferases (AraT, BcaT) that initiate amino acid conversion to volatiles relevant for aroma formation in meat products. The profiles of volatiles formed (volatilomes) were analysed in the headspace of fermentations by solid phase microextraction followed by GC-MS analysis. Tyramine-forming potential was detected only within L. curvatus and was strain-dependent. Histamine decarboxylase (HDC) activity could only be detected in one L. sakei strain, previously described as histidine decarboxylase positive (HDC(+)). Peptide transporters and peptidases were nearly ubiquitous in L. sakei and only a few strains lacked single peptidases. In L. curvatus, differences were detected in the occurrence of peptidase genes detected with PCR primers derived from L. sakei. All strains lacked known aminotransferases specific for branched-chain amino acids (BCAAs) and aromatic amino acids (ACAAs). Although L. sakei is suggested as a genetically very heterogenous species, and relatedness between L. curvatus and L. sakei at the genomic level is rather low, they appeared to be nearly uniform in the genes forming the peptidolytic system. The volatilomes of L. sakei and L. curvatus strains were qualitatively nearly identical. However, slight differences in the formation of single volatile compounds and the interaction with staphylococci may impact upon sausage fermentation which occurs over a period of many weeks. Among the compounds expected to contribute to the aroma were dimethyldisulphide, 3-methyl-1-butanol, acetic acid, 1-butanol and butanoic acid. PMID:21570226

  3. Effects of lactobacillus plantarum ZJ316 on pig growth and pork quality

    PubMed Central

    2012-01-01

    Background Lactobacillus plantarum is a plant-associated bacterial species but it has also been found in human, mouse and porcine gastrointestinal tracts. It can ferment a broad spectrum of plant carbohydrates; it is tolerant of bile salts and low pH, and it has antagonistic potential against intestinal pathogens. However, experiments reporting the use of L. plantarum as a probiotic are limited. In this study, the effects of L. plantarum ZJ316 isolated from infant fecal samples on pig growth and pork quality were investigated. Results One hundred and fifty newly weaned pigs were selected randomly and divided into five groups. Group 1 was fed a diet supplemented with the antibiotic mequindox; Groups 2, 3 and 4 were fed a diet supplemented with L. plantarum and no antibiotic; and Group 5 was fed a mixture of mequindox and L. plantarum. After a 60 days initial treatment, samples were collected for evaluation. The results showed that, the L. plantarum ZJ316 has probiotic effects on pig growth and that these effects are dose dependent. The effects of a dose of 1 × 109 CFU/d were more pronounced than those of a dose of 5 × 109 CFU/d or 1 × 1010 CFU/d. In Group 2 (1 × 109 CFU/d), the diarrhea (p = 0.000) and mortality rates (p = 0.448) were lower than in antibiotic-treated pigs (Group 1), and the daily weight gain (p = 0.001) and food conversion ratios were better (p = 0.005). Improved pork quality was associated with Lactobacillus treatment. pH (45 min, p = 0.020), hardness (p = 0.000), stickiness (p = 0.044), chewiness (p = 0.000), gumminess (p = 0.000) and restoring force (p = 0.004) were all significantly improved in Lactobacillus-treated pigs (Group 2). Although we found that L. plantarum exerted probiotic effects on pig growth and pork quality, the mechanisms underlying its action require further study. Polymerase chain reaction-denaturing gradient gel electrophoresis results showed that the gut bacterial communities in Lactobacillus- and antibiotic-treated pigs were very similar and the quantity of L. plantarum ZJ316 was below the detection limits of DGGE-band sequencing. The concentration of short-chain fatty acids in Lactobacillus- and antibiotic-treated fecal samples were not significantly different (p = 0.086). However, the villus height of ilea (p = 0.003), jejuna (p = 0.000) and duodena (p = 0.036) were found to be significantly improved by Lactobacillus treatment. Conclusion L. plantarum ZJ316 was found to have probiotic effects, improving pig growth and pork quality. The probiotic mechanism might not involve L. plantarum colonization and alteration of the gut bacterial community. Rather, it might be related to the inhibition of the growth of opportunistic pathogens and promotion of increased villus height. PMID:22731747

  4. Preventive use of Lactobacillus plantarum LS/07 and inulin to relieve symptoms of acute colitis.

    PubMed

    Hijová, Emília; Šoltésová, Alena; Salaj, Rastislav; Kuzma, Jozef; Strojný, Ladislav; Bomba, Alojz; Gregová, Kristína

    2015-01-01

    The aim of presented study was to investigate the influence of Lactobacillus plantarum LS/07 and inulin on the activity of β-glucuronidase enzyme, and counts of coliform and lactobacilli in fresh caecal digesta, cytokine levels (IL-6, IL-8), and trancription nuclear factor kappa beta (NFκB) activities in colon tissue and blood samples of rats with dextran sulphate sodium (DSS) induced acute colitis. The rats were randomly divided into four groups - CG, AC, AC+PRE and AC+PRO. Colitis was induced using of 5% DSS in drinking water for 7d. DSS application increased activity of β-glucuronidase (P < 0.001), increased counts of coliforms, and decreased lactobacilli counts (P < 0.05) in comparison to control group. Serum and tissue levels of IL-6 and IL-8 as well as tissue NFκB activities showed increased expression in acute colitis group. Inulin diet modified counts of microorganims and decreased β-glucuronidase activity, suppressed NFκB activities (P < 0.001) and down regulate synthesis of IL-6 (P < 0.01) in serum and colon tissue and tissue IL-8 (P < 0.05). Lactobacillus plantarum LS/07 decreased β-glucuronidase activity (P < 0.05), levels of IL-6 and IL-8 (P < 0.001). These results were consistent with the addition of histological findings. Our results indicate that dietary intake of Lactobacillus plantarum LS/07 and inulin suppressed expression observed markers, which play an important role in the inflammatory process, which predisposes their use in prevention or treatment of acute colitis. PMID:26345092

  5. Identification of culturable vaginal Lactobacillus species among reproductive age women in Mysore, India.

    PubMed

    Madhivanan, Purnima; Alleyn, Harry N; Raphael, Eva; Krupp, Karl; Ravi, Kavitha; Nebhrajani, Roshan; Arun, Anjali; Reingold, Arthur L; Riley, Lee W; Klausner, Jeffrey D

    2015-06-01

    A healthy vaginal environment is predominated by certain Lactobacillus species, which lead to the prevention of infections of the reproductive tract. This study examined the characteristics of cultivable Lactobacillus species in both healthy women and women with bacterial vaginosis (BV). Between November 2011 and September 2013, 139 women attending a women's clinic in Mysore, India, were evaluated for BV in a cross-sectional study. BV was diagnosed using Amsel's criteria: homogeneous vaginal discharge, vaginal pH >4.5, production of amines, and presence of "clue" cells. Those with three or more of the characteristics were considered to have BV. Vaginal swabs were then cultured in Rogosa agar and de Man-Rogosa-Sharpe broth. Gram-positive lactobacilli generating 600-800 bp amplicons by 16 sRNA were further characterized by sequencing. Cultivable vaginal samples were obtained from 132 women (94.9%). According to the Amsel criteria, 83 women (62.1%) were healthy, and 49 (37.1%) had BV. Eleven different Lactobacillus species were isolated from 47 women. The common lactobacilli species found in this sample included L. crispatus (39.6%), L. gasseri (45.8%), and L. jensenii (14.6%). Lactobacilli were isolated from 39 healthy women and eight with BV. L. gasseri was cultured from 18.8% of healthy women and 6.1% with BV. The presence of L. reuteri was significantly associated with normal vaginal microbiota (P-value = 0.026). These results further our understanding of vaginal lactobacilli colonization and richness in this particular population. Our findings showed that lactobacilli species present in the vaginas of healthy women in India do not differ from those reported from other countries. PMID:25873579

  6. Prevention of nephrolithiasis by Lactobacillus in stone-forming rats: a preliminary study.

    PubMed

    Kwak, Cheol; Jeong, Byong Chang; Ku, Ja Hyeon; Kim, Hyeon Hoe; Lee, Jeong Jun; Huh, Chul Sung; Baek, Young Jin; Lee, Sang Eun

    2006-08-01

    Hyperoxaluria is a risk factor for renal stones. It appears to be sustained by increased dietary load or increased intestinal absorption. The aim of this study was to evaluate whether oral administration of lactobacilli could prevent urolithiasis in stone-forming rats. Oxalate-degrading activities of lactobacilli were evaluated by measuring the oxalate level in a culture medium after inoculation with lactobacilli. Only the strains of Lactobacillus having oxalate-degrading activity were used. Sprague-Dawley rats were fed a powdered standard diet containing 3% sodium oxalate and/or received 100 mg/kg of celecoxib for the first 8 days by gavage, before or after the beginning of this experiment (groups with previous treatment or with co-treatment). Rats were sacrificed after 4 weeks and kidneys were harvested for the assay of crystal formation under a dissecting microscope. Twenty-four-hour urine collections were performed before kidney harvest. Only two strains, Lactobacillus casei HY2743 and L. casei HY7201 out of 31 strains of Lactobacillus were able to degrade oxalate. In both groups of co-treatment and previous treatment with L. casei HY2743 and L. casei HY7201, urine oxalate excretion decreased compared to the group without lactobacilli. The dissecting microscope examination of kidneys in the rats in two previous treatment groups and the co-treatment group with L. casei HY7201 showed less abundant crystals than control groups. Our results show that lactobacilli may be used as a potential therapeutic strategy in the prevention of urinary stones. PMID:16633809

  7. Lactobacillus reuteri Protects Epidermal Keratinocytes from Staphylococcus aureus-Induced Cell Death by Competitive Exclusion

    PubMed Central

    Prince, Tessa; McBain, Andrew J.

    2012-01-01

    Recent studies have suggested that the topical application of probiotic bacteria can improve skin health or combat disease. We have utilized a primary human keratinocyte culture model to investigate whether probiotic bacteria can inhibit Staphylococcus aureus infection. Evaluation of the candidate probiotics Lactobacillus reuteri ATCC 55730, Lactobacillus rhamnosus AC413, and Lactobacillus salivarius UCC118 demonstrated that both L. reuteri and L. rhamnosus, but not L. salivarius, reduced S. aureus-induced keratinocyte cell death in both undifferentiated and differentiated keratinocytes. Keratinocyte survival was significantly higher if the probiotic was applied prior to (P < 0.01) or simultaneously with (P < 0.01) infection with S. aureus but not when added after infection had commenced (P > 0.05). The protective effect of L. reuteri was not dependent on the elaboration of inhibitory substances such as lactic acid. L. reuteri inhibited adherence of S. aureus to keratinocytes by competitive exclusion (P = 0.026). L. salivarius UCC118, however, did not inhibit S. aureus from adhering to keratinocytes (P > 0.05) and did not protect keratinocyte viability. S. aureus utilizes the α5β1 integrin to adhere to keratinocytes, and blocking of this integrin resulted in a protective effect similar to that observed with probiotics (P = 0.03). This suggests that the protective mechanism for L. reuteri-mediated protection of keratinocytes was by competitive exclusion of the pathogen from its binding sites on the cells. Our results suggest that use of a topical probiotic prophylactically could inhibit the colonization of skin by S. aureus and thus aid in the prevention of infection. PMID:22582077

  8. Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect.

