Science.gov

Sample records for laguna salada fault

  1. Strain accumulation along the Laguna Salada fault, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Lisowski, M.; King, N. E.; Gross, W. K.

    1994-09-01

    Strain accumulation observed over the 1978-1991 interval in a 30 x 100 km aperture trilateration network spanning the Laguna Salada fault is described by the principal strain rates 0.101 +/- 0.012 microstrain/yr N80 deg E +/- 2 deg and -0.021 +/- 0.012 microstrain/yr N 10 deg W +/- 2 deg, extension reckoned coseismic effects of the nearby 1979 Imperial Valley (M = 6.5), 1980 Vistoria (Baja California) (M = 6.4), 1987 Superstition Hills (M = 6.5), and 1987 Elmore Ranch (M = 5.9) earthquakes. The observed strain rates indicate extension at a rate of about 0.08 microstrain/yr perpendicular to the trend (N 35 deg W) of the Salton trough as well as a right-lateral tensor shear strain rate 0.05 microstrain/yr across it. The extension perpendicular to the trough is observed neither farther north near the Salton Sea nor farther south across the Gulf of California. However, Holocene slip on the Laguna Salada fault, about equal parts right-lateral and normal slip, is consistent with the observed strain accumulation. A simple dislocation model intended to explain the observed strain accumulation as a product of slip at depth on the Laguna Salada Fault would require that the fault be listric.

  2. Revisiting the 23 February 1892 Laguna Salada earthquake

    USGS Publications Warehouse

    Hough, S.E.; Elliot, A.

    2004-01-01

    According to some compilations, the Laguna Salada, Baja California, earthquake of 23 February 1892 ranks among the largest earthquakes in California and Baja California in historic times. Although surface rupture was not documented at the time of the earthquake, recent geologic investigations have identified and mapped a rupture on the Laguna Salada fault that can be associated with high probability with the 1892 event (Mueller and Rockwell, 1995). The only intensity-based magnitude estimate for the earthquake, M 7.8, was made by Strand (1980) based on an interpretation of macroseismic effects and a comparison of isoseismal areas with those from instrumentally recorded earthquakes. In this study we reinterpret original accounts of the Laguna Salada earthquake. We assign modified Mercalli intensity (MMI) values in keeping with current practice, focusing on objective descriptions of damage rather than subjective human response and not assigning MMI values to effects that are now known to be poor indicators of shaking level, such as liquefaction and rockfalls. The reinterpreted isoseismal contours and the estimated magnitude are both significantly smaller than those obtained earlier. Using the method of Bakun and Wentworth (1997) we obtain a magnitude estimate of M 7.2 and an optimal epicenter less than 15 km from the center of the mapped Laguna Salada rupture. The isoseismal contours are elongated toward the northwest, which is qualitatively consistent with a directivity effect, assuming that the fault ruptured from southeast to northwest. We suggest that the elongation may also thus reflect wave propagation effects, with more efficient propagation of crustal surface (Lg) waves in the direction of the overall regional tectonic fabric.

  3. Subsidence History of the Laguna Salada Basin in Northeastern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Contreras, J.; Martin-Barajas, A.; Herguera, J.

    2008-12-01

    The Salton Trough region in southern California and the Mexicali valley in northwestern Mexico are areas of (i) rapid subsidence due to trans-tension along the San Andreas-Imperial fault system, and (ii) high flux of sediments transported by the Colorado River, all of which confer this region with a high potential to preserve a complete record of climatic and tectonic activity information. Here we present the subsidence history of the Laguna Salada basin, and the history of activity of the master bounding faults on its eastern side. The Laguna Salada is a lacustrine basin located west of the Mexicali valley and to the south of the Salton Trough. Sedimentological as well as time series analyses performed on two 42 m-long cores drilled in the center of the basin, estimated to span the past 50 and 70KaBP, indicate a modulation of the late Quaternary stratigraphy by cyclic variations in lake level driven by Milankovitch forcing. Based on these results we derive the long-term history of the basin from a gamma-ray log recovered from a 2.8 km-deep geothermal borehole drilled by the Mexican Power Company adjacent to the Laguna Salada fault. The stratigraphy of the deep borehole reveals a history of activity pulses related to the initial breakage of the Laguna Salada fault and its interaction with neighboring faults. A first pulse started at 1.5 Ma and records the initiation of the Laguna Salada fault and rapid uplift of the crystalline block of the Sierra Cucapa. A second pulse started around 1 Ma, and is very likely related to the hard linking of the Laguna Salada fault with the Cañada David detachment by the Cañon Rojo fault. The onset of the Laguna Salada fault at 1.5 Ma appears to be synchronous with an early Pleistocene regional fault reorganization among the San Jacinto, San Andreas and Elsinore fault systems in southern California, suggesting that this reorganization may have affected a large area from San Gorgonio pass to the northern Gulf of California.

  4. Long-term slip rates of the Elsinore-Laguna Salada fault, southern California, by U-series Dating of Pedogenic Carbonate in Progressively Offset Alluvial fan Remnants.

    NASA Astrophysics Data System (ADS)

    Fletcher, K. E.; Rockwell, T. K.; Sharp, W. D.

    2007-12-01

    The Elsinore-Laguna Salada (ELS) fault is one of the principal strands of the San Andreas fault system in southern California, however its seismic potential is often de-emphasized due to previous estimates of a low slip rate. Nevertheless, the fault zone has produced two historic earthquakes over M6, with the 1892 event estimated at >M7; thus further investigation of the long-term slip rate on the ELS fault is warranted. On the western slopes of the Coyote Mountains (CM), southwest Imperial Valley, a series of alluvial fans are progressively offset by the Elsinore fault. These fans can be correlated to their source drainages via distinctive clast assemblages, thereby defining measurable offsets on the fault. Dating of the CM fans (to compute slip rates), however, is challenging. Organic materials appropriate for C-14 dating are rare or absent in the arid, oxidizing environment. Cosmogenic surface exposure techniques are limited by the absence of suitable sample materials and are inapplicable to numerous buried fan remnants that are otherwise excellent strain markers. Pedogenic carbonate datable by U-series, however, occurs in CM soil profiles, ubiquitously developed in fan gravels, and is apparent in deposits as young as ~1 ka. In CM gravels 10's ka and older, carbonate forms continuous, dense, yellow coatings up to 3 mm thick on the undersides of clasts. Powdery white carbonate may completely engulf clasts, but is not dateable. Carefully selected samples of dense, innermost carbonate lamina weighing 10's of milligrams and analyzed by TIMS, are geochemically favorable for precise U-series dating (e.g., U = 1-1.5 ppm, median 238U/232Th ~ 7), and yield reproducible ages for coatings from the same microstratigraphic horizon (e.g., 48.2 ± 2.7 and 49.9 ± 2.2 ka), indicating that U-Th systems have remained closed and that inherited coatings, though present, have been avoided. Accordingly, U-series on pedogenic carbonate provides reliable minimum ages for deposition of

  5. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.

    2014-12-01

    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from

  6. Triggered Fault Slip in Southern California Associated with the 2010 Sierra El Mayor-Cucapah, Baja California, Mexico, Earthquake

    NASA Astrophysics Data System (ADS)

    Rymer, M. J.; Treiman, J. A.; Kendrick, K. J.; Lienkaemper, J. J.; Wei, M.; Weldon, R. J.; Bilham, R. G.; Fielding, E. J.

    2010-12-01

    Surface fracturing (triggered slip) occurred in the central Salton Trough and to the southwest, in the Yuha Desert area—all in association with the 4 April 2010 (M7.2) El Mayor-Cucapah earthquake and its aftershocks. Triggered slip in the central Salton Trough occurred on the ‘frequent movers’: the southern San Andreas, Coyote Creek, Superstition Hills, and Imperial Faults, all of which have slipped in previous moderate to large, local and regional earthquakes in the past five decades. Other faults in the central Salton Trough that also slipped in 2010 include the Wienert Fault (southeastern section of the Superstition Hills Fault), the Kalin Fault (in the Brawley Seismic Zone), and the Brawley Fault Zone; triggered slip had not been reported on these faults in the past. Geologic measures of slip on faults in the central Salton Trough ranged from 1 to 18 mm, and everywhere was located where previous primary (tectonic) or triggered slip has occurred. Triggered slip in the Yuha Desert area occurred along at least two dozen faults, only some of which were known before the 4 April 2010 El Mayor-Cucapah earthquake. From east to northwest, slip occurred in seven general areas; 1) in the Northern Centinela Fault Zone (newly named), 2) along unnamed faults south of Pinto Wash, 3) along the Yuha Fault (newly named), 4) along both east and west branches of the Laguna Salada Fault, 5) along the Yuha Well Fault Zone (newly revised name), 6) along the Ocotillo Fault (newly named), and 7) along the southeastern-most section of the Elsinore Fault. Faults that slipped in the Yuha Desert area include northwest-trending right-lateral faults, northeast-trending left-lateral faults, and north-south faults, some of which had dominantly vertical slip. Triggered slip along the Ocotillo and Elsinore Faults occurred only in association with the 14 June 2010 (M5.7) aftershock, which also initiated slip along other faults near the town of Ocotillo. Triggered slip on faults in the Yuha

  7. Diversity of halophilic bacteria isolated from Rambla Salada, Murcia (Spain).

    PubMed

    Luque, Rocío; Béjar, Victoria; Quesada, Emilia; Llamas, Inmaculada

    2014-12-01

    In this study we analyzed the diversity of the halophilic bacteria community from Rambla Salada during the years 2006 and 2007. We collected a total of 364 strains, which were then identified by means of phenotypic tests and by the hypervariable V1-V3 region of the 16S rRNA sequences (around 500 bp). The ribosomal data showed that the isolates belonged to Proteobacteria (72.5%), Firmicutes (25.8%), Actinobacteria (1.4%), and Bacteroidetes (0.3%) phyla, with Gammaproteobacteria the predominant class. Halomonas was the most abundant genus (41.2% isolates) followed by Marinobacter (12.9% isolates) and Bacillus (12.6% isolates). In addition, 9 strains showed <97% sequence identity with validly described species and may well represent new taxa. The diversity of the bacterial community analyzed with the DOTUR package determined 139 operational taxonomic units at 3% genetic distance level. Rarefaction curves and diversity indexes demonstrated that our collection of isolates adequately represented all the bacterial community at Rambla Salada that can be grown under the conditions used in this work. We found that the sampling season influenced the composition of the bacterial community, and bacterial diversity was higher in 2007; this fact could be related to lower salinity at this sampling time. PMID:25403824

  8. The Pueblo of Laguna.

    ERIC Educational Resources Information Center

    Lockart, Barbetta L.

    Proximity to urban areas, a high employment rate, development of natural resources and high academic achievement are all serving to bring Laguna Pueblo to a period of rapid change on the reservation. While working to realize its potential in the areas of natural resources, commercialism and education, the Pueblo must also confront the problems of…

  9. Laguna Symbolic Geography and Silko's "Ceremony."

    ERIC Educational Resources Information Center

    Swan, Edith

    1988-01-01

    Outlines the Laguna (Pueblo) symbolic geography or world view as it is woven into Leslie Silko's novel "Ceremony." Explains the protagonist's spiritual journey toward health and harmony in terms of symbols and beliefs in Laguna mythology. Contains 21 references. (SV)

  10. The LAGUNA-LBNO Project

    NASA Astrophysics Data System (ADS)

    Avanzini, Margherita Buizza

    LAGUNA-LBNO is a Design Study funded by the European Commission to develop the design of a large and deep underground neutrino observatory; its physics program involves the study of neutrino oscillations at long baselines, the investigation of the Grand Unification of elementary forces and the detection of neutrinos from astrophysical sources. Building on the successful format and on the findings of the previous LAGUNA Design Study, LAGUNA-LBNO is more focused and is specifically considering Long Baseline Neutrino Oscillations (LBNO) with neutrino beams from CERN. Two sites, Fréjus (in France at 130 km) and Pyhäsalmi (in Finland at 2300 km), are being considered. Three different detector technologies are being studied: Water Cherenkov, Liquid Scintillator and Liquid Argon. Recently the LAGUNA-LBNO consortium has submitted an Expression of Interest for a very long baseline neutrino experiment, selecting as a first priority the option of a Liquid Argon detector at Pyhäsalmi. Detailed potential studies have been curried out for the determination of the neutrino Mass Hierarchy and the discovery of the CP-violation, using a conventional neutrino beam from the CERN SPS with a power of 750 kW.

  11. Low-Angle Normal Faults in the Gulf of California Extensional Province: Constraints on Mechanics

    NASA Astrophysics Data System (ADS)

    Axen, G. J.

    2005-12-01

    The mechanics and tectonic role(s) of low-angle normal faults (LANFs or detachments) remain controversial. Four LANFs evolved in the Gulf of California rift as integral parts of the late Cenozoic Pac-N.Am. dextral-extensional plate boundary. They cut older intrusive and metamorphic rocks and late Cenozoic syntectonic marine and nonmarine upper plate strata. These LANFs display only brittle tectonites, with slip generally <20 km. Only the southern Cañada David fault remains active; its northern part was deactivated by the Laguna Salada fault. Unlike "typical" LANFs, isostatic footwall rebound is minimal or absent, especially for east-dipping LANFs that root toward axial basins underlain by new mafic crust, the density of which may have impeded rebound. Significant LANFs formed only north of Puertecitos, B.C., where the rift axis and western flank trend about 20 degrees more northerly than elsewhere, and where the angle between the rift axis and the relative plate-motion vector is largest. Thus, LANF formation may be favored above some threshold (e.g., of extension rate, minimum work criterion, etc.) reflected by this angle. The west Salton detachment cuts gently across older, steeper foliation or isotropic granitoids, so its orientation was not controlled by anisotropy. It is exposed within kilometers of its breakaway, where it intersected an older, low relief erosion surface, demonstrating that the fault dipped gently to within ~1 km or less of Earth's surface. Thus, if models are correct in which LANF dip is controlled by rotated stress-fields, then stress rotation occurred even at very shallow depths. Some such models invoke basal shear traction to rotate the stress field; such boundary conditions might fit the NW Gulf if it opened largely in response to shear between oceanic microplates and the overlying continent. These models predict uniform LANF dip directions, but three LANFs dip east and one (Cañada David) dips west, so it seems unlikely that this, or any

  12. Provenance of alluvial fan deposits to constrain the mid-term offsets along a strike-slip active fault: the Elsinore fault in the Coyote Mountains, Imperial Valley, California.

    NASA Astrophysics Data System (ADS)

    Masana, Eulalia; Stepancikova, Petra; Rockwell, Thomas

    2013-04-01

    The lateral variation in rates along a fault and its constancy along time is a matter of discussion. To give light to this discussion, short, mid and long term offset distribution along a fault is needed. Many studies analyze the short-term offset distribution along a strike-slip fault that can be obtained by the analysis of offset features imprinted in the morphology of the near-fault area. We present an example on how to obtain the mid- to long-term offset values based on the composition of alluvial fans that are offset by the fault. The study area is on the southern tip of the Elsinore fault, which controls the mountain front of the Coyote Mountains (California). The Elsinore-Laguna Salada fault is part of the San Andreas fault (SAF) system, extending 250 km from the Los Angeles Basin southeastward into the Gulf of California, in Mexico. The slip-rate on the southern Elsinore fault is believed to be moderate based on recent InSAR observations, although a recent study near Fossil Canyon (southern Coyote Mountains) suggests a rate in the range of 1-2 mm/yr. For this study we processed the airborne LiDAR dataset (EarthScope Southern & Eastern California, SoCal) to map short to mid-term alluvial offsets. We reprocessed the point clouds to produce DEMs with 0.5m and 0.25m grids and we varied the insolation angles to illuminate the various fault strands and the offset features. We identified numerous offset features, such as rills, channel bars, channel walls, alluvial fans, beheaded channels and small erosional basins that varied in displacement from 1 to 350 m. For the mid- to long-term offsets of the alluvial fans we benefited from the diverse petrological composition of their sources. Moreover, we recognized that older alluvium, which is offset by greater amounts, is in some cases buried beneath younger alluvial fan deposits and separated by buried soils. To determine the source canyon of various alluvial elements, we quantified the clast assemblage of each source

  13. Variables Affecting Change at Laguna Elementary School.

    ERIC Educational Resources Information Center

    Lockart, Barbetta L.

    After nearly 14 years of non-Indian administration, Laguna Elementary School (LES) has acquired a principal and a teacher supervisor who are not merely Indian, but of the Laguna Tribe itself, making LES the only school in the Southern Pueblos Agency with Tribal members as administrators. At first glance the situation is ideal, but there are…

  14. Bloedite sedimentation in a seasonally dry saline lake (Salada Mediana, Spain)

    NASA Astrophysics Data System (ADS)

    Mees, Florias; Castañeda, Carmen; Herrero, Juan; Van Ranst, Eric

    2011-06-01

    Salt crusts covering the surface of the Salada Mediana, a seasonally dry saline lake in northern Spain, consist predominantly of bloedite (Na 2Mg(SO 4) 2.4H 2O). Microscopic features of the crust were investigated to understand processes of bloedite sedimentation. This study was combined with satellite and airborne observations, revealing asymmetrical concentric and parallel-linear patterns, related to wind action. Gypsum (CaSO 4.H 2O) and glauberite (Na 2Ca(SO 4) 2) in the calcareous sediments below the crust, and abundant eugsterite (Na 4Ca(SO 4) 3.2H 2O) along the base of the crust, largely formed at a different stage than bloedite. The main part of the crust consists predominantly of coarse-crystalline xenotopic-hypidiotopic bloedite, but fan-like aggregates with downward widening, radial aggregates, surface layers with vertically aligned elongated crystals, and partially epitaxial coatings occur as well. The upper part of the crust is marked by a bloedite-thenardite (Na 2SO 4) association, recording a change in brine composition that is not in agreement with results of modelling of local brine evolution. A thin fine-grained thenardite-dominated surface formed in part by subaqueous settling of crystals, but there are also indications for development by transformation of bloedite. Surface features include fan-like bloedite aggregates with upward widening, formed by bottom growth. Overall, the Salada Mediana crusts record a complex history of bloedite and thenardite precipitation by various processes.

  15. Santa Fe Indian Camp, House 21, Richmond, California: Persistence of Identity among Laguna Pueblo Railroad Laborers, 1945-1982.

    ERIC Educational Resources Information Center

    Peters, Kurt

    1995-01-01

    In 1880 the Laguna people and the predecessor of the Atchison, Topeka, and Santa Fe Railroad reached an agreement giving the railroad unhindered right-of-way through Laguna lands in exchange for Laguna employment "forever." Discusses the Laguna-railroad relationship through 1982, Laguna labor camps in California, and the persistence of Laguna…

  16. Field reconnaissance of the effects of the earthquake of April 13, 1973, near Laguna de Arenal, Costa Rica

    USGS Publications Warehouse

    Plafker, George

    1973-01-01

    At about 3:34 a.m. on April 13, 1973, a moderate-sized, but widely-felt, earthquake caused extensive damage with loss of 23 lives in a rural area of about 150 km2 centered just south of Laguna de Arenal in northwestern Costa Rica (fig. 1). This report summarizes the results of the writer's reconnaissance investigation of the area that was affected by the earthquake of April 13, 1973. A 4-day field study of the meizoseismal area was carried out during the period from April 28 through May 1 under the auspices of the U.S. Geological Survey. The primary objective of this study was to evaluate geologic factors that contributed to the damage and loss of life. The earthquake was also of special interest because of the possibility that it was accompanied by surface faulting comparable to that which occurred at Managua, Nicaragua, during the disastrous earthquake of December 23, 1972 (Brown, Ward, and Plafker, 1973). Such earthquake-related surface faulting can provide scientifically valuable information on active tectonic processes at shallow depths within the Middle America arc. Also, identification of active faults in this area is of considerable practical importance because of the planned construction of a major hydroelectrical facility within the meizoseismal area by the Instituto Costarricense de Electricidad (I.C.E.). The project would involve creation of a storage reservoir within the Laguna de Arenal basin and part of the Río Arenal valley with a 75 m-high earthfill dam across Río Arenal at a point about 10 km east of the outlet of Laguna de Arenal.

  17. Limnology of Laguna Tortuguero, Puerto Rico

    USGS Publications Warehouse

    Quinones-Marquez, Ferdinand; Fuste, Luis A.

    1978-01-01

    The principal chemical, physical and biological characteristics, and the hydrology of Laguna Tortuguero, Puerto Rico, were studied from 1974-75. The lagoon, with an area of 2.24 square kilometers and a volume of about 2.68 million cubic meters, contains about 5 percent of seawater. Drainage through a canal on the north side averages 0.64 cubic meters per second per day, flushing the lagoon about 7.5 times per year. Chloride and sodium are the principal ions in the water, ranging from 300 to 700 mg/liter and 150 to 400 mg/liter, respectively. Among the nutrients, nitrogen averages about 1.7 mg/liter, exceeding phosphorus in a weight ratio of 170:1. About 10 percent of the nitrogen and 40 percent of the phosphorus entering the lagoon is retained. The bottom sediments, with a volume of about 4.5 million cubic meters, average 0.8 and 0.014 percent nitrogen and phosphorus, respectively. (Woodard-USGS)

  18. Hydrology of Laguna Joyuda, Puerto Rico

    USGS Publications Warehouse

    Santiago-Rivera, Luis; Quinones-Aponte, Vicente

    1995-01-01

    A study was conducted by the U.S. Geological Survey to define the hydraulic and hydrologic characteristics of the Laguna Joyuda system (in southwestern Puerto Rico) and to determine the water budget of the lagoon. This shallow-water lagoon is connected to the sea by a single canal. Rainfall and evaporation, surface-water, groundwater, and tidal-flow data were collected from December 1, 1985, to April 30, 1988. A conceptual hydrologic model of the lagoon was developed and discharge measurements and modeling were undertaken to quantify the different flow components. The water balance during the 29-month study period was determined by measuring and estimating the different hydrologic components: 4.14 million cubic meters rainfall; 5.38 million cubic meters evaporation; 1.1 8 million cubic meters surface water; and 0.34 million cubic meters ground water. A total of 18.9 million cubic meters ebb flow (tidal outflow) was discharged from the lagoon and 14.4 million cubic meters flood flow (tidal inflow) entered through the canal during the study. Seawater inflow accounted for 71 percent of the water into the lagoon. The storage volume of the lagoon was about 1.55 million cubic meters. The lagoon's hydrologic-budget residual was 4.22 million cubic meters, whereas the sum of the estimated errors for the different hydrologic components amounted to 4.51 million cubic meters. Average flushing rate for the lagoon was estimated at 72 days. During the study, the specific conductance of the lagoon water ranged from 32,000 to 52,000 microsiemens per centimeter at 25 degrees Celsius, whereas the specific conductance of local seawater is about 45,000 to 55,000 microsiemens.

  19. The Optometry Program at Universidad Autonoma de la Laguna, Mexico.

    ERIC Educational Resources Information Center

    Gonzalez, Agustin L.

    1995-01-01

    A description of the optometry program at the Universidad Autonoma de la Laguna (Mexico) provides information on the composition of the faculty, design of the five-year program as compared with the traditional four-year program, curriculum content, clinical education, visiting lecturer program, and certification of graduates. (MSE)

  20. Shallow Landslide Assessment using SINMAP in Laguna, Philippines

    NASA Astrophysics Data System (ADS)

    Bonus, A. A. B.; Rabonza, M. L.; Alemania, M. K. B.; Alejandrino, I. K.; Ybanez, R. L.; Lagmay, A. M. A.

    2014-12-01

    Due to the tectonic environment and tropical climate in the Philippines, both rain-induced and seismic-induced landslides are common in the country. Numerous hazard mapping activities are regularly conducted by both academic and government institutions using various tools and software. One such software is Stability Index Mapping (SINMAP), a terrain stability mapping tool applied to shallow translational landslide phenomena controlled by shallow groundwater flow convergence. SINMAP modelling combines a slope stability model with a steady-state hydrology model to delineate areas prone to shallow landslides. DOST- Project NOAH, one of the hazard-mapping initiatives of the government, aims to map all landslide hazard in the Philippines using both computer models as well as validating ground data. Laguna, located in the island of Luzon, is one such area where mapping and modelling is conducted. SINMAP modelling of the Laguna area was run with a 5-meter Interferomteric Synthetic Aperture Radar (IFSAR) derived digital terrain model (DTM). Topographic, soil-strength and physical hydrologic parameters, which include cohesion, angle of friction, bulk density and hydraulic conductivity, were assigned to each pixel of a given DTM grid to compute for the corresponding factor of safety. The landslide hazard map generated using SINMAP shows 2% of the total land area is highly susceptible in Santa Mara, Famy, Siniloan, Pangil, Pakil and Los Baἦos Laguna and 10% is moderately susceptible in the eastern parts of Laguna. The data derived from the model is consistent with both ground validation surveys as well as landslide inventories derived from high resolution satellite imagery from 2003 to 2013. With these combined computer and on-the-ground data, it is useful in identifying no-build zone areas and in monitoring activities of the local government units and other agencies concerned. This provides a reasonable delineation of hazard zones for shallow landslide susceptible areas of

  1. Zipper Faults

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Passchier, C. W.

    2015-12-01

    Intersecting simultaneously active pairs of faults with different orientations and opposing slip sense ("conjugate faults") present geometrical and kinematic problems. Such faults rarely offset each other, even when they have displacements of many km. A simple solution to the problem is that the two faults merge, either zippering up or unzippering, depending on the relationship between the angle of intersection and the slip senses. A widely recognized example of this is the so-called blind front developed in some thrust belts, where a backthrust branches off a decollement surface at depth. The decollement progressively unzippers, so that its hanging wall becomes the hanging wall of the backthrust, and its footwall becomes the footwall of the active decollement. The opposite situation commonly arises in core complexes, where conjugate low-angle normal faults merge to form a single detachment; in this case the two faults zipper up. Analogous situations may arise for conjugate pairs of strike-slip faults. We present kinematic and geometrical analyses of the Garlock and San Andreas faults in California, the Najd fault system in Saudi Arabia, the North and East Anatolian faults, the Karakoram and Altyn Tagh faults in Tibet, and the Tonale and Guidicarie faults in the southern Alps, all of which appear to have undergone zippering over distances of several tens to hundreds of km. The zippering process may produce complex and significant patterns of strain and rotation in the surrounding rocks, particularly if the angle between the zippered faults is large. A zippering fault may be inactive during active movement on the intersecting faults, or it may have a slip rate that differs from either fault. Intersecting conjugate ductile shear zones behave in the same way on outcrop and micro-scales.

  2. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  3. A geophysical and geological study of Laguna de Ayarza, a Guatemalan caldera lake

    USGS Publications Warehouse

    Poppe, L.J.; Paull, C.K.; Newhall, C.G.; Bradbury, J.P.; Ziagos, J.

    1985-01-01

    Geologic and geophysical data from Laguna de Ayarza, a figure-8-shaped doublecaldera lake in the Guatemalan highlands, show no evidence of postcaldera eruptive tectonic activity. The bathymetry of the lake has evolved as a result of sedimentary infilling. The western caldera is steep-sided and contains a large flat-floored central basin 240 m deep. The smaller, older, eastern caldera is mostly filled by coalescing delta fans and is connected with the larger caldera by means of a deep channel. Seismicreflection data indicate that at least 170 m of flat-lying unfaulted sediments partly fill the central basin and that the strata of the pre-eruption edifice have collapsed partly along inward-dipping ring faults and partly by more chaotic collapses. These sediments have accumulated in the last 23,000 years at a minimum average sedimentation rate of 7 m/103 yr. The upper 9 m of these sediments is composed of > 50% turbidites, interbedded with laminated clayey silts containing separate diatom and ash layers. The bottom sediments have >1% organic material, an average of 4% pyrite, and abundant biogenic gas, all of which demonstrate that the bottom sediments are anoxic. Although thin (<0.5 cm) ash horizons are common, only one thick (7-16 cm) primary ash horizon could be identified in piston cores. Alterations in the mineralogy and variations in the diatom assemblage suggest magnesium-rich hydrothermal activity. ?? 1985.

  4. Possibilities For The LAGUNA Projects At The Frejus Site

    SciTech Connect

    Mosca, Luigi

    2010-11-24

    The present laboratory (LSM) at the Frejus site and the project of a first extension of it, mainly aimed at the next generation of dark matter and double beta decay experiments, are briefly reviewed. Then the main characteristics of the LAGUNA cooperation and Design Study network are summarized. Seven underground sites in Europe are considered in LAGUNA and are under study as candidates for the installation of Megaton scale detectors using three different techniques: a liquid Argon TPC (GLACIER), a liquid scintillator detector (LENA) and a Water Cerenkov (MEMPHYS), all mainly aimed at investigation of proton decay and properties of neutrinos from SuperNovae and other astrophysical sources as well as from accelerators (Super-beams and/or Beta-beams from CERN). One of the seven sites is located at Frejus, near the present LSM laboratory, and the results of its feasibility study are presented and discussed. Then the physics potential of a MEMPHYS detector installed in this site are emphasized both for non-accelerator and for neutrino beam based configurations. The MEMPHYNO prototype with its R and D programme is presented. Finally a possible schedule is sketched.

  5. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  6. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  7. Focal Mechanisms for Local Earthquakes within a Rapidly Deforming Rhyolitic Magma System, Laguna del Maule, Chile

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Keranen, K. M.; Cardona, C.; Thurber, C. H.; Singer, B. S.

    2015-12-01

    Large shallow rhyolitic magma systems like the one underlying the Laguna del Maule Volcanic Field (LdM) atop the Southern Andes, Chile, that comprises the largest concentration of rhyolitic lava and tephra younger than 20 ka at earth's surface, are capable of producing modest to very large explosive eruptions. Moreover, LdM is currently exhibiting magma migration, reservoir growth, and crustal deformation at rates higher than any volcano that is not actively erupting. The long-term build-up of a large silicic magmatic system toward an eruption has yet to be monitored, therefore, precursory phenomena are poorly understood. In January of 2015, 12 broadband, 3-component seismometers were installed at LdM to detect local microearthquakes and tele-seismic events with the goals of determining the migration paths of fluids as well as the boundaries of the magma chamber beneath LdM. These stations complement the 6 permanent stations installed by the Southern Andes Volcano Observatory in 2011. Focal mechanisms were calculated using FOCMEC (Snoke et al., 1984) and P-wave first motions for local events occurring between January and March of 2015 using these 18 broadband stations. Results from six of the largest local events indicate a mixture of normal and reverse faulting at shallow (<10 km) depths surrounding the lake. This may be associated with the opening of fractures to accommodate rising magma in the subsurface and/or stresses induced by the rapid deformation. Two of these events occurred near the center of maximum deformation where seismic swarms have previously been identified. Focal mechanisms from smaller magnitude events will be calculated to better delineate subsurface structure. Source mechanisms will be refined using P-S amplitude ratios and full waveform inversion.

  8. About a Gadolinium-doped Water Cherenkov LAGUNA Detector

    NASA Astrophysics Data System (ADS)

    Labarga, Luis

    2010-11-01

    Water Cherenkov (wC) detectors are extremely powerful apparatuses for scientific research. Nevertheless they lack of neutron tagging capabilities, which translates, mainly, into an inability to identify the anti-matter nature of the reacting incoming anti-neutrino particles. A solution was proposed by R. Beacon and M. Vagins back in 2004: by dissolving in the water a compound with nucleus with very large cross section for neutron capture like the Gadolinium, with a corresponding emission of photons of enough energy to be detected, they can tag thermal neutrons with an efficiency larger than 80%. In this talk we detail the technique and its implications in the measurement capabilities and, as well, the new backgrounds induced. We discuss the improvement on their physics program, also for the case of LAGUNA type detectors. We comment shortly the status of the pioneering R&D program of the Super-Kamiokande Collaboration towards dissolving a Gadolinium compound in its water.

  9. About a Gadolinium-doped Water Cherenkov LAGUNA Detector

    SciTech Connect

    Labarga, Luis

    2010-11-24

    Water Cherenkov (wC) detectors are extremely powerful apparatuses for scientific research. Nevertheless they lack of neutron tagging capabilities, which translates, mainly, into an inability to identify the anti-matter nature of the reacting incoming anti-neutrino particles. A solution was proposed by R. Beacon and M. Vagins back in 2004: by dissolving in the water a compound with nucleus with very large cross section for neutron capture like the Gadolinium, with a corresponding emission of photons of enough energy to be detected, they can tag thermal neutrons with an efficiency larger than 80%. In this talk we detail the technique and its implications in the measurement capabilities and, as well, the new backgrounds induced. We discuss the improvement on their physics program, also for the case of LAGUNA type detectors. We comment shortly the status of the pioneering R and D program of the Super-Kamiokande Collaboration towards dissolving a Gadolinium compound in its water.

  10. Hatching success of Caspian terns nesting in the lower Laguna Madre, Texas, USA

    USGS Publications Warehouse

    Mitchell, C.A.; Custer, T.W.

    1986-01-01

    The average clutch size of Caspian Terns nesting in a colony in the Lower Laguna Madre near Laguna Vista, Texas, USA in 1984 was 1.9 eggs per nest. Using the Mayfield method for calculating success, one egg hatched in 84.1% of the nests and 69.8% of the eggs laid hatched. These hatching estimates are as high or higher than estimates from colonies in other areas.

  11. Linking Modern, Rapid, Surface Uplift at the Laguna del Maule Volcanic Field, Chilean Andes, to Rhyolitic Magma-Driven Uplift Spanning the Holocene

    NASA Astrophysics Data System (ADS)

    Singer, B. S.; Tikoff, B.; Le Mével, H.; Andersen, N. L.; Cordova, L.; Licciardi, J. M.

    2015-12-01

    the Holocene uplift was accommodated by faulting that may influence the distribution of silicic vents.Le Mével, et al., Evolution of unrest at Laguna del Maule volcanic field (Chile) from InSAR and GPS measurements, 2003 to 2014. GRL, in press. Singer, B.S., and 16 others (2014) Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile. GSA Today 24, 4-10.

  12. Lithologic controls on mineralization at the Lagunas Norte high-sulfidation epithermal gold deposit, northern Peru

    NASA Astrophysics Data System (ADS)

    Cerpa, Luis M.; Bissig, Thomas; Kyser, Kurt; McEwan, Craig; Macassi, Arturo; Rios, Hugo W.

    2013-06-01

    The 13.1-Moz high-sulfidation epithermal gold deposit of Lagunas Norte, Alto Chicama District, northern Peru, is hosted in weakly metamorphosed quartzites of the Upper Jurassic to Lower Cretaceous Chimú Formation and in overlying Miocene volcanic rocks of dacitic to rhyolitic composition. The Dafne and Josefa diatremes crosscut the quartzites and are interpreted to be sources of the pyroclastic volcanic rocks. Hydrothermal activity was centered on the diatremes and four hydrothermal stages have been defined, three of which introduced Au ± Ag mineralization. The first hydrothermal stage is restricted to the quartzites of the Chimú Formation and is characterized by silice parda, a tan-colored aggregate of quartz-auriferous pyrite-rutile ± digenite infilling fractures and faults, partially replacing silty beds and forming cement of small hydraulic breccia bodies. The δ34S values for pyrite (1.7-2.2 ‰) and digenite (2.1 ‰) indicate a magmatic source for the sulfur. The second hydrothermal stage resulted in the emplacement of diatremes and the related volcanic rocks. The Dafne diatreme features a relatively impermeable core dominated by milled slate from the Chicama Formation, whereas the Josefa diatreme only contains Chimú Formation quartzite clasts. The third hydrothermal stage introduced the bulk of the mineralization and affected the volcanic rocks, the diatremes, and the Chimú Formation. In the volcanic rocks, classic high-sulfidation epithermal alteration zonation exhibiting vuggy quartz surrounded by a quartz-alunite and a quartz-alunite-kaolinite zone is observed. Company data suggest that gold is present in solid solution or micro inclusions in pyrite. In the quartzite, the alteration is subtle and is manifested by the presence of pyrophyllite or kaolinite in the silty beds, the former resulting from relatively high silica activities in the fluid. In the quartzite, gold mineralization is hosted in a fracture network filled with coarse alunite

  13. Laguna Indian Reservation and Acoma Indian Reservation, Laguna-Acoma Junior and Senior High School: Community Background Reports. The National Study of American Indian Education, Series I, No. 16, Final Report.

    ERIC Educational Resources Information Center

    Chilcott, John H.; Garcia, Jerry P.

    Location, climate, population, economy, government, and social conditions of the Laguna and Acoma Indian reservations in New Mexico are discussed in this community background report. In addition, education is discussed in terms of the Laguna-Acoma Junior and Senior High School; this school, which serves students in grades 7 through 12 from both…

  14. Impact of Hot Spring Resort Development on the Groundwater Discharge in the Southeast Part of Laguna De Bay, Luzon, Philippines

    NASA Astrophysics Data System (ADS)

    Siringan, F. P.; Lloren, R. B.; Mancenido, D. L. O.; Jago-on, K. A. B.; Pena, M. A. Z.; Balangue-Tarriela, M. I. R.; Taniguchi, M.

    2014-12-01

    Direct groundwater seepage in a lake (DGSL) can be a major component to its water and nutrient budget. Groundwater extraction around a lake may affect the DGSL, thus it can be expected that it would also impact the lake. In the Philippines, Laguna de Bay which is the second largest freshwater lake in South-east Asia and used primarily for fisheries, is under significant water development pressure. Along the southern coast of the lake, in the Calamba-Los Banos area, rapid urbanization and development of the water resort industry, including hot spring spas, are expected to have led to a rapid increase in groundwater extraction. This study aims to establish the effect of this development to the DGSL in this part of the lake. As a first step, we utilized towed electrical resistivity (ER) profiling to identify and map the potential and type of groundwater seepage off the southern coast of the lake. SRTM digital elevation models and synthetic aperture radar images were used to delineate lineaments which are potential fractures that cut across the study area. ER profiles indicate widespread occurrence of GDL across the shallower parts of the lake. In the more offshore, deeper parts of the lake, DGSL appears to be more limited possibly due to more muddy sediments there. However, in this area, narrow, vertical high resistivity columns cut through the lake floor suggesting more discrete GDLs possibly controlled by faults.

  15. Factors controlling navigation-channel Shoaling in Laguna Madre, Texas

    USGS Publications Warehouse

    Morton, R.A.; Nava, R.C.; Arhelger, M.

    2001-01-01

    Shoaling in the Gulf Intracoastal Waterway of Laguna Madre, Tex., is caused primarily by recycling of dredged sediments. Sediment recycling, which is controlled by water depth and location with respect to the predominant wind-driven currents, is minimal where dredged material is placed on tidal flats that are either flooded infrequently or where the water is extremely shallow. In contrast, nearly all of the dredged material placed in open water >1.5 m deep is reworked and either transported back into the channel or dispersed into the surrounding lagoon. A sediment flux analysis incorporating geotechnical properties demonstrated that erosion and not postemplacement compaction caused most sediment losses from the placement areas. Comparing sediment properties in the placement areas and natural lagoon indicated that the remaining dredged material is mostly a residual of initial channel construction. Experimental containment designs (shallow subaqueous mound, submerged levee, and emergent levee) constructed in high-maintenance areas to reduce reworking did not retain large volumes of dredged material. The emergent levee provided the greatest retention potential approximately 2 years after construction.

  16. The LAGUNA/LBNO potential for Long Baseline neutrino physics

    NASA Astrophysics Data System (ADS)

    Agostino, Luca; Consortium, Laguna-Lbno

    2014-12-01

    The LAGUNA/LBNO collaboration proposes a new generation neutrino experiment to address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, Liquid Argon (LAr) double phase Time TPC (Time Projection Chamber), the fiducial mass of the detector is set to 20 kt in its first stage. The detector will be situated at 2300 km from CERN: this long baseline provides a unique opportunity to study the neutrino flavour oscillations over the first and second oscillation maxima and to explore the L/E (Length over energy) behaviour. The near detector is based on a high-pressure argon gas TPC situated at CERN. I will detail the physics potential of this experiment for determining without ambiguity the mass hierarchy (MH) in its first stage and discovering CP violation (CPV) using the CERN SPS beam with a power of 750 kw. The impact of the assumptions on the knowledge of the oscillation parameters and the systematic errors are very important and will be shown in detail to prove the force of the experiment assuming realistic and conservative parameter values.

  17. High-Performance Wireless Internet Connection to Mount Laguna Observatory

    NASA Astrophysics Data System (ADS)

    Etzel, P. B.; Braun, H.-W.

    2000-12-01

    A 45 Mbit/sec full-duplex wireless Internet backbone is now under construction that will connect SDSU's Mount Laguna Observatory (MLO) to the San Diego Supercomputer Center (SDSC), which is located on the campus of UCSD. The SDSU campus is connected to the SDSC via Abilene/OC3 (Internet2) at 155 Mbit/sec. The MLO-SDSC backbone is part of the High-Performance Wireless Research and Education Network (HPWREN) project. Other scientific applications include earthquake monitoring from a remote array of automated seismic stations operated by researchers at the UCSD Institute for Geophysics and Planetary Physics, and environmental monitoring at Ecology field stations administered by SDSU. Educational initiatives include bringing the Internet to schools and educational centers at remote Indian reservations such as Pala and Rincon. HPWREN will allow SDSU astronomers and their collaborators to transmit CCD images to their home institutions while observations are being made. Archive retrieval of images from on-campus data bases, for comparison purposes, could easily be done. SDSU desires to build a modern, large telescope at MLO. HPWREN would support both robotic and remote observing capabilities for such a telescope. Astronomers could observe at their home institutions with multiple workstations to feed command and control instructions, data, and slow-scan video, which would give them the "feel" of being in a control room next to the telescope. HPWREN was funded by the NSF under grant ANI-0087344.

  18. 77 FR 49455 - Proclaiming Certain Lands as an Addition to and Becoming a Part of the Laguna Reservation for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... the Pueblo of Laguna Indian Reservation for the Pueblo of Laguna, New Mexico. FOR FURTHER INFORMATION CONTACT: Ben Burshia, Bureau of Indian Affairs, Division of Real Estate Services, MS-4639-MIB, 1849 C... Reservation Cibola County, New Mexico Those certain parcels of land known as Parcels I and II,...

  19. 78 FR 57545 - Proposed Establishment of Class D Airspace and Class E Airspace; Laguna AAF, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ...'' under DOT Regulatory Policies and Procedures (44 FR 11034; February 26, 1979); and (3) does not warrant...), 40103, 40113, 40120; E.O. 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389. Sec. 71.1 0 2. The... Proposed Establishment of Class D Airspace and Class E Airspace; Laguna AAF, AZ AGENCY: Federal...

  20. Laguna-Acoma High School Alumni, Classes of 1964 through 1974, Who Have Earned Bachelor's Degrees.

    ERIC Educational Resources Information Center

    Munro, Fern H.

    Students, families, colleges and funding agencies contributed data to determine the educational status of the alumni of Laguna-Acoma High School in New Mexico. Of the 749 students graduating from the school from its opening in 1964 to 1974, sixty-two students, or 8%, received a baccalaureate degree by August of 1978. New Mexico colleges and…

  1. Redhead duck behavior on lower Laguna Madre and adjacent ponds of southern Texas

    USGS Publications Warehouse

    Mitchell, C.A.; Custer, T.W.; Zwank, P.J.

    1992-01-01

    Behavior of redheads (Aythya americana) during winter was studied on the hypersaline lower Laguna Madre and adjacent freshwater to brackish water ponds of southern Texas. On Laguna Madre, feeding (46%) and sleeping (37%) were the most common behaviors. Redheads fed more during early morning (64%) than during the rest of the day (40%); feeding activity was negatively correlated with temperature. Redheads fed more often by dipping (58%) than by tipping (25%), diving (16%), or gleaning (0.1%). Water depth was least where they fed by dipping (16 cm), greatest where diving (75 cm), and intermediate where tipping (26 cm). Feeding sequences averaged 5.3 s for dipping, 8.1 s for tipping, and 19.2 s for diving. Redheads usually were present on freshwater to brackish water ponds adjacent to Laguna Madre only during daylight hours, and use of those areas declined as winter progressed. Sleeping (75%) was the most frequent behavior at ponds, followed by preening (10%), swimming (10%), and feeding (0.4%). Because redheads fed almost exclusively on shoalgrass while dipping and tipping in shallow water and shoalgrass meadows have declined in the lower Laguna Madre, proper management of the remaining shoalgrass habitat is necessary to ensure that this area remains the major wintering area for redheads.

  2. 78 FR 72006 - Establishment of Class D Airspace and Class E Airspace; Laguna AAF, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Register a notice of proposed rulemaking (NPRM) to establish controlled airspace at Laguna AAF, AZ (78 FR... Procedures (44 FR 11034; February 26, 1979); and (3) does not warrant preparation of a regulatory evaluation... read as follows: Authority: 49 U.S.C. 106(g), 40103, 40113, 40120; E. O. 10854, 24 FR 9565, 3 CFR,...

  3. The radiological emergency plan to the Laguna Verde Nuclear Power Plant

    SciTech Connect

    Villard, M.M.; Magana, R.O. )

    1992-01-01

    In this paper, it is described the main characteristics of the area surrounding the Laguna Verde Nuclear Power Plant, in terms of population, main economic activities, housing and infrastructure. Based on those factors, the most important features of the Radiological Emergency Plan are described.

  4. 75 FR 74073 - Laguna Atascosa National Wildlife Refuge, Cameron and Willacy Counties, TX; Final Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Register July 19, 2004 (69 FR 43010). Laguna Atascosa NWR is located in Cameron and Willacy Counties, Texas.... Management efforts focus on protecting, enhancing, and restoring Refuge habitats and water management for the... Selected Alternative Our draft CCP and our EA (74 FR 66148) addressed several issues. To address these,...

  5. Fault slip distribution and fault roughness

    NASA Astrophysics Data System (ADS)

    Candela, Thibault; Renard, François; Schmittbuhl, Jean; Bouchon, Michel; Brodsky, Emily E.

    2011-11-01

    We present analysis of the spatial correlations of seismological slip maps and fault topography roughness, illuminating their identical self-affine exponent. Though the complexity of the coseismic spatial slip distribution can be intuitively associated with geometrical or stress heterogeneities along the fault surface, this has never been demonstrated. Based on new measurements of fault surface topography and on statistical analyses of kinematic inversions of slip maps, we propose a model, which quantitatively characterizes the link between slip distribution and fault surface roughness. Our approach can be divided into two complementary steps: (i) Using a numerical computation, we estimate the influence of fault roughness on the frictional strength (pre-stress). We model a fault as a rough interface where elastic asperities are squeezed. The Hurst exponent ?, characterizing the self-affinity of the frictional strength field, approaches ?, where ? is the roughness exponent of the fault surface in the direction of slip. (ii) Using a quasi-static model of fault propagation, which includes the effect of long-range elastic interactions and spatial correlations in the frictional strength, the spatial slip correlation is observed to scale as ?, where ? represents the Hurst exponent of the slip distribution. Under the assumption that the origin of the spatial fluctuations in frictional strength along faults is the elastic squeeze of fault asperities, we show that self-affine geometrical properties of fault surface roughness control slip correlations and that ?. Given that ? for a wide range of faults (various accumulated displacement, host rock and slip movement), we predict that ?. Even if our quasi-static fault model is more relevant for creeping faults, the spatial slip correlations observed are consistent with those of seismological slip maps. A consequence is that the self-affinity property of slip roughness may be explained by fault geometry without considering

  6. Migration chronology and distribution of redheads on the lower Laguna Madre, Texas

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.; Zwank, P.J.

    1997-01-01

    An estimated 80% of redheads (Aythya americana) winter on the Laguna Madre of southern Texas and Mexico. Because there have been profound changes in the Laguna Madre over the past three decades and the area is facing increasing industrial and recreational development, we studied the winter distribution and habitat requirements of redheads during two winters (1987-1988 and 1988-1989) on the Lower Laguna Madre, Texas to provide information that could be used to understand, identify, and protect wintering redhead habitat. Redheads began arriving on the Lower Laguna Madre during early October in 1987 and 1988, and continued to arrive through November. Redhead migration was closely associated with passing weather fronts. Redheads arrived on the day a front arrived and during the following two days; no migrants were observed arriving the day before a weather front arrived. Flock size of arriving redheads was 26.4 ± 0.6 birds and did not differ among days or by time of day (morning midday, or afternoon). Number of flocks arriving per 0.5 h interval (arrival rate) was greater during afternoon (21.7 ± 0.6) than during morning (4.3 ± 1.2) or midday (1.5 ± 0.4) on the day of frontal passage and during the first day after frontal passage. Upon arrival, redhead flocks congregated in the central portion of the Lower Laguna Madre. They continued to use the central portion throughout the winter, but gradually spread to the northern and southern ends of the lagoon. Seventy-one percent of the area used by flocks was vegetated with shoalgrass (Halodule wrightii) although shoalgrass covered only 32% of the lagoon. Flock movements seemed to be related to tide level; redheads moved to remain in water 12-30 cm deep. These data can be used by the environmental community to identify and protect this unique and indispensable habitat for wintering redheads.

  7. Vesicularity variation to pyroclasts from silicic eruptions at Laguna del Maule volcanic complex, Chile

    NASA Astrophysics Data System (ADS)

    Wright, H. M. N.; Fierstein, J.; Amigo, A.; Miranda, J.

    2014-12-01

    Crystal-poor rhyodacitic to rhyolitic volcanic eruptions at Laguna del Maule volcanic complex, Chile have produced an astonishing range of textural variation to pyroclasts. Here, we focus on eruptive deposits from two Quaternary eruptions from vents on the northwestern side of the Laguna del Maule basin: the rhyolite of Loma de Los Espejos and the rhyodacite of Laguna Sin Puerto. Clasts in the pyroclastic fall and pyroclastic flow deposits from the rhyolite of Loma de Los Espejos range from dense, non-vesicular (obsidian) to highly vesicular, frothy (coarsely vesicular reticulite); where vesicularity varies from <1% to >90%. Bulk compositions range from 75.6-76.7 wt.% SiO2. The highest vesicularity clasts are found in early fall deposits and widely dispersed pyroclastic flow deposits; the frothy carapace to lava flows is similarly highly vesicular. Pyroclastic deposits also contain tube pumice, and macroscopically folded, finely vesicular, breadcrusted, and heterogeneously vesiculated textures. We speculate that preservation of the highest vesicularities requires relatively low decompression rates or open system degassing such that relaxation times were sufficient to allow extensive vesiculation. Such an inference is in apparent contradiction to documentation of Plinian dispersal to the eruption. Clasts in the pyroclastic fall deposit of the rhyodacite (68-72 wt.% SiO2) of Laguna Sin Puerto are finely vesicular, with vesicularity modes at ~50% and ~68% corresponding to gray and white pumice colors, respectively. Some clasts are banded in color (and vesicularity). All clasts were fragmented into highly angular particles, with subplanar to slightly concave exterior surfaces (average Wadell Roundness of clast margins between 0.32 and 0.39), indicating brittle fragmentation. In contrast to Loma de Los Espejos, high bubble number densities to Laguna Sin Puerto rhyodacite imply high decompression rates.

  8. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  9. Fault damage zones

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Peacock, David C. P.; Sanderson, David J.

