Science.gov

Sample records for lake county oregon

  1. Lakeview uranium area, Lake County, Oregon - constraints on genetic modelling from a district-scale perspective

    SciTech Connect

    Weissenburger, K.W.

    1984-01-01

    Extent-of-outcrop geologic mapping (1:12,000) on the Cox Flat 7.5-minute quadrangle establishes the stratigraphy and structure near the White King uranium mine, about 25 km northwest of Lakeview, Lake County, Oregon. Bedrock includes an Oligocene andesitic volcanic/sedimentary section, four late Oligocene rhyodacitic ignimbrite sequences, a late Oligocene/Miocene tuffaceous section, locally thick early to late Miocene basaltic flows, and an interbedded sequence of late Miocene (about 7-8 Ma old) felsic tuffs and thin basalt flows. Relatively intense down-to-the northeast normal faulting and southwestward stratal tilting resulted from a pre-Basin-and-Range extensional tectonic regime with an ENE least-principal stress orientation. This faulting and tilting began after the late Oligocene ignimbrite volcanism and before the spread of Coleman Rim-equivalent basalt flows. The interpreted geology constrains genetic models, resource estimates, and exploration strategies for uranium occurrences in the Lakeview area. Fault- and fracture-controlled hydrothermal uranium deposits are restricted to favorable stratigraphic horizons of the Miocene section with the important exception of porous and permeable upper portions of the late Oligocene section. Previous models have stressed the importance of intrusive rhyolite plug domes as sources of uranium and/or heat in ore genesis and targeted exploration efforts at dome contacts. Mass balance and other arguments show that an association with rhyolite domes is not a necessary criterion for ore formation or exploration.

  2. The Holocene History of the North American Flux lobe: New Constraints From Fish Lake, Harney County, Oregon

    NASA Astrophysics Data System (ADS)

    Stoner, J. S.; Abbott, M. B.; Ziegler, L. B.; Reilly, B. T.; Finkenbinder, M. S.; Hatfield, R. G.; Hillman, A. L.; Konyndyk, D.

    2015-12-01

    To constrain the Holocene history of the North American flux lobe we present new relative paleointensity (RPI) and paleomagnetic secular variation (PSV) data from Fish Lake, Harney County Oregon. Located high on Steens Mt, Fish Lake (42° 44' 15" N, 118° 38' 57" W, 2,246.7 m) is the largest of several lakes in the Fish Lake glacial valley. Cored along with Pate Lake in the summer of 2012, sediment from four offset holes were cored to a maximum depth of 9 m using a UWITEC coring system. Field based magnetic susceptibility insured that a completely duplicated sediment sequence was recovered. Computer tomographic scans confirmed the quality of the recovered sediment and allowed precise mapping of overlapping sequences. Additional physical properties data, along with Pb-210, radiocarbon dating and discrete tephra layers, including Mazama, tightly constrain this sequence from -0.06 to 14 ka. Progressive alternating field demagnetization of u-channel samples demonstrate that a consistently strong, stable, and low coercivity magnetization is preserved, with low MAD values both before and after deconvolution. Inclinations vary around expected values for the site latitude, with no evidence for inclination shallowing as suggested in previous studies. Declination was reconstructed by initially rotating the declination of each drive to a mean of zero, then further rotating to achieve maximum alignment of overlapping sections, followed by a final rotation of the entire sequence base upon a 400 yr historical model calibration. Remanence is normalized using ARM acquisition, ARM demagnetization, and IRM demagnetization and agreement between these suggests that RPI is preserved. RPI from Fish Lake provides a previously missing proxy for the North American flux lobe that invites comparison with other high quality, high resolution, and independently dated paleomagnetic and archeomagnetic records from the NE Pacific to Europe; allowing us to tease out modes of variability of a large

  3. Lake County renewable energy plan

    SciTech Connect

    Not Available

    1984-10-01

    This report documents the preparation of a renewable energy plan for Lake County, Oregon. It is the County's intention to adopt this plan as a supporting document to its Comprehensive Plan and implementing ordinances. The consideration of renewable energy in its land-use planning program is a statutory requirement for Lake County, and under the provisions of the Pacific Northwest Electric Power Planning and Conservation Act such renewable resource planning also fulfills regional energy objectives on a local level.

  4. Hydrology of Lake County, Florida

    USGS Publications Warehouse

    Knochenmus, Darwin D.; Hughes, G.H.

    1976-01-01

    Lake County includes a 1,150 square-mile area consisting of ridges, uplands, and valleys in central-peninsular Florida. About 32 percent of the county is covered by lakes, swamps, and marshes. Water requirements in 1970 averaged about 54 million gallons per day. About 85 percent of the water was obtained from wells; about 15 percent from lakes. The Floridan aquifer supplies almost all the ground water used in Lake County. Annual recharge to the Floridan aquifer averages about 7 inches over the county; runoff average 8.5 inches. The quality of ground and surface water in Lake County is in general good enough for most uses; however, the poor quality of Floridan-aquifer water in the St. John River Valley probably results from the upward movement of saline water along a fault zone. Surface water in Lake County is usually less mineralized than ground water but is more turbid and colored. (Woodard-USGS)

  5. Hydrogeologic setting and preliminary estimates of hydrologic components for Bull Run Lake and the Bull Run Lake drainage basin, Multnomah and Clackamas counties, Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.; Brownell, Dorie L.

    1996-01-01

    Suggestions for further study include (1) evaluation of the surface-runoff component of inflow to the lake; (2) use of a cross-sectional ground-water flow model to estimate ground-water inflow, outflow, and storage; (3) additional data collection to reduce the uncertainties of the hydrologic components that have large relative uncertainties; and (4) determination of long-term trends for a wide range of climatic and hydrologic conditions.

  6. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood River County, Jefferson County, Klamath County, Lake County, Sherman County, Wasco County....

  7. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood River County, Jefferson County, Klamath County, Lake County, Sherman County, Wasco County....

  8. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood River County, Jefferson County, Klamath County, Lake County, Sherman County, Wasco County....

  9. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood River County, Jefferson County, Klamath County, Lake County, Sherman County, Wasco County....

  10. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood River County, Jefferson County, Klamath County, Lake County, Sherman County, Wasco County....

  11. 77 FR 31379 - Hart Mountain National Antelope Refuge, Lake County, OR; Draft Comprehensive Conservation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Fish and Wildlife Service Hart Mountain National Antelope Refuge, Lake County, OR; Draft Comprehensive... of sagebrush steppe uplands in Lake County, Oregon; of this, the Service owns approximately...

  12. Reconnaissance geologic map and mineral resource potential of the Gearhart Mountain Wilderness and Roadless Area (6225), Lake and Klamath counties, Oregon

    USGS Publications Warehouse

    Walker, George W.; Ridenour, James

    1982-01-01

    The Gearhart Mountain Wilderness, Lake and Klamath Counties, Oreg., is devoid of mines and mineral prospects and there are no known mining claims within the area. Furthermore, the results of this mineral appraisal indicate that there is little likelihood that commercial deposits of metallic minerals will be found in the area. Commercial uranium deposits, like those at the White King and Lucky Lass mines about 16 mi (~25 km) to the southeast of the wilderness, and deposits of mercury, like those south-southeast of the wilderness, are not likely to be found within the wilderness, even though all of these areas are characterized by middle and late Cenozoic intrusive and extrusive volcanic rocks. Rock of low commercial value for construction purposes is present, but better and more accessible deposits are present in adjacent regions. There is no evidence to indicate that mineral fuels are present in the area. Higher than normal heat floe characterizes the region containing Gerheart Mountain, indicating that it may have some, as yet undefined, potential for the development of geothermal energy. Data are not available to determine whether this higher than normal heat flow is meaningful in terms of a potential energy source or as a guide to possible future exploration; lack of thermal springs or other evidence of localized geothermal anomalies within the Gerhart Mountain suggest, however, that the potential for the development of geothermal energy is probably low.

  13. In Pursuit of Community Justice: Deschutes County, Oregon.

    ERIC Educational Resources Information Center

    Maloney, Dennis; Holcomb, Deevy

    2001-01-01

    One Oregon community applies a set of community justice principles and philosophies that have produced tangible and successful programs to build community, reduce risk, and repair harm. Describes some of the county's community justice history and programs, including revamped victim assistance programs, victim-offender mediation, and a community…

  14. Small-Scale Farming: A Portrait from Polk County, Oregon.

    ERIC Educational Resources Information Center

    Young, John A.; Caday, Peter

    A study of small-scale farmers in Polk County, Oregon, examined characteristics of, and variations among, small-scale farmers and developed some guidelines for assistance programs targeted for such a group. During the months of May, June, and July of 1978 an average of 4 days a week was spent locating and interviewing 44 small farm operators in…

  15. HOMESTEAD, LAKE FORK, AND LICK CREEK ROADLESS AREAS, OREGON.

    USGS Publications Warehouse

    Evans, James G.; Conyac, Martin D.

    1984-01-01

    A mineral survey concluded that the Homestead, Lake Fork and Lick Creek Roadless Area, Oregon offer little promise for the occurrence of mineral or energy resources in the bedrock. Probable mineral-resource potential is assigned to the west and north parts of the Lake Fork Roadless Area, where gold resources may occur in glacial deposits and alluvium transported into this area from sources outside the roadless area to the west.

  16. 78 FR 60686 - Establishment of the Big Valley District-Lake County and Kelsey Bench-Lake County Viticultural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... on April 5, 2013 (78 FR 20544), proposing to establish the Big Valley District-Lake County and Kelsey... District-Lake County and Kelsey Bench-Lake County Viticultural Areas and Modification of the Red Hills Lake... approximately 11,000-acre ``Big Valley District-Lake County'' viticultural area and the approximately...

  17. Detecting long-term hydrological patterns at Crater Lake, Oregon

    USGS Publications Warehouse

    Peterson, D.L.; Silsbee, D.G.; Redmond, Kelly T.

    1999-01-01

    Tree-ring chronologies for mountain hemlock (Tsuga mertensiana) were used to reconstruct the water level of Crater Lake, a high-elevation lake in the southern Cascade Range of Oregon. Reconstructions indicate that lake level since the late 1980s has been lower than at any point in the last 300 years except the early 1930s to mid 1940s. Lake level was consistently higher during the Little Ice Age than during the late 20th century; during the late 17th century, lake level was up to 9 m higher than recent (1980s and 1990s) low levels, which is consistent with paleoclimalic reconstructions of regional precipitation and atmospheric pressure. Furthermore, instrumental data available for the 20th century suggest that there are strong teleconnections among atmospheric circulation (e.g., Pacific Decadal Oscillation), tree growth, and hydrology in southern Oregon. Crater Lake is sensitive to interannual, interdecadal and intercentenary variation in precipitation and atmospheric circulation, and can be expected to track both short-term and longterm variation in regional climatic patterns that may occur in the future.

  18. Oregon Trail Mushrooms geothermal loan guaranty application, Malheur County, Oregon: Environmental assessment

    SciTech Connect

    Not Available

    1981-05-01

    The action assessed is the guaranty of a loan by the Geothermal Loan Guaranty Office of the US Department of Energy (DOE) to finance the construction and operation of a mushroom-growing facility that will use geothermal (hot) water for process and space heat. The project consists of two separate facilities: a growing facility located just outside of the eastern limit of the city of Vale, Oregon (Malheur County, Oregon) and a composting facility located about 6.4 km (4 miles) southwest of the city limits (also in Malheur County, Oregon). Five test wells have been drilled into the geothermal resource at the growing site. Either well No. 4 or well No. 5 will serve as a production well. All geothermal fluids will be reinjected into the geothermal aquifer, so either well No. 3 will be used for this purpose, wells Nos. 1 and 2 will be deepened, or a new well will be drilled on the site. A cold-water well will be drilled at the growing site, and another will be drilled at the composting site. The environmental effects of the proposed project are not expected to be significant.

  19. 75 FR 17950 - Notice of Intent To Prepare Amendments to the Southeastern Oregon Resource Management Plan (RMP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... Management Plan (RMP), Malheur County, OR, and the Lakeview RMP, Lake County, OR, and Associated..., Lake, Harney, and Grant Counties in Oregon and encompass approximately 4.6 million acres of public...

  20. Diatom data from Bradley Lake, Oregon: downcore analyses

    USGS Publications Warehouse

    Hemphill-Haley, Eileen; Lewis, Roger C.

    2003-01-01

    Displaced marine diatoms provide biostratigraphic evidence for tsunami inundation at Bradley Lake, a small freshwater lake on the south-central Oregon coast. During the past 7,200 years, fine-grained lacustrine deposits in the deep axis of the lake were disturbed 17 times by the erosion and emplacement of coarse-grained gyttja and, in some cases, sand. By identifying diatoms in closely spaced core samples, we determined that 13 of the 17 events (termed idisturbance eventsi) record prehistoric tsunamis in Bradley Lake. We consider the evidence strong for 11 events, based on numbers and diversity of marine taxa: De1, De2, De4, De5, De6, De7, De8, De11, De12, De13, and De17. The evidence is less compelling for an additional 2 events (De9 and De10), although tsunami inundation is likely. Finally, we identified 4 events (De3, De14, De15 and De16) in which there were no marine diatoms to support tsunami inundation, although stratigraphic data shows that the lake bottom was disturbed. Freshwater diatoms dominate throughout the Bradley Lake record, showing that the lake has remained a freshwater habitat throughout its existence. However, anomalous occurrences of three species of brackish diatoms (Thalassiosira bramaputrae, Cyclotella meneghiniana, and Mastogloia smithii) may be evidence for short-lived periods of slightly elevated salinities in the lake following De16, De13, De12, De11, De9, De8, and De5. With the exception of De12, increased abundances of one or more of the brackish species is coincident with decreased numbers of freshwater diatoms. A temporary rise in salinity, as evidenced by short-lived increases in abundances of brackish species and decreases in abundances of freshwater species, is consistent with tsunami inundation into the lake.

  1. Educational and Demographic Profile: Lake County.

    ERIC Educational Resources Information Center

    California Postsecondary Education Commission, 2004

    2004-01-01

    This profile uniquely presents a variety of educational and socioeconomic information for Lake County, nearby counties, and the state. The profile highlights the relationship between various factors that affect the economic well-being of individuals and communities. This presentation of information provides a framework for enhanced communication…

  2. 27 CFR 9.233 - Kelsey Bench-Lake County.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Kelsey Bench-Lake County... Kelsey Bench-Lake County. (a) Name. The name of the viticultural area described in this section is “Kelsey Bench-Lake County”. For purposes of part 4 of this chapter, “Kelsey Bench-Lake County,”...

  3. Holocene tephra stratigraphy in four lakes in southeastern Oregon and northwestern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Foit, Franklin F.; Mehringer, Peter J.

    2016-03-01

    To better understand the regional tephra stratigraphy and chronology of northern Nevada and southern Oregon, tephras in archived cores, taken as part of the Steens Mountain Prehistory Project from four lakes, Diamond Pond, Fish and Wildhorse lakes in southeastern Oregon and Blue Lake in northwestern Nevada, were reexamined using more advanced electron microprobe analytical technology. The best preserved and most complete core from Fish Lake along with Wildhorse Lake hosted two tephras from Mt. Mazama (Llao Rock and the Climactic Mazama), a mid-Holocene basaltic tephra from Diamond Craters, Oregon, two Medicine Lake tephras and an unexpected late Holocene Chaos Crags (Mt. Lassen volcanic center) tephra which was also found in the other lakes. Blue Lake was the only lake that hosted a Devils Hill tephra from the Three Sisters volcano in west central Oregon. Another tephra from the Three Sisters Volcano previously reported in sediments of Twin Lakes in NE Oregon, has now been confirmed as Rock Mesa tephra. The Chaos Crags, Devils Hill and Rock Mesa tephras are important late Holocene stratigraphic markers for central and eastern Oregon and northwestern Nevada.

  4. Hydrology of Lake Butler, Orange County, Florida

    USGS Publications Warehouse

    Smoot, James L.; Schiffer, Donna M.

    1984-01-01

    Lake Butler is one of the lakes that collectively make up the Butler chain of lakes in the headwaters of the Kissimmee River, Florida. The bottom configuration of the lake is typical of relict karst features formed during lower stages in sea level. The top of the Floridan aquifer is 50 to 100 feet below the land surface. The drainage area of Lake Butler is approximately 14.5 sq mi and is comprised of sub-basins of other lakes in the vicinity. Surface outflow from Lake Butler is generally southward to Cypress Creek, a tributary of the Kissimmee River. The extremes in lake stage for the period 1933-81 are 94.67 ft on June 23, 1981 and 101.78 ft on September 13, 1960. The median lake stage for this period was 99.28 ft above sea level. The quality of water in Lake Butler is excellent, based on studies of physical, chemical, and biological conditions by the Orange County Pollution Control Department. The lake water is slightly acidic and soft (48 mg/L hardness as calcium carbonate). Pesticides in water were below detection levels at two sites sampled in the lake, but were detected in the bottom sediments. (USGS)

  5. Empirical models of wind conditions on Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Wood, Tamara M.

    2010-01-01

    Upper Klamath Lake is a large (230 square kilometers), shallow (mean depth 2.8 meters at full pool) lake in southern Oregon. Lake circulation patterns are driven largely by wind, and the resulting currents affect the water quality and ecology of the lake. To support hydrodynamic modeling of the lake and statistical investigations of the relation between wind and lake water-quality measurements, the U.S. Geological Survey has monitored wind conditions along the lakeshore and at floating raft sites in the middle of the lake since 2005. In order to make the existing wind archive more useful, this report summarizes the development of empirical wind models that serve two purposes: (1) to fill short (on the order of hours or days) wind data gaps at raft sites in the middle of the lake, and (2) to reconstruct, on a daily basis, over periods of months to years, historical wind conditions at U.S. Geological Survey sites prior to 2005. Empirical wind models based on Artificial Neural Network (ANN) and Multivariate-Adaptive Regressive Splines (MARS) algorithms were compared. ANNs were better suited to simulating the 10-minute wind data that are the dependent variables of the gap-filling models, but the simpler MARS algorithm may be adequate to accurately simulate the daily wind data that are the dependent variables of the historical wind models. To further test the accuracy of the gap-filling models, the resulting simulated winds were used to force the hydrodynamic model of the lake, and the resulting simulated currents were compared to measurements from an acoustic Doppler current profiler. The error statistics indicated that the simulation of currents was degraded as compared to when the model was forced with observed winds, but probably is adequate for short gaps in the data of a few days or less. Transport seems to be less affected by the use of the simulated winds in place of observed winds. The simulated tracer concentration was similar between model results when

  6. 76 FR 33401 - Environmental Impact Statement: Will and Kankakee Counties, Illinois and Lake County, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Lake County, IN AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of Intent. SUMMARY... Highway 65 in Lake County, Indiana. The study area covers approximately 950 square miles in portions of Will and Kankakee counties in Illinois and Lake County in Indiana. The Tier One EIS will complete...

  7. 76 FR 7531 - Lake County Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... Forest Service Lake County Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake County Resource Advisory Committee (RAC) will hold a meeting. DATES: The... Lake County Board of Supervisor's Chambers at 255 North Forbes Street, Lakeport or Conference Room...

  8. 77 FR 57556 - Lake County Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... Forest Service Lake County Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of Meeting. SUMMARY: The Lake County Resource Advisory Committee (RAC) will hold a meeting. DATES: The... the Lake County Board of Supervisor's Chambers at 255 North Forbes Street, Lakeport or Conference...

  9. Ultraviolet radiation and bio-optics in Crater Lake, Oregon

    USGS Publications Warehouse

    Hargreaves, B.R.; Girdner, S.F.; Buktenica, M.W.; Collier, R.W.; Urbach, E.; Larson, G.L.

    2007-01-01

    Crater Lake, Oregon, is a mid-latitude caldera lake famous for its depth (594 m) and blue color. Recent underwater spectral measurements of solar radiation (300-800 nm) support earlier observations of unusual transparency and extend these to UV-B wavelengths. New data suggest that penetration of solar UVR into Crater Lake has a significant ecological impact. Evidence includes a correlation between water column chlorophyll-a and stratospheric ozone since 1984, the scarcity of organisms in the upper water column, and apparent UV screening pigments in phytoplankton that vary with depth. The lowest UV-B diffuse attenuation coefficients (K d,320) were similar to those reported for the clearest natural waters elsewhere, and were lower than estimates for pure water published in 1981. Optical proxies for UVR attenuation were correlated with chlorophyll-a concentration (0-30 m) during typical dry summer months from 1984 to 2002. Using all proxies and measurements of UV transparency, decadal and longer cycles were apparent but no long-term trend since the first optical measurement in 1896. ?? 2007 Springer Science+Business Media B.V.

  10. The Politics of Marginality in Wallowa County, Oregon: Contesting the Production of Landscapes of Consumption

    ERIC Educational Resources Information Center

    Abrams, Jesse B.; Gosnell, Hannah

    2012-01-01

    The state of Oregon's (USA) land use planning framework has long been characterized by tensions between state and local authority, between traditionally-defined "urban" and "rural" concerns, and between the competing interests of various landowners. An examination of Wallowa County, Oregon's implementation of House Bill 3326, a 2001 law giving…

  11. Electrophonic Sound from the Diamond Lake Oregon Fireball

    NASA Astrophysics Data System (ADS)

    Pugh, R. N.

    1995-09-01

    At 9:16 p.m. Pacific Standard Time, March 28, 1994, a large fire ball exploded near Diamond Lake, South Central, Oregon. The object was five times the diameter of a full moon, casting shadows along the flight path. There were numerous sonic booms near the end point of the fireball. There were fifteen reports of electrophonic sound. These sounds were heard as far away as 340 kilometers. In most cases the observer was near metal objects such as fences or automobiles. There was one report of the fire ball setting off a radar detector in an automobile. This occurred 270 kilometers behind the fireball entry point in the atmosphere. There were several reports of birds who had stopped singing, coyotes that stopped howling, and dogs and cats running for cover.

  12. Economic Impacts of Geothermal Development in Malheur County, Oregon.

    SciTech Connect

    Sifford, Alex; Beale, Kasi

    1993-01-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Malheur County, shown in Figure 1. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Malheur County was chosen as it has both identified resources and industry interest. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued responding as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. Public service impacts include costs such as education, fire protection, roads, waste disposal, and water supply. The project assumption discussion notes experiences at other geothermal areas. The background section compares geothermal with conventional power plants. Power plant fuel distinguishes geothermal from other power sources. Other aspects of development are similar to small scale conventional thermal sources. The process of geothermal development is then explained. Development consists of well drilling, gathering system construction, power plant construction, plant operation and maintenance, and wellfield maintenance.

  13. Economic Impacts of Geothermal Development in Deschutes County, Oregon.

    SciTech Connect

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  14. Self Study, 1985: College of Lake County.

    ERIC Educational Resources Information Center

    Lake County Coll., Grayslake, IL.

    Developed as part of the reaccreditation process, this report represents a comprehensive self-analysis by the College of Lake County (CLC), which sought to involve the entire institution in an examination of CLC's mission, resources, accomplishments, and future plans. Chapter 1 introduces the self-study's purpose, participants, and processes;…

  15. 78 FR 10249 - Environmental Impact Statement: Will and Kankakee Counties, IL and Lake County, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... Lake County, IN AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of Intent. SUMMARY... will be prepared for the Illiana Corridor in Will and Kankakee Counties, Illinois and Lake...

  16. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  17. Hydrogeology of the Lake Miona area, northeast Sumter County, Florida

    USGS Publications Warehouse

    Bradner, L.A.

    1986-01-01

    The Lake Miona area, in northeast Sumter County, is characterized by karstic depressions that contain lakes, ponds, and marshes that drain vertically to the upper Floridan aquifer. Lake Miona, Black Lake, and Cherry Lake are the prominent water features of the area. When the lake levels are lowest, the lakes are not connected, but at higher levels, they become connected and water flows eastward from Lake Miona through Black Lake to Cherry Lake. The chemical and biological conditions in the lakes are such that, although they support a large population of submerged aquatic plants, no problem with algae blooms was observed. (USGS)

  18. Economic Impacts of Geothermal Development in Harney County, Oregon.

    SciTech Connect

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  19. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Red Hills Lake County. 9... Red Hills Lake County. (a) Name. The name of the viticultural area described in this section is “Red Hills Lake County”. (b) Approved Map. The appropriate maps for determining the boundary of the Red...

  20. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Red Hills Lake County. 9... Red Hills Lake County. (a) Name. The name of the viticultural area described in this section is “Red Hills Lake County”. (b) Approved Map. The appropriate maps for determining the boundary of the Red...

  1. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Red Hills Lake County. 9... Red Hills Lake County. (a) Name. The name of the viticultural area described in this section is “Red Hills Lake County”. (b) Approved Map. The appropriate maps for determining the boundary of the Red...

  2. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Red Hills Lake County. 9... Red Hills Lake County. (a) Name. The name of the viticultural area described in this section is “Red Hills Lake County”. (b) Approved Map. The appropriate maps for determining the boundary of the Red...

  3. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Red Hills Lake County. 9... Red Hills Lake County. (a) Name. The name of the viticultural area described in this section is “Red Hills Lake County”. (b) Approved Map. The appropriate maps for determining the boundary of the Red...

  4. 75 FR 22892 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Federal Highway Administration Environmental Impact Statement: Salt Lake County, UT AGENCY: Federal... transportation improvement project in Salt Lake County, Utah. FOR FURTHER INFORMATION CONTACT: Edward Woolford, Environmental Program Manager, Federal Highway Administration, 2520 West 4700 South, Suite 9A, Salt Lake...

  5. 75 FR 9476 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Federal Highway Administration Environmental Impact Statement: Salt Lake County, UT AGENCY: Federal... transportation improvement project in Salt Lake County, Utah. FOR FURTHER INFORMATION CONTACT: Bryan Dillon, Area Engineer, Federal Highway Administration, 2520 West 4700 South, Suite 9A, Salt Lake City, UT...

  6. Crater Lake Revealed: Using GIS to Visualize and Analyze Postcaldera Volcanoes Beneath Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Robinson, J. E.; Dartnell, P.; Bacon, C. R.; Gardner, J. V.; Mayer, L. A.; Buktenica, M. W.

    2001-12-01

    Crater Lake, Oregon, partially fills the caldera that formed ~7,700 years ago by the eruption of 50 km3 of mainly rhyodacitic magma and collapse of Mount Mazama. Prior to the climactic event, Mount Mazama had a 400,000-year eruptive history, much of which was like those of other Cascade volcanic centers such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller eruptions within the caldera itself. Until a recent bathymetric survey, relatively little was known about the character and timing of these eruptions because their products are obscured beneath Crater Lake's surface. In the summer of 2000, the lake bottom was mapped with a high-resolution multibeam echo sounder (Gardner et. al., 2001), providing a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetric data has been visualized and analyzed (aided by images and samples obtained with the manned submersible Deep Rover, sediment cores and dredged rocks, and detailed geologic mapping of Mount Mazama) to determine a geologic map of the lake bottom, a history of lake filling (Nathenson et. al., 2001), and volumes, times, and rates of postcaldera eruptions. These calculations have been used to assemble a geologic history for Crater Lake from the time of caldera formation to present day. Postcaldera eruptions have been both subareal and subaqueous, and were well underway within about 90 years after the climactic eruption, beginning with andesitic lava flows from the Wizard Island and central platform volcanoes. The eruptive history of the Wizard Island volcano is divided into three periods defined by former shorelines where subaerial flows entered the lake, quenched rapidly, and fractured, forming lobate deltas and breccia slopes. The shorelines are visible in slope and shaded-relief images of the lake floor created with GIS. The lake filling model suggests that these shorelines

  7. SPIRIT LAKE, KOOTENAI COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1987

    EPA Science Inventory

    Spirit Lake is a high quality recreational lake located in northwestern Kootenai County, Idaho (17010214). A 1984 water quality assessment indicated nutrient enrichment from nonpoint sources, such as timber harvest and domestic wastewater, were causing increased aquatic plant gr...