    PubMed

    Presti, I; D'Orazio, G; Labra, M; La Ferla, B; Mezzasalma, V; Bizzaro, G; Giardina, S; Michelotti, A; Tursi, F; Vassallo, M; Di Gennaro, P

    2015-07-01

    Probiotic ingestion is recommended as a preventive approach to maintain the balance of the intestinal microbiota and to enhance the human well-being. During the whole life of each individual, the gut microbiota composition could be altered by lifestyle, diet, antibiotic therapies and other stress conditions, which may lead to acute and chronic disorders. Hence, probiotics can be administered for the prevention or treatment of some disorders, including lactose malabsorption, acute diarrhoea, irritable bowel syndrome, necrotizing enterocolitis and mild forms of inflammatory bowel disease. The probiotic-mediated effect is an important issue that needs to be addressed in relation to strain-specific probiotic properties. In this work, the probiotic properties of new Lactobacillus and Bifidobacterium strains were screened, and their effects in vitro were evaluated. They were screened for probiotic properties by determining their tolerance to low pH and to bile salts, antibiotic sensitivity, antimicrobial activity and vitamin B8, B9 and B12 production, and by considering their ability to increase the antioxidant potential and to modulate the inflammatory status of systemic-miming cell lines in vitro. Three out of the examined strains presenting the most performant probiotic properties, as Lactobacillus plantarum PBS067, Lactobacillus rhamnosus PBS070 and Bifidobacterium animalis subsp. lactis PBSO75, were evaluated for their effects also on human intestinal HT-29 cell line. The obtained results support the possibility to move to another level of study, that is, the oral administration of these probiotical strains to patients with acute and chronic gut disorders, by in vivo experiments. PMID:25744647

  9. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine.

    PubMed

    Dias, Rita; Vilas-Boas, Eduardo; Campos, Francisco M; Hogg, Tim; Couto, José António

    2015-08-01

    This work evaluated the effect of lysozyme on lactobacilli isolated from Port wine. Bacterial growth experiments were conducted in MRS/TJ medium and inactivation studies were performed in phosphate buffer (KH2PO4), distilled water and wine supplemented with different concentrations of lysozyme. The response of bacteria to lysozyme was found to be highly strain dependent. Some strains of Lactobacillus hilgardii together with Lactobacillus collinoides and Lactobacillus fructivorans were found to be resistant to concentrations of lysozyme as high as 2000 mg/L. It was observed that among the L. hilgardii taxon the resistant strains possess an S-layer coat. Apparently, the strains of L. collinoides and L. fructivorans studied are also S-layer producers as suggested by the total protein profile obtained by SDS-PAGE. Thus, the hypothetical protective role of the S-layer against the action of lysozyme was investigated. From the various treatments used to remove the protein from the surface of the cells, the one employing LiCl (5 M) was the most effective. LiCl pre-treated cells exposed to lysozyme (2000 mg/L) in KH2PO4 buffer maintained its resistance. However, when cells were suspended in distilled water an increased sensitivity to lysozyme was observed. Moreover, it was found that the addition of ethanol (20% v/v) to the suspension medium (distilled water) triggered a strong inactivation effect especially on cells previously treated with LiCl (reduction of >6 CFU log cycles). The results suggest that the S-layer exerts a protective effect against lysozyme and that the cell suspension medium influences the bacteriolysis efficiency. It was also noted that ethanol enhances the inactivation effect of lysozyme. PMID:25846910

  10. Effect of recombinant lactobacillus expressing canine GM-CSF on immune function in dogs.

    PubMed

    Chung, Jin Young; Sung, Eui Jae; Cho, Chun Gyu; Seo, Kyoung Won; Lee, Jong-Soo; Bhang, Dong Ha; Lee, Hee Woo; Hwang, Cheol Yong; Lee, Wan Kyu; Youn, Hwa Young; Kim, Chul Joong

    2009-11-01

    Many Lactobacillus strains have been promoted as good probiotics for the prevention and treatment of diseases. We engineered recombinant Lactobacillus casei, producing biologically active canine granulocyte macrophage colony stimulating factor (cGM-CSF), and investigated its possibility as a good probiotic agent for dogs. Expression of the cGM-CSF protein in the recombinant Lactobacillus was confirmed by SDS-PAGE and Western blotting methods. For the in vivo study, 18 Beagle puppies of 7 weeks of age were divided into three groups; the control group was fed only on a regular diet and the two treatment groups were fed on a diet supplemented with either 1 x 10(9) colony forming units (CFU)/day of L. casei or L. casei expressing cGM-CSF protein for 7 weeks. Body weight was measured, and fecal and blood samples were collected from the dogs during the experiment for the measurement of hematology, fecal immunoglobulin (Ig)A and IgG, circulating IgA and IgG, and canine corona virus (CCV)-specific IgG. There were no differences in body weights among the groups, but monocyte counts in hematology and serum IgA were higher in the group receiving L. casei expressing cGMCSF than in the other two groups. After the administration of CCV vaccine, CCV-specific IgG in serum increased more in the group supplemented with L. casei expressing cGM-CSF than the other two groups. This study shows that a dietary L. casei expressing cGM-CSF enhances specific immune functions at both the mucosal and systemic levels in puppies. PMID:19996694

  11. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    PubMed

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L. plantarum PON100148. PMID:26187828

  12. Acid stress suggests different determinants for polystyrene and HeLa cell adhesion in Lactobacillus casei.

    PubMed

    Haddaji, N; Khouadja, S; Fdhila, K; Krifi, B; Ben Ismail, M; Lagha, R; Bakir, K; Bakhrouf, A

    2015-07-01

    Adhesion has been regarded as one of the basic features of probiotics. The aim of this study was to investigate the influence of acid stress on the functional properties, such as hydrophobicity, adhesion to HeLa cells, and composition of membrane fatty acids, of Lactobacillus probiotics strains. Two strains of Lactobacillus casei were used. Adhesion on polystyrene, hydrophobicity, epithelial cells adhesion, and fatty acids analysis were evaluated. Our results showed that the membrane properties such as hydrophobicity and fatty acid composition of stressed strains were significantly changed with different pH values. However, we found that acid stress caused a change in the proportions of unsaturated and saturated fatty acid. The ratio of saturated fatty acid to unsaturated fatty acids observed in acid-stressed Lactobacillus casei cells was significantly higher than the ration in control cells. In addition, we observed a significant decrease in the adhesion ability of these strains to HeLa cells and to a polystyrene surface at low pH. The present finding could first add new insight about the acid stress adaptation and, thus, enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. Second, no relationship was observed between changes in membrane composition and fluidity induced by acid treatment and adhesion to biotic and abiotic surfaces. In fact, the decrease of cell surface hydrophobicity and the adhesion ability to abiotic surface and the increase of the capacity of adhesion to biotic surface demonstrate that adhesive characteristics will have little relevance in probiotic strain-screening procedures. PMID:25981066

  13. Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N.

    PubMed

    Liu, Xiaowen; Lagenaur, Laurel A; Simpson, David A; Essenmacher, Kirsten P; Frazier-Parker, Courtney L; Liu, Yang; Tsai, Daniel; Rao, Srinivas S; Hamer, Dean H; Parks, Thomas P; Lee, Peter P; Xu, Qiang

    2006-10-01

    Women are at significant risk of human immunodeficiency virus (HIV) infection, with the cervicovaginal mucosa serving as a major portal for virus entry. Female-initiated preventatives, including topical microbicides, are urgently needed to help curtail the HIV/AIDS pandemic. Here we report on the development of a novel, live microbicide that employs a natural vaginal strain of Lactobacillus jensenii engineered to deliver the potent HIV inhibitor cyanovirin-N (CV-N). To facilitate efficient expression of CV-N by this bacterium, the L. jensenii 1153 genome was sequenced, allowing identification of native regulatory elements and sites for the chromosomal integration of heterologous genes. A CV-N expression cassette was optimized and shown to produce high levels of structurally intact CV-N when expressed in L. jensenii. Lactobacillus-derived CV-N was capable of inhibiting CCR5-tropic HIV(BaL) infectivity in vitro with a 50% inhibitory concentration of 0.3 nM. The CV-N expression cassette was stably integrated as a single copy into the bacterial chromosome and resolved from extraneous plasmid DNA without adversely affecting the bacterial phenotype. This bacterial strain was capable of colonizing the vagina and producing full-length CV-N when administered intravaginally to mice during estrus phase. The CV-N-producing Lactobacillus was genetically stable when propagated in vitro and in vivo. This work represents a major step towards the development of an inexpensive yet durable protein-based microbicide to block the heterosexual transmission of HIV in women. PMID:17005802

  14. Effects of intramammary inoculation of Lactobacillus perolens CRL1724 in lactating cows' udders.

    PubMed

    Frola, Ignacio D; Pellegrino, Matías S; Espeche, María C; Giraudo, José A; Nader-Macias, María Ef; Bogni, Cristina I

    2012-02-01

    Bovine mastitis is the most important infectious disease on dairy farms. Conventional antibiotic therapy is often unsatisfactory and alternative treatments are continually under investigation. Lactobacillus (Lb.) perolens CRL 1724 and Lactobacillus plantarum CRL 1716 were previously isolated from milk of dairy cows and selected according to their potential probiotic properties. In the present work the in-vitro capacity of Lactobacillus strains to adhere to bovine teat canal epithelial cells (BTCEC) and to inhibit and co-aggregate 14 mastitis-causing pathogens (MCPs) was investigated. The effect of Lb. perolens CRL 1724 after intramammary inoculation in lactating cows was evaluated through determination of clinical signs of mastitis, milk appearance, somatic cell counts and Lb. perolens CRL 1724 recovery from milk. Lb. perolens CRL 1724 was able to inhibit 12 of 14 MCPs (85·7%) in vitro, especially those considered to be major pathogens. In addition, Lb. perolens CRL 1724 co-aggregated with all of them. Lb. plantarum CRL 1716 was able to inhibit 7 of 14 MCPs (50%) in vitro and showed co-aggregation ability similar to Lb. perolens CRL 1724. Lb. perolens CRL 1724 showed a higher efficacy of adhesion to BTCEC (values of percentage of adhesion and adhesion index of 75% and 14·4, respectively) than Lb. plantarum CRL 1716 (37% and 7·4, respectively). Lb. perolens CRL 1724 was recovered from all mammary quarters and no clinical signs or teat damage were observed after the inoculation of 106 cfu/ml. The udders presented a normal aspect and there were no changes in the appearance of the milk. The results obtained will serve as the basis for further trials to evaluate the potential of Lb. perolens CRL 1724 to be included in a non-antibiotic formulation for the prevention of bovine mastitis. PMID:22077995

  15. The Increase of Lactobacillus Species in the Gut Flora of Newborn Broiler Chicks and Ducks Is Associated with Weight Gain

    PubMed Central

    Angelakis, Emmanouil; Raoult, Didier

    2010-01-01

    Background A bacterial role in the obesity pandemic has been suspected based on the ingestion of probiotics that can modify the gut flora. The objective of our study was to determine if increased Lactobacillus sp. in the gut flora of newborn broiler chicks and ducks could result in weight gain increase. Methodology Female broiler chicks (Gallus gallus domesticus) and ducks (Anas platyrhynchos domestica) were separated into one control and two experimental groups, and inoculated once or twice with 4×1010 Lactobacillus spp. per animal in PBS, or with PBS alone. Fecal samples were collected before and at 24 hours, 2, 4, 8, 16 and 30 days after the inoculation. DNA was extracted from the stools, and qPCR assays were performed on a MX3000™ system for the detection and quantification of Lactobacillus sp., Bacteroidetes and Firmicutes, using a quantification plasmid. Animals were measured and sacrificed 60 days after the beginning of the experiment, and livers were collected and measured. Principal Findings Chicks inoculated once and twice with Lactobacillus weighed 10.2% (p = 0.0162) and 13.5% (p = 0.0064) more than the control group animals, respectively. Similarly, ducks inoculated once and twice weighed 7.7% (p = 0.05) and 14% (p = 0.035) more than those in the control group, respectively. Liver mass was also significantly higher in inoculated animals compared to the control group. Inoculation with Lactobacillus sp. increased the DNA copies of Lactobacillus spp. and Firmicutes in the stools. Bacteroidetes remained stable, and only the second Lactobacillus sp. inoculation significantly decreased its population in chicks. The ratio of DNA copies of Firmicutes to those of Bacteroidetes increased to as much as 6,4 in chicks and 8,3 in ducks. Conclusions Differences in the intestinal microbiota may precede weight increase, as we found that an increase of Lactobacillus sp. in newborn ducks and chicks preceded the development of weight gain. PMID:20454557