    2004-03-01

    Damage zones show very similar geometries across a wide range of scales and fault types, including strike-slip, normal and thrust faults. We use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults. These classes can be sub-divided in terms of fault and fracture patterns within the damage zone. A variety of damage zone structures can occur at mode II tips of strike-slip faults, including wing cracks, horsetail fractures, antithetic faults, and synthetic branch faults. Wall damage zones result from the propagation of mode II and mode III fault tips through a rock, or from damage associated with the increase in slip on a fault. Wall damage zone structures include extension fractures, antithetic faults, synthetic faults, and rotated blocks with associated triangular openings. The damage formed at the mode III tips of strike-slip faults (e.g. observed in cliff sections) are classified as wall damage zones, because the damage zone structures are distributed along a fault trace in map view. Mixed-mode tips are likely to show characteristics of both mode II and mode III tips. Linking damage zones are developed at steps between two sub-parallel faults, and the structures developed depend on whether the step is extensional or contractional. Extension fractures and pull-aparts typically develop in extensional steps, whilst solution seams, antithetic faults and synthetic faults commonly develop in contractional steps. Rotated blocks, isolated lenses or strike-slip duplexes may occur in both extensional and contractional steps. Damage zone geometries and structures are strongly controlled by the location around a fault, the slip mode at a fault tip, and by the evolutionary stage of the fault. Although other factors control the nature of damage zones (e.g. lithology, rheology and stress system), the three-dimensional fault geometry and slip mode at each tip must be considered to gain an understanding of

  10. Fault tree handbook

    SciTech Connect

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation.

  11. Trace elements and organochlorines in the shoalgrass community of the lower Laguna Madre

    USGS Publications Warehouse

    Custer, T.W.; Mitchell, C.A.

    1993-01-01

    Our objectives were to measure concentrations of seven trace elements and 14 organochlorine compounds in sediment and biota of the shoalgrass (Halodule wrightii) community of the lower Laguna Madre of south Texas and to determine whether chemicals associated with agriculture (e.g. mercury, arsenic, selenium, organochlorine pesticides) were highest near agricultural drainages. Arsenic, mercury, selenium, lead, cadmium, and organochlorines were generally at background concentrations throughout the lower Laguna Madre. Nickel and chromium concentrations were exceptionally high in shrimp and pinfish (Lagodon rhomboides), which is difficult to explain because of no known anthropogenic sources for these trace elements. For sediment and blue crabs (Callinectes sapidus), mercury was highest near agricultural drainages. Also, DDE was more frequently detected in blue crabs near agricultural drainages than farther away. In contrast, selenium concentrations did not differ among collecting sites and arsenic concentrations were lowest in shoalgrass, blue crabs, and brown shrimp (Penaeus aztecus) near agricultural drainages.

  12. The microbial community at Laguna Figueroa, Baja California Mexico - From miles to microns

    NASA Technical Reports Server (NTRS)

    Stolz, J. F.

    1985-01-01

    The changes in the composition of the stratified microbial community in the sediments at Laguna Figeroa following floods are studied. The laguna which is located on the Pacific coast of the Baja California peninsula 200 km south of the Mexican-U.S. border is comprised of an evaporite flat and a salt marsh. Data collected from 1979-1983 using Landsat imagery, Skylab photographs, and light and transmission electron microscopy are presented. The flood conditions, which included 1-3 m of meteoric water covering the area and a remanent of 5-10 cm of siliciclastic and clay sediment, are described. The composition of the community prior to the flooding consisted of Microcoleus, Phormidium sp., a coccoid cynanobacteria, Phloroflexus, Ectothiorhodospira, Chloroflexus, Thiocapsa sp., and Chromatium. Following the floods Thiocapsa, Chromatium, Oscillatora sp., Spirulina sp., and Microcoleus are observed in the sediments.

  13. Hydrocarbon concentrations in sediments and clams (Rangia cuneata) in Laguna de Pom, Mexico

    SciTech Connect

    Alvarez-Legorreta, T.; Gold-Bouchot, G.; Zapata-Perez, O.

    1994-01-01

    Laguna de Pom is a coastal lagoon within the Laguna de Terminos system in southern Gulf of Mexico. It belongs to the Grijalva-Usumacinta basin, and is located between 18{degrees} 33{prime} and 18{degrees} 38{prime} north latitude and 92{degrees} 01{prime} and 92{degrees} 14{prime} west longitude, in the Coastal Plain physiographic Province of the Gulf. It is ellipsoidal and approximately 10 km long, with a surface area of 5,200 ha and a mean depth of 1.5 m. Water salinity and temperature ranges are 0 to 13 {per_thousand} and 25{degrees} to 31{degrees}C, respectively. Benthic macrofauna is dominated by bivalves such as the clams Rangia cuneata, R. flexuosa, and Polymesoda carolineana. These clams provide the basis of an artisanal fishery, which is the main economic activity in the region. The presence of several oil-processing facilities around the lagoon is very conspicuous, which together with decreasing yields has created social conflicts, with the fishermen blaming the mexican state oil company (PEMEX) for the decrease in the clam population. This work aims to determine if the concentration of hydrocarbons in the clams (R. cuneata) and sediments of Laguna de Pom are responsible for the declining clam fishery. 11 refs., 4 figs., 2 tabs.

  14. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  15. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  16. Fault model development for fault tolerant VLSI design

    NASA Astrophysics Data System (ADS)

    Hartmann, C. R.; Lala, P. K.; Ali, A. M.; Visweswaran, G. S.; Ganguly, S.

    1988-05-01

    Fault models provide systematic and precise representations of physical defects in microcircuits in a form suitable for simulation and test generation. The current difficulty in testing VLSI circuits can be attributed to the tremendous increase in design complexity and the inappropriateness of traditional stuck-at fault models. This report develops fault models for three different types of common defects that are not accurately represented by the stuck-at fault model. The faults examined in this report are: bridging faults, transistor stuck-open faults, and transient faults caused by alpha particle radiation. A generalized fault model could not be developed for the three fault types. However, microcircuit behavior and fault detection strategies are described for the bridging, transistor stuck-open, and transient (alpha particle strike) faults. The results of this study can be applied to the simulation and analysis of faults in fault tolerant VLSI circuits.

  17. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  18. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  19. FTAPE: A fault injection tool to measure fault tolerance

    NASA Astrophysics Data System (ADS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-07-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  20. Isolability of faults in sensor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Sharifi, Reza; Langari, Reza

    2011-10-01

    A major concern with fault detection and isolation (FDI) methods is their robustness with respect to noise and modeling uncertainties. With this in mind, several approaches have been proposed to minimize the vulnerability of FDI methods to these uncertainties. But, apart from the algorithm used, there is a theoretical limit on the minimum effect of noise on detectability and isolability. This limit has been quantified in this paper for the problem of sensor fault diagnosis based on direct redundancies. In this study, first a geometric approach to sensor fault detection is proposed. The sensor fault is isolated based on the direction of residuals found from a residual generator. This residual generator can be constructed from an input-output or a Principal Component Analysis (PCA) based model. The simplicity of this technique, compared to the existing methods of sensor fault diagnosis, allows for more rational formulation of the isolability concepts in linear systems. Using this residual generator and the assumption of Gaussian noise, the effect of noise on isolability is studied, and the minimum magnitude of isolable fault in each sensor is found based on the distribution of noise in the measurement system. Finally, some numerical examples are presented to clarify this approach.

  1. A comprehensive analysis of the performance characteristics of the Mount Laguna solar photovoltaic installation

    NASA Technical Reports Server (NTRS)

    Shumka, A.; Sollock, S. G.

    1981-01-01

    This paper represents the first comprehensive survey of the Mount Laguna Photovoltaic Installation. The novel techniques used for performing the field tests have been effective in locating and characterizing defective modules. A comparative analysis on the two types of modules used in the array indicates that they have significantly different failure rates, different distributions in degradational space and very different failure modes. A life cycle model is presented to explain a multimodal distribution observed for one module type. A statistical model is constructed and it is shown to be in good agreement with the field data.

  2. Rock Magnetic Properties of Laguna Carmen (Tierra del Fuego, Argentina): Implications for Paleomagnetic Reconstruction

    NASA Astrophysics Data System (ADS)

    Gogorza, C. G.; Orgeira, M. J.; Ponce, F.; Fernández, M.; Laprida, C.; Coronato, A.

    2013-05-01

    We report preliminary results obtained from a multi-proxy analysis including paleomagnetic and rock-magnetic studies of two sediment cores of Laguna Carmen (53°40'60" S 68°19'0" W, ~83m asl) in the semiarid steppe in northern Tierra del Fuego island, Southernmost Patagonia, Argentina. Two short cores (115 cm) were sampled using a Livingstone piston corer during the 2011 southern fall. Sediments are massive green clays (115 to 70 cm depth) with irregularly spaced thin sandy strata and lens. Massive yellow clay with thin sandy strata continues up to 30 cm depth; from here up to 10 cm yellow massive clays domain. The topmost 10 cm are mixed yellow and green clays with fine sand. Measurements of intensity and directions of Natural Remanent Magnetization (NRM), magnetic susceptibility, isothermal remanent magnetization, saturation isothermal remanent magnetization (SIRM), back field and anhysteretic remanent magnetization at 100 mT (ARM100mT) were performed and several associated parameters calculated (ARM100mT/k and SIRM/ ARM100mT). Also, as a first estimate of relative magnetic grain-size variations, the median destructive field of the NRM (MDFNRM), was determined. Additionally, we present results of magnetic parameters measured with vibrating sample magnetometer (VSM). The stability of the NRM was analyzed by alternating field demagnetization. The magnetic properties have shown variable values, showing changes in both grain size and concentration of magnetic minerals. It was found that the main carrier of remanence is magnetite with the presence of hematite in very low percentages. This is the first paleomagnetic study performed in lakes located in the northern, semiarid fuegian steppe, where humid-dry cycles have been interpreted all along the Holocene from an aeolian paleosoil sequence (Orgeira et el, 2012). Comparison between paleomagnetic records of Laguna Carmen and results obtained in earlier studies carried out at Laguna Potrok Aike (Gogorza et al., 2012

  3. Niebla ceruchis from Laguna Figueroa: dimorphic spore morphology and secondary compounds localized in pycnidia and apothecia

    NASA Technical Reports Server (NTRS)

    Enzien, M.; Margulis, L.

    1988-01-01

    During and after the floods of 1979-80 Niebla ceruchis growing epiphytically on Lycium brevipes was one of the dominant aspects of the vegetation in the coastal dunal complex bordering the microbial mats at Laguna Figueroa, Baja California Norte, Mexico. The lichen on denuded branches of Lycium was far more extensively distributed than Lycium lacking lichen. Unusual traits of this Niebla ceruchis strain, namely localization of lichen compounds in the mycobiont reproductive structures (pycnidia and apothecia) and simultaneous presence of bilocular and quadrilocular ascospores, are reported. The abundance of this coastal lichen cover at the microbial mat site has persisted through April 1988.

  4. Three-dimensional fault drawing

    SciTech Connect

    Dongan, L. )

    1992-01-01

    In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.

  5. Remote sensing analysis for fault-zones detection in the Central Andean Plateau (Catamarca, Argentina)

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Massironi, Matteo; Zampieri, Dario; Carli, Cristian

    2015-04-01

    Remote sensing techniques have been extensively used to detect the structural framework of investigated areas, which includes lineaments, fault zones and fracture patterns. The identification of these features is fundamental in exploration geology, as it allows the definition of suitable sites for the exploitation of different resources (e.g. ore mineral, hydrocarbon, geothermal energy and groundwater). Remote sensing techniques, typically adopted in fault identification, have been applied to assess the geological and structural framework of the Laguna Blanca area (26°35'S-66°49'W). This area represents a sector of the south-central Andes localized in the Argentina region of Catamarca, along the south-eastern margin of the Puna plateau. The study area is characterized by a Precambrian low-grade metamorphic basement intruded by Ordovician granitoids. These rocks are unconformably covered by a volcano-sedimentary sequence of Miocene age, followed by volcanic and volcaniclastic rocks of Upper Miocene to Plio-Pleistocene age. All these units are cut by two systems of major faults, locally characterized by 15-20 m wide damage zones. The detection of main tectonic lineaments in the study area was firstly carried out by classical procedures: image sharpening of Landsat 7 ETM+ images, directional filters applied to ASTER images, medium resolution Digital Elevation Models analysis (SRTM and ASTER GDEM) and hill shades interpretation. In addition, a new approach in fault zone identification, based on multispectral satellite images classification, has been tested in the Laguna Blanca area and in other sectors of south-central Andes. In this perspective, several prominent fault zones affecting basement and granitoid rocks have been sampled. The collected fault gouge samples have been analyzed with a Field-Pro spectrophotometer mounted on a goniometer. We acquired bidirectional reflectance spectra, from 0.35μm to 2.5μm with 1nm spectral sampling, of the sampled fault rocks

  6. How Faults Shape the Earth.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  7. Fault detection and fault tolerance in robotics

    NASA Technical Reports Server (NTRS)

    Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.

    1992-01-01

    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.

  8. Water resources on the Pueblo of Laguna, west-central New Mexico

    USGS Publications Warehouse

    Risser, D.W.; Lyford, F.P.

    1983-01-01

    This study evaluates the quality and quantity of water available on the Pueblo of Laguna, New Mexico. Groundwater for public supply occurs in the valley fill along the Rio San Jose, in the Paguate and Encinal areas, and possibly in the northern part of the Sedillo Grant. The valley fill in the Rio San Jose will supply 50 to 450 gallons per minute of potable water to properly constructed wells. In the alluvium along Rio Paguate, additional development of as much as 250 gallons per minute is possible. Groundwater for irrigation is restricted by available yields and quality to the valley fill along the Rio San Jose and possibly the western part of the Major 's Ranch area. In the Rio San Jose valley yields of 50 to 450 gallons per minute of water containing 500 to 3,000 milligrams per liter are possible. Digital-model simulations of the valley-fill aquifer west of the Village of Laguna show a potential salvage of as much as 900 acre-feet per year of evapotranspiration losses if water levels are lowered. Model studies also indicate that the winter flow of the Rio San Jose could be used to recharge groundwater stored in the valley. (USGS)

  9. Water-quality reconnaissance of Laguna Tortuguero, Vega Baja, Puerto Rico, March 1999-May 2000

    USGS Publications Warehouse

    Soler-Lopez, Luis; Guzman-Rios, Senen; Conde-Costas, Carlos

    2006-01-01

    The Laguna Tortuguero, a slightly saline to freshwater lagoon in north-central Puerto Rico, has a surface area of about 220 hectares and a mean depth of about 1.2 meters. As part of a water-quality reconnaissance, water samples were collected at about monthly and near bi-monthly intervals from March 1999 to May 2000 at four sites: three stations inside the lagoon and one station at the artificial outlet channel dredged in 1940, which connects the lagoon with the Atlantic Ocean. Physical characteristics that were determined from these water samples were pH, temperature, specific conductance, dissolved oxygen, dissolved oxygen saturation, and discharge at the outlet canal. Other water-quality constituents also were determined, including nitrogen and phosphorus species, organic carbon, chlorophyll a and b, plankton biomass, hardness, alkalinity as calcium carbonate, and major ions. Additionally, a diel study was conducted at three stations in the lagoon to obtain data on the diurnal variation of temperature, specific conductance, dissolved oxygen, and dissolved oxygen saturation. The data analysis indicates the water quality of Laguna Tortuguero complies with the Puerto Rico Environmental Quality Board standards and regulations.

  10. Origin and evolution of the Laguna Potrok Aike maar (Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Gebhardt, A. C.; de Batist, M.; Niessen, F.; Anselmetti, F. S.; Ariztegui, D.; Ohlendorf, C.; Zolitschka, B.

    2009-04-01

    Laguna Potrok Aike, a maar lake in southern-most Patagonia, is located at about 110 m a.s.l. in the Pliocene to late Quaternary Pali Aike Volcanic Field (Santa Cruz, southern Patagonia, Argentina) at about 52°S and 70°W, some 20 km north of the Strait of Magellan and approximately 90 km west of the city of Rio Gallegos. The lake is almost circular and bowl-shaped with a 100 m deep, flat plain in its central part and an approximate diameter of 3.5 km. Steep slopes separate the central plain from the lake shoulder at about 35 m water depth. At present, strong winds permanently mix the entire water column. The closed lake basin contains a sub saline water body and has only episodic inflows with the most important episodic tributary situated on the western shore. Discharge is restricted to major snowmelt events. Laguna Potrok Aike is presently located at the boundary between the Southern Hemispheric Westerlies and the Antarctic Polar Front. The sedimentary regime is thus influenced by climatic and hydrologic conditions related to the Antarctic Circumpolar Current, the Southern Hemispheric Westerlies and sporadic outbreaks of Antarctic polar air masses. Previous studies demonstrated that closed lakes in southern South America are sensitive to variations in the evaporation/precipitation ratio and have experienced drastic lake level changes in the past causing for example the desiccation of the 75 m deep Lago Cardiel during the Late Glacial. Multiproxy environmental reconstruction of the last 16 ka documents that Laguna Potrok Aike is highly sensitive to climate change. Based on an Ar/Ar age determination, the phreatomagmatic tephra that is assumed to relate to the Potrok Aike maar eruption was formed around 770 ka. Thus Laguna Potrok Aike sediments contain almost 0.8 million years of climate history spanning several past glacial-interglacial cycles making it a unique archive for non-tropical and non-polar regions of the Southern Hemisphere. In particular, variations of

  11. A 20,000-year record of environmental change from Laguna Kollpa Kkota, Bolivia

    SciTech Connect

    Seltzer, G.O. . Mendenhall Lab.); Abbott, M.B. )

    1992-01-01

    Most records of paleoclimate in the Bolivian Andes date from the last glacial-to-interglacial transition. However, Laguna Kollpa Kkota and other lakes like it, formed more than 20,000 yr BP when glaciers retreated and moraines dammed the drainage of the valleys they are located in. These lakes were protected from subsequent periods of glaciation because the headwalls of these valleys are below the level of the late-Pleistocene glacial equilibrium-line altitude. The chemical, mineral, and microfossil stratigraphies of these glacial lakes provide continuous records of environmental change for the last 20,000 years that can be used to address several problems in paleoclimate specific to tropical-subtropical latitudes. Preliminary results from Laguna Kollpa Kkota indicate that glacial equilibrium-line altitudes were never depressed more than 600 m during the last 20,000 years, suggesting that temperatures were reduced only a few-degrees celsius over this time period. Sedimentation rates and the organic carbon stratigraphy of cores reflect an increase in moisture in the late Pleistocene just prior to the transition to a warmer and drier Holocene. The pollen and diatom concentrations in the sediments are sufficient to permit the high resolution analyses needed to address whether or not there were climatic reversals during the glacial-to-interglacial transition.

  12. Normal faults, normal friction?

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Sibson, Richard H.

    2001-10-01

    Debate continues as to whether normal faults may be seismically active at very low dips (δ < 30°) in the upper continental crust. An updated compilation of dip estimates (n = 25) has been prepared from focal mechanisms of shallow, intracontinental, normal-slip earthquakes (M > 5.5; slip vector raking 90° ± 30° in the fault plane) where the rupture plane is unambiguously discriminated. The dip distribution for these moderate-to-large normal fault ruptures extends from 65° > δ > 30°, corresponding to a range, 25° < θr < 60°, for the reactivation angle between the fault and inferred vertical σ1. In a comparable data set previously obtained for reverse fault ruptures (n = 33), the active dip distribution is 10° < δ = θr < 60°. For vertical and horizontal σ1 trajectories within extensional and compressional tectonic regimes, respectively, dip-slip reactivation is thus restricted to faults oriented at θr ≤ 60° to inferred σ1. Apparent lockup at θr ≈ 60° in each dip distribution and a dominant 30° ± 5° peak in the reverse fault dip distribution, are both consistent with a friction coefficient μs ≈ 0.6, toward the bottom of Byerlee's experimental range, though localized fluid overpressuring may be needed for reactivation of less favorably oriented faults.

  13. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  14. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  15. Laguna Reservation Manpower Resources. Indian Manpower Resources in the Southwest: A Pilot Study. Occasional Paper Number 6.

    ERIC Educational Resources Information Center

    Taylor, Benjamin J.; O'Connor, Dennis J.

    A pilot study reported in this monograph is part of a larger study that includes data on 5 Southwestern American Indian reservations. Its primary purpose is to provide basic manpower information essential for planning and developing effective services and programs for Laguna Indians. Manpower resource characteristics are presented for age and sex,…

  16. A Comparison of Laguna-Acoma High School's Class of 1972 With Similar Schools in New Mexico.

    ERIC Educational Resources Information Center

    Munro, Fern H.

    Data collected by the New Mexico State Department of Education in the spring 1973 are used in tables to compare the 1972 Laguna Acoma High School (LAHS) graduating class and other 1972 New Mexico high school graduating classes. The percentage of 1972 LAHS graduates who at the time of the study were involved in post-secondary academic education or…

  17. Winter distributions of North American Plovers in the Laguna Madre regions of Tamaulipas, Mexico and Texas, USA

    USGS Publications Warehouse

    Mabee, Todd J.; Plissner, Jonathan H.; Haig, Susan M.; Goossen, J.P.

    2001-01-01

    To determine the distribution and abundance of wintering plovers in the Laguna Madre of Texas and Tamaulipas, surveys were conducted in December 1997 and February 1998, along a 160 km stretch of barrier islands in Mexico and- 40 km of shoreline on South Padre Island, Texas. Altogether, 5,673 individuals, representing six plover species, were recorded during the surveys. Black-bellied Plovers Pluvialis squatarola were the most numerous (3 ,013 individuals) representing 53% of the total number of plovers observed. Numbers of Piping Charadriusm elodu, Snowy C . alexandrinus, Semipalmated C. semipalmatus and Wilson's Plovers C. wilsonia were 739, 1,345, 561, and 13 birds, respectively. Most individuals (97%) of all species except Wilson's Plovers were observed on bayside flats of the barrier islands. Similar numbers of Piping Plovers were recorded at South Padre Island, Texas, and in the Laguna Madre de Tamaulipas. Over 85% of the individuals of each of the other species were found in the more extensively surveyed Mexico portion of Laguna Madre. In Tamaulipas, most plover species were observed more often on algal flats than any other substrate. These results provide evidence of the value of these systems as wintering areas for plover species and indicate the need for more extensive survey efforts to determine temporal and spatial variation in the distribution of these species within the Laguna ecosystem.

  18. How clays weaken faults.

    NASA Astrophysics Data System (ADS)

    van der Pluijm, Ben A.; Schleicher, Anja M.; Warr, Laurence N.

    2010-05-01

    The weakness of upper crustal faults has been variably attributed to (i) low values of normal stress, (ii) elevated pore-fluid pressure, and (iii) low frictional strength. Direct observations on natural faults rocks provide new evidence for the role of frictional properties on fault strength, as illustrated by our recent work on samples from the San Andreas Fault Observatory at Depth (SAFOD) drillhole at Parkfield, California. Mudrock samples from fault zones at ~3066 m and ~3296 m measured depth show variably spaced and interconnected networks of displacement surfaces that consist of host rock particles that are abundantly coated by polished films with occasional striations. Transmission electron microscopy and X-ray diffraction study of the surfaces reveal the occurrence of neocrystallized thin-film clay coatings containing illite-smectite (I-S) and chlorite-smectite (C-S) phases. X-ray texture goniometry shows that the crystallographic fabric of these faults rocks is characteristically low, in spite of an abundance of clay phases. 40Ar/39Ar dating of the illitic mix-layered coatings demonstrate recent crystallization and reveal the initiation of an "older" fault strand (~8 Ma) at 3066 m measured depth, and a "younger" fault strand (~4 Ma) at 3296 m measured depth. Today, the younger strand is the site of active creep behavior, reflecting continued activation of these clay-weakened zones. We propose that the majority of slow fault creep is controlled by the high density of thin (< 100nm thick) nano-coatings on fracture surfaces, which become sufficiently smectite-rich and interconnected at low angles to allow slip with minimal breakage of stronger matrix clasts. Displacements are accommodated by localized frictional slip along coated particle surfaces and hydrated smectitic phases, in combination with intracrystalline deformation of the clay lattice, associated with extensive mineral dissolution, mass transfer and continued growth of expandable layers. The

  19. The Kunlun Fault

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Kunlun fault is one of the gigantic strike-slip faults that bound the north side of Tibet. Left-lateral motion along the 1,500-kilometer (932-mile) length of the Kunlun has occurred uniformly for the last 40,000 years at a rate of 1.1 centimeter per year, creating a cumulative offset of more than 400 meters. In this image, two splays of the fault are clearly seen crossing from east to west. The northern fault juxtaposes sedimentary rocks of the mountains against alluvial fans. Its trace is also marked by lines of vegetation, which appear red in the image. The southern, younger fault cuts through the alluvium. A dark linear area in the center of the image is wet ground where groundwater has ponded against the fault. Measurements from the image of displacements of young streams that cross the fault show 15 to 75 meters (16 to 82 yards) of left-lateral offset. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) acquired the visible light and near infrared scene on July 20, 2000. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and the U.S./Japan ASTER Science Team

  20. Origin and evolution of the Laguna Potrok Aike maar (Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Gebhardt, A. C.; de Batist, M.; Niessen, F.; Anselmetti, F. S.; Ariztegui, D.; Ohlendorf, C.; Zolitschka, B.

    2009-04-01

    Laguna Potrok Aike, a maar lake in southern-most Patagonia, is located at about 110 m a.s.l. in the Pliocene to late Quaternary Pali Aike Volcanic Field (Santa Cruz, southern Patagonia, Argentina) at about 52°S and 70°W, some 20 km north of the Strait of Magellan and approximately 90 km west of the city of Rio Gallegos. The lake is almost circular and bowl-shaped with a 100 m deep, flat plain in its central part and an approximate diameter of 3.5 km. Steep slopes separate the central plain from the lake shoulder at about 35 m water depth. At present, strong winds permanently mix the entire water column. The closed lake basin contains a sub saline water body and has only episodic inflows with the most important episodic tributary situated on the western shore. Discharge is restricted to major snowmelt events. Laguna Potrok Aike is presently located at the boundary between the Southern Hemispheric Westerlies and the Antarctic Polar Front. The sedimentary regime is thus influenced by climatic and hydrologic conditions related to the Antarctic Circumpolar Current, the Southern Hemispheric Westerlies and sporadic outbreaks of Antarctic polar air masses. Previous studies demonstrated that closed lakes in southern South America are sensitive to variations in the evaporation/precipitation ratio and have experienced drastic lake level changes in the past causing for example the desiccation of the 75 m deep Lago Cardiel during the Late Glacial. Multiproxy environmental reconstruction of the last 16 ka documents that Laguna Potrok Aike is highly sensitive to climate change. Based on an Ar/Ar age determination, the phreatomagmatic tephra that is assumed to relate to the Potrok Aike maar eruption was formed around 770 ka. Thus Laguna Potrok Aike sediments contain almost 0.8 million years of climate history spanning several past glacial-interglacial cycles making it a unique archive for non-tropical and non-polar regions of the Southern Hemisphere. In particular, variations of

  1. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  2. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  3. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Astrophysics Data System (ADS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-05-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  4. Salt lake Laguna de Fuente de Piedra (S-Spain) as Late Quaternary palaeoenvironmental archive

    NASA Astrophysics Data System (ADS)

    Höbig, Nicole; Melles, Martin; Reicherter, Klaus

    2014-05-01

    This study deals with Late Quaternary palaeoenvironmental variability in Iberia reconstructed from terrestrial archives. In southern Iberia, endorheic basins of the Betic Cordilleras are relatively common and contain salt or fresh-water lakes due to subsurface dissolution of Triassic evaporites. Such precipitation or ground-water fed lakes (called Lagunas in Spanish) are vulnerable to changes in hydrology, climate or anthropogenic modifications. The largest Spanish salt lake, Laguna de Fuente de Piedra (Antequera region, S-Spain), has been investigated and serves as a palaeoenvironmental archive for the Late Pleistocene to Holocene time interval. Several sediment cores taken during drilling campaigns in 2012 and 2013 have revealed sedimentary sequences (up to 14 m length) along the shoreline. A multi-proxy study, including sedimentology, geochemistry and physical properties (magnetic susceptibility) has been performed on the cores. The sedimentary history is highly variable: several decimetre thick silty variegated clay deposits, laminated evaporites, and even few-centimetre thick massive gypsum crystals (i.e., selenites). XRF analysis was focussed on valuable palaeoclimatic proxies (e.g., S, Zr, Ti, and element ratios) to identify the composition and provenance of the sediments and to delineate palaeoenvironmental conditions. First age control has been realized by AMS-radiocarbon dating. The records start with approximately 2-3 m Holocene deposits and reach back to the middle of MIS 3 (GS-3). The sequences contain changes in sedimentation rates as well as colour changes, which can be summarized as brownish-beige deposits at the top and more greenish-grey deposits below as well as highly variegated lamination and selenites below ca. 6 m depth. The Younger Dryas, Bølling/Allerød, and the so-called Mystery Interval/Last Glacial Maximum have presumably been identified in the sediment cores and aligned to other climate records. In general, the cores of the Laguna de

  5. OpenStudio - Fault Modeling

    Energy Science and Technology Software Center (ESTSC)

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  6. Hayward Fault, California Interferogram

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of California's Hayward fault is an interferogram created using a pair of images taken by Synthetic Aperture Radar(SAR) combined to measure changes in the surface that may have occurred between the time the two images were taken.

    The images were collected by the European Space Agency's Remote Sensing satellites ERS-1 and ERS-2 in June 1992 and September 1997 over the central San Francisco Bay in California.

    The radar image data are shown as a gray-scale image, with the interferometric measurements that show the changes rendered in color. Only the urbanized area could be mapped with these data. The color changes from orange tones to blue tones across the Hayward fault (marked by a thin red line) show about 2-3centimeters (0.8-1.1 inches) of gradual displacement or movement of the southwest side of the fault. The block west of the fault moved horizontally toward the northwest during the 63 months between the acquisition of the two SAR images. This fault movement is called a seismic creep because the fault moved slowly without generating an earthquake.

    Scientists are using the SAR interferometry along with other data collected on the ground to monitor this fault motion in an attempt to estimate the probability of earthquake on the Hayward fault, which last had a major earthquake of magnitude 7 in 1868. This analysis indicates that the northern part of the Hayward fault is creeping all the way from the surface to a depth of 12 kilometers (7.5 miles). This suggests that the potential for a large earthquake on the northern Hayward fault might be less than previously thought. The blue area to the west (lower left) of the fault near the center of the image seemed to move upward relative to the yellow and orange areas nearby by about 2 centimeters (0.8 inches). The cause of this apparent motion is not yet confirmed, but the rise of groundwater levels during the time between the images may have caused the reversal of a small portion of the subsidence that

  7. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  8. Fault rupture segmentation

    NASA Astrophysics Data System (ADS)

    Cleveland, Kenneth Michael

    A critical foundation to earthquake study and hazard assessment is the understanding of controls on fault rupture, including segmentation. Key challenges to understanding fault rupture segmentation include, but are not limited to: What determines if a fault segment will rupture in a single great event or multiple moderate events? How is slip along a fault partitioned between seismic and seismic components? How does the seismicity of a fault segment evolve over time? How representative are past events for assessing future seismic hazards? In order to address the difficult questions regarding fault rupture segmentation, new methods must be developed that utilize the information available. Much of the research presented in this study focuses on the development of new methods for attacking the challenges of understanding fault rupture segmentation. Not only do these methods exploit a broader band of information within the waveform than has traditionally been used, but they also lend themselves to the inclusion of even more seismic phases providing deeper understandings. Additionally, these methods are designed to be fast and efficient with large datasets, allowing them to utilize the enormous volume of data available. Key findings from this body of work include demonstration that focus on fundamental earthquake properties on regional scales can provide general understanding of fault rupture segmentation. We present a more modern, waveform-based method that locates events using cross-correlation of the Rayleigh waves. Additionally, cross-correlation values can also be used to calculate precise earthquake magnitudes. Finally, insight regarding earthquake rupture directivity can be easily and quickly exploited using cross-correlation of surface waves.

  9. Remote sensing and numerical modeling of suspended sediment in Laguna de Terminos, Campeche, Mexico

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Kjerfve, Bjorn; Ramsey, Elijah W., III; Magill, Karen E.; Medeiros, Carmen

    1989-01-01

    It is necessary to understand the complex physical processes at work in coastal lagoons in order to manage them effectively. Improved methods of data collection and analysis must be found to provide synoptic, timely hydrodynamic information because of the sheer size of some lagoons and the difficulty of acquiring in situ data (particularly in the tropics). This paper summarizes research to model salinity and suspended sediment distributions in Laguna de Terminos, Mexico, using (1) a coupled hydrodynamic and dispersion model and (2) analysis of two Landsat Thematic Mapper images collected on November 25, 1984 and April 24, 1987. Atmospherically corrected chromaticity data derived from Thermatic Mapper data were significantly correlated with modeled total suspended sediment concentrations for the two dates. Comparison between numerically modeled and remotely sensed suspended sediment maps at 1.5 x 1.5 km resolution yielded a covariation map useful for identifying areas of discrepancy between the remotely sensed data and model output.

  10. Late Pleistocene-early Holocene karst features, Laguna Madre, south Texas: A record of climate change

    SciTech Connect

    Prouty, J.S.

    1996-09-01

    A Pleistocene coquina bordering Laguna Madre, south Texas, contains well-developed late Pleistocene-early Holocene karst features (solution pipes and caliche crusts) unknown elsewhere from coastal Texas. The coquina accumulated in a localized zone of converging longshore Gulf currents along a Gulf beach. The crusts yield {sup 14}C dates of 16,660 to 7630 B.P., with dates of individual crust horizons becoming younger upwards. The karst features provide evidence of regional late Pleistocene-early Holocene climate changes. Following the latest Wisconsinan lowstand 18,000 B.P. the regional climate was more humid and promoted karst weathering. Partial dissolution and reprecipitation of the coquina formed initial caliche crust horizons; the crust later thickened through accretion of additional carbonate laminae. With the commencement of the Holocene approximately 11,000 B.P. the regional climate became more arid. This inhibited karstification of the coquina, and caliche crust formation finally ceased about 7000 B.P.

  11. Water quality mapping of Laguna de Bay and its watershed, Philippines

    NASA Astrophysics Data System (ADS)

    Saito, S.; Nakano, T.; Shin, K.; Maruyama, S.; Miyakawa, C.; Yaota, K.; Kada, R.

    2011-12-01

    Laguna de Bay (or Laguna Lake) is the largest lake in the Philippines, with a surface area of 900 km2 and its watershed area of 2920 km2 (Santos-Borja, 2005). It is located on the southwest part of the Luzon Island and its watershed contains 5 provinces, 49 municipalities and 12 cities, including parts of Metropolitan Manila. The water quality in Laguna de Bay has significantly deteriorated due to pollution from soil erosion, effluents from chemical industries, and household discharges. In this study, we performed multiple element analysis of water samples in the lake and its watersheds for chemical mapping, which allows us to evaluate the regional distribution of elements including toxic heavy metals such as Cd, Pb and As. We collected water samples from 24 locations in Laguna de Bay and 160 locations from rivers in the watersheds. The sampling sites of river are mainly downstreams around the lake, which covers from urbanized areas to rural areas. We also collected well water samples from 17 locations, spring water samples from 10 locations, and tap water samples from 21 locations in order to compare their data with the river and lake samples and to assess the quality of household use waters. The samples were collected in dry season of the study area (March 13 - 17 and May 2 - 9, 2011). The analysis was performed at the Research Institute for Humanity and Nature (RIHN), Japan. The concentrations of the major components (Cl, NO3, SO4, Ca, Mg, Na, and K) dissolved in the samples were determined with ion chromatograph (Dionex Corporation ICS-3000). We also analyzed major and trace elements (Li, B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Ga, Ge, As, Se, Rb, Sr, Y, Zr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Pb and U) with inductively coupled plasma-mass spectrometry (ICP-MS, Agilent Technologies 7500cx). The element concentrations of rivers are characterized by remarkable regional variations. For

  12. Response of shoal grass, Halodule wrightii, to extreme winter conditions in the Lower Laguna Madre, Texas

    USGS Publications Warehouse

    Hicks, D.W.; Onuf, C.P.; Tunnell, J.W.

    1998-01-01

    Effects of a severe freeze on the shoal grass, Halodule wrightii, were documented through analysis of temporal and spatial trends in below-ground biomass. The coincidence of the second lowest temperature (-10.6??C) in 107 years of record, 56 consecutive hours below freezing, high winds and extremely low water levels exposed the Laguna Madre, TX, to the most severe cold stress in over a century. H. wrightii tolerated this extreme freeze event. Annual pre- and post-freeze surveys indicated that below-ground biomass estimated from volume was Unaffected by the freeze event. Nor was there any post-freeze change in biomass among intertidal sites directly exposed to freezing air temperatures relative to subtidal sites which remained submerged during the freezing period.

  13. Fault lubrication during earthquakes.

    PubMed

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved. PMID:21430777

  14. Preliminary Ambient Noise and Seismic Interferometry Analysis of the Laguna del Maule Volcanic Field, Chile

    NASA Astrophysics Data System (ADS)

    Wespestad, C.; Thurber, C. H.; Bennington, N. L.; Zeng, X.; Cardona, C.; Keranen, K. M.; Singer, B. S.

    2015-12-01

    Laguna del Maule Volcanic Field is a large, restless, youthful rhyolitic system in the Southern Andes of Chile. We present a preliminary examination of ambient noise data at this site from 12 University of Wisconsin and 6 OVDAS (Southern Andean Volcano Observatory) broadband seismometers for a 3 month period. Ambient noise tomography seeks to correlate pairs of stations, with one station acting as a virtual source and the other a receiver, generating empirical Green's functions between each pair. The noise correlation functions (NCFs) were computed for day-long and hour-long windows, then the final NCFs were obtained from stacking each time window set. The hour-long NCFs converged more rapidly, so this time window was chosen for use in later stages. This study used phase weighted stacking of the NCFs instead of linear stacking in order to achieve a better signal to noise ratio (SNR), although linearly stacked Green's functions were also created to confirm the improvement. Phase weighted stacking can detect signals with weak amplitudes much more clearly than linear stacking by finding coherence of signals in multiple frequency bins and down-weighting the importance of amplitude for correlation (Schimmel and Gallart, 2007). The Frequency-Time Analysis Technique was utilized to measure group velocity, and initial results show it to be about 2 km/s on average. Fluctuations of the average velocity between different station pairs across this dense array will provide a preliminary indication of the location and size of the magma system. This study also applied seismic interferometry using ambient noise to determine temporal changes in seismic velocity occurring at Laguna del Maule. Initial results show temporal changes in seismic velocity correlated to seasonal changes in the hydrologic cycle (rain, snow pack, snow melt, etc.). Current work focuses on identifying changes in seismic velocity associated with ongoing volcanic processes.

  15. Looking for Biosignatures in Carbonate Microbialites from the Laguna Negra, Argentinian Andes

    NASA Astrophysics Data System (ADS)

    Boidi, F. J.; Gomez, F. J.; Fike, D. A.; Bradley, A. S.; Farías, M. E.; Beeler, S.

    2015-12-01

    The distinction between biotic and abiotic control on microbialites formation and its signatures is relevant since stromatolites are considered the oldest evidence for life on Earth and a target for astrobiological research. The Laguna Negra is a shallow hypersaline lake placed at the Andes, Northwest Argentina, where carbonate microbialites and microbial mats develop. It is a unique system where microbial influence on carbonate precipitation and potential preserved biosignatures in the microbialites can be studied. Here we compare three distinct microbialites systems: carbonate laminar crusts with no visible microbial mats, stromatolites and dm-size oncoids, both related with different microbial mats. Our goal is to unravel the biotic controls on their formation, and the biosignatures there recorded. Laminar crusts are composed of stacked regular and isopachous carbonate lamina. Oncoids laminae are typically characterized by irregular hybrid micro-textures, composed of alternating micritic and botryoidal laminae, and the stromatolites are mostly composed by irregular micritic laminae. Sulfur isotopes of carbonate associated sulphate show similar values but they show differences in the pyrite sulfur isotopes suggesting differences in the fractionation degree, possibly related to sulphate reducing bacteria and variable sulphate reservoirs in the case of stromatolites and oncoids. δ13C fractionation between organic carbon and carbonates suggests photosynthesis, but other metabolisms cannot yet be discarded. 16S rDNA data of the microbial communities associated with the carbonate structures indicate the presence of these taxonomic groups and those that are known to influence carbonate precipitation, particularly in the stromatolites associated microbial community. Our data indicate significant differences between the three systems in terms of stable isotopes, textures and associated microbial diversity, suggesting a microbial control on stromatolites and oncoids

  16. Foraminifera Assemblages in Laguna Torrecilla- Puerto Rico: an Environmental Micropaleontology Approach.

    NASA Astrophysics Data System (ADS)

    Martinez-Colon, M.; Hallock, P.

    2006-12-01

    Foraminiferal assemblages (Ammonia becarii cf. typica - A. becarii cf. tepida - Triloculina spp.) from 30 cm cores taken at Laguna Torrecilla, a polluted estuary, contain a relative high occurrence of deformed tests (up to 13%). Such deformities (i.e., double tests, aberrant tests) are mostly found within the miliolids (Triloculina spp.) while the rotaliids (Ammonia spp.) show fewer deformities (i.e., extended proloculi, stunted tests). Preliminary results for heavy metal analysis (ACTLABS Laboratories-Canada) from bulk sediment samples show concentrations below toxicity levels except for copper. Copper concentrations (50- 138 ppm) fall between the ERL (Effect Range Low) and ERM (Effect Range Median) values representing possible to occasional detrimental effects to the aquatic environment. Organic matter content (loss-on-ignition) ranging from 10-23%, coupled with pyritized tests and framboidal pyrite, indicates low oxygen conditions. Ammonia becarii cf. typica and A. becarii cf. tepida showed no significant variation in size with sample depth. However, forma tepida was not found in the intervals with highest organic concentrations. The abundance of A. becarii, which is a species highly resistant to environmental stresses, appears to be related to hypoxia events. Ammonia-Elphidium index values, a previously established indicator of hypoxia, are 80-100, reflecting the lack of Elphidium spp. Apparently reduced oxygen conditions at Laguna Torrecilla exceeded the tolerance levels of Elphidium spp. In addition, diversity indices show that there has been temporal variability in terms of abundance and distribution of foraminifera. Foraminiferal assemblages coupled with diversity indices and organic matter content indicates that Torrecilla Lagoon has undergone several episodes of hypoxia. Such conditions could explain the relatively high percentage of test deformities, although elevated copper concentrations may be a compounding factor.

  17. Implementacion de modulos constructivistas que atiendan "misconceptions" y lagunas conceptuales en temas de la fisica en estudiantes universitarios

    NASA Astrophysics Data System (ADS)

    Santacruz Sarmiento, Neida M.

    Este estudio se enfoco en los "misconception" y lagunas conceptuales en temas fundamentales de Fisica como son Equilibrio Termodinamico y Estatica de fluidos. En primer lugar se trabajo con la identificacion de "misconceptions" y lagunas conceptuales y se analizo en detalle la forma en que los estudiantes construyen sus propias teorias de fenomenos relacionados con los temas. Debido a la complejidad en la que los estudiantes asimilan los conceptos fisicos, se utilizo el metodo de investigacion mixto de tipo secuencial explicativo en dos etapas, una cuantitativa y otra cualitativa. La primera etapa comprendio cuatro fases: (1) Aplicacion de una prueba diagnostica para identificar el conocimiento previo y lagunas conceptuales. (2) Identificacion de "misconceptions" y lagunas del concepto a partir del conocimiento previo. (3) Implementacion de la intervencion por medio de modulos en el topico de Equilibrio Termodinamico y Estatica de Fluidos. (4) Y la realizacion de la pos prueba para analizar el impacto y la efectividad de la intervencion constructivista. En la segunda etapa se utilizo el metodo de investigacion cualitativo, por medio de una entrevista semiestructurada que partio de la elaboracion de un mapa conceptual y se finalizo con un analisis de datos conjuntamente. El desarrollo de este estudio permitio encontrar "misconceptions" y lagunas conceptuales a partir del conocimiento previo de los estudiantes participantes en los temas trabajados, que fueron atendidos en el desarrollo de las distintas actividades inquisitivas que se presentaron en el modulo constructivista. Se encontro marcadas diferencias entre la pre y pos prueba en los temas, esto se debio al requerimiento de habilidades abstractas para el tema de Estatica de Fluidos y al desarrollo intuitivo para el tema de Equilibrio Termodinamico, teniendo mejores respuestas en el segundo. Los participantes demostraron una marcada evolucion y/o cambio en sus estructuras de pensamiento, las pruebas estadisticas

  18. Packaged Fault Model for Geometric Segmentation of Active Faults Into Earthquake Source Faults

    NASA Astrophysics Data System (ADS)

    Nakata, T.; Kumamoto, T.

    2004-12-01

    In Japan, the empirical formula proposed by Matsuda (1975) mainly based on the length of the historical surface fault ruptures and magnitude, is generally applied to estimate the size of future earthquakes from the extent of existing active faults for seismic hazard assessment. Therefore validity of the active fault length and defining individual segment boundaries where propagating ruptures terminate are essential and crucial to the reliability for the accurate assessments. It is, however, not likely for us to clearly identify the behavioral earthquake segments from observation of surface faulting during the historical period, because most of the active faults have longer recurrence intervals than 1000 years in Japan. Besides uncertainties of the datasets obtained mainly from fault trenching studies are quite large for fault grouping/segmentation. This is why new methods or criteria should be applied for active fault grouping/segmentation, and one of the candidates may be geometric criterion of active faults. Matsuda (1990) used _gfive kilometer_h as a critical distance for grouping and separation of neighboring active faults. On the other hand, Nakata and Goto (1998) proposed the geometric criteria such as (1) branching features of active fault traces and (2) characteristic pattern of vertical-slip distribution along the fault traces as tools to predict rupture length of future earthquakes. The branching during the fault rupture propagation is regarded as an effective energy dissipation process and could result in final rupture termination. With respect to the characteristic pattern of vertical-slip distribution, especially with strike-slip components, the up-thrown sides along the faults are, in general, located on the fault blocks in the direction of relative strike-slip. Applying these new geometric criteria to the high-resolution active fault distribution maps, the fault grouping/segmentation could be more practically conducted. We tested this model

  19. Fault Roughness Records Strength

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Candela, T.; Kirkpatrick, J. D.

    2014-12-01

    Fault roughness is commonly ~0.1-1% at the outcrop exposure scale. More mature faults are smoother than less mature ones, but the overall range of roughness is surprisingly limited which suggests dynamic control. In addition, the power spectra of many exposed fault surfaces follow a single power law over scales from millimeters to 10's of meters. This is another surprising observation as distinct structures such as slickenlines and mullions are clearly visible on the same surfaces at well-defined scales. We can reconcile both observations by suggesting that the roughness of fault surfaces is controlled by the maximum strain that can be supported elastically in the wallrock. If the fault surface topography requires more than 0.1-1% strain, it fails. Invoking wallrock strength explains two additional observations on the Corona Heights fault for which we have extensive roughness data. Firstly, the surface is isotropic below a scale of 30 microns and has grooves at larger scales. Samples from at least three other faults (Dixie Valley, Mount St. Helens and San Andreas) also are isotropic at scales below 10's of microns. If grooves can only persist when the walls of the grooves have a sufficiently low slope to maintain the shape, this scale of isotropy can be predicted based on the measured slip perpendicular roughness data. The observed 30 micron scale at Corona Heights is consistent with an elastic strain of 0.01 estimated from the observed slip perpendicular roughness with a Hurst exponent of 0.8. The second observation at Corona Heights is that slickenlines are not deflected around meter-scale mullions. Yielding of these mullions at centimeter to meter scale is predicted from the slip parallel roughness as measured here. The success of the strain criterion for Corona Heights supports it as the appropriate control on fault roughness. Micromechanically, the criterion implies that failure of the fault surface is a continual process during slip. Macroscopically, the

  20. Fault reactivation control on normal fault growth: an experimental study

    NASA Astrophysics Data System (ADS)

    Bellahsen, Nicolas; Daniel, Jean Marc

    2005-04-01

    Field studies frequently emphasize how fault reactivation is involved in the deformation of the upper crust. However, this phenomenon is generally neglected (except in inversion models) in analogue and numerical models performed to study fault network growth. Using sand/silicon analogue models, we show how pre-existing discontinuities can control the geometry and evolution of a younger fault network. The models show that the reactivation of pre-existing discontinuities and their orientation control: (i) the evolution of the main fault orientation distribution through time, (ii) the geometry of relay fault zones, (iii) the geometry of small scale faulting, and (iv) the geometry and location of fault-controlled basins and depocenters. These results are in good agreement with natural fault networks observed in both the Gulf of Suez and Lake Tanganyika. They demonstrate that heterogeneities such as pre-existing faults should be included in models designed to understand the behavior and the tectonic evolution of sedimentary basins.

  1. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

    USGS Publications Warehouse

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.

    2011-01-01

    Triggered slip in the Yuha Desert area occurred along more than two dozen faults, only some of which were recognized before the April 4, 2010, El Mayor-Cucapah earthquake. From east to northwest, slip occurred in seven general areas: (1) in the Northern Centinela Fault Zone (newly named), (2) along unnamed faults south of Pinto Wash, (3) along the Yuha Fault (newly named), (4) along both east and west branches of the Laguna Salada Fault, (5) along the Yuha Well Fault Zone (newly revised name) and related faults between it and the Yuha Fault, (6) along the Ocotillo Fault (newly named) and related faults to the north and south, and (7) along the southeasternmost section of the Elsinore Fault. Faults that slipped in the Yuha Desert area include northwest-trending right-lateral faults, northeast-trending left-lateral faults, and north-south faults, some of which had dominantly vertical offset. Triggered slip along the Ocotillo and Elsinore Faults appears to have occurred only in association with the June 14, 2010 (Mw5.7), aftershock. This aftershock also resulted in slip along other faults near the town of Ocotillo. Triggered offset on faults in the Yuha Desert area was mostly less than 20 mm, with three significant exceptions, including slip of about 50–60 mm on the Yuha Fault, 40 mm on a fault south of Pinto Wash, and about 85 mm on the Ocotillo Fault. All triggered slips in the Yuha Desert area occurred along preexisting faults, whether previously recognized or not.

  2. Unrest within a large rhyolitic magma system at Laguna del Maule volcanic field (Chile) from 2007 through 2013: geodetic measurements and numerical models

    NASA Astrophysics Data System (ADS)

    Le Mevel, H.; Cordova, L.; Ali, S. T.; Feigl, K. L.; DeMets, C.; Williams-Jones, G.; Tikoff, B.; Singer, B. S.

    2013-12-01

    The Laguna del Maule (LdM) volcanic field is remarkable for its unusual concentration of post-glacial rhyolitic lava coulées and domes that erupted between 25 and 2 thousand years ago. Covering more than 100 square kilometers, they erupted from 24 vents encircling a lake basin approximately 20 km in diameter on the range crest of the Andes. Geodetic measurements at the LdM volcanic field show rapid uplift since 2007 over an area more than 20 km in diameter that is centered on the western portion of the young rhyolite domes. By quantifying this active deformation and its evolution with time, we aim to investigate the storage conditions and dynamic processes in the underlying rhyolitic reservoir that drive the ongoing inflation. Analyzing interferometric synthetic aperture radar (InSAR) data, we track the rate of deformation. The rate of vertical uplift is negligible from 2003 to 2004, accelerates from at least 200 mm/yr in 2007 to more than 300 mm/yr in 2012, and then decreases to 200mm/yr in early 2013. To describe the deformation, we use a simple model that approximates the source as a 8 km-by-6 km sill at a depth of 5 km, assuming a rectangular dislocation in a half space with uniform elastic properties. Between 2007 and 2013, the modeled sill increased in volume by at least 190 million cubic meters. Four continuous GPS stations installed in April 2012 around the lake confirm this extraordinarily high rate of vertical uplift and a substantial rate of radial expansion. As of June 2013, the rapid deformation persists in the InSAR and GPS data. To describe the spatial distribution of material properties at depth, we are developing a model using the finite element method. This approach can account for geophysical observations, including magneto-telluric measurements, gravity surveys, and earthquake locations. It can also calculate changes in the local stress field. In particular, a large increase in stress in the magma chamber roof could lead to the initiation and

  3. Validated Fault Tolerant Architectures for Space Station

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.