  8. 77 FR 25952 - Oregon Army National Guard, Camp Rilea, Clatsop County, OR; Danger Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ...The U.S. Army Corps of Engineers is proposing to establish a new danger zone in the waters adjacent to Camp Rilea located in Clatsop County, Oregon. The regulation would prohibit any activity by the public within the danger zone during use of weapons training ranges. The new danger zone is necessary to ensure public safety and satisfy the Oregon National Guard operations requirements for small......

  9. HAYDEN LAKE, KOOTENAI COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1987

    EPA Science Inventory

    Hayden Lake (17010305) is a high quality recreational lake located in Kootenai County, Idaho. Water quality investigations and trend monitoring data from 1985 until 1987 reveal that Hayden Lake is a relatively nutrient poor, oligo-mesotrophic lake with good water clarity and low...

  10. Business and Education Linkage Activities. Lake County, Illinois.

    ERIC Educational Resources Information Center

    Flesher, Jeffrey W.

    A study was conducted to establish a baseline profile of business and education linkage activities in Lake County, Illinois. Data were collected through a survey questionnaire sent to 242 public and private K-12 schools in Lake County. Two rounds of mailings resulted in the return of 109 usable forms, or 45 percent of the population. Telephone…

  11. 75 FR 17897 - Lake County Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... Forest Service Lake County Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake County Resource Advisory Committee (RAC) will hold a meeting. DATES: The meeting will be held on May 13, 2010 from 3 p.m. to 5 p.m. ADDRESSES: The meeting will be held at the...

  12. Oxygen Isotope Character of the Lake Owyhee Volcanic Field, Oregon

    NASA Astrophysics Data System (ADS)

    Blum, T.; Strickland, A.; Valley, J. W.

    2012-12-01

    Oxygen isotope analyses of zircons from lavas and tuffs from the Lake Owyhee Volcanic Field (LOVF) of east central Oregon unequivocally demonstrate the presence of mid-Miocene low-δ18O magmas (δ18Ozrc<4.7 ‰). Despite the growing data set of low-δ18O melts within, and proximal to, the Snake River Plain (SRP) Large Igneous Province, debate persists regarding both the mechanisms for low-δ18O magma petrogenesis, and their relative influence in the SRP. The LOVF is associated with widespread silicic volcanism roughly concurrent with the eruption of the Steens-Columbia River Basalt Group between ~17-15Ma. Silicic activity in the LOVF is limited to 16-15Ma, when an estimated 1100km3 of weakly peralkaline to metaluminous rhyolitic lavas and ignimbrites erupted from a series of fissures and calderas. Geographically, the LOVF overlaps the Oregon-Idaho Graben (OIG), and straddles the 87Sr/86Sr= 0.704 line which, together with the 0.706 line to the east, delineate the regional transition from the North American Precambrian continental crust to the east to younger Phanerozoic accreted terranes to the west. Here we report high accuracy ion microprobe analyses of δ18O in zircons using a 10-15μm spot, with average spot-to-spot precision ±0.28‰ (2SD), to investigate intra-grain and intra-unit δ18Ozrc trends for LOVF rhyolites. Due to its high closure temperature, chemical and physical resistance, and slow oxygen diffusion rates, zircon offers a robust record of magmatic oxygen isotope ratios during crystallization and provides constraints on the petrogenesis of Snake River Plain (SRP) low-δ18O melts. Individual zircons from LOVF rhyolites show no evidence of core-rim δ18O zoning, and populations exhibit ≤0.42‰ (2SD) intra-unit variability. Unit averages range from 2.2 to 4.3‰, with the lowest values in caldera-forming ignimbrites, but all units show evidence of crystallization from low-δ18O melts. Quartz and feldspar analyses by laser fluorination (precision

  13. Exsolution of metallic copper from Lake County labradorite

    NASA Astrophysics Data System (ADS)

    Hofmeister, Anne M.; Rossman, George R.

    1985-09-01

    Some gem-quality labradorite phenocrysts in Miocene basaltic lava from Lake County, Oregon, have a pink schiller due to metallic copper; some have a transparent red or green color. The copper content of the crystals varies systematically with color: pale-yellow labradorite sections have 0 40 ppm CuO; greens have about 100 ppm CuO; reds have 150 to 200 ppm CuO; schiller-bearing laths have 80 to 300 ppm CuO. The variation of Cu content among different crystals is primary and reflects a variation in magma chemistry during plagioclase fractionation. Similarity of absorption spectra of the red zones to that of copper-ruby color in glass shows that the red arises from the intrinsic absorption of colloidal Cu0 particles that are too small to scatter light (<22 nm). Particle size depends on Cu content because the temperature at which copper begins to exsolve from the feldspar increases with Cu content and the higher temperatures promote diffusion. At 900 to 1100 °C the reduction of Cu is controlled by reactions in the basalt that keep fo2 near the QFM buffer. The green color may be caused by either Cu1+/Cu0 IVCT or Cu0 pairs. *Present address: Geophysical Laboratory, Carnegie Institution, Washington, D.C. 20008

  14. Clay Mineral Composition of Sediments in Some Desert Lakes in Nevada, California, and Oregon.

    PubMed

    Droste, J B

    1961-06-16

    X-ray analyses of some Recent desert lacustrine sediments in Nevada, California, and Oregon show that illite and montmorillonite are the most abundant clay minerals and that chlorite and kaolinite are present in subordinate amounts in the sediments of many of the lakes. These clay suites are derived from source rocks. PMID:17738874

  15. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County....

  16. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County....

  17. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County....

  18. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County....

  19. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County....

  20. Geochemical map of the North Fork John Day River Roadless Area, Grant County, Oregon

    USGS Publications Warehouse

    Evans, James G.

    1986-01-01

    The North Fork John Day River Roadless Area comprised 21,210 acres in the Umatilla and Wallowa-Whitman National Forests, Grant County, Oregon, about 30 miles northwest of Baker, Oregon. The irregularly shaped area extends for about 1 mile on both sides of a 25-mile segment of the North Fork John Day River from Big Creek on the west to North Fork John Day Campground on the east. Most of the roadless area is in the northern half of the Desolation Butte 15-minute quadrangle. The eastern end of the area is in parts of the Granite and Trout Meadows 7½-minute quadrangles.

  1. Geothermal greenhouse heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    NASA Astrophysics Data System (ADS)

    1982-02-01

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the nursing home, the present site was selected primarily on the basis of its geothermal resource. This resource currently provides space and domestic hot water heating for the nursing home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the nursing home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the nursing home.

  2. The Utilization of the Oregon Department of Education Materials by Vocational Teachers in Linn, Benton and Lincoln Counties. Final Report.

    ERIC Educational Resources Information Center

    Lofts, Ada

    Secondary vocational instructors, community college instructors, and career directors in three Oregon counties were interviewed to assess usage of occupational cluster guides, individualized instruction packages, and other curriculum materials developed by the Oregon Department of Education (ODE). Focus was on level and depth of usage, deterrents…

  3. Models for the Filling of Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Bacon, C. R.; Gardner, J. V.

    2001-12-01

    Crater Lake partially fills, to a depth of 593 m, the 10-km-diameter, 1200-m-deep caldera formed by collapse of Mount Mazama volcano. The lake receives water from direct precipitation and inflow from the caldera walls and loses water by surface evaporation and leakage. No streams flow from Crater Lake. A high-resolution multibeam echo sounding survey of the lake floor conducted in 2000 (Gardner et al., 2001) revealed seven drowned beaches between 1849 and 1878 m elevation (reference lake elevation is 1883 m). The beaches are thought to reflect drier periods in the lake's history since the climactic, caldera-forming eruption of Mount Mazama, approximately 7,700 years ago. The shallowest drowned beach at 1878 m represents the deepest part of a wave-cut platform up to 100 m wide, substantially wider than any of the beaches, where erodible talus or intensely altered rocks are present. The great width of the platform compared to the width of the drowned beaches indicates that the lake has mostly been near its current level during the lake's history. Unambiguous evidence of former highstands above 1883 m has not been reported. In order to explain the occurrence of the drowned beaches and their relatively narrow depth range, leakage through the caldera walls must vary with depth and cannot occur just at the lake bottom or at the modern lake level. A reasonable model is that leakage is proportional to elevation above the bottom of the lake. Recognition that there is a thick layer of relatively permeable debris resting on glaciated lava in the northeast caldera wall above an elevation of 1845 m suggests a variant of this model where leakage is proportional to elevation above 1845 m. Climate studies indicate that Crater Lake began to fill during a dry period. Assuming that precipitation at that time was 70% of modern and that the beach at 1853 m (the deeper beach is somewhat suspect) corresponds to this amount of precipitation, a combination of the above leakage models is

  4. Seasonal variation of arsenic concentration in well water in Lane County, Oregon

    SciTech Connect

    Nadakavukaren, J.J.; Ingermann, R.L.; Jeddeloh, G.; Falkowski, S.J.

    1984-09-01

    The United State Public Health Service has set a maximum limit for arsenic in public water supplies of 0.05 ppM (mg/l), and advises that continuous consumption of water exceeding this level is potentially hazardous. However, well and spring water exceeding this limit occurs in the U.S.S.R., Taiwan, Romania, New Zealand, and in areas of California, Nevada, Alaska and Oregon. One such area of Oregon, in Lane and Douglas Counties, overlies the Fisher formation, which consists predominantly of tuffaceous siltstone and volcaniclastic sediments. Apparently groundwater leaches arsenic from this material, and in this area, arsenic levels in well water range up to 2 p.p.m. The authors monitored the arsenic concentration in 14 Lane County wells over a 13 month period spanning 1975 and 1976. To the best of our knowledge, no studies of this type have been reported. This paper presents the results and recommendations from this study.

  5. Thermal, chemical, and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was

  6. RESTORATION OF LOWER ST. REGIS LAKE (FRANKLIN COUNTY, NEW YORK)

    EPA Science Inventory

    Lower St. Regis Lake, the lowest of a chain of three lakes in Franklin County, Adirondack Region, New York, was subject to severe eutrophication, as indicated by summer-long intense blue-green algal blooms caused by phosphate discharges from a point-source contributing approximat...

  7. PRIEST LAKE, BONNER COUNTY, IDAHO - DIAGNOSTIC ANALYSIS, 1993-1995

    EPA Science Inventory

    This document reports the findings of the baseline water quality studies conducted from March 1993 to September 1995 at Priest Lake in Bonner County, Idaho (17010215). The following conclusions were developed. Open water areas of Upper and Lower Priest Lakes can be classified a...

  8. Lake County Geo-Ag heat center

    SciTech Connect

    Not Available

    1987-07-01

    Lake County is proceeding with plans to develop a unique agricultural park called the Geo-Ag Heat Center Project. The project will combine vocational training, geothermal heat-transfer research, and commercial resources for greenhouse heating, crop drying, and other agricultural operations. The first phase of the project involved drilling wells to confirm the availability of an adequate geothermal resource. The first well, AG Park 1, drilled in January, 1986 to a depth of 1614 feet, proved noncommercial; it will be used as an injection well. Next, a geophysical program of seismic surveys was undertaken to pinpoint the more productive fracture zones. Wells AG Park 2 and 3 were drilled in these zones. Both wells were drilled in December 1986, to depths of 592 and 488 feet, respectively. In 3-day tests of continuous production, AG Park 2 and 3 yielded flowing wellhead temperatures of 143/sup 0/F and 153/sup 0/F, respectively, at flow rates exceeding 150 gpm, with minor drawdowns. The next phase of the project entails construction of a 7000 square-foot greenhouse by the end of 1987. It will be operated by the Mendocino-Lake Community College District as an educational and demonstration facility. Geothermal-fluid and irrigation water-distribution and injection-pipeline systems will also be installed in preparation for future commercial leasing on the 3-acre site. The demonstration greenhouse will allow evaluation of the effectiveness of various heat-transfer systems. This would assist commercial operators in designing the most economical system for their needs.

  9. Pumice deposits of the Klamath Indian Reservation, Klamath County, Oregon

    USGS Publications Warehouse

    Walker, George Walton

    1951-01-01

    A large volume of pumice is widely distributed over the Klamath Indian Reservation in 'flow' and 'fall' deposits. The flow material on the Reservation is restricted to the area west of Klamath Marsh, and the fall material is thickest immediately southeast of the Marsh. Tests of the chemical and physical properties of the pumice indicate that the pumice is suitable, with some limitations, for use as an aggregate and as a low-grade abrasive. Preliminary examination also indicates that with proper processing it may have a potential use as pozzuolana. The pumice is similar to material now being marketed for lightweight aggregate in Oregon, but processing of the pumice is necessary to obtain a suitable size distribution of the particles.

  10. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  11. Volcano and earthquake hazards in the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Mastin, Larry G.; Scott, Kevin M.; Nathenson, Manuel

    1997-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. This report describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The main conclusions are summarized below.

  12. Revisiting School Readiness: Washington County, Oregon, Summer 2007

    ERIC Educational Resources Information Center

    Severeide, Rebecca

    2007-01-01

    Purpose and Methods: This report is the second benchmark study to assess the system of supports for school readiness. The data for this study was collected in the fall of 2006 on 537 entering kindergarten children and their families in eight representative schools across the County. The ecological model and methods from the first study, which was…

  13. 78 FR 33433 - Bear Lake National Wildlife Refuge, Bear Lake County, ID, and Oxford Slough Waterfowl Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Fish and Wildlife Service Bear Lake National Wildlife Refuge, Bear Lake County, ID, and Oxford Slough... Bear Lake National Wildlife Refuge in Bear Lake County, Idaho, and the Oxford Slough Waterfowl... Federal Register (75 FR 35829; June 23, 2010). We released the draft CCP/EA to the public, announcing...

  14. 78 FR 20544 - Proposed Establishment of the Big Valley District-Lake County and Kelsey Bench-Lake County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... to establish the Red Hills Lake County viticultural area (October 30, 2002, 67 FR 66083). The...-slip'' movement of tectonic plates along the San Andreas Fault warped the layers of rock on the lake... to rise above the surface. When the Big Valley landmass rose, it brought with it the sedimentary...

  15. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  16. Under trees and water at Crater Lake National Park, Oregon

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Wayne, Chris

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-ft-high volcano known as Mount Mazama. The caldera-forming, or climactic, eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000-year history of volcanic activity similar to other large Cascade volcanoes such as Mounts Shasta, Hood, and Rainier. Since the caldera formed, many smaller, less violent eruptions occurred at volcanic vents below Crater Lake's surface, including Wizard Island. A survey of Crater Lake National Park with airborne LiDAR (Light Detection And Ranging) resulted in a digital elevation map of the ground surface beneath the forest canopy. The average resolution is 1.6 laser returns per square meter yielding vertical and horizontal accuracies of ±5 cm. The map of the floor beneath the surface of the 1,947-ft-deep (593-m-deep) Crater Lake was developed from a multibeam sonar bathymetric survey and was added to the map to provide a continuous view of the landscape from the highest peak on Mount Scott to the deepest part of Crater Lake. Four enlarged shaded-relief views provide a sampling of features that illustrate the resolution of the LiDAR survey and illustrate its utility in revealing volcanic landforms and subtle features of the climactic eruption deposits. LiDAR's high precision and ability to "see" through the forest canopy reveal features that may not be easily recognized-even when walked over-because their full extent is hidden by vegetation, such as the 1-m-tall arcuate scarp near Castle Creek.

  17. Geothermal greenhouse-heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    SciTech Connect

    Not Available

    1982-02-01

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the Nursing Home, the present site was selected primarily on the basis of its geothermal resource. This resource (approx. 190/sup 0/F) currently provides space and domestic hot water heating for the Nursing Home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the Nursing Home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the Nursing Home.

  18. Benthic nutrient sources to hypereutrophic Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Lynch, D.D.; Carter, J.L.; Essaid, H.I.

    2009-01-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A porewater profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical, concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m2/d. The mass flux over an approximate 200-km2 lake area was comparable in magnitude to riverine inputs. An additional concern, related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m2/d, again, comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 104 individuals/m2, suggested, that the diffusive-flux estimates may be significantly enhanced, by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources ?? 2009 SETAC.

  19. Hydrology of Lake Carroll, Hillsborough County, Florida

    USGS Publications Warehouse

    Henderson, S.E.; Hayes, R.D.; Stoker, Y.E.

    1985-01-01

    Lakeshore property around Lake Carroll has undergone extensive residential development since 1960. This development increased the lake shoreline, altered surface water flow to and from the lake, and may have affected lake-stage characteristics. Some areas of the lake were dredged to provide fill material for lakefront property. Water-balance analyses for 1952-60, a predevelopment period, and 1961-80, a period of residential development, indicate that both net surface water flow to the lake and downward leakage from the lake to the Floridan aquifer were greater after 1960. These changes were due more to changes in the regional climate and related changes in ground-water levels than to changes associated with residential development. Results of water quality analyses in 1980-81 are within State limits for surface waters used for recreation and wildlife propagation. (USGS)

  20. Water quality of Bear Creek basin, Jackson County, Oregon

    USGS Publications Warehouse

    Wittenberg, Loren A.; McKenzie, Stuart W.

    1980-01-01

    Water-quality data identify surface-water-quality problems in Bear Creek basin, Jackson County, Oreg., where possible, their causes or sources. Irrigation and return-flow data show pastures are sources of fecal coliform and fecal streptococci bacteria and sinks for suspended sediment and nitrite-plus-nitrate nitrogen. Bear Creek and its tributaries have dissolved oxygen and pH values that do not meet State standards. Forty to 50% of the fecal coliform and fecal streptococci concentrations were higher than 1,000 bacteria colonies per 100 milliliters during the irrigation season in the lower two-thirds of the basin. During the irrigation season, suspended-sediment concentrations, average 35 milligrams per liter, were double those for the nonirrigation season. The Ashland sewage-treatment plant is a major source of nitrite plus nitrate, ammonia, and Kjeldahl nitrogen, and orthophosphate in Bear Creek. (USGS)

  1. 78 FR 29696 - Proposed Flood Elevation Determinations for Lake County, Illinois, and Incorporated Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... Lake County, Illinois, and Incorporated Areas AGENCY: Federal Emergency Management Agency, DHS. ACTION... proposed rule concerning proposed flood elevation determinations for Lake County, Illinois, and... rulemaking at 76 FR 39063, proposing flood elevation determinations along one or more flooding sources...

  2. Mineral resources of the Home Creek wilderness study area, Harney County, Oregon

    SciTech Connect

    Vander Meulen, D.B.; Griscom, A.; King, H.D.; Vercoutere, T.L.; Moyle, P.R.

    1988-01-01

    This book discusses the Home Creek Wilderness Study Area, on the western slope of Steens Mountain in the northern Basin and Range physiographic province of southeastern Oregon. The area is underlain by Miocene Steens Basalt. Isolated outcrops of the Devine Canyon ash-flow tuff unconformably overlie the Steens Basalt. Pleistocene shoreline deposits and Holocene dunes are exposed in the western part of the study area, moderate potential for sand and gravel resources in lake shoreline deposits, and low potential for geothermal energy throughout the study area.

  3. 77 FR 51556 - Sheldon National Wildlife Refuge, Humboldt County and Washoe County, NV; Lake County, OR; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Fish and Wildlife Service Sheldon National Wildlife Refuge, Humboldt County and Washoe County, NV; Lake... notice in the Federal Register (73 FR 27003; May 12, 2008). We released the draft CCP/EIS to the public, announcing and requesting public comments in a notice of availability in the Federal Register (76 FR...

  4. Distribution and abundance of zooplankton populations in Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; McIntire, C.D.; Buktenica, M.W.; Girdner, S.F.; Truitt, R.E.

    2007-01-01

    The zooplankton assemblages in Crater Lake exhibited consistency in species richness and general taxonomic composition, but varied in density and biomass during the period between 1988 and 2000. Collectively, the assemblages included 2 cladoceran taxa and 10 rotifer taxa (excluding rare taxa). Vertical habitat partitioning of the water column to a depth of 200 m was observed for most species with similar food habits and/or feeding mechanisms. No congeneric replacement was observed. The dominant species in the assemblages were variable, switching primarily between periods of dominance of Polyarthra-Keratella cochlearis and Daphnia. The unexpected occurrence and dominance of Asplanchna in 1991 and 1992 resulted in a major change in this typical temporal shift between Polyarthra-K. cochlearis and Daphnia. Following a collapse of the zooplankton biomass in 1993 that was probably caused by predation from Asplanchna, Kellicottia dominated the zooplankton assemblage biomass between 1994 and 1997. The decline in biomass of Kellicottia by 1998 coincided with a dramatic increase in Daphnia biomass. When Daphnia biomass declined by 2000, Keratella biomass increased again. Thus, by 1998 the assemblage returned to the typical shift between Keratella-Polyarthra and Daphnia. Although these observations provided considerable insight about the interannual variability of the zooplankton assemblages in Crater Lake, little was discovered about mechanisms behind the variability. When abundant, kokanee salmon may have played an important role in the disappearance of Daphnia in 1990 and 2000 either through predation, inducing diapause, or both. ?? 2007 Springer Science+Business Media B.V.

  5. Geologic map of the Three Sisters Wilderness, Deschutes, Lane, and Linn counties, Oregon

    USGS Publications Warehouse

    Taylor, E.M.; MacLeod, N.S.; Sherrod, D.R.; Walker, G.W.

    1987-01-01

    The Wilderness Act (Public Law 88-577, September 3, 1964) and related acts require the U.S. Geological Survey and the U.S. Bureau of Mines to survey certain areas on Federal lands to determine the mineral values, if any, that may be present. Results must be made available to the public and to be submitted to the President and Congress. This report presents the results of a geologic survey of the Three Sisters Wilderness, Deschutes and Willamette National Forests, Deschutes, Lane and Linn Counties, Oregon

  6. Development of Turbulent Diffusion Transfer Model to Estimate Hydrologic Budget of Upper Klamath Lake Oregon, USA

    NASA Astrophysics Data System (ADS)

    Sahoo, G. B.; Schladow, G.

    2013-12-01

    Detailed and accurate hydrologic budgets of lake or reservoirs are essential for sustainable water supply and ecosystem managements due to increasing water demand and uncertainties related to climate change. Ensuring sustainable water allocation to stakeholders requires accurate heat and hydrologic budgets. A number of micrometeorological methods have been developed to approximate heat budget components, such as evaporative and sensible heat loss, that are not directly measurable. Although micrometeorological methods estimate the sensible and evaporative loss well for stationary (i.e. ideal) condition, these methods can rarely be approximated for non-idealized condition. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ), developed at UC Davis, with the goal of correctly estimating the hydrologic budget of Upper Klamath Lake Oregon, USA. The measured and DLM-WQ estimated lake water temperatures and water elevation are in excellent agreement with correlation coefficient equals 0.95 and 0.99, respectively. Consistent with previous studies, the sensible and latent heat exchange coefficients were found to be site specific. Estimated lake mixing shows that the lake became strongly stratified during summer (between late April and the end of August). For the hypereutrophic shallow Upper Klamath Lake, longer stratification results in low dissolved oxygen (DO) concentration at the sediment surface causing DO sensitive habitat destruction and ecological problems. The updated DLM-WQ can provide quantitative estimates of hydrologic components and predict the effects of natural- or human-induced changes in one component of the hydrologic cycle on the lake supplies and associated consequences.

  7. Long-term limnological research and monitoring at Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Collier, R.; Buktenica, M.

    2007-01-01

    Crater Lake is located in the caldera of Mount Mazama in Crater Lake National Park, Oregon. The lake has a surface area of about 53 km2at an elevation of 1882 m and a maximum depth of 594 m. Limited studies of this ultraoligotrophic lake conducted between 1896 and 1981, lead to a 10-year limnological study to evaluate any potential degradation of water quality. No long-term variations in water quality were observed that could be attributed to anthropogenic activity. Building on the success of this study, a permanent limnological program has been established with a long-term monitoring program to insure a reliable data base for use in the future. Of equal importance, this program serves as a research platform to develop and communicate to the public a better understanding of the coupled biological, physical, and geochemical processes in the lake and its surrounding environment. This special volume represents our current state of knowledge of the status of this pristine ecosystem including its special optical properties, algal nutrient limitations, pelagic bacteria, and models of the inter-relationships of thermal properties, nutrients, phytoplankton, deep-water mixing, and water budgets. ?? 2007 Springer Science+Business Media B.V.

  8. College of Lake County National Workplace Literacy Program. Final Report.

    ERIC Educational Resources Information Center

    Gee, Mary Kay

    The College of Lake County's 3-year National Workplace Literacy Program (1994-1997) contributed to economic development by meeting companies' changing educational and production needs as they fluctuated and met new challenges for global marketing and improvement. It assessed 883 employees at 8 business sites with customized assessment tools and…

  9. Nests and eggs of colonial birds nesting in Malheur Lake, Oregon, with notes on DDE

    USGS Publications Warehouse

    Cornely, J.E.; Thompson, S.P.; Henny, C.J.; Littlefield, C.D.

    1993-01-01

    We describe the nests and eggs of 7 species of colonial birds that nested on Malheur Lake in Malheur National Wildlife Refuge, Oregon, in 1980 and 1981. All nests were constructed over water in stands of hardstem bulrush (Scirpus acutus). We compared nest measurements among species and found significant differences. Nest size was highly correlated with bird body mass. The heavier the bird, the larger the nest and the higher the nest crown was above water. Egg volume was also highly correlated with body mass. We found evidence of shell thinning and DDE residues in great egret eggs and low levels of pesticide residues in eggs of Franklin's Gull. We summarize all available DDE and shell thickness data from colonial bird eggs collected from Malheur Lake.

  10. Atmospheric optical measurements in the vicinity of crater lake, Oregon. Part I.

    PubMed

    Boileau, A R

    1968-10-01

    This paper presents new atmospheric optical data measured by airborne optical and meteorological sensors recorded near Crater Lake, Oregon, during the first day of a three day period in August 1966. Two data gathering descents were made, from 7800 m to 1400 m, and from 8800 m to 2700 m. The times of these descents were 0913 and 0930 and 1045 to 1101, Pacific Daylight Time. Atmospheric beam transmittances were measured also by a ground station located south of Crater Lake at an altitude of 2070 m. Data presented are altitude profiles of heading of aircraft, temperature, relative humidity, equilibrium luminance, horizontal path function, attenuation length, nadir luminances, and downwelling and upwelling illuminances and their ratios. PMID:20068908

  11. Hydrologic considerations in dewatering and refilling Lake Carlton : Orange and Lake Counties, Florida

    USGS Publications Warehouse

    Anderson, Warren; Hughes, G.H.

    1977-01-01

    Lake Carlton straddles the line between Lake and Orange Counties in central Florida. The 382-acre lake is highly eutrophic and subject to virtually perpetual algal blooms. The Florida Game and Fresh Water Fish Commission has proposed to restore the lake to a less eutrophic state by dewatering the lake long enough to allow the muck on its bottom to dry and compact. Lake Carlton would be permanently sealed off from Lake Carlton. On the assumption that the seasonal rainfall would be normal, and that the dewatering phase would begin on March 1, the predicted time required to dewater the lake at a pumping rate of 50,000 gpm (gallons per minute) is 21 days. The average rate of pumping required to maintain the lake in a dewatered condition is computed to be 2,400 gpm. If pumping is ended May 31, the predicted altitude to which the lake would recover by October 31 as a result of net natural input is 56.2 feet above sea level. Raising the lake level to 63 feet above sea level by October 31 would require that the net natural input be supplemented at an average rate of about 4,860 gpm between May 31 and October 31. (Woodard-USGS)

  12. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Fifteen Mile Creek, Twelve Mile Creek, Oregon Canyon, and Willow Creek Wilderness Study Areas, harney and Malheur Counties, Oregon

    SciTech Connect

    Jones, L.J.; Erickson, M.S.; Fey, D.L.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Fifteen Mile Creek, Twelve Mile Creek, Oregon Canyon, and Willow Creek Wilderness Study Areas, harney and Malheur Counties, Oregon.