  16. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice

    PubMed Central

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    Aim To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Methods Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. Results The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Conclusions Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L. fermentum CCTCC M206110 proved to be effective at attenuating DSS-induced colitis. The potential probiotic effect of L. plantarum NCIMB8826 on UC has yet to be assessed. PMID:26840426

  17. Lactobacillus Sepsis and Probiotic Therapy in Newborns: Two New Cases and Literature Review.

    PubMed

    Dani, Carlo; Coviello C, Caterina; Corsini I, Iuri; Arena, Fabio; Antonelli, Alberto; Rossolini, Gian Maria

    2016-03-01

    Many term and preterm infants are commonly supplemented with probiotics to prevent adverse effects of antibiotic administration and necrotizing enterocolitis and they are believed to be safe. However, the supplementation with Lactobacillus rhamnosus GG has been associated with the development of sepsis with a cause-effect relationship in six newborns and children. In this study, we report two further cases and discuss the emerging issue of probiotic supplementation safety in neonates. We conclude that physicians must be aware that supplementation with L. rhamnosus GG can cause sepsis in high-risk patients on rare occasions. PMID:26929865

  18. Protein Degradation in Wheat Sourdough Fermentation with Lactobacillus plantarum M616.

    PubMed

    Yin, Yanli; Wang, Jinshui; Yang, Sen; Feng, Jingli; Jia, Feng; Zhang, Changfu

    2015-06-01

    Hydrolysis of wheat proteins during sourdough fermentation was determined in the present study. Sourdoughs were characterized with respect to cell counts, pH, TTA, and proteolytic activity as well as the quantity of total proteins and water-soluble proteins. Moreover, composition analysis of total proteins and water-soluble proteins using SDS-PAGE was carried out. Sourdough fermentation using Lactobacillus plantarum showed a decrease in pH and increase in TTA during fermentation. Fermentation resulted in hydrolysis and solubilization of wheat proteins. It demonstrated that protein hydrolysis in sourdough was mainly caused by pH-dependent activation of cereal enzymes according to change in proteolytic activity. PMID:26199213

  19. Intestinal Origin of Sourdough Lactobacillus reuteri Isolates as Revealed by Phylogenetic, Genetic, and Physiological Analysis

    PubMed Central

    Su, Marcia Shu-Wei; Oh, Phaik Lyn; Walter, Jens

    2012-01-01

    Lactobacillus reuteri is both a gut symbiont and a stable member of sourdough microbiota. This study employed multilocus sequence analysis and an analysis of host-specific physiological and genetic traits to assign five sourdough isolates to rodent- or human-specific lineages. Comparative genome hybridization revealed that the model sourdough isolate LTH2584 had a genome content very similar to that of the model rodent isolate 100-23. These results demonstrate that sourdough isolates of L. reuteri are of intestinal origin. PMID:22798372

  20. Radioprotection of mice by a single subcutaneous injection of heat-killed Lactobacillus casei after irradiation

    SciTech Connect

    Nomoto, K.; Yokokura, T.; Tsuneoka, K.; Shikita, M. )

    1991-03-01

    Treatment of whole-body gamma-irradiated mice with a preparation of Lactobacillus casei (LC 9018) immediately after irradiation caused a sustained increase in serum colony-stimulating activity which was followed by an enhanced repopulation of granulocyte-macrophage colony-forming cells in the femoral marrow and spleen. Numbers of blood leukocytes, erythrocytes, and platelets were increased earlier in the treated mice than in the controls, and the survival rate was elevated significantly. The radioprotective effect was dependent on the dose of LC 9018 as well as on the dose of radiation. These results demonstrate the value of LC 9018 for the treatment of myelosuppression after radiotherapy or radiation accidents.

  1. Prebiotic Effects of Agave salmiana Fructans in Lactobacillus acidophilus and Bifidobacterium lactis Cultures.

    PubMed

    Castro-Zavala, Adriana; Juárez-Flores, Bertha I; Pinos-Rodríguez, Juan M; Delgado-Portales, Rosa E; Aguirre-Rivera, Juan R; Alcocer-Gouyonnet, Francisco

    2015-11-01

    Agave salmiana is a fructan rich species that is widely distributed in Mexico. The aim of this investigation was to extract the fructans of A. salmiana and evaluate their prebiotic effect in 48 hours in vitro cultures of Bifidobacterium lactis and Lactobacillus acidophilus and to compare this effect with other available fructan sources. A significant difference in pH, optical density and biomass was found in the cultures depending on the source of fructans and the type of bacteria. It was possible to determine a dose-response effect of the A. salmiana fructans and the growth of the studied strains. PMID:26749843

  2. Draft Genome Sequence of Lactobacillus plantarum CRL1506, an Immunomodulatory Strain Isolated from Goat Milk

    PubMed Central

    Saavedra, Lucila; Hebert, Elvira María; Albarracin, Leonardo; Salva, Susana; Alvarez, Susana

    2016-01-01

    This report describes a draft genome sequence of Lactobacillus plantarum CRL1506, a probiotic strain with immunomodulatory properties isolated from goat milk. The reads generated by a whole-genome shotgun (WGS) strategy on an Illumina MiSeq sequencer were assembled into contigs with a total size of 3,228,096 bp. The draft genome sequence of L. plantarum CRL1506 will be useful for further studies of specific genetic features of this strain and for understanding the mechanisms of its immunobiotic properties. PMID:26966208

  3. Effect of amino acid availability on vitamin B12 production in Lactobacillus reuteri.

    PubMed

    Santos, Filipe; Teusink, Bas; Molenaar, Douwe; van Heck, Maurice; Wels, Michiel; Sieuwerts, Sander; de Vos, Willem M; Hugenholtz, Jeroen

    2009-06-01

    Recent functional genomics and genome-scale modeling approaches indicated that B(12) production in Lactobacillus reuteri could be improved by optimization of the medium. Here we show that a series of systematic single-amino-acid omissions could significantly modulate the production of B(12) from nearly undetectable levels (with omission of isoleucine) to levels 20-fold higher than the levels previously reported (with omission of cysteine). Using cDNA microarray experiments, we analyzed the transcriptional response of L. reuteri to medium lacking cysteine. The results supported the observed high level of B(12) production and provided new avenues for future improvement of production of vitamin B(12). PMID:19376900

  4. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    PubMed Central

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  5. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production.

    PubMed

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  6. Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL-H.

    PubMed Central

    Trautwetter, A; Ritzenthaler, P; Alatossava, T; Mata-Gilsinger, M

    1986-01-01

    Bacteriophage LL-H is a virulent phage of Lactobacillus lactis LL23. A restriction map of the phage genome was constructed with various restriction endonucleases. This chromosome has a 34-kilobase size and seems to be circularly permuted. We used a bank of LL-H restriction fragments to study the expression of five of the seven main phage particle proteins. Immunoblotting experiments permitted the mapping on the chromosome of several genes coding for phage particle proteins. We also show that the gene of the main capsid protein is expressed from its own promoter in an Escherichia coli strain. PMID:3016319

  7. Galactosylation of steroidal saponins by β-galactosidase from Lactobacillus bulgaricus L3.

    PubMed

    Zhang, Jie; Lu, Lili; Lu, Li; Zhao, Yang; Kang, Liping; Pang, Xu; Liu, Jingyuan; Jiang, Tengchuan; Xiao, Min; Ma, Baiping

    2016-02-01

    The galactosylation of furostanosides and spirostanosides were investigated by using β-galactosidase from Lactobacillus bulgaricus L3 as a catalyst and lactose as a sugar donor. Four novel galactosylated furostanoside products (compounds 1-4) from compound F, compound G, compound I, and compound H were obtained and their structures were identified by HR-ESI-MS, 1D and 2D NMR spectra. The result showed that galactosyl moiety was found to be added to the 6-OH of the 26-O-glucosyl in these four furostanoside substrates. PMID:26547747

  8. Complete genome sequence of Lactobacillus helveticus CAUH18, a potential probiotic strain originated from koumiss.

    PubMed

    Yang, Yang; An, Haoran; Zhai, Zhengyuan; Wang, Guohong; Li, Jiaxi; Hao, Yanling

    2016-04-20

    Here we report the complete genome sequence of Lactobacillus helveticus CAUH18, a new strain isolated from traditional fermented dairy product koumiss. Its genome has a circular 2.16Mb chromosome with no plasmid. The genome sequence indicated that this strain harbors a gene cluster involved in a novel exopolysaccharides (EPS) biosynthesis and a gene encoding cell-surface aggregation-promoting factors (APFs) to facilitate its colonization in gastrointestinal tract (GIT). This genome sequence provides a basis for further studies about its molecular genetics and probiotic functions. PMID:26953745

  9. Lactobacillus Sepsis and Probiotic Therapy in Newborns: Two New Cases and Literature Review

    PubMed Central

    Dani, Carlo; Coviello C, Caterina; Corsini I, Iuri; Arena, Fabio; Antonelli, Alberto; Rossolini, Gian Maria

    2015-01-01

    Many term and preterm infants are commonly supplemented with probiotics to prevent adverse effects of antibiotic administration and necrotizing enterocolitis and they are believed to be safe. However, the supplementation with Lactobacillus rhamnosus GG has been associated with the development of sepsis with a cause–effect relationship in six newborns and children. In this study, we report two further cases and discuss the emerging issue of probiotic supplementation safety in neonates. We conclude that physicians must be aware that supplementation with L. rhamnosus GG can cause sepsis in high-risk patients on rare occasions. PMID:26929865

  10. Salivary levels of mutans streptococci, Lactobacillus, Candida, and Veillonella species in a group of Scottish adolescents.

    PubMed

    Russell, J I; MacFarlane, T W; Aitchison, T C; Stephen, K W; Burchell, C K

    1990-02-01

    Salivary levels of mutans streptococci, Lactobacillus, Candida, and Veillonella species were investigated on three occasions at annual intervals in a group of 372 Scottish adolescents. Counts of the micro-organisms studied were logarithmically distributed, with Candida spp. being isolated from approximately half the subjects. Counts of lactobacilli, mutans streptococci, and candida were significantly intercorrelated, while veillonella were associated consistently with mutans streptococci alone. Levels of each of the four micro-organisms were significantly correlated over the three examinations, with levels of the Candida spp. being the most stable over the period studied. PMID:2297975

  11. Draft Genome Sequence of Lactobacillus plantarum CRL1506, an Immunomodulatory Strain Isolated from Goat Milk.

    PubMed

    Saavedra, Lucila; Hebert, Elvira María; Albarracin, Leonardo; Salva, Susana; Alvarez, Susana; Kitazawa, Haruki; Villena, Julio

    2016-01-01

    This report describes a draft genome sequence of Lactobacillus plantarum CRL1506, a probiotic strain with immunomodulatory properties isolated from goat milk. The reads generated by a whole-genome shotgun (WGS) strategy on an Illumina MiSeq sequencer were assembled into contigs with a total size of 3,228,096 bp. The draft genome sequence of L. plantarum CRL1506 will be useful for further studies of specific genetic features of this strain and for understanding the mechanisms of its immunobiotic properties. PMID:26966208

  12. In vitro activity of commercial probiotic Lactobacillus strains against uropathogenic Escherichia coli.

    PubMed

    Delley, Michèle; Bruttin, Anne; Richard, Michel; Affolter, Michael; Rezzonico, Enea; Brück, Wolfram M