    1990-01-01

    Viewgraphs on validated fault tolerant architectures for space station are presented. Topics covered include: fault tolerance approach; advanced information processing system (AIPS); and fault tolerant parallel processor (FTPP).

  4. Geological setting and paleomagnetism of the Eocene red beds of Laguna Brava Formation (Quebrada Santo Domingo, northwestern Argentina)

    NASA Astrophysics Data System (ADS)

    Vizán, H.; Geuna, S.; Melchor, R.; Bellosi, E. S.; Lagorio, S. L.; Vásquez, C.; Japas, M. S.; Ré, G.; Do Campo, M.

    2013-01-01

    The red bed succession cropping out in the Quebrada Santo Domingo in northwestern Argentina had been for long considered as Upper Triassic-Lower Jurassic in age based on weak radiometric and paleontological evidence. Preliminary paleomagnetic data confirmed the age and opened questions about the nature of fossil footprints with avian features discovered in the section. Recently the stratigraphic scheme was reviewed with the identification of previously unrecognized discontinuities, and a radiometric dating obtained in a tuff, indicated an Eocene age for the Laguna Brava Formation and the fossil bird footprints, much younger than the previously assigned. We present a detailed paleomagnetic study interpreted within a regional tectonic and stratigraphic framework, looking for an explanation for the misinterpretation of the preliminary paleomagnetic data. The characteristic remanent magnetizations pass a tilt test and a reversal test. The main magnetic carrier is interpreted to be low Ti titanomagnetites and to a lesser extent hematite. The characteristic remanent magnetization would be essentially detrital. The obtained paleomagnetic pole (PP) for the Laguna Brava Formation has the following geographic coordinates and statistical parameters: N = 29, Lon. = 184.5° E, Lat. = 75.0° S, A95 = 5.6° and K = 23.7. When this PP is compared with another one with similar age obtained in an undeformed area, a declination anomaly is recognized. This anomaly can be interpreted as Laguna Brava Formation belonging to a structural block that rotated about 16° clockwise along a vertical axis after about 34 Ma. This block rotation is consistent with the regional tectonic framework, and would have caused the fortuitous coincidence of the PP with Early Jurassic poles. According to the interpreted magnetostratigraphic correlation, the Laguna Brava Formation would have been deposited during the Late Eocene with a mean sedimentation rate of about 1.4 cm per thousand years, probably in

  5. Waterbirds (other than Laridae) nesting in the middle section of Laguna Cuyutlán, Colima, México.

    PubMed

    Mellink, Eric; Riojas-López, Mónica E

    2008-03-01

    Laguna de Cuyutlán, in the state of Colima, Mexico, is the only large coastal wetland in a span of roughly 1150 km. Despite this, the study of its birds has been largely neglected. Between 2003 and 2006 we assessed the waterbirds nesting in the middle portion of Laguna Cuyutlán, a large tropical coastal lagoon, through field visits. We documented the nesting of 15 species of non-Laridae waterbirds: Neotropic Cormorant (Phalacrocorax brasilianus), Tricolored Egret (Egretta tricolor), Snowy Egret (Egretta thula), Little Blue Heron (Egretta caerulea), Great Egret (Ardea alba), Cattle Egret (Bubulcus ibis), Black-crowned Night-heron (Nycticorax nycticorax), Yellow-crowned Night-heron (Nyctanassa violacea), Green Heron (Butorides virescens), Roseate Spoonbill (Platalea ajaja), White Ibis (Eudocimus albus), Black-bellied Whistling-duck (Dendrocygna autumnalis), Clapper Rail (Rallus longirostris), Snowy Plover (Charadrius alexandrinus), and Black-necked Stilt (Himantopus mexicanus). These add to six species of Laridae known to nest in that area: Laughing Gulls (Larus atricilla), Royal Terns (Thalasseus maximus), Gull-billed Terns (Gelochelidon nilotica), Forster's Terns (S. forsteri), Least Terns (Sternula antillarum), and Black Skimmer (Rynchops niger), and to at least 57 species using it during the non-breeding season. With such bird assemblages, Laguna Cuyutlán is an important site for waterbirds, which should be given conservation status. PMID:18624252

  6. A 6000-year record of ecological and hydrological changes from Laguna de la Leche, north coastal Cuba

    NASA Astrophysics Data System (ADS)

    Peros, Matthew C.; Reinhardt, Eduard G.; Davis, Anthony M.

    2007-01-01

    Laguna de la Leche, north coastal Cuba, is a shallow (≤ 3 m), oligohaline (˜ 2.0-4.5‰) coastal lake surrounded by mangroves and cattail stands. A 227-cm core was studied using loss-on-ignition, pollen, calcareous microfossils, and plant macrofossils. From ˜6200 to ˜ 4800 cal yr BP, the area was an oligohaline lake. The period from ˜ 4800 to ˜ 4200 cal yr BP saw higher water levels and a freshened system; these changes are indicated by an increase in the regional pollen rain, as well as by the presence of charophyte oogonia and an increase in freshwater gastropods (Hydrobiidae). By ˜ 4000 cal yr BP, an open mesohaline lagoon had formed; an increase in salt-tolerant foraminifers suggests that water level increase was driven by relative sea level rise. The initiation of Laguna de la Leche correlates with a shift to wetter conditions as indicated in pollen records from the southeastern United States (e.g., Lake Tulane). This synchronicity suggests that sea level rise caused middle Holocene environmental change region-wide. Two other cores sampled from mangrove swamps in the vicinity of Laguna de la Leche indicate that a major expansion of mangroves was underway by ˜ 1700 cal yr BP.

  7. Cable fault locator research

    NASA Astrophysics Data System (ADS)

    Cole, C. A.; Honey, S. K.; Petro, J. P.; Phillips, A. C.

    1982-07-01

    Cable fault location and the construction of four field test units are discussed. Swept frequency sounding of mine cables with RF signals was the technique most thoroughly investigated. The swept frequency technique is supplemented with a form of moving target indication to provide a method for locating the position of a technician along a cable and relative to a suspected fault. Separate, more limited investigations involved high voltage time domain reflectometry and acoustical probing of mine cables. Particular areas of research included microprocessor-based control of the swept frequency system, a microprocessor based fast Fourier transform for spectral analysis, and RF synthesizers.

  8. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  9. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  10. Ius Chasma Fault

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-415, 8 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 'text-book example' of an offset in layered rock caused by a fault. The offset is most easily seen near the upper right of the image. The martian crust is faulted, and the planet has probably experienced 'earthquakes' (or, marsquakes) in the past. This scene is located on the floor of Ius Chasma near 7.8oS, 80.6oW. Sunlight illuminates the scene from the upper left.

  11. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOEpatents

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  12. Fault terminations, Seminoe Mountains, Wyoming

    SciTech Connect

    Dominic, J.B.; McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Two basement-involved faults terminate in folds in the Seminoe Mountains. Mesoscopic and macroscopic structures in sedimentary rocks provide clues to the interrelationship of faults and folds in this region, and on the linkage between faulting and folding in general. The Hurt Creek fault trends 320[degree] and has maximum separation of 1.5 km measured at the basement/cover contact. Separation on the fault decreases upsection to zero within the Jurassic Sundance Formation. Unfaulted rock units form an anticline around the fault tip. The complementary syncline is angular with planar limbs and a narrow hinge zone. The syncline axial trace intersects the fault in the footwall at the basement/cover cut-off. Map patterns are interpreted to show thickening of Mesozoic units adjacent to the syncline hinge. In contrast, extensional structures are common in the faulted anticline within the Permian Goose Egg and Triassic Chugwater Formations. A hanging wall splay fault loses separation into the Goose Egg formation which is thinned by 50% at the fault tip. Mesoscopic normal faults are oriented 320--340[degree] and have an average inclination of 75[degree] SW. Megaboudins of Chugwater are present in the footwall of the Hurt Creek fault, immediately adjacent to the fault trace. The Black Canyon fault transported Precambrian-Pennsylvanian rocks over Pennsylvanian Tensleep sandstone. This fault is layer-parallel at the top of the Tensleep and loses separation along strike into an unfaulted syncline in the Goose Egg Formation. Shortening in the pre-Permian units is accommodated by slip on the basement-involved Black Canyon fault. Equivalent shortening in Permian-Cretaceous units occurs on a system of thin-skinned'' thrust faults.

  13. Fault displacement hazard for strike-slip faults

    USGS Publications Warehouse

    Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D.

    2011-01-01

    In this paper we present a methodology, data, and regression equations for calculating the fault rupture hazard at sites near steeply dipping, strike-slip faults. We collected and digitized on-fault and off-fault displacement data for 9 global strikeslip earthquakes ranging from moment magnitude M 6.5 to M 7.6 and supplemented these with displacements from 13 global earthquakes compiled byWesnousky (2008), who considers events up to M 7.9. Displacements on the primary fault fall off at the rupture ends and are often measured in meters, while displacements on secondary (offfault) or distributed faults may measure a few centimeters up to more than a meter and decay with distance from the rupture. Probability of earthquake rupture is less than 15% for cells 200 m??200 m and is less than 2% for 25 m??25 m cells at distances greater than 200mfrom the primary-fault rupture. Therefore, the hazard for off-fault ruptures is much lower than the hazard near the fault. Our data indicate that rupture displacements up to 35cm can be triggered on adjacent faults at distances out to 10kmor more from the primary-fault rupture. An example calculation shows that, for an active fault which has repeated large earthquakes every few hundred years, fault rupture hazard analysis should be an important consideration in the design of structures or lifelines that are located near the principal fault, within about 150 m of well-mapped active faults with a simple trace and within 300 m of faults with poorly defined or complex traces.

  14. Fault tree models for fault tolerant hypercube multiprocessors

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Tuazon, Jezus O.

    1991-01-01

    Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.

  15. Postglacial eruptive history of Laguna del Maule volcanic field in Chile, from fallout stratigraphy in Argentina

    NASA Astrophysics Data System (ADS)

    Fierstein, J.; Sruoga, P.; Amigo, A.; Elissondo, M.; Rosas, M.

    2012-12-01

    The Laguna del Maule (LdM) volcanic field, which surrounds the 54-km2 lake of that name, covers ~500 km2 of rugged glaciated terrain with Quaternary lavas and tuffs that extend for 40 km westward from the Argentine frontier and 30 km N-S from the Rio Campanario to Laguna Fea in the Southern Volcanic Zone of Chile. Geologic mapping (Hildreth et al., 2010) shows that at least 130 separate vents are part of the LdM field, from which >350 km3 of products have erupted since 1.5 Ma. These include a ring of 36 postglacial rhyolite and rhyodacite coulees and domes that erupted from 24 separate vents and encircle the lake, suggesting a continued large magma reservoir. Because the units are young, glassy, and do not overlap, only a few ages had been determined and the sequence of most of the postglacial eruptions had not previously been established. However, most of these postglacial silicic eruptions were accompanied by explosive eruptions of pumice and ash. Recent investigations downwind in Argentina are combining stratigraphy, grain-size analysis, chemistry, and radiocarbon dating to correlate the tephra with eruptive units mapped in Chile, assess fallout distribution, and establish a time-stratigraphic framework for the postglacial eruptions at Laguna del Maule. Two austral summer field seasons with a tri-country collaboration among the geological surveys of the U.S., Chile, and Argentina, have now established that a wide area east of the volcanic field was blanketed by at least 3 large explosive eruptions from LdM sources, and by at least 3 more modest, but still significant, eruptions. In addition, an ignimbrite from the LdM Barrancas vent complex on the border in the SE corner of the lake traveled at least 15 km from source and now makes up a pyroclastic mesa that is at least 40 m thick. This ignimbrite (72-75% SiO2) preceded a series of fall deposits that are correlated with eruption of several lava flows that built the Barrancas complex. Recent 14C dates suggest

  16. A 5000 Year Record of Andean South American Summer Monsoon Variability from Laguna de Ubaque, Colombia

    NASA Astrophysics Data System (ADS)

    Rudloff, O. M.; Bird, B. W.; Escobar, J.

    2014-12-01

    Our understanding of Northern Hemisphere South American summer monsoon (SASM) dynamics during the Holocene has been limited by the small number of terrestrial paleoclimate records from this region. In order to increase our knowledge of SASM variability and to better inform our predictions of its response to ongoing rapid climate change, we require high-resolution paleoclimate records from the Northern Hemisphere Andes. To this end, we present sub-decadally resolved sedimentological and geochemical data from Laguna de Ubaque that spans the last 5000 years. Located in the Eastern Cordillera of the Colombian Andes, Laguna de Ubaque (2070 m asl) is a small, east facing moraine-dammed lake in the upper part of the Rio Meta watershed near Bogotá containing finely laminated clastic sediments. Dry bulk density, %organic matter, %carbonate and magnetic susceptibility (MS) results from Ubaque suggest a period of intense precipitation between 3500 and 2000 years BP interrupted by a 300 yr dry interval centered at 2700 years BP. Following this event, generally drier conditions characterize the last 2000 years. Although considerably lower amplitude than the middle Holocene pluvial events, variability in the sedimentological data support climatic responses during the Medieval Climate Anomaly (MCA; 900 to 1200 CE) and Little Ice Age (LIA; 1450 to 1900 CE) that are consistent with other records of local Andean conditions. In particular, reduced MS during the MCA suggests a reduction in terrestrial material being washed into the lake as a result of generally drier conditions. The LIA on the other hand shows a two phase structure with increased MS between 1450 and 1600 CE, suggesting wetter conditions during the onset of the LIA, and reduced MS between 1600 and 1900 CE, suggesting a return to drier conditions during the latter part of the LIA. These LIA trends are similar to the Quelccaya accumulation record, possibly supporting an in-phase relationship between the South American

  17. The Maars of the Tuxtla Volcanic Field: the Example of 'laguna Pizatal'

    NASA Astrophysics Data System (ADS)

    Espindola, J.; Zamora-Camacho, A.; Hernandez-Cardona, A.; Alvarez del Castillo, E.; Godinez, M.

    2013-12-01

    Los Tuxtlas Volcanic Field (TVF), also known as Los Tuxtlas massif, is a structure of volcanic rocks rising conspicuously in the south-central part of the coastal plains of eastern Mexico. The TVF seems related to the upper cretaceous magmatism of the NW part of the Gulf's margin (e.g. San Carlos and Sierra de Tamaulipas alkaline complexes) rather than to the nearby Mexican Volcanic Belt. The volcanism in this field began in late Miocene and has continued in historical times, The TVF is composed of 4 large volcanoes (San Martin Tuxtla, San Martin Pajapan, Santa Marta, Cerro El Vigia), at least 365 volcanic cones and 43 maars. In this poster we present the distribution of the maars, their size and depths. These maars span from a few hundred km to almost 1 km in average diameter, and a few meters to several tens of meters in depth; most of them filled with lakes. As an example on the nature of these structures we present our results of the ongoing study of 'Laguna Pizatal or Pisatal' (18° 33'N, 95° 16.4'W, 428 masl) located some 3 km from the village of Reforma, on the western side of San Martin Tuxtla volcano. Laguna Pisatal is a maar some 500 meters in radius and a depth about 40 meters from the surrounding ground level. It is covered by a lake 200 m2 in extent fed by a spring discharging on its western side. We examined a succession of 15 layers on the margins of the maar, these layers are blast deposits of different sizes interbedded by surge deposits. Most of the contacts between layers are irregular; which suggests scouring during deposition of the upper beds. This in turn suggests that the layers were deposited in a rapid series of explosions, which mixed juvenile material with fragments of the preexisting bedrock. We were unable to find the extent of these deposits since the surrounding areas are nowadays sugar cane plantations and the lake has overspilled in several occassions.

  18. Characteristics of On-fault and Off-fault displacement of various fault types based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2015-12-01

    There are two types of fault displacement related to the earthquake fault: on-fault displacement and off-fault displacement. Off-fault displacement should be evaluated in important facilities, such as Nuclear Installations. Probabilistic Fault Displacement Hazard Analysis (PFDHA) is developing on the basis of PSHA. PFDHA estimates on-fault and off-fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. However, observed displacement data are still sparse, especially off-fault displacement. In Nuclear Installations, estimation of off-fault displacement is more important than that of on-fault. We carried out numerical fault displacement simulations to assist in understanding distance-displacement relations of on-fault and off-fault according to fault types, normal, reverse and strike fault. We used Okada's dislocation method. The displacements were calculated based on the single fault model with several rakes of slip. On-fault displacements (along the fault profile) of each fault types show a similar trend. Off-fault displacements (cross profile to the fault) of vertical (reverse and normal) fault types show the rapid decreasing displacement on the foot wall side. In the presentation, we will show the displacement profile and also stress, strain and so on. The dislocation model can not express discontinuous displacements. In the future, we will apply various numerical simulations (Finite Element Method, Distinct Element Method) in order to evaluate off-fault displacements. We will also compare numerical simulation results with observed data.

  19. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  20. Towards Fault Resilient Global Arrays

    SciTech Connect

    Tipparaju, Vinod; Krishnan, Manoj Kumar; Palmer, Bruce J.; Petrini, Fabrizio; Nieplocha, Jaroslaw

    2007-09-03

    The focus of the current paper is adding fault resiliency to the Global Arrays. We extended the GA toolkit to provide a minimal level of capabilities to enable programmer to implement fault resiliency at the user level. Our fault-recovery approach is programmer assisted and based on frequent incremental checkpoints and rollback recovery. In addition, it relies of pool of spare nodes that are used to replace the failing node. We demonstrate usefulness of fault resilient Global Arrays in application context.

  1. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  2. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  3. Dynamic Fault Detection Chassis

    SciTech Connect

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

  4. Row fault detection system

    SciTech Connect

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  5. Fault-Related Sanctuaries

    NASA Astrophysics Data System (ADS)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  6. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  7. Earthquakes and fault creep on the northern San Andreas fault

    USGS Publications Warehouse

    Nason, R.

    1979-01-01

    At present there is an absence of both fault creep and small earthquakes on the northern San Andreas fault, which had a magnitude 8 earthquake with 5 m of slip in 1906. The fault has apparently been dormant after the 1906 earthquake. One possibility is that the fault is 'locked' in some way and only produces great earthquakes. An alternative possibility, presented here, is that the lack of current activity on the northern San Andreas fault is because of a lack of sufficient elastic strain after the 1906 earthquake. This is indicated by geodetic measurements at Fort Ross in 1874, 1906 (post-earthquake), and 1969, which show that the strain accumulation in 1969 (69 ?? 10-6 engineering strain) was only about one-third of the strain release (rebound) in the 1906 earthquake (200 ?? 10-6 engineering strain). The large difference in seismicity before and after 1906, with many strong local earthquakes from 1836 to 1906, but only a few strong earthquakes from 1906 to 1976, also indicates a difference of elastic strain. The geologic characteristics (serpentine, fault straightness) of most of the northern San Andreas fault are very similar to the characteristics of the fault south of Hollister, where fault creep is occurring. Thus, the current absence of fault creep on the northern fault segment is probably due to a lack of sufficient elastic strain at the present time. ?? 1979.

  8. An empirical comparison of software fault tolerance and fault elimination

    NASA Technical Reports Server (NTRS)

    Shimeall, Timothy J.; Leveson, Nancy G.

    1991-01-01

    Reliability is an important concern in the development of software for modern systems. Some researchers have hypothesized that particular fault-handling approaches or techniques are so effective that other approaches or techniques are superfluous. The authors have performed a study that compares two major approaches to the improvement of software, software fault elimination and software fault tolerance, by examination of the fault detection obtained by five techniques: run-time assertions, multi-version voting, functional testing augmented by structural testing, code reading by stepwise abstraction, and static data-flow analysis. This study has focused on characterizing the sets of faults detected by the techniques and on characterizing the relationships between these sets of faults. The results of the study show that none of the techniques studied is necessarily redundant to any combination of the others. Further results reveal strengths and weakness in the fault detection by the techniques studied and suggest directions for future research.

  9. Stratigraphy and Characterization of Volcanic Deposits on the Northwestern Flanks of Mt. Makiling, Laguna, Philippines

    NASA Astrophysics Data System (ADS)

    Ybanez, R. L.; Bonus, A. A. B.; Judan, J. M.; Racoma, B. A.; Morante, K. A. M.; Balangue, M. I. R. D.

    2014-12-01

    Mt. Makiling is an inactive stratovolcano located in the province of Laguna. Semi-detailed geologic field mapping on the northwestern low-level flanks and apron of the volcano was conducted. Exposures reveal a volcanic terrain hosting a wide variety of volcanic rocks: lava flows, pyroclastic surges, pyroclastic flows, and tuff deposits. Stratigraphic logging of the volcanic deposits showed differences in occurrence of the deposit types as well as their characteristics. The pyroclastic flow deposits are found at the base of the column overlain by pyroclastic surges which were more common in the area. Capping the pyroclastic surges is a thin layer of tuffaceous units. Isolated deposits of lava flows of andesitic composition were mapped in the western flank of Mt. Makiling. These varying volcanic deposits are derived from different eruptive activities of Mt. Makiling, with at least three separate eruptive episodes indicated by the exposed deposits. Two separate explosive eruptions are marked by two different pyroclastic deposits, while an effusive episode, marked by andesitic lava flows, can also be identified. The pyroclastic surge deposit is uncharacteristically thick, around a hundred meters or more exposed, providing further questions as to the magnitude of past eruptions or the mechanism of pyroclastic material deposition around the volcano. Mt. Makiling, thus, has historically undergone different eruption types, but still releases generally the same material composition across varying deposits: intermediate or andesitic composition. This is consistent with the trend of Philippine volcanoes, and with the Macolod corridor which hosts this volcanic system.

  10. Impact of Water Resorts Development along Laguna de Bay on Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Jago-on, K. A. B.; Reyes, Y. K.; Siringan, F. P.; Lloren, R. B.; Balangue, M. I. R. D.; Pena, M. A. Z.; Taniguchi, M.

    2014-12-01

    Rapid urbanization and land use changes in areas along Laguna de Bay, one of the largest freshwater lake in Southeast Asia, have resulted in increased economic activities and demand for groundwater resources from households, commerce and industries. One significant activity that can affect groundwater is the development of the water resorts industry, which includes hot springs spas. This study aims to determine the impact of the proliferation of these water resorts in Calamba and Los Banos, urban areas located at the southern coast of the lake on the groundwater as a resource. Calamba, being the "Hot Spring Capital of the Philippines", presently has more than 300 resorts, while Los Banos has at least 38 resorts. Results from an initial survey of resorts show that the swimming pools are drained/ changed on an average of 2-3 times a week or even daily during peak periods of tourist arrivals. This indicates a large demand on the groundwater. Monitoring of actual groundwater extraction is a challenge however, as most of these resorts operate without water use permits. The unrestrained exploitation of groundwater has resulted to drying up of older wells and decrease in hot spring water temperature. It is necessary to strengthen implementation of laws and policies, and enhance partnerships among government, private sector groups, civil society and communities to promote groundwater sustainability.

  11. Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina.

    PubMed

    Wilf, Peter; Johnson, Kirk R; Cúneo, N Rubén; Smith, M Elliot; Singer, Bradley S; Gandolfo, Maria A

    2005-06-01

    The origins of South America's exceptional plant diversity are poorly known from the fossil record. We report on unbiased quantitative collections of fossil floras from Laguna del Hunco (LH) and Río Pichileufú (RP) in Patagonia, Argentina. These sites represent a frost-free humid biome in South American middle latitudes of the globally warm Eocene. At LH, from 4,303 identified specimens, we recognize 186 species of plant organs and 152 species of leaves. Adjusted for sample size, the LH flora is more diverse than comparable Eocene floras known from other continents. The RP flora shares several taxa with LH and appears to be as rich, although sampling is preliminary. The two floras were previously considered coeval. However, (40)Ar/(39)Ar dating of three ash-fall tuff beds in close stratigraphic association with the RP flora indicates an age of 47.46+/-0.05 Ma, 4.5 million years younger than LH, for which one tuff is reanalyzed here as 51.91+/-0.22 Ma. Thus, diverse floral associations in Patagonia evolved by the Eocene, possibly in response to global warming, and were persistent and areally extensive. This suggests extraordinary richness at low latitudes via the latitudinal diversity gradient, corroborated by published palynological data from the Eocene of Colombia. PMID:15937744

  12. Laguna Negra Virus Infection Causes Hantavirus Pulmonary Syndrome in Turkish Hamsters (Mesocricetus brandti).

    PubMed

    Hardcastle, K; Scott, D; Safronetz, D; Brining, D L; Ebihara, H; Feldmann, H; LaCasse, R A

    2016-01-01

    Laguna Negra virus (LNV) is a New World hantavirus associated with severe and often fatal cardiopulmonary disease in humans, known as hantavirus pulmonary syndrome (HPS). Five hamster species were evaluated for clinical and serologic responses following inoculation with 4 hantaviruses. Of the 5 hamster species, only Turkish hamsters infected with LNV demonstrated signs consistent with HPS and a fatality rate of 43%. Clinical manifestations in infected animals that succumbed to disease included severe and rapid onset of dyspnea, weight loss, leukopenia, and reduced thrombocyte numbers as compared to uninfected controls. Histopathologic examination revealed lung lesions that resemble the hallmarks of HPS in humans, including interstitial pneumonia and pulmonary edema, as well as generalized infection of endothelial cells and macrophages in major organ tissues. Histologic lesions corresponded to the presence of viral antigen in affected tissues. To date, there have been no small animal models available to study LNV infection and pathogenesis. The Turkish hamster model of LNV infection may be important in the study of LNV-induced HPS pathogenesis and development of disease treatment and prevention strategies. PMID:25722219

  13. The ambient acoustic environment in Laguna San Ignacio, Baja California Sur, Mexico.

    PubMed

    Seger, Kerri D; Thode, Aaron M; Swartz, Steven L; Urbán, Jorge R

    2015-11-01

    Each winter gray whales (Eschrichtius robustus) breed and calve in Laguna San Ignacio, Mexico, where a robust, yet regulated, whale-watching industry exists. Baseline acoustic environments in LSI's three zones were monitored between 2008 and 2013, in anticipation of a new road being paved that will potentially increase tourist activity to this relatively isolated location. These zones differ in levels of both gray whale usage and tourist activity. Ambient sound level distributions were computed in terms of percentiles of power spectral densities. While these distributions are consistent across years within each zone, inter-zone differences are substantial. The acoustic environment in the upper zone is dominated by snapping shrimp that display a crepuscular cycle. Snapping shrimp also affect the middle zone, but tourist boat transits contribute to noise distributions during daylight hours. The lower zone has three source contributors to its acoustic environment: snapping shrimp, boats, and croaker fish. As suggested from earlier studies, a 300 Hz noise minimum exists in both the middle and lower zones of the lagoon, but not in the upper zone. PMID:26627811

  14. Estimating floodplain sedimentation in the Laguna de Santa Rosa, Sonoma County, CA

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Hupp, Cliff R.

    2013-01-01

    We present a conceptual and analytical framework for predicting the spatial distribution of floodplain sedimentation for the Laguna de Santa Rosa, Sonoma County, CA. We assess the role of the floodplain as a sink for fine-grained sediment and investigate concerns regarding the potential loss of flood storage capacity due to historic sedimentation. We characterized the spatial distribution of sedimentation during a post-flood survey and developed a spatially distributed sediment deposition potential map that highlights zones of floodplain sedimentation. The sediment deposition potential map, built using raster files that describe the spatial distribution of relevant hydrologic and landscape variables, was calibrated using 2 years of measured overbank sedimentation data and verified using longer-term rates determined using dendrochronology. The calibrated floodplain deposition potential relation was used to estimate an average annual floodplain sedimentation rate (3.6 mm/year) for the ~11 km2 floodplain. This study documents the development of a conceptual model of overbank sedimentation, describes a methodology to estimate the potential for various parts of a floodplain complex to accumulate sediment over time, and provides estimates of short and long-term overbank sedimentation rates that can be used for ecosystem management and prioritization of restoration activities.

  15. Fault diagnosis of analog circuits

    SciTech Connect

    Bandler, J.W.; Salama, A.E.

    1985-08-01

    In this paper, various fault location techniques in analog networks are described and compared. The emphasis is on the more recent developments in the subject. Four main approaches for fault location are addressed, examined, and illustrated using simple network examples. In particular, we consider the fault dictionary approach, the parameter identification approach, the fault verification approach, and the approximation approach. Theory and algorithms that are associated with these approaches are reviewed and problems of their practical application are identified. Associated with the fault dictionary approach we consider fault dictionary construction techniques, methods of optimum measurement selection, different fault isolation criteria, and efficient fault simulation techniques. Parameter identification techniques that either utilize linear or nonlinear systems of equations to identify all network elements are examined very thoroughly. Under fault verification techniques we discuss node-fault diagnosis, branch-fault diagnosis, subnetwork testability conditions as well as combinatorial techniques, the failure bound technique, and the network decomposition technique. For the approximation approach we consider probabilistic methods and optimization-based methods. The artificial intelligence technique and the different measures of testability are also considered. The main features of the techniques considered are summarized in a comparative table. An extensive, but not exhaustive, bibliography is provided.

  16. Fault Scarp Offsets and Fault Population Analysis on Dione

    NASA Astrophysics Data System (ADS)

    Tarlow, S.; Collins, G. C.

    2010-12-01

    Cassini images of Dione show several fault zones cutting through the moon’s icy surface. We have measured the displacement and length of 271 faults, and estimated the strain occurring in 6 different fault zones. These measurements allow us to quantify the total amount of surface strain on Dione as well as constrain what processes might have caused these faults to form. Though we do not have detailed topography across fault scarps on Dione, we can use their projected size on the camera plane to estimate their heights, assuming a reasonable surface slope. Starting with high resolution images of Dione obtained by the Cassini ISS, we marked points at the top to the bottom of each fault scarp to measure the fault’s projected displacement and its orientation along strike. Line and sample information for the measurements were then processed through ISIS to derive latitude/longitude information and pixel dimensions. We then calculate the three dimensional orientation of a vector running from the bottom to the top of the fault scarp, assuming a 45 degree angle with respect to the surface, and project this vector onto the spacecraft camera plane. This projected vector gives us a correction factor to estimate the actual vertical displacement of the fault scarp. This process was repeated many times for each fault, to show variations of displacement along the length of the fault. To compare each fault to its neighbors and see how strain was accommodated across a population of faults, we divided the faults into fault zones, and created new coordinate systems oriented along the central axis of each fault zone. We could then quantify the amount of fault overlap and add the displacement of overlapping faults to estimate the amount of strain accommodated in each zone. Faults in the southern portion of Padua have a strain of 0.031(+/-) 0.0097, central Padua exhibits a strain of .032(+/-) 0.012, and faults in northern Padua have a strain of 0.025(+/-) 0.0080. The western faults of

  17. Fault intersections along the Hosgri Fault Zone, Central California

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Johnson, S. Y.; Langenheim, V. E.

    2011-12-01

    It is well-established that stresses concentrate at fault intersections or bends when subjected to tectonic loading, making focused studies of these areas particularly important for seismic hazard analysis. In addition, detailed fault models can be used to investigate how slip on one fault might transfer to another during an earthquake. We combine potential-field, high-resolution seismic-reflection, and multibeam bathymetry data with existing geologic and seismicity data to investigate the fault geometry and connectivity of the Hosgri, Los Osos, and Shoreline faults offshore of San Luis Obispo, California. The intersection of the Hosgri and Los Osos faults in Estero Bay is complex. The offshore extension of the Los Osos fault, as imaged with multibeam and high-resolution seismic data, is characterized by a west-northwest-trending zone (1-3 km wide) of near vertical faulting. Three distinct strands (northern, central, and southern) are visible on shallow seismic reflection profiles. The steep dip combined with dramatic changes in reflection character across mapped faults within this zone suggests horizontal offset of rock units and argues for predominantly strike-slip motion, however, the present orientation of the fault zone suggests oblique slip. As the Los Osos fault zone approaches the Hosgri fault, the northern and central strands become progressively more northwest-trending in line with the Hosgri fault. The northern strand runs subparallel to the Hosgri fault along the edge of a long-wavelength magnetic anomaly, intersecting the Hosgri fault southwest of Point Estero. Geophysical modeling suggests the northern strand dips 70° to the northeast, which is in agreement with earthquake focal mechanisms that parallel this strand. The central strand bends northward and intersects the Hosgri fault directly west of Morro Rock, corresponding to an area of compressional deformation visible in shallow seismic-reflection profiles. The southern strand of the Los Osos

  18. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Astrophysics Data System (ADS)

    Padilla, Peter A.

    1991-03-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  19. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  20. Holocene faulting on the Mission fault, northwest Montana

    SciTech Connect

    Ostenaa, D.A.; Klinger, R.E.; Levish, D.R. )

    1993-04-01

    South of Flathead Lake, fault scarps on late Quaternary surfaces are nearly continuous for 45 km along the western flank of the Mission Range. On late Pleistocene alpine lateral moraines, scarp heights reach a maximum of 17 m. Scarp heights on post glacial Lake Missoula surfaces range from 2.6--7.2 m and maximum scarp angles range from 10[degree]--24[degree]. The stratigraphy exposed in seven trenches across the fault demonstrates that the post glacial Lake Missoula scarps resulted from at least two surface-faulting events. Larger scarp heights on late Pleistocene moraines suggests a possible third event. This yields an estimated recurrence of 4--8 kyr. Analyses of scarp profiles show that the age of the most surface faulting is middle Holocene, consistent with stratigraphic evidence found in the trenches. Rupture length and displacement imply earthquake magnitudes of 7 to 7.5. Previous studies have not identified geologic evidence of late Quaternary surface faulting in the Rocky Mountain Trench or on faults north of the Lewis and Clark line despite abundant historic seismicity in the Flathead Lake area. In addition to the Mission fault, reconnaissance studies have located late Quaternary fault scarps along portions of faults bordering Jocko and Thompson Valleys. These are the first documented late Pleistocene/Holocene faults north of the Lewis and Clark line in Montana and should greatly revise estimates of earthquake hazards in this region.

  1. Managing Fault Management Development

    NASA Technical Reports Server (NTRS)

    McDougal, John M.

    2010-01-01

    As the complexity of space missions grows, development of Fault Management (FM) capabilities is an increasingly common driver for significant cost overruns late in the development cycle. FM issues and the resulting cost overruns are rarely caused by a lack of technology, but rather by a lack of planning and emphasis by project management. A recent NASA FM Workshop brought together FM practitioners from a broad spectrum of institutions, mission types, and functional roles to identify the drivers underlying FM overruns and recommend solutions. They identified a number of areas in which increased program and project management focus can be used to control FM development cost growth. These include up-front planning for FM as a distinct engineering discipline; managing different, conflicting, and changing institutional goals and risk postures; ensuring the necessary resources for a disciplined, coordinated approach to end-to-end fault management engineering; and monitoring FM coordination across all mission systems.

  2. Dynamic faulting on a conjugate fault system detected by near-fault tilt measurements

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi

    2015-03-01

    There have been reports of conjugate faults that have ruptured during earthquakes. However, it is still unclear whether or not these conjugate faults ruptured coseismically during earthquakes. In this paper, we investigated near-fault ground tilt motions observed at the IWTH25 station during the 2008 Iwate-Miyagi Nairiku earthquake ( M w 6.9). Since near-fault tilt motion is very sensitive to the fault geometry on which the slip occurs during an earthquake, these data make it possible to distinguish between the main fault rupture and a rupture on the conjugate fault. We examined several fault models that have already been proposed and confirmed that only the models with a conjugated fault could explain the tilt data observed at IWTH25. The results support the existence of simultaneous conjugate faulting during the main rupture. This will contribute to the understanding of earthquake rupture dynamics because the conjugate rupture releases the same shear strain as that released on the main fault, and thus it has been considered quite difficult for both ruptures to accelerate simultaneously.

  3. Carbon and nitrogen isotope composition of core catcher samples from the ICDP deep drilling at Laguna Potrok Aike (Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late

  4. Microbiological quality of chicken- and pork-based street-vended foods from Taichung, Taiwan, and Laguna, Philippines.

    PubMed

    Manguiat, Lydia S; Fang, Tony J

    2013-10-01

    The microbiological quality of chicken- and pork-based street-food samples from Taichung, Taiwan's night markets (50) and Laguna, Philippines' public places (69) was evaluated in comparison to a microbiological guideline for ready-to-eat foods. Different bacterial contamination patterns were observed between 'hot-grilled' and 'cold cooked/fried' food types from the two sampling locations with 'hot grilled' foods generally showing better microbiological quality. Several samples were found to be unsatisfactory due to high levels of aerobic plate count, coliform, Escherichia coli, and Staphylococcus aureus. The highest counts obtained were 8.2 log cfu g⁻¹, 5.4 log cfu g⁻¹, 4.4 log cfu g⁻¹, and 3.9 log cfu g⁻¹, respectively, suggesting poor food hygiene practices and poor sanitation. Salmonella was found in 8% and 7% of Taichung and Laguna samples, respectively, which made the samples potentially hazardous. None of the samples was found to be positive for Listeria monocytogenes and E. coli O157, but Bacillus cereus was detected at the unsatisfactory level of 4 log cfu g⁻¹ in one Laguna sample. Antimicrobial resistance was observed for Salmonella, E. coli, and S. aureus isolates. Food preparation, cooking, and food handling practices were considered to be contributors to the unacceptable microbiological quality of the street foods. Hence, providing training on food hygiene for the street vendors should result in the improvement of the microbiological quality of street foods. The data obtained in this study can be used as input to microbial risk assessments and in identifying science-based interventions to control the hazards. PMID:23764220

  5. Origin and evolution of the Laguna Potrok Aike maar (Southern Patagonia, Argentina) as revealed by seismic data

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; de Batist, M. A.; Niessen, F.; Anselmetti, F.; Ariztegui, D.; Haberzettl, T.; Ohlendorf, C.; Zolitschka, B.

    2009-12-01

    Seismic reflection and refraction data provide insights into the sedimentary infill and the underlying volcanic structure of Laguna Potrok Aike, a maar lake situated in the Pali Aike Volcanic Field, Southern Patagonia. The lake has a diameter of ~3.5 km, a maximum water depth of ~100 m and a presumed age of ~770 ka. Its sedimentary regime is influenced by climatic and hydrologic conditions related to the Antarctic Circumpolar Current, the Southern Hemispheric Westerlies and sporadic outbreaks of Antarctic polar air masses. Multiproxy environmental reconstructions of the last 16 ka document that this terminal lake is highly sensitive to climate change. Laguna Potrok Aike has recently become a major focus of the International Continental Scientific Drilling Program and was drilled down to 100 m below lake floor in late 2008 within the PASADO project. The sediments are likely to contain a continental record spanning the last ca. 80 kyrs unique in the South American realm. Seismic reflection data show relatively undisturbed, stratified lacustrine sediments at least in the upper ~100 m of the sedimentary infill but are obscured possibly by gas and/or coarser material in larger areas. A model calculated from seismic refraction data reveals a funnel-shaped structure embedded in the sandstone rocks of the surrounding Santa Cruz Formation. This funnel structure is filled by lacustrine sediments of up to 370 m in thickness. These can be separated into two distinct subunits with low acoustic velocities of 1500-1800 m s-1 in the upper subunit pointing at unconsolidated lacustrine muds, and enhanced velocities of 2000-2350 m s-1 in the lower subunit. Below these lacustrine sediments, a unit of probably volcanoclastic origin is observed (>2400 m s-1). This sedimentary succession is well comparable to other well-studied sequences (e.g. Messel and Baruth maars, Germany), confirming phreatomagmatic maar explosions as the origin of Laguna Potrok Aike.

  6. The Development of a Restless Rhyolite Magma Chamber at Laguna del Maule, Chile

    NASA Astrophysics Data System (ADS)

    Andersen, N.; Singer, B. S.; Jicha, B. R.; Fierstein, J.; Vazquez, J. A.

    2013-12-01

    The Laguna del Maule (LdM) volcanic field is a site of rapid crustal deformation at rates in excess of 200 mm/yr since 2007. The uplift is centered in the 16 km diameter LdM lake basin, which is ringed by 21 rhyolite domes and coulees erupted since the last glacial retreat. The lack of previously common andesite and dacite eruptions since 19 ka and coherent major and trace element variation throughout post-glacial time suggests the presence of a large silicic magma body beneath the LdM basin. Assimilation-fractional crystallization modeling predicts the rhyolites evolved at 5 km depth by 73% fractionation of a basaltic parent and modest assimilation of granodiorite accounting for up to 20% of the highest silica rhyolite. AFC processes dominate the evolution from basalt, however the differentiation of the silicic magma is complicated by liquid extraction from crystal mush, remelting of cumulate by intruding basalt, and trace element diffusion. Two-oxide thermometry indicates a relatively hot, oxidized system with eruptive temperatures ranging from 760 - 850° C and fO2 at QFM+2. Pilot ion microprobe 238U-230Th dating of zircon rims suggests the shallow LdM magma system was assembled over a period of 100-200 kyr. 40Ar/39Ar geochronology and field relationships reveal the post-glacial silicic volcanism occurred in two phases. Phase 1 began approximately coincident with deglaciation at 25 ka with the eruption of the rhyolite East of Presa Laguna del Maule. Over the next 6 ky, 6 small rhyodacite domes, a larger rhyodacite flow, and 4 andesite flows erupted in the NW basin and two silicic domes 12 km to the SE. Phase 1 culminates with the eruption of the Espejos rhyolite near the N shore of the lake at 19 ka. The locus of volcanism then migrates SE and phase 2 begins at ~10 ka with the eruption of the Cari Launa rhyolite and the early flows of the Barrancas complex. This period is more voluminous, erupting 4.8 km3 compared to 1.7 km3 during phase 1. Phase 2 produced

  7. Disentangling High Frequency Climate Oscillations In A Volcanic Setting Laguna Lejia, Chile

    NASA Astrophysics Data System (ADS)

    Saltzman, S. H.; Ukstins Peate, I.; Giralt, S.; Peate, D. W.; van Alderwerelt, B. M.

    2015-12-01

    Our understanding of the tropics response to periods of rapid climate change such as CAPE I and the Younger Dryas is limited. Laguna Lejia (23°30'0" S 67°42'0" E ~4,300m asl), Chile is a small alkaline paleolake located in the central Altiplano. The volcanoes Lascar, Chiliques, Aguas Calientes and Acamarachi surround it. 1-3 mm laminations in calcareous clay sediments deposited on the southern terrace of Lejia record high-resolution chemical variability in the lake. Preliminary U-Th ages range from 19,567 +739/- 734 yr to 4208 +431/-429 yr, indicating that the Lejia terrace deposits span both CAPE I and the Younger Dryas, periods of rapid global climate change. Changes in the major and trace element composition, δ18O and δ13 C isotopic ratios, and the amount of Li, Mg, Ca, and Sr that can be readily leached from high magnesium smectite clays provide a direct proxy for hydrologic fluctuations. A climate signal can be detected through reoccurring trends in the chemical variability of these sediments; however, the detection of this signal is complicated by interaction with surrounding volcanic edifices. Statistical methods such as PCA analyses using R have been implemented to separate groupings of volcanic controlled elemental fluctuations (Fe, Zr, Nd, Ti, and Al) from ones under the influence of climate. Spectral analyses have been applied to high-resolution major element data collected on Lejia's paleoshores tufa deposits. Data was collected on Ca, Mg and As at .5 um intervals using a Jeol JXA- 8230 Electron Microprobe at the University of Iowa, Earth and Environmental Sciences. These analyses provided statistical evidence for cyclisity at intervals of 5-15 um and 75-150 um in the banding of the tufas. While previous literature attributes the larger bands to annual chemical cycles the origin of the smaller bands is currently under investigation.

  8. Hydrocarbon concentrations in the American oyster, Crassostrea virginica, in Laguna de Terminos, Campeche, Mexico

    SciTech Connect

    Gold-Bouchot, G.; Norena-Barroso, E.; Zapata-Perez, O.

    1995-02-01

    Laguna de Terminos is a 2,500 km{sup 2} coastal lagoon in the southern Gulf of Mexico, located between 18{degrees} 20` and 19{degrees} 00` N, and 91{degrees} 00` and 92{degrees} 20` W (Figure 1). It is a shallow lagoon, with a mean depth of 3.5 m and connected to the Gulf of Mexico through two permanent inlets, Puerto Real to the east and Carmen to the west. Several rivers, most of them from the Grijalva-Usumacinta basin (the largest in Mexico and second largest in the Gulf of Mexico), drain into the lagoon with a mean annual discharge of 6 X 10{sup 9} m{sup 3}/year. This lagoon has been studied systematically, and is probably one of the best known in Mexico. An excellent overview of this lagoon can be found in Yanez-Arancibia and Day. The continental shelf north of Terminos, the Campeche Bank, is the main oil-producing zone in Mexico with a production of about 2 X 10{sup 6} barrels/day. It is also the main shrimp producer in the southern Gulf, with a mean annual catch of 18,000 tonnes/year, which represents 38 to 50% of the national catch in the Gulf of Mexico. The economic importance of this region, along with its extremely high biodiversity, both in terms of species and habitats, has prompted the Mexican government to study the creation of a wildlife refuge around Terminos. Thus, it is very important to know the current levels of pollutants in this area, as a contribution to the management plan of the proposed protected area. This paper looks at hydrocarbon concentrations in oyster tissue. 14 refs., 3 figs., 21 tabs.

  9. Impact of solar radiation on bacterioplankton in Laguna Vilama, a hypersaline Andean lake (4650 m)

    NASA Astrophysics Data System (ADS)

    FaríAs, MaríA. Eugenia; FernáNdez-Zenoff, Verónica; Flores, Regina; OrdóñEz, Omar; EstéVez, Cristina

    2009-06-01

    Laguna Vilama is a hypersaline Lake located at 4660 m altitude in the northwest of Argentina high up in the Andean Puna. The impact of ultraviolet (UV) radiation on bacterioplankton was studied by collecting samples at different times of the day. Molecular analysis (DGGE) showed that the bacterioplankton community is characterized by Gamma-proteobacteria (Halomonas sp., Marinobacter sp.), Alpha-proteobacteria (Roseobacter sp.), HGC (Agrococcus jenensis and an uncultured bacterium), and CFB (uncultured Bacteroidetes). During the day, minor modifications in bacterial diversity such as intensification of Bacteroidetes' signal and an emergence of Gamma-proteobacteria (Marinobacter flavimaris) were observed after solar exposure. DNA damage, measured as an accumulation of Cyclobutane Pyrimidine Dimers (CPDs), in bacterioplankton and naked DNA increased from 100 CPDs MB-1 at 1200 local time (LT) to 300 CPDs MB-1 at 1600 LT, and from 80 CPDs MB-1 at 1200 LT to 640 CPDs MB-1 at 1600 LT, respectively. In addition, pure cultures of Pseudomonas sp. V1 and Brachybacterium sp. V5, two bacteria previously isolated from this environment, were exposed simultaneously with the community, and viability of both strains diminished after solar exposure. No CPD accumulation was observed in either of the exposed cultures, but an increase in mutagenesis was detected in V5. Of both strains only Brachybacterium sp. V5 showed CPD accumulation in naked DNA. These results suggest that the bacterioplankton community is well adapted to this highly solar irradiated environment showing little accumulation of CPDs and few changes in the community composition. They also demonstrate that these microorganisms contain efficient mechanisms against UV damage.

  10. Maternal and child care among the Tagalogs in Bay, Laguna, Philippines.

    PubMed

    Iocano, F L

    1970-12-01

    An ethnographic picture of certain aspects of maternal and child care among the Tagalogs who inhabit the municipality of Bay, Laguna, Philippines is presented. The objective is to illustrate empirically that traditional practices associated with maternal and child care are not guesswork. Maternal and child care is an important aspect of folk medicine in Bay. Measures to prevent miscarrage, to ease labor, and to insure the safety of the mother have been devised and practiced. The health of both the mother and child receives special attention. The medical concern frequently takes on a religious tone, because most of the practices are interwoven with beliefs in the active participation of supernatural beings in human affairs. Yet, the system of delivery and child care includes steps that are recognized in scientific medicine. There is awareness of what care needs to be taken to insure the safety of mother and child. The inaccessibility of technological resources and of modern knowledge in maternal and child care is what inhibits the peasants from moving away from what has been traditionally proven to be successful. There is sex education in terms of hygiene and care among people in the Bay. Adolescent females receive instructions from their mothers on what to do when they begin to menstruate. The rituals are performed because these are part of the medically approved ways of dealing with menstrual problems. The people in the Bay are familiar with methods of controlling birth. Coitus interruptus is the most widely used folk method of birth control. No other method is readily available within the people's economic means. Soapsuds and vaginal creams are also known to some women. PMID:12278379

  11. Modern sedimentation patterns in Laguna de Medina, Southern Spain, derived from lake surface and soil samples

    NASA Astrophysics Data System (ADS)

    van ´t Hoff, Jasmijn; Schröder, Tabea; Reicherter, Klaus; Held, Peter; Melles, Martin

    2016-04-01

    In September 2014 and March 2015, a 25.66 m long sediment core (Co1313) was retrieved from the centre of Laguna de Medina, a small endorheic salt lake in Cádiz, SW Spain. This record covers the last 9.000 years, thus providing an unique archive for Holocene climatic and environmental changes with extraordinary high temporal resolution. For a better understanding of the palaeoenvironmental proxies to be analysed on the sediment core, the modern processes of sediment formation in the lake and its catchment under known environmental conditions were investigated on a set of 46 lake sediment surface samples and 32 soil surface sediment samples from the lake and the close surroundings, respectively. These samples were analysed for bulk mineralogy (XRD), chemical composition (XRF), grain-size distribution (laser scanner), and carbonate, total organic carbon (TOC), nitrogen (TN) and sulphur (TS) contents (elemental analyser). Based on the mineralogical, geochemical and granulometrical data, the lake can be divided into four zones. The northern shore is characterized by particularly high quartz contents and coarse grain sizes. This reflects input from ancient terraces of the Guadalete River that are exposed in that area. The southern shore is characterised by high calcite contents due to sediment supply from the Cretaceous ´Capas rojaś, a series of Subbetic deep-water marl- and limestones. The southeastern and to a lesser extend the northwestern shores show particularly high dolomite contents, reflecting the Triassic dolomites outcroping in the southeastern catchment. The southeastern shore furthermore is also influenced by strong terrestrial input of the Triassic Keuper facies from the most important inlet, Arroyo Fuente Bermeja, as reflected by high contents of Ti, K, Al, Fe, Rb in the lake sediments. The last zone comprises only a small part of the western shore and is characterized by a relatively high gypsum amount. This does not reflect the geology in the catchment

  12. Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile

    USGS Publications Warehouse

    Singer, Brad S.; Andersen, Nathan L.; Le Mével, Hélène; Feigl, Kurt L.; DeMets, Charles; Tikoff, Basil; Thurber, Clifford H.; Jicha, Brian R.; Cardonna, Carlos; Córdova, Loreto; Gil, Fernando; Unsworth, Martyn J.; Williams-Jones, Glyn; Miller, Craig W.; Fierstein, Judith; Hildreth, Edward; Vazquez, Jorge A.