  13. Coyote Springs Cogeneration Project, Morrow County, Oregon: Draft Environmental Impact Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1994-01-01

    BPA is considering whether to transfer (wheel) electrical power from a proposed privately-owned, combustion-turbine electrical generation plant in Oregon. The plant would be fired by natural gas and would use combined-cycle technology to generate up to 440 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Portland General Electric Company (PGE). The project would be built in eastern Oregon, just east of the City of Boardman in Morrow County. The proposed plant would be built on a site within the Port of Morrow Industrial Park. The proposed use for the site is consistent with the County land use plan. Building the transmission line needed to interconnect the power plant to BPA`s transmission system would require a variance from Morrow County. BPA would transfer power from the plant to its McNary-Slatt 500-kV transmission line. PGE would pay BPA for wheeling services. Key environmental concerns identified in the scoping process and evaluated in the draft Environmental Impact Statement (DEIS) include these potential impacts: (1) air quality impacts, such as emissions and their contributions to the {open_quotes}greenhouse{close_quotes} effect; (2) health and safety impacts, such as effects of electric and magnetic fields, (3) noise impacts, (4) farmland impacts, (5) water vapor impacts to transportation, (6) economic development and employment impacts, (7) visual impacts, (8) consistency with local comprehensive plans, and (9) water quality and supply impacts, such as the amount of wastewater discharged, and the source and amount of water required to operate the plant. These and other issues are discussed in the DEIS. The proposed project includes features designed to reduce environmental impacts. Based on studies completed for the DEIS, adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is controversial.

  14. A Profile of Oregon Counties: Human Resources, Educational, and Economic Indicators Associated with Young Children and Families.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Student Services Section.

    This profile of counties in Oregon covers factors that may predispose youth to grow up at risk of dropping out of high school or not acquiring the skills needed for adult life. The profile presents data on human resources and educational and economic indicators that were collected from state agencies and organizations. For the state as a whole,…

  15. 78 FR 45270 - Notice of Realty Action; Proposed Modified Competitive Sale of Public Land in Jackson County, Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... proposed sale must be submitted in writing to the BLM Ashland Resource Area Field Manager (see the... Bureau of Land Management Notice of Realty Action; Proposed Modified Competitive Sale of Public Land in... County, Oregon, by modified competitive bidding sale procedures for the approved appraised fair...

  16. Debris flow from 2012 failure of moraine-dammed lake, Three Fingered Jack volcano, Mount Jefferson Wilderness, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Wills, Barton B.

    2014-01-01

    The Three Fingered Jack debris flow is one of several that have issued from moraine-dammed lakes in the Oregon Cascade Range. A thorough summary of those lakes and the hazards associated with them was published in 2001, based largely on fieldwork by Jim O’Connor and Jasper Hardison in the early 1990s. Described here are details of the 2012 event, an update to the O’Connor story begun earlier.

  17. Hydroclimatic and landscape controls on phosphorus loads to hypereutrophic Upper Klamath Lake, Oregon, United States

    NASA Astrophysics Data System (ADS)

    Records, R.; Fassnacht, S. R.; Arabi, M.; Duffy, W. G.

    2014-12-01

    Elevated total phosphorus (P) loading into Upper Klamath Lake, southern Oregon, United States has caused hypereutrophic conditions impacting endangered lake fish species. Increases in P loading have been attributed to land use changes, such as timber harvest and wetland drainage. The contribution of P to Upper Klamath Lake has been estimated from each major tributary, yet little research has explored what land use or other variables have most influence on P loading within the tributaries. In addition, previous work has shown a range of potential hydroclimatic shifts by the 2040s, with potential to alter P loading mechanisms. In this study, we use statistical methods including principle component analysis and multiple linear regression to determine what hydroclimatic and landscape variables best explain flow-weighted P concentration in the Sprague River, one of three main tributaries to Upper Klamath Lake. Identification of key variables affecting P loading has direct implications for management decisions in the Upper Klamath River Basin. Increases in P loading related to sediment loading are due to bank and upslope erosion. The former is more prevalent in areas of historic channel alteration and cattle grazing, while the latter is more dominant in areas of heavy timber harvesting and more precipitation as rain.

  18. Multibeam Sonar Mapping and Modeling of a Submerged Bryophyte Mat in Crater Lake, Oregon

    USGS Publications Warehouse

    Dartnell, Peter; Collier, Robert; Buktenica, Mark; Jessup, Steven; Girdner, Scott; Triezenberg, Peter

    2008-01-01

    Traditionally, multibeam data have been used to map sea floor or lake floor morphology as well as the distribution of surficial facies in order to characterize the geologic component of benthic habitats. In addition to using multibeam data for geologic studies, we want to determine if these data can also be used directly to map the distribution of biota. Multibeam bathymetry and acoustic backscatter data collected in Crater Lake, Oregon, in 2000 are used to map the distribution of a deep-water bryophyte mat, which will be extremely useful for understanding the overall ecology of the lake. To map the bryophyte's distribution, depth range, acoustic backscatter intensity, and derived bathymetric index grids are used as inputs into a hierarchical decision-tree classification model. Observations of the bryophyte mat from over 23 line kilometers of lake-floor video collected in the summer of 2006 are used as controls for the model. The resulting map matches well with ground-truth information and shows that the bryophyte mat covers most of the platform surrounding Wizard Island as well as on outcrops around the caldera wall.

  19. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  20. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    USGS Publications Warehouse

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  1. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005

    USGS Publications Warehouse

    Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.

    2008-01-01

    During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow

  2. Geologic Map of the Camas Quadrangle, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.

    2008-01-01

    The Camas 7.5' quadrangle is in southwestern Washington and northwestern Oregon approximately 20 km east of Portland. The map area, bisected by the Columbia River, lies on the eastern margin of the Portland Basin, which is part of the Puget-Willamette Lowland that separates the Cascade Range from the Oregon Coast Range. Since late Eocene time, the Cascade Range has been the locus of an episodically active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Bedrock consists largely of basalt and basaltic andesite flows that erupted during late Oligocene time from one or more vents located outside the map area. These rocks crop out only north of the Columbia River: at the base of Prune Hill in Camas, where they dip southward at about 5?; and east of Lacamas Creek, where they dip to the southeast at 15 to 30?. The volcanic bedrock is unconformably overlain by Neogene sediments that accumulated as the Portland Basin subsided. In the Camas quadrangle, most of these sediments consist of basaltic hyaloclastic debris generated in the volcanic arc to the east and carried into the Portland Basin by the ancestral Columbia River. The dominant structures in the map area are northwest-striking dextral strike-slip faults that offset the Paleogene basin floor as well as the lower part of the basin fill. The Oligocene rocks at Prune Hill and to the east were uplifted in late Pliocene to early Pleistocene time within a restraining bend along one of these dextral faults. In Pleistocene time, basaltic andesite flows issued from a volcano centered on the west side of Prune Hill; another flow entered the map area from the east. These flows are part of the Boring volcanic field, which comprises several dozen late Pliocene and younger monogenetic volcanoes scattered throughout the greater Portland region. In latest Pleistocene time, the Missoula floods of glacial-outburst origin inundated the Portland

  3. Floods on Yahara River, Lake Mendota to Lake Kegonsa, Dane County, Wisconsin, 1971

    USGS Publications Warehouse

    Holmstrom, Barry K.; Lawrence, Carl L.

    1971-01-01

    The profile and an approximate outline of the flooded area for the regional (100-year) flood has been determined for a 21.3-mile reach of the Yahara River, Dane County, Wisconsin, from State Highway 113 at the head of Lake Mendota downstream to the dam at the outlet of Lake Kegonsa. The reach consists principally of lake surface, which results in large amounts of flood-storage volume. The regional-flood profile ranges from 1.7 feet to 3.1 feet above normal low-water elevation.

  4. Clay mineralogy of Pleistocene Lake Tecopa, Inyo County, California

    USGS Publications Warehouse

    Starkey, Harry C.; Blackmon, Paul D.

    1979-01-01

    Pleistocene Lake Tecopa in southeastern Inyo County, Calif., was formed when the Amargosa River was blocked at the southern end of its valley. The lake acted as a settling basin for detrital material being transported by the river. This detritus consisted of clays, quartz, feldspars, and micas which became mudstones and siltstones. These mudstones and siltstones, much eroded and dissected after the draining of the lake, extend over the entire basin and are interbedded with tuffs formed by the intermittent deposition of volcanic ashfalls in the former lake waters. These lightcolored mudstones and siltstones are tough and well indurated and break with a conchoidal fracture. The predominant clay mineral in these detrital beds is a lithiumbearing saponite, which is found not only in the lake beds but also in the area beyond the boundaries of the lake, especially in fluvial deposits in the drainage basin of the Amargosa River to the north. This saponite does not contain enough lithium to be classified as a hectorite, and we have observed no indications that this clay consists of a mixture of two phases, such as hectorite and a diluent. Some authigenic dioctahedral montmorillonite, found only in small quantities close to the tuffs, was formed by alteration of the volcanic glass of the tuffs and was then admixed with the overlying or underlying detrital clays. The only authigenic clay-type mineral found in any significant quantity is sepiolite, found near the edges of the lake basin and stratigraphically located mainly within a meter of the two uppermost tuffs. This sepiolite probably was precipitated when silica became available to the magnesium-bearing lake water through dissolution of the volcanic ash. Precipitation of sepiolite probably did not occur within the tuffs owing to the presence of alumina in solution. Zeolites were produced there and sepiolite formed outside the margins of the tuffs. Also formed by the high-pH lake waters were water-soluble minerals, which

  5. 1972-73 Agreement Between Board of Junior College District No. 532 County of Lake and State of Illinois and College of Lake County Local United Professions Association.

    ERIC Educational Resources Information Center

    Lake County Coll., Grayslake, IL.

    Presented in this document is the agreement between the Board of Junior College District No. 532 County of Lake and State of Illinois and the College of Lake County Local United Professions Association for the period from 1972-73. Covered in the articles of agreement are sections on negotiation procedures, leaves of absence, school calendar, use…

  6. 76 FR 4254 - Irish Potatoes Grown in Certain Designated Counties in Idaho, and Malheur County, Oregon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 945 Irish Potatoes Grown in Certain... conducted among eligible producers of Irish potatoes in certain designated counties in Idaho, and Malheur... handling of Irish potatoes grown in the production area. DATES: The referendum will be conducted from...

  7. Role of storms and forest practices in sedimentation of an Oregon Coast Range lake

    NASA Astrophysics Data System (ADS)

    Richardson, K.; Hatten, J. A.; Wheatcroft, R. A.; Guerrero, F. J.

    2014-12-01

    The design of better management practices in forested watersheds to face climate change and the associated increase in the frequency of extreme events requires a better understanding of watershed responses to extreme events in the past and also under management regimes. One of the most sensitive watershed processes affected is sediment yield. Lake sediments record events which occur in a watershed and provide an opportunity to examine the interaction of storms and forest management practices in the layers of the stratigraphy. We hypothesize that timber harvesting and road building since the 1900s has resulted in increases in sedimentation; however, the passage of the Oregon Forest Practices Act (OFPA) in 1972 has led to a decrease in sedimentation. Sediment cores were taken at Loon Lake in the Oregon Coast Range. The 32-m deep lake captures sediment from a catchment highly impacted by recent land use and episodic Pacific storms. We can use sedimentological tools to measure changes in sediment production as motivated by extreme floods before settlement, during a major timber harvesting period, and after installation of forestry Best Management Practices. Quantification of changes in particle size and elemental composition (C, N, C/N) throughout the cores can elucidate changes in watershed response to extreme events, as can changes in layer thickness. Age control in the cores is being established by Cesium-137 and radiocarbon dating. Given the instrumental meteorological data and decadal climate reconstructions, we will disentangle climate driven signals from changes in land use practices. The sediment shows distinct laminations and varying thickness of layers throughout the cores. Background deposition is composed of thin layers (<0.5 cm) of fine silts and clays, punctuated by thicker layers (3-25 cm) every 10 to 75 cm. These thick layers consist of distinctly textured units, generally fining upward. We interpret the thick layers in Loon Lake to be deposited by

  8. Effects of ambient water quality on the endangered Lost River sucker in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Martin, B.A.; Saiki, M.K.

    1999-01-01

    Populations of the Lost River sucker Deltistes luxatus have declined so precipitously in the Upper Klamath Basin of Oregon and California that this fish was recently listed for federal protection as an endangered species. Although Upper Klamath Lake is a major refuge for this species, fish in the lake occasionally experience mass mortalities during summer and early fall. This field study was implemented to determine if fish mortalities resulted from degraded water quality conditions associated with seasonal blooms of phytoplankton, especially Aphanizomenon flos-aquae. Our results indicated that fish mortality did not always increase as water temperature, pH, and un-ionized ammonia concentration increased in Upper Klamath Lake. Little or no mortality occurred when these water quality variables attained their maximum values. On the other hand, an inverse relation existed between fish mortality and dissolved oxygen concentration. High mortality (>90%) occurred whenever dissolved oxygen concentrations decreased to 1.05 mg/L, whereas mortality was usually low (< 10%) when dissolved oxygen concentrations equaled or exceeded 1.58 mg/L. Stepwise logistic regression also indicated that the minimum concentration of dissolved oxygen measured was the single most important determinant of fish mortality.

  9. Fate and behavior of rotenone in Diamond Lake, Oregon, USA following invasive tui chub eradication.

    PubMed

    Finlayson, Brian J; Eilers, Joseph M; Huchko, Holly A

    2014-07-01

    In September 2006, Diamond Lake (OR, USA) was treated by the Oregon Department of Fish and Wildlife with a mixture of powdered and liquid rotenone in the successful eradication of invasive tui chub Gila bicolor. During treatment, the lake was in the middle of a phytoplankton (including cyanobacteria Anabaena sp.) bloom, resulting in an elevated pH of 9.7. Dissipation of rotenone and its major metabolite rotenolone from water, sediment, and macrophytes was monitored. Rotenone dissipated quickly from Diamond Lake water; approximately 75% was gone within 2 d, and the average half-life (t½) value, estimated by using first-order kinetics, was 4.5 d. Rotenolone persisted longer (>46 d) with a short-term t½ value of 16.2 d. Neither compound was found in groundwater, sediments, or macrophytes. The dissipation of rotenone and rotenolone appeared to occur in 2 stages, which was possibly the result of a release of both compounds from decaying phytoplankton following their initial dissipation. Fisheries managers applying rotenone for fish eradication in lentic environments should consider the following to maximize efficacy and regulatory compliance: 1) treat at a minimum of twice the minimum dose demonstrated for complete mortality of the target species and possibly higher depending on the site's water pH and algae abundance, and 2) implement a program that closely monitors rotenone concentrations in the posttreatment management of a treated water body. PMID:24733691

  10. Bathymetry of Lake Manatee, Manatee County, Florida, 2009

    USGS Publications Warehouse

    Bellino, Jason C.; Pfeiffer, William R.

    2010-01-01

    Lake Manatee, located in central Manatee County, Florida, is the principal drinking-water source for Manatee and Sarasota Counties. The drainage basin of Lake Manatee encompasses about 120 square miles, and the reservoir covers a surface area of about 1,450 acres at an elevation of 38.8 feet above NAVD 88 or 39.7 feet above NGVD 29. The full pool water-surface elevation is 39.1 feet above NAVD 88 (40.0 feet above NGVD 29), and the estimated minimum usable elevation is 25.1 feet above NAVD 88 (26.0 feet above NGVD 29). The minimum usable elevation is based on the elevation of water intake structures. Manatee County has used the stage/volume relation that was developed from the original survey in the 1960s to estimate the volume of water available for consumption. Concerns about potential changes in storage capacity of the Lake Manatee reservoir, coupled with a recent drought, led to this bathymetry mapping effort.

  11. Microbial transformations in Alkali Lake, Oregon. Final report, 1 Aug 88-31 Jul 91

    SciTech Connect

    Boone, D.R.

    1991-01-01

    An examination was made of the terminal metabolic processes in subsurface sediments near West Alkali Lake, Oregon, by performing microbial counts of methanogenic bacteria and isolating the predominant methanogenic culture. This methanogen was characterized and found to be physiologically and phylogenetically different from other described strains, so it represents a previously undescribed species of bacterium, which was named 'Methanohalophilus oregonensis'. In contrast to published descriptions of many other methanogens which have been isolated from hypersaline environments, this one is halotolerant rather than halophilic. Another important characteristic of this organism is that it is capable of catabolizing dimethylsulfide or methanethiol. This ability is important because these methylated sulfur compounds are major conduits by which sulfur moves between the atmosphere and terrestrial and aquatic ecosystems. Phylogenetic comparisons to known methanogens showed that this strain is closely related to another methanogen, 'Methanolobus siciliae' T4/M which was named but not described.

  12. Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F

    2016-01-01

    The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by

  13. Environmental influences on children's physical activity and eating habits in a rural Oregon County.

    PubMed

    Findholt, Nancy E; Michael, Yvonne L; Jerofke, Linda J; Brogoitti, Victoria W

    2011-01-01

    PURPOSE. To identify environmental barriers and facilitators of children's physical activity and healthy eating in a rural county. DESIGN. Community-based participatory research using mixed methods, primarily qualitative. SETTING. A rural Oregon county. SUBJECTS. Ninety-five adults, 6 high school students, and 41 fifth-grade students. MEASURES. In-depth interviews, focus groups, Photovoice, and structured observations using the Physical Activity Resource Assessment, System for Observing Play and Leisure Activity, Community Food Security Assessment Toolkit, and School Food and Beverage Marketing Assessment Tool. ANALYSIS. Qualitative data were coded by investigators; observational data were analyzed using descriptive statistics. The findings were triangulated to produce a composite of environmental barriers and assets. RESULTS. Limited recreational resources, street-related hazards, fear of strangers, inadequate physical education, and denial of recess hindered physical activity, whereas popularity of youth sports and proximity to natural areas promoted physical activity. Limited availability and high cost of healthy food, busy lifestyles, convenience stores near schools, few healthy meal choices at school, children's being permitted to bring snacks to school, candy used as incentives, and teachers' modeling unhealthy eating habits hindered healthy eating, whereas the agricultural setting and popularity of gardening promoted healthy eating. CONCLUSIONS. This study provides data on a neglected area of research, namely environmental determinants of rural childhood obesity, and points to the need for multifaceted and multilevel environmental change interventions. PMID:22040399

  14. Late Pleistocene outburst flooding from pluvial Lake Alvord into the Owyhee River, Oregon

    NASA Astrophysics Data System (ADS)

    Carter, Deron T.; Ely, Lisa L.; O'Connor, Jim E.; Fenton, Cassandra R.

    2006-05-01

    At least one large, late Pleistocene flood traveled into the Owyhee River as a result of a rise and subsequent outburst from pluvial Lake Alvord in southeastern Oregon. Lake Alvord breached Big Sand Gap in its eastern rim after reaching an elevation of 1292 m, releasing 11.3 km 3 of water into the adjacent Coyote Basin as it eroded the Big Sand Gap outlet channel to an elevation of about 1280 m. The outflow filled and then spilled out of Coyote Basin through two outlets at 1278 m and into Crooked Creek drainage, ultimately flowing into the Owyhee and Snake Rivers. Along Crooked Creek, the resulting flood eroded canyons, stripped bedrock surfaces, and deposited numerous boulder bars containing imbricated clasts up to 4.1 m in diameter, some of which are located over 30 m above the present-day channel. Critical depth calculations at Big Sand Gap show that maximum outflow from a 1292- to 1280-m drop in Lake Alvord was ˜ 10,000 m 3 s - 1 . Flooding became confined to a single channel approximately 40 km downstream of Big Sand Gap, where step-backwater calculations show that a much larger peak discharge of 40,000 m 3 s - 1 is required to match the highest geologic evidence of the flood in this channel. This inconsistency can be explained by (1) a single 10,000 m 3 s - 1 flood that caused at least 13 m of vertical incision in the channel (hence enlarging the channel cross-section); (2) multiple floods of 10,000 m 3 s - 1 or less, each producing some incision of the channel; or (3) an earlier flood of 40,000 m 3 s - 1 creating the highest flood deposits and crossed drainage divides observed along Crooked Creek drainage, followed by a later 10,000 m 3 s - 1 flood associated with the most recent shorelines in Alvord and Coyote Basins. Well-developed shorelines of Lake Alvord at 1280 m and in Coyote Basin at 1278 m suggest that after the initial flood, postflood overflow persisted for an extended period, connecting Alvord and Coyote Basins with the Owyhee River of the

  15. Late Pleistocene outburst flooding from pluvial Lake Alvord into the Owyhee River, Oregon

    USGS Publications Warehouse

    Carter, D.T.; Ely, L.L.; O'Connor, J. E.; Fenton, C.R.

    2006-01-01

    At least one large, late Pleistocene flood traveled into the Owyhee River as a result of a rise and subsequent outburst from pluvial Lake Alvord in southeastern Oregon. Lake Alvord breached Big Sand Gap in its eastern rim after reaching an elevation of 1292 m, releasing 11.3 km3 of water into the adjacent Coyote Basin as it eroded the Big Sand Gap outlet channel to an elevation of about 1280 m. The outflow filled and then spilled out of Coyote Basin through two outlets at 1278 m and into Crooked Creek drainage, ultimately flowing into the Owyhee and Snake Rivers. Along Crooked Creek, the resulting flood eroded canyons, stripped bedrock surfaces, and deposited numerous boulder bars containing imbricated clasts up to 4.1 m in diameter, some of which are located over 30 m above the present-day channel. Critical depth calculations at Big Sand Gap show that maximum outflow from a 1292- to 1280-m drop in Lake Alvord was ??? 10,000 m3 s- 1. Flooding became confined to a single channel approximately 40 km downstream of Big Sand Gap, where step-backwater calculations show that a much larger peak discharge of 40,000 m3 s- 1 is required to match the highest geologic evidence of the flood in this channel. This inconsistency can be explained by (1) a single 10,000 m3 s- 1 flood that caused at least 13 m of vertical incision in the channel (hence enlarging the channel cross-section); (2) multiple floods of 10,000 m3 s- 1 or less, each producing some incision of the channel; or (3) an earlier flood of 40,000 m3 s- 1 creating the highest flood deposits and crossed drainage divides observed along Crooked Creek drainage, followed by a later 10,000 m3 s- 1 flood associated with the most recent shorelines in Alvord and Coyote Basins. Well-developed shorelines of Lake Alvord at 1280 m and in Coyote Basin at 1278 m suggest that after the initial flood, postflood overflow persisted for an extended period, connecting Alvord and Coyote Basins with the Owyhee River of the Columbia River

  16. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  17. Optical dating of tsunami-laid sand from an Oregon coastal lake

    USGS Publications Warehouse

    Ollerhead, J.; Huntley, D.J.; Nelson, A.R.; Kelsey, H.M.

    2001-01-01

    Optical ages for five samples of tsunami-laid sand from an Oregon coastal lake were determined using an infrared optical-dating method on K-feldspar separates and, as a test of accuracy, compared to ages determined by AMS 14C dating of detrital plant fragments found in the same beds. Two optical ages were about 20% younger than calibrated 14C ages of about 3.1 and 4.3 ka. Correction of the optical ages using measured anomalous fading rates brings them into agreement with the 14C ages. The approach used holds significant promise for improving the accuracy of infrared optical-dating methods. Luminescence data for the other three samples result in optical age limits much greater than the 14C ages. These data provide a textbook demonstration of the correlation between scatter in the luminescence intensity of individual sample aliquots and their normalization values that is expected when the samples contain sand grains not adequately exposed to daylight just prior to or during deposition and burial. Thus, the data for these three samples suggest that the tsunamis eroded young and old sand deposits before dropping the sand in the lake. ?? 2001 Elsevier Science Ltd. All rights reserved.

  18. Optimizing Numerical Modeling and Field Data Collection in an Interdisciplinary Study of Upper Klamath Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Cheng, R. T.; Wood, T. M.; Gartner, J. W.

    2005-12-01

    Severe water quality conditions in Upper Klamath Lake (UKL), Oregon have led to critical fishery concerns for the region including the listing of Lost River and shortnose suckers as endangered species in 1988. Upper Klamath Lake was historically eutrophic but has become hypereutrophic, in large part due to land-use practices in the Klamath Basin. In 2002, in cooperation with the US Bureau of Reclamation (BOR), the U. S. Geological Survey (USGS) began a three-year study of the behavioral response of radio-tagged Lost River and shortnose suckers to water quality conditions in the lake. To support the tracking study, an array of continuous water quality monitors was installed in the northern third of UKL, and wind speed and direction were recorded at two sites. Two Acoustic Doppler Current Profilers (ADCPs) were deployed in the lake for two summer months in 2003 and 2004, providing the first continuous measurements of water velocities. Hydrodynamics is the key factor determining the water quality in the lake, velocities measured at only two locations are not sufficient to even qualitatively describe the lake-wide circulation. To establish a quantitative description of the complex circulation in UKL, an unstructured grid 3-D hydrodynamic model (UnTRIM) was implemented. When the observed wind speed and direction were used to drive the model, the numerical model reproduced the wind 'set-up' and 'set-down' at down wind and upwind ends of the lake, respectively. The UnTRIM model also reproduced the measured velocity time-series throughout the two-month ADCP deployment in 2003 with good agreement at a deep station. The correlations between the model results and ADCP data showed the same trend (slope nearly 1), but the R2 value was less than 0.5. This discrepancy is likely due to the fact that a uniform hourly averaged wind was applied over the lake. The complicated circulation patterns derived from the numerical model suggested a new strategy in designing the data

  19. 75 FR 15767 - Indiana Harbor Belt Railroad Company-Discontinuance of Trackage Rights Exemption-in Lake County, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... Exemption--in Lake County, IN Indiana Harbor Belt Railroad Company (IHB) has filed a verified notice of... milepost 46.10 at Hammond (Hammond Line), in Lake County, IN.\\1\\ The line traverses United States...

  20. Preliminary Study of the Effect of the Proposed Long Lake Valley Project Operation on the Transport of Larval Suckers in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.

    2009-01-01

    A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.

  1. 76 FR 31627 - Notice of Realty Action: Competitive Sale of Public Lands in Lake County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Bureau of Land Management Notice of Realty Action: Competitive Sale of Public Lands in Lake County, CA... Management (BLM) Ukiah Field Office proposes to sell an 80-acre parcel of public land in Lake County... receive a reply during normal business hours. SUPPLEMENTARY INFORMATION: The following public land...

  2. 78 FR 67216 - Norfolk Southern Railway Company-Abandonment Exemption-in Lake County, Ind.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Norfolk Southern Railway Company--Abandonment Exemption--in Lake County, Ind... Munster and the City of Schererville), in Lake County, Ind. (the Line). The Line traverses United...

  3. Bathymetry of Bonnie Doone Lake, Kornbow Lake, Mintz Pond, and Glenville Lake, Cumberland County, North Carolina, 1996-98

    USGS Publications Warehouse

    Giorgino, M.J.; Strain, R.E.