    2015-07-01

    Urinary tract infection (UTI) is one of the most prevalent infections in humans. In ≥80% of cases, the etiologic agents are strains of uropathogenic Escherichia coli (UPEC), which commonly reside in the gastrointestinal tract. Lactobacilli have been shown to prevent UTI reoccurrence by restoring the urogenital microbiota when administered vaginally or orally. The goal of this study was to determine if commercial probiotic Lactobacillus spp. reduce or clear UPEC in vitro. Results show that it is likely that lactobacilli may, in addition to restoring a healthy urogenital microbiota through acidification of their environment, also displace adhering UPEC and cause a reduction of infection. PMID:26078118

  13. The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession.

    PubMed

    Reuter, G

    2001-09-01

    Lactobacillus and bifidobacterial cultures are increasingly used as probiotics in pharmaceuticals and in foods. The selection of strains is performed often for technological rather than for microecological reasons. Detailed reports about species and strains composition of these microorganisms in the intestinal microflora of man are rare. Our investigations were performed with samples originating from infants and adults, taken from faeces and from upper sections of the intestinal tract including mouth and stomach, and from caecum and colon. Post mortem cases as well as test subjects under physiological conditions were analyzed using an automatic capsule system sampling at defined times in different parts of the intestinal tract. The fate of selected strains after oral intake was studied, too. Furthermore, influences of the microflora originating from food were considered. The identification of autochthonous (indigenous) and allochthonous (transient) species could be achieved with descriptions of new species in the genera Lactobacillus and Bifidobacterium. L. gasseri and L. reuteri proved to be predominant autochthonous Lactobacillus species in infants as well as in adults. Both species were occasionally present even in the stomach. This was also the case with an anaerobic lactic acid bacterium, previously named Catenabacterium catenaforme, later classified as L. ruminis, a non-motile variant of this species. The bifidobacterial microflora differed in composition between infants and adults and in different stages of the host's life. Up to 5 species or special strains of bifidobacteria could be present in different, individually fixed, combinations. Species typical for infants were B. bifidum, B. infantis, B. breve, and B. parvulorum. Typical for adults were 4 different variants of B. adolescentis. B. bifidum and B. longum could often be found in both groups, but in lower numbers. B. longum showed some oxygen tolerance whereas B. bifidum and B. adolescentis required strict anaerobic and fastidious conditions for cultivation. The autochthonous Lactobacillus and Bifidobacterium microflora in man will remain stable life-long. With lactobacilli, however, some successions may be caused by transient species derived from food or from the oral cavity, thus giving the impression of an altered microflora. Nevertheless L. gasseri, L. reuteri, L. ruminis, and to some degree, L. salivarius, may be present as autochthonous species all of the time. With bifidobacteria, a decreasing tendency in counts and in multiple composition in elderly people exists. Furthermore, this microflora is also influenced by consumption habits, which are probably caused by geographical circumstances. PMID:11721280

  14. Expression, purification, crystallization and preliminary X-ray studies of Lactobacillus jensenii enolase

    SciTech Connect

    Harris, Paul T.; Raghunathan, Kannan; Spurbeck, Rachel R.; Arvidson, Cindy G.; Arvidson, Dennis N.

    2010-09-02

    Recombinant Lactobacillus jensenii enolase fused to a C-terminal noncleavable His tag was expressed in Escherichia coli, purified and crystallized by sitting-drop vapor diffusion. A complete data set was collected to 3.25 {angstrom} resolution. The crystals belonged to space group I4, with unit-cell parameters a = b = 145.31, c = 99.79 {angstrom}. There were two protein subunits in the asymmetric unit, which gave a Matthews coefficient V{sub M} of 2.8 {angstrom}{sup 3} Da{sup -1}, corresponding to 55.2% solvent content.

  15. PCR screening and sequence analysis of iol clusters in Lactobacillus casei strains isolated from koumiss.

    PubMed

    Zhang, W; Sun, Z; Sun, T; Zhang, H

    2010-11-01

    The iol cluster (consisting of genes involved in myo-inositol utilization) was investigated in Lactobacillus casei strains isolated from koumiss. Ten strains were tested for the presence of iol cluster by PCR screening; three strains encoded this cluster. Full-sequencing procedure was conducted; the iol cluster was identical to that of L. casei BL23 (GenBank access. no. FM177140) except for an upstream transposase. The iol cluster is not a common feature for L. casei strains isolated from koumiss. PMID:21253906

  16. Detection and Identification of Lactobacillus Species in Crops of Broilers of Different Ages by Using PCR-Denaturing Gradient Gel Electrophoresis and Amplified Ribosomal DNA Restriction Analysis

    PubMed Central

    Guan, Le Luo; Hagen, Karen E.; Tannock, Gerald W.; Korver, Doug R.; Fasenko, Gaylene M.; Allison, Gwen E.

    2003-01-01

    The microflora of the crop was investigated throughout the broiler production period (0 to 42 days) using PCR combined with denaturing gradient gel electrophoresis (PCR-DGGE) and selective bacteriological culture of lactobacilli followed by amplified ribosomal DNA restriction analysis (ARDRA). The birds were raised under conditions similar to those used in commercial broiler production. Lactobacilli predominated and attained populations of 108 to 109 CFU per gram of crop contents. Many of the lactobacilli present in the crop (61.9% of isolates) belonged to species of the Lactobacillus acidophilus group and could not be differentiated by PCR-DGGE. A rapid and simple ARDRA method was developed to distinguish between the members of the L. acidophilus group. HaeIII-ARDRA was used for preliminary identification of isolates in the L. acidophilus group and to identify Lactobacillus reuteri and Lactobacillus salivarius. MseI-ARDRA generated unique patterns for all species of the L. acidophilus group, identifying Lactobacillus crispatus, Lactobacillus johnsonii, and Lactobacillus gallinarum among crop isolates. The results of our study provide comprehensive knowledge of the Lactobacillus microflora in the crops of birds of different ages using nucleic acid-based methods of detection and identification based on current taxonomic criteria. PMID:14602636

  17. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces. PMID:21204871

  18. Lactobacillus reuteri glyceraldehyde-3-phosphate dehydrogenase functions in adhesion to intestinal epithelial cells.

    PubMed

    Zhang, Wen-Ming; Wang, Hai-Feng; Gao, Kan; Wang, Cong; Liu, Li; Liu, Jian-Xin

    2015-05-01

    This study was aimed to identify key surface proteins mediating the adhesion of lactobacilli to intestinal epithelial cells. By using Caco-2 and IPEC-J2 cells labeled with sulfo-NHS-biotin in the western blotting, a protein band of an approximately 37 kDa was detected on the surface layer of Lactobacillus reuteri strains ZJ616, ZJ617, ZJ621, and ZJ623 and Lactobacillus rhamnosus GG. Mass spectrometry analysis using the adhesion-related protein from L. reuteri ZJ617 showed that it was 100% homologous to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. reuteri JCM 1112 (GenBank: YP_001841377). The ability of L. reuteri ZJ617 to adhere to epithelial cells decreased significantly by treatment with LiCl or by blocking with an anti-GAPDH antibody, in comparison with the untreated strain (p < 0.05). Immunoelectron microscopic and immunofluorescence analyses confirmed that GAPDH is located on the surface layer of L. reuteri ZJ617. The results indicated that the GAPDH protein of L. reuteri ZJ617 acts as an adhesion component that plays an important role in binding to the intestinal epithelial cells. PMID:25867279

  19. Induction of local protective immunity to Eimeria acervulina by a Lactobacillus-based probiotic.

    PubMed

    Dalloul, Rami A; Lillehoj, Hyun S; Tamim, Nada M; Shellem, Timothy A; Doerr, John A

    2005-01-01

    Previously we have shown that resistance to Eimeria acervulina (EA) infection in broiler chickens was enhanced by a probiotic treatment. In the present studies, we examined cytokine and oocyst production under similar conditions using a commercial Lactobacillus-based probiotic. Day-old male broiler chicks were fed control or probiotic diets and were orally challenged with either 2x10(4) (Experiment 1) or 1x10(4) (Experiment 2) oocysts of EA at 3 weeks of age. For the first experiment, fecal oocyst shedding and IFN-gamma levels in the culture supernatants of ConA-stimulated spleen lymphocytes were evaluated. Humoral and local cell-mediated immunity in the second experiment were assessed by evaluating antibody and cytokine (IFN-gamma and IL-2) levels in sera and intestinal secretions on a 3-day interval post inoculation. Results showed small but significant (P<0.05) differences in cytokine levels and oocyst production but not antibody levels between the probiotic-treated and control groups. Collectively, these data suggest a positive impact of the probiotic on cellular immune responses of infected broilers as compared to control chickens resulting in enhanced resistance to EA as shown in reduced fecal oocyst shedding. The results showed an immunoregulatory effect of probiotic diets on the local cell-mediated immunity in poultry and provide a rationale for further study to investigate the beneficial effects of Lactobacillus-based probiotics in food animals. PMID:16293311

  20. Lactobacillus paracasei subsp. paracasei LC01 positively modulates intestinal microflora in healthy young adults.

    PubMed

    Zhang, Hao; Sun, Jing; Liu, Xianting; Hong, Chuan; Zhu, Yuanbo; Liu, Aiping; Li, Siqi; Guo, Huiyuan; Ren, Fazheng

    2013-12-01

    Lactobacillus paracasei subsp. paracasei LC01 (LC01) can tolerate intestinal stresses and has antioxidant activity. To evaluate the effect of the bacterium on human intestinal microflora, a randomized, double-blind, placebo-controlled human trial was carried out. Fifty-two healthy adult volunteers were randomized equally to two groups. One group consumed 12% (wt/vol) skimmed milk supplemented with 10(10) CFU of LC01 each day for the 4-week treatment period, and then consumed placebo in the next treatment period, separated by a 2-week washout. The other group followed the reverse order. Group-specific real-time PCR and biochemical analyses was used to determine the intestinal bacterial composition of fecal samples collected at the end of every period, and the concentration of short-chain fatty acids and ammonia. A significant inhibition in fecal Escherichia coli and increase in Lactobacillus, Bifidobacterium, and Roseburia intestinalis were observed after consumption of LC01. Acetic acid and butyric acid were significantly higher in the probiotic stage and fecal ammonia was significantly lower. The results indicated a modulation effect of LC01 on the intestinal microflora of young adults, suggesting a beneficial effect on bowel health. LC01 may have potential value as a probiotic. PMID:24385355

  1. Lactobacillus plantarum 2142 prevents intestinal oxidative stress in optimized in vitro systems.

    PubMed

    Paszti-Gere, E; Csibrik-Nemeth, E; Szeker, K; Csizinszky, R; Palocz, O; Farkas, O; Galfi, P

    2013-03-01

    Recently, there has been a growing interest to replace antibiotics' administration with the application of probiotics. The aim of our investigations was to reveal the influence of spent culture supernatant of Lactobacillus plantarum 2142 on the response of enterocytes to oxidative stress, and the spent culture supernatant's ability to protect them from oxidative injury. The experiments were performed on non-carcinogenic porcine epithelial cell line, IPEC-J2 isolated from a neonatal piglet and on human colon adenocarcinoma cell line, Caco-2. The cells cultured on membrane inserts were treated with millimolar hydrogen peroxide solution to provoke oxidative stress. The peroxide-triggered cell response profile was evaluated via determination of change in transepithelial electrical resistance, quantification of extent of cell death by 4',6-diamidino-2 phenylindole (DAPI) staining and via estimation of proinflammatory cytokine, IL-8 production using ELISA technique. Non-starter lactobacilli supernatant-mediated inhibition of peroxide-triggered upregulation of IL-8 production confirmed the antiinflammatory properties of active metabolites produced by Lactobacillus plantarum 2142 in acute oxidative stress. PMID:23471044

  2. Reutericyclin producing Lactobacillus reuteri modulates development of fecal microbiota in weanling pigs

    PubMed Central

    Yang, Yan; Zhao, Xin; Le, Minh H. A.; Zijlstra, Ruurd T.; Gänzle, Michael G.