    2014-01-01

    Explosive eruptions of large-volume rhyolitic magma systems are common in the geologic record and pose a major potential threat to society. Unlike other natural hazards, such as earthquakes and tsunamis, a large rhyolitic volcano may provide warning signs long before a caldera-forming eruption occurs. Yet, these signs—and what they imply about magma-crust dynamics—are not well known. This is because we have learned how these systems form, grow, and erupt mainly from the study of ash flow tuffs deposited tens to hundreds of thousands of years ago or more, or from the geophysical imaging of the unerupted portions of the reservoirs beneath the associated calderas. The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007, the crust there has been inflating at an astonishing rate of at least 25 cm/yr. This unique opportunity to investigate the dynamics of a large rhyolitic system while magma migration, reservoir growth, and crustal deformation are actively under way is stimulating a new international collaboration. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ca. 20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. The next phase of this investigation seeks to enlarge the sets of geophysical and geochemical data and to use these observations in numerical models of system dynamics.

  13. Continued Rapid Uplift at Laguna del Maule Volcanic Field (Chile) from 2007 through 2014

    NASA Astrophysics Data System (ADS)

    Le Mével, H.; Feigl, K. L.; Cordova, L.; DeMets, C.; Lundgren, P.

    2014-12-01

    The current rate of uplift at Laguna del Maule (LdM) volcanic field in Chile is among the highest ever observed geodetically for a volcano that is not actively erupting. Using data from interferometric synthetic aperture radar (InSAR) and the Global Positioning System (GPS) recorded at five continuously operating stations, we measure the deformation field with dense sampling in time (1/day) and space (1/hectare). These data track the temporal evolution of the current unrest episode from its inception (sometime between 2004 and 2007) to vertical velocities faster than 200 mm/yr that continue through (at least) July 2014. Building on our previous work, we evaluate the temporal evolution by analyzing data from InSAR (ALOS, TerraSAR-X, TanDEM-X) and GPS [http://dx.doi.org/ 10.1093/gji/ggt438]. In addition, we consider InSAR data from (ERS, ENVISAT, COSMO-Skymed, and UAVSAR), as well as constraints from magneto-telluric (MT), seismic, and gravity surveys. The goal is to test the hypothesis that a recent magma intrusion is feeding a large, existing magma reservoir. What will happen next? To address this question, we analyze the temporal evolution of deformation at other large silicic systems such as Yellowstone, Long Valley, and Three Sisters, during well-studied episodes of unrest. We consider several parameterizations, including piecewise linear, parabolic, and Gaussian functions of time. By choosing the best-fitting model, we expect to constrain the time scales of such episodes and elucidate the processes driving them.

  14. Authigenic, detrital and diagenetic minerals in the Laguna Potrok Aike sediment sequence

    NASA Astrophysics Data System (ADS)

    Nuttin, L.; Francus, P.; Preda, M.; Ghaleb, B.; Hillaire-Marcel, C.

    2013-07-01

    The ˜100 m-long Laguna Potrok Aike sediment sequence yielded a record spanning the Last Glacial period to the Holocene. This paper presents and discusses two aspects of the mineralogy of the lake. The first aspect is based on a semi-quantitative X-ray diffraction analysis of bulk and clay mineralogical assemblages. Minor mineralogical changes are observed throughout the glacial section suggesting relatively uniform sediment sources. The transition into the Holocene is characterized by increasing fluxes of endogenic calcite thought to relate to lower lake levels. The second aspect is based on analysis of uranium-series disequilibria in diagenetic vivianite from the glacial section. U-series ages were expected to yield minimum ages for the host-sediment. Unfortunately, very little authigenic U is present in vivianite grains. The low primary productivity of the lake and thus low organic carbon fluxes might have prevented the development of strong redox gradients at the water-sediment interface and thus reduced diagenetic U-uptake into the sediment. One vivianite sample, at a 56.9 m composite depth, yielded enough authigenic uranium to calculate a 230Th-age of 29.4 ± 5.9 ka (±2σ). This age is younger than the one indicated by the radiocarbon chronology. It is thus concluded that a relatively late diagenetic evolution of the U-Th system characterizes the recovered vivianite minerals. The authigenic U displays a very high excess in 234U (over 238U) with an activity ratio of 4.58 ± 0.58 (±2σ). It suggests that it originates from the transfer of highly fractionated U from surrounding detrital minerals through very low U-content pore waters.

  15. Fluid involvement in normal faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2000-04-01

    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  16. Fault management for data systems

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann

    1993-01-01

    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.

  17. Experimental Fault Reactivation on Favourably and Unfavourably Oriented Faults

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Sibson, R. H.; Renner, J.; Toy, V. G.; di Toro, G.; Smith, S. A.

    2010-12-01

    In this study, we introduce work which aims assess the loading of faults to failure under different stress regimes in a triaxial deformation apparatus. We explore experimentally the reshear of an existing fault in various orientations for particular values of (σ1 - σ3) and σ3' for contrasting loading systems - load-strengthening (equivalent to a thrust fault) with σ1' increasing at constant σ3', versus load-weakening (equivalent to a normal fault) with reducing σ3' under constant σ1'. Experiments are conducted on sawcut granite samples with fault angles at a variety of orientations relative to σ1 , ranging from an optimal orientation for reactivation to lockup angles where new faults are formed in preference to reactivating the existing sawcut orientation. Prefailure and postfailure behaviour is compared in terms of damage zone development via monitoring variations in ultrasonic velocity and acoustic emission behaviour. For example, damage surrounding unfavourably oriented faults is significantly higher than that seen around favourably orientated faults due to greater maximum stresses attained prior to unstable slip, which is reflected by the increased acoustic emission activity leading up to failure. In addition, we also experimentally explore the reshear of natural pseudotachylytes (PSTs) from two different fault zones; the Gole Larghe Fault, Adamello, Italy in which the PSTs are in relatively isotropic Tonalite (at lab sample scale) and the Alpine Fault, New Zealand in which the PSTs are in highly anisotropic foliated shist. We test whether PSTs will reshear in both rock types under the right conditions, or whether new fractures in the wall rock will form in preference to reactivating the PST (PST shear strength is higher than that of the host rock). Are PSTs representative of one slip event?

  18. Fault welding by pseudotachylyte generation

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Toy, V. G.; Di Toro, G.; Renner, J.

    2014-12-01

    During earthquakes, frictional melts can localize on slip surfaces and dramatically weaken faults by melt lubrication. Once seismic slip is arrested, the melt cools and solidifies to form pseudotachylyte (PST), the presence of which is commonly used to infer earthquake slip on ancient exhumed faults. Little is known about the effect of solidified melt on the strength of faults directly preceding a subsequent earthquake. We performed triaxial deformation experiments on cores of tonalite (Gole Larghe fault zone, N. Italy) and mylonite (Alpine fault, New Zealand) in order to assess the strength of PST bearing faults in the lab. Three types of sample were prepared for each rock type; intact, sawcut and PST bearing, and were cored so that the sawcut, PST and foliation planes were orientated at 35° to the length of the core and direction of σ1, i.e., a favorable orientation for reactivation. This choice of samples allowed us to compare the strength of 'pre-earthquake' fault (sawcut) to a 'post-earthquake' fault with solidified frictional melt, and assess their strength relative to intact samples. Our results show that PST veins effectively weld fault surfaces together, allowing previously faulted rocks to regain cohesive strengths comparable to that of an intact rock. Shearing of the PST is not favored, but subsequent failure and slip is accommodated on new faults nucleating at other zones of weakness. Thus, the mechanism of coseismic weakening by melt lubrication does not necessarily facilitate long-term interseismic deformation localization, at least at the scale of these experiments. In natural fault zones, PSTs are often found distributed over multiple adjacent fault planes or other zones of weakness such as foliation planes. We also modeled the temperature distribution in and around a PST using an approximation for cooling of a thin, infinite sheet by conduction perpendicular to its margins at ambient temperatures commensurate with the depth of PST formation

  19. Fault-tolerant processing system

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L. (Inventor)

    1996-01-01

    A fault-tolerant, fiber optic interconnect, or backplane, which serves as a via for data transfer between modules. Fault tolerance algorithms are embedded in the backplane by dividing the backplane into a read bus and a write bus and placing a redundancy management unit (RMU) between the read bus and the write bus so that all data transmitted by the write bus is subjected to the fault tolerance algorithms before the data is passed for distribution to the read bus. The RMU provides both backplane control and fault tolerance.

  20. Fault interaction near Hollister, California

    SciTech Connect

    Mavko, G.M.

    1982-09-10

    A numerical model is used to study fault stress slip near Hollister, California. The geometrically complex system of interacting faults, including the San Andreas, Calaveras, Sargent, and Busch faults, is approximated with a two-dimensional distribution of short planar fault segments in an elastic medium. The steady stress and slip rate are simulated by specifying frictional strength and stepping the remote stress ahead in time. The resulting computed fault stress is roughly proportional to the observed spatial density of small earthquakes, suggesting that the distinction between segments characterized by earthquakes and those with aseismic creep results, in part, from geometry. A nonsteady simulation is made by introducing, in addition, stress drops for individual moderate earthquakes. A close fit of observed creep with calculated slip on the Calaveras and San Andreas faults suggests that many changes in creep rate (averaged over several months) are caused by local moderate earthquakes. In particular, a 3-year creep lag preceding the August 6, 1979, Coyote Lake earthquake on the Calaveras fault seems to have been a direct result of the November 28, 1974, Thanksgiving Day earthquake on the Busch fault. Computed lags in slip rate preceding some other moderate earthquakes in the area are also due to earlier earthquakes. Although the response of the upper 1 km of the fault zone may cause some individual creep events and introduce delays in others, the long-term rate appears to reflect deep slip.

  1. Fault interaction near Hollister, California

    NASA Astrophysics Data System (ADS)

    Mavko, Gerald M.

    1982-09-01

    A numerical model is used to study fault stress and slip near Hollister, California. The geometrically complex system of interacting faults, including the San Andreas, Calaveras, Sargent, and Busch faults, is approximated with a two-dimensional distribution of short planar fault segments in an elastic medium. The steady stress and slip rate are simulated by specifying frictional strength and stepping the remote stress ahead in time. The resulting computed fault stress is roughly proportional to the observed spatial density of small earthquakes, suggesting that the distinction between segments characterized by earthquakes and those with aseismic creep results, in part, from geometry. A nosteady simulation is made by introducing, in addition, stress drops for individual moderate earthquakes. A close fit of observed creep with calculated slip on the Calaveras and San Andreas faults suggests that many changes in creep rate (averaged over several months) are caused by local moderate earthquakes. In particular, a 3-year creep lag preceding the August 6, 1979, Coyote Lake earthquake on the Calaveras fault seems to have been a direct result of the November 28, 1974, Thanksgiving Day earthquake on the Busch fault. Computed lags in slip rate preceding some other moderate earthquakes in the area are also due to earlier earthquakes. Although the response of the upper 1 km of the fault zone may cause some individual creep events and introduce delays in others, the long-term rate appears to reflect deep slip.

  2. Perspective View, Garlock Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast

  3. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  4. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  5. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Fault. 404.507 Section 404.507...

  6. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Fault. 404.507 Section 404.507...

  7. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Fault. 404.507 Section 404.507...

  8. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fault. 404.507 Section 404.507...

  9. Central Asia Active Fault Database

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  10. Fault Management Design Strategies

    NASA Technical Reports Server (NTRS)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  11. SFT: Scalable Fault Tolerance

    SciTech Connect

    Petrini, Fabrizio; Nieplocha, Jarek; Tipparaju, Vinod

    2006-04-15

    In this paper we will present a new technology that we are currently developing within the SFT: Scalable Fault Tolerance FastOS project which seeks to implement fault tolerance at the operating system level. Major design goals include dynamic reallocation of resources to allow continuing execution in the presence of hardware failures, very high scalability, high efficiency (low overhead), and transparency—requiring no changes to user applications. Our technology is based on a global coordination mechanism, that enforces transparent recovery lines in the system, and TICK, a lightweight, incremental checkpointing software architecture implemented as a Linux kernel module. TICK is completely user-transparent and does not require any changes to user code or system libraries; it is highly responsive: an interrupt, such as a timer interrupt, can trigger a checkpoint in as little as 2.5μs; and it supports incremental and full checkpoints with minimal overhead—less than 6% with full checkpointing to disk performed as frequently as once per minute.

  12. Colorado Regional Faults

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  13. Dynamics of fault interaction - Parallel strike-slip faults

    NASA Astrophysics Data System (ADS)

    Harris, Ruth A.; Day, Steven M.

    1993-03-01

    We use a 2D finite difference computer program to study the effect of fault steps on dynamic ruptures. Our results indicate that a strike-slip earthquake is unlikely to jump a fault step wider than 5 km, in correlation with field observations of moderate to great-sized earthquakes. We also find that dynamically propagating ruptures can jump both compressional and dilational fault steps, although wider dilational fault steps can be jumped. Dilational steps tend to delay the rupture for a longer time than compressional steps do. This delay leads to a slower apparent rupture velocity in the vicinity of dilational steps. These 'dry' cases assumed hydrostatic or greater pore-pressures but did not include the effects of changing pore pressures. In an additional study, we simulated the dynamic effects of a fault rupture on 'undrained' pore fluids to test Sibson's (1985, 1986) suggestion that 'wet' dilational steps are a barrier to rupture propagation. Our numerical results validate Sibson's hypothesis.

  14. Congener-specific polychlorinated biphenyl patterns in eggs of aquatic birds from the Lower Laguna Madre, Texas

    SciTech Connect

    Mora, M.A.

    1996-06-01

    Eggs from four aquatic bird species nesting in the Lower Laguna Madre, Texas, were collected to determine differences and similarities in the accumulation of congener-specific polychlorinated biphenyls (PCBs) and to evaluate PCB impacts on reproduction. Because of the different toxicities of PCB congeners, it is important to know which congeners contribute most to total PCBs. The predominant PCB congeners were 153, 138, 180, 110, 118, 187, and 92. Collectively, congeners 153, 138, and 180 accounted for 26 to 42% of total PCBs. Congener 153 was the most abundant in Caspian terns (Sterna caspia) and great blue herons (Ardea herodias) and congener 138 was the most abundant in snowy egrets (Egretta thula) and tricolored herons (Egretta tricolor). Principal component analysis indicated a predominance of higher chlorinated biphenyls in Caspian terns and great blue herons and lower chlorinated biphenyls in tricolored herons. Snowy egrets had a predominance of pentachlorobiphenyls. These results suggest that there are differences in PCB congener patterns in closely related species and that these differences are more likely associated with the species` diet rather than metabolism. Total PCBs were significantly greater (p < 0.05) in Caspian terns than in the other species. Overall, PCBs in eggs of birds from the Lower Laguna Madre were below concentrations known to affect bird reproduction.

  15. Vegetation history in southern Patagonia: first palynological results of the ICDP lake drilling project at Laguna Potrok Aike, Argentina

    NASA Astrophysics Data System (ADS)

    Schäbitz, Frank; Michael, Wille

    2010-05-01

    Laguna Potrok Aike located in southern Argentina is one of the very few locations that are suited to reconstruct the paleoenvironmental and climatic history of southern Patagonia. In the framework of the multinational ICDP deep drilling project PASADO several long sediment cores to a composite depth of more than 100 m were obtained. Here we present first results of pollen analyses from sediment material of the core catcher. Absolute time control is not yet available. Pollen spectra with a spatial resolution of three meters show that Laguna Potrok Aike was always surrounded by Patagonian Steppe vegetation. However, the species composition underwent some marked proportional changes through time. The uppermost pollen spectra show a high contribution of Andean forest and charcoal particles as it can be expected for Holocene times and the ending last glacial. The middle part shows no forest and relatively high amounts of pollen from steppe plants indicating cold and dry full glacial conditions. The lowermost samples are characterized by a significantly different species composition as steppe plants like Asteraceae, Caryophyllaceae, Ericaceae and Ephedra became more frequent. In combination with higher charcoal amounts and an algal species composition comparable to Holocene times we suggest that conditions during the formation of sediments at the base of the record were more humid and/or warmer causing a higher fuel availability for charcoal production compared to full glacial times.

  16. Estimated natural streamflow in the Rio San Jose upstream from the pueblos of Acoma and Laguna, New Mexico

    USGS Publications Warehouse

    Risser, D.W.

    1982-01-01

    The development of surface and ground water, which began about 1870 in the upper Rio San Jose drainage basin, has decreased the flow of the Rio San Jose on the Pueblo of Acoma and the Pueblo of Laguna. The purpose of this study was to estimate the natural streamflow in the Rio San Jose that would have entered the pueblos if no upstream water development had taken place. Estimates of natural flow were based upon streamflow and precipitation records, historical accounts of streamflow, records of irrigated acreage, and empirically-derived estimates of the effects on streamflow of Bluewater Lake, groundwater withdrawals, and irrigation diversions. Natural streamflow in the Rio San Jose at the western boundary of the Pueblo of Acoma is estimated to be between 13,000 and 15,000 acre-feet per year, based on 55 years of recorded and reconstructed streamflow data from water years 1913 to 1972. Natural streamflow at the western boundary of the Pueblo of Laguna is estimated to be between 17 ,000 and 19,000 acre-feet per year for the same period. The error in these estimates of natural streamflow is difficult to assess accurately, but it probably is less than 25 percent. (USGS)

  17. Distribution and community structure of ichthyoplankton in Laguna Madre seagrass meadows: Potential impact of seagrass species change

    USGS Publications Warehouse

    Tolan, J.M.; Holt, S.A.; Onuf, C.P.

    1997-01-01

    Seasonal ichthyoplankton surveys were made in the lower Laguna Madre, Texas, to compare the relative utilization of various nursery habitats (shoal grass, Halodule wrightii; manatee grass, Syringodium filiforme;, and unvegetated sand bottom) for both estuarine and offshore-spawned larvae. The species composition and abundance of fish larvae were determined for each habitat type at six locations in the bay. Pushnet ichthyoplankton sampling resulted in 296 total collections, yielding 107,463 fishes representing 55 species in 24 families. A broad spectrum of both the biotic and physical habitat parameters were examined to link the dispersion and distribution of both pre-settlement and post-settlement larvae to the utilization of shallow seagrass habitats. Sample sites were grouped by cluster analysis (Ward's minimum variance method) according to the similarity of their fish assemblages and subsequently examined with a multiple discriminant function analysis to identify important environmental variables. Abiotic environmental factors were most influential in defining groups for samples dominated by early larvae, whereas measures of seagrass complexity defined groups dominated by older larvae and juveniles. Juvenile-stage individuals showed clear habitat preference, with the more shallow Halodule wrightii being the habitat of choice, whereas early larvae of most species were widely distributed over all habitats. As a result of the recent shift of dominance from Halodule wrightii to Syringodium filiforme, overall reductions in the quality of nursery habitat for fishes in the lower Laguna Madre are projected.

  18. Fault deformation mechanisms and fault rocks in micritic limestones: Examples from Corinth rift normal faults

    NASA Astrophysics Data System (ADS)

    Bussolotto, M.; Benedicto, A.; Moen-Maurel, L.; Invernizzi, C.

    2015-08-01

    A multidisciplinary study investigates the influence of different parameters on fault rock architecture development along normal faults affecting non-porous carbonates of the Corinth rift southern margin. Here, some fault systems cut the same carbonate unit (Pindus), and the gradual and fast uplift since the initiation of the rift led to the exhumation of deep parts of the older faults. This exceptional context allows superficial active fault zones and old exhumed fault zones to be compared. Our approach includes field studies, micro-structural (optical microscope and cathodoluminescence), geochemical analyses (δ13C, δ18O, trace elements) and fluid inclusions microthermometry of calcite sin-kinematic cements. Our main results, in a depth-window ranging from 0 m to about 2500 m, are: i) all cements precipitated from meteoric fluids in a close or open circulation system depending on depth; ii) depth (in terms of P/T condition) determines the development of some structures and their sealing; iii) lithology (marly levels) influences the type of structures and its cohesive/non-cohesive nature; iv) early distributed rather than final total displacement along the main fault plane is the responsible for the fault zone architecture; v) petrophysical properties of each fault zone depend on the variable combination of these factors.

  19. Selected Hydrologic, Water-Quality, Biological, and Sedimentation Characteristics of Laguna Grande, Fajardo, Puerto Rico, March 2007-February 2009

    USGS Publications Warehouse

    Soler-López, Luis R.; Santos, Carlos R.

    2010-01-01

    Laguna Grande is a 50-hectare lagoon in the municipio of Fajardo, located in the northeasternmost part of Puerto Rico. Hydrologic, water-quality, and biological data were collected in the lagoon between March 2007 and February 2009 to establish baseline conditions and determine the health of Laguna Grande on the basis of preestablished standards. In addition, a core of bottom material was obtained at one site within the lagoon to establish sediment depositional rates. Water-quality properties measured onsite (temperature, pH, dissolved oxygen, specific conductance, and water transparency) varied temporally rather than areally. All physical properties were in compliance with current regulatory standards established for Puerto Rico. Nutrient concentrations were very low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 0.28 milligram per liter, and the average total phosphorus concentration was 0.02 milligram per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll-a concentration was 6.2 micrograms per liter. Bottom sediment accumulation rates were determined in sediment cores by modeling the downcore activities of lead-210 and cesium-137. Results indicated a sediment depositional rate of about 0.44 centimeter per year. At this rate of sediment accretion, the lagoon may become a marshland in about 700 to 900 years. About 86 percent of the community primary productivity in Laguna Grande was generated by periphyton, primarily algal mats and seagrasses, and the remaining 14 percent was generated by phytoplankton in the water column. Based on the diel studies the total average net community productivity equaled 5.7 grams of oxygen per cubic meter per day (2.1 grams of carbon per cubic meter per day). Most of this productivity was ascribed to periphyton and macrophytes

  20. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to..., educational, or linguistic limitations (including any lack of facility with the English language)...

  1. Chip level simulation of fault tolerant computers

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1982-01-01

    Chip-level modeling techniques in the evaluation of fault tolerant systems were researched. A fault tolerant computer was modeled. An efficient approach to functional fault simulation was developed. Simulation software was also developed.

  2. Evaluation Report of the Native American Consortium for Educational and Assistive Technologies for Indian Children Living on the Acoma and Laguna Pueblos.

    ERIC Educational Resources Information Center

    Zastrow, Leona M.

    The New Mexico State Department of Education received a federal grant to provide educational and assistive technology for American Indian children living in the Pueblos of Laguna and Acoma, New Mexico. During the 2-year project, more than 229 assistive technology items were purchased, and some form of assistive technology was provided to 121…

  3. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  4. Experimental Fault Reactivation on Favourably and Unfavourably Oriented Faults

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Renner, J.; Sibson, R. H.

    2011-12-01

    In this study, we assess the loading of faults to failure under different stress regimes in a triaxial deformation apparatus, both in dry and saturated conditions. We explore experimentally the reshear of an existing fault in various orientations for particular values of (σ_1 - σ_3) and σ_3' for contrasting loading systems - load-strengthening (equivalent to a thrust fault) with σ1' increasing at constant σ_3', versus load-weakening (equivalent to a normal fault) with reducing σ_3' under constant σ_1'. Experiments are conducted on sawcut granite samples with fault angles at a variety of orientations relative to σ_1, ranging from an optimal orientation for reactivation to lockup angles where new faults are formed in preference to reactivating the existing sawcut orientation. Prefailure and postfailure behaviour is compared in terms of damage zone development via monitoring variations in ultrasonic velocity and acoustic emission behaviour. For example, damage surrounding unfavourably oriented faults is significantly higher than that seen around favourably orientated faults due to greater maximum stresses attained prior to unstable slip, which is reflected by the increased acoustic emission activity leading up to failure. In addition, we explore reshear conditions under an initial condition of (σ_1' = σ_3'), then inducing reshear on the existing fault first by increasing σ_1'(load-strengthening), then by decreasing σ_3' (load-weakening), again comparing relative damage zone development and acoustic emission levels. In saturated experiments, we explore the values of pore fluid pressure (P_f) needed for re-shear to occur in preference to the formation of a new fault. Typically a limiting factor in conventional triaxial experiments performed in compression is that P_f cannot exceed the confining pressure (σ_2 and σ_3). By employing a sample assembly that allows deformation while the loading piston is in extension, it enables us to achieve pore pressures in

  5. How do normal faults grow?

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; Bell, Rebecca; Rotevatn, Atle; Tvedt, Anette

    2016-04-01

    Normal faulting accommodates stretching of the Earth's crust, and it is arguably the most fundamental tectonic process leading to continent rupture and oceanic crust emplacement. Furthermore, the incremental and finite geometries associated with normal faulting dictate landscape evolution, sediment dispersal and hydrocarbon systems development in rifts. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate

  6. Differential Fault Analysis of Rabbit

    NASA Astrophysics Data System (ADS)

    Kircanski, Aleksandar; Youssef, Amr M.

    Rabbit is a high speed scalable stream cipher with 128-bit key and a 64-bit initialization vector. It has passed all three stages of the ECRYPT stream cipher project and is a member of eSTREAM software portfolio. In this paper, we present a practical fault analysis attack on Rabbit. The fault model in which we analyze the cipher is the one in which the attacker is assumed to be able to fault a random bit of the internal state of the cipher but cannot control the exact location of injected faults. Our attack requires around 128 - 256 faults, precomputed table of size 241.6 bytes and recovers the complete internal state of Rabbit in about 238 steps.

  7. Modelling Temporal and Spatial Variations in Gravimetric Data at Laguna del Maule, Chile

    NASA Astrophysics Data System (ADS)

    Miller, C. A.; Williams-Jones, G.; Currenti, G. M.; Le Mével, H.; Tikoff, B.

    2015-12-01

    Since 2013 we have undertaken annual microgravity and deformation surveys at Laguna del Maule, Chile, to characterise the causes of rapid inflation observed since 2007. The maximum increase in residual gravity is 125 ± 12 microgal between 2013 and 2014, but only 60 ± 15 microgal between 2014 and 2015. The spatial pattern of the gravity anomaly also appears to vary with time. During the 2013-2014 interval, the location of the maximum increase in gravity is near the maximum of the deformation pattern observed by Interferometric Synthetic Aperture Radar (InSAR) between 2007 and 2015 (Le Mével et al. 2015, Geophys. Res. Lett.). During the 2014-2015 interval, the maximum increase in gravity occurs approximately 4 kilometers south west of the center of inflation. Here we present initial source models to explain the observed increases in microgravity. The models are decribed in a framework derived from new spatial Bouguer gravity data, which allows for a better interpretation of time-lapse models. We use a Monte Carlo-type Genetic Algorithm to solve for the optimum source parameters of a range of finite geometry models including spherical, ellipsoidal and sill-like bodies. Finally we compare the finite geometry models to free geometry 3D gravity inversion models. Sources for the 2013-2014 interval locate close to the center of deformation at a depth of approximately 2 to 4 km. Sources for the 2014-2015 interval locate approximately 3 km southwest of the 2013-2014 source, at a similar depth. Positive density contrasts of several hundred kg/m3 are recovered from the source models. The 2013-2014 source locates close to the center of an approximately 15 milliGal Bouguer gravity low while the 2014-2015 source locates close to the edge of the gravity low. Our initial interpretation is that the Bouguer gravity low represents a low density magma body and the 2013-2015 residual microgravity increases represent spatially varying injections of fresh dense magma into that body.

  8. Widespread Gravity Changes and CO2 Degassing at Laguna Del Maule, Chile, Accompanying Rapid Uplift

    NASA Astrophysics Data System (ADS)

    Miller, C. A.; Williams-Jones, G.; Le Mevel, H.; Tikoff, B.

    2014-12-01

    Laguna Del Maule (LdM), located on the Andes range crest in central Chile, is one of the most active rhyolite volcanic fields on Earth with 36 post glacial rhyolitic eruptions. Since 2007, LdM has accumulated over 1.8 m of uplift at rates of up to 300 mm per year. We hypothesize that this rapid uplift results from the injection of basaltic magma into the base of a rhyolite chamber. To test this hypothesis we undertook a dynamic gravity study, complimented with CO2 soil gas measurements. We established a 35 station dynamic gravity and differential GPS network around the lake in April 2013 and undertook initial CO2 measurements. We resurveyed the network in January 2014 and expanded the soil gas coverage. From these surveys we calculated 0.134 ± 0.030 mGal residual gravity change (Δg) accompanied by 281 ± 13 mm of uplift over the 10 month period. Statistical tests show that the results of the 2013 and 2014 surveys are different at p < 0.01. The Δg anomaly occupies an area of 5 km x 10 km, oriented E/W, and centred in the south eastern part of the lake, and is coincident with the area of maximum uplift. Gaussian integration of Δg yields an excess mass of ~1.2 x 1011 kg. Assuming a density of 2700 kg/m3 this results in a volume of around 0.044 km3. In the 10 month time interval between surveys the calculated volume change rate was 41 ± 1 m3/s. We examine gravity / height change (Δg/Δh) relationships to determine if changes observed relate soley to increased mass or if density changes are involved. In addition to the Δg and Δh measurements, CO2 soil concentrations of up to 7 % are recorded around the entire lake basin. We will discuss modelling of the Δh and Δg data to explore the geometry and physical parameters of the mass and pressure source and discuss the relationship of CO2 anomalies to these models.

  9. Magnetotelluric Studies of the Laguna del Maule Volcanic Field, Central Chile

    NASA Astrophysics Data System (ADS)

    Cordell, D. R.; Unsworth, M. J.; Diaz, D.; Pavez, M.; Blanco, B.

    2015-12-01

    Geodetic data has shown that the surface of the Laguna del Maule (LdM) volcanic field in central Chile has been moving upwards at rates >20 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body at ~5 km depth beneath the lake (2.8 km b.s.l.). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and included data from a geothermal exploration project. MT phase tensor analysis indicates that the resistivity structure of the region is largely three-dimensional for signals with periods longer than 1 s, which corresponds to depths >5 km. The MT data were inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model which included topography. Four primary features were identified in the model: 1) A north-south striking, 10 km by 5 km, low-resistivity zone (<5 Ωm) northwest of the inflation centre at a depth of ~5 km (2.8 km b.s.l.) is interpreted as a zone of partial melt which may be supplying material via conduits to account for the observed ground deformation; 2) A shallow low-resistivity feature ~400 m beneath the lake surface (1.8 km a.s.l.) and spatially coincident with the inflation centre is interpreted to be a zone of hydrothermal alteration; 3) A thin, low-resistivity feature to the west of LdM at a depth of ~250 m (2.2 km a.s.l.) is interpreted to be the clay cap of a potential geothermal prospect; 4) A large, low-resistivity zone beneath the San Pedro-Tatara Volcanic Complex to the west of LdM at a depth of ~10 km (8 km b.s.l.) is interpreted to be a zone of partial melt. Further MT data collection is planned for 2016 which will expand the current grid of MT stations to better constrain the lateral extent of the observed features and give greater insight into the dynamics of this restless magma system.

  10. Cooling History for the Sierra Laguna Blanca (NW Argentina) on the Southern Puna Plateau, Central Andes

    NASA Astrophysics Data System (ADS)

    Zhou, R.; Schoenbohm, L. M.; Sobel, E. R.; Stockli, D. F.; Glodny, J.

    2014-12-01

    Various dynamic models have been proposed to explain deformation history and topographic evolution for the southern Altiplano-Puna Plateau, including inversion of the Cretaceous Salta rift structures, formation of an orogenic wedge, flat subduction, climate-tectonic coupling, and lithospheric foundering. Controversies persist in the southern Puna Plateau, where preexisting rift structures are unknown and Cenozoic shortening events are sparsely documented. The 6-km high Sierra Laguna Blanca (LB) (NW Argentina) is among the most outstanding topographic features in the interior of the southern Puna Plateau. We document cooling history for LB with apatite (U-Th)/He, apatite fission-track and zircon (U-Th)/He thermochronometers for a vertical profile from 3.6-5.6 km on its eastern flank. Preliminary results from apatite fission-track (AFT) analysis yield ages ranging from 45-65 Ma, with top samples being the oldest. Dpar values for all samples are low (1.54 to 1.74), suggesting a relatively low-temperature partial annealing zone. All samples have shortened mean track lengths ranging from 10.9 to 12.3 micrometers, suggesting partial resetting. Preliminary apatite U-Th/He (AHe) ages are compatible with AFT ages but are widely dispersed, perhaps due to U zoning and small U-rich inclusions which have been observed on AFT external detectors. Inverse modeling of AFT data and selected AHe data using the HeFTy program reveal two major cooling events for LB. All models start ~90-70 Ma and immediately decrease their temperatures to ~60°C before ~50 Ma. Samples may have stayed ~60°C without additional thermal events until ~15-10 Ma, when the most recent cooling event took place, bringing all samples to surface temperature. Our first finding is that the interior of the southern Puna Plateau may have been influenced by the Salta Rift during the Cretaceous, extending the known zone of influence further west. Second, the most recent cooling phase (mid-late Miocene) is consistent

  11. The Lawanopo Fault, central Sulawesi, East Indonesia

    NASA Astrophysics Data System (ADS)

    Natawidjaja, Danny Hilman; Daryono, Mudrik R.

    2015-04-01

    The dominant tectonic-force factor in the Sulawesi Island is the westward Bangga-Sula microplate tectonic intrusion, driven by the 12 mm/year westward motion of the Pacific Plate relative to Eurasia. This tectonic intrusion are accommodated by a series of major left-lateral strike-slip fault zones including Sorong Fault, Sula-Sorong Fault, Matano Fault, Palukoro Fault, and Lawanopo Fault zones. The Lawanopo fault has been considered as an active left-lateral strike-slip fault. The natural exposures of the Lawanopo Fault are clear, marked by the breaks and liniemants of topography along the fault line, and also it serves as a tectonic boundary between the different rock assemblages. Inpections of IFSAR 5m-grid DEM and field checks show that the fault traces are visible by lineaments of topographical slope breaks, linear ridges and stream valleys, ridge neckings, and they are also associated with hydrothermal deposits and hot springs. These are characteristics of young fault, so their morphological expressions can be seen still. However, fault scarps and other morpho-tectonic features appear to have been diffused by erosions and young sediment depositions. No fresh fault scarps, stream deflections or offsets, or any influences of fault movements on recent landscapes are observed associated with fault traces. Hence, the faults do not show any evidence of recent activity. This is consistent with lack of seismicity on the fault.

  12. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  13. Fault Tolerant State Machines

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Taft, Stephanie

    2004-01-01

    State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.

  14. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  15. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  16. Availability of ground water in parts of the Acoma and Laguna Indian Reservations, New Mexico

    USGS Publications Warehouse

    Dinwiddie, George A.; Motts, Ward Sundt

    1964-01-01

    The need for additional water has increased in recent years on the Acoma and Laguna Indian Reservations in west-central New Mexico because the population and per capita use of water have increased; the tribes also desire water for light industry, for more modern schools, and to increase their irrigation program. Many wells have been drilled in the area, but most have been disappointing because of small yields and poor chemical quality of the water. The topography in the Acoma and Laguna Indian Reservations is controlled primarily by the regional and local dip of alternating beds of sandstone and shale and by the igneous complex of Mount Taylor. The entrenched alluvial valley along the Rio San Jose, which traverses the area, ranges in width from about 0.4 mile to about 2 miles. The climate is characterized by scant rainfall, which occurs mainly in summer, low relative humidity, and large daily fluctuations of temperature. Most of the surface water enters the area through the Rio San Jose. The average annual streamflow past the gaging station Rio San Jose near Grants, N. Mex. is about 4,000 acre-feet. Tributaries to the Rio San Jose within the area probably contribute about 1,000 acre-feet per year. At the present time, most of the surface water is used for irrigation. Ground water is obtained from consolidated sedimentary rocks that range in age from Triassic to Cretaceous, and from unconsolidated alluvium of Quaternary age. The principal aquifers are the Dakota Sandstone, the Tres Hermanos Sandstone Member of the Mancos Shale, and the alluvium. The Dakota Sandstone yields 5 to 50 gpm (gallons per minute) of water to domestic and stock wells. The Tres Hermanos sandstone Member generally yields 5 to 20 gpm of water to domestic and stock wells. Locally, beds of sandstone in the Chinle and Morrison Formations, the Entrada Sandstone, and the Bluff Sandstone also yield small supplies of water to domestic and stock wells. The alluvium yields from 2 gpm to as much as 150

  17. Improving Multiple Fault Diagnosability using Possible Conflicts

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2012-01-01

    Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.

  18. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    SciTech Connect

    Cumbest, R.J.

    2000-11-14

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion.

  19. Subaru FATS (fault tracking system)

    NASA Astrophysics Data System (ADS)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  20. ANNs pinpoint underground distribution faults

    SciTech Connect

    Glinkowski, M.T.; Wang, N.C.

    1995-10-01

    Many offline fault location techniques in power distribution circuits involve patrolling along the lines or cables. In overhead distribution lines, most of the failures can be located quickly by visual inspection without the aid of special equipment. However, locating a fault in underground cable systems is more difficult. It involves additional equipment (e.g., thumpers, radars, etc.) to transform the invisibility of the cable into other forms of signals, such as acoustic sound and electromagnetic pulses. Trained operators must carry the equipment above the ground, follow the path of the signal, and draw lines on their maps in order to locate the fault. Sometimes, even smelling the burnt cable faults is a way of detecting the problem. These techniques are time consuming, not always reliable, and, as in the case of high-voltage dc thumpers, can cause additional damage to the healthy parts of the cable circuit. Online fault location in power networks that involve interconnected lines (cables) and multiterminal sources continues receiving great attention, with limited success in techniques that would provide simple and practical solutions. This article features a new online fault location technique that: uses the pattern recognition feature of artificial neural networks (ANNs); utilizes new capabilities of modern protective relaying hardware. The output of the neural network can be graphically displayed as a simple three-dimensional (3-D) chart that can provide an operator with an instantaneous indication of the location of the fault.

  1. The Dynamics of Fault Zones

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Beroza, G.; Kind, R.

    2006-05-01

    Geophysical studies of the Earth's crust, including fault zones, have developed over the past 80 years. Among the first methods to be employed, seismic refraction and reflection profiles were recorded in the North American Gulf Coast to detect salt domes which were known to trap hydrocarbons. Seismic methods continue to be the most important geophysical technique in use today due to the methods' relatively high accuracy, high resolution, and great depth of penetration. However, in the past decade, a much expanded repertoire of seismic and non-seismic techniques have been brought to bear on studies of the Earth's crust and uppermost mantle. Important insights have also been obtained using seismic tomography, measurements of seismic anisotropy, fault zone guided waves, borehole surveys, and geo-electrical, magnetic, and gravity methods. In this presentation, we briefly review recent geophysical progress in the study of the structure and internal properties of faults zones, from their surface exposures to their lower limit. We focus on the structure of faults within continental crystalline and competent sedimentary rock rather than within the overlying, poorly consolidated sedimentary rocks. A significant body of literature exists for oceanic fracture zones, however, due to space limitations we restrict this review to faults within and at the margins of the continents. We also address some unanswered questions, including: 1) Does fault-zone complexity, as observed at the surface, extend to great depth, or do active faults become thin simple planes at depth? and 2) How is crustal deformation accommodated within the lithospheric mantle?

  2. A High-Resolution Reconstruction of Late Holocene Environmental Change from Laguna Ek'Naab, Northern Holmul Region, Peten, Guatemala

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Wahl, D.; Estrada-Belli, F.

    2015-12-01

    Widespread demographic shifts in the southern Maya lowlands at the end of the Classic period have been attributed to environmental change caused by human activity and/or climate variability. Fire was essential to landscape modification and was a primary agent of environmental change associated with prehispanic land use. While several studies have provided insight into the dynamic relationship between natural and anthropogenic drivers of change, defining the specific interplay between natural environmental change, human modification of the environment, and cultural response to changes remains a persistent challenge. Here we present the results of a multi-proxy study that reconstructs fire history, agricultural land use, and environmental change during and after Pre-Columbian Maya settlement. Results are interpreted in the context of settlement history as inferred from archaeological mapping around the study site. Our findings suggest landscape disturbance, as indicated by erosion, local burning, and nearby maize agriculture, was at its peak during the Early Classic period. This disturbance was likely due to large-scale settlement at the nearby site of Witzna'. All proxies indicate a slow decline in disturbance into the Late Classic period, beginning around 1300 cal yr BP. Cival and Chanchich, two proximal site centers to the south of Laguna Ek'Naab, supported their largest populations during the Late Preclassic and Late Classic, with little or no settlement during the Early Classic. The data from Laguna Ek'Naab suggests that Witzna' may have been an important center during the Early Classic. Whether the decreasing environmental degradation after 1240 cal yr BP is do to a decline in local population or changing land use strategies is not discernable based on the data thus far. However, the near complete absence of burning and continued decrease in erosion from 1240-1090 cal yr BP suggests little anthropogenic activity in the area. Burning resumes in the watershed

  3. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  4. Finding faults with the data

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Rudolph Giuliani and Hillary Rodham Clinton are crisscrossing upstate New York looking for votes in the U.S. Senate race. Also cutting back and forth across upstate New York are hundreds of faults of a kind characterized by very sporadic seismic activity according to Robert Jacobi, professor of geology at the University of Buffalo (UB), who conducted research with fellow UB geology professor John Fountain."We have proof that upstate New York is crisscrossed by faults," Jacobi said. "In the past, the Appalachian Plateau—which stretches from Albany to Buffalo—was considered a pretty boring place structurally without many faults or folds of any significance."

  5. Method of locating ground faults

    NASA Astrophysics Data System (ADS)

    Patterson, Richard L.; Rose, Allen H.; Cull, Ronald C.

    1994-11-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  6. Method of locating ground faults

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L. (Inventor); Rose, Allen H. (Inventor); Cull, Ronald C. (Inventor)

    1994-01-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  7. Granular packings and fault zones

    PubMed

    Astrom; Herrmann; Timonen

    2000-01-24

    The failure of a two-dimensional packing of elastic grains is analyzed using a numerical model. The packing fails through formation of shear bands or faults. During failure there is a separation of the system into two grain-packing states. In a shear band, local "rotating bearings" are spontaneously formed. The bearing state is favored in a shear band because it has a low stiffness against shearing. The "seismic activity" distribution in the packing has the same characteristics as that of the earthquake distribution in tectonic faults. The directions of the principal stresses in a bearing are reminiscent of those found at the San Andreas Fault. PMID:11017335

  8. Fault-free performance validation of fault-tolerant multiprocessors

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Feather, Frank E.; Grizzaffi, Ann Marie; Segall, Zary Z.; Siewiorek, Daniel P.

    1987-01-01

    A validation methodology for testing the performance of fault-tolerant computer systems was developed and applied to the Fault-Tolerant Multiprocessor (FTMP) at NASA-Langley's AIRLAB facility. This methodology was claimed to be general enough to apply to any ultrareliable computer system. The goal of this research was to extend the validation methodology and to demonstrate the robustness of the validation methodology by its more extensive application to NASA's Fault-Tolerant Multiprocessor System (FTMP) and to the Software Implemented Fault-Tolerance (SIFT) Computer System. Furthermore, the performance of these two multiprocessors was compared by conducting similar experiments. An analysis of the results shows high level language instruction execution times for both SIFT and FTMP were consistent and predictable, with SIFT having greater throughput. At the operating system level, FTMP consumes 60% of the throughput for its real-time dispatcher and 5% on fault-handling tasks. In contrast, SIFT consumes 16% of its throughput for the dispatcher, but consumes 66% in fault-handling software overhead.

  9. Normal faults geometry and morphometry on Mars

    NASA Astrophysics Data System (ADS)

    Vaz, D. A.; Spagnuolo, M. G.; Silvestro, S.

    2014-04-01

    In this report, we show how normal faults scarps geometry and degradation history can be accessed using high resolution imagery and topography. We show how the initial geometry of the faults can be inferred from faulted craters and we demonstrate how a comparative morphometric analysis of faults scarps can be used to study erosion rates through time on Mars.

  10. 20 CFR 410.561b - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see §...

  11. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  12. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  13. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  14. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  15. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  16. 20 CFR 410.561b - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see §...

  17. Evolution of Rhyolite at Laguna del Maule, a Rapidly Inflating Volcanic Field in the Southern Andes

    NASA Astrophysics Data System (ADS)

    Andersen, N. L.; Singer, B. S.; Jicha, B. R.; Hildreth, E. W.; Fierstein, J.; Rogers, N. W.

    2012-12-01

    The Laguna del Maule Volcanic Field (LdM) is host to both the foremost example of post-glacial rhyolitic volcanism in the southern Andes and rapid, ongoing crustal deformation. The flare-up of high-silica eruptions was coeval with deglaciation at 24 ka. Rhyolite and rhyodacite domes and coulees totaling 6.5 km3 form a 20 km ring around the central lake basin. This spatial and temporal concentration of rhyolite is unprecedented in the history of the volcanic field. Colinear major and trace element variation suggests these lavas share a common evolutionary history (Hildreth et al., 2010). Moreover, geodetic observations (InSAR & GPS) have identified rapid inflation centered in the western side of the rhyolite dome ring at a rate of 17 cm/year for five years, which has accelerated to 30 cm/yr since April 2012. The best fit to the geodetic data is an expanding magma body located at 5 km depth (Fournier et al., 2010; Le Mevel, 2012). The distribution of high-silica volcanism, most notably geochemically similar high-silica rhyolite lavas erupted 12 km apart of opposite sides of the lake within a few kyr of each other, raises the possibility that the shallow magma intrusion represents only a portion of a larger rhyolitic body, potentially of caldera forming dimensions. We aim to combine petrologic models with a precise geochronology to formulate a model of the evolution of the LdM magma system to its current state. New 40Ar/39Ar age determinations show rhyolitic volcanism beginning at 23 ka with the eruption of the Espejos rhyolite, followed by the Cari Launa Rhyolite at 14.5 ka, two flows of the Barrancas complex at 6.4 and 3.9 ka, and the Divisoria rhyolite at 2.2 ka. In contrast, significant andesitic and dacitic volcanism is largely absent from the central basin of LdM since the early post-glacial period suggesting a coincident basin-wide evolution from andesite to dacite to rhyolite and is consistent with a shallow body of low-density rhyolite blocking the eruption

  18. A fault-tolerant clock

    NASA Technical Reports Server (NTRS)

    Daley, W. P.; Mckenna, J. F., Jr.

    1973-01-01

    Computers must operate correctly even though one or more of components have failed. Electronic clock has been designed to be insensitive to occurrence of faults; it is substantial advance over any known clock.

  19. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  20. The fault-tree compiler

    NASA Technical Reports Server (NTRS)

    Martensen, Anna L.; Butler, Ricky W.

    1987-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  1. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  2. Recovery of floral and faunal communities after placement of dredged material on seagrasses in Laguna Madre, Texas

    NASA Astrophysics Data System (ADS)

    Sheridan, P.

    2004-03-01

    The objectives of this project were to determine how long alterations in habitat characteristics and use by fishery and forage organisms were detectable at dredged material placement sites in Laguna Madre, Texas. Water, sediment, seagrass, benthos, and nekton characteristics were measured and compared among newly deposited sediments and nearby and distant seagrasses each fall and spring over three years. Over this period, 75% of the estimated total surface area of the original deposits was either re-vegetated by seagrass or dispersed by winds and currents. Differences in water and sediment characteristics among habitat types were mostly detected early in the study. There were signs of steady seagrass re-colonization in the latter half of the study period, and mean seagrass coverage of deposits had reached 48% approximately three years after dredging. Clovergrass Halophila engelmannii was the initial colonist, but shoalgrass Halodule wrightii predominated after about one year. Densities of annelids and non-decapod crustaceans were generally significantly greater in close and distant seagrass habitats than in dredged material habitat, whereas densities of molluscs were not significantly related to habitat type. Nekton (fish and decapod) densities were almost always significantly greater in the two seagrass habitats than in dredged material deposits. Benthos and nekton communities in dredged material deposits were distinct from those in seagrass habitats. Recovery from dredged material placement was nearly complete for water column and sediment components after 1.5 to 3 years, but recovery of seagrasses, benthos, and nekton was predicted to take 4 to 8 years. The current 2 to 5 years dredging cycle virtually insures no time for ecosystem recovery before being disturbed again. The only way to ensure permanent protection of the high primary and secondary productivity of seagrass beds in Laguna Madre from acute and chronic effects of maintenance dredging, while ensuring

  3. Magma Injection Models to Quantify Reservoir Dynamics at Laguna del Maule Volcanic Field, Chile, between 2007 and 2015.

    NASA Astrophysics Data System (ADS)

    Le Mével, H.; Gregg, P. M.; Feigl, K. L.

    2015-12-01

    Moving beyond the widely used kinematic models for the deformation sources, we present new dynamic models to describe the process of injecting magma into an existing magma reservoir. The 3-dimensional numerical models account for a viscoelastic, gravitationally loaded domain with spatially variable rheological properties. A Newtonian fluid characterized by its viscosity, density, and overpressure (relative to the lithostatic value) intrudes into a viscoelastic solid via a conduit leading to the reservoir. Using the Finite Element Method (FEM), we simultaneously solve the coupled quasi-static elastic and Navier-Stokes governing equations for the solid and the fluid, respectively, using the COMSOL Multiphysics software. The fluid and the solid interact through buoyancy and viscoelastic relaxation, leading to time-dependent deformation. To quantify the "strength" of the source, we define the product of the volume change (in cubic meters) and pressure change (in Pascals) as the "volcanic moment" (in Newton-meters or Joules). This quantity serves as a basis for comparing the calculated displacement fields to analytical solutions. After validating our injection model, we apply it to the ongoing episode of unrest at Laguna del Maule (Chile). Since 2007, the volcanic field there has been deforming at an exceptionally high rate, with vertical velocities up to 200 mm/yr, as measured by GPS and Interferometric Synthetic Aperture Radar (InSAR) between 2013 and 2014, as described recently by Le Mével et al. (2015, Geophys. Res. Lett. http://dx.doi.org/10.1002/2015GL064665). We are modeling the geodetic data to analyze the temporal and spatial evolution of the displacement. These models constrain the mass flux of material into the reservoir and thus its impact on the stress in the crust. Our results contribute to understanding the current unrest episode at Laguna del Maule and to assessing geodetic signals at other active volcanoes.

  4. Sr Isotopes and Migration of Prairie Mammoths (Mammuthus columbi) from Laguna de las Cruces, San Luis Potosi, Mexico

    NASA Astrophysics Data System (ADS)

    Solis-Pichardo, G.; Perez-Crespo, V.; Schaaf, P. E.; Arroyo-Cabrales, J.

    2011-12-01

    Asserting mobility of ancient humans is a major issue for anthropologists. For more than 25 years, Sr isotopes have been used as a resourceful tracer tool in this context. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. Sr isotope ratios are obtained through the geologic substrate and its overlying soil, from where an individual got hold of food and water; these ratios are in turn incorporated into the dentition and skeleton during tissue formation. In previous studies from Teotihuacan, Mexico we have shown that a three-step leaching procedure on tooth enamel samples is important to assure that only the biogenic Sr isotope contribution is analyzed. The same Sr isotopic tools can function concerning ancient animal migration patterns. To determine or to discard the mobility of prairie mammoths (Mammuthus columbi) found at Laguna de las Cruces, San Luis Potosi, México the leaching procedure was applied on six molar samples from several fossil remains. The initial hypothesis was to use 87Sr/86Sr values to verify if the mammoth population was a mixture of individuals from various herds and further by comparing their Sr isotopic composition with that of plants and soils, to confirm their geographic origin. The dissimilar Sr results point to two distinct mammoth groups. The mammoth population from Laguna de Cruces was then not a family unit because it was composed by individuals originated from different localities. Only one individual was identified as local. Others could have walked as much as 100 km to find food and water sources.