    1999-01-01

    Bathymetric surveys were conducted at four water-supply impoundments of Little Cross Creek in Cumberland County, North Carolina. The surveys were conducted in April 1996 at Mintz Pond and Glenville Lake, and in January 1998 at Bonnie Doone Lake and Kornbow Lake. The resulting bathymetric maps are the first to cover the entire range in depth for these reservoirs and provide a framework for future evaluations of bathymetry and storage capacity. Bathymetric maps were constructed from depth and position data collected at each reservoir. A boat-mounted, research-grade fathometer was used to record water depths with a vertical accuracy of 0.1 foot. At Mintz Pond and Glenville Lake, position was measured by using a wide-band laser tracking system interfaced with a total station survey instrument. This positioning method required multiple land-based control points to be established and was hampered by line-of-sight restrictions between the control points and the boat. At Bonnie Doone Lake and Kornbow Lake, a global positioning system was used to collect differentially corrected location data. This positioning method enabled more rapid data collection, eliminated the need for land-based control points, and provided improved data coverage. Spillway elevations range from 172.8 feet above mean sea level at Bonnie Doone Lake to 113.1 feet at Glenville Lake. Surface area and storage volume were computed for each reservoir and were related to water-surface elevations at 1-foot intervals. The combined surface acreage of the four Little Cross Creek reservoirs at their full-pool elevations is 120.97 acres, consisting of 21.20 acres at Bonnie Doone Lake, 47.09 acres at Kornbow Lake, 15.56 acres at Mintz Pond, and 37.12 acres at Glenville Lake. The four reservoirs have a combined usable storage capacity of 674.91 acre-feet, which is the sum of 127.93 acre-feet in Bonnie Doone Lake, 320.62 acre-feet in Kornbow Lake, 53.25 acre-feet in Mintz Pond, and 173.11 acre-feet in Glenville Lake.

  4. A 28-year (1963-90) study of homicide in Marion County, Oregon.

    PubMed

    Batten, P J; Hicks, L J; Penn, D W

    1991-09-01

    We describe 240 consecutive homicidal deaths that occurred in Marion County, Oregon, over a 28-year period (1963-90). An epidemiological assessment of the homicides yielded the following information: More than 91% of these deaths were primary homicides. In primary homicide, 63% of the victims and 88% of the offenders were male. In secondary homicide, 76% of the victims and all of the offenders were male. A high percentage of victims (83%) and offenders (84%) in primary homicide were Caucasian, as were 100% of victims and offenders in secondary homicide. About 12% of victims and 10% of offenders in primary homicide were Hispanic. Fifty-nine percent of primary homicides were intrasexual, as compared to 87% of secondary homicides. An intraracial pattern was found in 90% of primary homicides and in 100% of secondary homicides. The most frequent means of death in both primary and secondary homicides were firearms, physical beating, and stabbing. Strangers committed 80% of secondary homicides. This was in marked contrast to the victim-offender relationship found in primary homicides, where strangers were responsible for approximately 16% of the total, acquaintances for approximately 36%, and family members for approximately 48%. The overall clearance rate (i.e., the identification and charging of a suspect for the death) was 88%. PMID:1750395

  5. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    USGS Publications Warehouse

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm

  6. A TWO-YEAR FOLLOW-UP SURVEY OF ANTIBODY TO CRYPTOSPORIDIUM IN JACKSON COUNTY, OREGON FOLLOWING AN OUTBREAK OF WATERBORNE DISEASE

    EPA Science Inventory

    To estimate the duration of Cryptosporidium-specific antibody, a Western blot assay measured antibody in paired sera from 124 residents of Jackson County, Oregon collected 0.5 and 2.5 years after the end of an outbreak in Talent, Jackson County. The outcome measure was the intens...

  7. 75 FR 79018 - Notice of Realty Action: Proposed Sale of Public Lands in Bear Lake County, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Bureau of Land Management Notice of Realty Action: Proposed Sale of Public Lands in Bear Lake County, ID... Management (BLM) proposes the sale of 26 parcels of public lands totaling 1,543.14 acres in Bear Lake County... Bear Lake County, Idaho, are proposed for sale under the authority of Sections 203 and 209 of FLPMA...

  8. 27 CFR 9.232 - Big Valley District-Lake County.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Big Valley District-Lake... Areas § 9.232 Big Valley District-Lake County. (a) Name. The name of the viticultural area described in this section is “Big Valley District-Lake County”. For purposes of part 4 of this chapter, “Big...

  9. 75 FR 30422 - Swan Lake National Wildlife Refuge, Chariton County, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... for Swan Lake NWR, which we began by publishing a notice of intent on (71 FR 20722-20723, April 21... Fish and Wildlife Service Swan Lake National Wildlife Refuge, Chariton County, MO AGENCY: Fish and... assessment (EA) for Swan Lake National Wildlife Refuge (NWR) for public review and comment. In this draft...

  10. RECENT GEOCHEMICAL SAMPLING AND MERCURY SOURCES AT SULPHUR BANK MERCURY MINE, LAKE COUNTY, CA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM), located on the shore of Clear Lake in Lake County, California, has been identified as a significant source of mercury to the lake. Sulphur Bank was actively minded from the 1880's to the 1950's. Mining and processing operations at the Sulph...

  11. Use of agricultural land evaluation and site assessment in Linn County, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Huddleston, J. Herbert; Pease, James R.; Forrest, William G.; Hickerson, Hugh J.; Langridge, Russell W.

    1987-07-01

    Oregon state law requires each county in the state to identify agricultural land and enact policies and regulations to protect agricultural land use. State guidelines encourage the preservation of large parcels of agricultural land and discourage partitioning of agricultural land and construction of nonfarm dwellings in agricultural areas. A land evaluation and site assessment (LESA) system was developed in Linn County to aid in the identification of agricultural land and provide assistance to decision makers concerning the relative merits of requests to partition existing parcels of ricultural land and introduce nonagricultural uses. Land evaluation was determined by calculating soil potential ratings for each agricultural soil in the county based on the soil potentials for winter wheat, annual ryegrass, permanent pasture, and irrigated sweet corn. Soil potential ratings were expressed on a scale of 0 to 150 points. The land evaluation score for a parcel consists of the weighted average soil potential rating for all of the soils in the parcel, weighted by the percentage of each soil present in the parcel. Site assessment was based on the size of a parcel and on the amount of existing conflict between agricultural and nonagricultural uses, particularly rural residential uses, both adjacent to and in the vicinity of a parcel. Parcel size refers to both size in relation to a typical field and size in relation to a typical farm unit. Conflict takes into account the number of nonfarm dwellings within 1/4 mile (0.4 km) of a parcel, the amount of the perimeter that adjoins conflicting land uses, and the residential density adjacent to the parcel. Empirical scales were derived for assigning points to each of the site assessment factors. Both parcel size and conflict were worth 75 points in the model. For parcel size, 45 points were allocated to field size and 30 points to farm-unit size. For conflict, 30 points were allocated to nonfarm dwellings within 1/4 mile and 45

  12. Hydrologic hazards along Squaw Creek from a hypothetical failure of the glacial moraine impounding Carver Lake near Sisters, Oregon

    USGS Publications Warehouse

    Laenen, Antonius; Scott, K.M.; Costa, J.E.; Orzol, L.L.

    1987-01-01

    A hydrologic hazard exists that could create a large-magnitude, but short-duration, flood in the Squaw Creek drainage and inundate areas in and around the community of Sisters, Oregon. There is a 1 to 5% probability that Carver Lake, located at elevation 7,800 ft above sea level on the east slope of South Sister mountain, Oregon, could catastrophically empty. At the U.S. Geological Survey gage (14075000) on Squaw Creek between Carver Lake and Sisters, the magnitude of the breakout flood would be 10 times that of a 1% probability meteorological flood. In Sisters, the magnitude of the breakout flood would be about five times that of a 1% probability meteorological flood. Several conditions at Carver Lake indicate the potential hazard: (1) The lake is very deep for its size; the lake contains 740 acre-ft of water and is more than 100 ft deep; (2) There is a probability that a large magnitude avalanche and consequent overtopping of the lake could occur. There are steep slopes of unstable volcanic rock and an extensively cravassed glacier located above the lake; (3) The moraine dam confining the lake is steep-faced, rendering the dam unstable, and unvegetated making it highly erodible; (4) Large amounts of readily erodible material available for transport would increase the magnitude of a large flood and keep the flood from attenuating in the steep reaches of the Squaw Creek channel; (5) and, Geologically, there is a greater than normal possibility for the area to become seismically active. Earthquakes could cause rock and ice to fall into the lake. A one-dimensional unsteady-state streamflow model was used to route a hypothetical flood down the Squaw Creek drainage. This scenario creates a starting hydrograph with a peak of 180,000 cu ft/sec. The ensuing hypothetical flood would incorporate readily erodible debris and sediments in the steep canyons, increasing the total volume of the flood by a factor of two. As the peak emerges from the steeper slopes into a more

  13. Chronology and climatic controls of late Quaternary lake-level fluctuations in Chewaucan, Fort Rock and Alkali basins, south-central Oregon

    SciTech Connect

    Freidel, D.E.

    1993-01-01

    In this study, lake-level chronologies of three closed-basin lakes in south-central Oregon were developed and compared with the chronologies of Lakes Bonneville and Lahontan in Utah and Nevada. Geomorphic and stratigraphic study of shoreline features, and radiocarbon dating of rock varnish and gastroped shells associated with high shorelines indicate that the three Oregon paleolakes reached their most recent high stands synchronously before 18,000 to 17,000 radiocarbon yrs B.P., three thousand to forty-five hundred years earlier than the high stands of Lakes Lahontan and Bonneville. Levels of the Oregon paleolakes began to drop at a time when Lakes Lahontan and Bonneville were still rising. This study employed water balance modelling to evaluate several climatic scenarios that would generate high stands in the three Oregon lakes. Latitudinal shifts in the polar jet stream and associated westerlies, that occurred in response to the growth and decay of the continental ice sheets, have been proposed as a mechanism for the timing and magnitude of the Northern Great Basin paleolake high stands. General circulation model simulations and paleoenvironmental evidence indicate that at 18,000 radiocarbon yrs B.P. colder and moister than present conditions prevailed in the Northern Great Basin, while very cold, arid climatic conditions prevailed in the Northwest due to strong, glacial anticyclonic circulation generated by the continental ice sheet. Water balance modelling in this study indicates that colder and moister than present climatic conditions caused the Oregon lakes to rise to their highest level. Climatic conditions of south-central Oregon at 18,000 radiocarbon yrs B.P. were probably influenced more by the westerlies associated with the jet stream to the south than by the glacial anticylonic circulation to the north.

  14. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  15. Final environmental impact statement, Coyote Springs Cogeneration Project, Morrow County, Oregon - appendices

    SciTech Connect

    Not Available

    1994-07-01

    Portland General Electric Company (PGE) has submitted an Application for Site Certification (ASC) to the Oregon Department of Energy for development of the Coyote Springs cogeneration power plant in the Port of Morrow, Oregon. This document includes the appendixes for the Environmental Impact Statement. Appendix topics include the following: A-Wildlife and vegetation surveys; B-EMF Supplement; C-Biological Assessment; D-Oregon DOE proposed order, in the matter of the Application for Site Certificate of Portland General Electric Company; E-Ecological Monitoring Program; F-Air contaminant Discharge permit; G-National Pollution Discharge Elimination System Storm Water Discharge Permit; H-Erosion and Sedimentation Control Plan.

  16. Demographic analysis of Lost River sucker and shortnose sucker populations in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Janney, E.C.; Shively, R.S.; Hayes, B.S.; Barry, P.M.; Perkins, D.

    2008-01-01

    We used 13 years (1995-2007) of capture-mark-recapture data to assess population dynamics of endangered Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate survival, and information theoretic modeling was used to assess variation due to time, gender, species, and spawning subpopulations. Length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Average annual survival probability was 0.88 for Lost River suckers and 0.76 for shortnose suckers. Mean life span estimates based on these survival rates indicated that Lost River suckers survived long enough on average to attempt reproduction eight times, whereas shortnose suckers only survived to spawn three to four times. Shortnose sucker survival was not only poor in years of fish kills (1995-1997) but also was low in years without fish kills (i.e., 2002 and 2004). This suggests that high mortality occurs in some years but is not necessarily associated with fish kills. Annual survival probabilities were not only different between the two species but also differed between two spawning subpopulations of Lost River suckers. Length composition data indicated that recruitment into spawning populations only occurred intermittently. Populations of both species transitioned from primarily old individuals with little size diversity and consistently poor recruitment in the late 1980s and early 1990s to mostly small, recruit-sized fish by the late 1990s. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.

  17. Os and U-Th isotope signatures of arc magmatism near Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Ankney, Meagan E.; Shirey, Steven B.; Hart, Garret L.; Bacon, Charles R.; Johnson, Clark M.

    2016-03-01

    Interaction of mantle melts with the continental crust can have significant effects on the composition of the resulting melts as well as on the crust itself, and tracing this interaction is key to our understanding of arc magmatism. Lava flows and pyroclastic deposits erupted from ∼50 to 7.7 ka at Mt. Mazama (Crater Lake, Oregon) were analyzed for their Re/Os and U-Th isotopic compositions. Mafic lavas from monogenetic vents around Mt. Mazama that erupted during the buildup to its climactic eruption have lower 187Os/188Os ratios (0.1394 to 0.1956) and high 230Th excess ((230Th/238U)0 of 1.180 to 1.302), whereas dacites and rhyodacites tend to have higher 187Os/188Os ratios (0.2292 to 0.2788) and significant 238U excess ((230Th/238U)0 of 0.975 to 0.989). The less radiogenic Os isotope compositions of the mafic lavas can be modeled by assimilation of young (∼2.5 to 7 Ma), mafic lower crust that was modified during regional extension, whereas the more radiogenic Os isotope compositions of the dacites and rhyodacites can be attributed to assimilation of older (∼10 to 16 Ma), mid to upper crust that acquired its composition during an earlier period of Cascade magmatism. Production of Th excesses in the lower crust requires very young garnet formation accompanying dehydration melting in the lower crust at less than a few 100 ka by heat from recent basaltic magma injection. The results from this study suggest that the combination of Os and Th isotopes may be used to provide insights into the timescales of evolution of the continental crust in arc settings, as well as the influence of the crust on erupted magmas, and suggest a link between the age and composition of the lower and upper crust to regional tectonic extension and/or earlier Cascade magmatism.

  18. Geophysical Characterization of the Borax Lake Hydrothermal System in the Alvord Desert, Southeastern Oregon.

    NASA Astrophysics Data System (ADS)

    Hess, S.; Paul, C.; Bradford, J.; Lyle, M.; Clement, W.; Liberty, L.; Myers, R.; Donaldson, P.

    2003-12-01

    We are conducting a detailed geophysical characterization of an active hydrothermal system as part of an interdisciplinary project aiming to study the link between the physical characteristics of hydrothermal systems and biota that occupy those systems. The Borax Lake Hydrothermal System (BLHS), consisting of Borax Lake and the surrounding hot springs, is located near the center of the Alvord Basin in southeastern Oregon. As a result of Basin and Range extension, the Alvord Basin is a north-south trending graben bounded by the Steens Mountains to the west and the Trout Creek Mountains to the east. We are using several geophysical techniques to generate both basin-wide and high-resolution local characterizations of the Alvord Basin and the BLHS. To date we have completed two scales of seismic reflection surveys: an east-west trending basin scale survey and a shallow (~10 - 300 m depth) 3D survey of the BLHS. The basin scale seismic survey consists of 11 km of 2D, 60 fold CMP data acquired with a 200 lb accelerated weight drop. We acquired the 3D survey of the BLHS using a 7.62x39 mm SKS rifle and 240 channel recording system. The 3D patch covers ~ 90,000 sq. m with a maximum inline offset aperture of 225 m, crossline aperture of 75 m, and 360 degree azimuthal coverage. Additionally, we have completed a regional total-field magnetic survey for a large portion of the Alvord Basin and a 3D transient electromagnetic (TEM) survey of the BLHS. The 3D TEM survey covers the central portion of the 3D seismic survey. Initial results from the regional magnetic and seismic surveys indicate a mid-basin basement high. The basement high appears to correlate with the northeast trending BLHS. Additionally, the cross-basin seismic profile clearly shows that recent deformation has primarily been along an eastward dipping normal fault that bounds the basement high to the east. This suggests that both spatial and temporal characteristics of deformation control hydrothermal activity

  19. Proactive Regulation Reduces Asbestos Exposures in Lake County, CA

    NASA Astrophysics Data System (ADS)

    Gearhart, D.; Ley, J. F.

    2012-12-01

    The Lake County Air Quality Management District adopted its rule for Naturally Occurring Asbestos (NOA) in 1996 with the goal of preventing impacts and exposures through education, proactive project design, and common sense. Utilizing detailed GIS mapping and streamlined mitigation measures, the District maintains an effective program to reduce the hazard of NOA in our community. Measures for NOA are also incorporated into the County Grading Ordinance, and most small projects fall under those rules. Larger projects require a Serpentine Dust Control Plan from the District that provides clear mitigation measures, with the focus primarily on dust prevention. This cooperative approach results in a comprehensive effort to minimize potential health hazards from naturally occurring asbestos. Compliance is more easily achieved when workers are informed of the hazards and potential for exposure, and the rules/mitigation measures are clear and simple. Informed individuals generally take prompt corrective action to protect themself and those around them from the potential for breathing asbestos-containing dust. This proactive program results in improved community health by preventing exposure to asbestos.

  20. Climate inferences between paleontological, geochemical, and geophysical proxies in Late Pleistocene lacustrine sediments from Summer Lake, Oregon, western Great Basin

    NASA Astrophysics Data System (ADS)

    Heaton, Eric; Thompson, Greg; Negrini, Rob; Wigand, Peter

    2016-04-01

    Paleontological, geochemical, and geophysical data from western Great Basin pluvial Summer Lake, Oregon have established a high resolution paleoclimate record during the late Pleistocene Mono Lake Excursion (~34.75 ka), Dansgaard-Oeschger interstadials 6-8, and the end of Heinrich Even 4 (~38 ka). Proxies of grain-size, magnetic susceptibility, carbon/nitrogen ratio, ostracode analysis and palynology from a depocenter core show new results with improved age control regarding high amplitude, high frequency changes in lake level, lake temperature, and regional precipitation and temperature which correspond directly with colder/warmer and respectively drier/wetter climates as documented with Northern Atlantic Greenland ice core data. Results from geophysical and geochemical analysis, and the presence of ostracode Cytherissa lacustris consistently demonstrate the correspondence of low lake conditions and colder water temperatures during Dansgaard-Oeschger stadials and the Mono Lake Excursion. The opposite holds true during interstadials. Smaller grain size, increases in carbon/nitrogen ratio and consistent absence of C. lacustris suggest periods of increased discharge into the lake, increased lake level, and warmer water temperatures. Warmer/wetter climate conditions are confirmed during interstadials 7 and 8 from pollen analysis. Existence of Atriplex, Rosaceae, Chrysothamnus and Ambrosia, and pollen ratios of Juniperus/Dip Pinus and (Rosaceae+Atriplex+Poaceae+Chrysothamnus+Ambrosia)/(Pinus+Picea+T. mertensiana+Sarcobatus) suggest warmer/wetter semi-arid woodland conditions during interstadials 7 and 8. This contrasts with absences in these pollens and pollen ratios indicating colder/drier continental montane woodland conditions during stadials and the Mono Lake Excursion. Increases in Juniper/Dip Pinus ratio suggest a warmer/wetter climate during interstadial 6 however additional proxies do not demonstrate comparative warmer/wetter climate, deeper lake level or

  1. Water Quality of a Drained Wetland, Caledonia Marsh on Upper Klamath Lake, Oregon, after Flooding in 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Wood, Tamara M.

    2009-01-01

    The unexpected inundation of Caledonia Marsh, a previously drained wetland adjacent to Upper Klamath Lake, Oregon, provided an opportunity to observe nutrient release from sediments into the water column of the flooded area and the resulting algal growth. Three sites, with differing proximity to the levee breach that reconnected the area to Upper Klamath Lake, were selected for water sample collection in the marsh. Chlorophyll a concentrations (an indicator of algal biomass) were lowest and dissolved nutrient concentrations were highest at the site farthest from the breach. At the site where chlorophyll a concentrations were lowest, dissolved organic carbon concentrations were highest, and the presence of tannic compounds was indicated by the dark brown color of the water. Both DOC and specific conductance was higher at the site farthest from the breach, which indicated less mixing with Upper Klamath Lake water at that site. Dissolved oxygen concentrations and pH were lowest at the beginning of the sampling period at the site farthest from the levee breach, coincident with the lowest algal growth. Phosphorus concentrations measured in the flooded Caledonia Marsh were greater than median concentrations in Upper Klamath Lake, indicating that phosphorus likely was released from the previously drained wetland soils of the marsh when they were flooded. However, a proportional increase in algal biomass was not measured either in the marsh or in the adjacent bay of the lake. Nitrogen to phosphorus ratios indicated that phosphorus was not limiting to algal growth at the marsh sites, and possibly was not limiting in the adjacent bay either. In terms of nutrient dynamics, wetlands normally function as nutrient sinks. In contrast, the drained wetlands around Upper Klamath Lake cannot be expected to provide that function in the short term after being flooded and may, in fact, be a source of nutrients to the lake instead. The consequences for algal growth in the lake, however

  2. Hydrologic, water-quality, and meteorologic data for Newberry Volcano and vicinity, Deschutes County, Oregon, 1991-93

    USGS Publications Warehouse

    Crumrine, Milo D.; Morgan, David S.

    1994-01-01

    This report is a compilation of hydrologic, water- quality, and meteorologic data collected in the vicinity of Newberry Volcano near Bend, Oregon. These data were collected, in cooperation with the Bonneville Power Administration, the U.S. Forest Service, and the Bureau of Land Management, to provide baseline data for identifying and assessing the effects of proposed geothermal development in the vicinity of Newberry Volcano. Types of data collected include ground-water levels, lake levels, streamflow, water quality, and meteorologic measurements. Sites that were monitored include: (1) two thermal wells in the caldera, (2) several nonthermal wells in the caldera, (3) four wells outside of the caldera, (4) Paulina Creek, (5) Paulina and East Lakes, (6) hot springs that discharge into Paulina and East Lakes, and (7) meteorologic conditions near Paulina Lake. Data are presented for the period summer 1991 through fall 1993. Water-quality data collected include concentrations of common anions and cations, nutrients, trace elements, radiochemicals, and isotopes. Meteorologic data collected include wind velocity, air temperature, humidity, solar radiation, and precipitation.

  3. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    SciTech Connect

    Jimenez, T.; Tegen, S.; Beiter, P.

    2015-03-01

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and the second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.

  4. 77 FR 65011 - Buffalo Lake National Wildlife Refuge, Randall County, TX; Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... this process through a notice in the Federal Register (63 FR 33693; June 19, 1998). The Buffalo Lake... FR 33693). Texas Parks and Wildlife Department (TPWD) was formally invited to participate in the... Fish and Wildlife Service Buffalo Lake National Wildlife Refuge, Randall County, TX;...

  5. 75 FR 66779 - Ruby Lake National Wildlife Refuge, Elko and White Pine Counties, NV; Comprehensive Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Fish and Wildlife Service Ruby Lake National Wildlife Refuge, Elko and White Pine Counties, NV... to prepare a Comprehensive Conservation Plan (CCP) and Environmental Assessment (EA) for the Ruby... methods. E-mail: fw8plancomments@fws.gov . Include ``Ruby Lake CCP'' in the subject line of the...

  6. 75 FR 6218 - New Melones Lake Area Resource Management Plan, Tuolumne and Calaveras Counties, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... published in the Federal Register on November 2, 2009 (74 FR 56656). The written comment period on the Draft... Bureau of Reclamation New Melones Lake Area Resource Management Plan, Tuolumne and Calaveras Counties, CA... a Final RMP/EIS for the New Melones Lake Area. The Final RMP/EIS describes and presents...

  7. 75 FR 19990 - Lake Casitas Resource Management Plan, Ventura County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Bureau of Reclamation Lake Casitas Resource Management Plan, Ventura County, CA AGENCY: Bureau of... of Availability of the Draft EIS was published in the Federal Register on July 28, 2008 (73 FR 43785... made available the Final EIS for the Lake Casitas Resource Management Plan (RMP). The RMP...

  8. 76 FR 29259 - Swan Lake National Wildlife Refuge, Chariton County, MO; Final Comprehensive Conservation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... notice of availability (75 FR 30422) on June 1, 2010. Swan Lake NWR was established in 1937 by Executive... notice of intent on (71 FR 20722, April 21, 2006). For more information about the initial process, see... Fish and Wildlife Service Swan Lake National Wildlife Refuge, Chariton County, MO; Final...

  9. BOUNDS ON SUBSURFACE MERCURY FLUX FROM THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM) in Lake County, California has been identified as a significant source of mercury to Clear Lake. The mine was operated from the 1860s through the 1950's. Mining started with surface operations, progressed to shaft mining, and later to open p...

  10. Hydrology of the Winter Haven Chain of Lakes, Polk County, Florida

    USGS Publications Warehouse

    Sinclair, W.C.; Reichenbaugh, R.C.

    1981-01-01

    Fourteen interconnected lakes in and around the city of Winter Haven, Polk County, Fla., form the Winter Haven Chain of Lakes. Levels of the lakes during the spring of 1976 were at a record low stage for the 31 years of record. During 1960-76, rainfall had been below average for all but 2 years, and departure from average rainfall totaled 72.34 inches. Fluctuations in stage of Lake Howard, representative of the chain, and of Lake Otis, the nearest isolated lake that has a reasonably long record of stage , were compared with other hydrologic variables. Analyses of lake stage and rainfall records indicate that deficient rainfall has been the key factor in the decline of lake levels in the area. Manipulation of lake levels, pumpage from the lakes and underlying aquifer, and urbanization of the watershed probably have affected the lakes as well, but records are not available to determine the significance of their effects. The surficial aquifer drains to the lakes. Water level in the underlying Floridan aquifer is everywhere lower than in any of the lakes, thus water moves from the lakes and surficial aquifer through the confining clay layer to the Floridan aquifer. (USGS)

  11. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    USGS Publications Warehouse

    Klug, C.; Cashman, K.; Bacon, C.

    2002-01-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by

  12. Recent desiccation of Western Great Basin Saline Lakes: Lessons from Lake Abert, Oregon, U.S.A.

    PubMed

    Moore, Johnnie N

    2016-06-01

    Although extremely important to migrating waterfowl and shorebirds, and highly threatened globally, most saline lakes are poorly monitored. Lake Abert in the western Great Basin, USA, is an example of this neglect. Designated a critical habitat under the Western Hemisphere Shorebird Reserve Network, the lake is at near record historic low levels and ultra-high salinities that have resulted in ecosystem collapse. Determination of the direct human effects and broader climate controls on Lake Abert illustrates the broader problem of saline lake desiccation and suggests future solutions for restoration of key habitat values. A 65-year time series of lake area was constructed from Landsat images and transformed to lake volume and salinity. "Natural" (without upstream withdrawals) conditions were calculated from climate and stream flow data, and compared to measured volume and salinity. Under natural conditions the lake would have higher volume and lower salinities because annual water withdrawals account for one-third of mean lake volume. Without withdrawals, the lake would have maintained annual mean salinities mostly within the optimal range of brine shrimp and alkali fly growth. Even during the last two years of major drought, the lake would have maintained salinities well below measured values. Change in climate alone would not produce the recent low lake volumes and high salinities that have destroyed the brine shrimp and alkali fly populations and depleted shorebird use at Lake Abert. Large scale withdrawal of water for direct human use has drastically increased the imbalance between natural runoff and evaporation during periods of drought in saline lakes worldwide but could be offset by establishing an "environmental water budget" to lay a foundation for the conservation of saline lake habitats under continued threats from development and climate change. PMID:26950628

  13. Cruise report R/V Surf Surveyor cruise S1-00-CL, mapping the bathymetry of Crater Lake, Oregon

    USGS Publications Warehouse

    Gardner, James V.; Mayer, Larry A.; Buktenica, Mark W.