    2015-01-01

    Lactobacillus reuteri is used as probiotic culture in food and feed applications; however, strain specific properties of L. reuteri that mediate probiotic activity remain unknown. This study aimed to determine effects of feed fermentation with exopolysaccharide and reutericyclin producing L. reuteri on the transition of the gut microbiome of piglets after weaning. The reutericyclin and reuteran producing L. reuteri TMW1.656 was compared to the reutericyclin negative and levan producing L. reuteri LTH5794 and unfermented controls. Both strains were fermented at conditions supporting exopolysaccharide formation, or at conditions not supporting exopolysaccharide formation. Fecal microbiota were characterized by partial sequencing of 16S rRNA genes, and by quantitative PCR targeting clostridial toxins. The transition to solid food resulted in a transient increase of Proteobacteria to 12% of total bacteria, and increased bacterial diversity by increasing the abundance of anaerobic fiber fermenting Firmicutes. Three weeks after weaning, Prevotella and Lactobacillus were among the dominant bacterial genera. Feed fermentation with L. reuteri affected the abundance of few bacterial taxa and particularly reduced the abundance of Enterobacteriaceae (P < 0.05) when compared to unfermented controls. Reutericyclin producing L. reuteri increased the abundance of Dialister spp. and Mitsuokella spp. (P < 0.05) but did not influence the abundance of clostridial toxins in the feces. In conclusion, data on the contribution of specific metabolic activities of L. reuteri to probiotic activity will facilitate the strain selection for probiotic applications in food and feed. PMID:26284047

  3. Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice

    PubMed Central

    Wu, Chien-Chen; Weng, Wei-Lien; Lai, Wen-Lin; Tsai, Hui-Ping; Liu, Wei-Hsien; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2015-01-01

    Recent studies have demonstrated beneficial effects of specific probiotics on alleviating obesity-related disorders. Here we aimed to identify probiotics with potential antiobesity activity among 88 lactic acid bacterial strains via in vitro screening assays, and a Lactobacillus plantarum strain K21 was found to harbor abilities required for hydrolyzing bile salt, reducing cholesterol, and inhibiting the accumulation of lipid in 3T3-L1 preadipocytes. Furthermore, effects of K21 on diet-induced obese (DIO) mice were examined. Male C57Bl/6J mice received a normal diet, high-fat diet (HFD), or HFD with K21 administration (109 CFU in 0.2 mL PBS/day) for eight weeks. Supplementation of K21, but not placebo, appeared to alleviate body weight gain and epididymal fat mass accumulation, reduce plasma leptin levels, decrease cholesterol and triglyceride levels, and mitigate liver damage in DIO mice. Moreover, the hepatic expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) related to adipogenesis was significantly downregulated in DIO mice by K21 intervention. We also found that K21 supplementation strengthens intestinal permeability and modulates the amount of Lactobacillus spp., Bifidobacterium spp., and Clostridium perfringens in the cecal contents of DIO mice. In conclusion, our results suggest that dietary intake of K21 protects against the onset of HFD-induced obesity through multiple mechanisms of action. PMID:25802537

  4. Evaluation of the viability of Lactobacillus spp. after the production of different solid dosage forms.

    PubMed

    Brachkova, Mariya I; Duarte, Aida; Pinto, João F

    2009-09-01

    The work aims to provide evidence on the viability of Lactobacillus spp. and a spore form of Bacillus subtilis from nonprocessed bacteria to coated dosage forms (i.e., mini-tablets, pellets, and their coated forms). Lactobacillus spp. were cultivated overnight in MRS broth (10(9) cfu/mL) and B. subtilis spores were produced on plate count agar (10(7) cfu/mL) for 2 weeks. Bacteria and spores were freeze-dried in skim milk enriched with glycerol. The cakes were further processed into tablets (2.5 mm diameter) by direct compression with or without microcrystalline cellulose and inulin. Pellets (1-1.4 mm diameter) were produced by extrusion-spheronization of bacterial and spore suspensions with microcrystalline cellulose, lactose, inulin, and skim milk. Both tablets and pellets were film coated. The properties of the dosage forms, particularly the bacterial viability, were evaluated immediately after production and throughout storage for 6 months at 4 degrees C. The study has shown that for an adequate stabilization of the bacteria a protective matrix (e.g., skim milk) and cryoprotectors (e.g., glycerol) must be present at early stages of bacterial de-hydration. Tabletting had a less deleterious effect (<2 log units) on bacteria when compared to pelletization (in some cases 3 log units). Enteric coating (15%, w/w) of either tablets or pellets did not affect the viability of the bacteria. PMID:19025900

  5. Lactobacillus acidophilus maintained oxidative stress from reproductive organs in collagen-induced arthritic rats

    PubMed Central

    Amdekar, Sarika; Singh, Vinod

    2016-01-01

    CONTEXTS: Nonsteroidal anti-inflammatory drugs (NSAIDs) induced organ damage is a well-known fact. Previous studies suggest that Lactobacillus scavenge the free radicals from liver and kidney and also protect animals from arthritis. AIMS: Comparing protective properties of Lactobacillus acidophilus in reducing oxidative stress from reproductive organs developed during collagen-induced arthritis in animal model. METHODS: Arthritis was induced in Wistar rats. Oral administration of L. acidophilus, indomethacin, and distilled water were all started on the same day. Arthritis scores were calculated for each group. Oxidative stress parameters were estimated in testis and ovary homogenates. Histopathology of ovary and testis was also performed. RESULTS AND CONCLUSION: L. acidophilus decreased arthritis score (P < 0.001) as well as maintained normal histology of reproductive organs. L. acidophilus maintained oxidative stress parameters from ovaries and testis (P < 0.001). These results provide strong evidence that NSAIDs increase oxidative stress in reproductive organs while L. acidophilus not only scavenges free radicals from reproductive organs but also protects rats from arthritis symptoms. PMID:27110077

  6. Bioconversion of kitchen garbage to lactic acid by two wild strains of Lactobacillus species.

    PubMed

    Wang, Qunhui; Wang, Xuming; Wang, Xiaoqiang; Ma, Hongzhi; Ren, Nanqi

    2005-01-01

    To enhance lactic acid (LA) production from kitchen garbage, which is a raw material for biodegradable plastics production, the application of high-performance lactic acid bacteria (LAB) as inocula was investigated. Two wild strains of Lactobacillus species, designated as TH165 and TD175, were isolated and screened from kitchen garbage. Strain TH165 was capable of hydrolyzing starch to produce LA; 49.5% of starch was broken down in fermentation medium containing 8.52 g/L of soluble starch, and 4.01 g/L of LA was produced after 24 h fermentation at 37 degrees C without pH control. Strain TD175 could produce 16.06 g/L of LA, 66.9% higher than that of Lactobacillus bulgaricus ACCC11058 in fermentation medium containing 2.0% glucose at 30 degrees C without pH control. Furthermore, coinoculation of strains TH165 and TD175 enhanced the LA production, resulting in 33.80 g/L of LA concentration and 0.46 g/g (DW) of LA yield from nonautoclaved kitchen garbage after 72 h fermentation with pH maintained at 5.5-6.0, values 36.9% higher than those of the fermentation without inoculum (control). This study shows that enhancement of LA production from kitchen garbage can be realized by using high-performance LAB. This recycling system is conducive to clear away pollutants and to reduce cost of LA production. PMID:16194915

  7. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers

    PubMed Central

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C.; Chorianopoulos, Nikos

    2015-01-01

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry. PMID:26506345

  8. Transition of the probiotic bacteria, Lactobacillus casei strain Shirota, in the gastrointestinal tract of a pig.

    PubMed

    Ohashi, Yuji; Umesaki, Yoshinori; Ushida, Kazunari

    2004-10-01

    The transition of probiotic bacteria Lactobacillus in the gastrointestinal tract was investigated in pigs that received commercially available fermented milk prepared with Lactobacillus casei strain Shirota (LCS). Three female pigs fistulated at the cecum were fed 130 ml of fermented milk that contained over 10(10) (cfu) LCS with their daily meal for 8 days. Cecal contents were sampled through a fistula every 2 h for 24 h after marker dosing. The viable cell number (log cfu/g) of LCS and the concentrations of transit markers in each sample were determined. The viable number of LCS cells ranged from 3.56 to 6.58. The number of LCS in the cecum was not stable in pigs and varied with the flow of the cecal content. The viable number of LCS cells was significantly correlated with the relative concentration of the marker. These results indicated that most LCS moved with the liquid component. The level of LCS reached the maximum (6.38) 6 h after dosing. Four doses every 6 h may be required to maintain the maximum level of LCS at the cecum. PMID:15358506

  9. Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model.

    PubMed

    Okubo, Hirofumi; Sakoda, Hideyuki; Kushiyama, Akifumi; Fujishiro, Midori; Nakatsu, Yusuke; Fukushima, Toshiaki; Matsunaga, Yasuka; Kamata, Hideaki; Asahara, Takashi; Yoshida, Yasuto; Chonan, Osamu; Iwashita, Misaki; Nishimura, Fusanori; Asano, Tomoichiro

    2013-12-01

    Gut microbiota alterations are associated with various disorders. In this study, gut microbiota changes were investigated in a methionine-choline-deficient (MCD) diet-induced nonalcoholic steatohepatitis (NASH) rodent model, and the effects of administering Lactobacillus casei strain Shirota (LcS) on the development of NASH were also investigated. Mice were divided into three groups, given the normal chow diet (NCD), MCD diet, or the MCD diet plus daily oral administration of LcS for 6 wk. Gut microbiota analyses for the three groups revealed that lactic acid bacteria such as Bifidobacterium and Lactobacillus in feces were markedly reduced by the MCD diet. Interestingly, oral administration of LcS to MCD diet-fed mice increased not only the L. casei subgroup but also other lactic acid bacteria. Subsequently, NASH development was evaluated based on hepatic histochemical findings, serum parameters, and various mRNA and/or protein expression levels. LcS intervention markedly suppressed MCD-diet-induced NASH development, with reduced serum lipopolysaccharide concentrations, suppression of inflammation and fibrosis in the liver, and reduced colon inflammation. Therefore, reduced populations of lactic acid bacteria in the colon may be involved in the pathogenesis of MCD diet-induced NASH, suggesting normalization of gut microbiota to be effective for treating NASH. PMID:24113768

  10. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure

    PubMed Central

    Ilavenil, Soundharrajan; Park, Hyung Soo; Vijayakumar, Mayakrishnan; Valan Arasu, Mariadhas; Kim, Da Hye; Ravikumar, Sivanesan; Choi, Ki Choon

    2015-01-01

    The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh) activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains. PMID:26167534

  11. Impact of Kefir Derived Lactobacillus kefiri on the Mucosal Immune Response and Gut Microbiota

    PubMed Central

    Carasi, P.; Racedo, S. M.; Jacquot, C.; Romanin, D. E.; Serradell, M. A.; Urdaci, M. C.