  5. Weakening inside incipient thrust fault

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Tesei, T.; Collettini, C.; Oliot, E.

    2013-12-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults that nucleate along décollement levels. Geological and geophysical evidence suggests that these faults might be weak because of a combination of processes such as pressure-solution, phyllosilicates reorientation and delamination, and fluid pressurization. In this study we aim to decipher the processes and the kinetics responsible for weakening of tectonic décollements. We studied the Millaris thrust (Southern Pyrenees): a fault representative of a décollement in its incipient stage. This fault accommodated a total shortening of about 30 meters and is constituted by a 10m thick, intensively foliated phyllonite developed inside a homogeneous marly unit. Detailed chemical and mineralogical analyses have been carried out to characterize the mineralogical change, the chemical transfers and volume change in the fault zone compared to non-deformed parent sediments. We also carried out microstructural analysis on natural and experimentally deformed rocks. Illite and chlorite are the main hydrous minerals. Inside fault zone, illite minerals are oriented along the schistosity whereas chlorite coats the shear surfaces. Mass balance calculations demonstrated a volume loss of up to 50% for calcite inside fault zone (and therefore a relative increase of phyllosilicates contents) because of calcite pressure solution mechanisms. We performed friction experiments in a biaxial deformation apparatus using intact rocks sheared in the in-situ geometry from the Millaris fault and its host sediments. We imposed a range of normal stresses (10 to 50 MPa), sliding velocity steps (3-100 μm/s) and slide-hold slide sequences (3 to 1000 s hold) under saturated conditions. Mechanical results demonstrate that both fault rocks and parent sediments are weaker than average geological materials (friction μ<<0.6) and have velocity-strengthening behavior because of the presence of phyllosilicate horizons. Fault rocks are

  6. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  7. Fault Tree Analysis: A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Fault tree analysis is a top-down approach to the identification of process hazards. It is as one of the best methods for systematically identifying an graphically displaying the many ways some things can go wrong. This bibliography references 266 documents in the NASA STI Database that contain the major concepts. fault tree analysis, risk an probability theory, in the basic index or major subject terms. An abstract is included with most citations, followed by the applicable subject terms.

  8. Hardware Fault Simulator for Microprocessors

    NASA Technical Reports Server (NTRS)

    Hess, L. M.; Timoc, C. C.

    1983-01-01

    Breadboarded circuit is faster and more thorough than software simulator. Elementary fault simulator for AND gate uses three gates and shaft register to simulate stuck-at-one or stuck-at-zero conditions at inputs and output. Experimental results showed hardware fault simulator for microprocessor gave faster results than software simulator, by two orders of magnitude, with one test being applied every 4 microseconds.

  9. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  10. Software Fault Tolerance: A Tutorial

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2000-01-01

    Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.

  11. Passive fault current limiting device

    DOEpatents

    Evans, D.J.; Cha, Y.S.

    1999-04-06

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  12. Passive fault current limiting device

    DOEpatents

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  13. Aeromagnetic anomalies over faulted strata

    USGS Publications Warehouse

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  14. Normal fault earthquakes or graviquakes

    PubMed Central

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  15. Normal fault earthquakes or graviquakes.

    PubMed

    Doglioni, C; Carminati, E; Petricca, P; Riguzzi, F

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  16. Fault diagnosis of power systems

    SciTech Connect

    Sekine, Y. ); Akimoto, Y. ); Kunugi, M. )

    1992-05-01

    Fault diagnosis of power systems plays a crucial role in power system monitoring and control that ensures stable supply of electrical power to consumers. In the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires judgment of complex conditions at various levels. For this reason, research into application of knowledge-based systems go an early start and reports of such systems have appeared in may papers. In this paper, these systems are classified by the method of inference utilized in the knowledge-based systems for fault diagnosis of power systems. The characteristics of each class and corresponding issues as well as the state-of-the-art techniques for improving their performance are presented. Additional topics covered are user interfaces, interfaces with energy management systems (EMS's), and expert system development tools for fault diagnosis. Results and evaluation of actual operation in the field are also discussed. Knowledge-based fault diagnosis of power systems will continue to disseminate.

  17. Tutorial: Advanced fault tree applications using HARP

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.

    1993-01-01

    Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.

  18. Nonlinear Network Dynamics on Earthquake Fault Systems

    SciTech Connect

    Rundle, Paul B.; Rundle, John B.; Tiampo, Kristy F.; Sa Martins, Jorge S.; McGinnis, Seth; Klein, W.

    2001-10-01

    Earthquake faults occur in interacting networks having emergent space-time modes of behavior not displayed by isolated faults. Using simulations of the major faults in southern California, we find that the physics depends on the elastic interactions among the faults defined by network topology, as well as on the nonlinear physics of stress dissipation arising from friction on the faults. Our results have broad applications to other leaky threshold systems such as integrate-and-fire neural networks.

  19. Fault Management Guiding Principles

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan

    2011-01-01

    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  20. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  1. Faulting processes at high fluid pressures: An example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Cox, Stephen F.

    1995-07-01

    The internal structures of the Wattle Gully Fault provide insights about the mechanics and dynamics of fault systems exhibiting fault valve behavior in high fluid pressure regimes. This small, high-angle reverse fault zone developed at temperatures near 300°C in the upper crust, late during mid-Devonian regional crustal shortening in central Victoria, Australia. The Wattle Gully Fault forms part of a network of faults that focused upward migration of fluids generated by metamorphism and devolatilisation at deeper crustal levels. The fault has a length of around 800 m and a maximum displacement of 50 m and was oriented at 60° to 80° to the maximum principal stress during faulting. The structure was therefore severely misoriented for frictional reactivation. This factor, together with the widespread development of steeply dipping fault fill quartz veins and associated subhorizontal extension veins within the fault zone, indicates that faulting occurred at low shear stresses and in a near-lithostatic fluid pressure regime. The internal structures of these veins, and overprinting relationships between veins and faults, indicate that vein development was intimately associated with faulting and involved numerous episodes of fault dilatation and hydrothermal sealing and slip, together with repeated hydraulic extension fracturing adjacent to slip surfaces. The geometries, distribution and internal structures of veins in the Wattle Gully Fault Zone are related to variations in shear stress, fluid pressure, and near-field principal stress orientations during faulting. Vein opening is interpreted to have been controlled by repeated fluid pressure fluctuations associated with cyclic, deformation-induced changes in fault permeability during fault valve behavior. Rates of recovery of shear stress and fluid pressure after rupture events are interpreted to be important factors controlling time dependence of fault shear strength and slip recurrence. Fluctuations in shear stress

  2. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1991-01-01

    Twenty independently developed but functionally equivalent software versions were used to investigate and compare empirically some properties of N-version programming, Recovery Block, and Consensus Recovery Block, using the majority and consensus voting algorithms. This was also compared with another hybrid fault-tolerant scheme called Acceptance Voting, using dynamic versions of consensus and majority voting. Consensus voting provides adaptation of the voting strategy to varying component reliability, failure correlation, and output space characteristics. Since failure correlation among versions effectively reduces the cardinality of the space in which the voter make decisions, consensus voting is usually preferable to simple majority voting in any fault-tolerant system. When versions have considerably different reliabilities, the version with the best reliability will perform better than any of the fault-tolerant techniques.

  3. Chemistry of Hot Spring Pool Waters in Calamba and Los Banos and Potential Effect on the Water Quality of Laguna De Bay

    NASA Astrophysics Data System (ADS)

    Balangue, M. I. R. D.; Pena, M. A. Z.; Siringan, F. P.; Jago-on, K. A. B.; Lloren, R. B.; Taniguchi, M.

    2014-12-01

    Since the Spanish Period (1600s), natural hot spring waters have been harnessed for balneological purposes in the municipalities of Calamba and Los Banos, Laguna, south of Metro Manila. There are at more than a hundred hot spring resorts in Brgy. Pansol, Calamba and Tadlac, Los Banos. These two areas are found at the northern flanks of Mt. Makiling facing Laguna de Bay. This study aims to provide some insights on the physical and chemical characteristics of hot spring resorts and the possible impact on the lake water quality resulting from the disposal of used water. Initial ocular survey of the resorts showed that temperature of the pool water ranges from ambient (>300C) to as high as 500C with an average pool size of 80m3. Water samples were collected from a natural hot spring and pumped well in Los Banos and another pumped well in Pansol to determine the chemistry. The field pH ranges from 6.65 to 6.87 (Pansol springs). Cation analysis revealed that the thermal waters belonged to the Na-K-Cl-HCO3 type with some trace amount of heavy metals. Methods for waste water disposal are either by direct discharge down the drain of the pool or by discharge in the public road canal. Both methods will dump the waste water directly into Laguna de Bay. Taking in consideration the large volume of waste water used especially during the peak season, the effect on the lake water quality would be significant. It is therefore imperative for the environmental authorities in Laguna to regulate and monitor the chemistry of discharges from the pool to protect both the lake water as well as groundwater quality.

  4. A Follow-up Study of Graduates of Laguna-Acoma High School Who Took ACT and/or Entered a Four-Year College Program.

    ERIC Educational Resources Information Center

    Munro, Fern H.

    The myth that only the high school student who is at or near the top of his class can succeed at a four-year college is not upheld for graduates of Laguna-Acoma High School (LAHS) in New Mexico. Many sources provide accurate gradepoint averages (GPA), American College Test (ACT) scores and Rank in Class (RIC) for the LAHS students who took the ACT…

  5. Chronologic implications of new Miocene mammals from the Cura-Mallín and Trapa Trapa formations, Laguna del Laja area, south central Chile

    NASA Astrophysics Data System (ADS)

    Flynn, John J.; Charrier, Reynaldo; Croft, Darin A.; Gans, Phillip B.; Herriott, Trystan M.; Wertheim, Jill A.; Wyss, André R.

    2008-12-01

    Recent work in the central Andean Main Range of Chile near Laguna del Laja (˜37.5°S, 71°W) has produced the first mammal fossils for the region. Fossils, locally abundant and well preserved, occur patchily across a wide area southeast of the lake. Mammalian remains are derived from generally strongly folded (kilometer-scale) exposures of the locally ˜1.8 km thick, early to middle Miocene Cura-Mallín Formation; two identifiable specimens have been recovered from the overlying Trapa Trapa Formation as well. Both formations consist primarily of well-stratified (1-5 m thick layers) volcaniclastic and volcanic strata, deposited predominantly in fluviatile systems. The Cura-Mallín Formation is possibly the southern continuation of (or lateral equivalent to) the richly fossiliferous Abanico Formation mapped between ˜32°S and 36°S. Intensive sampling in a series of localities east and south of Laguna del Laja has yielded diverse faunas, in addition to radioisotopically dateable horizons. The new fossil mammal faunas represent as many as six South American Land Mammal "Ages" (SALMAs). Fossils, together with preliminary 40Ar/ 39Ar radioisotopic dates, ranging from ˜9 to 20 Ma across the exposed thickness of the Cura-Mallín Formation and into the overlying Trapa Trapa Formation, provide a robust geochronological framework for middle Cenozoic strata in the Laguna del Laja region. The sequence of directly superposed mammalian assemblages at Laguna del Laja is one of the longest in all of South America, rivaled only by the classic Gran Barranca section of Patagonian Argentina. These data illuminate the geological history of the area and its record of mammalian evolution. The potential to isotopically date these diverse faunas with high precision (error ± 0.5 Ma) presents a rare opportunity to calibrate related portions of the SALMA sequence.

  6. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes.

    PubMed

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro; Gamboa, Carolina; Lictevout, Elisabeth

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. PMID:26410705

  7. Fault zone connectivity: slip rates on faults in the san francisco bay area, california.

    PubMed

    Bilham, R; Bodin, P

    1992-10-01

    The slip rate of a fault segment is related to the length of the fault zone of which it is part. In turn, the slip rate of a fault zone is related to its connectivity with adjoining or contiguous fault zones. The observed variation in slip rate on fault segments in the San Francisco Bay area in California is consistent with connectivity between the Hayward, Calaveras, and San Andreas fault zones. Slip rates on the southern Hayward fault taper northward from a maximum of more than 10 millimeters per year and are sensitive to the active length of the Maacama fault. PMID:17835127

  8. Reconsidering Fault Slip Scaling

    NASA Astrophysics Data System (ADS)

    Gomberg, J. S.; Wech, A.; Creager, K. C.; Obara, K.; Agnew, D. C.

    2015-12-01

    The scaling of fault slip events given by the relationship between the scalar moment M0, and duration T, potentially provides key constraints on the underlying physics controlling slip. Many studies have suggested that measurements of M0 and T are related as M0=KfT3 for 'fast' slip events (earthquakes) and M0=KsT for 'slow' slip events, in which Kf and Ks are proportionality constants, although some studies have inferred intermediate relations. Here 'slow' and 'fast' refer to slip front propagation velocities, either so slow that seismic radiation is too small or long period to be measurable or fast enough that dynamic processes may be important for the slip process and measurable seismic waves radiate. Numerous models have been proposed to explain the differing M0-T scaling relations. We show that a single, simple dislocation model of slip events within a bounded slip zone may explain nearly all M0-T observations. Rather than different scaling for fast and slow populations, we suggest that within each population the scaling changes from M0 proportional to T3 to T when the slipping area reaches the slip zone boundaries and transitions from unbounded, 2-dimensional to bounded, 1-dimensional growth. This transition has not been apparent previously for slow events because data have sampled only the bounded regime and may be obscured for earthquakes when observations from multiple tectonic regions are combined. We have attempted to sample the expected transition between bounded and unbounded regimes for the slow slip population, measuring tremor cluster parameters from catalogs for Japan and Cascadia and using them as proxies for small slow slip event characteristics. For fast events we employed published earthquake slip models. Observations corroborate our hypothesis, but highlight observational difficulties. We find that M0-T observations for both slow and fast slip events, spanning 12 orders of magnitude in M0, are consistent with a single model based on dislocation

  9. Rupture interaction with fault jogs

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    Propagation of moderate to large earthquake ruptures within major transcurrent fault systems is affected by their large-scale brittle infrastructure, comprising echelon segmentation and curvature of principal slip surfaces (PSS) within typically ˜1 km wide main fault zones. These PSS irregularities are classified into dilational and antidilational fault jogs depending on the tendency for areal increase or reduction, respectively, across the jog structures. High precision microearthquake studies show that the jogs often extend throughout the seismogenic regime to depths of around 10 km. On geomorphic evidence, the larger jogs may persist for periods >105 years. While antidilational jogs form obstacles to both short- and long-term displacements, dilational jogs appear to act as kinetic barriers capable of perturbing or arresting earthquake ruptures, but allowing time-dependent slip transfer. In the case of antidilational jogs slip transfer is accommodated by widespread subsidiary faulting, but for dilational jogs it additionally involves extensional fracture opening localized in the echelon stepover. In fluid-saturated crust, the rapid opening of linking extensional fracture systems to allow passage of earthquake ruptures is opposed by induced suctions which scale with the width of the jog. Rupture arrest at dilational jogs may then be followed by delayed slip transfer as fluid pressures reequilibrate by diffusion. Aftershock distributions associated with the different fault jogs reflect these contrasts in their internal structure and mechanical response.

  10. Identifying wells downstream from Laguna Dam that yield water that will be replaced by water from the Colorado River, Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    2000-01-01

    This report summarizes a comprehensive study and development of the method documented in Owen-Joyce and others (2000). That report and one for the area upstream from Laguna Dam (Wilson and Owen-Joyce, 1994) document the accounting-surface method to identify wells that yield water that will be replaced by water from the Colorado River. Downstream from Laguna Dam, the Colorado River is the source for nearly all recharge to the river aquifer. The complex surface-water and ground-water system that exists in the area is, in part, the result of more than 100 years of water-resources development. Agriculture is the principal economy and is possible only with irrigation. The construction and operation of canals provides the means to divert and distribute Colorado River water to irrigate agricultural lands on the flood plains and mesas along the Colorado and Gila Rivers, in Imperial and Coachella Valleys, and in the area upstream from Dome along the Gila River. Water is withdrawn from wells for irrigation, dewatering, and domestic use. The area downstream from Laguna Dam borders additional areas of agricultural development in Mexico where Colorado River water also is diverted for irrigation.

  11. Identification and dating of indigenous water storage reservoirs along the Rio San José at Laguna Pueblo, western New Mexico, USA

    USGS Publications Warehouse

    Huckleberry, Gary; Ferguson, T.J.; Rittenour, Tammy M.; Banet, Chris; Mahan, Shannon

    2016-01-01

    An investigation into indigenous water storage on the Rio San José in western New Mexico was conducted in support of efforts by the Pueblo of Laguna to adjudicate their water rights. Here we focus on stratigraphy and geochronology of two Native American-constructed reservoirs. One reservoir located near the community of Casa Blanca was formed by a ∼600 m (2000 feet) long stone masonry dam that impounded ∼1.6 × 106 m3 (∼1300 acre-feet) of stored water. Four optically stimulated luminescence (OSL) ages obtained on reservoir deposits indicate that the dam was constructed prior to AD 1825. The other reservoir is located adjacent to Old Laguna Pueblo and contains only a small remnant of its former earthen dam. The depth and distribution of reservoir deposits and a photogrammetric analyses of relict shorelines indicate a storage capacity of ∼6.5 × 106 m3 (∼5300 ac-ft). OSL ages from above and below the base of the reservoir indicate that the reservoir was constructed sometime after AD 1370 but before AD 1750. The results of our investigation are consistent with Laguna oral history and Spanish accounts demonstrating indigenous construction of significant water-storage reservoirs on the Rio San José prior to the late nineteenth century.

  12. Faulting in porous carbonate grainstones

    NASA Astrophysics Data System (ADS)

    Tondi, Emanuele; Agosta, Fabrizio

    2010-05-01

    In the recent past, a new faulting mechanism has been documented within porous carbonate grainstones. This mechanism is due to strain localization into narrow tabular bands characterized by both volumetric and shear strain; for this reason, these features are named compactive shear bands. In the field, compactive shear bands are easily recognizable because they are lightly coloured with respect to the parent rock, and/or show a positive relief because of their increased resistance to weathering. Both characteristics, light colours and positive relief, are a consequence of the compaction processes that characterize these bands, which are the simplest structure element that form within porous carbonate grainstones. With ongoing deformation, the single compactive shear bands, which solve only a few mm of displacement, may evolve into zone of compactive shear bands and, finally, into well-developed faults characterized by slip surfaces and fault rocks. Field analysis conducted in key areas of Italy allow us to documented different modalities of interaction and linkage among the compactive shear bands: (i) a simple divergence of two different compactive shear bands from an original one, (ii) extensional and contractional jogs formed by two continuous, interacting compactive shear bands, and (iii) eye structures formed by collinear interacting compactive shear bands, which have been already described for deformation bands in sandstones. The last two types of interaction may localize the formation of compaction bands, which are characterized by pronounced component of compaction and negligible components of shearing, and/or pressure solution seams. All the aforementioned types of interaction and linkage could happen at any deformation stage, single bands, zone of bands or well developed faults. The transition from one deformation process to another, which is likely to be controlled by the changes in the material properties, is recorded by different ratios and

  13. Intelligent fault-tolerant controllers

    NASA Technical Reports Server (NTRS)

    Huang, Chien Y.

    1987-01-01

    A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.

  14. Transient Faults in Computer Systems

    NASA Technical Reports Server (NTRS)

    Masson, Gerald M.

    1993-01-01

    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.

  15. Approximate Entropy Based Fault Localization and Fault Type Recognition for Non-solidly Earthed Network

    NASA Astrophysics Data System (ADS)

    Pang, Qingle; Liu, Xinyun; Sun, Bo; Ling, Qunli

    2012-12-01

    For non-solidly earthed network, the fault localization of single phase grounding fault has been a problem. A novel fault localization and fault type recognition method of single phase grounding fault based on approximate entropy is presented. The approximate entropies of transient zero sequence current at both ends of healthy section are approximately equal, and the ratio is close to 1. On the contrary, the approximate entropies at both ends of fault section are different, and the ratio is far from 1. So, the fault section is located. At the same fault section, the smaller is the fault resistance, the larger is the approximate entropy of transient zero sequence current. According to the function between approximate entropy and fault resistance, the fault type is determined. The method has the advantages of transferring less data and unneeded synchronous sampling accurately. The simulation results show that the proposed method is feasible and accurate.

  16. InSAR measurements around active faults: creeping Philippine Fault and un-creeping Alpine Fault

    NASA Astrophysics Data System (ADS)

    Fukushima, Y.

    2013-12-01

    Recently, interferometric synthetic aperture radar (InSAR) time-series analyses have been frequently applied to measure the time-series of small and quasi-steady displacements in wide areas. Large efforts in the methodological developments have been made to pursue higher temporal and spatial resolutions by using frequently acquired SAR images and detecting more pixels that exhibit phase stability. While such a high resolution is indispensable for tracking displacements of man-made and other small-scale structures, it is not necessarily needed and can be unnecessarily computer-intensive for measuring the crustal deformation associated with active faults and volcanic activities. I apply a simple and efficient method to measure the deformation around the Alpine Fault in the South Island of New Zealand, and the Philippine Fault in the Leyte Island. I use a small-baseline subset (SBAS) analysis approach (Berardino, et al., 2002). Generally, the more we average the pixel values, the more coherent the signals are. Considering that, for the deformation around active faults, the spatial resolution can be as coarse as a few hundred meters, we can severely 'multi-look' the interferograms. The two applied cases in this study benefited from this approach; I could obtain the mean velocity maps on practically the entire area without discarding decorrelated areas. The signals could have been only partially obtained by standard persistent scatterer or single-look small-baseline approaches that are much more computer-intensive. In order to further increase the signal detection capability, it is sometimes effective to introduce a processing algorithm adapted to the signal of interest. In an InSAR time-series processing, one usually needs to set the reference point because interferograms are all relative measurements. It is difficult, however, to fix the reference point when one aims to measure long-wavelength deformation signals that span the whole analysis area. This problem can be

  17. Update: San Andreas Fault experiment

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.

    1984-01-01

    Satellite laser ranging techniques are used to monitor the broad motion of the tectonic plates comprising the San Andreas Fault System. The San Andreas Fault Experiment, (SAFE), has progressed through the upgrades made to laser system hardware and an improvement in the modeling capabilities of the spaceborne laser targets. Of special note is the launch of the Laser Geodynamic Satellite, LAGEOS spacecraft, NASA's only completely dedicated laser satellite in 1976. The results of plate motion projected into this 896 km measured line over the past eleven years are summarized and intercompared.

  18. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    NASA Astrophysics Data System (ADS)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  19. Maximum Magnitude in Relation to Mapped Fault Length and Fault Rupture

    NASA Astrophysics Data System (ADS)

    Black, N.; Jackson, D.; Rockwell, T.

    2004-12-01

    Earthquake hazard zones are highlighted using known fault locations and an estimate of the fault's maximum magnitude earthquake. Magnitude limits are commonly determined from fault geometry, which is dependent on fault length. Over the past 30 years it has become apparent that fault length is often poorly constrained and that a single event can rupture across several individual fault segments. In this study fault geometries are analyzed before and after several moderate to large magnitude earthquakes to determine how well fault length can accurately assess seismic hazard. Estimates of future earthquake magnitudes are often inferred from prior determinations of fault length, but use magnitude regressions based on rupture length. However, rupture length is not always limited to the previously estimated fault length or contained on a single fault. Therefore, the maximum magnitude for a fault may be underestimated, unless the geometry and segmentation of faulting is completely understood. This study examines whether rupture/fault length can be used to accurately predict the maximum magnitude for a given fault. We examine earthquakes greater than 6.0 that occurred after 1970 in Southern California. Geologic maps, fault evaluation reports, and aerial photos that existed prior to these earthquakes are used to obtain the pre-earthquake fault lengths. Pre-earthquake fault lengths are compared with rupture lengths to determine: 1) if fault lengths are the same before and after the ruptures and 2) to constrain the geology and geometry of ruptures that propagated beyond the originally recognized endpoints of a mapped fault. The ruptures examined in this study typically follow one of the following models. The ruptures are either: 1) contained within the dimensions of the original fault trace, 2) break through one or both end points of the originally mapped fault trace, or 3) break through multiple faults, connecting segments into one large fault line. No rupture simply broke a

  20. Linking microbial assemblages to paleoenvironmental conditions from the Holocene and Last Glacial Maximum times in Laguna Potrok Aike sediments, Argentina

    NASA Astrophysics Data System (ADS)

    Vuillemin, Aurele; Ariztegui, Daniel; Leavitt, Peter R.; Bunting, Lynda

    2014-05-01

    Laguna Potrok Aike is a closed basin located in the southern hemisphere's mid-latitudes (52°S) where paleoenvironmental conditions were recorded as temporal sedimentary sequences resulting from variations in the regional hydrological regime and geology of the catchment. The interpretation of the limnogeological multiproxy record developed during the ICDP-PASADO project allowed the identification of contrasting time windows associated with the fluctuations of Southern Westerly Winds. In the framework of this project, a 100-m-long core was also dedicated to a detailed geomicrobiological study which aimed at a thorough investigation of the lacustrine subsurface biosphere. Indeed, aquatic sediments do not only record past climatic conditions, but also provide a wide range of ecological niches for microbes. In this context, the influence of environmental features upon microbial development and survival remained still unexplored for the deep lacustrine realm. Therefore, we investigated living microbes throughout the sedimentary sequence using in situ ATP assays and DAPI cell count. These results, compiled with pore water analysis, SEM microscopy of authigenic concretions and methane and fatty acid biogeochemistry, provided evidence for a sustained microbial activity in deep sediments and pinpointed the substantial role of microbial processes in modifying initial organic and mineral fractions. Finally, because the genetic material associated with microorganisms can be preserved in sediments over millennia, we extracted environmental DNA from Laguna Potrok Aike sediments and established 16S rRNA bacterial and archaeal clone libraries to better define the use of DNA-based techniques in reconstructing past environments. We focused on two sedimentary horizons both displaying in situ microbial activity, respectively corresponding to the Holocene and Last Glacial Maximum periods. Sequences recovered from the productive Holocene record revealed a microbial community adapted to

  1. Lateglacial and Holocene climatic changes in south-eastern Patagonia inferred from carbonate isotope records of Laguna Potrok Aike (Argentina)

    NASA Astrophysics Data System (ADS)

    Oehlerich, M.; Mayr, C.; Gussone, N.; Hahn, A.; Hölzl, S.; Lücke, A.; Ohlendorf, C.; Rummel, S.; Teichert, B. M. A.; Zolitschka, B.

    2015-04-01

    First results of strontium, calcium, carbon and oxygen isotope analyses of bulk carbonates from a 106 m long sediment record of Laguna Potrok Aike, located in southern Patagonia are presented. Morphological and isotopic investigations of μm-sized carbonate crystals in the sediment reveal an endogenic origin for the entire Holocene. During this time period the calcium carbonate record of Laguna Potrok Aike turned out to be most likely ikaite-derived. As ikaite precipitation in nature has only been observed in a narrow temperature window between 0 and 7 °C, the respective carbonate oxygen isotope ratios serve as a proxy of hydrological variations rather than of palaeotemperatures. We suggest that oxygen isotope ratios are sensitive to changes of the lake water balance induced by intensity variations of the Southern Hemisphere Westerlies and discuss the role of this wind belt as a driver for climate change in southern South America. In combination with other proxy records the evolution of westerly wind intensities is reconstructed. Our data suggest that weak SHW prevailed during the Lateglacial and the early Holocene, interrupted by an interval with strengthened Westerlies between 13.4 and 11.3 ka cal BP. Wind strength increased at 9.2 ka cal BP and significantly intensified until 7.0 ka cal BP. Subsequently, the wind intensity diminished and stabilised to conditions similar to present day after a period of reduced evaporation during the "Little Ice Age". Strontium isotopes (87Sr/86Sr ratio) were identified as a potential lake-level indicator and point to a lowering from overflow conditions during the Glacial (∼17 ka cal BP) to lowest lake levels around 8 ka cal BP. Thereafter the strontium isotope curve resembles the lake-level curve which is stepwise rising until the "Little Ice Age". The variability of the Ca isotope composition of the sediment reflects changes in the Ca budget of the lake, indicating higher degrees of Ca utilisation during the period with

  2. Deep Drilling at Laguna Potrok Aike, Argentina: Recovery of a Paleoclimate Record for the Last Glacial from the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Zolitschka, B.; Anselmetti, F.; Ariztegui, D.; Corbella, H.; Francus, P.; Gebhardt, C.; Hahn, A.; Kliem, P.; Lücke, A.; Ohlendorf, C.; Schäbitz, F.

    2009-12-01

    Laguna Potrok Aike, located in the South-Patagonian province of Santa Cruz (52°58’S, 70°23’W), was formed 770 ka ago by a volcanic (maar) eruption. Within the framework of the ICDP-funded project PASADO two sites were drilled from September to November 2008 using the GLAD800 drilling platform. A total of 513 m of lacustrine sediments were recovered from the central deep basin by an international team. The sediments hold a unique record of paleoclimatic and paleoecological variability from a region sensitive to variations in southern hemispheric wind and pressure systems and thus significant for the understanding of the global climate system. Moreover, Laguna Potrok Aike is close to many active volcanoes allowing a better understanding of the history of volcanism in the Pali Aike Volcanic Field and in the nearby Andean mountain chain. These challenging scientific themes need to be tackled in a global context as both are of increasing socio-economic relevance. On-site core logging based on magnetic susceptibility data documents an excellent correlation between the quadruplicate holes drilled at Site 1 and between the triplicate holes recovered from Site 2. Also, correlation between both sites located 700 m apart from each other is feasible. After splitting the cores in the lab, a reference profile was established down to a composite depth of 107 m for the replicate cores from Site 2. Sediments consist of laminated and sand-layered lacustrine silts with an increasing number of turbidites and homogenites with depth. Below 80 m composite depth two mass movement deposits (10 m and 5 m in thickness) are recorded. These deposits show tilted and distorted layers as well as nodules of fine grained sediments and randomly distributed gravel. Such features indicate an increased slump activity probably related to lake level fluctuations or seismicity. Also with depth coarse gravel layers are present and point to changes in hydrological conditions in the catchment area

  3. Analysis of the ecosystem structure of Laguna Alvarado, western Gulf of Mexico, by means of a mass balance model

    NASA Astrophysics Data System (ADS)

    Cruz-Escalona, V. H.; Arreguín-Sánchez, F.; Zetina-Rejón, M.

    2007-03-01

    Alvarado is one of the most productive estuary-lagoon systems in the Mexican Gulf of Mexico. It has great economic and ecological importance due to high fisheries productivity and because it serves as a nursery, feeding, and reproduction area for numerous populations of fishes and crustaceans. Because of this, extensive studies have focused on biology, ecology, fisheries (e.g. shrimp, oysters) and other biological components of the system during the last few decades. This study presents a mass-balanced trophic model for Laguna Alvarado to determine it's structure and functional form, and to compare it with similar coastal systems of the Gulf of Mexico and Mexican Pacific coast. The model, based on the software Ecopath with Ecosim, consists of eighteen fish groups, seven invertebrate groups, and one group each of sharks and rays, marine mammals, phytoplankton, sea grasses and detritus. The acceptability of the model is indicated by the pedigree index (0.5) which range from 0 to 1 based on the quality of input data. The highest trophic level was 3.6 for marine mammals and snappers. Total system throughput reached 2680 t km -2 year -1, of which total consumption made up 47%, respiratory flows made up 37% and flows to detritus made up 16%. The total system production was higher than consumption, and net primary production higher than respiration. The mean transfer efficiency was 13.8%. The mean trophic level of the catch was 2.3 and the primary production required to sustain the catch was estimated in 31 t km -2 yr -1. Ecosystem overhead was 2.4 times the ascendancy. Results suggest a balance between primary production and consumption. In contrast with other Mexican coastal lagoons, Laguna Alvarado differs strongly in relation to the primary source of energy; here the primary producers (seagrasses) are more important than detritus pathways. This fact can be interpreted a response to mangrove deforest, overfishing, etc. Future work might include the compilation of

  4. Active fault traces along Bhuj Fault and Katrol Hill Fault, and trenching survey at Wandhay, Kachchh, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Morino, Michio; Malik, Javed N.; Mishra, Prashant; Bhuiyan, Chandrashekhar; Kaneko, Fumio

    2008-06-01

    Several new active fault traces were identified along Katrol Hill Fault (KHF). A new fault (named as Bhuj Fault, BF) that extends into the Bhuj Plain was also identified. These fault traces were identified based on satellite photo interpretation and field survey. Trenches were excavated to identify the paleoseismic events, pattern of faulting and the nature of deformation. New active fault traces were recognized about 1km north of the topographic boundary between the Katrol Hill and the plain area. The fault exposure along the left bank of Khari River with 10m wide shear zone in the Mesozoic rocks and showing displacement of the overlying Quaternary deposits is indicative of continued tectonic activity along the ancient fault. The E-W trending active fault traces along the KHF in the western part changes to NE-SW or ENE-WSW near Wandhay village. Trenching survey across a low scarp near Wandhay village reveals three major fault strands F1, F2, and F3. These fault strands displaced the older terrace deposits comprising Sand, Silt and Gravel units along with overlying younger deposits from units 1 to 5 made of gravel, sand and silt. Stratigraphic relationship indicates at least three large magnitude earthquakes along KHF during Late Holocene or recent historic past.

  5. Parametric Modeling and Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva; Ju, Jianhong

    2000-01-01

    Fault tolerant control is considered for a nonlinear aircraft model expressed as a linear parameter-varying system. By proper parameterization of foreseeable faults, the linear parameter-varying system can include fault effects as additional varying parameters. A recently developed technique in fault effect parameter estimation allows us to assume that estimates of the fault effect parameters are available on-line. Reconfigurability is calculated for this model with respect to the loss of control effectiveness to assess the potentiality of the model to tolerate such losses prior to control design. The control design is carried out by applying a polytopic method to the aircraft model. An error bound on fault effect parameter estimation is provided, within which the Lyapunov stability of the closed-loop system is robust. Our simulation results show that as long as the fault parameter estimates are sufficiently accurate, the polytopic controller can provide satisfactory fault-tolerance.

  6. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1987-01-01

    Specific topics briefly addressed include: the consistent comparison problem in N-version system; analytic models of comparison testing; fault tolerance through data diversity; and the relationship between failures caused by automatically seeded faults.

  7. Solar Dynamic Power System Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  8. Fault seals in oil fields in Nevada

    SciTech Connect

    Foster, N.H.; Veal, H.K.; Bortz, L.C.

    1987-08-01

    Faults forms seals for oil accumulations in the Eagle Springs, Trap Spring, and Blackburn fields, and probably in the Grant Canyon field, in Nevada. The main boundary fault on the east side of the Pine Valley graben forms a seal in the Blackburn field. A fault on the west side of the trap Spring field forms a seal. In Grant Canyon field, it is interpreted that the main boundary fault on the east side of the Railroad Valley graben forms a seal. Calcite is deposited by hot spring activity, plugging up many fault zones and, in some cases, forming seals. Some fault zones have calcite mineralization up to several thousand feet wide. Within the Eagle Springs field on the east side of the Railroad Valley graben, a northeast-trending fault separates oil accumulations with different oil-water contacts. This separation indicates that the fault forms at least a partial seal within the accumulation.

  9. Seismology: Diary of a wimpy fault

    NASA Astrophysics Data System (ADS)

    Bürgmann, Roland

    2015-05-01

    Subduction zone faults can slip slowly, generating tremor. The varying correlation between tidal stresses and tremor occurring deep in the Cascadia subduction zone suggests that the fault is inherently weak, and gets weaker as it slips.

  10. Implementing fault-tolerant sensors

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith

    1989-01-01

    One aspect of fault tolerance in process control programs is the ability to tolerate sensor failure. A methodology is presented for transforming a process control program that cannot tolerate sensor failures to one that can. Additionally, a hierarchy of failure models is identified.

  11. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  12. MOS integrated circuit fault modeling

    NASA Technical Reports Server (NTRS)

    Sievers, M.

    1985-01-01

    Three digital simulation techniques for MOS integrated circuit faults were examined. These techniques embody a hierarchy of complexity bracketing the range of simulation levels. The digital approaches are: transistor-level, connector-switch-attenuator level, and gate level. The advantages and disadvantages are discussed. Failure characteristics are also described.

  13. FAULT & COORDINATION STUDY FOR T PLANT COMPLEX

    SciTech Connect

    MCDONALD, G.P.; BOYD-BODIAU, E.A.

    2004-09-01

    A short circuit study is performed to determine the maximum fault current that the system protective devices, transformers, and interconnections would he subject to in event of a three phase, phase-to-phase, or phase-to-ground fault. Generally, the short circuit study provides the worst case fault current levels at each bus or connection point of the system.

  14. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  15. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  16. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    NASA Astrophysics Data System (ADS)

    Solum, John G.; Davatzes, Nicholas C.; Lockner, David A.

    2010-12-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ˜1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon.

  17. Fault tolerant software modules for SIFT

    NASA Technical Reports Server (NTRS)

    Hecht, M.; Hecht, H.

    1982-01-01

    The implementation of software fault tolerance is investigated for critical modules of the Software Implemented Fault Tolerance (SIFT) operating system to support the computational and reliability requirements of advanced fly by wire transport aircraft. Fault tolerant designs generated for the error reported and global executive are examined. A description of the alternate routines, implementation requirements, and software validation are included.

  18. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  19. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  20. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  1. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  2. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  3. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  4. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  5. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  6. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  7. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  8. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  9. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  10. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  11. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  12. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  13. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  14. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  15. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  16. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  17. Ground Fault--A Health Hazard

    ERIC Educational Resources Information Center

    Jacobs, Clinton O.

    1977-01-01

    A ground fault is especially hazardous because the resistance through which the current is flowing to ground may be sufficient to cause electrocution. The Ground Fault Circuit Interrupter (G.F.C.I.) protects 15 and 25 ampere 120 volt circuits from ground fault condition. The design and examples of G.F.C.I. functions are described in this article.…

  18. Reliability computation using fault tree analysis

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.

    1971-01-01

    A method is presented for calculating event probabilities from an arbitrary fault tree. The method includes an analytical derivation of the system equation and is not a simulation program. The method can handle systems that incorporate standby redundancy and it uses conditional probabilities for computing fault trees where the same basic failure appears in more than one fault path.

  19. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  20. Fault tolerant control of spacecraft

    NASA Astrophysics Data System (ADS)

    Godard

    Autonomous multiple spacecraft formation flying space missions demand the development of reliable control systems to ensure rapid, accurate, and effective response to various attitude and formation reconfiguration commands. Keeping in mind the complexities involved in the technology development to enable spacecraft formation flying, this thesis presents the development and validation of a fault tolerant control algorithm that augments the AOCS on-board a spacecraft to ensure that these challenging formation flying missions will fly successfully. Taking inspiration from the existing theory of nonlinear control, a fault-tolerant control system for the RyePicoSat missions is designed to cope with actuator faults whilst maintaining the desirable degree of overall stability and performance. Autonomous fault tolerant adaptive control scheme for spacecraft equipped with redundant actuators and robust control of spacecraft in underactuated configuration, represent the two central themes of this thesis. The developed algorithms are validated using a hardware-in-the-loop simulation. A reaction wheel testbed is used to validate the proposed fault tolerant attitude control scheme. A spacecraft formation flying experimental testbed is used to verify the performance of the proposed robust control scheme for underactuated spacecraft configurations. The proposed underactuated formation flying concept leads to more than 60% savings in fuel consumption when compared to a fully actuated spacecraft formation configuration. We also developed a novel attitude control methodology that requires only a single thruster to stabilize three axis attitude and angular velocity components of a spacecraft. Numerical simulations and hardware-in-the-loop experimental results along with rigorous analytical stability analysis shows that the proposed methodology will greatly enhance the reliability of the spacecraft, while allowing for potentially significant overall mission cost reduction.

  1. Fault Diagnosis in HVAC Chillers

    NASA Technical Reports Server (NTRS)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  2. Fault-crossing P delays, epicentral biasing, and fault behavior in Central California

    USGS Publications Warehouse

    Marks, S.M.; Bufe, C.G.

    1979-01-01

    The P delays across the San Andreas fault zone in central California have been determined from travel-time differences at station pairs spanning the fault, using off-fault local earthquake or quarry blast sources. Systematic delays as large as 0.4 sec have been observed for paths crossing the fault at depths of 5-10 km. These delays can account for the apparent deviation of epicenters from the mapped fault trace. The largest delays occur along the San Andreas fault between San Juan Bautista and Bear Valley and Between Bitterwater Valley and Parkfield. Spatial variations in fault behavior correlate with the magnitude of the fault-crossing P delay. The delay decreases to the northwest of San Juan Bautista across the "locked" section of the San Andreas fault and also decreases to the southeast approaching Parkfield. Where the delay is large, seismicity is relatively high and the fault is creeping. ?? 1979.

  3. Architecture of small-scale fault zones in the context of the Leinetalgraben Fault System

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Philipp, Sonja L.

    2010-05-01

    Understanding fault zone properties in different geological settings is important to better assess the development and propagation of faults. In addition this allows better evaluation and permeability estimates of potential fault-related geothermal reservoirs. The Leinetalgraben fault system provides an outcrop analogue for many fault zones in the subsurface of the North German Basin. The Leinetalgraben is a N-S-trending graben structure, initiated in the Jurassic, in the south of Lower Saxony and as such part of the North German Basin. The fault system was reactivated and inverted during Alpine compression in the Tertiary. This complex geological situation was further affected by halotectonics. Therefore we can find different types of fault zones, that is normal, reverse, strike-slip an oblique-slip faults, surrounding the major Leinetalgraben boundary faults. Here we present first results of structural geological field studies on the geometry and architecture of fault zones in the Leinetalgraben Fault System in outcrop-scale. We measured the orientations and displacements of 17 m-scale fault zones in limestone (Muschelkalk) outcrops, the thicknesses of their fault cores and damage zones, as well as the fracture densities and geometric parameters of the fracture systems therein. We also analysed the effects of rock heterogeneities, particularly stiffness variations between layers (mechanical layering) on the propagation of natural fractures and fault zones. The analysed fault zones predominantly show similar orientations as the major fault zones they surround. Other faults are conjugate or perpendicular to the major fault zones. The direction of predominant joint strike corresponds to the orientation of the fault zones in the majority of cases. The mechanical layering of the limestone and marlstone stratification obviously has great effects on fracture propagation. Already thin layers (mm- to cm-scale) of low stiffness - here marl - seem to suffice to change the

  4. late Pleistocene and Holocene pollen record from Laguna de las Trancas, northern coastal Santa Cruz County, California

    USGS Publications Warehouse

    Adam, David P.; Byrne, Roger; Luther, Edgar

    1981-01-01

    A 2.1-m core from Laguna de las Trancas, a marsh atop a landslide in northern Santa Cruz County, California, has yielded a pollen record for the period between about 30,000 B. P. and roughly 5000 B. P. Three pollen zones are recognized. The earliest is characterized by high frequencies of pine pollen and is correlated with a mid-Wisconsinan interstade of the mid-continent. The middle zone contains high frequencies of both pine and fir (Abies, probably A. grandis) pollen and is correlated with the last full glacial interval (upper Wisconsinan). The upper zone is dominated by redwood (Sequoia) pollen and represents latest Pleistocene to middle Holocene. The past few thousand years are not represented in the core. The pollen evidence indicates that during the full glacial period the mean annual temperature at the site was about 2°C to 3°C lower than it is today. We attribute this small difference to the stabilizing effect of marine upwelling on the temperature regime in the immediate vicinity of the coast. Precipitation may have been about 20 percent higher as a result of longer winter wet seasons.

  5. Evolution of unrest at Laguna del Maule volcanic field (Chile) from InSAR and GPS measurements, 2003 to 2014

    NASA Astrophysics Data System (ADS)

    Le Mével, Hélène; Feigl, Kurt L.; Córdova, Loreto; DeMets, Charles; Lundgren, Paul

    2015-08-01

    The Laguna del Maule (LdM) volcanic field in the southern volcanic zone of the Chilean Andes exhibits a large volume of rhyolitic material erupted during postglacial times (20-2 ka). Since 2007, LdM has experienced an unrest episode characterized by high rates of deformation. Analysis of new GPS and Interferometric Synthetic Aperture Radar (InSAR) data reveals uplift rates greater than 190 mm/yr between January 2013 and November 2014. The geodetic data are modeled as an inflating sill at depth. The results are used to calculate the temporal evolution of the vertical displacement. The best time function for modeling the InSAR data set is a double exponential model with rates increasing from 2007 through 2010 and decreasing slowly since 2010. We hypothesize that magma intruding into an existing silicic magma reservoir is driving the surface deformation. Modeling historical uplift at Yellowstone, Long Valley, and Three Sisters volcanic fields suggests a common temporal evolution of vertical displacement rates.

  6. Secondary forest succession and tree planting at the Laguna Cartagena and Cabo Rojo wildlife refuges in southwestern Puerto Rico.

    PubMed

    Weaver, Peter L; Schwagerl, Joseph J

    2008-12-01

    Secondary forest succession and tree planting are contributing to the recovery of the Cabo Rojo refuge (Headquarters and Salinas tracts) and Laguna Cartagena refuge (Lagoon and Tinaja tracts) of the Fish and Wildlife Service in southwestern Puerto Rico. About 80 species, mainly natives, have been planted on 44 ha during the past 25 y in an effort to reduce the threat of grass fires and to restore wildlife habitat. A 2007 survey of 9-y-old tree plantings on the Lagoon tract showed satisfactory growth rates for 16 native species. Multiple stems from individual trees at ground level were common. A sampling of secondary forest on the entire 109 ha Tinaja tract disclosed 141 native tree species, or 25% of Puerto Rico's native tree flora, along with 20 exotics. Five tree species made up about 58% of the total basal area, and seven species were island endemics. Between 1998 and 2003, tree numbers and basal area, as well as tree heights and diameter at breast height values (diameter at 1.4 m above the ground), increased on the lower 30 ha of the Tinaja tract. In this area, much of it subject to fires and grazing through 1996, exotic trees made up 25% of the species. Dry forest throughout the tropics is an endangered habitat, and its recovery (i.e., in biomass, structure, and species composition) at Tinaja may exceed 500 y. Future forests, however, will likely contain some exotics. PMID:19205183

  7. Three-dimensional Geology of the Hayward Fault and its Correlation with Fault Behavior, Northern California

    NASA Astrophysics Data System (ADS)

    Ponce, D. A.; Graymer, R. C.; Jachens, R. C.; Simpson, R. W.; Phelps, G. A.; Wentworth, C. M.

    2004-12-01

    Relationships between fault behavior and geology along the Hayward Fault were investigated using a three-dimensional geologic model of the Hayward fault and vicinity. The three-dimensional model, derived from geologic, geophysical, and seismicity data, allowed the construction of a `geologic map' of east- and west-side surfaces, maps that show the distribution of geologic units on either side of the fault that truncate against the fault surface. These two resulting geologic maps were compared with seismicity and creep along the Hayward Fault using three-dimensional visualization software. The seismic behavior of the Hayward Fault correlates with rock unit contacts along the fault, rather than in rock types across the fault. This suggests that fault activity is, in part, controlled by the physical properties of the rocks that abut the fault and not by properties of the fault zone itself. For example, far fewer earthquakes occur along the northern part of the fault where an intensely sheared Franciscan mélange on the west side abuts the fault face, compared to the region to the south where more coherent rocks of other Franciscan terranes or the Coast Range Ophiolite are present. More locally, clusters of earthquakes correlate spatially with some of the contacts between Franciscan terranes as well as mafic rocks of the Coast Range Ophiolite. Steady creep rates along the fault correlate with the lateral extent of the San Leandro gabbro, and changes in creep rate correlate with changes in geology. Although preliminary, the results of comparing fault behavior with the inferred three-dimensional geology adjacent to the Hayward Fault suggest that any attempt to understand the detailed distribution of earthquakes or creep along the fault should include consideration of the rock types that abut the fault surface. Such consideration would benefit greatly from incorporating into the three-dimensional geologic model the physical properties of the rock types along the fault.

  8. Recurrent late Quaternary surface faulting along the southern Mohawk Valley fault zone, NE California

    SciTech Connect

    Sawyer, T.L.; Hemphill-Haley, M.A. ); Page, W.D. )

    1993-04-01

    The Mohawk Valley fault zone comprises NW- to NNW-striking, normal and strike-slip( ) faults that form the western edge of the Plumas province, a diffuse transitional zone between the Basin and Range and the northern Sierra Nevada. The authors detailed evaluation of the southern part of the fault zone reveals evidence for recurrent late Pleistocene to possibly Holocene, moderate to large surface-faulting events. The southern Mohawk fault zone is a complex, 6-km-wide zone of faults and related features that extends from near the crest of the Sierra Nevada to the middle of southern Sierra Valley. The fault zone has two distinct and generally parallel subzones, 3 km apart, that are delineated by markedly different geomorphic characteristics and apparently different styles of faulting. Paleoseismic activity of the western subzone was evaluated in two trenches: one across a fault antithetic to the main range-bounding fault, and the other across a splay fault delineated by a 3.7-m-high scarp in alluvium. Stratigraphic relations, soil development, and radiocarbon dates indicate that at least four mid- to late-Pleistocene surface-faulting events, having single-event displacements in excess of 1.6 to 2.6 m, occurred along the splay fault prior to 12 ka. The antithetic fault has evidence of three late Pleistocene events that may correspond to event documented on the splay fault, and a Holocene event that is inferred from youthful scarplets and small closed depressions.

  9. Novel neural networks-based fault tolerant control scheme with fault alarm.

    PubMed

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques. PMID:25014982

  10. Predeployment validation of fault-tolerant systems through software-implemented fault insertion

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1989-01-01

    Fault injection-based automated testing (FIAT) environment, which can be used to experimentally characterize and evaluate distributed realtime systems under fault-free and faulted conditions is described. A survey is presented of validation methodologies. The need for fault insertion based on validation methodologies is demonstrated. The origins and models of faults, and motivation for the FIAT concept are reviewed. FIAT employs a validation methodology which builds confidence in the system through first providing a baseline of fault-free performance data and then characterizing the behavior of the system with faults present. Fault insertion is accomplished through software and allows faults or the manifestation of faults to be inserted by either seeding faults into memory or triggering error detection mechanisms. FIAT is capable of emulating a variety of fault-tolerant strategies and architectures, can monitor system activity, and can automatically orchestrate experiments involving insertion of faults. There is a common system interface which allows ease of use to decrease experiment development and run time. Fault models chosen for experiments on FIAT have generated system responses which parallel those observed in real systems under faulty conditions. These capabilities are shown by two example experiments each using a different fault-tolerance strategy.

  11. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.; Patterson-Hine, Ann; Iverson, David

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  12. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1986-01-01

    Multiversion or N-version programming was proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. Specific topics addressed are: failure probabilities in N-version systems, consistent comparison in N-version systems, descriptions of the faults found in the Knight and Leveson experiment, analytic models of comparison testing, characteristics of the input regions that trigger faults, fault tolerance through data diversity, and the relationship between failures caused by automatically seeded faults.

  13. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  14. Managing Space System Faults: Coalescing NASA's Views

    NASA Technical Reports Server (NTRS)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  15. Experiments in fault tolerant software reliability

    NASA Technical Reports Server (NTRS)

    Mcallister, David F.; Vouk, Mladen A.