    2000-01-01

    During the Spring of 1999, the US Geological Survey (USGS) Pacific Seafloor Mapping Project (PSMP) was contacted by the US National Park Service Crater Lake National Park (CLNP) to inquire about the plausibility of producing a high-resolution multibeam bathymetric map of Crater Lake. The purpose was to generate a much higher-resolution and more geographically accurate bathymetric map than was produced in 1959, the last time the lake had been surveyed. Scientific interest in various aspects of Crater Lake (aquatic biology, geochemistry, volcanic processes, etc.) has increased during the past decade but the basemap of bathymetry was woefully inadequate. Funds were gathered during the early part of 2000 and the mapping began in late July, 2000. Crater Lake (see fig. 1 in report) is located in south central Oregon (see fig. 2 in report) within the Cascades Range, a chain of volcanoes that stretches from northern California to southern British Columbia. Crater Lake is the collapsed caldera of Mt. Mazama from a climatic eruption about 7700-yr ago (Nelson et al., 1988; Bacon and Lanphere, 1990; Bacon et al., 1997). The floor of Crater Lake has only been mapped three times since the lake was first stumbled upon by gold prospectors in the 1853. The first survey was carried by out by William G. Steel during a joint USGS-US Army expedition under the direction of Maj. Clarence E. Dutton in 1886 (Dutton, 1889). Steel�s mapping survey collected 186 soundings using a Millers lead-line sounding machine (see fig.3 in report). The resulting map (see fig.4 in report) shows only soundings and no attempts were made to generate contours. The second survey, conducted in 1959 by the US Coast and Geodetic Survey, mapped the bathymetry of Crater Lake with an acoustic echo sounder using radar navigation and collected 4000 soundings. The data were contoured by Williams (1961) and Byrne (1962) and the result is a fairly detailed map of the large-scale features of Crater Lake (see fig. 5

  14. Dependence of flow and transport through the Williamson River Delta, Upper Klamath Lake, Oregon, on wind, river inflow, and lake elevation

    USGS Publications Warehouse

    Wood, Tamara M.

    2012-01-01

    The hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to run 384 realizations of a numerical tracer experiment in order to understand the relative effects of wind, lake elevation, and Williamson River inflow on flow and transport (the movement of water and passively transported constituents) through the Williamson River Delta. Significant findings from this study include: * The replacement rate of water increased in Tulana and Goose Bay with increasing lake elevation, Williamson River inflow, and wind speed. * The fraction of Williamson River inflow passing through either side of the Delta increased with lake elevation and Williamson River inflow. * The partial replacement rate of water in Goose Bay with water from the Williamson River increased with wind speed. * The partial replacement rate of water in Tulana with water from the Williamson River decreased with wind speed. * Strong wind forcing at the water surface caused more of the Williamson River inflow to pass through Goose Bay than through Tulana. * Westerly to northwesterly winds result in more of the Williamson River inflow passing through the Goose Bay side of the Delta than through the Tulana side. * Regression models developed from the tracer experiments can be used to quantify the dependencies between transport and the independent variables to obtain rough estimates of useful quantities such as residence time and steady-state solute concentrations.

  15. An aem-tem study of weathering and diagenesis, Abert Lake, Oregon: I. Weathering reactions in the volcanics

    USGS Publications Warehouse

    Banfield, J.F.; Jones, B.F.; Veblen, D.R.

    1991-01-01

    Abert Lake in south-central Oregon provides a site suitable for the study of sequential weathering and diagenetic events. In this first of two papers, transmission electron microscopy was used to characterize the igneous mineralogy, subsolidus alteration assemblage, and the structural and chemical aspects of silicate weathering reactions that occur in the volcanic rocks (basalts, basaltic andesites, and dacitic/ rhyolitic extrusive and pyroclastics) that outcrop around the lake. Olivine and pyroxene replacement occurred topotactically, whereas feldspar and glass alteration produced randomly oriented smectite in channels and cavities. The tetrahedral, octahedral, and interlayer compositions of the weathering products, largely dioctahedral smectites, varied with primary mineral composition, rock type, and as the result of addition of elements released from adjacent reaction sites. Weathering of the highly evolved, Fe-rich Jug Mountain complex at the north end of the lake produced a homogeneous smectite assemblage that contrasts with the heterogeneous smectite assemblage replacing the volcanics along the eastern margin of the lake. The variability within and between the smectite assemblages highlights the microenvironmental diversity, fluctuating redox conditions, and variable solution chemistry associated with mineral weathering reactions in the surficial environment. Late-stage exhalative and aqueous alteration of the volcanics redistributed many components and formed a variety of alkali and alkali-earth carbonate, chloride, sulfate, and fluoride minerals in vugs and cracks. Overall, substantial Mg, Si, Na, Ca, and K are released by weathering reactions that include the almost complete destruction of the Mg-smectite that initially replaced olivine. The leaching of these elements from the volcanics provides an important source of these constituents in the lake water. The nature of subsequent diagenetic reactions resulting from the interaction between the materials

  16. HYDROGEOLOGICAL AND GEOCHEMICAL FACTORS INFLUENCING MERCURY FATE AND TRANSPORT AT THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    Clear Lake, located approximately 150 km north of San Francisco in Lake County, is one of the largest fresh water lakes in the California. Elevated mercury levels were first identified in fish from Clear Lake in the late 1970s and early 1980s. Although naturally occurring mercury...

  17. 78 FR 43827 - Irish Potatoes Grown in Modoc and Siskiyou Counties, California, and in All Counties in Oregon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ..., reporting, and assessment collection regulations effective July 1, 1999 (64 FR 49352). The suspended...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 947 Irish Potatoes Grown in Modoc and... handling of Irish potatoes grown in Modoc and Siskiyou Counties, California, and in all counties in...

  18. Status of Oregon's Children: 1999 County Data Book. Special Focus: Early Childhood.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count data book examined trends in the well-being of Oregon's children, focusing on the well-being of children under 8 years. This statistical portrait is based on indicators of child well being in four areas: (1) health, including immunizations, health insurance, and health risk factors; (2) family well-being, including divorce and…

  19. Status of Oregon's Children: 1997 County Databook. Special Focus: Youth-at-Risk.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count databook examines statewide trends in the well-being of Oregon's children, focusing on youth at risk. The statistical report is based on 12 indicators of well-being: (1) juvenile arrests; (2) teen sexuality; (3) high school dropout rate; (4) teen suicide; (5) reading proficiency; (6) math proficiency; (7) child abuse and neglect;…

  20. Status of Oregon's Children: County Data Book 2000. Special Focus: Kids in the Middle.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count data book examined trends in the well-being of Oregon's children, focusing on the well-being of preteens. This statistical portrait is based on 12 indicators of child well being: (1) juvenile arrests; (2) teen pregnancy; (3) suicide attempts for 10- to 17-year-olds; (4) high school dropout rate; (5) eighth grade reading…

  1. Status of Oregon's Children: 2002 County Data Book. Special Focus: Health and Safety.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count data book examines trends in the well-being of Oregons children, focusing on child health, nutrition, and child safety. This statistical portrait is based on 17 indicators of child well-being: (1) child care supply; (2) third grade reading proficiency; (3) third grade math proficiency; (4) juvenile arrests; (5) suicide attempts;…

  2. Status of Oregon's Children: 1998 County Data Book. Special Focus: Children's Health Care.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count report examines statewide trends in the well-being of Oregon's children, focusing on children's health care. The statistical portrait is based on indicators of well-being including: (1) children's insurance coverage; (2) health care access; (3) health outcomes, including immunization rates and early prenatal care; (4) juvenile…

  3. Geology of the Anlauf and Drain Quadrangles, Douglas and Lane Counties, Oregon

    USGS Publications Warehouse

    Hoover, Linn

    1963-01-01

    The Anlauf and Drain quadrangles, Oregon, lie about 20 miles south of the city of Eugene, in Douglas and Lane Counties. They constitute an area of about 435 square miles that includes parts of both the Cascade Range and Coast Range physiographic provinces. A sequence of lower Tertiary sedimentary and volcanic rocks with a maximum thickness of about 20,000 feet is exposed in the area. The oldest part of this sequence is the Umpqua formation of early Eocene age consisting of a lower member of vesicular and amygdaloidal olivine basalt flows, a middle member of water-laid vitric and lapilli crystal tuff, and an upper member of interbedded fissile siltstone and basaltic sandstone which contains a 300-foot tongue of massive to thick-bedded basaltic sandstone near its top. These rocks are predominantly of marine origin, although the general absence of pillow structures which are common in basaltic lavas of equivalent age elsewhere in the Coast Ranges suggests that some of the flows were poured out subaerially. The overlying tuff member, however, contains Foraminifera and in places has a lime content slightly in excess of 10 percent. Mollusca and Foraminifera indicate that the Umpqua formation is of early Eocene age and is a correlative of the Capay formation of California. The Tyee formation of middle Eocene age overlies the Umpqua formation and consists of more than 5,000 feet of rhythmically deposited sandstone and siltstone in beds 2 to 30 feet thick. The basal part of each bed consists of medium- to coarse-grained sandstone that grades upward into fine-grained sand- stone and siltstone. The principal constituents of the sandstone are quartz, partly a1tered feldspar, mica, clay, and fragments of basalt, fine-grained argillaceous rocks, and mica schist. Other detrital minerals include epidote, garnet, blue-green hornblende, tourmaline, and zoisite. The depositional environment of the Tyee formation is poorly known, although the rhythmic-graded bedding suggests turbidity

  4. Chemical, isotopic, and dissolved gas compositions of the hot springs of the Owyhee Uplands, Malheur County, Oregon

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, William C.

    1994-01-01

    Hot springs along the Owyhee River in southeastern Oregon between Three Forks and Lake Owyhee could be part of a north flowing regional system or a series of small separate geothermal systems Heat for the waters could be from a very young (Holocene) volcanic activity (basalt flows) of the Owyhee Uplands or the regional heat flow. The springs discharge warm to hot, dilute, slightly alkaline, sodium bicarbonate water. Chemically they are similar to the dilute thermal water at Bruneau Grand View and Twin Falls, Idaho. Maximum aquifer temperatures in the Owyhee Uplands, estimated from chemical geothermometry, are about 100°C. Dissolved helium concentrations, carbon 14 activity, and chemical and isotope data are examined fro systematic trends which would indicate a geothermal system of regional extent.

  5. Bathymetry of Lake Michie, Durham County, North Carolina, 1990-92

    USGS Publications Warehouse

    Weaver, J. Curtis

    1993-01-01

    This map report presents the results of a bathymetric survey conducted as part of a 1990-92 study on the effects of sedimentation on Lake Michie, located in northeastern Durham County, North Carolina. Bathymetric data collected at the lake during 1990-92 indicate that, under normal pool conditions at the spillway elevation of 341.0 feet above sea level, the storage volume is 11,070 acre-feet, and the surface area is 508.7 acres. The maximum depth recorded in the lake was 75 feet at approximately 500 feet upstream of Lake Michie Dam.

  6. Hydrologic description of Lake Hancock, Polk County, Florida

    USGS Publications Warehouse

    Hammett, K.M.; Snell, L.J.; Joyner, Boyd F.

    1981-01-01

    Available data were evaluated to document hydrologic conditions in the Lake Hancock basin. Bathymetric data indicate that Lake Hancock is very shallow, having a maximum depth of about 3 feet. The lake bottom is covered by a layer of organic material that may be more than 5 feet thick near the center of the lake. Lake Hancock 's stage fluctuates within 0.5 foot of average stage about 40 percent of the time. Lake outflow is through an operable control. There are many days with no outflow in some years. A water-budget analysis of the lake indicates that substantial lake stage declines in 1968 and 1975 followed successive years of deficient precipitation and were primarily the result of a net loss of water from the lake to the ground-water system. During a period in 1971-72 when lake stage remained relatively stable, the ground-water system contributed a significant volume of water to the lake. Water-quality data indicate that Lake Hancock is in a eutrophic state. The eutrophication process appears to have been accelerated through the addition of nutrients from inflow of wastewater effluent from secondary treatment plants. (USGS)

  7. WINCHESTER LAKE, LEWIS COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1985

    EPA Science Inventory

    Winchester Lake, Idaho (17060306) is an 85 acre recreation site located approximately 30 miles southeast of Lewiston. Citizen complaints of poor water clarity, odors, and decline in angler success led to a 6 month study of the lakes water quality in 1985. Winchester Lake exhibi...

  8. Transition of Benthic Nutrient Sources after Engineered Levee Breaches Adjacent to Upper Klamath and Agency Lakes, Oregon

    NASA Astrophysics Data System (ADS)

    Kuwabara, J. S.; Topping, B. R.; Carter, J. L.; Parchaso, F.; Cameron, J. M.; Asbill, J. R.; Carlson, R. A.; Fend, S. V.; Engelstad, A. C.

    2010-12-01

    Nonmetallic pore-water profilers were deployed during four sampling trips between November 2007 and July 2009 after engineered levee breaches on 30 October 2007, hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. Centimeter-scale measurements of the vertical dissolved-nutrient concentration gradients from the profilers served as the basis for diffusive-flux determinations. Wetland areas undergoing restoration and those being used for water storage around these lakes function very differently than nearby established wetlands within the Upper Klamath National Wildlife Refuge. Consistent with previous results from Upper Klamath Lake, benthic flux of soluble reactive phosphorus (SRP) in the wetlands was consistently positive, and when areally and seasonally averaged over the 13 km2 newly restored wetlands, an SRP flux to the overlying water column (~87,000 kg over the 3-month cyanophyte bloom of Aphanizomenon flos-aquae (AFA)) exceeded the magnitude of riverine inputs (42,000 kg for that season). SRP benthic flux at a site within the restored wetland area ~0.5 km from the breach was elevated relative to all other lake and wetland sites (including another wetland site <0.1 km from the breached levee) in 2009 suggests that the restored wetlands, at least chemically, remain in a transition period following the hydrologic reconnection of the lake and wetland environments. Ammonium fluxes to the water column remained consistently positive throughout the sampling period, generating a toxicological concern for endangered fish populations at elevated summer pH. Soluble reactive phosphorus (SRP) concentrations were lower than detection limits (<0.03 mg-P/L) at all lake and wetland sites following the levee breaches. As indicated in previous studies, SRP concentrations for 2009 sampling trips indicated higher concentrations at the end of the annual AFA bloom relative to its beginning, suggesting a limiting factor or factors other

  9. Mercury bioaccumulation in fishes from subalpine lakes of the Wallowa-Whitman National Forest, northeastern Oregon and western Idaho

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2013-01-01

    Mercury (Hg) is a globally distributed pollutant that poses considerable risks to human and wildlife health. Over the past 150 years since the advent of the industrial revolution, approximately 80 percent of global emissions have come from anthropogenic sources, largely fossil fuel combustion. As a result, atmospheric deposition of Hg has increased by up to 4-fold above pre-industrial times. Because of their isolation, remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited Hg through freshwater food webs, as well as for evaluating the relative importance of Hg loading versus landscape influences on Hg bioaccumulation. The increase in Hg deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in Hg emissions may propagate to changes in Hg bioaccumulation and ecological risk. In this study, we evaluated Hg concentrations in fishes of high-elevation, sub-alpine lakes in the Wallowa-Whitman National Forest in northeastern Oregon and western Idaho. Our goals were to (1) assess the magnitude of Hg contamination in small-catchment lakes to evaluate the risk of atmospheric Hg to human and wildlife health, (2) quantify the spatial variability in fish Hg concentrations, and (3) determine the ecological, limnological, and landscape factors that are best correlated with fish total mercury (THg) concentrations in these systems. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. Importantly, our top statistical model explained 87 percent of the variability in fish THg concentrations among lakes with four key landscape and limnological variables— catchment conifer density (basal area of conifers within a lake’s catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. The basal area of conifers

  10. Mineral resources of the Orejana Canyon Wilderness Study Area, Harney county, Oregon

    SciTech Connect

    Conrad, J.E.; King, H.D.; Gettings, M.E.; Diggles, M.F.; Sawatzky, D.L. ); Benjamin, D.A. )

    1988-01-01

    The Orejana Canyon Wilderness Study Area in south-central Oregon is discussed. It is underlain by Miocene age basalts and interbedded sediments and rhyolite welded tuff. The study area has low mineral resource potential for gold and silver along the Orejana Rim escarpment. There is low mineral resource potential for tin in some exposures of the rhyolite tuff and low potential for oil and gas resources. There are no mining claims or identified mineral resources in the study area.

  11. Mineral resources of the Hawk Mountain Wilderness Study Area, Honey County, Oregon

    SciTech Connect

    Turrin, B.D.; Conrad, J.E.; Plouff, D.; King, H.D. ); Swischer, C.C. ); Mayerle, R.T.; Rains, R.L. )

    1989-01-01

    The Hawk Mountain Wildeness Study Area in south-central Oregon is underlain by Miocene age basalt, welded tuff, and interbedded sedimentary rock. The western part of this study area has a low mineral resource potential for gold. There is a low mineral resource potential for small deposits of uranium in the sedimentary rocks. This entire study area has a low potential for geothermal and oil and gas resources. There are no mineral claims or identified resources in this study area.

  12. Assessment of Mercury in Fish Tissue from Select Lakes of Northeastern Oregon

    EPA Science Inventory

    A fish tissue study was conducted in five northeastern Oregon reservoirs to evaluate mercury concentrations in an area where elevated atmospheric mercury deposition had been predicted by a national EPA model, but where tissue data were sparse. The study targeted resident predator...

  13. Hydrologic reconnaissance of Tsala Apopka Lake, Citrus County, Florida

    USGS Publications Warehouse

    Rutledge, A.T.

    1977-01-01

    The swamps, marshes, and open waters of Tsala Apopka Lake, Florida, were mapped and the hydrologic connection between the lake and the Floridan limestone aquifer was studied from October 1975 to September 1976. Tsala Apopka Lake is a series of shallow , interconnected lakes, ponds, and marshes whose water surface slopes northward at 0.5 foot per mile. According to aerial photographs of December 1972, only 6 percent of the 103 square miles of study area is covered by open water. Open water is abundant along the western side of the lake, dense and sparse marshes occupy most of the lake area, and swamps occupy a thick zone around the Withlacoochee River which borders the lake to the east. Only a small fraction of the total surface flow occurs through the lake. The average lake outflow through S-351 canal is 23.6 cfs; while the average river flow at Holder is 714 cfs. Tsala Apopka Lake is hydraulically connected to the Floridan aquifer. At low flow, the major source of water in the river is ground water from the Floridan aquifer. The specific conductance of water in the Floridan aquifer averages 250-350 umho/cm (micromhos per centimeter) at 25C in this area. The specific conductance of water in the Withlacoochee River near Holder averages 268 umho/cm at 25C, while water in Tsala Apopka Lake at Hernando averages 139 umho/cm at 25C. (Woodard-USGS)

  14. Exploring the Use of Historic Earthquake Information to Differentiate Between Deposit Triggers for the High-resolution Stratigraphy from Squaw Lakes, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Morey, A. E.; Gavin, D. G.; Goldfinger, C.; Nelson, A. R.

    2014-12-01

    The unique setting and high-resolution stratigraphy at Squaw Lakes, Oregon provides an opportunity to apply lake paleoseismology to southern Cascadia forearc lakes. These lakes were formed when a landslide dammed Squaw Creek located ~100 km from the Oregon coast at the Oregon/California border separating the drainages at the confluence of Squaw and Slickear Creeks. The upper lake contains evidence of disturbance events much too frequent to be the result of earthquakes alone. A link to historic events provides information that may be used to differentiate between deposit triggers and improve the interpretation of the prehistoric portion of the sedimentary record. Regional newspapers published historic accounts of earthquakes experienced by the local people, the most notable of which is the November 23 (or 22nd), 1873 Crescent City, CA earthquake. Although the 1906 San Francisco earthquake was also felt in this region, reports indicate that shaking was much stronger near Jacksonville, Oregon (only 25 miles to the north of Squaw Lakes) as a result of the 1873 earthquake. The depth range that most likely contains sediment deposited within a few years of 1873 can be determined using a new high-resolution age model for the Upper Squaw Lake sediment core (Gavin et al., in prep). This depth range in the core contains a thick deposit that is similar in structure to deposits deeper in the core that have been proposed to correlate with the marine record of Cascadia great earthquakes. These disturbance event deposits are thicker, graded deposits, where grading is dominated by the percentage of organic content as compared to those interpreted to be a result of watershed disturbances. Recently acquired radiocarbon ages for the Lower Squaw Lake core suggests the thicker Upper Squaw Lake deposits correlate to those recorded in the lower-resolution sedimentary record at Lower Squaw Lake. The character of the likely contemporaneous deposits from the lower lake show grading more

  15. Flood-inundation maps for Lake Champlain in Vermont and in northern Clinton County, New York

    USGS Publications Warehouse

    Flynn, Robert H.; Hayes, Laura

    2016-01-01

    Digital flood-inundation maps for an approximately100-mile length of Lake Champlain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York were created by the U.S. Geological Survey (USGS) in cooperation with the International Joint Commission (IJC). The flood-inundationmaps, which can be accessed through the International Joint Commission (IJC) Web site at http://www.ijc.org/en_/, depict estimates of the areal extent flooding correspondingto selected water levels (stages) at the USGS lake gage on the Richelieu River (Lake Champlain) at Rouses Point, N.Y. (station number 04295000). In this study, wind and seiche effects (standing oscillating wave with a long wavelength) were not taken into account and the flood-inundation mapsreflect 11 stages (elevations) for Lake Champlain that are static for the study length of the lake. Near-real-time stages at this lake gage, and others on Lake Champlain, may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the Richelieu River (Lake Champlain) at Rouses Point.Static flood boundary extents were determined for LakeChamplain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York using recently acquired (2013–2014) lidar (light detection and ranging) and may be referenced to any of the five USGS lake gages on Lake Champlain. Of these five lakgages, USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y., is the only USGS lake gage that is also a National Weather Service prediction location. Flood boundary extents for the Lake Champlain static flood-inundation map corresponding to the May 201 flood(103.2 feet [ft], National Geodetic Vertical Datum [NGVD] 29) were evaluated by comparing these boundary

  16. Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001

    USGS Publications Warehouse

    Fisher, Lawrence H.; Wood, Tamara M.

    2004-01-01

    Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance

  17. Mineral Resources of the Hells Canyon Study Area, Wallowa County, Oregon, and Idaho and Adams Counties, Idaho

    USGS Publications Warehouse

    Simmons, George C.; Gualtieri, James L.; Close, Terry J.; Federspiel, Francis E.; Leszcykowski, Andrew M.

    2007-01-01

    Field studies supporting the evaluation of the mineral potential of the Hells Canyon study area were carried out by the U.S. Geological Survey and the U.S. Bureau of Mines in 1974-76 and 1979. The study area includes (1) the Hells Canyon Wilderness; (2) parts of the Snake River, Rapid River, and West Fork Rapid River Wild and Scenic Rivers; (3) lands included in the second Roadless Area Review and Evaluation (RARE II); and (4) part of the Hells Canyon National Recreation Area. The survey is one of a series of studies to appraise the suitability of the area for inclusion in the National Wilderness Preservation System as required by the Wilderness Act of 1964. The spectacular and mineralized area covers nearly 950 mi2 (2,460 km2) in northeast Oregon and west-central Idaho at the junction of the Northern Rocky Mountains and the Columbia Plateau.

  18. Relation between selected water-quality variables and lake level in Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Fuhrer, Gregory J.; Morace, Jennifer L.

    1996-01-01

    Based on the analysis of data that they have been collecting for several years, the Klamath Tribes recently recommended that the Bureau of Reclamation (Reclamation) modify the operating plan for the dam to make the minimum lake levels for the June-August period more closely resemble pre-dam conditions (Jacob Kann, written commun., 1995). The U.S. Geological Survey (USGS) was asked to analyze the available data for the lake and to assess whether the evidence exists to conclude that year-to-year differences in certain lake water-quality variables are related to year-to-year differences in lake level. The results of the analysis will be used as scientific input in the process of developing an operating plan for the Link River Dam.

  19. 76 FR 44912 - Callaway and Son Drum Service Superfund Site; Lake Alfred, Polk County, FL; Notice of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... AGENCY Callaway and Son Drum Service Superfund Site; Lake Alfred, Polk County, FL; Notice of Settlement... costs concerning the Callaway and son Drum Service Superfund Site located in Lake Alfred, Polk County.... Painter. Submit your comments by Site name Callaway and Son Drum Service Superfund Site by one of...

  20. Development of a CE-QUAL-W2 temperature model for Crystal Springs Lake, Portland, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Stonewall, Adam J.

    2016-01-01

    Model simulations (scenarios) were run with lower water surface elevations in Crystal Springs Lake and increased shading to the lake to assess the relative effect the lake and pond characteristics have on water temperature. The Golf Pond was unaltered in all scenarios. The models estimated that lower lake elevations would result in cooler water downstream of the Golf Pond and shorter residence times in the lake. Increased shading to the lake would also provide substantial cooling. Most management scenarios resulted in a decrease in 7-day average of daily maximum values by about 2.0– 4.7 °F (1.1 –2.6 °C) for outflow from Crystal Springs Lake during the period of interest. Outflows from the Golf Pond showed a net temperature reduction of 0.5–2.7 °F (0.3–1.5 °C) compared to measured values in 2014 because of solar heating and downstream warming in the Golf Pond resulting from mixing with inflow from Reed Lake.

  1. Bathymetric survey of Lake Calumet, Cook County, Illinois

    USGS Publications Warehouse

    Duncker, James J.; Johnson, Kevin K.; Sharpe, Jennifer B.

    2015-01-01

    The U.S. Geological Survey collected bathymetric data in Lake Calumet and a portion of the Calumet River in the vicinity of Lake Calumet to produce a bathymetric map. The bathymetric survey was made over 3 days (July 26, September 11, and November 7, 2012). Lake Calumet has become a focus area for Asian carp rapid-response efforts by state and federal agencies, and very little bathymetric data existed prior to this survey. This bathymetric survey provides data for a variety of scientific and engineering studies of the area; for example, hydraulic modeling of water and sediment transport from Lake Calumet to the Calumet River.

  2. Mineral resources of the Upper Leslie Gulch and Slocum Creek Wilderness Study Areas, Malheur County, Oregon

    SciTech Connect

    Vander Meulen, D.B.; Griscom, A.; King, H.D. ); Benham, J.R. )

    1989-01-01

    The Upper Leslie Gulch and Slocum Creek Wilderness Areas are located within Mahogany Mountain caldera of eastern Oregon. In both study areas, caldera-forming tuffs and intrusions have a moderate potential for uranium and thorium resources and a low potential for zinc resources. Both study areas have a low potential for lithium resources. Rhyolite dikes and plugs that intrude both study areas have a low potential for gold, silver, mercury, and zinc resources. North-trending fault zones within and adjacent to the Solcum Creek Wilderness Study Area have a moderate potential for geothemal resources. The Upper Leslie Gulch Wilderness Study Area has an unknown potential for geothermal resources.

  3. Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report

    SciTech Connect

    Jenkins, H. II; Giddings, M.; Hanson, P.

    1982-09-01

    This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

  4. Water Velocity and Suspended Solids Measurements by In-situ Instruments in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Wellman, Roy E.; Wood, Tamara M.; Cheng, Ralph T.

    2007-01-01

    The U. S. Geological Survey conducted hydrodynamic measurements in Upper Klamath Lake during four summer seasons (approximately mid-June to mid-September) during 2003 to 2006. Measurements included water current profiles made by acoustic Doppler current profilers at a number of fixed locations in the lake during all four years as well as from a moving boat during 2005 and 2006. Measurements of size distribution of suspended material were made at four locations in the lake during 2004-2006. Raw (unfiltered) data are presented as time series of measurements. In addition, water-velocity data have been filtered to remove wind-induced variations with periods less than thirty hours from the measurements. Bar graphs of horizontal and vertical water speed and acoustic backscatter have been generated to discern diurnal variations, especially as they relate to wind patterns over the lake. Mean speeds of the horizontal currents in the lake range between about 3.5 to 15 cm/s with the higher speeds at the deep locations in the trench on the west side of the lake. Current directions generally conform to the lake's bathymetry contours and the water circulation pattern is usually in a clockwise direction around the lake as established by the prevailing north to northwesterly surface winds in the region. Diurnal patterns in horizontal currents probably relate to diurnal wind patterns with minimum wind speeds near noon and maximum wind speeds near 2100. Diurnal variations in vertical velocities do not appear to be related to wind patterns; they do appear to be related to expected patterns of vertical migration of Aphanizomenon flos aquae, (AFA) the predominant species of blue-green algae in the lake. Similarly, diurnal variations in acoustic backscatter, especially near the lake's surface, are probably related to the vertical migration of AFA.