    2015-01-01

    The evaluation of the impact of probiotics on host health could help to understand how they can be used in the prevention of diseases. On the basis of our previous studies and in vitro assays on PBMC and Caco-2 ccl20:luc reporter system presented in this work, the strain Lactobacillus kefiri CIDCA 8348 was selected and administrated to healthy Swiss mice daily for 21 days. The probiotic treatment increased IgA in feces and reduced expression of proinflammatory mediators in Peyer Patches and mesenteric lymph nodes, where it also increased IL-10. In ileum IL-10, CXCL-1 and mucin 6 genes were upregulated; meanwhile in colon mucin 4 was induced whereas IFN-γ, GM-CSF, and IL-1β genes were downregulated. Moreover, ileum and colon explants showed the anti-inflammatory effect of L. kefiri since the LPS-induced increment of IL-6 and GM-CSF levels in control mice was significantly attenuated in L. kefiri treated mice. Regarding fecal microbiota, DGGE profiles allowed differentiation of experimental groups in two separated clusters. Quantitative PCR analysis of different bacterial groups revealed only significant changes in Lactobacillus population. In conclusion, L. kefiri is a good candidate to be used in gut inflammatory disorders. PMID:25811034

  12. Comparative proteome cataloging of Lactobacillus rhamnosus strains GG and Lc705.

    PubMed

    Savijoki, Kirsi; Lietzén, Niina; Kankainen, Matti; Alatossava, Tapani; Koskenniemi, Kerttu; Varmanen, Pekka; Nyman, Tuula A

    2011-08-01

    The present study reports an in-depth proteome analysis of two Lactobacillus rhamnosus strains, the well-known probiotic strain GG and the dairy strain Lc705. We used GeLC-MS/MS, in which proteins are separated using 1-DE and identified using nanoLC-MS/MS, to generate high-quality protein catalogs. To maximize the number of identifications, all data sets were searched against the target databases using two search engines, Mascot and Paragon. As a result, over 1600 high-confidence protein identifications, covering nearly 60% of the predicted proteomes, were obtained from each strain. This approach enabled identification of more than 40% of all predicted surfome proteins, including a high number of lipoproteins, integral membrane proteins, peptidoglycan associated proteins, and proteins predicted to be released into the extracellular environment. A comparison of both data sets revealed the expression of more than 90 proteins in GG and 150 in Lc705, which lack evolutionary counterparts in the other strain. Differences were noted in proteins with a likely role in biofilm formation, phage-related functions, reshaping the bacterial cell wall, and immunomodulation. The present study provides the most comprehensive catalog of the Lactobacillus proteins to date and holds great promise for the discovery of novel probiotic effector molecules. PMID:21615180

  13. Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance.

    PubMed

    Daly, Kristian; Darby, Alistair C; Hall, Neil; Nau, Alexandra; Bravo, David; Shirazi-Beechey, Soraya P

    2014-06-01

    The commensal bacteria Lactobacillus are widely used as probiotic organisms conferring a heath benefit on the host. They have been implicated in promoting gut health via the stimulation of host immunity and anti-inflammatory responses, as well as protecting the intestinalmucosa against pathogen invasion. Lactobacilli grow by fermenting sugars and starches and produce lactic acid as their primary metabolic product. For efficient utilisation of varied carbohydrates, lactobacilli have evolved diverse sugar transport and metabolic systems, which are specifically induced by their own substrates. Many bacteria are also capable of sensing and responding to changes in their environment. These sensory responses are often independent of transport or metabolism and are mediated through membrane-spanning receptor proteins. We employed DNA-based pyrosequencing technology to investigate the changes in the intestinal microbiota of piglets weaned to a diet supplemented with either a natural sugar, lactose or an artificial sweetener (SUCRAM®, consisting of saccharin and neohesperidin dihydrochalcone (NHDC); Pancosma SA). The addition of either lactose or saccharin/NHDC to the piglets' feed dramatically increased the caecal population abundance of Lactobacillus, with concomitant increases in intraluminal lactic acid concentrations. This is the first report of the prebiotic-like effects of saccharin/NHDC, an artificial sweetener, being able to influence the commensal gut microbiota. The identification of the underlying mechanism(s) will assist in designing nutritional strategies for enhancing gut immunity and maintaining gut health. PMID:24382146

  14. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  15. Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins.

    PubMed

    Ewe, Joo-Ann; Wan-Abdullah, Wan-Nadiah; Liong, Min-Tze

    2010-02-01

    Ten strains of Lactobacillus were evaluated for their viability in soymilk. Lactobacillus acidophilus ATCC 314, L. acidophilus FTDC 8833, L. acidophilus FTDC 8633 and L. gasseri FTDC 8131 displayed higher viability in soymilk and were thus selected to be evaluated for viability and growth characteristics in soymilk supplemented with B-vitamins. Pour plate analyses showed that the supplementation of all B-vitamins studied promoted the growth of lactobacilli to a viable count exceeding 7 log CFU/ml. alpha-Galactosidase specific activity of lactobacilli as determined spectrophotometrically showed an increase upon supplementation of B-vitamins. High-performance liquid chromatography analyses revealed that this led to increased hydrolysis of soy oligosaccharides and subsequently higher utilization of simple sugars. Production of organic acids as determined via high-performance liquid chromatography also showed an increase, accompanied by a decrease in pH of soymilk. Additionally, the supplementation of B-vitamins also promoted the synthesis of riboflavin and folic acid by lactobacilli in soymilk. Our results indicated that B-vitamin-supplemented soymilk is a good proliferation medium for strains of lactobacilli. PMID:19961357

  16. Improvement of the human intestinal flora by ingestion of the probiotic strain Lactobacillus johnsonii La1.

    PubMed

    Yamano, Toshihiko; Iino, Hisakazu; Takada, Mamiko; Blum, Stephanie; Rochat, Florence; Fukushima, Yoichi

    2006-02-01

    To exert beneficial effects for the host, for example, improving the intestinal microflora, a probiotic must reach the intestine as a viable strain. These properties must be demonstrated by in vitro as well as in vivo methods. However, only a few well-designed human clinical studies have shown these properties. Lactobacillus johnsonii La1 has been shown to give many beneficial effects for the host, but it is unclear whether a viable strain of L. johnsonii La1 has the effect of improving host intestinal microflora. In the present study, a randomised double-blind placebo-controlled cross-over trial was conducted to elucidate the effect of L. johnsonii La1 on human intestinal microflora. Twenty-two young healthy Japanese women were randomly divided into two groups, and either received fermented milk with L. johnsonii La1 or a fermented milk without L. johnsonii La1 (placebo) daily for 21 d. Consumption of the fermented milk: (a) increased total Bifidobacterium and Lactobacillus, and decreased lecithinase-positive Clostridium in the faeces; (b) increased the faecal lactic acid concentrations; (c) decreased the faecal pH; (d) increased the defecation frequency. These changes were stronger than those observed with the placebo. L. johnsonii La1 was identified in all subjects only after the consumption of the fermented milk. These results suggest that L. johnsonii La1 can contribute to improve intestinal microflora with probiotic properties. PMID:16469146

  17. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function. PMID:26966939

  18. Physicochemical and hygienic effects of Lactobacillus acidophilus in Iranian white cheese

    PubMed Central

    Mahmoudi, Razzaqh; Tajik, Hossein; Ehsani, Ali; Zare, Payman

    2012-01-01

    Increasing incidence of food-borne disease along with its social and economic consequences have led to conducting extensive research in order to produce safer food and develop new antimicrobial agents; among them, extensive use of probiotics and bacteriocins as biological additives is of significant importance. The aim of the present study was to evaluate the interactions (growth behavior and survival) of Listeria monocytogenes and Lactobacillus acidophilus in various stages of production, ripening and storage of Iranian white cheese. Changes in pH values at different stages of cheese ripening, along with changes in organoleptic properties of cheese were also assessed. Compared to other treatments, in the treatment of cheese with probiotic agent without starter, the most significant decrease in Listeria monocytogenes count at the end of ripening stage was observed (3.16 Log per gram cheese compared with the control group) (p < 0.05). Survival of probiotic bacteria in control samples of cheese were significantly higher when compared to cheese sample contaminated with Listeria (p < 0.05). White probiotic cheese with starter had the highest of sensory acceptability (p < 0.05). Listeria Monocytogenes count decreased during ripening period of probiotic white cheese but the bacteria survived in probiotic white cheese. Lactobacillus acidophilus count decreased during ripening period of white cheese but it did not lower to less than 106 CFU per g at the end of ripening and storage periods. PMID:25610568

  19. Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products.

    PubMed

    Chiang, Shen-Shih; Pan, Tzu-Ming

    2012-02-01

    It is well-known that probiotics have a number of beneficial health effects in humans and animals, including the reduction of symptoms in lactose intolerance and enhancement of the bioavailability of nutrients. Probiotics have showed to possess antimutagenic, anticarcinogenic and hypocholesterolemic properties. Further, they were also observed to have antagonistic actions against intestinal and food-borne pathogens, to decrease the prevalence of allergies in susceptible individuals and to have immunomodulatory effects. Typically, the bacteria colonise the intestinal tract first and then reinforce the host defence systems by inducing a generalised mucosal immune response, balanced T-helper cell response, self-limited inflammatory response and secretion of polymeric IgA. Scientific reports showed that the Taiwan native lactic acid bacterium from newborn infant faeces identified as Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products proved to be effective for the management of blood cholesterol and pressure, prevention of gastric mucosal lesion development, immunomodulation and alleviation of allergies, anti-osteoporosis and inhibition the fat tissue accumulation. This review article describes that the beneficial effects of this Lactobacillus strains and derivative products may be suitable for human and animals. PMID:22159887

  20. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533

    PubMed Central

    Pridmore, R. David; Berger, Bernard; Desiere, Frank; Vilanova, David; Barretto, Caroline; Pittet, Anne-Cecile; Zwahlen, Marie-Camille; Rouvet, Martine; Altermann, Eric; Barrangou, Rodolphe; Mollet, Beat; Mercenier, Annick; Klaenhammer, Todd; Arigoni, Fabrizio; Schell, Mark A.

    2004-01-01

    Lactobacillus johnsonii NCC 533 is a member of the acidophilus group of intestinal lactobacilli that has been extensively studied for their “probiotic” activities that include, pathogen inhibition, epithelial cell attachment, and immunomodulation. To gain insight into its physiology and identify genes potentially involved in interactions with the host, we sequenced and analyzed the 1.99-Mb genome of L. johnsonii NCC 533. Strikingly, the organism completely lacked genes encoding biosynthetic pathways for amino acids, purine nucleotides, and most cofactors. In apparent compensation, a remarkable number of uncommon and often duplicated amino acid permeases, peptidases, and phosphotransferase-type transporters were discovered, suggesting a strong dependency of NCC 533 on the host or other intestinal microbes to provide simple monomeric nutrients. Genome analysis also predicted an abundance (>12) of large and unusual cell-surface proteins, including fimbrial subunits, which may be involved in adhesion to glycoproteins or other components of mucin, a characteristic expected to affect persistence in the gastrointestinal tract (GIT). Three bile salt hydrolases and two bile acid transporters, proteins apparently critical for GIT survival, were also detected. In silico genome comparisons with the >95% complete genome sequence of the closely related Lactobacillus gasseri revealed extensive synteny punctuated by clear-cut insertions or deletions of single genes or operons. Many of these regions of difference appear to encode metabolic or structural components that could affect the organisms competitiveness or interactions with the GIT ecosystem. PMID:14983040

  1. Capsicum annuum enhances L-lactate production by Lactobacillus acidophilus: implication in curd formation.

    PubMed

    Sharma, Smriti; Jain, Sriyans; Nair, Girija N; Ramachandran, Srinivasan

    2013-07-01

    Lactobacillus acidophilus is commonly used lactic acid bacteria for producing fermented milk products. In general household practice, curdling is known to occur faster in the presence of red chili. Herein we analyzed the enhanced effect of red chili (Capsicum annuum) and its major component, capsaicin, on Lactobacillus acidophilus (ATCC 4356) in the production of L-lactate in de Man, Rogosa, and Sharpe medium at various temperatures (15, 20, 25, 30, and 37°C). The addition of red chili showed significant increase in the amount of L-lactate produced by L. acidophilus compared with the control at all temperatures. Similar results were observed with addition of capsaicin alone. This was accompanied by an increase in the consumption of d-glucose. Capsazepine, a known antagonist of capsaicin, inhibited the production of L-lactate by L. acidophilus in the presence of both capsaicin and red chili. Because no increase occurred in the growth of L. acidophilus in the presence of red chili, the enhanced production of L-lactate in the presence of red chili or capsaicin is due to increased metabolic activity. PMID:23660136