    1989-01-01

    Twenty functionally equivalent programs were built and tested in a multiversion software experiment. Following unit testing, all programs were subjected to an extensive system test. In the process sixty-one distinct faults were identified among the versions. Less than 12 percent of the faults exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as many as 14 components. However, a majority of these faults were trivial, and easily detected by proper unit and/or system testing. Only two of the seven similar faults were difficult faults, and both were caused by specification ambiguities. One of these faults exhibited variable identical-and-wrong response span, i.e. response span which varied with the testing conditions and input data. Techniques that could have been used to avoid the faults are discussed. For example, it was determined that back-to-back testing of 2-tuples could have been used to eliminate about 90 percent of the faults. In addition, four of the seven similar faults could have been detected by using back-to-back testing of 5-tuples. It is believed that most, if not all, similar faults could have been avoided had the specifications been written using more formal notation, the unit testing phase was subject to more stringent standards and controls, and better tools for measuring the quality and adequacy of the test data (e.g. coverage) were used.

  16. Model-Based Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Kumar, Aditya; Viassolo, Daniel

    2008-01-01

    The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.

  17. Tool for Viewing Faults Under Terrain

    NASA Technical Reports Server (NTRS)

    Siegel, Herbert, L.; Li, P. Peggy

    2005-01-01

    Multi Surface Light Table (MSLT) is an interactive software tool that was developed in support of the QuakeSim project, which has created an earthquake- fault database and a set of earthquake- simulation software tools. MSLT visualizes the three-dimensional geometries of faults embedded below the terrain and animates time-varying simulations of stress and slip. The fault segments, represented as rectangular surfaces at dip angles, are organized into collections, that is, faults. An interface built into MSLT queries and retrieves fault definitions from the QuakeSim fault database. MSLT also reads time-varying output from one of the QuakeSim simulation tools, called "Virtual California." Stress intensity is represented by variations in color. Slips are represented by directional indicators on the fault segments. The magnitudes of the slips are represented by the duration of the directional indicators in time. The interactive controls in MSLT provide a virtual track-ball, pan and zoom, translucency adjustment, simulation playback, and simulation movie capture. In addition, geographical information on the fault segments and faults is displayed on text windows. Because of the extensive viewing controls, faults can be seen in relation to one another, and to the terrain. These relations can be realized in simulations. Correlated slips in parallel faults are visible in the playback of Virtual California simulations.

  18. A Quaternary fault database for central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd Alan; Bendick, Rebecca; Stübner, Konstanze; Strube, Timo

    2016-02-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via http://www.geo.uni-tuebingen.de/faults/. This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  19. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  20. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Iverson, David L.

    1997-01-01

    We consider the problem of sequencing tests to isolate multiple faults in redundant (fault-tolerant) systems with minimum expected testing cost (time). It can be shown that single faults and minimal faults, i.e., minimum number of failures with a failure signature different from the union of failure signatures of individual failures, together with their failure signatures, constitute the necessary information for fault diagnosis in redundant systems. In this paper, we develop an algorithm to find all the minimal faults and their failure signatures. Then, we extend the Sure diagnostic strategies [1] of our previous work to diagnose multiple faults in redundant systems. The proposed algorithms and strategies are illustrated using several examples.

  1. Parallel fault-tolerant robot control

    NASA Technical Reports Server (NTRS)

    Hamilton, D. L.; Bennett, J. K.; Walker, I. D.

    1992-01-01

    A shared memory multiprocessor architecture is used to develop a parallel fault-tolerant robot controller. Several versions of the robot controller are developed and compared. A robot simulation is also developed for control observation. Comparison of a serial version of the controller and a parallel version without fault tolerance showed the speedup possible with the coarse-grained parallelism currently employed. The performance degradation due to the addition of processor fault tolerance was demonstrated by comparison of these controllers with their fault-tolerant versions. Comparison of the more fault-tolerant controller with the lower-level fault-tolerant controller showed how varying the amount of redundant data affects performance. The results demonstrate the trade-off between speed performance and processor fault tolerance.

  2. Alp Transit: Crossing Faults 44 and 49

    NASA Astrophysics Data System (ADS)

    El Tani, M.; Bremen, R.

    2014-05-01

    This paper describes the crossing of faults 44 and 49 when constructing the 57 km Gotthard base tunnel of the Alp Transit project. Fault 44 is a permeable fault that triggered significant surface deformations 1,400 m above the tunnel when it was reached by the advancing excavation. The fault runs parallel to the downstream face of the Nalps arch dam. Significant deformations were measured at the dam crown. Fault 49 is sub-vertical and permeable, and runs parallel at the upstream face of the dam. It was necessary to assess the risk when crossing fault 49, as a limit was put on the acceptable dam deformation for structural safety. The simulation model, forecasts and action decided when crossing over the faults are presented, with a brief description of the tunnel, the dam, and the monitoring system.

  3. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  4. A “mesh” of crossing faults: Fault networks of southern California

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.

    2009-12-01

    Detailed geologic mapping of active fault systems in the western Salton Trough and northern Peninsular Ranges of southern California make it possible to expand the inventory of mapped and known faults by compiling and updating existing geologic maps, and analyzing high resolution imagery, LIDAR, InSAR, relocated hypocenters and other geophysical datasets. A fault map is being compiled on Google Earth and will ultimately discriminate between a range of different fault expressions: from well-mapped faults to subtle lineaments and geomorphic anomalies. The fault map shows deformation patterns in both crystalline and basinal deposits and reveals a complex fault mesh with many curious and unexpected relationships. Key findings are: 1) Many fault systems have mutually interpenetrating geometries, are grossly coeval, and allow faults to cross one another. A typical relationship reveals a dextral fault zone that appears to be continuous at the regional scale. In detail, however, there are no continuous NW-striking dextral fault traces and instead the master dextral fault is offset in a left-lateral sense by numerous crossing faults. Left-lateral faults also show small offsets where they interact with right lateral faults. Both fault sets show evidence of Quaternary activity. Examples occur along the Clark, Coyote Creek, Earthquake Valley and Torres Martinez fault zones. 2) Fault zones cross in other ways. There are locations where active faults continue across or beneath significant structural barriers. Major fault zones like the Clark fault of the San Jacinto fault system appears to end at NE-striking sinistral fault zones (like the Extra and Pumpkin faults) that clearly cross from the SW to the NE side of the projection of the dextral traces. Despite these blocking structures, there is good evidence for continuation of the dextral faults on the opposite sides of the crossing fault array. In some instances there is clear evidence (in deep microseismic alignments of

  5. Tracing the Geomorphic Signature of Lateral Faulting

    NASA Astrophysics Data System (ADS)

    Duvall, A. R.; Tucker, G. E.

    2012-12-01

    Active strike-slip faults are among the most dangerous geologic features on Earth. Unfortunately, it is challenging to estimate their slip rates, seismic hazard, and evolution over a range of timescales. An under-exploited tool in strike-slip fault characterization is quantitative analysis of the geomorphic response to lateral fault motion to extract tectonic information directly from the landscape. Past geomorphic work of this kind has focused almost exclusively on vertical motion, despite the ubiquity of horizontal motion in crustal deformation and mountain building. We seek to address this problem by investigating the landscape response to strike-slip faulting in two ways: 1) examining the geomorphology of the Marlborough Fault System (MFS), a suite of parallel strike-slip faults within the actively deforming South Island of New Zealand, and 2) conducting controlled experiments in strike-slip landscape evolution using the CHILD landscape evolution model. The MFS offers an excellent natural experiment site because fault initiation ages and cumulative displacements decrease from north to south, whereas slip rates increase over four fold across a region underlain by a single bedrock unit (Torlesse Greywacke). Comparison of planform and longitudinal profiles of rivers draining the MFS reveals strong disequilibrium within tributaries that drain to active fault strands, and suggests that river capture related to fault activity may be a regular process in strike-slip fault zones. Simple model experiments support this view. Model calculations that include horizontal motion as well as vertical uplift demonstrate river lengthening and shortening due to stream capture in response to shutter ridges sliding in front of stream outlets. These results suggest that systematic variability in fluvial knickpoint location, drainage area, and incision rates along different faults or fault segments may be expected in catchments upstream of strike-slip faults and could act as useful

  6. Has the San Gabriel fault been offset

    SciTech Connect

    Sheehan, J.R.

    1988-03-01

    The San Gabriel fault (SGF) in southern California is a right-lateral, strike-slip fault extending for 85 mi in an arcuate, southwestward-bowing curve from near the San Andreas fault at Frazier Mountain to its intersection with the left-lateral San Antonio Canyon fault (SACF) in the eastern San Gabriel Mountains. Termination of the SGF at the presently active SACF is abrupt and prompts the question Has the San Gabriel Fault been offset. Tectonic and geometric relationships in the area suggest that the SGF has been offset approximately 6 mi in a left-lateral sense and that the offset continuation of the SGF, across the SACF, is the right-lateral, strike-slip San Jacinto fault (SJF), which also terminates at the SACF. Reversing the left-lateral movement on the SACF to rejoin the offset ends of the SGF and SJF reveals a fault trace that is remarkably similar in geometry and movement (and perhaps in tectonic history), to the trace of the San Andreas fault through the southern part of the San Bernardino Mountains. The relationship of the Sierra Madre-Cucamonga fault system to the restored SGF-SJF fault is strikingly similar to the relationship of the Banning fault to the Mission Creek-Mill Creek portion of the San Andreas fault. Structural relations suggest that the San Gabriel-San Jacinto system predates the San Andreas fault in the eastern San Gabriel Mountains and that continuing movement on the SACF is currently affecting the trace of the San Andreas fault in the Cajon Pass area.

  7. Fault trees and imperfect coverage

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne B.

    1989-01-01

    A new algorithm is presented for solving the fault tree. The algorithm includes the dynamic behavior of the fault/error handling model but obviates the need for the Markov chain solution. As the state space is expanded in a breadth-first search (the same is done in the conversion to a Markov chain), the state's contribution to each future state is calculated exactly. A dynamic state truncation technique is also presented; it produces bounds on the unreliability of the system by considering only part of the state space. Since the model is solved as the state space is generated, the process can be stopped as soon as the desired accuracy is reached.

  8. Perspective View, San Andreas Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space

  9. Heat flow, strong near-fault seismic waves, and near-fault tectonics on the central San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2016-05-01

    The main San Andreas Fault strikes subparallel to compressional folds and thrust faults. Its fault-normal traction is on average a factor of γ=1+2μthr>(√(1+μthr2)+μthr>), where μthr is the coefficient of friction for thrust faults, times the effective lithostatic pressure. A useful upper limit for μthr of 0.6 (where γ is 3.12) is obtained from the lack of heat flow anomalies by considering off-fault convergence at a rate of 1 mm/yr for 10 km across strike. If the fault-normal traction is in fact this high, the well-known heat flow constraint of average stresses of 10-20 MPa during strike slip on the main fault becomes more severe. Only a few percent of the total slip during earthquakes can occur at the peak stress before dynamic mechanisms weaken the fault. The spatial dimension of the high-stress rupture-tip zone is ˜10 m for γ = 3.12 and, for comparison, ˜100 m for γ = 1. High dynamic stresses during shaking occur within these distances of the fault plane. In terms of scalars, fine-scale tectonic stresses cannot exceed the difference between failure stress and dynamic stress. Plate-scale slip causes stresses to build up near geometrical irregularities of the fault plane. Strong dynamic stresses near the rupture tip facilitate anelastic deformation with the net effects of relaxing the local deviatoric tectonic stress and accommodating deformation around the irregularities. There also is a mild tendency for near-fault material to extrude upward. Slip on minor thrust faults causes the normal traction on the main fault to be spatially variable.

  10. New insights on Southern Coyote Creek Fault and Superstition Hills Fault

    NASA Astrophysics Data System (ADS)

    van Zandt, A. J.; Mellors, R. J.; Rockwell, T. K.; Burgess, M. K.; O'Hare, M.

    2007-12-01

    Recent field work has confirmed an extension of the southern Coyote Creek (CCF) branch of the San Jacinto fault in the western Salton trough. The fault marks the western edge of an area of subsidence caused by groundwater extraction, and field measurements suggest that recent strike-slip motion has occurred on this fault as well. We attempt to determine whether this fault connects at depth with the Superstition Hills fault (SHF) to the southeast by modeling observed surface deformation between the two faults measured by InSAR. Stacked ERS (descending) InSAR data from 1992 to 2000 is initially modeled using a finite fault in an elastic half-space. Observed deformation along the SHF and Elmore Ranch fault is modeled assuming shallow (< 5 km) creep. We test various models to explain surface deformation between the two faults.

  11. Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea

    NASA Astrophysics Data System (ADS)

    Duffy, Oliver B.; Bell, Rebecca E.; Jackson, Christopher A.-L.; Gawthorpe, Rob L.; Whipp, Paul S.

    2015-11-01

    Physical models predict that multiphase rifts that experience a change in extension direction between stretching phases will typically develop non-colinear normal fault sets. Furthermore, multiphase rifts will display a greater frequency and range of styles of fault interactions than single-phase rifts. Although these physical models have yielded useful information on the evolution of fault networks in map view, the true 3D geometry of the faults and associated interactions are poorly understood. Here, we use an integrated 3D seismic reflection and borehole dataset to examine a range of fault interactions that occur in a natural multiphase fault network in the northern Horda Platform, northern North Sea. In particular we aim to: i) determine the range of styles of fault interaction that occur between non-colinear faults; ii) examine the typical geometries and throw patterns associated with each of these different styles; and iii) highlight the differences between single-phase and multiphase rift fault networks. Our study focuses on a ca. 350 km2 region around the >60 km long, N-S-striking Tusse Fault, a normal fault system that was active in the Permian-Triassic and again in the Late Jurassic-to-Early Cretaceous. The Tusse Fault is one of a series of large (>1500 m throw) N-S-striking faults forming part of the northern Horda Platform fault network, which includes numerous smaller (2-10 km long), lower throw (<100 m), predominantly NW-SE-striking faults that were only active during the Late Jurassic to Early Cretaceous. We examine how the 2nd-stage NW-SE-striking faults grew, interacted and linked with the N-S-striking Tusse Fault, documenting a range of interaction styles including mechanical and kinematic isolation, abutment, retardation and reactivated relays. Our results demonstrate that: i) isolated, and abutting interactions are the most common fault interaction styles in the northern Horda Platform; ii) pre-existing faults can act as sites of nucleation for

  12. Inverter Ground Fault Overvoltage Testing

    SciTech Connect

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  13. Fault detection using genetic programming

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; B. Jack, Lindsay; Nandi, Asoke K.

    2005-03-01

    Genetic programming (GP) is a stochastic process for automatically generating computer programs. GP has been applied to a variety of problems which are too wide to reasonably enumerate. As far as the authors are aware, it has rarely been used in condition monitoring (CM). In this paper, GP is used to detect faults in rotating machinery. Featuresets from two different machines are used to examine the performance of two-class normal/fault recognition. The results are compared with a few other methods for fault detection: Artificial neural networks (ANNs) have been used in this field for many years, while support vector machines (SVMs) also offer successful solutions. For ANNs and SVMs, genetic algorithms have been used to do feature selection, which is an inherent function of GP. In all cases, the GP demonstrates performance which equals or betters that of the previous best performing approaches on these data sets. The training times are also found to be considerably shorter than the other approaches, whilst the generated classification rules are easy to understand and independently validate.

  14. Watching Faults Grow in Sand

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.

    2015-12-01

    Accretionary sandbox experiments provide a rich environment for investigating the processes of fault development. These experiments engage students because 1) they enable direct observation of fault growth, which is impossible in the crust (type 1 physical model), 2) they are not only representational but can also be manipulated (type 2 physical model), 3) they can be used to test hypotheses (type 3 physical model) and 4) they resemble experiments performed by structural geology researchers around the world. The structural geology courses at UMass Amherst utilize a series of accretionary sandboxes experiments where students first watch a video of an experiment and then perform a group experiment. The experiments motivate discussions of what conditions they would change and what outcomes they would expect from these changes; hypothesis development. These discussions inevitably lead to calculations of the scaling relationships between model and crustal fault growth and provide insight into the crustal processes represented within the dry sand. Sketching of the experiments has been shown to be a very effective assessment method as the students reveal which features they are analyzing. Another approach used at UMass is to set up a forensic experiment. The experiment is set up with spatially varying basal friction before the meeting and students must figure out what the basal conditions are through the experiment. This experiment leads to discussions of equilibrium and force balance within the accretionary wedge. Displacement fields can be captured throughout the experiment using inexpensive digital image correlation techniques to foster quantitative analysis of the experiments.

  15. CONTROL AND FAULT DETECTOR CIRCUIT

    DOEpatents

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  16. From fissure to fault: A model of fault growth in the Krafla Fissure System, NE Iceland

    NASA Astrophysics Data System (ADS)

    Bramham, Emma; Paton, Douglas; Wright, Tim

    2015-04-01

    Current models of fault growth examine the relationship of fault length (L) to vertical displacement (D) where the faults exhibit the classic fault shape of gradually increasing vertical displacement from zero at the fault tips to a maximum displacement (Dmax) at the middle of the fault. These models cannot adequately explain displacement-length observations at the Krafla fissure swarm, in Iceland's northern volcanic zone, where we observe that many of the faults with significant vertical displacements still retain fissure-like features, with no vertical displacement, along portions of their lengths. We have created a high resolution digital elevation model (DEM) of the Krafla region using airborne LiDAR and measured the displacement/length profiles of 775 faults, with lengths ranging from 10s to 1000s of metres. We have categorised the faults based on the proportion of the profile that was still fissure-like. Fully-developed faults (no fissure-like regions) were further grouped into those with profiles that had a flat-top geometry (i.e. significant proportion of fault length with constant throw), those with a bell-shaped throw profile and those that show regions of fault linkage. We suggest that a fault can most easily accommodate stress by displacing regions that are still fissure-like, and that a fault would be more likely to accommodate stress by linkage once it has reached the maximum displacement for its fault length. Our results demonstrate that there is a pattern of growth from fissure to fault in the Dmax/L ratio of the categorised faults and propose a model for this growth. These data better constrain our understanding of how fissures develop into faults but also provide insights into the discrepancy in D/L profiles from a typical bell-shaped distribution.

  17. A complete hydro-climate model chain to investigate the influence of sea surface temperature on recent hydroclimatic variability in subtropical South America (Laguna Mar Chiquita, Argentina)

    NASA Astrophysics Data System (ADS)

    Troin, Magali; Vrac, Mathieu; Khodri, Myriam; Caya, Daniel; Vallet-Coulomb, Christine; Piovano, Eduardo; Sylvestre, Florence

    2016-03-01

    During the 1970s, Laguna Mar Chiquita (Argentina) experienced a dramatic hydroclimatic anomaly, with a substantial rise in its level. Precipitations are the dominant driving factor in lake level fluctuations. The present study investigates the potential role of remote forcing through global sea surface temperature (SST) fields in modulating recent hydroclimatic variability in Southeastern South America and especially over the Laguna Mar Chiquita region. Daily precipitation and temperature are extracted from a multi-member LMDz atmospheric general circulation model (AGCM) ensemble of simulations forced by HadISST1 observed time-varying global SST and sea-ice boundary conditions from 1950 to 2005. The various members of the ensemble are only different in their atmospheric initial conditions. Statistical downscaling (SD) is used to adjust precipitation and temperature from LMDz ensemble mean at the station scale over the basin. A coupled basin-lake hydrological model ( cpHM) is then using the LMDz-downscaled (LMDz-SD) climate variables as input to simulate the lake behavior. The results indicate that the long-term lake level trend is fairly well depicted by the LMDz-SD- cpHM simulations. The 1970s level rise and high-level conditions are generally well captured in timing and in magnitude when SST-forced AGCM-SD variables are used to drive the cpHM. As the LMDz simulations are forced solely with the observed sea surface conditions, the global SST seems to have an influence on the lake level variations of Laguna Mar Chiquita. As well, this study shows that the AGCM-SD- cpHM model chain is a useful approach for evaluating long-term lake level fluctuations in response to the projected climate changes.

  18. Uranium and lanthanides in surficial sediments of Laguna Ojo de Liebre and evaporation ponds of Exportadora de Sal, Guerrero Negro, México.

    NASA Astrophysics Data System (ADS)

    Grajeda-Muñoz, M. M.; Choumiline, E.; Zaposhnikov, D.

    2007-05-01

    To assess uranium and lanthanides behavior in hypersaline environments, surficial sediment samples were taken from Laguna Ojo de Liebre as well as from the evaporation ponds of Exportadora de Sal (the largest natural salt producing facility in the continent). A total of 63 surficial sediment samples from the laguna and 30 samples from the ponds were analyzed by inductive coupled plasma-mass spectrometry for uranium (sediments, deposits and solution) and instrumental neutron activation analysis for REEs in sediments and deposits. Results show that the behavior is all but similar between light and heavy REEs with the exception of Eu which shows a very different pattern of surficial distribution in Laguna Ojo de Liebre with a maximum concentrations in the sediments near the head of the lagoon. Data normalized with North American Shale Composite (NASC) show 3 distinct signature patterns on the surficial sediments, all of them enriched regarding the values of NASC. As for U total content in sediments and solid deposits it shows a higher concentration towards the head of the lagoon (3 mg/kg), from where the water is pumped to the sequence of evaporation ponds, with the lowest values being close to 1 mg/kg near the mouth of the lagoon. The interesting phenomenon begins in the evaporation ponds, where uranium is almost constant in sediments and deposits (0.15-1.5 mg/kg) but behaves conservately in the brine solution, increasing proportionally with salt content (U, 5-20 mg/kg; salt content, 40-250 g/kg). Non lithogenic U was calculated with Sc as reference. Most of the measured U was non lithogenic in the sediments of the lagoon and ponds. The distribution coefficient k= U(non-lith)/U(dis) shows a maximum value at ponds I and II (salt content 40-80 g/kg) decreasing with increasing salinity.

  19. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  20. Building the GEM Faulted Earth database

    NASA Astrophysics Data System (ADS)

    Litchfield, N. J.; Berryman, K. R.; Christophersen, A.; Thomas, R. F.; Wyss, B.; Tarter, J.; Pagani, M.; Stein, R. S.; Costa, C. H.; Sieh, K. E.

    2011-12-01

    The GEM Faulted Earth project is aiming to build a global active fault and seismic source database with a common set of strategies, standards, and formats, to be placed in the public domain. Faulted Earth is one of five hazard global components of the Global Earthquake Model (GEM) project. A key early phase of the GEM Faulted Earth project is to build a database which is flexible enough to capture existing and variable (e.g., from slow interplate faults to fast subduction interfaces) global data, and yet is not too onerous to enter new data from areas where existing databases are not available. The purpose of this talk is to give an update on progress building the GEM Faulted Earth database. The database design conceptually has two layers, (1) active faults and folds, and (2) fault sources, and automated processes are being defined to generate fault sources. These include the calculation of moment magnitude using a user-selected magnitude-length or magnitude-area scaling relation, and the calculation of recurrence interval from displacement divided by slip rate, where displacement is calculated from moment and moment magnitude. The fault-based earthquake sources defined by the Faulted Earth project will then be rationalised with those defined by the other GEM global components. A web based tool is being developed for entering individual faults and folds, and fault sources, and includes capture of additional information collected at individual sites, as well as descriptions of the data sources. GIS shapefiles of individual faults and folds, and fault sources will also be able to be uploaded. A data dictionary explaining the database design rationale, definitions of the attributes and formats, and a tool user guide is also being developed. Existing national databases will be uploaded outside of the fault compilation tool, through a process of mapping common attributes between the databases. Regional workshops are planned for compilation in areas where existing

  1. Fault tolerant operation of switched reluctance machine

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  2. A Log-Scaling Fault Tolerant Agreement Algorithm for a Fault Tolerant MPI

    SciTech Connect

    Hursey, Joshua J; Naughton, III, Thomas J; Vallee, Geoffroy R; Graham, Richard L

    2011-01-01

    The lack of fault tolerance is becoming a limiting factor for application scalability in HPC systems. The MPI does not provide standardized fault tolerance interfaces and semantics. The MPI Forum's Fault Tolerance Working Group is proposing a collective fault tolerant agreement algorithm for the next MPI standard. Such algorithms play a central role in many fault tolerant applications. This paper combines a log-scaling two-phase commit agreement algorithm with a reduction operation to provide the necessary functionality for the new collective without any additional messages. Error handling mechanisms are described that preserve the fault tolerance properties while maintaining overall scalability.

  3. West Coast Tsunami: Cascadia's Fault?

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Bernard, E. N.; Titov, V.

    2013-12-01

    The tragedies of 2004 Sumatra and 2011 Japan tsunamis exposed the limits of our knowledge in preparing for devastating tsunamis. The 1,100-km coastline of the Pacific coast of North America has tectonic and geological settings similar to Sumatra and Japan. The geological records unambiguously show that the Cascadia fault had caused devastating tsunamis in the past and this geological process will cause tsunamis in the future. Hypotheses of the rupture process of Cascadia fault include a long rupture (M9.1) along the entire fault line, short ruptures (M8.8 - M9.1) nucleating only a segment of the coastline, or a series of lesser events of M8+. Recent studies also indicate an increasing probability of small rupture occurring at the south end of the Cascadia fault. Some of these hypotheses were implemented in the development of tsunami evacuation maps in Washington and Oregon. However, the developed maps do not reflect the tsunami impact caused by the most recent updates regarding the Cascadia fault rupture process. The most recent study by Wang et al. (2013) suggests a rupture pattern of high- slip patches separated by low-slip areas constrained by estimates of coseismic subsidence based on microfossil analyses. Since this study infers that a Tokohu-type of earthquake could strike in the Cascadia subduction zone, how would such an tsunami affect the tsunami hazard assessment and planning along the Pacific Coast of North America? The rapid development of computing technology allowed us to look into the tsunami impact caused by above hypotheses using high-resolution models with large coverage of Pacific Northwest. With the slab model of MaCrory et al. (2012) (as part of the USGS slab 1.0 model) for the Cascadia earthquake, we tested the above hypotheses to assess the tsunami hazards along the entire U.S. West Coast. The modeled results indicate these hypothetical scenarios may cause runup heights very similar to those observed along Japan's coastline during the 2011

  4. Learning and diagnosing faults using neural networks

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis

    1990-01-01

    Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.

  5. Early weakening processes inside thrust fault

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Tesei, T.; Oliot, E.; Lahfid, A.; Collettini, C.

    2015-07-01

    Observations from deep boreholes at several locations worldwide, laboratory measurements of frictional strength on quartzo-feldspathic materials, and earthquake focal mechanisms indicate that crustal faults are strong (apparent friction μ ≥ 0.6). However, friction experiments on phyllosilicate-rich rocks and some geophysical data have demonstrated that some major faults are considerably weaker. This weakness is commonly considered to be characteristic of mature faults in which rocks are altered by prolonged deformation and fluid-rock interaction (i.e., San Andreas, Zuccale, and Nankai Faults). In contrast, in this study we document fault weakening occurring along a marly shear zone in its infancy (<30 m displacement). Geochemical mass balance calculation and microstructural data show that a massive calcite departure (up to 50 vol %) from the fault rocks facilitated the concentration and reorganization of weak phyllosilicate minerals along the shear surfaces. Friction experiments carried out on intact foliated samples of host marls and fault rocks demonstrated that this structural reorganization lead to a significant fault weakening and that the incipient structure has strength and slip behavior comparable to that of the major weak faults previously documented. These results indicate that some faults, especially those nucleating in lithologies rich of both clays and high-solubility minerals (such as calcite), might experience rapid mineralogical and structural alteration and become weak even in the early stages of their activity.

  6. A Quaternary Fault Database for Central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, S.; Ehlers, T. A.; Bendick, R.; Stübner, K.; Strube, T.

    2015-09-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for Central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for Central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic and structural characteristics, short descriptions, narrative comments and references to peer-reviewed publications. The interactive map displays 1196 fault segments and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 122 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. This work has implications for seismic hazard studies in Central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  7. Determining Fault Orientation with Sagnac Interferometers

    NASA Astrophysics Data System (ADS)

    Gruenwald, Konstantin; Dunn, Robert

    2014-03-01

    Typically, earthquake fault ruptures emit seismic waves in directions dependent on the fault's orientation. Specifically, as the fault slips to release strain, compressional P-waves propagate parallel and perpendicular to the fault plane, and transverse S-waves propagate at 45 degree angles to the fault-a result of the double-couple model of fault slippage. Sagnac Interferometers (ring-lasers) have been used to study wave components of several natural phenomena. We used the initial responses of a ring-laser from transverse S-waves to determine the orientation of the nearby Guy/Greenbrier fault, the source of an earthquake swarm in 2010-11 purportedly caused by hydraulic fracturing. This orientation was compared to the structure of the fault extracted by nearby seismogram responses. Our goal was to determine if ring-lasers could reinforce or add to the models of fault orientation constructed from seismographs. The results indicate that the ring-laser's responses can aid in constructing fault orientation in a manner similar to traditional seismographs. Funded by the Arkansas Space Grant Consortium and the National Science Foundation.

  8. Hydrologic, water-quality, and biological assessment of Laguna de las Salinas, Ponce, Puerto Rico, January 2003-September 2004

    USGS Publications Warehouse

    Soler-López, Luis R.; Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús

    2005-01-01

    The Laguna de Las Salinas is a shallow, 35-hectare, hypersaline lagoon (depth less than 1 meter) in the municipio of Ponce, located on the southern coastal plain of Puerto Rico. Hydrologic, water-quality, and biological data in the lagoon were collected between January 2003 and September 2004 to establish baseline conditions. During the study period, rainfall was about 1,130 millimeters, with much of the rain recorded during three distinct intense events. The lagoon is connected to the sea by a shallow, narrow channel. Subtle tidal changes, combined with low rainfall and high evaporation rates, kept the lagoon at salinities above that of the sea throughout most of the study. Water-quality properties measured on-site (temperature, pH, dissolved oxygen, specific conductance, and Secchi disk transparency) exhibited temporal rather than spatial variations and distribution. Although all physical parameters were in compliance with current regulatory standards for Puerto Rico, hyperthermic and hypoxic conditions were recorded during isolated occasions. Nutrient concentrations were relatively low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 1.9 milligrams per liter and the average total phosphorus concentration was 0.4 milligram per liter. Total organic carbon concentrations ranged from 12.0 to 19.0 milligrams per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll a concentration was 13.4 micrograms per liter. Chlorophyll b was detected (detection limits 0.10 microgram per liter) only twice during the study. About 90 percent of the primary productivity in the Laguna de Las Salinas was generated by periphyton such as algal mats and macrophytes such as seagrasses. Of the average net productivity of 13.6 grams of oxygen per cubic meter per day derived from the diel

  9. PASADO - ICDP Deep Drilling at Laguna Potrok Aike (Argentina): A 50 ka Record of Increasing Environmental Dynamics

    NASA Astrophysics Data System (ADS)

    Zolitschka, Bernd; Anselmetti, Flavio; Ariztegui, Daniel; Francus, Pierre; Gebhardt, Catalina; Kliem, Annette Hahn Pierre; Lücke, Andreas; Ohlendorf, Christian; Schäbitz, Frank; Wastegard, Stefan

    2010-05-01

    Laguna Potrok Aike, located in the South-Patagonian province of Santa Cruz (52°58'S, 70°23'W), was formed by a volcanic (maar) eruption in the late Quaternary Pali Aike Volcanic Field several hundred thousand years ago. This archive holds a unique record of paleoclimatic and paleoecological variability from a region sensitive to variations in southern hemispheric wind and pressure systems, which provide a significant cornerstone for the understanding of the entire global climate system. Moreover, Laguna Potrok Aike is close to many active volcanoes allowing a better understanding of the history of volcanism in the Pali Aike Volcanic Field as well as in the Andean mountain chain, the latter located in a distance of less than 150 km to the west. Finally, Patagonia is the source region of eolian dust blown from the South American continent into the South Atlantic and onto the Antarctic ice sheet. The currently ongoing global climate change, the thread of volcanic hazards as well as of regional dust storms are of increasing socio-economic relevance and thus challenging scientific themes that are tackled for southernmost South America with an interdisciplinary research approach in the framework of the ICDP-funded "Potrok Aike Maar Lake Sediment Archive Drilling Project" (PASADO). Using the GLAD800 drilling platform seven holes were drilled in the southern spring of 2008. A total of 510 m of lacustrine sediments were recovered by an international scientific team from the central 100 m deep basin with an excellent core recovery rate of 94.4%. The reference profile with a composite depth of 106 m consists of undisturbed laminated and sand-layered lacustrine silts with an increasing number of coarse gravel layers, turbidites and homogenites with depth. Below 80 m composite depth two mass-movement deposits (10 m and 5 m in thickness) are recorded. These deposits show tilted and distorted layers as well as nodules of fine-grained sediments and randomly distributed gravel

  10. Method to identify wells that yield water that will be replaced by water from the Colorado River downstream from Laguna Dam in Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.; Carpenter, Michael C.; Fink, James B.

    2000-01-01

    Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. The accounting-surface method developed for the area upstream from Laguna Dam was modified for use downstream from Laguna Dam to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. Use of the same method provides a uniform criterion of identification for all users pumping water from wells by determining if the static water-level elevation in the well is above or below the elevation of the accounting surface. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation above the accounting surface are presumed to yield river water stored above river level. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The subsurface limit of the river aquifer is the nearly impermeable bedrock of the bottom and sides of the basins that underlie the Yuma area and adjacent valleys. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain of the Colorado River that would exist if the river were the only source of water to the river aquifer. The accounting surface was generated by using water

  11. Intra-community infanticide and forced copulation in spider monkeys: a multi-site comparison between Cocha Cashu, Peru and Punta Laguna, Mexico.

    PubMed

    Gibson, K Nicole; Vick, Laura G; Palma, Ana Cristina; Carrasco, Farah M; Taub, David; Ramos-Fernández, Gabriel

    2008-05-01

    We describe two cases of infanticide, two suspected infanticides, and a forced copulation by familiar resident males in two populations of wild spider monkeys (Ateles belzebuth chamek and A. geoffroyi yucatanensis). These are the first known infanticides and forced copulation in spider monkeys. Data were gathered from four neighboring communities of spider monkeys in Manu National Park at the Cocha Cashu Biological Station, Peru and two communities in the Otoch Ma'ax Yetel Kooh Reserve at Punta Laguna, Mexico, during intensive field studies of over 2,000 hr each. These are rare behaviors, but results suggest that mating history and sexual coercion are important in spider monkey social relationships. PMID:18064591

  12. Perspective View, San Andreas Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is the San Andreas Fault in an image created with data from NASA's shuttle Radar Topography Mission (SRTM), which will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, California, about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. This area is at the junction of two large mountain ranges, the San Gabriel Mountains on the left and the Tehachapi Mountains on the right. Quail Lake Reservoir sits in the topographic depression created by past movement along the fault. Interstate 5 is the prominent linear feature starting at the left edge of the image and continuing into the fault zone, passing eventually over Tejon Pass into the Central Valley, visible at the upper left.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994

  13. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile.

    PubMed

    Fernandez, Ana B; Rasuk, Maria C; Visscher, Pieter T; Contreras, Manuel; Novoa, Fernando; Poire, Daniel G; Patterson, Molly M; Ventosa, Antonio; Farias, Maria E

    2016-01-01

    We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity. PMID:27597845

  14. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile

    PubMed Central

    Fernandez, Ana B.; Rasuk, Maria C.; Visscher, Pieter T.; Contreras, Manuel; Novoa, Fernando; Poire, Daniel G.; Patterson, Molly M.; Ventosa, Antonio; Farias, Maria E.

    2016-01-01

    We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity. PMID:27597845

  15. 15,000-yr pollen record of vegetation change in the high altitude tropical Andes at Laguna Verde Alta, Venezuela

    NASA Astrophysics Data System (ADS)

    Rull, Valentí; Abbott, Mark B.; Polissar, Pratigya J.; Wolfe, Alexander P.; Bezada, Maximiliano; Bradley, Raymond S.

    2005-11-01

    Pollen analysis of sediments from a high-altitude (4215 m), Neotropical (9°N) Andean lake was conducted in order to reconstruct local and regional vegetation dynamics since deglaciation. Although deglaciation commenced ˜15,500 cal yr B.P., the area around the Laguna Verde Alta (LVA) remained a periglacial desert, practically unvegetated, until about 11,000 cal yr B.P. At this time, a lycopod assemblage bearing no modern analog colonized the superpáramo. Although this community persisted until ˜6000 cal yr B.P., it began to decline somewhat earlier, in synchrony with cooling following the Holocene thermal maximum of the Northern Hemisphere. At this time, the pioneer assemblage was replaced by a low-diversity superpáramo community that became established ˜9000 cal yr B.P. This replacement coincides with regional declines in temperature and/or available moisture. Modern, more diverse superpáramo assemblages were not established until ˜4600 cal yr B.P., and were accompanied by a dramatic decline in Alnus, probably the result of factors associated with climate, humans, or both. Pollen influx from upper Andean forests is remarkably higher than expected during the Late Glacial and early to middle Holocene, especially between 14,000 and 12,600 cal yr B.P., when unparalleled high values are recorded. We propose that intensification of upslope orographic winds transported lower elevation forest pollen to the superpáramo, causing the apparent increase in tree pollen at high altitude. The association between increased forest pollen and summer insolation at this time suggests a causal link; however, further work is needed to clarify this relationship.

  16. Holocene History of the Chocó Rain Forest from Laguna Piusbi, Southern Pacific Lowlands of Colombia

    NASA Astrophysics Data System (ADS)

    Behling, Hermann; Hooghiemstra, Henry; Negret, Alvaro José

    1998-11-01

    A high-resolution pollen record from a 5-m-long sediment core from the closed-lake basin Laguna Piusbi in the southern Colombian Pacific lowlands of Chocó, dated by 11 AMS 14C dates that range from ca. 7670 to 220 14C yr B.P., represents the first Holocene record from the Chocó rain forest area. The interval between 7600 and 6100 14C yr B.P. (500-265 cm), composed of sandy clays that accumulated during the initial phase of lake formation, is almost barren of pollen. Fungal spores and the presence of herbs and disturbance taxa suggest the basin was at least temporarily inundated and the vegetation was open. The closed lake basin might have formed during an earthquake, probably about 4400 14C yr B.P. From the interval of about 6000 14C yr B.P. onwards, 200 different pollen and spore types were identified in the core, illustrating a diverse floristic composition of the local rain forest. Main taxa are Moraceae/Urticaceae, Cecropia,Melastomataceae/Combretaceae, Acalypha, Alchornea,Fabaceae, Mimosa, Piper, Protium, Sloanea, Euterpe/Geonoma, Socratea,and Wettinia.Little change took place during that time interval. Compared to the pollen records from the rain forests of the Colombian Amazon basin and adjacent savannas, the Chocó rain forest ecosystem has been very stable during the late Holocene. Paleoindians probably lived there at least since 3460 14C yr B.P. Evidence of agricultural activity, shown by cultivation of Zea maissurrounding the lake, spans the last 1710 yr. Past and present very moist climate and little human influence are important factors in maintaining the stable ecosystem and high biodiversity of the Chocó rain forest.

  17. Off-fault tip splay networks: A genetic and generic property of faults indicative of their long-term propagation

    NASA Astrophysics Data System (ADS)

    Perrin, Clément; Manighetti, Isabelle; Gaudemer, Yves

    2016-01-01

    We use fault maps and fault propagation evidences available in the literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimetres to thousands of kilometres and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of fault length, slip mode, context, etc., tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (∼ 30 and ∼ 10% of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. Their generic geometrical properties suggest they result from generic off-fault stress distribution at propagating fault ends.

  18. Just add water and the Colorado River still reaches the sea.

    PubMed

    Glenn, Edward P; Flessa, Karl W; Cohen, Michael J; Nagler, Pamela L; Rowell, Kirsten; Zamora-Arroyo, Francisco

    2007-07-01

    A recent article in Environmental Management by All argued that flood flows in North America's Colorado River do not reach the Gulf of California because they are captured and evaporated in Laguna Salada, a below sea-level lakebed near the mouth of the river. We refute this hypothesis by showing that (1) due to its limited area, the Laguna Salada could have evaporated less than 10% of the flood flows that have occurred since 1989; (2) low flow volumes preferentially flow to the Gulf rather than Laguna Salada; (3) All's method for detecting water surface area in the Laguna Salada appears to be flawed because Landsat Thematic Mapper images of the lakebed show it to be dry when All's analyses said it was flooded; (4) direct measurements of salinity at the mouth of the river and in the Upper Gulf of California during flood flows in 1993 and 1998 confirm that flood waters reach the sea; and (5) stable oxygen isotope signatures in clam shells and fish otoliths recorded the dilution of seawater with fresh water during the 1993 and 1998 flows. Furthermore, All's conclusion that freshwater flows do not benefit the ecology of the marine zone is incorrect because the peer-reviewed literature shows that postlarval larval shrimp populations increase during floods, and the subsequent year's shrimp harvest increases. Furthermore, freshwater flows increase the nursery area for Gulf corvina (Cynoscion othonopterus), an important commercial fish that requires estuarine habitats with salinities in the range of 26-38 per thousand during its natal stages. Although flood flows are now much diminished compared to the pre-dam era, they are still important to the remnant wetland and riparian habitats of the Colorado River delta and to organisms in the intertidal and marine zone. Only a small fraction of the flood flows are evaporated in Laguna Salada. PMID:17546520

  19. Paleomagnetic Data From the Rinconada Fault in Central California: Evidence for Off-fault Deformation

    NASA Astrophysics Data System (ADS)

    Crump, S.; Titus, S.; McGuire, Z.; Housen, B. A.

    2009-12-01

    The Rinconada fault is one of three major sub-parallel faults of the San Andreas fault system in central California. The fault has 18 km of dextral displacement since the Pliocene and up to 60 km of total displacement for the Tertiary. A fold and thrust best is well developed in Miocene and younger sedimentary rocks on either side of the Rinconada fault. We sampled ~150 sites from the Miocene Monterey Formation within this fold and thrust belt, a unit that is often used in regional paleomagnetic studies. The sites were located within 15 km of the fault trace along a segment of the Rinconada fault that stretches from Greenfield to Paso Robles. Because this unit was deposited while the San Andreas fault system was active at this latitude, any deformation recorded by these rocks is related to plate boundary deformation. Unlike the large (>90°) rotations observed in the Transverse Ranges to the south, vertical axis rotations adjacent to the Rinconada fault are smaller (<15°) and vary with distance from the fault as well as along strike. Thus, the model for rotations from the Transverse Ranges, where large fault-bound panels rotate within a system of conjugate strike-slip faults, does not apply for this region in central California. Instead, we believe rotations occur in small fault blocks and the magnitude of rotation may be affected by local parameters such as fault geometries, specific rock types, and structural complexities. One implication of these vertical axis rotations adjacent to the Riconada fault is that off-fault regions are accommodating some of the fault-parallel plate motion. This is important for our understanding of the partitioning of plate boundary deformation in California.

  20. Fault geometries in basement-induced wrench faulting under different initial stress states

    NASA Astrophysics Data System (ADS)

    Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.

    Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.

  1. Geometrical effects of fault bends on fault frictional and mechanical behavior: insights from Distinct Element simulations

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Morgan, J.

    2006-12-01

    Strike slip and transform faults often consist of nonlinear segments, i.e., restraining bends and releasing bends that have significant impacts on stress pattern, strain accumulation, slip rate, and therefore the variation of seismicity along these faults. In order to study the geometrical effects of nonlinear faults on fault frictional and mechanical behavior during fault loading and slip, we simulate the rupture process of faults with bends using the Distinct Element Method (DEM) in 2-dimensions. Breakable elastic bonds were added between adjacent, closely packed circular particles to generate fault blocks. A nonlinear fault surface with a restraining bend and a releasing bend that are symmetrically distributed was defined in the middle of the fault blocks. Deformation was introduced by pulling a spring attached on one of fault zone boundaries at a constant velocity and keeping another boundary fixed, producing compression and contraction along the restraining bend, and tension and dilation along the releasing bend. Significant strain is accommodated adjacent to the restraining bend by formation of secondary faults and slip along them. The slip rates, fault frictional strengths, and rupture processes are affected by multiple parameters, including bond strength, loading velocity, bend angle and amplitude. Among these parameters, bend geometry plays a more important role in determining spatial and temporal distribution of contact slip and failure of our simulated nonlinear faults.

  2. Seismicity and fault geometry of the San Andreas fault around Parkfield, California and their implications

    NASA Astrophysics Data System (ADS)

    Kim, Woohan; Hong, Tae-Kyung; Lee, Junhyung; Taira, Taka'aki

    2016-05-01

    Fault geometry is a consequence of tectonic evolution, and it provides important information on potential seismic hazards. We investigated fault geometry and its properties in Parkfield, California on the basis of local seismicity and seismic velocity residuals refined by an adaptive-velocity hypocentral-parameter inversion method. The station correction terms from the hypocentral-parameter inversion present characteristic seismic velocity changes around the fault, suggesting low seismic velocities in the region east of the fault and high seismic velocities in the region to the west. Large seismic velocity anomalies are observed at shallow depths along the whole fault zone. At depths of 3-8 km, seismic velocity anomalies are small in the central fault zone, but are large in the northern and southern fault zones. At depths > 8 km, low seismic velocities are observed in the northern fault zone. High seismicity is observed in the Southwest Fracture Zone, which has developed beside the creeping segment of the San Andreas fault. The vertical distribution of seismicity suggests that the fault has spiral geometry, dipping NE in the northern region, nearly vertical in the central region, and SW in the southern region. The rapid twisting of the fault plane occurs in a short distance of approximately 50 km. The seismic velocity anomalies and fault geometry suggest location-dependent piecewise faulting, which may cause the periodic M6 events in the Parkfield region.

  3. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  4. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1990-01-01

    The use of back-to-back, or comparison, testing for regression test or porting is examined. The efficiency and the cost of the strategy is compared with manual and table-driven single version testing. Some of the key parameters that influence the efficiency and the cost of the approach are the failure identification effort during single version program testing, the extent of implemented changes, the nature of the regression test data (e.g., random), and the nature of the inter-version failure correlation and fault-masking. The advantages and disadvantages of the technique are discussed, together with some suggestions concerning its practical use.

  5. Networking of Near Fault Observatories in Europe

    NASA Astrophysics Data System (ADS)

    Vogfjörd, Kristín; Bernard, Pascal; Chiraluce, Lauro; Fäh, Donat; Festa, Gaetano; Zulficar, Can

    2014-05-01

    Networking of six European near-fault observatories (NFO) was established In the FP7 infrastructure project NERA (Network of European Research Infrastructures for Earthquake Risk Assessment and Mitigation). This networking has included sharing of expertise and know-how among the observatories, distribution of analysis tools and access to data. The focus of the NFOs is on research into the active processes of their respective fault zones through acquisition and analysis of multidisciplinary data. These studies include the role of fluids in fault initiation, site effects, derived processes such as earthquake generated tsunamis and landslides, mapping the internal structure of fault systems and development of automatic early warning systems. The six fault zones are in different tectonic regimes: The South Iceland Seismic Zone (SISZ) in Iceland, the Marmara Sea in Turkey and the Corinth Rift in Greece are at plate boundaries, with strike-slip faulting characterizing the SISZ and the Marmara Sea, while normal faulting dominates in the Corinth Rift. The Alto Tiberina and Irpinia faults, dominated by low- and medium-angle normal faulting, respectively are in the Apennine mountain range in Italy and the Valais Region, characterized by both strike-slip and normal faulting is located in the Swiss Alps. The fault structures range from well-developed long faults, such as in the Marmara Sea, to more complex networks of smaller, book-shelf faults such as in the SISZ. Earthquake hazard in the fault zones ranges from significant to substantial. The Marmara Sea and Corinth rift are under ocean causing additional tsunami hazard and steep slopes and sediment-filled valleys in the Valais give rise to hazards from landslides and liquefaction. Induced seismicity has repeatedly occurred in connection with geothermal drilling and water injection in the SISZ and active volcanoes flanking the SISZ also give rise to volcanic hazard due to volcano-tectonic interaction. Organization among the

  6. Performance Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine

    2005-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. In this paper, an FTC analysis framework is provided to calculate the upper bound of an induced-L(sub 2) norm of an FTC system with existence of false identification and detection time delay. The upper bound is written as a function of a fault detection time and exponential decay rates and has been used to determine which FTC law produces less performance degradation (tracking error) due to false identification. The analysis framework is applied for an FTC system of a HiMAT (Highly Maneuverable Aircraft Technology) vehicle. Index Terms fault tolerant control system, linear parameter varying system, HiMAT vehicle.

  7. Fault-tolerant dynamic task graph scheduling

    SciTech Connect

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  8. Probable origin of the Livingston Fault Zone

    NASA Astrophysics Data System (ADS)

    Monroe, Watson H.

    1991-09-01

    Most faulting in the Coastal Plain is high angle and generally normal, but the faults in the Livingston Fault Zone are all medium-angle reverse, forming a series of parallel horsts and grabens. Parallel to the fault zone are a number of phenomena all leading to the conclusion that the faults result from the solution of a late Cretaceous salt anticline by fresh groundwater, which then migrated up to the Eutaw and perhaps Tuscaloosa aquifers, causing an anomalous elongated area of highly saline water. The origin of the Livingston Fault Zone and the association of salt water in underlying aquifers is of particular importance at this time in relation to environmental concerns associated with hazardous waste management in the area.

  9. Holocene fault scarps near Tacoma, Washington, USA

    USGS Publications Warehouse

    Sherrod, B.L.; Brocher, T.M.; Weaver, C.S.; Bucknam, R.C.; Blakely, R.J.; Kelsey, H.M.; Nelson, A.R.; Haugerud, R.

    2004-01-01

    Airborne laser mapping confirms that Holocene active faults traverse the Puget Sound metropolitan area, northwestern continental United States. The mapping, which detects forest-floor relief of as little as 15 cm, reveals scarps along geophysical lineaments that separate areas of Holocene uplift and subsidence. Along one such line of scarps, we found that a fault warped the ground surface between A.D. 770 and 1160. This reverse fault, which projects through Tacoma, Washington, bounds the southern and western sides of the Seattle uplift. The northern flank of the Seattle uplift is bounded by a reverse fault beneath Seattle that broke in A.D. 900-930. Observations of tectonic scarps along the Tacoma fault demonstrate that active faulting with associated surface rupture and ground motions pose a significant hazard in the Puget Sound region.

  10. A new intelligent hierarchical fault diagnosis system

    SciTech Connect

    Huang, Y.C.; Huang, C.L.; Yang, H.T.

    1997-02-01

    As a part of a substation-level decision support system, a new intelligent Hierarchical Fault Diagnosis System for on-line fault diagnosis is presented in this paper. The proposed diagnosis system divides the fault diagnosis process into two phases. Using time-stamped information of relays and breakers, phase 1 identifies the possible fault sections through the Group Method of Data Handling (GMDH) networks, and phase 2 recognizes the types and detailed situations of the faults identified in phase 1 by using a fast bit-operation logical inference mechanism. The diagnosis system has been practically verified by testing on a typical Taiwan power secondary transmission system. Test results show that rapid and accurate diagnosis can be obtained with flexibility and portability for fault diagnosis purpose of diverse substations.

  11. The fault-tolerant multiprocessor computer

    NASA Technical Reports Server (NTRS)

    Smith, T. B., III (Editor); Lala, J. H. (Editor); Goldberg, J. (Editor); Kautz, W. H. (Editor); Melliar-Smith, P. M. (Editor); Green, M. W. (Editor); Levitt, K. N. (Editor); Schwartz, R. L. (Editor); Weinstock, C. B. (Editor); Palumbo, D. L. (Editor)

    1986-01-01

    The development and evaluation of fault-tolerant computer architectures and software-implemented fault tolerance (SIFT) for use in advanced NASA vehicles and potentially in flight-control systems are described in a collection of previously published reports prepared for NASA. Topics addressed include the principles of fault-tolerant multiprocessor (FTMP) operation; processor and slave regional designs; FTMP executive, facilities, acceptance-test/diagnostic, applications, and support software; FTM reliability and availability models; SIFT hardware design; and SIFT validation and verification.