  5. Hydrology of the Goat Lake watershed, Snohomish County, Washington, 1982-87

    USGS Publications Warehouse

    Dion, N.P.; Ebbert, J.C.; Poole, J.E.; Peck, B.S.

    1989-01-01

    The Goat Lake watershed in Snohomish County, Washington, functions as an ' experimental watershed ' for long-term studies to determine the effects of acidic precipitation on water resources. Data have been collected there by the U.S. Geological Survey since 1982. The watershed is in a wilderness area of the Cascade Range and is downwind of an industrial and urban area that produces chemical compounds found in acidic precipitation. The lake is considered sensitive to acidic inputs from atmospheric deposition and streamflow. The mean annual discharge of the Goat Lake outflow is 35 cu ft/sec; precipitation on the watershed is calculated to be about 170 in/yr. The inflow to Goat Lake is sufficient to replace the entire contents of the lake basin on an average every 21.5 days, or 17 times/year. Water in Goat Lake, and that of the inlet and outlet, is of low ionic strength and of calcium-bicarbonate type. The lake, although considered oligotrophic, is sufficiently deep to stratify thermally, and summer dissolved-oxygen concentrations in the hypolimnion are depressed. Even though alkalinity and specific conductance at Goat Lake are in the range considered sensitive to acidic inputs , the pH of water in the lake has consistently ranged from 6.1 to 7.2, indicating that the lake is not acidified at this time. (USGS)

  6. Particle-tracking investigation of the retention of sucker larvae emerging from spawning grounds in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Simon, David C.; Markle, Douglas F.

    2014-01-01

    This study had two objectives: (1) to use the results of an individual-based particle-tracking model of larval sucker dispersal through the Williamson River delta and Upper Klamath Lake, Oregon, to interpret field data collected throughout Upper Klamath and Agency Lakes, and (2) to use the model to investigate the retention of sucker larvae in the system as a function of Williamson River flow, wind, and lake elevation. This is a follow-up study to work reported in Wood and others (2014) in which the hydrodynamic model of Upper Klamath Lake was combined with an individual-based, particle-tracking model of larval fish entering the lake from spawning areas in the Williamson River. In the previous study, the performance of the model was evaluated through comparison with field data comprising larval sucker distribution collected in 2009 by The Nature Conservancy, Oregon State University (OSU), and the U.S. Geological Survey, primarily from the (at that time) recently reconnected Williamson River Delta and along the eastern shoreline of Upper Klamath Lake, surrounding the old river mouth. The previous study demonstrated that the validation of the model with field data was moderately successful and that the model was useful for describing the broad patterns of larval dispersal from the river, at least in the areas surrounding the river channel immediately downstream of the spawning areas and along the shoreline where larvae enter the lake. In this study, field data collected by OSU throughout the main body of Upper Klamath Lake, and not just around the Williamson River Delta, were compared to model simulation results. Because the field data were collected throughout the lake, it was necessary to include in the simulations larvae spawned at eastern shoreline springs that were not included in the earlier studies. A complicating factor was that the OSU collected data throughout the main body of the lake in 2011 and 2012, after the end of several years of larval drift

  7. Late Quaternary slip rate and seismic hazards of the West Klamath Lake fault zone near Crater Lake, Oregon Cascades

    USGS Publications Warehouse

    Bacon, C.R.; Lanphere, M.A.; Champion, D.E.

    1999-01-01

    Crater Lake caldera is at the north end of the Klamath graben, where this N10??W-trending major Basin and Range structure impinges upon the north-south-trending High Cascades volcanic arc. East-facing normal faults, typically 10-15 km long, form the West Klamath Lake fault zone, which bounds the graben on its west side. The fault zone terminates on the south near the epicentral area of the September 1993 Klamath Falls earthquakes. It continues north past Crater Lake as the Annie Spring fault, which is within ~1 km of the west caldera rim, and Red Cone Spring fault. We have determined a long-term vertical slip rate of 0.3 mm/yr for these two faults using high-precision K-Ar and 40Ar/39Ar age measurements on offset lava flows ranging in age from ca. 35 to 300 ka. Holocene offset reported by Hawkins et al. and epicenters of eight MW 2 earthquakes in 1994 and 1995 indicate that the West Klamath Lake fautl zone is active. Empirical relations between earthquake magnitudes and scarp heights or fault lengths suggest that the fault zone is capable of producing earthquakes as large as MW 7 1/4 . Earthquakes on these or other faults of the zone could trigger landslides and rockfalls from the walls of the caldera, possibly resulting in large waves on Crater Lake.

  8. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    USGS Publications Warehouse

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby non-augmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit. Ground-water flow patterns around Round Lake were considerably different than the non-augmented lakes. For most of the study, ground-water augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other

  9. 77 FR 75186 - Notice of Closure, Target Shooting Public Safety Closure on the Lake Mountains in Utah County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... Bureau of Land Management Notice of Closure, Target Shooting Public Safety Closure on the Lake Mountains... approximately 900 acres of public land on the Lake Mountains in Utah County, Utah, to recreational target... Lake Mountains area. DATES: This target shooting closure within the described area will remain...

  10. Comparative physiographic diagrams of Mount St. Helens, Washington, and Crater Lake, Oregon

    USGS Publications Warehouse

    Alpha, Tau Rho; Morley, Jim M.

    1983-01-01

    These physiographic diagrams provide a visual comparison of two Cascade Range volcanoes which have had their tops destroyed in different ways -- Mount St. Helens in 1980, Mount Mazama (whose site is now occupied by Crater Lake) about 6,800 years ago. Both volcanoes are viewed from the north from 30 degrees above the horizon, with no vertical exaggeration. The ground area portrayed in each diagram is equal; the south edge of the Mount St. Helens drawing is lower than that of Crater Lake drawing because elevations drop away toward the south, whereas elevations are more constant at the north and south edges of the Crater Lake diagram. 

  11. Bathymetry of Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina, 2008

    USGS Publications Warehouse

    Nagle, D.D.; Campbell, B.G.; Lowery, M.A.

    2009-01-01

    The increasing use and importance of lakes for water supply to communities enhance the need for an accurate methodology to determine lake bathymetry and storage capacity. A global positioning receiver and a fathometer were used to collect position data and water depth in February 2008 at Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina. All collected data were imported into a geographic information system database. A bathymetric surface model, contour map, and stage-area and -volume relations were created from the geographic information database.

  12. Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon

    USGS Publications Warehouse

    Schneider, Tiffany Rae; McFarland, William D.

    1995-01-01

    Information from field visits was used to develop a monitoring plan. The plan would include monitoring Borax Lake by measuring discharge, stage, evaporation, temperature, and specific conductance; water-quality sampling and analysis; and monitoring shallow ground-water levels near Borax Lake using shallow piezometers. Minimally, one hot spring in North Borax Lake Spring Group 1 would be monitored for temperature and specific conductance and sampled for water-quality analysis. In addition, two flowing wells would be monitored for water levels, temperature, specific conductance, and discharge and sampled for water-quality analysis. The construction characteristics of these wells must be verified before long-term data collection begins. In the future, it may be helpful to monitor shallow and (or) deep observation wells drilled into the thermal aquifer to understand the possible effects of geothermal development on Borax Lake and nearby springs.

  13. Convective heat discharge of Wood River group of springs in the vicinity of Crater Lake, Oregon

    USGS Publications Warehouse

    Nathenson, Manuel; Mariner, Robert H.; Thompson, J. Michael

    1994-01-01

    Data sets for spring and stream chemistry are combined to estimate convective heat discharge and discharge anomalous amounts of sodium and chloride for the Wood River group of springs south of Crater Lake. The best estimate of heat discharge is 87 MWt based on chloride inventory; this value is 3-5 times the heat input to Crater Lake itself. Anomalous discharges of sodium and chloride are also larger that into Crater Lake. Difference between the chemical and thermal characteristics of the discharge into Crater Lake and those from the Wood River group of springs suggest that the heat sources for the two systems may be different, although both ultimately related to the volcanic system.

  14. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    NASA Astrophysics Data System (ADS)

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-05-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11 000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11 000-7500 calendar years before present [cal yr BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11 200-9300 cal yr BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500 cal yr BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000 cal yr BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160 cal yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500 years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history.

  15. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    USGS Publications Warehouse

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  16. Digital Data for Volcano Hazards in the Crater Lake Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.

    2008-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.

  17. Hot-spring sinter deposits in the Alvord-Pueblo Valley, Harney County, Oregon

    SciTech Connect

    Cummings, M.L.; St. John, A.M. . Dept. of Geology)

    1993-04-01

    Silica sinter deposits occur at Borax Lake, Alvord Hot Springs, and Mickey Springs in the Alvord-Pueblo Valley. Although the sinter deposits occur in areas of active hot springs, sinter is not being deposited. Hot springs are localized along faults that have been active since the Pleistocene. The sinter deposits formed after the drying of glacial Lake Alvord, but before and during extensive wind deflation of glacial-lacustrine sediments. At Mickey Springs, sinter rests directly on unaltered, unconsolidated lithic-rich sand. At Borax Lake, sinter overlies unaltered diatomite, but some armoring, presumably by silica, of the 30 m vent has developed. Field relations suggest rapid dumping of silica from solution without alteration of the country rock at the vent. Discharge of thermal fluids and cold groundwater along the same structure may have produced colloidal silica carried in a solution stripped of dissolved silica. Sinter is composed of opal-a, traces of detrital feldspar and quartz, and evaporation-related boracite. The concentration of Sb is similar among the three sinter deposits (20 to 70 ppm); however, As, Cs, and Br are highest at Borax Lake (5 to 560 ppm; 26 to 118 ppm; 5 to 1,040 ppm) while Hg is highest at Mickey Springs (1.0 to 5.2 ppm).

  18. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  19. Storm-water data for Bear Creek basin, Jackson County, Oregon 1977-78

    USGS Publications Warehouse

    Wittenberg, Loren A.

    1978-01-01

    Storm-water-quality samples were collected from four subbasins in the Bear Creek basin in southern Oregon. These subbasins vary in drainage size, channel slope, effective impervious area, and land use. Automatic water-quality samplers and precipitation and discharge gages were set up in each of the four subbasins. During the period October 1977 through May 1978, 19 sets of samples, including two base-flow samples, were collected. Fecal coliform bacteria colonies per 100-milliliter sample ranged from less than 1,000 to more than 1,000,000. Suspended-sediment concentrations ranged from less than 1 to more than 2,300 milligrams per liter. One subbasin consisting of downtown businesses and streets with heavy vehicular traffic was monitored for lead. Total lead values ranging from 100 to 1,900 micrograms per liter were measured during one storm event. (Woodard-USGS)

  20. The Transition of Benthic Nutrient Sources after Planned Levee Breaches Adjacent to Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Parcheso, Francis; Cameron, Jason M.; Asbill, Jessica R.; Fend, Steven V.; Duff, John H.; Engelstad, Anita C.

    2010-01-01

    Four sampling trips were coordinated after planned levee breaches that hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. Sets of nonmetallic pore-water profilers were deployed during these trips in November 2007, June 2008, May 2009, and July 2009. Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA) and spatially involved three lake and four wetland sites. Profilers, typically deployed in triplicate at each lake or wetland site, provided high-resolution (centimeter-scale) estimates of the vertical concentration gradients for diffusive-flux determinations. Estimates based on molecular diffusion may underestimate benthic flux because solute transport across the sediment-water interface can be enhanced by processes including bioturbation, bioirrigation and groundwater advection. Water-column and benthic samples were also collected to help interpret spatial and temporal trends in diffusive-flux estimates. Data from these samples complement taxonomic and geochemical analyses of bottom-sediments taken from Upper Klamath Lake (UKL) in prior studies. This ongoing study provides information necessary for developing process-interdependent solute-transport models for the watershed (that is, models integrating physical, geochemical, and biological processes) and supports efforts to evaluate remediation or load-allocation strategies. To augment studies funded by the U.S. Bureau of Reclamation (USBR), the Department of the Interior supported an additional full deployment of pore-water profilers in November 2007 and July 2009, immediately following the levee breaches and after the crash of the annual summer AFA bloom. As observed consistently since 2006, benthic flux of 0.2-micron filtered, soluble reactive phosphorus (that is, biologically available phosphorus, primarily as orthophosphate; SRP) was consistently positive (that is, out of the sediment into the overlying water column) and

  1. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes.

    PubMed

    Malakauskas, David M; Altman, Emory C; Malakauskas, Sarah J; Thiem, Suzanne M; Schloesser, Donald W

    2015-11-01

    We examined Manayunkia speciosa individuals from the Klamath River, Oregon/California and Lake Erie, Michigan, USA for the presence of Microsporidia. We identified microsporidian spores and sequenced their SSU, ITS, and part of the LSU rDNA. Phylogenetic analysis of SSU rDNA indicated spores from both populations belonged to the Nosema/Vairimorpha clade. PCR showed an infection prevalence in Lake Erie M. speciosa of 0.6% (95% CI=0.5%, 0.7%). This represents the first known example of molecularly characterized Nosema/Vairimorpha isolates infecting a non-arthropod host. PMID:26386327

  2. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes

    USGS Publications Warehouse

    Malakauskas, David M.; Altman, Emory C.; Malakauskas, Sarah J.; Thiem, Suzanne M.; Schloesser, Donald W.

    2015-01-01

    We examined Manayunkia speciosa individuals from the Klamath River, Oregon/California and Lake Erie, Michigan, USA for the presence of Microsporidia. We identified microsporidian spores and sequenced their SSU, ITS, and part of the LSU rDNA. Phylogenetic analysis of SSU rDNA indicated spores from both populations belonged to the Nosema/Vairimorpha clade. PCR showed an infection prevalence in Lake Erie M. speciosa of 0.6% (95% CI = 0.5%, 0.7%). This represents the first known example of molecularly characterized Nosema/Vairimorpha isolates infecting a non-arthropod host.

  3. 75 FR 26991 - Notice of Realty Action; Competitive Sale of Public Land in Deschutes County, Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... Bureau of Land Management Notice of Realty Action; Competitive Sale of Public Land in Deschutes County... announces a comment period and proposed sale of five parcels of public land totaling 640 acres located in... GSA's Web site http://www.auctionrp.com . DATES: This notice initiates the public comment period...

  4. Five-Year Plan for Development of Library Services in Salt Lake County, 1973-1977.

    ERIC Educational Resources Information Center

    Schuurman, Guy

    A five-year plan for the Salt Lake County Library System is presented to meet the complex needs of patrons and to comply with American Library Association's "Minimum Standards for Public Library Systems" (1966). A new main library building is planned to house the main collection, and enlarged nonprint collection, and audiovisual and conference…

  5. College of Lake County's National Workplace Literacy Program Grant. Evaluation Report.

    ERIC Educational Resources Information Center

    Askov, Eunice N.; Catalfamo, Andree Rose

    An independent evaluation of the College of Lake County's National Workplace Literacy Program included both formative and summative evaluations over the 3 years of the project. The evaluation design was planned primarily as a naturalistic inquiry that used the structured interview approach to data collection. An external evaluator interviewed all…

  6. 75 FR 32535 - Elgin, Joliet & Eastern Railway Company-Abandonment Exemption-in Lake County, IN.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Elgin, Joliet & Eastern Railway Company--Abandonment Exemption-- in Lake County, IN. Elgin, Joliet & Eastern Railway Company (EJ&E) filed a verified notice of exemption under 49 CFR part 1152 subpart...

  7. Lake County, Illinois Educational and Training Needs-Assessment of Gerontological Organizations.

    ERIC Educational Resources Information Center

    Murphy-Markus, Colleen; Heck, Melissa

    In response to the need for an increase in services directed specifically to the elderly, a training and educational needs assessment of the existing elder service organizations in Lake County (Illinois) was conducted. Thirteen gerontological organizations were chosen for participation; the organizations were categorized into these groups: nursing…

  8. Ballads of the Romanian Immigrants. Romanian Americans in Lake County, Indiana: An Ethnic Heritage Curriculum Project.

    ERIC Educational Resources Information Center

    Leuca, Mary, Comp.

    Twelve Romanian immigrant ballads with musical scores, Romanian lyrics, and English translations are presented. Following a description of early 20th Century Romanian immigrants in Lake County, Indiana, a pronunciation guide, descriptions of the ballads, and suggestions for classroom use are provided. English titles include "Lament from…

  9. Resource Guide: Romanian Americans in Lake County, Indiana: An Ethnic Heritage Curriculum Project.

    ERIC Educational Resources Information Center

    Leuca, Mary

    A resource guide suitable for secondary level for teaching about Romanian Americans and their contributions is presented. Following two essays which describe the country of Romania and the story of Romanian Americans in Lake County, Indiana, four sections trace the development of the Romanian community. Section I discusses the history and causes…

  10. College of Lake County National Workplace Literacy Program. Final Performance Report.

    ERIC Educational Resources Information Center

    Lake County Coll., Grayslake, IL.

    The College of Lake County in Grayslake, Illinois, formed an educational and business partnership with four area businesses to design and implement workplace literacy programs targeted to the needs of each business. The project's four objectives were as follows: develop a model of cooperation between a community college and the business community…

  11. 78 FR 28503 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lake and Porter Counties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... May 11, 2010 (75 FR 26113). The Lake and Porter County, Indiana area was redesignated to attainment of the 1997 annual PM 2.5 standard effective February 6, 2012 (76 FR 76302). MOBILE6.2-based budgets were... the CAA. See the official release of the MOVES2010 emissions model (75 FR 9411-9414) for...

  12. 75 FR 28056 - Cachuma Lake Resource Management Plan, Santa Barbara County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... (73 FR 43472). The written comment period on the Draft EIS ended on September 23, 2008. On October 9, 2008 a notice was published in the Federal Register (73 FR 59669) extending the comment period on the... Bureau of Reclamation Cachuma Lake Resource Management Plan, Santa Barbara County, CA AGENCY: Bureau...

  13. WINCHESTER LAKE, LEWIS COUNTY, IDAHO - CLEAN LAKES PHASE II IMPLEMENTATION AND RESTORATION PROJECT, 1996

    EPA Science Inventory

    Winchester Lake, Idaho (17060306) is an 85 acre recreation site located approximately 30 miles southeast of Lewiston. The lake has been involved in the U.S. EPA Clean Lakes Program since 1988. The Phase I Diagnostic and Feasibility Study, completed in February 1990, identified t...

  14. Mineral resources of the Fifteen Mile Creek, Oregon Canyon, Twelve Mile Creek, and Willow Creek Wilderness Study Areas, Malheur and Harney counties, Oregon

    SciTech Connect

    Peterson, J.A.; Rytuba, J.J.; Plouff, D.; Vercountere, T.L.; Turner, R.L.; Sawatzky, D.L. ); Leszcykowski, A.M.; Peters, T.J.; Schmauch, S.W.; Winters, R.A. )

    1988-01-01

    The four contiguous study areas are located in a volcanic terrane dominated by tuffs that were erupted from calderas of the McDermitt Caldera complex and the Whitehorse Caldera. None of these areas have identified resources, despite the proximity of mercury, uranium, and lithium mineralization to the south. The southern parts of the Fifteen Mile Creek and the Oregon Canyon Wilderness Study Areas have a low potential for mercury and uranium. The southern parts of the Fifteen Mile Creek, Oregon Canyon, and Willow Creek and the northwestern part of the Oregon Wilderness Study Areas have low potential for antimony, bismuth, mercury, silver,molybdenum, and zinc. In the Oregon Canyon Wilderness Study Area, the tuff of Oregon Canyon and the rim of the caldera of the McDermitt Caldera complex have a low potential for gold and silver in epithermal veins. The study areas have a low potential for zeolite minerals, oil and gas, and geothermal energy throughout, and restricted parts of the study areas have a low potential for pumice, rare-earth elements, zirconium, and decorative building stone.

  15. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of

  16. Geologic map and database of the Roseburg 30' x 60' quadrangle, Douglas and Coos counties, Oregon

    USGS Publications Warehouse

    Wells, Ray E.; Jayko, A.S.; Niem, A.R.; Black, G.; Wiley, T.; Baldwin, E.; Molenaar, K.M.; Wheeler, K.L.; DuRoss, C.B.; Givler, R.W.

    2001-01-01

    The Roseburg 30' x 60' Quadrangle covers the southeastern margin of the Oregon Coast Range and its tectonic boundary with Mesozoic terranes of the Klamath Mountains (see figures 1 and 2 in pamphlet, also shown on map sheet). The geologic framework of the Roseburg area was established by the pioneering work of Diller (1898), Wells and Peck, (1961) and Ewart Baldwin (1974) and his students (see figure 3 in pamphlet, also shown on map sheet). Baldwin and his students focussed on the history of the Eocene Tyee basin, where the sediments lap across the tectonic boundary with the Mesozoic terranes and record the accretion of the Coast Range basement to the continent. Others have examined the sedimentary fill of the Tyee basin in detail, recognizing the deep marine turbidite facies of the Tyee Formation (Snavely and others, 1964) and proposing several models for the Eocene evolution of the forearc basin (Heller and Ryberg, 1983; Chan and Dott, 1983; Heller and Dickinson, 1985; Molenaar, 1985; see Ryu and others, 1992 for a comprehensive summary). Along the eastern margin of the quadrangle, both the Tyee basin and the Klamath terranes are overlain by Eocene volcanic rocks of the Western Cascade arc (Walker and MacLeod, 1991). The thick Eocene sedimentary sequence of the Tyee basin has significant oil and gas potential (Armentrout and Suek, 1985; Gautier and others, 1993; Ryu and others, 1996). Although 13 deep test wells have been drilled in the Roseburg quadrangle (see figure 2 and table 1 in pamphlet, also shown on map sheet), exploration to date has been hampered by an incomplete understanding of the basin�s tectonic setting and evolution. In response, the Oregon Department of Geology and Mineral Industries (DOGAMI) initiated a five year assessment of the oil and gas potential of the Tyee basin. This map is a product of a cooperative effort by the U. S. Geological Survey, Oregon State University, and DOGAMI to systematically map the sedimentary facies and structure

  17. Hydrology of the Lake Deaton and Lake Okahumpka area, Northeast Sumter County, Florida

    USGS Publications Warehouse

    Simonds, Edward P.; German, E.R.

    1980-01-01

    The Floridan aquifer in the Lake Deaton and Lake Okahumpka area is 50 to 130 feet below land surface. During the 16-year period 1963-78 lake evaporation exceeded rainfall by 0.4 inches. Drainage from Lake Deaton and its surrounding area goes into Chitty Chatty Creek and on the Hogeye Sink when the altitude of the potentiometric surface of the Floridan aquifer is low. During a higher altitude of the Floridan potentiometric surface, Hogeye Sink may discharge water; this water, along with the normal runoff, goes into Lake Okahumpka. Average lake fluctuation is 1.5 to 2.0 feet per year. Lake Deaton supports a large population of blue-green algae and Lake Okahumpka is choked with aquatic plants. The water quality of the two lakes differ, with Lake Deaton having a sodium chloride water and Lake Okahumpka having a calcium bicarbonate water. Analysis of water and bottom material samples showed that only cadmium and mercury exceeded the Florida Department of Environmental Regulation 's criteria for Class III waters; however, the amounts detected were at or slightly above the limits of the analytical method. (USGS)

  18. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    USGS Publications Warehouse

    Schrader, David L.; Holmes, Jr., Robert R.

    2000-01-01

    The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the

  19. Ground-water movement and water quality in Lake Point, Tooele County, Utah, 1999-2003

    USGS Publications Warehouse

    Kenney, T.A.; Wright, S.J.; Stolp, B.J.

    2006-01-01

    Water-level and water-quality data in Lake Point, Tooele County, Utah, were collected during August 1999 through August 2003. Water levels in Lake Point generally declined about 1 to 2 feet from July 2001 to July 2003, likely because of less-than-average precipitation. Ground water generally flows in two directions from the Oquirrh Mountains. One component flows north toward the regional topographic low, Great Salt Lake. The other component generally flows southwest toward a substantial spring complex, Factory/Dunne's Pond. This southwest component flows through a coarse gravel deposit believed to be a shoreline feature of historic Lake Bonneville. The dominant water-quality trend in Lake Point is an increase in dissolved-solids concentration with proximity to Great Salt Lake. The water type changes from calcium-bicarbonate adjacent to the Oquirrh Mountains to sodium-chloride with proximity to Great Salt Lake. Evaluation of chloride-bromide weight ratios indicates a mixture of fresher recharge waters with a brine similar to what currently exists in Great Salt Lake.

  20. Field geology of the northwest quarter of the Broken Top 15' quadrangle, Deschutes County, Oregon

    SciTech Connect

    Taylor, E.M.

    1987-01-01

    The report is a compilation of geologic field observations and supporting laboratory data obtained during a study of the eastern slope of the High Cascade Range of Oregon, north of Broken Top volcano. General geologic relationships are summarized, then followed by lithologic descriptions, petrographic characteristics, and stratigraphic information, cross-indexed to tables of chemical analyses of pertinent rock units. The 7.5-minute N.W. Broken Top quadrange is bounded by 44/sup 0/07'30'' and 44/sup 0/15'00'' north latitude and by 121/sup 0/37'30'' and 121/sup 0/45'00'' west longitude, 6 km east of North and Middle Sister volcanoes and 35 km northwest of Bend. The quadrangle is covered by glacial till and calc-alkaline lavas, most of which originated on the adjacent slopes of the High Cascades. Basalt, basaltic andesite, andesite, and rhyodacite are represented in a variety of forms including lava flows, volcanic domes, cinder cones, and a welded ash-flow tuff.

  1. Effects of groundwater pumping on agricultural drains in the Tule Lake subbasin, Oregon and California

    USGS Publications Warehouse

    Pischel, Esther M.; Gannett, Marshall W.

    2015-01-01

    To better define the effect of increased pumping on drain flow and on the water balance of the groundwater system, the annual water volume pumped from drains in three subareas of the Tule Lake subbasin was estimated and a fine-grid, local groundwater model of the Tule Lake subbasin was constructed. Results of the agricultural-drain flow analysis indicate that groundwater discharge to drains has decreased such that flows in 2012 were approximately 32,400 acre-ft less than the 1997–2000 average flow. This decrease was concentrated in the northern and southeastern parts of the subbasin, which corresponds with the areas of greatest groundwater pumping. Model simulation results of the Tule Lake subbasin groundwater model indicate that increased supplemental pumping is the dominant stress to the groundwater system in the subbasin. Simulated supplemental pumping and decreased recharge from irrigation between 2000 and 2010 totaled 323,573 acre-ft, 234,800 acre-ft (73 percent) of which was from supplemental pumping. The response of the groundwater system to this change in stress included about 180,500 acre-ft (56 percent) of decreased groundwater discharge to drains and a 126,000 acre-ft (39 percent) reduction in aquifer storage. The remaining 5 percent came from reduced groundwater flow to other model boundaries, including the Lost River, the Tule Lake sumps, and interbasin flow.

  2. Hydrology and water quality of Geneva Lake, Walworth County, Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Goddard, Gerald L.; Mergener, Elizabeth A.; Rose, William J.; Garrision, Paul J.