  2. PCR method for detection and identification of Lactobacillus casei/paracasei bacteriophages in dairy products.

    PubMed

    Binetti, Ana G; Capra, M Luján; Alvarez, Miguel A; Reinheimer, Jorge A

    2008-05-31

    Bacteriophage infections of starter lactic acid bacteria (LAB) pose a serious risk to the dairy industry. Nowadays, the expanding use of valuable Lactobacillus strains as probiotic starters determines an increase in the frequency of specific bacteriophage infections in dairy plants. This work describes a simple and rapid Polymerase Chain Reaction (PCR) method that detects and identifies bacteriophages infecting Lactobacillus casei/paracasei, the main bacterial species used as probiotic. Based on a highly conserved region of the NTP-binding genes belonging to the replication module of L. casei phages phiA2 and phiAT3 (the only two whose genomes are completely sequenced), a pair of primers was designed to generate a specific fragment. Furthermore, this PCR detection method proved to be a useful tool for monitoring and identifying L. casei/paracasei phages in industrial samples since specific PCR signals were obtained from phage contaminated milk (detection limit: 10(4) PFU/mL milk) and other commercial samples (fermented milks and cheese whey) that include L. casei/paracasei as probiotic starter (detection limit: 10(6) PFU/mL fermented milk). Since this method can detect the above phages in industrial samples and can be easily incorporated into dairy industry routines, it might be readily used to earmark contaminated milk for use in processes that do not involve susceptible starter organisms, or processes which involve phage-deactivating conditions. PMID:18471918

  3. High-resolution structures of Lactobacillus salivarius transketolase in the presence and absence of thiamine pyrophosphate

    PubMed Central

    Lukacik, Petra; Lobley, Carina M. C.; Bumann, Mario; Arena de Souza, Victoria; Owens, Raymond J.; OToole, Paul W.; Walsh, Martin A.

    2015-01-01

    Probiotic bacterial strains have been shown to enhance the health of the host through a range of mechanisms including colonization, resistance against pathogens, secretion of antimicrobial compounds and modulation of the activity of the innate immune system. Lactobacillus salivarius UCC118 is a well characterized probiotic strain which survives intestinal transit and has many desirable host-interaction properties. Probiotic bacteria display a wide range of catabolic activities, which determine their competitiveness in vivo. Some lactobacilli are heterofermentative and can metabolize pentoses, using a pathway in which transketolase and transaldolase are key enzymes. L. salivarius UCC118 is capable of pentose utilization because it encodes the key enzymes on a megaplasmid. The crystal structures of the megaplasmid-encoded transketolase with and without the enzyme cofactor thiamine pyrophosphate have been determined. Comparisons with other known transketolase structures reveal a high degree of structural conservation in both the catalytic site and the overall conformation. This work extends structural knowledge of the transketolases to the industrially and commercially important Lactobacillus genus. PMID:26457526

  4. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying.

    PubMed

    Chen, He; Chen, Shiwei; Li, Chuanna; Shu, Guowei

    2015-01-01

    The individual and interactive effects of skimmed milk powder, lactose, and sodium ascorbate on the number of viable cells and freeze-drying survival for vacuum freeze-dried powder formulation of Lactobacillus bulgaricus were studied by response surface methodology, and the optimal compound lyoprotectant formulations were gained. It is shown that skim milk powder, lactose, and sodium ascorbate had a significant impact on variables and survival of cultures after freeze-drying. Also, their protective abilities could be enhanced significantly when using them as a mixture of 28% w/v skim milk, 24% w/v lactose, and 4.8% w/v sodium ascorbate. The optimal freeze-drying survival rate and the number of viable cells of Lactobacillus bulgaricus were observed to be (64.41±0.02)% and (3.22±0.02)×10(11) colony-forming units (CFU)/g using the optimal compound protectants, which were very close to the expected values 64.47% and 3.28×10(11) CFU/g. PMID:24840953

  5. Plantaricin LD1: a bacteriocin produced by food isolate of Lactobacillus plantarum LD1.

    PubMed

    Gupta, Aabha; Tiwari, Santosh Kumar

    2014-04-01

    Plantaricin LD1, a bacteriocin produced by Lactobacillus plantarum LD1, was characterized for biochemical and antimicrobial properties. Bacteriocin showed stability at high temperatures (100 °C for 20 min and 121 °C for 15 min under 15 psi pressure), in a pH range of 2.0-8.0 and also in the presence of organic solvents, surfactants and detergents. The crude preparation was not affected by catalase, amylase and lipase but activity was reduced in the presence of pepsin, trypsin and proteinase K showing proteinaceous nature of the compound. The molecular weight of bacteriocin was found to be ∼6.5 kDa, and antimicrobial activity was confirmed by bioassay. It inhibited not only related strains but also other Gram-positive and Gram-negative bacteria such as Lactobacillus curvatus NRRL B-4562, Lactococcus lactis subsp. lactis NRRL B-1821, Enterococcus faecium NRRL B-2354, Enterobacter cloacae NRRL B-14298, Micrococcus luteus, Staphylococcus aureus, urogenic Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri and Vibrio sp. These properties of plantaricin LD1 suggest its applications not only in food safety but in therapeutics as well. PMID:24522411

  6. 454 pyrosequencing reveals changes in the faecal microbiota of adults consuming Lactobacillus casei Zhang.

    PubMed

    Zhang, Jiachao; Wang, Lifeng; Guo, Zhuang; Sun, Zhihong; Gesudu, Qimu; Kwok, Laiyu; Menghebilige; Zhang, Heping

    2014-06-01

    Probiotics are believed to help to maintain a healthy balance of the human gut microbiota. Lactobacillus casei Zhang (LcZ) is a novel potential probiotic isolated from the naturally fermented food koumiss. To better understand the impact of this potential probiotic on human intestinal microbiota, 24 subjects were randomly recruited for a longitudinal study: the subjects were required to consume LcZ for 28 days, and faecal samples were collected prior to, during and after the LcZ consumption phase. Alterations in the gut microbiota were monitored using 454 pyrosequencing and quantitative polymerase chain reaction(q-PCR) technologies. We found that the consumption of LcZ significantly altered the composition of intestinal microbiota (P < 0.001) and the gut microbiota diversity. Further analysis at the genus level revealed a positive correlation between LcZ and Prevotella, Lactobacillus, Faecalibacterium, Propionibacterium, Bifidobacterium and an unidentified genus from Bacteroidaceae and Lachnospiraceae and a negative correlation between LcZ administration and the presence of Clostridium, Phascolarctobacterium, Serratia, Enterococcus, Shigella and Shewanella. Furthermore, these changes were confirmed by q-PCR data. PMID:24702028

  7. Lactobacillus rhamnosus GG induces tumor regression in mice bearing orthotopic bladder tumors.

    PubMed

    Seow, Shih Wee; Cai, Shirong; Rahmat, Juwita N; Bay, Boon Huat; Lee, Yuan Kun; Chan, Yiong Huak; Mahendran, Ratha

    2010-03-01

    The present gold standard for bladder cancer is Mycobacterium bovis, Bacillus Calmette Guerin (BCG) immunotherapy. But it has a non-responder rate of 30-50% and side effects are common. Lactobacillus casei strain Shirota has been reported to reduce the incidence of recurrence in bladder cancer patients and to cure tumor-bearing mice. Our aim was to determine if Lactobacillus rhamnosus GG (LGG) could be as efficacious as BCG in a murine model of bladder cancer. MB49 bladder cancer cells secreting human prostate-specific antigen were implanted orthotopically in female C57BL/6 mice and urinary prostate-specific antigen levels were used as a marker of tumor growth. Mice were treated with either live or lyophilized LGG given via intravesical instillation, or both oral and intravesical LGG given once a week for a period of 6 weeks starting at day 4 after tumor implantation. A comparison of LGG and BCG immunotherapy was also carried out. LGG therapy (live or lyophilized) significantly (P = 0.006) increased the number of cured mice. Cytokine arrays and immune cell recruitment analysis revealed differences between untreated, treated, cured, and tumor-bearing mice. LGG therapy restored XCL1 levels to those in healthy bladders. LGG also recruited large numbers of neutrophils and macrophages to the tumor site. Intravesical LGG and BCG immunotherapy had cure rates of 89 and 77%, respectively, compared with 20% in untreated mice. LGG has the potential to replace BCG immunotherapy for the treatment of bladder cancer. PMID:20015287

  8. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase

    PubMed Central

    Alvarez-Sieiro, Patricia; Martin, Maria Cruz; Redruello, Begoña; del Rio, Beatriz; Ladero, Victor; Palanski, Brad A.; Khosla, Chaitan; Fernandez, Maria; Alvarez, Miguel A.

    2015-01-01

    Prolyl endopeptidases (PEP), a family of serine proteases with the ability to hydrolyze the peptide bond on the carboxyl side of an internal proline residue, are able to degrade immunotoxic peptides responsible for celiac disease (CD), such as a 33-residue gluten peptide (33-mer). Oral administration of PEP has been suggested as a potential therapeutic approach for CD, although delivery of the enzyme to the small intestine requires intrinsic gastric stability or advanced formulation technologies. We have engineered two food-grade Lactobacillus casei strains to deliver PEP in an in vitro model of small intestine environment. One strain secretes PEP into the extracellular medium, whereas the other retains PEP in the intracellular environment. The strain that secretes PEP into the extracellular medium is the most effective to degrade the 33-mer and is resistant to simulated gastrointestinal stress. Our results suggest that in a future, after more studies and clinical trials, an engineered food-grade Lactobacillus strain may be useful as a vector for in situ production of PEP in the upper small intestine of CD patients. PMID:24752841

  9. Compositional Development of Bifidobacterium and Lactobacillus Microbiota Is Linked with Crying and Fussing in Early Infancy

    PubMed Central

    Pärtty, Anna; Kalliomäki, Marko; Endo, Akihito; Salminen, Seppo; Isolauri, Erika

    2012-01-01

    Objectives Our aim was to establish whether there is an interconnection between the compositional development of the gut microbiota and the amount of fussing and crying in early infancy. Methods Behavioral patterns of 89 infants during the 7th and 12th week of life were recorded in parental diaries. Total distress was defined as the sum of daily amounts of crying and fussing. Infants' gut microbiota profiles were investigated by several molecular assays during the first six months of life. Results The median (range) duration of total distress among the infants was 106 (0–478) minutes a day during the 7th and 58 (0–448) minutes a day during the 12th week. The proportion of Bifidobacterium counts to total bacterial counts was inversely associated with the amount of crying and fussing during the first 3 months of life (p = 0.03), although the number of Bifidobacterium breve was positively associated with total distress (p = 0.02). The frequency of Lactobacillus spp. at the age of 3 weeks was inversely associated with total infant distress during the 7th week of life (p = 0.02). Conclusions Bifidobacterium and Lactobacillus appear to protect against crying and fussing. Identification of specific strains with optimal protective properties would benefit at-risk infants. PMID:22403665

  10. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens

    PubMed Central

    Shokouhfard, Maliheh; Kermanshahi, Rouha Kasra; Shahandashti, Roya Vahedi; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2015-01-01