  12. Hydrogen Embrittlement And Stacking-Fault Energies

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  13. Fault system polarity: A matter of chance?

    NASA Astrophysics Data System (ADS)

    Schöpfer, Martin; Childs, Conrad; Manzocchi, Tom; Walsh, John; Nicol, Andy; Grasemann, Bernhard

    2015-04-01

    Many normal fault systems and, on a smaller scale, fracture boudinage exhibit asymmetry so that one fault dip direction dominates. The fraction of throw (or heave) accommodated by faults with the same dip direction in relation to the total fault system throw (or heave) is a quantitative measure of fault system asymmetry and termed 'polarity'. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing, whereas torn boudins reflect coaxial flow. Moreover, domains of parallel faults are frequently used to infer the presence of a common décollement. Here we show, using Distinct Element Method (DEM) models in which rock is represented by an assemblage of bonded circular particles, that asymmetric fault systems can emerge under symmetric boundary conditions. The pre-requisite for the development of domains of parallel faults is however that the medium surrounding the brittle layer has a very low strength. We demonstrate that, if the 'competence' contrast between the brittle layer and the surrounding material ('jacket', or 'matrix') is high, the fault dip directions and hence fault system polarity can be explained using a random process. The results imply that domains of parallel faults are, for the conditions and properties used in our models, in fact a matter of chance. Our models suggest that domino and shear band boudinage can be an unreliable shear-sense indicator. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults only.

  14. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  15. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  16. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  17. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  18. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  19. Diagnosing process faults using neural network models

    SciTech Connect

    Buescher, K.L.; Jones, R.D.; Messina, M.J.

    1993-11-01

    In order to be of use for realistic problems, a fault diagnosis method should have the following three features. First, it should apply to nonlinear processes. Second, it should not rely on extensive amounts of data regarding previous faults. Lastly, it should detect faults promptly. The authors present such a scheme for static (i.e., non-dynamic) systems. It involves using a neural network to create an associative memory whose fixed points represent the normal behavior of the system.

  20. Fault Zone Guided Wave generation on the locked, late interseismic Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; Gulley, A. K.; Malin, P. E.; Boese, C. M.; Townend, J.; Sutherland, R.

    2015-07-01

    Fault Zone Guided Waves (FZGWs) have been observed for the first time within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Ongoing study of these phases provides the opportunity to monitor interseismic conditions in the fault zone. Distinctive dispersive seismic codas (~7-35 Hz) have been recorded on shallow borehole seismometers installed within 20 m of the principal slip zone. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Initial modeling of the low-velocity zone indicates a waveguide width of 60-200 m with a 10-40% reduction in S wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.

  1. Focused fault injection testing of software implemented fault tolerance mechanisms of Voltan TMR nodes

    NASA Astrophysics Data System (ADS)

    Tao, S.; Ezhilchelvan, P. D.; Shrivastava, S. K.

    1995-03-01

    One way of gaining confidence in the adequacy of fault tolerance mechanisms of a system is to test the system by injecting faults and see how the system performs under faulty conditions. This paper presents an application of the focused fault injection method that has been developed for testing software implemented fault tolerance mechanisms of distributed systems. The method exploits the object oriented approach of software implementation to support the injection of specific classes of faults. With the focused fault injection method, the system tester is able to inject specific classes of faults (including malicious ones) such that the fault tolerance mechanisms of a target system can be tested adequately. The method has been applied to test the design and implementation of voting, clock synchronization, and ordering modules of the Voltan TMR (triple modular redundant) node. The tests performed uncovered three flaws in the system software.

  2. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.

  3. Distributed bearing fault diagnosis based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  4. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1993-01-01

    Strategies and tools for the testing, risk assessment and risk control of dependable software-based systems were developed. Part of this project consists of studies to enable the transfer of technology to industry, for example the risk management techniques for safety-concious systems. Theoretical investigations of Boolean and Relational Operator (BRO) testing strategy were conducted for condition-based testing. The Basic Graph Generation and Analysis tool (BGG) was extended to fully incorporate several variants of the BRO metric. Single- and multi-phase risk, coverage and time-based models are being developed to provide additional theoretical and empirical basis for estimation of the reliability and availability of large, highly dependable software. A model for software process and risk management was developed. The use of cause-effect graphing for software specification and validation was investigated. Lastly, advanced software fault-tolerance models were studied to provide alternatives and improvements in situations where simple software fault-tolerance strategies break down.

  5. Fault rheology beyond frictional melting.

    PubMed

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics. PMID:26124123

  6. Fault rheology beyond frictional melting

    PubMed Central

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E.; Hess, Kai-Uwe; Dingwell, Donald B.

    2015-01-01

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or “pseudotachylytes.” It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics. PMID:26124123

  7. Acoustic fault injection tool (AFIT)

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1999-05-01

    On September 18, 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. The program was funded as part of the U.S. Navy's Air Vehicle Diagnostic Systems (AVDS) program. Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. The application of acoustic emission for the early detection of helicopter rotor head dynamic component faults has proven the feasibility of the technology. The flight-test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. During the RAMS flight test, 12 test flights were flown from which 25 Gbyte of digital acoustic data and about 15 hours of analog flight data recorder (FDR) data were collected from the eight on-rotor acoustic sensors. The focus of this paper is to describe the CH-46 flight-test configuration and present design details about a new innovative machinery diagnostic technology called acoustic fault injection. This technology involves the injection of acoustic sound into machinery to assess health and characterize operational status. The paper will also address the development of the Acoustic Fault Injection Tool (AFIT), which was successfully demonstrated during the CH-46 flight tests.

  8. Chip level simulation of fault tolerant computers

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1983-01-01

    Chip level modeling techniques, functional fault simulation, simulation software development, a more efficient, high level version of GSP, and a parallel architecture for functional simulation are discussed.

  9. Sequential Test Strategies for Multiple Fault Isolation

    NASA Technical Reports Server (NTRS)

    Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.

    1997-01-01

    In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.

  10. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  11. Mantle fault zone beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.

    2003-01-01

    Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  12. Outer Rise Faulting And Mantle Serpentinization

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Phipps Morgan, J.; McIntosh, K.; Reichert, C.

    Dehydration of serpentinized mantle of the downgoing slab has been proposed to cause both intermediate depth earthquakes (50-300 km) and arc volcanism at sub- duction zones. It has been suggested that most of this serpentinization occurs beneath the outer rise; where normal faulting earthquakes due to bending cut > 20 km deep into the lithosphere, allowing seawater to reach and react with underlying mantle. However, little is known about flexural faulting at convergent margins; about how many normal faults cut across the crust and how deeply they penetrate into the man- tle; about the true potential of faults as conduits for fluid flow and how much water can be added through this process. We present evidence that pervasive flexural faulting may cut deep into the mantle and that the amount of faulting vary dramatically along strike at subduction zones. Flexural faulting increases towards the trench axis indicat- ing that active extension occurs in a broad area. Multibeam bathymetry of the Pacific margin of Costa Rica and Nicaragua shows a remarkable variation in the amount of flexural faulting along the incoming ocean plate. Several parameters seem to control lateral variability. Off south Costa Rica thick crust of the Cocos Ridge flexes little, and little to no faulting develops near the trench. Off central Costa Rica, normal thick- ness crust with magnetic anomalies striking oblique to the trench displays small offset faults (~200 m) striking similar to the original seafloor fabric. Off northern Costa Rica, magnetic anomalies strike perpendicular to the trench axis, and a few ~100m-offset faults develop parallel to the trench. Further north, across the Nicaraguan margin, magnetic anomalies strike parallel to the trench and the most widespread faulting de- velops entering the trench. Multichannel seismic reflection images in this area show a pervasive set of trenchward dipping reflections that cross the ~6 km thick crust and extend into the mantle to depths of at

  13. Block rotations, fault domains and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, A.; Ron, H.

    1987-01-01

    Much of the earth's crust is broken by sets of parallel strike-slip faults which are organized in domains. A simple kinematic model suggests that when subject to tectonic strain, the faults, and the blocks bound by them, rotate. The rotation can be estimated from the structurally-determined fault slip and fault spacing, and independently from local deviations of paleomagnetic declinations from global values. A rigorous test of this model was carried out in northern Israel, where good agreement was found between the two rotations.

  14. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  15. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel

    2016-06-01

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  16. The morphology of strike-slip faults - Examples from the San Andreas Fault, California

    NASA Technical Reports Server (NTRS)

    Bilham, Roger; King, Geoffrey

    1989-01-01

    The dilatational strains associated with vertical faults embedded in a horizontal plate are examined in the framework of fault kinematics and simple displacement boundary conditions. Using boundary element methods, a sequence of examples of dilatational strain fields associated with commonly occurring strike-slip fault zone features (bends, offsets, finite rupture lengths, and nonuniform slip distributions) is derived. The combinations of these strain fields are then used to examine the Parkfield region of the San Andreas fault system in central California.

  17. Fault-tolerant parallel processor

    SciTech Connect

    Harper, R.E.; Lala, J.H. )

    1991-06-01

    This paper addresses issues central to the design and operation of an ultrareliable, Byzantine resilient parallel computer. Interprocessor connectivity requirements are met by treating connectivity as a resource that is shared among many processing elements, allowing flexibility in their configuration and reducing complexity. Redundant groups are synchronized solely by message transmissions and receptions, which aslo provide input data consistency and output voting. Reliability analysis results are presented that demonstrate the reduced failure probability of such a system. Performance analysis results are presented that quantify the temporal overhead involved in executing such fault-tolerance-specific operations. Empirical performance measurements of prototypes of the architecture are presented. 30 refs.

  18. Estimating the distribution of fault latency in a digital processor

    NASA Technical Reports Server (NTRS)

    Ellis, Erik L.; Butler, Ricky W.

    1987-01-01

    Presented is a statistical approach to measuring fault latency in a digital processor. The method relies on the use of physical fault injection where the duration of the fault injection can be controlled. Although a specific fault's latency period is never directly measured, the method indirectly determines the distribution of fault latency.

  19. Polyscale, polymodal fault geometries: evolution and predictive capability

    NASA Astrophysics Data System (ADS)

    Blenkinsop, T. G.; Carvell, J.; Clarke, G.; Tonelli, M.

    2012-12-01

    The Late Permian Rangal coal measures on the edge of the Nebo synclinorium in the Bowen basin, NE Queensland, Australia, are cut by normal faults. Mining operations allow 13 faults to be mapped in some detail to depths of 200m. These faults cut Tertiary intrusions and a reverse fault as well as the coal seams, and show no obvious signs of reactivation. The steeply dipping faults are clustered into groups of two to four, separated by hundreds of meters. The faults trend ENE and NE; both trends of faults dip in both directions, defining a quadrimodal geometry. The odd axis construction for these faults suggests that vertical shortening was accompanied by horizontal extension along both principal directions of 153° and 063°. The mapped extents of the faults are limited by erosion and the depth to which the faults have been drilled, but displacement profiles along the lengths of the faults show maxima within the fault planes. The displacement profiles suggest that the currently mapped faults have similar lengths to the total preserved lengths of the faults, and that they will continue into the unmined ground to a limited, but predictable extent. The fault planes have a complex geometry, with segments of individual faults showing a similar variability in orientation to the ensemble of fault planes: the fault planes themselves are polymodal. Displacement profiles show a good correlation with segment orientation. An odd axis construction based on fault segments, rather than individual faults, gives principal extension directions within 4° of the above results. The variable orientation of fault segments, the correlation of the displacement profiles with fault orientation, and the similarity between the segment and ensemble fault kinematics suggest that the faults have evolved by propagation and linking of smaller polymodal faults in the same bulk strain field.ross section of polymodal fault at Hail Creek coal mine

  20. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    PubMed

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%. PMID:22035775

  1. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  2. On Identifiability of Bias-Type Actuator-Sensor Faults in Multiple-Model-Based Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.

  3. Fault Management Techniques in Human Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    O'Hagan, Brian; Crocker, Alan

    2006-01-01

    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be

  4. Effects of Fault Displacement on Emplacement Drifts

    SciTech Connect

    F. Duan

    2000-04-25

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10{sup -5} adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M&O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure.

  5. The work budget of rough faults

    NASA Astrophysics Data System (ADS)

    Newman, Patrick J.; Ashley Griffith, W.

    2014-12-01

    Faults in nature have measurable roughness at many scales and are not planar as generally idealized. We utilize the boundary element method to model the geomechanical response of synthetic rough faults in an isotropic, linear elastic continuum to external tectonic loading in terms of the work budget. Faults are generated with known fractal roughness parameters, including the root mean square slope (β), a measure of roughness amplitude, and the Hurst exponent (H), a measure of geometric self-similarity. Energy within the fault models is partitioned into external work (Wext), internal elastic strain energy (Wint), gravitational work (Wgrav), frictional work (Wfric), and seismic energy (Wseis). Results confirm that Wext, or work done on the external model boundaries, is smallest for a perfectly planar fault, and steadily increases with increasing β. This pattern is also observed in Wint, the energy expended in deforming the host rock. The opposite is true for gravitational work, or work done against gravity in uplifting host rock, as well as with frictional work, or energy dissipated with frictional slip on the fault, and Wseis, or seismic energy released during slip events. Effects of variation in H are not as large as for β, but Wgrav, Wfric, and Wseis increase with increasing H, with Wint and Wext decreasing across the same range. Remarkably, however, for a narrow range of roughness amplitudes which are commonly observed along natural faults, the total work of the system remains approximately constant, while slightly larger than the total work of a planar fault. Faults evolve toward the most mechanically efficient configuration; therefore we argue that this range of roughness amplitudes may represent an energy barrier, preventing faults from removing asperities and evolving to smooth, planar discontinuities. A similar conclusion is drawn from simulations at relatively shallow depths, with results showing that shallower faults have larger energy barriers, and can

  6. Illuminating Northern California's Active Faults

    NASA Astrophysics Data System (ADS)

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramón; Furlong, Kevin P.; Phillips, David A.

    2009-02-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google Earth™ and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2).

  7. Fault Tolerant Homopolar Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert

    2003-01-01

    Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.

  8. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    USGS Publications Warehouse

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.

    2003-01-01

    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  9. Rapid uplift during 2007-2012 at Laguna del Maule volcanic field, Andean Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Le Mevel, H.; Feigl, K.; Ali, T.; Cordova V., M. L.; DeMets, C.; Singer, B. S.

    2012-12-01

    The Laguna del Maule (LdM) volcanic field includes an unusual concentration of post-glacial rhyolitic lava coulees and domes, dated between 24 to 2 thousand years old that cover more than 100 square kilometers and erupted from 24 vents that encircle a 20-km-diameter lake basin on the range crest. The recent concentration of rhyolite is unparalleled in the Southern Volcanic Zone of the Andes. Moreover, the western portion of the LdM volcanic field has experienced rapid uplift since 2007, leading to questions about the current configuration of the magmatic system and processes that drive the ongoing inflation. We aim to quantify the active deformation of the LdM volcanic field and its evolution with time. To do so, we use interferometric synthetic aperture radar (InSAR) data acquired by three satellite missions: Envisat in 2003 and 2004, ALOS between 2007 and 2010, and TerraSAR-X in 2012. An interferogram spanning March 2003 to February 2004 "shows no deformation" (Fournier et al., 2010). From 2007 through 2012, however, the shortening of the satellite-to-ground distance revealed a range change rate of greater than 200 mm/yr along the radar line of sight. The deformation includes a circular area 20 km in diameter centered on the western portion of the circle of young rhyolite domes. To analyze the InSAR results, we employ the General Inversion for Phase Technique (GIPhT; Feigl and Thurber, 2009; Ali and Feigl, 2012). We have considered several hypotheses to interpret this deformation. Artefacts such as orbital errors, atmospheric perturbations or topographic contribution cannot account for the observed signal. We also reject the hypothesis of uplift due to gravitational unloading of the crust based on our modeling of independently measured lake level variations over the observed time interval. We thus attribute the deformation to the intrusion of magma into the upper crust below the southwest region of the LdM volcanic field. The best fit to the InSAR data is

  10. Crustal deformation and magmatic processes at Laguna del Maule volcanic field (Chile): Geodetic measurements and numerical models

    NASA Astrophysics Data System (ADS)

    Le Mevel, Helene

    The Laguna del Maule (LdM) volcanic field in Chile is an exceptional example of postglacial rhyolitic volcanism in the Southern Volcanic Zone of the Andes. Since 2007, LdM has experienced an unrest episode characterized by high rates of deformation measured by interferometric analysis of synthetic aperture radar (SAR) images acquired between 2007 and 2016, and data from the Global Positioning System (GPS) recorded since 2012 at five stations. The inflating region includes most of the 16--km-by--14--km ring of rhyolitic domes and coulees. The fastest-moving GPS station (MAU2) has a velocity vector of [[special character omited]72 +/- 4, 19 +/- 1, 194 +/- 3] mm/yr between 2012 and 2016 for the eastward, northward, and upward components, respectively. First, we model the InSAR observations assuming a rectangular dislocation in a half space with uniform elastic properties. The best time function for modeling the InSAR data set is a double exponential model with rates increasing from 2007 through 2010 and decreasing slowly since 2011. Modeling of historical uplift at Yellowstone, Long Valley, and Three Sisters volcanic fields suggests a common temporal evolution of vertical displacement rates. We hypothesize that magma intruding into an existing silicic magma reservoir is driving the surface deformation and present a new dynamic model to describe this process. A Newtonian fluid characterized by its viscosity, density, and pressure flows through a vertical conduit, intruding into a reservoir embedded in an elastic domain and leading to time-dependent surface deformation. Using a grid-search optimization, we minimize the misfit to the InSAR displacement data by varying the three parameters governing the analytical solution: the characteristic timescale tauP for magma propagation, the injection pressure, and the inflection time when the acceleration switches from positive to negative. For a spheroid with semi-major axis a = 6200 m, semi-minor axis c = 100 m, located at a

  11. A Millennial Length High-Resolution Pollen, Charcoal, Diatom and Stable Isotope Record from Laguna San Carlos, Panama

    NASA Astrophysics Data System (ADS)

    St Jacques, J. M.; Escobar, J.; Velez, M.; Correa-Metrio, A.; Curtis, J. H.

    2014-12-01

    We report here on preliminary results from Laguna San Carlos, (8o 37' 32.44''N, 80o 03' 04.24'' W) a small, shallow (8.3 m) volcanic lake from west-central Panama, a relatively unstudied Pacific coast region that is an important location for paleo-ENSO studies. The circular lake is a closed basin lake with a gradually sloping shoreline located within a caldera. The 300 cm core was taken in 2 m of water during March 2010. The core bottom was resting upon basement granitic rock with feldspar phenocrystals. The chronology is based upon five radiocarbon dates from terrestrial plant and wood remains. Pollen and charcoal were sampled at 10 cm resolution, diatoms at 5 cm and stable isotopes at 1 cm. The pollen profile shows four distinct terrestrial vegetation units. During the Medieval Climate Anomaly (MCA), from AD 880-1485, the vegetation was sparse with high amounts of grass, Asteraceae and charcoal suggestive of grasslands with high rates of natural disturbance, including fire. With the onset of the Little Ice Age (LIA), during AD 1485-1570, the vegetation transitioned into an open dry forest characterized by Myrica and Anacardium with high seasonality in precipitation. At AD 1570, the climate became wetter as shown by the pollen typical of a moist tropical forest. This lasted until AD 1720 when a period of greater human disturbance began (as shown by increased sedimentation rates), with primary forest taxa cohabiting with grasses and secondary taxa. The first maize pollen appeared at ~AD 1700. The diatom record is dominated by a single eutrophic species, Fragilaria crotonensis; however from AD 880-1150 minor taxa such as Aulacoseira spp., indicative of increased turbulence appeared, supporting the pollen record of open canopy vegetation at this time. The sedimentary carbon/nitrogen ratio (C/N) shows that the majority of the organic remains in the lake have always come from the surrounding basin. MTM spectral analysis of percent Fragilaria crotonensis, percent carbon

  12. Magnitude, geomorphologic response and climate links of lake level oscillations at Laguna Potrok Aike, Patagonian steppe (Argentina)

    NASA Astrophysics Data System (ADS)

    PASADO science Team Kliem, P.; Buylaert, J. P.; Hahn, A.; Mayr, C.; Murray, A. S.; Ohlendorf, C.; Veres, D.; Wastegård, S.; Zolitschka, B.

    2013-07-01

    Laguna Potrok Aike is a large maar lake located in the semiarid steppe of southern Patagonia known for its Lateglacial and Holocene lake level fluctuations. Based on sedimentary, seismic and geomorphological evidences, the lake level curve is updated and extended into the Last Glacial period and the geomorphological development of the lake basin and its catchment area is interpreted.Abrasion and lake level oscillations since at least ˜50 ka caused concentric erosion of the surrounding soft rocks of the Miocene Santa Cruz Formation and expanded the basin diameter by approximately 1 km. A high lake level and overflow conditions of the lake were dated by luminescence methods and tephra correlation to the early Lateglacial as well as to ˜45 ka. The lowest lake level of record occurred during the mid-Holocene. A further lake level drop was probably prevented by groundwater supply. This low lake level eroded a distinct terrace into lacustrine sediments. Collapse of these terraces probably caused mass movement deposits in the profundal zone of the lake. After the mid-Holocene lake level low stand a general and successive transgression occurred until the Little Ice Age maximum; i.e. ca 40 m above the local groundwater table. Frequent lake level oscillations caused deflation of emerged terraces only along the eastern shoreline due to prevailing westerly winds. Preservation of eolian deposits might be linked to relatively moist climate conditions during the past 2.5 ka.Precisely dated lake level reconstructions in the rain-shadow of the Andes document high Last Glacial and low Holocene lake levels that could suggest increased precipitation during the Last Glacial period. As permafrost in semiarid Patagonia is documented and dated to the Last Glacial period we argue that the frozen ground might have increased surficial runoff from the catchment and thus influenced the water balance of the lake. This is important for investigating the glacial to Holocene latitudinal shift

  13. Magnitude, geomorphologic response and climate links of lake level oscillations at Laguna Potrok Aike, Patagonian steppe (Argentina)

    NASA Astrophysics Data System (ADS)

    Kliem, P.; Buylaert, J. P.; Hahn, A.; Mayr, C.; Murray, A. S.; Ohlendorf, C.; Veres, D.; Wastegård, S.; Zolitschka, B.; The Pasado Science Team

    2013-07-01

    Laguna Potrok Aike is a large maar lake located in the semiarid steppe of southern Patagonia known for its Lateglacial and Holocene lake level fluctuations. Based on sedimentary, seismic and geomorphological evidences, the lake level curve is updated and extended into the Last Glacial period and the geomorphological development of the lake basin and its catchment area is interpreted. Abrasion and lake level oscillations since at least ˜50 ka caused concentric erosion of the surrounding soft rocks of the Miocene Santa Cruz Formation and expanded the basin diameter by approximately 1 km. A high lake level and overflow conditions of the lake were dated by luminescence methods and tephra correlation to the early Lateglacial as well as to ˜45 ka. The lowest lake level of record occurred during the mid-Holocene. A further lake level drop was probably prevented by groundwater supply. This low lake level eroded a distinct terrace into lacustrine sediments. Collapse of these terraces probably caused mass movement deposits in the profundal zone of the lake. After the mid-Holocene lake level low stand a general and successive transgression occurred until the Little Ice Age maximum; i.e. ca 40 m above the local groundwater table. Frequent lake level oscillations caused deflation of emerged terraces only along the eastern shoreline due to prevailing westerly winds. Preservation of eolian deposits might be linked to relatively moist climate conditions during the past 2.5 ka. Precisely dated lake level reconstructions in the rain-shadow of the Andes document high Last Glacial and low Holocene lake levels that could suggest increased precipitation during the Last Glacial period. As permafrost in semiarid Patagonia is documented and dated to the Last Glacial period we argue that the frozen ground might have increased surficial runoff from the catchment and thus influenced the water balance of the lake. This is important for investigating the glacial to Holocene latitudinal shift

  14. Fault-tolerant software - Experiment with the sift operating system. [Software Implemented Fault Tolerance computer

    NASA Technical Reports Server (NTRS)

    Brunelle, J. E.; Eckhardt, D. E., Jr.

    1985-01-01

    Results are presented of an experiment conducted in the NASA Avionics Integrated Research Laboratory (AIRLAB) to investigate the implementation of fault-tolerant software techniques on fault-tolerant computer architectures, in particular the Software Implemented Fault Tolerance (SIFT) computer. The N-version programming and recovery block techniques were implemented on a portion of the SIFT operating system. The results indicate that, to effectively implement fault-tolerant software design techniques, system requirements will be impacted and suggest that retrofitting fault-tolerant software on existing designs will be inefficient and may require system modification.

  15. Implementation of a model based fault detection and diagnosis technique for actuation faults of the SSME

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1991-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the Space Shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the Space Shuttle Main Engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  16. Intermittent/transient fault phenomena in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.

    1977-01-01

    An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems.

  17. Intermittent/transient faults in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.; Glazer, R. E.

    1982-01-01

    Containment set techniques are applied to 8085 microprocessor controllers so as to transform a typical control system into a slightly modified version, shown to be crashproof: after the departure of the intermittent/transient fault, return to one proper control algorithm is assured, assuming no permanent faults occur.

  18. A Game Theoretic Fault Detection Filter

    NASA Technical Reports Server (NTRS)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  19. Intraplate rotational deformation induced by faults

    NASA Astrophysics Data System (ADS)

    Dembo, Neta; Hamiel, Yariv; Granot, Roi

    2015-11-01

    Vertical axis rotations provide important constraints on the tectonic history of plate boundaries. Geodetic measurements can be used to calculate interseismic rotations, whereas paleomagnetic remanence directions provide constraints on the long-term rotations accumulated over geological timescales. Here we present a new mechanical modeling approach that links between intraplate deformational patterns of these timescales. We construct mechanical models of active faults at their locked state to simulate the presumed to be elastic interseismic deformation rate observed by GPS measurements. We then apply a slip to the faults above the locking depth to simulate the long-term deformation of the crust from which we derive the accumulated rotations. We test this approach in northern Israel along the Dead Sea Fault and Carmel-Gilboa fault system. We use 12 years of interseismic GPS measurements to constrain a slip model of the major faults found in this region. Next, we compare the modeled rotations against long-term rotations determined based on new primary magnetic remanence directions from 29 sites with known age. The distributional pattern of site mean declinations is in general agreement with the vertical axis rotations predicted by the mechanical model, both showing anomalously high rotations near fault tips and bending points. Overall, the results from northern Israel validate the effectiveness of our approach and indicate that rotations induced by motion along faults may act in parallel (or alone) to rigid block rotations. Finally, the new suggested method unravels important insights on the evolution (timing, magnitude, and style) of deformation along major faults.

  20. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Fault areas. 258.13 Section 258.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and...

  1. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Fault areas. 258.13 Section 258.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet...

  2. Measurement selection for parametric IC fault diagnosis

    NASA Technical Reports Server (NTRS)

    Wu, A.; Meador, J.

    1991-01-01

    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.

  3. The Curiosity Mars Rover's Fault Protection Engine

    NASA Technical Reports Server (NTRS)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  4. Diagnostics Tools Identify Faults Prior to Failure

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.

  5. Tractable particle filters for robot fault diagnosis

    NASA Astrophysics Data System (ADS)

    Verma, Vandi

    Experience has shown that even carefully designed and tested robots may encounter anomalous situations. It is therefore important for robots to monitor their state so that anomalous situations may be detected in a timely manner. Robot fault diagnosis typically requires tracking a very large number of possible faults in complex non-linear dynamic systems with noisy sensors. Traditional methods either ignore the uncertainly or use linear approximations of nonlinear system dynamics. Such approximations are often unrealistic, and as a result faults either go undetected or become confused with non-fault conditions. Probability theory provides a natural representation for uncertainty, but an exact Bayesian solution for the diagnosis problem is intractable. Classical Monte Carlo methods, such as particle filters, suffer from substantial computational complexity. This is particularly true with the presence of rare, yet important events, such as many system faults. The thesis presents a set of complementary algorithms that provide an approach for computationally tractable fault diagnosis. These algorithms leverage probabilistic approaches to decision theory and information theory to efficiently track a large number of faults in a general dynamic system with noisy measurements. The problem of fault diagnosis is represented as hybrid (discrete/continuous) state estimation. Taking advantage of structure in the domain it dynamically concentrates computation in the regions of state space that are currently most relevant without losing track of less likely states. Experiments with a dynamic simulation of a six-wheel rocker-bogie rover show a significant improvement in performance over the classical approach.

  6. Is the Lishan fault of Taiwan active?

    NASA Astrophysics Data System (ADS)

    Kuo-Chen, Hao; Wu, Francis; Chang, Wu-Lung; Chang, Chih-Yu; Cheng, Ching-Yu; Hirata, Naoshi

    2015-10-01

    The Lishan fault has been characterized alternately as a major discontinuity in stratigraphy, structures and metamorphism, a ductile shear zone, a tectonic suture or non-existent. In addition to being a geological boundary, it also marks transitions in subsurface structures. Thus, the seismicity to the west of the fault permeates through the upper and mid-crust while beneath the Central Range it is noticeably less and largely concentrated in the upper 12 km. A prominent west-dipping conductive zone extends upward to meet the Lishan fault. Also, the eastward increase of crust thickness from ~ 30 km in the Taiwan Strait quickens under the Lishan fault to form a root of over 50 km under the Central Range. In the past, the small magnitude seismicity along the Lishan fault has been noticed but is too diffuse for definitive association with the fault. Recent processing of aftershock records of the 1999 Mw 7.6 Chi-Chi earthquake using Central Weather Bureau data and, especially, data from three post-Chi-Chi deployments of seismic stations across central Taiwan yielded hypocenters that appear to link directly to the Lishan structure. The presence of a near 4-km-long vertical seismic zone directly under the surface trace of the Lishan fault indicates that it is an active structure from the surface down to about 35 km, and the variety of focal mechanisms indicates that the fault motion can be complex and depth-dependent.

  7. Late Cenozoic intraplate faulting in eastern Australia

    NASA Astrophysics Data System (ADS)

    Babaahmadi, Abbas; Rosenbaum, Gideon

    2014-12-01

    The intensity and tectonic origin of late Cenozoic intraplate deformation in eastern Australia is relatively poorly understood. Here we show that Cenozoic volcanic rocks in southeast Queensland have been deformed by numerous faults. Using gridded aeromagnetic data and field observations, structural investigations were conducted on these faults. Results show that faults have mainly undergone strike-slip movement with a reverse component, displacing Cenozoic volcanic rocks ranging in ages from ˜31 to ˜21 Ma. These ages imply that faulting must have occurred after the late Oligocene. Late Cenozoic deformation has mostly occurred due to the reactivation of major faults, which were active during episodes of basin formation in the Jurassic-Early Cretaceous and later during the opening of the Tasman and Coral Seas from the Late Cretaceous to the early Eocene. The wrench reactivation of major faults in the late Cenozoic also gave rise to the occurrence of brittle subsidiary reverse strike-slip faults that affected Cenozoic volcanic rocks. Intraplate transpressional deformation possibly resulted from far-field stresses transmitted from the collisional zones at the northeast and southeast boundaries of the Australian plate during the late Oligocene-early Miocene and from the late Miocene to the Pliocene. These events have resulted in the hitherto unrecognized reactivation of faults in eastern Australia.

  8. Friction, overpressure and fault normal compression

    SciTech Connect

    Byerlee, J. )

    1990-11-01

    More than twenty-five years ago Miller and Low reported the existence of a threshold pore pressure gradient below which water would not flow through clay. Recent experimental observations of the shear strength of structured water on biotite surfaces have provided a physical basis for understanding this threshold gradient. The existence of this phenomenon has profound implications for the rheological properties of mature fault zones, such as the San Andreas, that contain large thickness of fault gouge. For example, a clay-filled fault zone about 1 km wide at the base of the surface could support core fluid pressure equal to the maximum principal stress over the entire seismogenic zone. As a result, the fault would have near-zero strength and the maximum principal stress measured on the flanks of the fault, would be oriented normal to the fault surface. Another consequence of the threshold gradient is that normal hydrostatic fluid pressures outside the fault zone could coexist with near-lithostatic fluid pressures in the interior of the fault zone without the need for continual replenishment of the overpressured fluid. In addition, the pore pressure at any point should never exceed the local minimum principal stress so that hydrofracture will not occur.

  9. The cost of software fault tolerance

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1982-01-01

    The proposed use of software fault tolerance techniques as a means of reducing software costs in avionics and as a means of addressing the issue of system unreliability due to faults in software is examined. A model is developed to provide a view of the relationships among cost, redundancy, and reliability which suggests strategies for software development and maintenance which are not conventional.

  10. Interactive Instruction in Solving Fault Finding Problems.

    ERIC Educational Resources Information Center

    Brooke, J. B.; And Others

    1978-01-01

    A training program is described which provides, during fault diagnosis, additional information about the relationship between the remaining faults and the available indicators. An interactive computer program developed for this purpose and the first results of experimental training are described. (Author)

  11. Training for Skill in Fault Diagnosis

    ERIC Educational Resources Information Center

    Turner, J. D.

    1974-01-01

    The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)

  12. Fault detection with principal component pursuit method

    NASA Astrophysics Data System (ADS)

    Pan, Yijun; Yang, Chunjie; Sun, Youxian; An, Ruqiao; Wang, Lin

    2015-11-01

    Data-driven approaches are widely applied for fault detection in industrial process. Recently, a new method for fault detection called principal component pursuit(PCP) is introduced. PCP is not only robust to outliers, but also can accomplish the objectives of model building, fault detection, fault isolation and process reconstruction simultaneously. PCP divides the data matrix into two parts: a fault-free low rank matrix and a sparse matrix with sensor noise and process fault. The statistics presented in this paper fully utilize the information in data matrix. Since the low rank matrix in PCP is similar to principal components matrix in PCA, a T2 statistic is proposed for fault detection in low rank matrix. And this statistic can illustrate that PCP is more sensitive to small variations in variables than PCA. In addition, in sparse matrix, a new monitored statistic performing the online fault detection with PCP-based method is introduced. This statistic uses the mean and the correlation coefficient of variables. Monte Carlo simulation and Tennessee Eastman (TE) benchmark process are provided to illustrate the effectiveness of monitored statistics.

  13. An example of complex fault geometries in a young, rapidly deforming transform fault system: The Maacama Fault in northern California

    NASA Astrophysics Data System (ADS)

    Schroeder, R. D.; Brady, R. J.

    2009-12-01

    The Maacama Fault Zone (MFZ) in northern California is a young transform system that developed behind the northward migrating Mendocino Triple Junction, and comprises a complex set of active, linked fault strands that form a series of pull-apart basins within the rapidly slipping (~13.9 mm/yr) right-lateral fault system. Surface fault traces within the MFZ are defined by geomorphic features, shallow resistivity profiles, and previously published surface creep and paleoseismic trenching studies. The surface traces of these faults outline classic pull-apart rhomohedrons, with all of the bounding faults inferred to be kinematically linked and currenty active. This activity is supported not only by paleoseismic and surface creep studies, which have tended to focus on the single main strand of the Maacama Fault, but also by the location of tabular seismogenic zones that project from the subsurface into several of the mapped surface fault traces. For each of the 3 mapped pull-apart basins, at least two of the interpreted bounding faults can be shown to be currently active, requiring near-synchronous activity on all of the kinematically linked faults. Historically, active displacement across the MFZ has been assigned to only one relatively well-studied main strand of the fault zone, which slips at ~6.5 mm/yr, resulting in an apparent slip deficit of ~7.4 mm/yr. However, the newly studied adjacent faults in this complex system could accommodate as much or more slip than the historically defined main fault trace, thus resulting in a possibly broader zone of seismic hazard, but less risk of major earthquakes on the main trace. Timing of pull-apart basin initiations is not well constrained, with data permitting either the interpretation that basins formed due to oblique subduction and are currently being reactivated by similar stresses, or that they are newly formed and rapidly evolving. Limited data even allows that the largest pull-apart system may be a reactivated pre

  14. Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain)

    NASA Astrophysics Data System (ADS)

    Pueyo Anchuela, Óscar; Lafuente, Paloma; Arlegui, Luis; Liesa, Carlos L.; Simón, José L.

    2015-12-01

    The Concud Fault is a ~14-km-long active fault that extends close to Teruel, a city with about 35,000 inhabitants in the Iberian Range (NE Spain). It shows evidence of recurrent activity during Late Pleistocene time, posing a significant seismic hazard in an area of moderate-to-low tectonic rates. A geophysical survey was carried out along the mapped trace of the southern branch of the Concud Fault to evaluate the geophysical signature from the fault and the location of paleoseismic trenches. The survey identified a lineation of inverse magnetic dipoles at residual and vertical magnetic gradient, a local increase in apparent conductivity, and interruptions of the underground sediment structure along GPR profiles. The origin of these anomalies is due to lateral contrast between both fault blocks and the geophysical signature of Quaternary materials located above and directly south of the fault. The spatial distribution of anomalies was successfully used to locate suitable trench sites and to map non-exposed segments of the fault. The geophysical anomalies are related to the sedimentological characteristics and permeability differences of the deposits and to deformation related to fault activity. The results illustrate the usefulness of geophysics to detect and map non-exposed faults in areas of moderate-to-low tectonic activity where faults are often covered by recent pediments that obscure geological evidence of the most recent earthquakes. The results also highlight the importance of applying multiple geophysical techniques in defining the location of buried faults.

  15. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    SciTech Connect

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  16. Partial fault dictionary: A new approach for computer-aided fault localization

    SciTech Connect

    Hunger, A.; Papathanasiou, A.

    1995-12-31

    The approach described in this paper has been developed to address the computation time and problem size of localization methodologies in VLSI circuits in order to speed up the overall time consumption for fault localization. The reduction of the problem to solve is combined with the idea of the fault dictionary. In a pre-processing phase, a possibly faulty area is derived using the netlist and the actual test results as input data. The result is a set of cones originating from each faulty primary output. In the next step, the best cone is extracted for the fault dictionary methodology according to a heuristic formula. The circuit nodes, which are included in the intersection of the cones, are combined to a fault list. This fault list together with the best cone can be used by the fault simulator to generate a small and manageable fault dictionary related to one faulty output. In connection with additional algorithms for the reduction of stimuli and netlist a partial fault dictionary can be set up. This dictionary is valid only for the given faulty device together with the given and reduced stimuli, but offers important benefits: Practical results show a reduction of simulation time and size of the fault dictionary by factors around 100 or even more, depending on the actual circuit and assumed fault. The list of fault candidates is significantly reduced, and the required number of steps during the process of localization is reduced, too.

  17. Active faulting in the Walker Lane

    NASA Astrophysics Data System (ADS)

    Wesnousky, Steven G.

    2005-06-01

    Deformation across the San Andreas and Walker Lane fault systems accounts for most relative Pacific-North American transform plate motion. The Walker Lane is composed of discontinuous sets of right-slip faults that are located to the east and strike approximately parallel to the San Andreas fault system. Mapping of active faults in the central Walker Lane shows that right-lateral shear is locally accommodated by rotation of crustal blocks bounded by steep-dipping east striking left-slip faults. The left slip and clockwise rotation of crustal blocks bounded by the east striking faults has produced major basins in the area, including Rattlesnake and Garfield flats; Teels, Columbus and Rhodes salt marshes; and Queen Valley. The Benton Springs and Petrified Springs faults are the major northwest striking structures currently accommodating transform motion in the central Walker Lane. Right-lateral offsets of late Pleistocene surfaces along the two faults point to slip rates of at least 1 mm/yr. The northern limit of northwest trending strike-slip faults in the central Walker Lane is abrupt and reflects transfer of strike-slip to dip-slip deformation in the western Basin and Range and transformation of right slip into rotation of crustal blocks to the north. The transfer of strike slip in the central Walker Lane to dip slip in the western Basin and Range correlates to a northward broadening of the modern strain field suggested by geodesy and appears to be a long-lived feature of the deformation field. The complexity of faulting and apparent rotation of crustal blocks within the Walker Lane is consistent with the concept of a partially detached and elastic-brittle crust that is being transported on a continuously deforming layer below. The regional pattern of faulting within the Walker Lane is more complex than observed along the San Andreas fault system to the west. The difference is attributed to the relatively less cumulative slip that has occurred across the Walker

  18. Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California

    SciTech Connect

    Boles, James

    2013-05-24

    Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

  19. Strike-slip faulting and block rotation in the Lake Mead fault system

    NASA Astrophysics Data System (ADS)

    Ron, Hagai; Aydin, Atilla; Nur, Amos

    1986-12-01

    Strike-slip faults in the Basin and Range province have often been considered passive boundaries between differentially extended domains of tilted normal faults and are thus considered secondary in accommodating regional horizontal deformation. Paleomagnotic investigation of late Miocene age volcanic rocks, displaced by the left-lateral fault system of Lake Mead, Nevada, shows: (1) that these rocks have not been affected by significant structural tilt, the difference between observed and expected inclinations being only -0.6° ± 14.9° and (2) a significant horizontal counterclockwise rotation of -29.4° ± 8.5° about a vertical axis. This rotation was accommodated by slip on northwest-trending, right-lateral strike-slip faults; this implies significant west-northwest elongation. Results of the investigation indicate that strike-slip faulting is the primary process accommodating crustal deformation along the Lake Mead fault system and that tilting in response to normal faulting is secondary.

  20. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  1. Mechanics of distributed fault and block rotation

    NASA Technical Reports Server (NTRS)

    Nur, A.; Scotti, O.; Ron, H.

    1989-01-01

    Paleomagnetic data, structural geology, and rock mechanics are used to explore the validity and significance of the block rotation concept. The analysis is based on data from Northern Israel, where fault slip and spacing are used to predict block rotation; the Mojave Desert, with well documented strike-slip sets; the Lake Mead, Nevada fault system with well-defined sets of strike-slip faults; and the San Gabriel Mountains domain with a multiple set of strike-slip faults. The results of the analysis indicate that block rotations can have a profound influence on the interpretation of geodetic measurments and the inversion of geodetic data. Furthermore, the block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which may be responsible for the initiation and termination of earthquake rupture.

  2. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing; Tekletsadik, Kasegn

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  3. Fault analysis of multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  4. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new

  5. Practical application of fault tree analysis

    SciTech Connect

    Prugh, R.W.

    1980-01-01

    A detailed survey of standard and novel approaches to Fault Tree construction, based on recent developments at Du Pont, covers the effect-to-cause procedure for control systems as in process plants; the effect-to-cause procedure for processes; source-of-hazard analysis, as in pressure vessel rupture; use of the ''fire triangle'' in a Fault Tree; critical combinations of safeguard failures; action points for automatic or operator control of a process; situations involving hazardous reactant ratios; failure-initiating and failure-enabling events and intervention by the operator; ''daisy-chain'' hazards, e.g., in batch processes and ship accidents; combining batch and continuous operations in a Fault Tree; possible future structure-development procedures for fault-tree construction; and the use of quantitative results (calculated frequencies of Top-Event occurrence) to restructure the Fault Tree after improving the process to any acceptable risk level.

  6. Neural networks for fault location in substations

    SciTech Connect

    Alves da Silva, A.P.; Silveira, P.M. da; Lambert-Torres, G.; Insfran, A.H.F.

    1996-01-01

    Faults producing load disconnections or emergency situations have to be located as soon as possible to start the electric network reconfiguration, restoring normal energy supply. This paper proposes the use of artificial neural networks (ANNs), of the associative memory type, to solve the fault location problem. The main idea is to store measurement sets representing the normal behavior of the protection system, considering the basic substation topology only, into associated memories. Afterwards, these memories are employed on-line for fault location using the protection system equipment status. The associative memories work correctly even in case of malfunction of the protection system and different pre-fault configurations. Although the ANNs are trained with single contingencies only, their generalization capability allows a good performance for multiple contingencies. The resultant fault location system is in operation at the 500 kV gas-insulated substation of the Itaipu system.

  7. Maneuver Classification for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.

    2003-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, identifying all possible faulty and proper operating modes is clearly impossible. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  8. Quantifying fault recovery in multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Malek, Miroslaw; Harary, Frank

    1990-01-01

    Various aspects of reliable computing are formalized and quantified with emphasis on efficient fault recovery. The mathematical model which proves to be most appropriate is provided by the theory of graphs. New measures for fault recovery are developed and the value of elements of the fault recovery vector are observed to depend not only on the computation graph H and the architecture graph G, but also on the specific location of a fault. In the examples, a hypercube is chosen as a representative of parallel computer architecture, and a pipeline as a typical configuration for program execution. Dependability qualities of such a system is defined with or without a fault. These qualities are determined by the resiliency triple defined by three parameters: multiplicity, robustness, and configurability. Parameters for measuring the recovery effectiveness are also introduced in terms of distance, time, and the number of new, used, and moved nodes and edges.

  9. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data is a reasonable match to known examples of proper operation. In our domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. We explain where this subsystem fits into our envisioned fault detection system as well its experiments showing the promise of this classification subsystem.

  10. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Koga, Dennis (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  11. Lithography light source fault detection

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Pantel, Erica; Nelissen, Patrick; Moen, Jeffrey; Tincu, Eduard; Dunstan, Wayne; Brown, Daniel

    2010-04-01

    High productivity is a key requirement for today's advanced lithography exposure tools. Achieving targets for wafers per day output requires consistently high throughput and availability. One of the keys to high availability is minimizing unscheduled downtime of the litho cell, including the scanner, track and light source. From the earliest eximer laser light sources, Cymer has collected extensive performance data during operation of the source, and this data has been used to identify the root causes of downtime and failures on the system. Recently, new techniques have been developed for more extensive analysis of this data to characterize the onset of typical end-of-life behavior of components within the light source and allow greater predictive capability for identifying both the type of upcoming service that will be required and when it will be required. The new techniques described in this paper are based on two core elements of Cymer's light source data management architecture. The first is enhanced performance logging features added to newer-generation light source software that captures detailed performance data; and the second is Cymer OnLine (COL) which facilitates collection and transmission of light source data. Extensive analysis of the performance data collected using this architecture has demonstrated that many light source issues exhibit recognizable patterns in their symptoms. These patterns are amenable to automated identification using a Cymer-developed model-based fault detection system, thereby alleviating the need for detailed manual review of all light source performance information. Automated recognition of these patterns also augments our ability to predict the performance trending of light sources. Such automated analysis provides several efficiency improvements for light source troubleshooting by providing more content-rich standardized summaries of light source performance, along with reduced time-to-identification for previously

  12. Methodology for Designing Fault-Protection Software

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin; Levison, Jeffrey; Kan, Edwin

    2006-01-01

    A document describes a methodology for designing fault-protection (FP) software for autonomous spacecraft. The methodology embodies and extends established engineering practices in the technical discipline of Fault Detection, Diagnosis, Mitigation, and Recovery; and has been successfully implemented in the Deep Impact Spacecraft, a NASA Discovery mission. Based on established concepts of Fault Monitors and Responses, this FP methodology extends the notion of Opinion, Symptom, Alarm (aka Fault), and Response with numerous new notions, sub-notions, software constructs, and logic and timing gates. For example, Monitor generates a RawOpinion, which graduates into Opinion, categorized into no-opinion, acceptable, or unacceptable opinion. RaiseSymptom, ForceSymptom, and ClearSymptom govern the establishment and then mapping to an Alarm (aka Fault). Local Response is distinguished from FP System Response. A 1-to-n and n-to- 1 mapping is established among Monitors, Symptoms, and Responses. Responses are categorized by device versus by function. Responses operate in tiers, where the early tiers attempt to resolve the Fault in a localized step-by-step fashion, relegating more system-level response to later tier(s). Recovery actions are gated by epoch recovery timing, enabling strategy, urgency, MaxRetry gate, hardware availability, hazardous versus ordinary fault, and many other priority gates. This methodology is systematic, logical, and uses multiple linked tables, parameter files, and recovery command sequences. The credibility of the FP design is proven via a fault-tree analysis "top-down" approach, and a functional fault-mode-effects-and-analysis via "bottoms-up" approach. Via this process, the mitigation and recovery strategy(s) per Fault Containment Region scope (width versus depth) the FP architecture.

  13. Fault Segmentation and its Implication to the Evaluation of Future Earthquakes from Active Faults in Japan

    NASA Astrophysics Data System (ADS)

    Awata, Y.; Yoshioka, T.

    2005-12-01

    Segmentation of active faults is essential for the evaluation both of past and future faulting using geologic data from paleoseismological sites. A behavioral segment is defined as the smallest segment of fault having a characteristic history of faulting. More over, we have to estimate the earthquake segments that can be consist of multiple faulting along a system of behavioral segments. Active fault strands in Japan are segmented into behavioral segments based on fault discontinuity of 2-3 km and larger (Active Fault Res. Group, GSJ, 2000), large bend of fault strand and paleoseismicity. 431 behavioral segments, >= 10 km in length and >= 0.1 m/ky in long-term slip-rate, are identified from a database of active faults in Japan, that is constructed at AFRC, GSJ/AIST. The length of the segments is averaged 21 km and approximately 70 km in maximum. Only 8 segments are exceed 45 km in length. These lengths are very similar to those of historical surface ruptures not only in Japan since 1891 Nobi earthquake, but also in other regions having different tectonic setting. According to the scaling law between fault length and amount of displacement of behavioral segment, a maximum length of ca. 70 km can estimate a slip of ca. 14 m. This amount of slip is as large as world largest slip occurred during the 1931 Fuyun earthquake of M 8, 1999 Chichi earthquake of M 7.4 and the 2001 Central Kunlun earthquake of M 7.9 in East Asia. Recent geological and seismological studies on large earthquakes have revealed that multiple-rupturing is very common during large earthquakes. Therefore, evaluation of simultaneous faulting along a system of active faults is indispensable for the estimation of earthquake size. A Matsuda's (1990) idea of "seismogenic faults", that is divided or grouped based on the geometric discontinuity of 5 km, may useful for the best estimation of earthquake segment. The Japanese behavioral segments are grouped into "seismogenic faults", each consists of about 2

  14. Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico

    NASA Astrophysics Data System (ADS)

    McDonald, David Wilson

    The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant

  15. Simulation of Fault Zone Dynamics

    NASA Astrophysics Data System (ADS)

    Mora, P.; Abe, S.; Place, D.