    2002-01-01

    Direct measurements and indirect measurements based on sediment-core analyses indicate that the water quality of Geneva Lake has degraded in the last 170 years, the greatest effects resulting from urbanization. Sedimentation rates were highest between 1900 to 1930, and phosphorus concentrations were highest between the 1930s to early 1980s. As a result of the recent reduction in phosphorus loading, in-lake near-surface phosphorus concentrations decreased from 20.25 ?g/L to about 10.15 ?g/L and are similar to those estimated for the lake in the early 1900s. Concentrations of other chemical constituents associated with urban areas, however, have continually increased, especially in Williams Bay and Geneva Bay.

  3. Age-0 Lost River sucker and shortnose sucker nearshore habitat use in Upper Klamath Lake, Oregon: A patch occupancy approach

    USGS Publications Warehouse

    Burdick, S.M.; Hendrixson, H.A.; VanderKooi, S.P.

    2008-01-01

    We examined habitat use by age-0 Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris over six substrate classes and in vegetated and nonvegetated areas of Upper Klamath Lake, Oregon. We used a patch occupancy approach to model the effect of physical habitat and water quality conditions on habitat use. Our models accounted for potential inconsistencies in detection probability among sites and sampling occasions as a result of differences in fishing gear types and techniques, habitat characteristics, and age-0 fish size and abundance. Detection probability was greatest during mid- to late summer, when water temperatures were highest and age-0 suckers were the largest. The proportion of sites used by age-0 suckers was inversely related to depth (range = 0.4-3.0 m), particularly during late summer. Age-0 suckers were more likely to use habitats containing small substrate (64 mm) and habitats with vegetation than those without vegetation. Relatively narrow ranges in dissolved oxygen, temperature, and pH prevented us from detecting effects of these water quality features on age-0 sucker nearshore habitat use.

  4. Availability and quality of ground water in the Winston area, Douglas County, Oregon

    USGS Publications Warehouse

    Robison, J.H.; Collins, C.A.

    1977-01-01

    A map of the Winston area, Douglas County, Oreg., shows areal geology and locations and chemical diagrams of wells with water analyses. Another map of the area has diagrams showing the depth to water, pumping level, total depth, and yields of selected wells. Reported yields of wells range from less than 1 to as much as 70 gallons per minute; the average is less than 10. A table listing chemical analyses of water shows that, although most ground water is of adequate quality for domestic use, some wells yield water with dissolved constituents in excess of recommended limits. (Woodard-USGS)

  5. Benthic Fluxes of Dissolved Macro- and Micronutrients to the Water Column of Upper Klamath Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Kuwabara, J. S.; Topping, B. R.; Lynch, D. D.; Murphy, F.; Carter, J. L.; Lindenberg, M.

    2007-12-01

    Hypoxic, environmentally stressful conditions for endangered fish populations have been generated over the past century by an annual phytoplankton bloom in Upper Klamath Lake, OR. The bloom is consistently dominated by the nitrogen-fixing cyanophyte Aphanizomenon flos-aquae (AFA), thus a quantitative understanding of processes affecting the transport of biologically available phosphorus (P), presumably the limiting nutrient, is critical for resource management in the lake. This work was undertaken to help develop sound remediation or restoration strategies, and to set realistic expectations for water-quality improvements. Particle-reactive phosphate can adsorb or complex onto particles that settle and accumulate in the lake bed. Biogeochemical processes near the sediment-water interface can remobilize particle-bound P and generate a benthic flux of bioavailable P. This study provides estimates of the benthic flux of dissolved macronutrients (i.e., phosphorus and nitrogen species) before, during and after the period of: (1) increased water-column nutrient concentrations that cannot be accounted for by riverine inputs, and (2) the annual bloom of AFA. Benthic flux of dissolved orthophosphate was consistently positive (i.e., out of the sediment into the overlying water column) and ranged between 0.5 and 6.1 mg m-2 d-1. Assuming a lake area of 200 km2, this converts to a mass flux to the entire lake of 8,000 to 100,000 kg over a 3-month AFA bloom season which is comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was that dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 100 mg m-2 d-1; also comparable to riverine inputs. In contrast, dissolved nitrate exhibited a consistently negative flux (consumed by the sediment) with values ranging between -20 to -0.1 mg m-2 d-1. Macroinvertebrate densities of the order of 105 individuals-m-2 suggest that the diffusive-flux estimates may be significantly lower

  6. Water-Quality Data from Upper Klamath and Agency Lakes, Oregon, 2007-08

    USGS Publications Warehouse

    Kannarr, Kristofor E.; Tanner, Dwight Q.; Lindenberg, Mary K.; Wood, Tamara M.

    2010-01-01

    Significant Findings The U.S. Geological Survey Upper Klamath Lake water-quality monitoring program collected data from multiparameter continuous water-quality monitors, weekly water-quality samples, and meteorological stations during May-November 2007 and 2008. The results of these measurements and sample analyses are presented in this report for 29 stations on Upper Klamath Lake and 2 stations on Agency Lake, as well as quality-assurance data for the water-quality samples. Some of the significant findings from 2007 and 2008 are listed below. In 2007-08, ammonia concentrations were at or near the detection limit at all stations during the second week in June, after which they began to increase, with peak concentrations occurring from July through November. The concentration of un-ionized ammonia, which can be toxic to aquatic life, first began to increase in mid-June and peaked in July or August at most sites. Concentrations of un-ionized ammonia measured in the Upper Klamath Lake in 2007-08 did not reach concentrations that would have been potentially lethal to suckers. Samples collected for the analysis of dissolved organic carbon (DOC) late in the 2007 season showed no evidence of an increase in DOC subsequent to the breaching of the Williamson River Delta levees on October 30. In 2007-08, the lakewide daily median of dissolved oxygen concentration began to increase in early June, and peaked in mid- to late June. The lakewide daily median pH began to increase from early June and peaked in late June (2007) or early July (2008). Lakewide daily median pH slowly decreased during the rest of both seasons. The 2007 lakewide daily median specific conductance values first peaked on July 1, coincident with a peak in dissolved oxygen concentration and pH, followed by a decrease through mid-July. Specific conductance then remained relatively stable until mid-October when a sharp increase began that continued until the end of the season. Lakewide specific conductance

  7. Bathymetry and capacity of Chambers Lake, Chester County, Pennsylvania

    USGS Publications Warehouse

    Gyves, Matthew C.

    2015-01-01

    This report describes the methods used to create a bathymetric map of Chambers Lake for the computation of reservoir storage capacity as of September 2014. The product is a bathymetric map and a table showing the storage capacity of the reservoir at 2-foot increments from minimum usable elevation up to full capacity at the crest of the auxiliary spillway.

  8. LAKE CREEK, KOOTENAI COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1989

    EPA Science Inventory

    The Lake Creek watershed (17010303) drains 5,722 acres of primarily woodland in Washington with 19,134 acres in Idaho devoted to agriculture. Watershed efficiency combined with deep, highly erodible soils produce severe soil erosion potential. A trend in increasing sediment loa...

  9. Revision and proposed modification for a total maximum daily load model for Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wherry, Susan A.; Wood, Tamara M.; Anderson, Chauncey W.

    2015-01-01

    Using the extended 1991–2010 external phosphorus loading dataset, the lake TMDL model was recalibrated following the same procedures outlined in the Phase 1 review. The version of the model selected for further development incorporated an updated sediment initial condition, a numerical solution method for the chlorophyll a model, changes to light and phosphorus factors limiting algal growth, and a new pH-model regression, which removed Julian day dependence in order to avoid discontinuities in pH at year boundaries. This updated lake TMDL model was recalibrated using the extended dataset in order to compare calibration parameters to those obtained from a calibration with the original 7.5-year dataset. The resulting algal settling velocity calibrated from the extended dataset was more than twice the value calibrated with the original dataset, and, because the calibrated values of algal settling velocity and recycle rate are related (more rapid settling required more rapid recycling), the recycling rate also was larger than that determined with the original dataset. These changes in calibration parameters highlight the uncertainty in critical rates in the Upper Klamath Lake TMDL model and argue for their direct measurement in future data collection to increase confidence in the model predictions.

  10. Geologic, aeromagnetic and mineral resource potential maps of the Whisker Lake Wilderness, Florence County, Wisconsin

    USGS Publications Warehouse

    Schulz, Klaus J.

    1983-01-01

    The mineral resource potential of the Whisker Lake Wilderness in the Nicolet National Forest, Florence County, northeastern Wisconsin, was evaluated in 1982. The bedrock consists of recrystallized and deformed volcanic and sedimentary rocks of Early Proterozoic age. Sand and gravel are the only identified resources in the Whisker Lake Wilderness. However, the area is somewhat isolated from current markets and both commodities are abundant regionally. The wilderness also has low potential for peat in swampy lowlands. The southwestern part of the wilderness has a low to moderate mineral resource potential for stratabound massive-sulfide (copper-zinc-lead) deposits.

  11. Hydrologic data in Bear Creek Basin and western Jackson County, Oregon, 1976-77

    USGS Publications Warehouse

    Wittenberg, Loren A.; McKenzie, Stuart W.

    1978-01-01

    To determine irrigation return flow impacts on Meyer Creek and Griffin Creek, Jackson County, Oreg., 12 sites were sampled prior to and during the irrigation season. Thirty-three sets of samples, consisting of irrigation inflow and outflow samples on farms, were collected to determine if the use of irrigation water was improving or degrading the water quality. One hundred fifty visits were made to tributaries and Bear Creek to collect and analyze samples to help isolate the source of water-quality problems. Three diel studies were made on six main-stem Bear Creek sites, two during and one after the irrigation season, to help identify main-stem water-quality problems. Rainfall and runoff data from five small basins and data from four of the basins were collected during storm events. The data are presented in tables and maps. (Woodard-USGS)

  12. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    SciTech Connect

    1990-12-01

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

  13. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    SciTech Connect

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

  14. Hydrologic Data for Deep Creek Lake and Selected Tributaries, Garrett County, Maryland, 2007-08

    USGS Publications Warehouse

    Banks, William S.L.; Davies, William J.; Gellis, Allen C.; LaMotte, Andrew E.; McPherson, Wendy S.; Soeder, Daniel J.

    2010-01-01

    Introduction Recent and ongoing efforts to develop the land in the area around Deep Creek Lake, Garrett County, Maryland, are expected to change the volume of sediment moving toward and into the lake, as well as impact the water quality of the lake and its many tributaries. With increased development, there is an associated increased demand for groundwater and surface-water withdrawals, as well as boat access. Proposed dredging of the lake bottom to improve boat access has raised concerns about the adverse environmental effects such activities would have on the lake. The Maryland Department of Natural Resources (MDDNR) and the U.S. Geological Survey (USGS) entered into a cooperative study during 2007 and 2008 to address these issues. This study was designed to address several objectives to support MDDNR?s management strategy for Deep Creek Lake. The objectives of this study were to: Determine the current physical shape of the lake through bathymetric surveys; Initiate flow and sediment monitoring of selected tributaries to characterize the stream discharge and sediment load of lake inflows; Determine sedimentation rates using isotope analysis of sediment cores; Characterize the degree of hydraulic connection between the lake and adjacent aquifer systems; and Develop an estimate of water use around Deep Creek Lake. Summary of Activities Data were collected in Deep Creek Lake and in selected tributaries from September 2007 through September 2008. The methods of investigation are presented here and all data have been archived according to USGS policy for future use. The material presented in this report is intended to provide resource managers and policy makers with a broad understanding of the bathymetry, surface water, sedimentation rates, groundwater, and water use in the study area. The report is structured so that the reader can access each topic separately using any hypertext markup (HTML) language reader. In order to establish a base-line water-depth map of

  15. Climatic data for Williams Lake, Hubbard County, Minnesota, 1986

    USGS Publications Warehouse

    Rosenberry, D.O.; Sturrock, A.M.; Winter, T.C.

    1988-01-01

    Research on the hydrology of Williams Lake, north-central Minnesota includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: water-surface temperature, dry-bulb and wet-bulb air temperatures, wind speed, precipitation, and solar and atmospheric radiation. Some calculated values necessary for these studies, such as vapor pressure and Bowen ratio numbers, also are presented. Data are collected at raft and land stations.

  16. Books for Children with Oregon Settings: A Revision of a Similar Booklist Compiled by the Jackson County Library System.

    ERIC Educational Resources Information Center

    Uhreen, David

    This annotated bibliography contains about 50 books on Oregon history for student reading. It includes topics such as fishing, pioneer families, frontier life, geography of the northwest, trading and mining, Indians, and the Oregon Trail. Most of the books listed are fiction. A few easily read nonfiction books are included. Most listings identify…

  17. 2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter

    2001-01-01

    In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.

  18. Atmospheric optical measurements in the vicinity of crater lake, Oregon. Part 2.

    PubMed

    Boileau, A R

    1968-11-01

    This paper, Part 2, presents additional atmospheric optical data, comparable to the data presented in Part 1, but for a different type of day, and for four descents instead of two. All descents were before local apparent noon. Simultaneous spectral irradiance data were recorded at the surface of Crater Lake. Data presented are altitude profiles of heading of aircraft, temperature, relative humidity, equilibrium luminance, horizontal path function, attenuation length, nadir luminance, upwelling and downwelling illuminances and their ratios, reflectance calculated from nadir luminance, atmospheric beam transmittances for vertical path of sight as a function of solar zenith angle, and downwelling illuminance as a function of solar zenith angle. PMID:20068978

  19. Algal Toxins in Upper Klamath Lake, Oregon: Linking Water Quality to Juvenile Sucker Health

    USGS Publications Warehouse

    VanderKooi, S.P.; Burdick, S.M.; Echols, K.R.; Ottinger, C.A.; Rosen, B.H.; Wood, T.M.

    2010-01-01

    As the lead science agency for the Department of Interior, the U.S. Geological Survey is actively involved in resource issues in the Klamath River basin. Activities include research projects on endangered Lost River and shortnose suckers, threatened coho salmon, groundwater resources, seasonal runoff forecasting, water quality in Upper Klamath Lake and the Klamath River, nutrient cycling in wetlands, and assessment of land idling programs to reduce water consumption. Many of these studies are collaborations with various partners including Department of Interior agencies, Indian Tribes, and State agencies.

  20. 36. MYRTLE CREEK BRIDGE, OREGON STATE HIGHWAY 199, AT END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. MYRTLE CREEK BRIDGE, OREGON STATE HIGHWAY 199, AT END OF STOUT GROVE ROAD. JOSEPHINE COUNTY, OREGON LOOKING WNW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  1. 71. MYRTLE CREED BRIDGE, OREGON STATE HIGHWAY 199, AT END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. MYRTLE CREED BRIDGE, OREGON STATE HIGHWAY 199, AT END OF STOUT GROVE ROAD. JOSEPHINE COUNTY, OREGON. LOOKING WNW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  2. Mineral resources of the Albert Rim wilderness study area, Lake County, Oregon

    SciTech Connect

    Sherlock, M.G.; Gettings, M.E. King, H.D.; Neumann, T.R.

    1988-01-01

    This paper reports on the 23,760-acre Abert Rim Wilderness Study Area for mineral resources (known) and mineral resource potential (undiscovered). No mineral resources were identified. A field reconnaissance of the study area revealed no areas of alteration that might be associated with mineralization. Results of geochemical analysis do not suggest mineralization. Rocks associated with gold and mercury mineralization are located in the surrounding region. Geophysical analysis suggests that these rock types may be located at shallow depths under parts of the study area. Therefore, parts of the study area have low potential for gold, mercury, and uranium. The entire study area has moderate potential for geothermal resources and low potential for oil and gas.

  3. Database for the Geologic Map of Newberry Volcano, Deschutes, Klamath, and Lake Counties, Oregon

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; MacLeod, Norman S.; Sherrod, David R.; Chitwood, Lawrence A.; Jensen, Robert A.

    2013-01-01

    Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km. Newberry Volcano is the product of deposits from thousands of eruptions, including at least 25 in the past approximately 12,000 years (Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history and recent activity suggest that Newberry Volcano is likely to erupt in the future. This geologic map database of Newberry Volcano distinguishes rocks and deposits based on their composition, age, and lithology.

  4. Quantifying the Benthic Source of Nutrients to the Water Column of Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Lynch, Dennis D.; Topping, Brent R.; Murphy, Fred; Carter, James L.; Simon, Nancy S.; Parcheso, Francis; Wood, Tamara M.; Lindenberg, Mary K.; Wiese, Katryn; Avanzino, Ronald J.

    2007-01-01

    Executive Summary Five sampling trips were coordinated in April, May and August 2006, and May and July 2007 to sample the water column and benthos of Upper Klamath Lake, OR (Fig. 1; Table 1), before, during and after the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA). A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients for diffusive-flux determinations. Estimates based on molecular diffusion may underestimate benthic flux because solute transport across the sediment-water interface can be enhanced by processes including bioturbation, bioirrigation and ground-water advection. Water-column and benthic samples were also collected to help interpret spatial and temporal trends in diffusive-flux estimates. Data from these samples complement geochemical analyses of bottom-sediments taken from Upper Klamath Lake (UKL) in 2005. This ongoing study provides information necessary for developing process-interdependent solute-transport models for the watershed (that is, models integrating physical, geochemical and biological processes), and supports efforts to evaluate remediation or load-allocation strategies. To augment studies funded by the U.S. Bureau of Reclamation (USBR), the Department of Interior supported an additional full deployment of pore-water profilers in July 2007, during the summer AFA bloom. Results from this recent field trip are not fully completed. Data not presented herein will be included in a subsequent publication, scheduled for March 2009.

  5. Dispersal of larval suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006-09

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.; Buccola, Norman L.

    2012-01-01

    An advection/diffusion modeling approach was used to simulate the transport of larval suckers from spawning areas in the Williamson River, through the newly restored Williamson River Delta, to Upper Klamath Lake. The density simulations spanned the years of phased restoration, from 2006/2007 prior to any levee breaching, to 2008 when the northern part of the delta was reconnected to the lake, and 2009 when levees on both sides of the delta had been breached. Model simulation results from all four years were compared to field data using rank correlation. Spearman ρ correlation coefficients were usually significant and in the range 0.30 to 0.60, providing moderately strong validation of the model. The correlation coefficients varied with fish size class in a way that suggested that the model best described the distribution of smaller fish near the Williamson River channel, and larger fish away from the channel. When Lost River and shortnose/Klamath largescale suckers were simulated independently, the correlation results suggested that the model better described the transport and dispersal of the latter species. The incorporation of night-time-only drift behavior in the Williamson River channel neither improved nor degraded correlations with field data. The model showed that advection by currents is an important factor in larval dispersal.

  6. Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon

    SciTech Connect

    Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

    1980-09-01

    Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

  7. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota, 1983

    USGS Publications Warehouse

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1987-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Climatic data needed for energy-budget and mass-transfer evaporation studies that were collected during 1983 include water-surface temperature, sediment temperature, dry-bulb and wet-bulb air temperature, vapor pressure at and above the water surface, wind speed, and short-and long-wave radiation. Data are collected at raft and land stations. (USGS)

  8. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota 1982

    USGS Publications Warehouse

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer evaporation studies, including: water-surface temperature, sediment temperature dry-bulb and wet-bulb air temperatures, vapor pressure at and above the water surface, wind speed, and short- and long-wave radiation. Data were collected at raft and land stations. (USGS)

  9. Mineral resources of the Henry's Lake Wilderness Study Area, Fremont County, Idaho

    SciTech Connect

    Tysdal, R.G. ); Peters, T.J. )

    1988-01-01

    The authors report on the 350-acre Henry's Lake Wilderness Study Area in the southern part of the Madison Range. Fremont County, Idaho, and is about 17 miles north of the hamlet of Islan Park. The southwestern part of the wilderness study area, along the Madison Range Fault, is rated as having a moderate energy resource potential for geothermal water, and the remainder of the study area has a low potential for this resource.

  10. Evapotranspiration from marsh and open-water sites at Upper Klamath Lake, Oregon, 2008--2010

    USGS Publications Warehouse

    Stannard, David I.; Gannett, Marshall W.; Polette, Danial J.; Cameron, Jason M.; Waibel, M. Scott; Spears, J. Mark

    2013-01-01

    Water allocation in the Upper Klamath Basin has become difficult in recent years due to the increase in occurrence of drought coupled with continued high water demand. Upper Klamath Lake is a central component of water distribution, supplying water downstream to the Klamath River, supplying water for irrigation diversions, and providing habitat for various species within the lake and surrounding wetlands. Evapotranspiration (ET) is a major component of the hydrologic budget of the lake and wetlands, and yet estimates of ET have been elusive—quantified only as part of a lumped term including other substantial water-budget components. To improve understanding of ET losses from the lake and wetlands, measurements of ET were made from May 2008 through September 2010. The eddy-covariance method was used to monitor ET at two wetland sites continuously during this study period and the Bowen-ratio energy-balance method was used to monitor open-water lake evaporation at two sites during the warmer months of the 3 study years. Vegetation at one wetland site (the bulrush site) consists of a virtual monoculture of hardstem bulrush (formerly Scirpus acutus, now Schoenoplectus acutus), and at the other site (the mixed site) consists of a mix of about 70 percent bulrush, 15 percent cattail (Typha latifolia), and 15 percent wocus (Nuphar polysepalum). Measured ET at these two sites was very similar (means were ±2.5 percent) and mean wetland ET is computed as a 70 to 30 percent weighted average of the bulrush and mixed sites, respectively, based on community-type distribution estimated from satellite imagery. Biweekly means of wetland ET typically vary from maximum values of around 6 to 7 millimeters per day during midsummer, to minimum values of less than 1 mm/d during midwinter. This strong annual signal primarily reflects life-cycle changes in the wetland vegetation, and the annual variation of radiative input to the surface and resulting temperature. The perennial vegetation

  11. Georectification of historical aerial photos to track meander change in Wood River, Klamath County, Oregon

    NASA Astrophysics Data System (ADS)

    Nash, C.; Hughes, M. L.

    2010-12-01

    The Wood River in Oregon’s Upper Klamath Basin is a meandering channel draining the southeastern slopes of Crater Lake National Park. Its valley floor is heavily grazed and highly altered by a series of irrigation channels that have substantially affected the river’s spring-fed flow regime and morphology. Despite efforts to restore the river’s hydrology, very little information is available about the river’s geomorphology. Using high-resolution LIDAR data from 2004 and georectified aerial photos from 1940-2009, we analyzed meander changes along the Wood River in the geomorphic context of its valley floor and meander belt. Aerial photos were scanned to produce digital images with sub-meter pixels, then georectified with a second-order polynomial transformation. Nine or fewer ground-control points were used for each photo to achieve an overall root-mean-square error value of 0.6 - 0.7 m. The scarcity of buildings and changes in the road and fence networks over the study period required the partial use of “natural pattern matching” during photo rectification. Semi-permanent patterns of fan erosion on the upper valley floor and hydrogeomorphic wetland patterns in lower valley provided the primary bases for natural pattern matching, further aided by the use of transparency during photo overlaying. Six prototypes of meander change were identified: extension, compression, translation, rotation, compound heading, and cutoff. Of these types, extension of meanders was the most frequently occurring. However, the effects of extension were counteracted by numerous meander cutoffs, which nominally affected sinuosity, but actually shortened the channel by about 1 km, or about 3%. Cutoffs were most frequent in the upper reaches of the river, where valley slope is higher, the meander belt is wider, and accommodation space was adequate to promote relatively high initial sinuosity. In these reaches, some cutoffs appear to have initiated downstream transfers of bedload

  12. Evaluation of damage induced by lateral spread to roadways and bridges in Salt Lake County

    NASA Astrophysics Data System (ADS)

    Moriarty, Matthew David

    Many areas within Salt Lake County, Utah are susceptible to liquefaction-induced ground failure resulting from a moderate to large, nearby seismic event. This susceptibility, in combination with the general terrain of the county, is expected to produce liquefaction-induced lateral spread ground deformation in many locations during such an event. Although lateral spread deformation is generally not life threatening, it can be very damaging to transportation infrastructure, especially bridges at river crossings. This type of damage from prior earthquakes has been very costly, both in terms of required repairs and the interruption it causes to traffic and the corresponding economic losses. This thesis develops a relatively simple methodology to estimate potential damage caused by lateral spread ground deformation to roadways and bridges located in Salt Lake County, Utah. This is done using mapped estimates of lateral spread displacement in conjunction with recently published lateral spread fragility curves. Such curves can be used to predict the damage states (i.e., condition) based on the estimates of lateral spread for mapped hazard zones. The results of this study, when used in conjunction with traffic modeling methods, will be useful to public officials and planners to prepare for the impacts of future seismic events along the Wasatch Fault in the Salt Lake Valley, Utah.

  13. Origin of phenocrysts and compositional diversity in pre-Mazama rhyodacite lavas, Crater Lake, Oregon

    USGS Publications Warehouse

    Nakada, S.; Bacon, C.R.; Gartner, A.E.

    1994-01-01

    Phenocrysts in porphyritic volcanic rocks may originate in a variety of ways in addition to nucleation and growth in the matrix in which they are found. Porphyritic rhyodacite lavas that underlie the eastern half of Mount Mazama, the High Cascade andesite/dacite volcano that contains Crater Lake caldera, contain evidence that bears on the general problem of phenocryst origin. Phenocrysts in these lavas apparently formed by crystallization near the margins of a magma chamber and were admixed into convecting magma before eruption. About 20 km3 of pre-Mazama rhyodacite magma erupted during a relatively short period between ~400 and 500 ka; exposed pre-Mazama dacites are older and less voluminous. The rhyodacites formed as many as 40 lava domes and flows that can be assigned to three eruptive groups on the basis of composition and phenocryst content. -from Authors

  14. Baseline water quality of Schmidt, Hornbeam, and Horseshore Lakes, Dakota County, Minnesota

    USGS Publications Warehouse

    Payne, G.A.

    1980-01-01

    Three lakes in Dakota County were sampled five times during an 18-month period to determine baseline water quality prior to construction of an interstate highway. Results of physical measurements and chemical analyses showed that the lakes were shallow, nonstratified, and nutrient enriched. Considerable seasonal variations in dissolved solids, nutrient, and dissolved-oxygen concentrations were observed. Oxygen depletion and high nutrient concentrations were characteristics of conditions under an ice cover. Blue-green algal blooms typically were established soon after ice breakup and persisted until late fall. Data from the study will be supplemented with data--collected during and after construction of the highway to assess the impact of highway construction s \\d drainage on water quality of the lakes.

  15. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon

    USGS Publications Warehouse

    Tourrette, T.Z.L.; Burnett, D.S.; Bacon, C.R.

    1991-01-01

    Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO2), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give DUoxide/liq ??? 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are moderately well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster than the zircons were dissolving. Minimum U, Y, and P concentrations in zircons give maximum DUzrc/liq = 13,DYzrc/liq = 23, and DPzrc/liq = 1, but these are considerably lower than reported by other workers for U and Y. Based on our measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractionation during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in our samples. This demonstrates an actual case of non-equilibrium source retention of accessory phases, which in general could be an important trace-element fractionation mechanism. Our results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites. Rough calculations based on Zr gradients in the glass indicate that the samples could have been partially molten for 800 to 8000 years. ?? 1991.

  16. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon

    SciTech Connect

    La Tourrette, T.Z.; Burnett, D.S. ); Bacon C.R. )

    1991-02-01

    Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO{sub 2}), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give D{sub U}{sup oxide/liq} {approx} 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are modestly well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster that the zircons were dissolving. Based on the authors measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractional during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in the authors samples. This demonstrates an actual case of nonequilibrium source retention of accessory phases, which in general could be an important trace element fractionation mechanism. Their results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites.

  17. Forms and accumulation of soil P in natural and recently restored peatlands - Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Graham, S.A.; Craft, C.B.; McCormick, P.V.; Aldous, A.