    Objective(s): Serratia marcescens is one of the nosocomial pathogen with the ability to form biofilm which is an important feature in the pathogenesis of S. marcescens. The aim of this study was to determine the anti-adhesive properties of a biosurfactant isolated from Lactobacillus acidophilus ATCC 4356, on S. marcescens strains. Materials and Methods: Lactobacillus acidophilus ATCC 4356 was selected as a probiotic strain for biosurfactant production. Anti-adhesive activities was determined by pre-coating and co- incubating methods in 96-well culture plates. Results: The FTIR analysis of derived biosurfactant revealed the composition as protein component. Due to the release of such biosurfactants, L. acidophilus was able to interfere with the adhesion and biofilm formation of the S. marcescens strains. In co-incubation method, this biosurfactant in 2.5 mg/ml concentration showed anti-adhesive activity against all tested strains of S. marcescens (P<0.05). Conclusion: Our results show that the anti-adhesive properties of L. acidophilus biosurfactant has the potential to be used against microorganisms responsible for infections in the urinary, vaginal and gastrointestinal tracts, as well as skin, making it a suitable alternative to conventional antibiotics. PMID:26730335

  11. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria

    PubMed Central

    Yu, Qinghua; Yuan, Lixia; Deng, Jun; Yang, Qian

    2015-01-01

    Pathogens invade intestinal mucosal barrier through phagocytosis of antigen presenting cells (dendritic cell, microfold cells), or through the invasion into the intestinal epithelial directly. Some pathogens could damage the cell junction between epithelial cells and use the paracellular pathway as an entrance to invade. Moreover, some Lactobacillus could inhibit the adhesion of the pathogens and protect the integrity of the cell junction and mucosal barrier. This research focused on the potential therapeutic effect of Lactobacillus fructosus (L. fructosus) C2 to attenuate ETEC K88 or S. typhimurium SL1344 induced changes to mucosal barrier. The results demonstrated that treatment of polarized Caco-2 cells with L. fructosus C2 reduced the permeation of dextran, and expression of IL-8, p-ERK, and p-JNK when cells were infected with pathogenic bacteria. The findings indicated that L. fructosus C2 exerted a protective effect against the damage to the integrity of Caco-2 cells by ETEC or S. typhimurium infection. PMID:25859435

  12. Expression of FABP4, adipsin and adiponectin in Paneth cells is modulated by gut Lactobacillus

    PubMed Central

    Su, Xiaomin; Yan, Hui; Huang, Yugang; Yun, Huan; Zeng, Benhua; Wang, Enlin; Liu, Yu; Zhang, Yuan; Liu, Feifei; Che, Yongzhe; Zhang, Zhiqian; Yang, Rongcun

    2015-01-01

    We here found that intestinal epithelial Paneth cells secrete FABP4, adipsin and adiponectin in both mice and human. Deletion of Paneth cell results in the decrease of FABP4, adipsin and adiponectin not only in intestinal crypt cells but also in sera, suggesting that they may influence the state of the whole body. We also demonstrate that expression of FABP4, adipsin and adiponectin may be modulated by specific gut microbiota. In germ-free (GF) mice, the expression of FABP4, adipsin and adiponectin were lower or difficult to be detected. Feces transplantation promoted the expression of FABP4, adipsin and adiponectin in gut epithelial Paneth cells. We have found that Lactobacillus NK6 colony, which has the highest similarity with Lactobacillus taiwanensis strain BCRC 17755, may induce the expression of FABP4, adipsin and adiponectin through TRAF2 and TRAF6 ubiquitination mediated NF-κB signaling. Taken together, our findings set up a novel mechanism for FABP4, adipsin and adiponectin through gut microbiota mediating expression in gut Paneth cells. PMID:26687459

  13. In situ examination of Lactobacillus brevis after exposure to an oxidizing disinfectant

    PubMed Central

    Zhao, Yu; Knøchel, Susanne; Siegumfeldt, Henrik

    2014-01-01

    Beer is a hostile environment for most microorganisms, but some lactic acid bacteria can grow in this environment. This is primarily because these organisms have developed the ability to grow in the presence of hops. It has been speculated that hop resistance is inversely correlated to resistance against oxidation, and this would have great impact on the use of various disinfectants in the brewing industry. In this study, we cultivated bacteria under aerobic and anaerobic conditions, and then investigated the in situ outgrowth of individual cells into microcolonies on de Man Rogosa Sharpe (MRS) agar after exposure to the oxidizing agent peracetic acid (PAA). An automated microscope stage allowed us to analyse a much larger number of cells over extended periods of incubation. After PAA treatment, the lag time increased markedly, and extensive variation in morphology, μmax as well as stress resistance was observed between and within the tested Lactobacillus brevis strains. The results suggest that aerobic cultivation increased the oxidative stress tolerance in Lactobacillus brevis. The results also show that dead cells are randomly distributed in a microcolony and the majority of non-growing individual cells do not stain with a membrane impermanent dye (Propidium iodide), which indicates that PAA may not destroy the plasma membrane. In conclusion, the developed microscopic analysis of individual cells on MRS agar can provides faster results and more details of cell physiology compared to the traditional CFU method. PMID:25505451

  14. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23.

    PubMed

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D Brent; Monedero, Vicente

    2010-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria. PMID:21178363

  15. The effects of microencapsulated Lactobacillus casei on tumour cell growth: In vitro and in vivo studies.

    PubMed

    Dwivedi, Anupma; Nomikou, Nikolitsa; Nigam, Poonam Singh; McHale, Anthony P

    2012-12-01

    It has been known for some time that the micro-milieu of solid tumours provides an ideal environment for growth of facultative and strictly anaerobic bacteria, and it has been shown that certain species including Lactobacillus and Clostridium can colonise those environments leading to regression of tumour growth. Such observations have given rise to the concept of bacteriolytic therapy where live microorganisms might be employed to colonise the tumour and exert a tumorolytic effect. In choosing such an approach, it would be advantageous to exploit a relatively non-pathogenic strain and provide some form of containment that would enable site-specific injection and minimise dispersion of the microorganism throughout the host. In testing the feasibility of such an approach, we prepared microencapsulated formulations of Lactobacillus casei NCDO 161 and demonstrated that conditioned extra-capsular culture media were toxic to tumour cells in vitro. We further investigated the effects of the microencapsulated formulations on tumour growth in vivo following direct intra-tumoural injection. The study demonstrates significant inhibition of tumour growth in vivo by these formulations and suggests potential therapeutic benefit of this approach in the treatment of solid tumours. PMID:23072864

  16. Activity and Stability of Biofilm Uricase of Lactobacillus plantarum for Uric Acid Biosensor

    NASA Astrophysics Data System (ADS)

    Iswantini, Dyah; Rachmatia, Rescy; Diana, Novita Rose; Nurhidayat, Novik; Akhiruddin; Saprudin, Deden

    2016-01-01

    Research of uric acid biosensor used a Lactobacillus plantarum was successfully conducted. Lactobacillus plantarum could produce uricase that could be used as uric acid biosensor. Therefore, lifetime of bacteria were quite short that caused the bacteria could not detect uric acid for a long time. To avoid this problem, development of biofilm for uric acid biosensor is important. Biofilms is a structured community of bacterial cells, stick together and are able to maintain a bacteria in an extreme environments. The purpose of present study was to determine and compare the activity of uricase produced by L. plantarum, deposited whithin biofilm and planktonic bacteria on glassy carbon electrode (GCEb & GCE), also to determine the stability of biofilm. The optimization process was conducted by using temperature, pH, and substrate concentration as the parameters. It showed that the activity of uricase within biofilm was able to increase the oxidation current. GCEb and GCE yielded the oxidation current in the amount of 47.24 μA and 23.04 μA, respectively, under the same condition. Results indicated that the optimum condition for uric acid biosensor using biofilm were pH 10, temperature of 40 oC, and uric acid concentration of 5 mM. The stability of GCEb decreased after 10 hours used, with decreasing percentage over 86.33%. This low stability probably caused by the unprotected active site of the enzyme that the enzyme is easier to experience the denaturation.

  17. In vitro cholesterol-lowering properties of Lactobacillus plantarum AN6 isolated from aji-narezushi.

    PubMed

    Kuda, T; Yazaki, T; Ono, M; Takahashi, H; Kimura, B

    2013-09-01

    Aji-narezushi is a traditional lactic acid-fermented fish. In this study, we screened for lactose-utilizing, acidophilic, bile-resistant and cholesterol-lowering lactic acid bacteria (LAB) from aji-narezushi for use as starter strains for fermented foods, as well as for use as probiotics. Of the 301 LAB isolates, 277 fermented lactose, and among these, 171 grew in de Man, Rogosa and Sharpe broth adjusted to pH 3·5. Thirty-four of the isolates were grown in a broth containing 3% (w/v) bile. All of the isolates were lactobacilli. Seven isolates that demonstrated cholesterol-lowering activity in ethanolic solution were selected. All of the isolates were identified as Lactobacillus plantarum. Lactobacillus plantarum AN6 showed the highest cholesterol-lowering activity. AN6 was more resistant to acid, salt and bile than the type strain NBRC15891(T). One-half of the cholesterol-lowering effect remained after boiling AN6 for 10 min. The Fourier transform infrared (FT-IR) analysis indicated that the content of cell wall polysaccharides in AN6 is higher than ones in the type strain. These results indicate that Lact. plantarum AN6 can be used as a profitable starter organism and probiotic. PMID:23627867

  18. Heterologous expression of Oenococcus oeni malolactic enzyme in Lactobacillus plantarum for improved malolactic fermentation

    PubMed Central

    2012-01-01

    Lactobacillus plantarum is involved in a multitude of food related industrial fermentation processes including the malolactic fermentation (MLF) of wine. This work is the first report on a recombinant L. plantarum strain successfully conducting MLF. The malolactic enzyme (MLE) from Oenococcus oeni was cloned into the lactobacillal expression vector pSIP409 which is based on the sakacin P operon of Lactobacillus sakei and expressed in the host strain L. plantarum WCFS1. Both recombinant and wild-type L. plantarum strains were tested for MLF using a buffered malic acid solution in absence of glucose. Under the conditions with L-malic acid as the only energy source and in presence of Mn2+ and NAD+, the recombinant L. plantarum and the wild-type strain converted 85% (2.5 g/l) and 51% (1.5 g/l), respectively, of L-malic acid in 3.5 days. Furthermore, the recombinant L. plantarum cells converted in a modified wine 15% (0.4 g/l) of initial L-malic acid concentration in 2 days. In conclusion, recombinant L. plantarum cells expressing MLE accelerate the malolactic fermentation. PMID:22452826

  19. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains.

    PubMed

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  20. Impact of Lactobacillus plantarum Sortase on Target Protein Sorting, Gastrointestinal Persistence, and Host Immune Response Modulation

    PubMed Central

    Remus, Daniela M.; Bongers, Roger S.; Meijerink, Marjolein; Fusetti, Fabrizia; Poolman, Bert; de Vos, Paul; Wells, Jerry M.; Bron, Peter A.

    2013-01-01

    Sortases are transpeptidases that couple surface proteins to the peptidoglycan of Gram-positive bacteria, and several sortase-dependent proteins (SDPs) have been demonstrated to be crucial for the interactions of pathogenic and nonpathogenic bacteria with their hosts. Here, we studied the role of sortase A (SrtA) in Lactobacillus plantarum WCFS1, a model Lactobacillus for probiotic organisms. An isogenic srtA deletion derivative was constructed which did not show residual SrtA activity. DNA microarray-based transcriptome analysis revealed that the srtA deletion had only minor impact on the full-genome transcriptome of L. plantarum, while the expression of SDP-encoding genes remained completely unaffected. Mass spectrometry analysis of the bacterial cell surface proteome, which was assessed by trypsinization of intact bacterial cells and by LiCl protein extraction, revealed that SrtA is required for the appropriate subcellular location of specific SDPs and for their covalent coupling to the cell envelope, respectively. We further found that SrtA deficiency did not affect the persistence and/or survival of L. plantarum in the gastrointestinal tract of mice. In addition, an in vitro immature dendritic cell (iDC) assay revealed that the removal of surface proteins by LiCl strongly affected the proinflammatory signaling properties of the SrtA-deficient strain but not of the wild type, which suggests a role of SDPs in host immune response modulation. PMID:23175652