    2002-12-01

    Particle models such as the discrete element model for granular assemblies and the lattice solid model provide a means to study the dynamics of fault zones. The lattice solid model was developed with the aim of progressively building up the capacity to simulate all relevent physical processes in fault zones. The present implementation of the model is able to simulate the dynamics of a granular lattice consisting of bonded or unbonded circular (2D) or spherical (3D) particles. Thermal effects (frictional hear generation, thermal expansion, heat flow) and pore fluid effects (heat induced pore pressure gradients and the consequent Darcian flow and impact on effective friction) can be modelled. Past work involving both circular particles and non-circular grains constructed as groups of bonded particles have demonstrated that grain shape has a fundamental impact on zero-th order behaviour. When circular particles are used, rolling is the most efficient means to accomodate slip of a simulated fault gouge layer leading to unrealistically low friction, typically around 0.2. This is consistent with laboratory results by Mair and Marone which have demonstrated that gouge consisting entirely of spherical beads shows a lower coefficient of friction than gouge containing irregular shaped particles. Recent work comparing quasi-2D laboratory results using pasta (Marone) with 2D numerical results (Morgan) have confirmed that numerical and laboratory results with circular ``particles'' are in agreement. When irregular grains are modelled at the lowest scale, the friction of simulated gouge layers matches with laboratory observations of rock friction (μ ~ 0.6) and is insentitive to the value used for interparticle friction (Mora et al, 2000). This indicates a self-regulation mechanism is occurring in which the group behaviour of the gouge layer remains constant at around 0.6 by balancing the amount of slip and rolling of grains within the gouge layer. A limitation of these studies

  16. Magnetic fabric of brittle fault rocks

    NASA Astrophysics Data System (ADS)

    Pomella, Hannah

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia and gouge, fault rocks with clast-in-matrix textures. A noteworthy property of both gouge and breccia is the often observed presence of a fabric that is defined by the preferred orientation of clasts and grains in the matrix. In the very fine-grained gouge and in the matrix of the breccia the fabric is not visible in the field or in thin sections but can probably be detected by AMS analyses. For the present study different kinds of brittle fault rocks have been sampled on two faults with known tectonic settings, in order to allow for a structural interpretation of the measured AMS signal. The measurements were carried out with an AGICO MFK1-FA Kappabridge and a CS4 furnace apparatus at the Institute of Geology, University of Innsbruck. Fault gouge was sampled on the Naif fault located in the Southern Alps, E of Meran, South Tyrol, Italy. Along this fault the Permian Granodiorite overthrusts the Southalpine basement and its Permomesozoic cover. The Neoalpine thrust fault is characterised by a wide cataclastic zone and an up to 1 m thick fault gouge. The gouge was sampled using paleomagnetic sample boxes. Heating experiments indicate that the magnetic fabric is dominated by paramagnetic minerals (>95%). The samples provide a magnetic susceptibility in the range of +10*E-5 [SI]. The K-min axis of the magnetic ellipsoid corresponds approximately to the pol of the fault plane measured in the field. However the whole magnetic ellipsoid shows a variation in the inclination compared to the structural data. Fine-grained ultracataclasites were sampled on the Assergi fault, located in the Abruzzi Apennines, NE of L'Aquila, Italy. This normal fault was active in historical time and crosscuts limestones as well as talus deposits. An up to 20 cm thick

  17. Reconfigurable fault tolerant avionics system

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  18. Fault failure with moderate earthquakes

    USGS Publications Warehouse

    Johnston, M.J.S.; Linde, A.T.; Gladwin, M.T.; Borcherdt, R.D.

    1987-01-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake (ML = 6.7, ?? = 51 km), the August 4, 1985, Kettleman Hills earthquake (ML = 5.5, ?? = 34 km), the April 1984 Morgan Hill earthquake (ML = 6.1, ?? = 55 km), the November 1984 Round Valley earthquake (ML = 5.8, ?? = 54 km), the January 14, 1978, Izu, Japan earthquake (ML = 7.0, ?? = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10-8), with borehole dilatometers (resolution 10-10) and a 3-component borehole strainmeter (resolution 10-9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure. ?? 1987.

  19. Robot Position Sensor Fault Tolerance

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. A new method is proposed that utilizes analytical redundancy to allow for continued operation during joint position sensor failure. Joint torque sensors are used with a virtual passive torque controller to make the robot joint stable without position feedback and improve position tracking performance in the presence of unknown link dynamics and end-effector loading. Two Cartesian accelerometer based methods are proposed to determine the position of the joint. The joint specific position determination method utilizes two triaxial accelerometers attached to the link driven by the joint with the failed position sensor. The joint specific method is not computationally complex and the position error is bounded. The system wide position determination method utilizes accelerometers distributed on different robot links and the end-effector to determine the position of sets of multiple joints. The system wide method requires fewer accelerometers than the joint specific method to make all joint position sensors fault tolerant but is more computationally complex and has lower convergence properties. Experiments were conducted on a laboratory manipulator. Both position determination methods were shown to track the actual position satisfactorily. A controller using the position determination methods and the virtual passive torque controller was able to servo the joints to a desired position during position sensor failure.

  20. Experimental Investigation of Thrust Fault Rupture Mechanics

    NASA Astrophysics Data System (ADS)

    Gabuchian, Vahe

    Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the

  1. High-resolution Late Pleistocene paleomagnetic secular variation record from Laguna Potrok Aike, Southern Patagonia (Argentina): preliminary results from the ICDP-PASADO drilling

    NASA Astrophysics Data System (ADS)

    Lisé-Pronovost, Agathe; St-Onge, Guillaume; Haberzettl, Torsten; Pasado Science Team

    2010-05-01

    High-resolution paleomagnetic reconstructions from sedimentary sequences are scarce in the Southern Hemisphere. Therefore, the millennial- to centennial-scale variability of the geomagnetic field is under-represented in the Southern Hemisphere relative to the Northern Hemisphere and the possible global nature of that variability cannot be assessed. Here we present the first high-resolution Late Pleistocene paleomagnetic secular variation (PSV) reconstruction from the continental archive Laguna Potrok Aike south of 42°S in South America. Laguna Potrok Aike (51°58'S, 70°23'W) is a maar lake located in the Pali Aike Volcanic Field in southern Patagonia (Argentina). Previous studies revealed very high Holocene sedimentation rates (> 100 cm/ka) in the center of the lake. During the austral spring 2008, the multi-national Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO) science team drilled two ~100 m holes under the framework of the International Continental scientific Drilling Program (ICDP). A preliminary Holocene age model based on comparison of magnetic susceptibility data from the PASADO core with the well-dated (radiocarbon- and tephra-based chronology) core located nearby in the center of the lake (PTA03-12) indicates a continuous deposition of ~19 m of lacustrine sediments since the last 16 ka cal. BP. Hysteresis measurements using an alternating gradient force magnetometer indicate a magnetic assemblage dominated by magnetite grains in the pseudo-single domain range. Principal component analysis (PCA) inclination and declination profiles were constructed from the stepwise alternating field demagnetization of the natural remanent magnetization (NRM) measured on u-channels at 1 cm intervals using a 2G Enterprises cryogenic magnetometer. The PCA inclinations vary around the expected geocentric axial dipole (GAD) inclination for the latitude of the coring site and the maximum angular deviation (MAD) values are generally lower than 5°, indicating

  2. Structural and geomorphic fault segmentations of the Doruneh Fault System, central Iran

    NASA Astrophysics Data System (ADS)

    Farbod, Yassaman; Bellier, Olivier; Shabanian, Esmaeil; Abbassi, Mohammad Reza

    2010-05-01

    The active tectonics of Iran results from the northward Arabia-Eurasia convergence at a rate of ~22±2 mm/yr at the longitude of Bahrain (e.g., Sella et al., 2002). At the southwestern and southern boundaries of the Arabia-Eurasia collision zone, the convergence is taken up by the continental collision in the Zagros Mountains, and the active subduction of Makran, respectively. Further north, the northward motion not absorbed by the Makran subduction is expressed as the N-trending right lateral shear between central Iran and Eurasia at a rate of ~16 mm/yr (e.g., Regard et al., 2005; Vernant et al, 2004). This shear involves N-trending right-lateral fault systems, which are extended at both sides of the Lut block up to the latitude of 34°N. North of this latitude, about 35°N, the left-lateral Doruneh Fault separates the N-trending right-lateral fault systems from the northern deformation domains (i.e., the Alborz, Kopeh Dagh and Binalud mountain ranges). At the Iranian tectonic scale, the Doruneh Fault represents a curved-shape, 600-km-long structure through central Iran, which runs westward from the Iran-Afghanistan boundary (i.e., the eastern boundary of the Arabia-Eurasia collision zone) to the Great Kavir desert. Nevertheless, east of the longitude of 56°45'E, the fault is expressed as an E-trending ~360-km-long fault (hereinafter the Doruneh Fault System - DFS) having a geological evolution history different from the western part (the Great Kavir Fault System). In this study, we look for characterizing geomorphic and structural features of active faulting on the DFS. Detailed structural and geomorphic mapping based on satellite Imageries (SPOT5 and Landsat ETM+) and SRTM digital topographic data, complemented with field surveys allowed us to establish structural and geomorphic segmentations along the DFS. According to our observations, the DFS is comprised of three distinct fault zones: (1) The 100-km-long, N75°E-trending western fault zone, which is

  3. The End Of Chi-Shan Fault:Tectonic of Transtensional Fault

    NASA Astrophysics Data System (ADS)

    Chou, H.; Song, G.

    2011-12-01

    Chishan fault is an active strike-slip fault that located at the Southwestern Taiwan and extend to the offshore area of SouShan in Kaohsiung. The strike and dip of the fault is N80E,50N. It's believed that the Wushan Formation of Chishan fault, which is composed of sandstone, thrusts upon the Northwestern Kutingkeng Formation, which is composed of mudstone. Chishan fault is acting as a reversal fault with sinistral motion. (Tsan and Keng,1968; Hsieh, 1970; Wen-Pu Geng, 1981). This left-lateral strike-slip fault extend to shelf break and stop, with a transtensional basin at the termination. The transtensional basin has stopped extending to open sea, whereas it is spreading toward the inshore area. Therefore, we can know that a young extensional activity is developing at the offshore seabed of Tsoying Naval Port and the activity is relative to the transtension of left-lateral fault. ( Gwo-Shyh Song, 2010). Tectonic of transtensional basin deformed in strike-slip settings overland have been described by many authors, but the field outcrop could be distoryed by Weathering and made the tectonic features incomplete. Hence, this research use multibeam bathymetry and 3.5-kHz sub-bottom profiler data data collected from the offshore extended part of Chishan fault in Kaohsiung to define the transtensional characteristics of Chishan fault. At first, we use the multibeam bathymetry data to make a Geomorphological map of our research area and we can see a triangulate depressed area near shelf break. Then, we use Fledermaus to print 3D diagram for understanding the distribution of the major normal faults(fig.1). Furthermore, we find that there are amount of listric normal fault and the area between the listric faults is curving. After that, we use the 3.5-kHz sub-bottom profiler data to understand the subsurface structure of the normal faults and the curved area between the listric normal fault, which seems to be En e'chelon folds. As the amount of displacement on the wrench

  4. Microearthquake seismicity at the intersection between the Kazerun fault and the Main Recent Fault (Zagros, Iran)

    NASA Astrophysics Data System (ADS)

    Yamini-Fard, Farzam; Hatzfeld, Denis; Tatar, Mohammad; Mokhtari, Mohammad

    2006-07-01

    Seismicity and fault plane solutions of earthquakes at the intersection between the Main Recent Fault (a right-lateral strike-slip fault that bounds the Zagros to the NE) and the Kazerun Fault system (another right-lateral zone that crosses the Zagros) show slip to be partitioned into nearly pure strike-slip at shallow depths and nearly pure thrust slip below 12 km. Such slip partitioning is commonly observed where oblique convergence occurs, but in general faults of different styles lie adjacent to one another, not at different depths with one below the other. We provide evidence for this partitioning in a microearthquake study in which we deployed a temporary network of 29 seismographs for 7 weeks. We located no activity north of the Main Zagros Reverse Fault (MZRF), which separates the Zagros fold belt from Central Iran. Most earthquakes occurred between the northern termination of the Kazerun Fault and the MZRF, but not near to known major faults. Activity is limited to the upper crust, between 2 and 16 km. Most of the focal mechanisms show strike-slip faulting, dextral if the NS striking plane is the active plane, but a few for the deepest events show reverse faulting, distributed between the Kazerun Fault and the MZRF, with P-axis trending consistently ~NS. This partitioning of the deformation with depth suggests that the brittle upper crust deforms by slip on pre-existing faults that strike obliquely but that the lower crust accommodates the shortening by reverse faulting. We infer that the deformation in the upper part of the crust reflects a stiffer medium in which pre-existing faults localize the deformation. The largest event recorded during this experiment, located at the same place as the destructive 1977 Naghan earthquake (Mw ~5.9, 348 victims), shows reverse faulting, likely related to the Dopolan High Zagros Fault. The crustal thickness deduced from receiver function analysis does not show a marked difference across the Kazerun fault, which suggests

  5. Is There any Relationship Between Active Tabriz Fault Zone and Bozkush Fault Zones, NW Iran?

    NASA Astrophysics Data System (ADS)

    ISIK, V.; Saber, R.; Caglayan, A.

    2012-12-01

    Tectonic plate motions and consequent earthquakes can be actively observed along the northwestern Iran. The Tabriz fault zone (TFZ), also called the North Tabriz fault, active right-lateral strike-slip fault zone with slip rates estimated as ~8 mm/yr, has been vigorously deforming much of northwestern Iran for over the past several million years. Historical earthquakes on the TFZ consist of large magnitude, complimentary rupture length and changed the landscape of regions surrounding the fault zone. The TFZ in the city of Bostanabad is more segmented with several strands and joined by a series of WNW-ESE trending faults, called the Bozkush fault zones. The Bozkush fault zones (BFZ's) (south and north), bounding arch-shaped Bozkush mountains, generates not only hundreds of small earthquakes each year but also has provided significant earthquakes that have been historically documented. The rock units deformed within the BFZ's include Eocene-Oligocene volcanic rocks with intercalation limestone, Oligo-Miocene clastic rocks with intercalation gypsiferous marl and Plio-Quaternary volcano-sedimentary rocks, travertine and alluvium. The North and South Bozkush fault zones are characterized by development of structures typically associated with transpression. These include right-lateral strike-slip faults, thrust faults and foldings. Our field studies indicate that these zones include step to sub-vertical fault surfaces trending NW and NE with slickenlines. Slickensides preserve brittle kinematic indicators (e.g., Riedel shear patterns, slickenside marks) suggesting both dextral displacements and top-to-the-NE/NW and-SE/SW sense of shearing. Besides, mesoscopic and microscopic ductile kinematic indicators (e.g., asymmetric porphyroclasts, C/S fabrics) within Miocene gypsum marl show dextral displacements. Fault rocks along most of these faults consist of incohesive fault breccia and gauge. Adjacent to the fault contact evidence of bedding in Oligo-Miocene and Plio

  6. Neotectonic faulting in northern Norway; the Stuoragurra and Nordmannvikdalen postglacial faults

    NASA Astrophysics Data System (ADS)

    Dehls, John F.; Olesen, Odleiv; Olsen, Lars; Harald Blikra, Lars

    2000-10-01

    A systematic compilation and characterisation of many reports of neotectonic crustal deformation in Norway (both on local and regional scales) has identified two neotectonic faults in northern Norway. The Stuoragurra Fault is a large reverse fault in Finnmark County. The Nordmannvikdalen fault is a much smaller normal fault in Troms County. The Stuoragurra postglacial fault can be followed, in several discontinuous sections, for 80 km, in a NE-SW direction. The fault has up to 10 m of displacement. During 1998, two trenches were made across the fault. The hanging wall was seen to be thrust upwards over the footwall, with 7 m vertical displacement evident from displaced glacial contacts. The fault did not penetrate the overlying glacial materials, but rather folded them, forming a blind thrust. Large liquefaction and other deformation structures were found in the glaciofluvial sediments in both trenches. Veins of angular and subangular pebbles from the local bedrock penetrate more than 10 m laterally from the thrust plane and into the sediments in the footwall. It is thought that these veins were injected during the fault activity. The major deformation of the sediments has a décollement plane that continues laterally in the E/B horizon contact of the modern soil on top of the footwall. This may indicate that an initial pedogenesis had taken place before the fault activity occurred, however no macro plant fossils to support this were found in the possible buried soil. Deformational structures seen in the trench can be explained as a result of one major fault event. The Nordmannvikdalen postglacial fault is a NW-SE trending normal fault, dipping to the NE. The fault offsets till on the NW slope of Nordmannvikdalen. The escarpment varies in height from 0.5 to 1.5 m, with a trench often present between the hanging wall and the footwall. The fault locally splits into two subparallel branches, however this is probably only in the glacial overburden. Ground penetrating

  7. Fault activation due to glacially induced stresses

    NASA Astrophysics Data System (ADS)

    Steffen, R.; Lund, B.; Wu, P. P.

    2013-12-01

    Melting glaciers worldwide have an effect on sea level, but also on the stability of pre-existing faults. The load due to continental ice sheets or glaciers depresses the surface below, leading to changes in the lithospheric stresses. The accumulation of ice mass increases the vertical stress, and the horizontal stresses increase due to the accompanying flexure of the lithosphere. During deglaciation, ice-mass loss causes a simultaneous decrease in vertical stress; however, horizontal stresses decrease only slowly due to the slow readjusting of the Earth. After the end of deglaciation, only the induced horizontal stresses remain as the process of glacial isostatic adjustment (GIA) proceeds visco-elastically. The modelling of this process and the estimation of fault slip is enabled by a new GIA-fault model. However, this finite-element model is only available in two dimensions, and the extension to three dimensions is a necessary step further to allow the comparison of obtained fault slips to observations of glacially induced faults in Europe and North America. The model has several input parameters, which affect the activation time of faults and their resulting slip (e.g. ice history, rheology of the Earth, frictional properties, pore-fluid pressure). We will present the results of the new 3D model and show the sensitivity of faults with respect to modelling parameters. Furthermore, a comparison to observations will be presented.

  8. Fault activation due to glacially induced stresses

    NASA Astrophysics Data System (ADS)

    Steffen, Rebekka; Lund, Björn

    2014-05-01

    Melting glaciers worldwide have an effect on sea level, but also on the stability of pre-existing faults. The load due to continental ice sheets or glaciers depresses the surface below, leading to changes in the lithospheric stresses. The accumulation of ice mass increases the vertical stress, and the horizontal stresses increase due to the accompanying flexure of the lithosphere. During deglaciation, ice-mass loss causes a simultaneous decrease in vertical stress; however, horizontal stresses decrease only slowly due to the slow readjusting of the Earth. After the end of deglaciation, only the induced horizontal stresses remain as the process of glacial isostatic adjustment (GIA) proceeds visco-elastically. The modelling of this process and the estimation of fault slip is enabled by a new GIA-fault model. However, this finite-element model is only available in two dimensions, and the extension to three dimensions is a necessary step further to allow the comparison of obtained fault slips to observations of glacially induced faults in Europe and North America. The model has several input parameters, which affect the activation time of faults and their resulting slip (e.g. ice history, rheology of the Earth, frictional properties, pore-fluid pressure). We will present the results of the new 3D model and show the sensitivity of faults with respect to modelling parameters. Furthermore, a comparison to observations will be presented.

  9. Earthquake faulting as a structural process

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    Structural geology is concerned with the history of movement in the Earth's crust and the processes by which displacements occur. In the upper one third to one half of deforming continental crust, displacement is accommodated largely by seismic slip increments on existing faults. It follows that earthquakes and related processes are an integral part of structural geology. Traditionally, structural geologists have been preoccupied with the complexity of the finite deformation within fault zones and with the stress states prevailing at the initiation of faults in intact crust. Future structural work should be directed more towards understanding the dynamic character of fault reactivation during incremental slip, and related effects. Questions of interest include rheological and geometrical controls on the initiation, perturbation and termination of ruptures; directivity effects associated with rupture propagation; the recognition of structures resulting from repeated stress cycling within seismogenic crust; and identification of structural features diagnostic of shear stress levels during faulting. Structures arising from the inter-relationships between slip episodes and induced fluid flow are of special importance, because these dynamic fault processes appear influential in the development of much fault-hosted mineralization. Mesothermal gold-quartz lodes hosted in high-angle reverse shear zones of mixed brittle-ductile character form illustrative examples of structures that, arguably, can only be interpreted by seismo-structural analysis embodying the concepts listed above.

  10. Formal Validation of Fault Management Design Solutions

    NASA Technical Reports Server (NTRS)

    Gibson, Corrina; Karban, Robert; Andolfato, Luigi; Day, John

    2013-01-01

    The work presented in this paper describes an approach used to develop SysML modeling patterns to express the behavior of fault protection, test the model's logic by performing fault injection simulations, and verify the fault protection system's logical design via model checking. A representative example, using a subset of the fault protection design for the Soil Moisture Active-Passive (SMAP) system, was modeled with SysML State Machines and JavaScript as Action Language. The SysML model captures interactions between relevant system components and system behavior abstractions (mode managers, error monitors, fault protection engine, and devices/switches). Development of a method to implement verifiable and lightweight executable fault protection models enables future missions to have access to larger fault test domains and verifiable design patterns. A tool-chain to transform the SysML model to jpf-Statechart compliant Java code and then verify the generated code via model checking was established. Conclusions and lessons learned from this work are also described, as well as potential avenues for further research and development.

  11. Data Fault Detection in Medical Sensor Networks

    PubMed Central

    Yang, Yang; Liu, Qian; Gao, Zhipeng; Qiu, Xuesong; Meng, Luoming

    2015-01-01

    Medical body sensors can be implanted or attached to the human body to monitor the physiological parameters of patients all the time. Inaccurate data due to sensor faults or incorrect placement on the body will seriously influence clinicians’ diagnosis, therefore detecting sensor data faults has been widely researched in recent years. Most of the typical approaches to sensor fault detection in the medical area ignore the fact that the physiological indexes of patients aren’t changing synchronously at the same time, and fault values mixed with abnormal physiological data due to illness make it difficult to determine true faults. Based on these facts, we propose a Data Fault Detection mechanism in Medical sensor networks (DFD-M). Its mechanism includes: (1) use of a dynamic-local outlier factor (D-LOF) algorithm to identify outlying sensed data vectors; (2) use of a linear regression model based on trapezoidal fuzzy numbers to predict which readings in the outlying data vector are suspected to be faulty; (3) the proposal of a novel judgment criterion of fault state according to the prediction values. The simulation results demonstrate the efficiency and superiority of DFD-M. PMID:25774708

  12. Data fault detection in medical sensor networks.

    PubMed

    Yang, Yang; Liu, Qian; Gao, Zhipeng; Qiu, Xuesong; Meng, Luoming

    2015-01-01

    Medical body sensors can be implanted or attached to the human body to monitor the physiological parameters of patients all the time. Inaccurate data due to sensor faults or incorrect placement on the body will seriously influence clinicians' diagnosis, therefore detecting sensor data faults has been widely researched in recent years. Most of the typical approaches to sensor fault detection in the medical area ignore the fact that the physiological indexes of patients aren't changing synchronously at the same time, and fault values mixed with abnormal physiological data due to illness make it difficult to determine true faults. Based on these facts, we propose a Data Fault Detection mechanism in Medical sensor networks (DFD-M). Its mechanism includes: (1) use of a dynamic-local outlier factor (D-LOF) algorithm to identify outlying sensed data vectors; (2) use of a linear regression model based on trapezoidal fuzzy numbers to predict which readings in the outlying data vector are suspected to be faulty; (3) the proposal of a novel judgment criterion of fault state according to the prediction values. The simulation results demonstrate the efficiency and superiority of DFD-M. PMID:25774708

  13. On-line diagnosis of unrestricted faults

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.; Sundstrom, R. J.

    1974-01-01

    A formal model for the study of on-line diagnosis is introduced and used to investigate the diagnosis of unrestricted faults. A fault of a system S is considered to be a transformation of S into another system S' at some time tau. The resulting faulty system is taken to be the system which looks like S up to time tau, and like S' thereafter. Notions of fault tolerance error are defined in terms of the resulting system being able to mimic some desired behavior as specified by a system similar to S. A notion of on-line diagnosis is formulated which involves an external detector and a maximum time delay within which every error caused by a fault in a prescribed set must be detected. It is shown that if a system is on-line diagnosable for the unrestricted set of faults then the detector is at least as complex, in terms of state set size, as the specification. The use of inverse systems for the diagnosis of unrestricted faults is considered. A partial characterization of those inverses which can be used for unrestricted fault diagnosis is obtained.

  14. Poro-Elasto-Plastic Off-Fault Response and Dynamics of Earthquake Faulting

    NASA Astrophysics Data System (ADS)

    Hirakawa, Evan Tyler

    Previous models of earthquake rupture dynamics have neglected interesting deformational properties of fault zone materials. While most current studies involving off-fault inelastic deformation employ simple brittle failure yield criteria such as the Drucker-Prager yield criterion, the material surrounding the fault plane itself, known as fault gouge, has the tendency to deform in a ductile manner accompanied by compaction. We incorporate this behavior into a new constitutive model of undrained fault gouge in a dynamic rupture model. Dynamic compaction of undrained fault gouge occurs ahead of the rupture front. This corresponds to an increase in pore pressure which preweakens the fault, reducing the static friction. Subsequent dilatancy and softening of the gouge causes a reduction in pore pressure, resulting in fault restrengthening and brief slip pulses. This leads to localization of inelastic failure to a narrow shear zone. We extend the undrained gouge model to a study of self-similar rough faults. Extreme compaction and dilatancy occur at restraining and releasing bends, respectively. The consequent elevated pore pressure at restraining bends weakens the fault and allows the rupture to easily pass, while the decrease in pore pressure at releasing bends dynamically strengthens the fault and slows rupture. In comparison to other recent models, we show that the effects of fault roughness on propagation distance, slip distribution, and rupture velocity are diminished or reversed. Next, we represent large subduction zone megathrust earthquakes with a dynamic rupture model of a shallow dipping fault underlying an accretionary wedge. In previous models by our group [Ma, 2012; Ma and Hirakawa, 2013], inelastic deformation of wedge material was shown to enhance vertical uplift and potential tsunamigenesis. Here, we include a shallow region of velocity strengthening friction with a rate-and-state framework. We find that coseismic increase of the basal friction drives

  15. Experimental study on propagation of fault slip along a simulated rock fault

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.

    2015-12-01

    Around pre-existing geological faults in the crust, we have often observed off-fault damage zone where there are many fractures with various scales, from ~ mm to ~ m and their density typically increases with proximity to the fault. One of the fracture formation processes is considered to be dynamic shear rupture propagation on the faults, which leads to the occurrence of earthquakes. Here, I have conducted experiments on propagation of fault slip along a pre-cut rock surface to investigate the damaging behavior of rocks with slip propagation. For the experiments, I used a pair of metagabbro blocks from Tamil Nadu, India, of which the contacting surface simulates a fault of 35 cm in length and 1cm width. The experiments were done with the similar uniaxial loading configuration to Rosakis et al. (2007). Axial load σ is applied to the fault plane with an angle 60° to the loading direction. When σ is 5kN, normal and shear stresses on the fault are 1.25MPa and 0.72MPa, respectively. Timing and direction of slip propagation on the fault during the experiments were monitored with several strain gauges arrayed at an interval along the fault. The gauge data were digitally recorded with a 1MHz sampling rate and 16bit resolution. When σ is 4.8kN is applied, we observed some fault slip events where a slip nucleates spontaneously in a subsection of the fault and propagates to the whole fault. However, the propagation speed is about 1.2km/s, much lower than the S-wave velocity of the rock. This indicates that the slip events were not earthquake-like dynamic rupture ones. More efforts are needed to reproduce earthquake-like slip events in the experiments. This work is supported by the JSPS KAKENHI (26870912).

  16. Dissecting Oceanic Detachment Faults: Fault Zone Geometry, Deformation Mechanisms, and Nature of Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Bonnemains, D.; Escartin, J.; Verlaguet, A.; Andreani, M.; Mevel, C.

    2015-12-01

    To understand the extreme strain localization at long-lived oceanic detachment faults rooting deeply below the axis, we present results of geological investigations at the 13°19'N detachment along the Mid-Atlantic Ridge, conducted during the ODEMAR cruise (Nov-Dec13, NO Pourquoi Pas?) with ROV Victor6000 (IFREMER). During this cruise we investigated and sampled the corrugated fault to understand its geometry, nature of deformation, and links to fluid flow. We identified and explored 7 fault outcrops on the flanks of microbathymetric striations subparallel to extension. These outcrops expose extensive fault planes, with the most prominent ones extending 40-90m laterally, and up to 10 m vertically. These fault surfaces systematically show subhorizontal striations subparallel to extension, and define slabs of fault-rock that are flat and also striated at sample scale. Visual observations show a complex detachment fault zone, with anastomosing fault planes at outcrop scale (1-10 m), with a highly heterogeneous distribution of deformation. We observe heterogeneity in fault-rock nature at outcrop scale. In situ samples from striated faults are primarily basalt breccias with prior green-schist facies alteration, and a few ultramafic fault-rocks that show a complex deformation history, with early schistose textures, brittlely reworked as clasts within the fault. The basalt breccias show variable silicification and associated sulfides, recording important fluid-rock interactions during exhumation. To understand the link between fluid and deformation during exhumation, we will present microstructural observation of deformation textures, composition, and distribution and origin of quartz and sulfides, as well as constraints on the temperature of silicifying fluids from fluid inclusions in quartz. These results allow us to characterize in detail the detachment fault zone geometry, and investigate the timing of silicification relative to deformation.

  17. Geologic character of fault geometry and deformation of the Wildcat Fault, Berkeley, California

    NASA Astrophysics Data System (ADS)

    Onishi, C. T.; Karasaki, K.; Goto, J.; Moriya, T.; Ueta, K.; Tanaka, S.; Hamada, T.; Ito, H.; Tsukuda, K.

    2010-12-01

    In our analog study of fault hydrology, we use an interdisciplinary approach to investigate fault geology and its effects on regional hydrology. The study area is along the Wildcat Fault, a right-lateral strike-slip fault that is a splay of the Hayward Fault, which extends along the west side of the Berkeley Hills, California. Geologic mapping suggests that the Wildcat Fault here mainly separates the Miocene Claremont Formation composed of shale and cherts, and the Miocene-Pliocene Orinda Formation/San Pablo Group, composed of conglomerate, sandstone, and siltstone. We excavated several trenches to expose bedrock; we acquired seismic reflection and electrical resistivity data and three vertical boreholes and one inclined borehole cored across the Wildcat Fault. Trenching and coring indicate that the geology is more complex than the surface mapping indicates, especially along the contact between the Claremont Formation and Orinda Formation/San Pablo Group. In trench exposures, we mapped several zones of fault gouge that marked the contact between chert and siltstone, sandstone and siltstone, and chert and chert. At depths <150 m subsurface, we saw more than thirty zones of breccia and gouge, and two zones of cataclasite. Cores from vertical boring show a lithological dominance of Claremont Formation. We suggest that the Wildcat Fault in this area contains multiple shear zones in a zone of deformation at least 150 m wide. We have built a 3D geologic model to show the geometry of fault strands associated with the Wildcat Fault. The influence of fault gouge, breccia and cataclasite on the hydrology of the Wildcat Fault zone, slug, injection, and pumping tests in boreholes are reported by Karasaki et al. in a companion paper.

  18. Software-implemented fault insertion: An FTMP example

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1987-01-01

    This report presents a model for fault insertion through software; describes its implementation on a fault-tolerant computer, FTMP; presents a summary of fault detection, identification, and reconfiguration data collected with software-implemented fault insertion; and compares the results to hardware fault insertion data. Experimental results show detection time to be a function of time of insertion and system workload. For the fault detection time, there is no correlation between software-inserted faults and hardware-inserted faults; this is because hardware-inserted faults must manifest as errors before detection, whereas software-inserted faults immediately exercise the error detection mechanisms. In summary, the software-implemented fault insertion is able to be used as an evaluation technique for the fault-handling capabilities of a system in fault detection, identification and recovery. Although the software-inserted faults do not map directly to hardware-inserted faults, experiments show software-implemented fault insertion is capable of emulating hardware fault insertion, with greater ease and automation.

  19. Nonlinear Network Dynamics on Earthquake Fault Systems

    NASA Astrophysics Data System (ADS)

    Rundle, P. B.; Rundle, J. B.; Tiampo, K. F.

    2001-12-01

    Understanding the physics of earthquakes is essential if large events are ever to be forecast. Real faults occur in topologically complex networks that exhibit cooperative, emergent space-time behavior that includes precursory quiescence or activation, and clustering of events. The purpose of this work is to investigate the sensitivity of emergent behavior of fault networks to changes in the physics on the scale of single faults or smaller. In order to investigate the effect of changes at small scales on the behavior of the network, we need to construct models of earthquake fault systems that contain the essential physics. A network topology is therefore defined in an elastic medium, the stress Green's functions (i.e. the stress transfer coefficients) are computed, frictional properties are defined and the system is driven via the slip deficit as defined below. The long-range elastic interactions produce mean-field dynamics in the simulations. We focus in this work on the major strike-slip faults in Southern California that produce the most frequent and largest magnitude events. To determine the topology and properties of the network, we used the tabulation of fault properties published in the literature. We have found that the statistical distribution of large earthquakes on a model of a topologically complex, strongly correlated real fault network is highly sensitive to the precise nature of the stress dissipation properties of the friction laws associated with individual faults. These emergent, self-organizing space-time modes of behavior are properties of the network as a whole, rather than of the individual fault segments of which the network is comprised (ref: PBR et al., Physical Review Letters, in press, 2001).

  20. Fault interactions and growth in an outcrop-scale system

    NASA Astrophysics Data System (ADS)

    Nicol, Andy; Walsh, John; Childs, Conrad; Manzocchi, Tom; Schoepfer, Martin

    2015-04-01

    Fault geometries and strike-slip displacements in a moderately dipping (~50°) multi-layer sequence have been analysed to constrain the evolution of an outcrop-scale fault system in coastal New Zealand. Displacements and geometries of small faults (lengths 1-200 m and maximum displacements 0.007-3 m) were sampled from a horizontal shore platform up to 120 m wide and 1.5 km long with near 100% exposure. Displacement profiles have variable shapes that mainly reflect fault interactions, with individual faults being both hard- and soft-linked. Variable displacement profiles produce an average profile for all faults that is near-triangular, with displacement gradients (and displacement-length ratios) increasing by an order of magnitude from smallest to largest faults. Within fault zones these gradients are accompanied by secondary faults, which are typically of greatest density close to fault intersections, in relay zones and at fault tips. Horsetail and synthetic splays confined to the regions around fault tips are incompatible with gradual fault propagation for the duration of growth. Instead, fault displacements and tip geometries are consistent with growth initially dominated by fault propagation followed by displacement accumulation and approximately stationary fault tips. Retardation of propagation is thought to arise due to fault interactions and associated reduction of tip stresses, with the early change from propagation- to displacement-dominated growth stages produced by fault-system saturation (i.e., all faults are interacting). Initial rapid fault propagation succeeded by displacement-dominated growth accounts for different fault types over a range of scales suggesting that this fault growth model has wide application.

  1. Efficient fault diagnosis of helicopter gearboxes

    NASA Technical Reports Server (NTRS)

    Chin, H.; Danai, K.; Lewicki, D. G.

    1993-01-01

    Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a nonparametric pattern classifier that uses a multi-valued influence matrix (MVIM) as its diagnostic model and benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so long as they are included in training.

  2. Geofluid Dynamics of Faulted Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Garven, G.; Jung, B.; Boles, J. R.

    2014-12-01

    Faults are known to affect basin-scale groundwater flow, and exert a profound control on petroleum migration/accumulation, the PVT-history of hydrothermal fluids, and the natural (submarine) seepage from offshore reservoirs. For example, in the Santa Barbara basin, measured gas flow data from a natural submarine seep area in the Santa Barbara Channel helps constrain fault permeability k ~ 30 millidarcys for the large-scale upward migration of methane-bearing formation fluids along one of the major fault zones. At another offshore site near Platform Holly, pressure-transducer time-series data from a 1.5 km deep exploration well in the South Ellwood Field demonstrate a strong ocean tidal component, due to vertical fault connectivity to the seafloor. Analytical solutions to the poroelastic flow equation can be used to extract both fault permeability and compressibility parameters, based on tidal-signal amplitude attenuation and phase shift at depth. These data have proven useful in constraining coupled hydrogeologic 2-D models for reactive flow and geomechanical deformation. In a similar vein, our studies of faults in the Los Angeles basin, suggest an important role for the natural retention of fluids along the Newport-Inglewood fault zone. Based on the estimates of fault permeability derived above, we have also constructed new two-dimensional numerical simulations to characterize large-scale multiphase flow in complex heterogeneous and anisotropic geologic profiles, such as the Los Angeles basin. The numerical model was developed in our lab at Tufts from scratch, and based on an IMPES-type algorithm for a finite element/volume mesh. This numerical approach allowed us model large differentials in fluid saturation and relative permeability, caused by complex geological heterogeneities associated with sedimentation and faulting. Our two-phase flow models also replicated the formation-scale patterns of petroleum accumulation associated with the basin margin, where deep

  3. Negative Selection Algorithm for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.

  4. Cooperative application/OS DRAM fault recovery.

    SciTech Connect

    Ferreira, Kurt Brian; Bridges, Patrick G.; Heroux, Michael Allen; Hoemmen, Mark; Brightwell, Ronald Brian

    2012-05-01

    Exascale systems will present considerable fault-tolerance challenges to applications and system software. These systems are expected to suffer several hard and soft errors per day. Unfortunately, many fault-tolerance methods in use, such as rollback recovery, are unsuitable for many expected errors, for example DRAM failures. As a result, applications will need to address these resilience challenges to more effectively utilize future systems. In this paper, we describe work on a cross-layer application/OS framework to handle uncorrected memory errors. We illustrate the use of this framework through its integration with a new fault-tolerant iterative solver within the Trilinos library, and present initial convergence results.

  5. Mechanical Models of Fault-Related Folding

    SciTech Connect

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  6. Tunable architecture for aircraft fault detection

    NASA Technical Reports Server (NTRS)

    Ganguli, Subhabrata (Inventor); Papageorgiou, George (Inventor); Glavaski-Radovanovic, Sonja (Inventor)

    2012-01-01

    A method for detecting faults in an aircraft is disclosed. The method involves predicting at least one state of the aircraft and tuning at least one threshold value to tightly upper bound the size of a mismatch between the at least one predicted state and a corresponding actual state of the non-faulted aircraft. If the mismatch between the at least one predicted state and the corresponding actual state is greater than or equal to the at least one threshold value, the method indicates that at least one fault has been detected.

  7. An aircraft sensor fault tolerant system

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Lancraft, R. E.

    1982-01-01

    The design of a sensor fault tolerant system which uses analytical redundancy for the Terminal Configured Vehicle (TCV) research aircraft in a Microwave Landing System (MLS) environment was studied. The fault tolerant system provides reliable estimates for aircraft position, velocity, and attitude in the presence of possible failures in navigation aid instruments and onboard sensors. The estimates, provided by the fault tolerant system, are used by the automated guidance and control system to land the aircraft along a prescribed path. Sensor failures are identified by utilizing the analytic relationship between the various sensor outputs arising from the aircraft equations of motion.

  8. Concatenated codes for fault tolerant quantum computing

    SciTech Connect

    Knill, E.; Laflamme, R.; Zurek, W.

    1995-05-01

    The application of concatenated codes to fault tolerant quantum computing is discussed. We have previously shown that for quantum memories and quantum communication, a state can be transmitted with error {epsilon} provided each gate has error at most c{epsilon}. We show how this can be used with Shor`s fault tolerant operations to reduce the accuracy requirements when maintaining states not currently participating in the computation. Viewing Shor`s fault tolerant operations as a method for reducing the error of operations, we give a concatenated implementation which promises to propagate the reduction hierarchically. This has the potential of reducing the accuracy requirements in long computations.

  9. Testing Distributed ABS System with Fault Injection

    NASA Astrophysics Data System (ADS)

    Trawczyński, Dawid; Sosnowski, Janusz; Gawkowski, Piotr

    The paper deals with the problem of adapting software implemented fault injection technique (SWIFI) to evaluate dependability of reactive microcontroller systems. We present an original methodology of disturbing controller operation and analyzing fault effects taking into account reactions of the controlled object and the impact of the system environment. Faults can be injected randomly (in space and time) or targeted at the most sensitive elements of the controller to check it at high stresses. This approach allows identifying rarely encountered problems, usually missed in classical approaches. The developed methodology has been used successfully to verify dependability of ABS system. Experimental results are commented in the paper.

  10. On-line diagnosis of unrestricted faults

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.; Sundstrom, R. J.

    1975-01-01

    Attention is given to the formal development of the notion of a discrete-time system and the associated concepts of fault, result of a fault, and error. The considered concept of on-line diagnosis is formalized and a diagnosis using inverse machines is discussed. The case of an inverse which is lossless is investigated. It is found that in such a case the class of unrestricted faults can be diagnosed with a delay equal to the delay of losslessness of the inverse system.

  11. Cooperative human-machine fault diagnosis

    NASA Technical Reports Server (NTRS)

    Remington, Roger; Palmer, Everett

    1987-01-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  12. Paleoseismology and Fault Interactions of the Pajarito Fault System, Rio Grande Rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Gardner, J. N.; Lewis, C. J.; Lavine, A.; Reneau, S. L.; Schultz, E. S.

    2006-12-01

    The Pajarito fault system is the local active boundary fault of the Rio Grande rift in the vicinity of Los Alamos, New Mexico. Detailed geologic and geomorphic mapping, and displacement-length profiles, reveal a complex pattern of structural deformation that suggests interaction and connective growth among the principal faults in the system (Pajarito, Rendija Canyon, Guaje Mountain, and Santa Clara faults, totaling ~55 km in length). At the surface, the Pajarito fault is not a single shear surface but a complex zone of deformation with considerable lateral variation in structural style from south to north. In the area of detailed mapping, the Pajarito fault is a broad zone of distributed deformation: at the southwest corner of the area, structure is dominated by a large monocline, but small faults and monoclines span a breadth of about 2 km with about 125 m of displacement in the last 1.2 million years; at the west central part of the area, the Pajarito fault is expressed as mainly a large normal fault with smaller faults spread across about 1 km with about 80 m of displacement in the last 1.2 million years; and, in the northwestern part of the area, structure is again dominated by a large monocline with normal faulting in a zone about 1.5 km wide with about 65 m of displacement in the last 1.2 million years. These along-strike variations in the deformation of the Pajarito fault suggest that in most places the tip of the master fault does not break the surface; instead, most of what can be observed is subsidiary structure. The implication of the complex structure and styles of deformation in the fault is that it severely complicates paleoseismic exploration for hazard analyses because different subsidiary structures rupture in different seismic events; no individual structure can be identified with even a near- complete paleoseismic record. Additionally, surface rupture hazards must be associated with broad zones instead of individual faults. Seven paleoseismic

  13. Fault roughness evolution with slip (Gole Larghe Fault Zone, Italian Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Spagnuolo, E.; Di Toro, G.; Nielsen, S. B.; Griffith, W. A.

    2011-12-01

    Fault surface roughness is a principal factor influencing fault and earthquake mechanics. However, little is known on roughness of fault surfaces at seismogenic depths, and particularly on how it evolves with accumulating slip. We have studied seismogenic fault surfaces of the Gole Larghe Fault Zone, which exploit precursor cooling joints of the Adamello tonalitic pluton (Italian Alps). These faults developed at 9-11 km and 250-300°C. Seismic slip along these surfaces, which individually accommodated from 1 to 20 m of net slip, resulted in the production of cm-thick cataclasites and pseudotachylytes (solidified melts produced during seismic slip). The roughness of fault surfaces was determined with a multi-resolution aerial and terrestrial LIDAR and photogrammetric dataset (Bistacchi et al., 2011, Pageoph, doi: 10.1007/s00024-011-0301-7). Fault surface roughness is self-affine, with Hurst exponent H < 1, indicating that faults are comparatively smoother at larger wavelengths. Fault surface roughness is inferred to have been inherited from the precursor cooling joints, which show H ≈ 0.8. Slip on faults progressively modified the roughness distribution, lowering the Hurst exponent in the along-slip direction up to H ≈ 0.6. This behaviour has been observed for wavelengths up to the scale of the accumulated slip along each individual fault surface, whilst at larger wavelengths the original roughness seems not to be affected by slip. Processes that contribute to modify fault roughness with slip include brittle failure of the interacting asperities (production of cataclasites) and frictional melting (production of pseudotachylytes). To quantify the "wear" due to these processes, we measured, together with the roughness of fault traces and their net slip, the thickness and distribution of cataclasites and pseudotachylytes. As proposed also in the tribological literature, we observe that wearing is scale dependent, as smaller wavelength asperities have a shorter

  14. The stratified microbial community at Laguna Figueroa, Baja California, Mexico: A possible model for prephanerozoic laminated microbial communities preserved in cherts

    NASA Astrophysics Data System (ADS)

    Stolz, John F.; Margulis, Lynn

    1984-12-01

    The microbial mat community of the evaporite flat at North Pond, Laguna Figueroa (Baja California, Mexico) was actively involved in the production of laminated sediments prior to 1978. Heavy rains in 1979 and 1980 flooded the mat with 1 and 3 meters of meteoric water respectively. The flooding deposited up to 10 cm of silicoclastic sediment over theMicrocoleus-dominated mat and resulted in the cessation of laminated sediment deposition. In 1982, the surface had been recolonized by species of cyanobacteria (Spirulina, Oscillatoria) and purple photosynthetic bacteria (Chromatium, Thiocapsa). The silicoclastic sediments and residual evaporites, which overlaid the laminated sediment, had been reworked into an anaerobic, sulfide-rich mud and contained well preserved sheaths of filamentous and coccoid bacteria.

  15. Population fluctuations of Pyrodinium bahamense and Ceratium furca (Dinophyceae) in Laguna Grande, Puerto Rico, and environmental variables associated during a three-year period.

    PubMed

    Sastre, Miguel P; Sánchez, Efrain; Flores, Marineé; Astacio, Samuel; Rodríguez, Julianna; Santiago, Melissa; Olivieri, Karina; Francis, Veronica; Núñez, Juan

    2013-12-01

    Bioluminescent bays and lagoons are unique natural environments and popular tourist attractions. However, the bioluminescence in many of these water bodies has declined, principally due to anthropogenic activities. In the Caribbean, the bioluminescence in these bays and lagoons is mostly produced by the dinoflagellate Pyrodinium bahamense var. bahamense. Laguna Grande is one of the three year-round bioluminescent water bodies in Puerto Rico that are known to remain but P. bahamense var. bahamense density fluctuations have not been studied. In this study we describe water quality parameters and density fluctuations of the most common dinoflagellates in Laguna Grande, P. bahamense var. bahamense and Ceratium furca, over a three-year period. For this, three sampling stations were established in Laguna Grande from which water samples were collected in triplicate and analyzed for temperature, phosphates, nitrates, salinity, water transparency, fluorescence, and dinoflagellate densities, at the water surface and at 2m depth, from May 2003 to May 2006. The results showed a density fluctuation pattern for P. bahamense var. bahamense, where higher densities were observed mainly from April to September, and lower densities from October to February. Density fluctuations of C. furca were more erratic and a repetitive pattern was not observed. Densities of P. bahamense var. bahamense ranged from 0.48 to 90978 cells/L and densities of C. furca ranged from 0 to 11,200 cells/L. The mean population density throughout the sampling period was significantly higher in P. bahamense var. bahamense (mean = 18,958.5 cells/L) than in C. furca (mean = 2601.9 cells/L). Population densities of P. bahamense var. bahamense were negatively correlated with C. furca densities during the first year of sampling; however, they were positively correlated during the third year. Non-significant differences between surface and 2m depth samples were observed for temperature, phosphates, nitrates, salinity

  16. Characterization of leaky faults: Study of water flow in aquifer-fault-aquifer systems

    NASA Astrophysics Data System (ADS)

    Shan, Chao; Javandel, Iraj; Witherspoon, Paul A.

    Leaky faults provide important flow paths for fluids to move underground. It is often necessary to characterize such faults in engineering projects such as deep well injection of waste liquids, underground natural gas storage, and radioactive waste isolation. To provide this characterization, analytical solutions are presented for groundwater flow through saturated aquifer-fault-aquifer systems assuming that both the aquifers and the fault are homogeneous and that the fault has an insignificant effect on aquifer hydraulic properties. Three different conditions are considered: (1) drawdown in the unpumped aquifer is negligibly small; (2) drawdown in the unpumped aquifer is significant, and the two aquifers have the same diffusivity; and (3) drawdown in the unpumped aquifer is significant, and the two aquifers have different diffusivities. Methods are presented to determine the fault transmissivity from pumping test data.

  17. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit. PMID:24184791

  18. Probabilistic fault displacement hazards for the southern san andreas fault using scenarios and empirical slips

    USGS Publications Warehouse

    Chen, R.; Petersen, M.D.

    2011-01-01

    We apply a probabilistic method to develop fault displacement hazard maps and profiles for the southern San Andreas Fault. Two slip models are applied: (1) scenario slip, defined by the ShakeOut rupture model, and (2) empirical slip, calculated using regression equations relating global slip to earthquake magnitude and distance along the fault. The hazard is assessed using a range of magnitudes defined by the Uniform California Earthquake Rupture Forecast and the ShakeOut. For hazard mapping we develop a methodology to partition displacement among multiple fault branches basedon geological observations. Estimated displacement hazard extends a few kilometers wide in areas of multiple mapped fault branches and poor mapping accuracy. Scenario and empirical displacement hazard differs by a factor of two or three, particularly along the southernmost section of the San Andreas Fault. We recommend the empirical slip model with site-specific geological data to constrain uncertainties for engineering applications. ?? 2011, Earthquake Engineering Research Institute.

  19. H∞ fault-tolerant control for time-varied actuator fault of nonlinear system

    NASA Astrophysics Data System (ADS)

    Liu, Chunsheng; Jiang, Bin

    2014-12-01

    This paper studies H∞ fault-tolerant control for a class of uncertain nonlinear systems subject to time-varied actuator faults. A radial basis function neural network is utilised to approximate the unknown nonlinear functions; an updating rule is designed to estimate on-line time-varied fault of actuator; and the controller with the states feedback and faults estimation is applied to compensate for the effects of fault and minimise H∞ performance criteria in order to get a desired H∞ disturbance rejection constraint. Sufficient conditions are derived, which guarantees that the closed-loop system is robustly stable and satisfies the H∞ performance in both normal and fault cases. In order to reduce computing cost, a simplified algorithm of matrix Riccati inequality is given. A spacecraft model is presented to demonstrate the effectiveness of the proposed methods.

  20. Rock-magnetic signature of precipitation and extreme runoff events in south-eastern Patagonia since 51,200 cal BP from the sediments of Laguna Potrok Aike

    NASA Astrophysics Data System (ADS)

    Lisé-Pronovost, A.; St-Onge, G.; Gogorza, C.; Jouve, G.; Francus, P.; Zolitschka, B.

    2014-08-01

    A 106-m long sediment sequence from the maar lake Laguna Potrok Aike in southern Patagonia was recovered in the framework of the International Continental Scientific Drilling Program (ICDP) Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO). About half of the sedimentary sequence is composed of mass movement deposits (MMDs) and the event-corrected record reaches back to 51,200 cal BP. Here we present a high-resolution rock-magnetic study revealing two sedimentary facies associated with MMDs and characterized by two different types of spurious gyroremanent magnetization (GRM) acquired during static alternating field demagnetization. The first rock-magnetic signature is detected in MMDs composed of reworked sand and tephra material. The signature consists of GRM acquired during demagnetization of the natural remanent magnetization (NRM) and other rock-magnetic properties typical of iron sulfides such as greigite. We interpret these intervals as authigenic formation of iron sulfides in suboxic conditions within the MMD. The second rock-magnetic signature consists of a series of 10 short intervals located on the top of MMDs characterized by GRM acquisition during demagnetization of the isothermal remanent magnetization (IRM). Based on geological, limnological, stratigraphic and climatic evidence these layers are interpreted as reflecting pedogenic hematite and/or goethite brought to the lake by runoff events related to precipitation and permafrost melt. The pedogenic iron minerals mobilized from the catchment most likely settled out of suspension on top of MMDs after a rapid remobilization event. The series of runoff events corresponds to periods of increased lacustrine productivity in Laguna Potrok Aike and are coeval within the limit of the chronology to warm periods of the Last Glacial as recorded in Antarctica, the deglaciation in the mid-latitudes of the Southern Hemisphere and enhanced precipitation during the Early Holocene in southeastern