    2005-01-01

    Forms, amounts, and accumulation of soil phosphorus (P) were measured in natural and recently restored marshes surrounding Upper Klamath Lake located in south-central Oregon, USA to determine rates of P accumulation in natural marshes and to assess changes in P pools caused by long-term drainage in recently restored marshes. Soil cores were collected from three natural marshes and radiometrically dated to determine recent (l37Cs-based) and long-term (210Pb-based) rates of peat accretion and P accumulation. A second set of soil cores collected from the three natural marshes and from three recently restored marshes was analyzed using a modification of the Hedley procedure to determine the forms and amounts of soil P. Total P in the recently restored marshes (222 to 311 ??g cm-3) was 2-3 times greater than in the natural marshes (103 to 117 ??g cm-3), primarily due to greater bulk density caused by soil subsidence, a consequence of long-term marsh drainage. Occluded Fe- and Al-bound Pi, calcium-bound Pi and residual P were 4 times, 22 times, and 5 times greater, respectively, in the recently restored marshes. More than 67% of the P pool in both the natural and recently restored marshes was present in recalcitrant forms (humic-acid P o and residual P) that provide long-term P storage in peat. Phosphorus accumulation in the natural marshes averaged 0.45 g m-2 yr-1 (137Cs) and 0.40 g m-2 yr-1 (210Pb), providing a benchmark for optimizing P sequestration in the recently restored marshes. Effective P sequestration in the recently restored marshes, however, will depend on re-establishing equilibrium between the P-enriched soils and the P concentration of floodwaters and a hydrologie regime similar to the natural marshes. ?? 2005, The Society of Wetland Scientists.

  18. 3D Seismic and Magnetic characterization of the Borax Lake Hydrothermal System in the Alvord Desert, southeastern Oregon.

    NASA Astrophysics Data System (ADS)

    Hess, S.; Bradford, J.; Lyle, M.; Routh, P.; Liberty, L.; Donaldson, P.

    2004-05-01

    As part of an interdisciplinary project aiming to study the link between the physical characteristics of hydrothermal systems and biota that occupy those systems, we are conducting a detailed geophysical characterization of an active hydrothermal system. The Borax Lake Hydrothermal System (BLHS), consisting of Borax Lake and the surrounding hot springs. BLHS is located near the center of the Alvord Basin in southeastern Oregon. The Alvord Basin is a north-south trending graben in the Northern Great Basin bounded by the Steens Mountains to the west and the Trout Creek Mountains to the east. We conducted a 2D seismic survey to characterize the geologic structure of the basin, a high-resolution 3D seismic survey to characterize the geologic structure of the BLHS, and a high-resolution 3D magnetic survey to characterize any lineaments in the bedrock that might control fluid flow in the BLHS. Previous results from the 2D seismic survey show a mid-basin basement high aligned approximately with the hot springs. In this study we present the results from the high-resolution 3D seismic and magnetic survey of the BLHS. We acquired the 3D seismic data using an SKS rifle and 240 channel recording system. The seismic survey covers approximately 90,000 sq. m with a maximum inline offset aperture of 225 m, crossline aperture of 75 m, and 360 degree azimuthal coverage. The coincidental magnetic survey was collected using a Geometrics 858G cesium vapor magnetometer. We designed both surveys to span nearly 100 active hydrothermal springs, including an approximately 50 m stepover in the trend of the surface expression of the hot springs. After preliminary processing, the 3D seismic data show continuous reflections up to 300 ms (~ 480 m). The initial interpretation of features seen in the 3D data cube include: normal faults dipping to the east and west, near-surface disturbances that are consistent with the trend of the hot springs, and significant near surface velocity anomalies

  19. Combining 14C/U-Th Series Geochronology and Stable/Clumped Isotope Geochemistry of MIS 2 Lake Tufas of Lake Chewaucan, Oregon, USA to Reconstruct Deglacial Climate in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Hudson, A. M.; Quade, J.; Ali, G.; Boyle, D. P.; Bassett, S.; Huntington, K. W.

    2015-12-01

    Shoreline deposits surrounding closed-basin lake remnants in the Great Basin of North America have been critical to defining the timing and extent of lake highstands during Marine Isotope Stage 2, recording the wettest climate conditions during the last glacial cycle. We present 14C and U-Th series ages and stable and clumped isotope results from MIS 2 microbialite tufas of pluvial Lake Chewaucan, southern Oregon. At ~42.5°N latitude, the Chewaucan basin is the one of the northernmost lake systems in the Great Basin, a critical location for investigating regional climate. Dating of modern tufa and DIC indicates no 14C reservoir effect. Low lake depth is observed for peak LGM conditions (21.0 ka, +11 m above modern), consistent with regional records and climate model results. In contrast with other Great Basin lake reconstructions for deglacial MIS 2, Lake Chewaucan was deepest during the Bølling/Ållerod (B/A; 14.5-13.0 ka, +50 m) and early Holocene (10.9-9.5 ka +15 m) warm periods, with lowstands during Heinrich Event 1 (+0-1 m) and Younger Dryas cold periods (+0 m). This supports previous evidence for wet interstadials in the Pacific Northwest (PNW) during MIS 2-3, the opposite of the central/southern Great Basin, where stadials correlate with wet conditions. δ18O values of tufas (-0.9 to -4.4‰ PDB) reflect high evaporation relative to inflowing meteoric water (-13.6‰ SMOW), and lake water (-6.7 SMOW). δ13C values (+1.7 to +4.5‰ PDB) are consistent with equilibrium with lake DIC (+1.5‰ PDB) and atmospheric CO2, supporting atmospheric 14C equilibrium. Clumped isotope temperatures for modern tufa (20±7°C) are consistent with summer lake surface temperature for modern lake remnant, Abert Lake (17.7-22.0°C), supporting previous clumped isotope results for tufas as summer temperature indicators. Clumped temperatures for the B/A highstand are 19±4°C, indicating near modern lake temperatures during deepest lake conditions. 13±4°C is indicated for the

  20. Sulfhydrolase activity in sediments of wintergreen lake, kalamazoo county, michigan.

    PubMed

    King, G M; Klug, M J

    1980-05-01

    The hydrolysis of p-nitrophenyl sulfate, p-nitrocatechol sulfate, and [S]sodium dodecyl sulfate was examined in anoxic sediments of Wintergreen Lake, Michigan. Significant levels of sulfhydrolase activity were observed in littoral, transition, and profundal sediment samples. Rates of sulfate formation suggest that the sulfhydrolase system would represent a major source of sulfate within these sediments. Sulfate formed by ester sulfate hydrolysis can support dissimilatory sulfate reduction as shown by the incorporation of S from labeled sodium dodecyl sulfate into H(2)S. Sulfhydrolase activity varied with sediment depth, was greatest in the littoral zone, and was sensitive to the presence of oxygen. Estimations of ester sulfate concentrations in sediments revealed large quantities of ester sulfate ( approximately 30% of total sulfur). Both total sulfur and ester sulfate concentrations varied with the sediment type and were two to three orders of magnitude greater than the inorganic sulfur concentration. PMID:16345573

  1. Phosphorus and nitrogen legacy in a restoration wetland, upper Klamath lake, Oregon

    USGS Publications Warehouse

    Duff, J.H.; Carpenter, K.D.; Snyder, D.T.; Lee, Karl K.; Avanzino, R.J.; Triska, F.J.

    2009-01-01

    The effects of sediment, ground-water, and surface-water processes on the timing, quantity, and mechanisms of N and P fluxes were investigated in the Wood River Wetland 57 years after agricultural practices ceased and seasonal and permanent wetland hydrologies were restored. Nutrient concentrations in standing water largely reflected ground water in winter, the largest annual water source in the closed-basin wetland. High concentrations of total P (22 mg L -1) and total N (30 mg L-1) accumulated in summer when water temperature, air temperature, and evapotranspiration were highest. High positive benthic fluxes of soluble reactive P and ammonium (NH4-N) were measured in two sections of the study area in June and August, averaging 46 and 24 mg m-2 d-1, respectively. Nonetheless, a wetland mass balance simultaneously indicated a net loss of P and N by assimilation, denitrification (1.110.1 mg N m-2 h-1), or solute repartitioning. High nutrient concentrations pose a risk for water quality management. Shifts in the timing and magnitude of water inflows and outflows may improve biogeochemical function and water quality by optimizing seed germination and aquatic plant distribution, which would be especially important if the Wood River Wetland was reconnected with hyper-eutrophic Agency Lake. ?? 2009, The Society of Wetland Scientists.

  2. Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon

    USGS Publications Warehouse

    Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.

    1993-01-01

    Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.

  3. Late Pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe

    USGS Publications Warehouse

    Bacon, C.R.; Persing, H.M.; Wooden, J.L.; Ireland, T.R.

    2000-01-01

    Variably melted granodiorite blocks ejected during the Holocene caldera-forming eruption of Mount Mazama were plucked from the walls of the climactic magma chamber ~15 km depth. Ion-microprobe U-Pb dating of zircons from two unmelted granodiorite blocks with SHRIMP RG (sensitive high-resolution ion microprobe-reverse geometry) gives a nominal 238U/206Pb age of 101+78-80 ka, or 174+89-115 ka when adjusted for an initial 230Th deficit. SHRIMP RG U-Th measurements on a subset of the zircons yield a 230Th/238U isochron age of 112 ?? 24 ka, considered to be the best estimate of the time of solidification of the pluton. These results suggest that the granodiorite is related to andesite and dacite of Mount Mazama and not to magmas of the climactic eruption. The unexposed granodiorite has an area of at least 28 km2. This young, shallow pluton was emplaced in virtually the same location where a similarly large magma body accumulated and powered violent explosive eruptions ~7700 yr ago, resulting in collapse of Crater Lake caldera.

  4. Analysis of water-level fluctuations of Lakes Winona and Winnemissett-- two landlocked lakes in a karst terrane in Volusia County, Florida

    USGS Publications Warehouse

    Hughes, G.H.

    1979-01-01

    The water levels of Lakes Winona and Winnemissett in Volusia County, Fla., correlate reasonably well during dry spells but only poorly during wet spells. Disparities develop mostly at times when the lake levels rise abruptly owing to rainstorms passing over the lake basins. The lack of correlation is attributed to the uneven distribution of the storm rainfall, even though the average annual rainfall at National Weather Service gages in the general area of the lakes is about the same. Analyses of the monthly rainfall data show that the rainfall variability between gages is sufficient to account for most of the disparity between monthly changes in the levels of the two lakes. The total annual rainfall at times may differ between rainfall gages by as much as 15 to 20 inches. Such differences tend to balance over the long term but may persist in the same direction for two or more years, causing apparent anomalies in lake-level fluctuations. (Woodard-USGS)

  5. Water-quality conditions in Upper Klamath Lake, Oregon, 2002-04

    USGS Publications Warehouse

    Wood, Tamara M.; Hoilman, Gene R.; Lindenberg, Mary K.

    2006-01-01

    Eleven (2002) to 14 (2003 and 2004) continuous water-quality monitors that measured pH, dissolved oxygen, temperature, and specific conductance, were placed in Upper Klamath Lake to support a telemetry tracking study of endangered adult shortnose and Lost River suckers. Samples for the analysis of chlorophyll a and nutrients were collected at a subset of the water-quality monitor sites in each year. The seasonal pattern in the occurrence of supersaturated dissolved oxygen concentrations and high pH associated with photosynthetic activity, as well as the undersaturated dissolved oxygen concentrations associated with oxygen demand through respiration and decay in excess of photosynthetic production, were well described by the dynamics of the massive blooms of Aphanizomenon flos aquae (AFA) that occur each year. Data from the continuous monitors provided a means to quantify the occurrence, duration, and spatial extent of water-quality conditions potentially harmful to fish (dissolved- oxygen concentration less than 4 milligrams per liter, pH greater than 9.7, and temperature greater than 28 degrees Celsius) in the northern part of the lake, where the preferred adult sucker habitat is found. There were few observations of temperature greater than 28 degrees Celsius, suggesting that temperature is not a significant source of chronic stress to fish, although its role in the spread of disease is harder to define. Observations of pH greater than 9.7 were common during times when the AFA bloom was growing rapidly, so pH may be a source of chronic stress to fish. Dissolved oxygen concentrations less than 4 milligrams per liter were common in all 3 years at the deeper sites, in the lower part of the water column and for short periods during the day. Less common were instances of widespread low dissolved oxygen, throughout the water column and persisting through the entire day, but this was the character of a severe low dissolved oxygen event (LDOE) that culminated in the

  6. Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Lowenstern, J. B.

    2005-01-01

    Rhyodacite tephra and three lavas erupted ???27 ka, interpreted to be early leaks from the climactic magma chamber of Mount Mazama, contain ubiquitous resorbed crystals (antecrysts) that were recycled from young granodiorite and related plutonic rocks of the same magmatic system. The shallow composite pluton is represented by blocks ejected in the 7.7-ka climactic eruption that formed Crater Lake caldera. Plagioclase crystals in both rhyodacite and granodiorites commonly have cores with crystallographically oriented Fe-oxide needles exsolved at subsolidus conditions. At least 80% of plagioclase crystals in the rhyodacite are antecrysts derived from plutonic rocks. Other crystals in the rhyodacite, notably zircon, also were recycled. SIMS 238U- 230Th dating indicates that zircons in 4 granodiorite blocks crystallized at various times between ???20 ka and ???300 ka with concentrations of analyses near 50-70, ???110, and ???200 ka that correspond to periods of dacitic volcanism dated by K- Ar. U-Th ages of zircon from a rhyodacite sample yield similar results. No analyzed zircons from the granodiorite or rhyodacite are pre-Quaternary. Zircon minimum ages in blocks from different locations around the caldera reflect ages of nearby volcanic vents and may map the distribution of intrusions within a composite pluton. Survival of zircon in zircon-undersaturated hydrous magma and of Fe-oxide needles in plagioclase suggests that little time elapsed from entrainment of antecrysts to the ???27-ka eruption of the rhyodacite. The ???27-ka rhyodacite is an example of young silicic magma that preserved unstable antecrysts from a known source early during growth of a large high-level magma chamber. In contrast, the voluminous 7.7-ka climactic rhyodacite pumice is virtually lacking in zircon, indicating dissolution of any granodioritic debris in the intervening period. Mineralogical evidence of assimilation may be destroyed in hot, vigorously growing silicic magma bodies such as

  7. Geologic map database of the El Mirage Lake area, San Bernardino and Los Angeles Counties, California

    USGS Publications Warehouse

    Miller, David M.; Bedford, David R.

    2000-01-01

    This geologic map database for the El Mirage Lake area describes geologic materials for the dry lake, parts of the adjacent Shadow Mountains and Adobe Mountain, and much of the piedmont extending south from the lake upward toward the San Gabriel Mountains. This area lies within the western Mojave Desert of San Bernardino and Los Angeles Counties, southeastern California. The area is traversed by a few paved highways that service the community of El Mirage, and by numerous dirt roads that lead to outlying properties. An off-highway vehicle area established by the Bureau of Land Management encompasses the dry lake and much of the land north and east of the lake. The physiography of the area consists of the dry lake, flanking mud and sand flats and alluvial piedmonts, and a few sharp craggy mountains. This digital geologic map database, intended for use at 1:24,000-scale, describes and portrays the rock units and surficial deposits of the El Mirage Lake area. The map database was prepared to aid in a water-resource assessment of the area by providing surface geologic information with which deepergroundwater-bearing units may be understood. The area mapped covers the Shadow Mountains SE and parts of the Shadow Mountains, Adobe Mountain, and El Mirage 7.5-minute quadrangles. The map includes detailed geology of surface and bedrock deposits, which represent a significant update from previous bedrock geologic maps by Dibblee (1960) and Troxel and Gunderson (1970), and the surficial geologic map of Ponti and Burke (1980); it incorporates a fringe of the detailed bedrock mapping in the Shadow Mountains by Martin (1992). The map data were assembled as a digital database using ARC/INFO to enable wider applications than traditional paper-product geologic maps and to provide for efficient meshing with other digital data bases prepared by the U.S. Geological Survey's Southern California Areal Mapping Project.

  8. Depth of cinder deposits and water-storage capacity at Cinder Lake, Coconino County, Arizona

    USGS Publications Warehouse

    Macy, Jamie P.; Amoroso, Lee; Kennedy, Jeff; Unema, Joel

    2012-01-01

    The 2010 Schultz fire northeast of Flagstaff, Arizona, burned more than 15,000 acres on the east side of San Francisco Mountain from June 20 to July 3. As a result, several drainages in the burn area are now more susceptible to increased frequency and volume of runoff, and downstream areas are more susceptible to flooding. Resultant flooding in areas downgradient of the burn has resulted in extensive damage to private lands and residences, municipal water lines, and roads. Coconino County, which encompasses Flagstaff, has responded by deepening and expanding a system of roadside ditches to move flood water away from communities and into an area of open U.S. Forest Service lands, known as Cinder Lake, where rapid infiltration can occur. Water that has been recently channeled into the Cinder Lake area has infiltrated into the volcanic cinders and could eventually migrate to the deep regional groundwater-flow system that underlies the area. How much water can potentially be diverted into Cinder Lake is unknown, and Coconino County is interested in determining how much storage is available. The U.S. Geological Survey conducted geophysical surveys and drilled four boreholes to determine the depth of the cinder beds and their potential for water storage capacity. Results from the geophysical surveys and boreholes indicate that interbedded cinders and alluvial deposits are underlain by basalt at about 30 feet below land surface. An average total porosity for the upper 30 feet of deposits was calculated at 43 percent for an area of 300 acres surrounding the boreholes, which yields a total potential subsurface storage for Cinder Lake of about 4,000 acre-feet. Ongoing monitoring of storage change in the Cinder Lake area was initiated using a network of gravity stations.

  9. Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Druitt, T.H.; Bacon, C.R.

    1986-01-01

    The climactic eruption of Mount Mazama (6845 y.B.P.) vented a total of ???50 km3 of compositionally zoned rhyodacitic to basaltic magma from: (a) a single vent as a Plinian pumice fall deposit and the overlying Wineglass Welded Tuff, and (b) ring vents as ignimbrite and coignimbrite lithic breccia accompanying the collapse of Crater Lake caldera. New field and grain-size data for the ring-vent products are presented in this report. The coarse-grained, poorly bedded, clast-supported lithic breccia extends as far as 18 km from the caldera center. Like the associated ignimbrite, the breccia is compositionally zoned both radially and vertically, and silicic, mixed, and mafic types can be recognized, based on the proportion of rhyodacitic pumice. Matrix fractions in silicic breccias are depleted of fines and are lithic- and crystal-enriched relative to silicic ignimbrite due to vigorous gas sorting during emplacement. Ignimbrite occurs as a proximal veneer deposit overlying the breccia, a medial (??? 8 to ??? 25 km from the caldera center), compositionally zoned valley fill as much as > 110 m thick, and an unzoned distal ({slanted equal to or greater-than} 20 km) facies which extends as far as 55 km from the caldera. Breccia within ??? 9 km of the caldera center is interpreted as a coignimbrite lag breccia formed within the deflation zone of the collapsing ring-vent eruption columns. Expanded pyroclastic flows of the deflation zone were probably vertically graded in both size and concentration of blocks, as recently postulated for some turbidity currents. An inflection in the rate of falloff of lithic-clast size within the lithic breccia at ??? 9 km may mark the outer edge of the deflation zone or may be an artifact of incomplete exposure. The onset of ring-vent activity at Mt. Mazama was accompanied by a marked increase in eruptive discharge. Pyroclastic flows were emplaced as a semicontinuous stream, as few ignimbrite flow-unit boundaries are evident. As eruption from

  10. Inconsistent Climate Inferences between Pollen and other Paleontological, Geochemical, and Geophysical Proxies in Late Pleistocene Lacustrine Sediments from Summer Lake, Oregon, Western Great Basin

    NASA Astrophysics Data System (ADS)

    Heaton, E.; Thompson, G.; Negrini, R. M.; Wigand, P. E.

    2015-12-01

    This study has established a high resolution paleoclimate record from western Great Basin pluvial Summer Lake, Oregon during the late Pleistocene Mono Lake Excursion (~34 ka), Dansgaard-Oeschger (D-O) interstadials 7 and 8, and the end of Heinrich Even 4 (~38 ka). Proxies of grain-size, carbon/nitrogen (C/N) ratio, ostracode analysis and palynology from a depocenter core show new results regarding high amplitude, high frequency changes in lake level, precipitation and temperature which correspond directly with colder/warmer and respectively drier/wetter climates as documented with Northern Atlantic Greenland ice core data. The granulometry, geochemical, and ostracode results consistently demonstrate the correspondence of low lake conditions and colder water temperatures during D-O stadials and warmer/wetter climate during interstadials. These results are contradicted by the pollen results. Existence of cold temperature spores Botrychium and Selaginella coincide with increases in Artemisia, Atriplex, Sarcobatus, Cyperaceae and decreases in Pinus, also suggesting periods of colder/drier climate and shallower lake levels but the timing does not match that of those conditions inferred by the other methods. Granulometry, geochemical, and ostracode proxies denote cold periods and low lake levels roughly between 37.5-35.6 ka and 34.6-33.8 ka. Pollen analysis suggests near-opposite time intervals with cold periods roughly 38-37.5 ka, 35.6-35 ka. This pollen inconsistency suggests the possibility of (1) a millennial-scale lag response of vegetation to climate change, (2) runoff from stadial precipitation causing influx in pollen abundances and variety found in the depocenter core, or (3) turbulent mixing from shallow lake level causing resuspension and redeposition of pollen (Bradley 1999).

  11. Statistical analysis of the water-quality monitoring program, Upper Klamath Lake, Oregon, and optimization of the program for 2013 and beyond

    USGS Publications Warehouse

    Eldridge, Sara L. Caldwell; Wherry, Susan A.; Wood, Tamara M.

    2014-01-01

    Upper Klamath Lake in south-central Oregon has become increasingly eutrophic over the past century and now experiences seasonal cyanobacteria-dominated and potentially toxic phytoplankton blooms. Growth and decline of these blooms create poor water-quality conditions that can be detrimental to fish, including two resident endangered sucker species. Upper Klamath Lake is the primary water supply to agricultural areas within the upper Klamath Basin. Water from the lake is also used to generate power and to enhance and sustain downstream flows in the Klamath River. Water quality in Upper Klamath Lake has been monitored by the Klamath Tribes since the early 1990s and by the U.S. Geological Survey (USGS) since 2002. Management agencies and other stakeholders have determined that a re-evaluation of the goals for water-quality monitoring is warranted to assess whether current data-collection activities will continue to adequately provide data for researchers to address questions of interest and to facilitate future natural resource management decisions. The purpose of this study was to (1) compile an updated list of the goals and objectives for long-term water-quality monitoring in Upper Klamath Lake with input from upper Klamath Basin stakeholders, (2) assess the current water-quality monitoring programs in Upper Klamath Lake to determine whether existing data-collection strategies can fulfill the updated goals and objectives for monitoring, and (3) identify potential modifications to future monitoring plans in accordance with the updated monitoring objectives and improve stakeholder cooperation and data-collection efficiency. Data collected by the Klamath Tribes and the USGS were evaluated to determine whether consistent long-term trends in water-quality variables can be described by the dataset and whether the number and distribution of currently monitored sites captures the full range of environmental conditions and the multi-scale variability of water

  12. Residential and service-population exposure to multiple natural hazards in the Mount Hood region of Clackamas County, Oregon

    USGS Publications Warehouse

    Mathie, Amy M.; Wood, Nathan

    2013-01-01

    The objective of this research is to document residential and service-population exposure to natural hazards in the rural communities of Clackamas County, Oregon, near Mount Hood. The Mount Hood region of Clackamas County has a long history of natural events that have impacted its small, tourism-based communities. To support preparedness and emergency-management planning in the region, a geospatial analysis of population exposure was used to determine the number and type of residents and service populations in flood-, wildfire-, and volcano-related hazard zones. Service populations are a mix of residents and tourists temporarily benefitting from local services, such as retail, education, or recreation. In this study, service population includes day-use visitors at recreational sites, overnight visitors at hotels and resorts, children at schools, and community-center visitors. Although the heavily-forested, rural landscape suggests few people are in the area, there are seasonal peaks of thousands of visitors to the region. “Intelligent” dasymetric mapping efforts using 30-meter resolution land-cover imagery and U.S. Census Bureau data proved ineffective at adequately capturing either the spatial distribution or magnitude of population at risk. Consequently, an address-point-based hybrid dasymetric methodology of assigning population to the physical location of buildings mapped with a global positioning system was employed. The resulting maps of the population (1) provide more precise spatial distributions for hazard-vulnerability assessments, (2) depict appropriate clustering due to higher density structures, such as apartment complexes and multi-unit commercial buildings, and (3) provide new information on the spatial distribution and temporal variation of people utilizing services within the study area. Estimates of population exposure to flooding, wildfire, and volcanic hazards were determined by using overlay analysis in a geographic information system

  13. Hydrology and water quality of lakes and streams in Orange County, Florida

    USGS Publications Warehouse

    German, Edward R.; Adamski, James C.

    2005-01-01

    Orange County, Florida, is continuing to experience a large growth in population. In 1920, the population of Orange County was less than 20,000; in 2000, the population was about 896,000. The amount of urban area around Orlando has increased considerably, especially in the northwest part of the County. The eastern one-third of the County, however, had relatively little increase in urbanization from 1977-97. The increase of population, tourism, and industry in Orange County and nearby areas changed land use; land that was once agricultural has become urban, industrial, and major recreation areas. These changes could impact surface-water resources that are important for wildlife habitat, for esthetic reasons, and potentially for public supply. Streamflow characteristics and water quality could be affected in various ways. As a result of changing land use, changes in the hydrology and water quality of Orange County's lakes and streams could occur. Median runoff in 10 selected Orange County streams ranges from about 20 inches per year (in/yr) in the Wekiva River to about 1.1 in/yr in Cypress Creek. The runoff for the Wekiva River is significantly higher than other river basins because of the relatively constant spring discharge that sustains streamflow, even during drought conditions. The low runoff for the Cypress Creek basin results from a lack of sustained inflow from ground water and a relatively large area of lakes within the drainage basin. Streamflow characteristics for 13 stations were computed on an annual basis and examined for temporal trends. Results of the trend testing indicate changes in annual mean streamflow, 1-day high streamflow, or 7-day low streamflow at 8 of the 13 stations. However, changes in 7-day low streamflow are more common than changes in annual mean or 1-day high streamflow. There is probably no single reason for the changes in 7-day low streamflows, and for most streams, it is difficult to determine definite reasons for the flow

  14. Evaluation of the effects of the Lake Audubon on ground- and surface-water levels in the Lake Nettie area, eastern McLean County, North Dakota

    USGS Publications Warehouse

    Armstrong, C.A.

    1983-01-01

    Flooding of some roads and agricultural lands has occurred in the Lake Nettie area of eastern McLean County. Part of the flooding was caused by the raising of the level of Lake Audubon to an elevation of 1,848 feet and the construction and filling of the McClusky Canal. Water levels have risen in the Lake Nettie aquifer as a result of raising the level of Lake Audubon. As of 1982, water levels have risen as much as 4 feet in the lower unit of the Lake Nettie aquifer and between 1 and 2 feet in the upper unit of the Lake Nettie aquifer, which is hydraulically connected to Lake Nettie and Crooked Lake. Water levels have risen in the Turtle Lake aquifer both as a result of raising the water level in Lake Audubon and the filling of McClusky Canal. Water levels have risen as much as 6 feet near the canal, but generally are less than 1 foot higher at distances of about 0.5 mile. (USGS)

  15. Physicochemical and Analytical Data for Tributary Water, Lake Water, and Lake Sediment, Lake Arrowhead, Clay and Archer Counties, Texas, 2006

    USGS Publications Warehouse

    Wilson, Jennifer T.; Musgrove, MaryLynn; Haynie, Monti M.; Van Metre, Peter C.

    2008-01-01

    Lake Arrowhead is a reservoir about 24 kilometers southeast of Wichita Falls, Texas, that provides drinking water for the city of Wichita Falls and surrounding areas. The U.S. Geological Survey, in cooperation with the City of Wichita Falls, did a study in 2006 to assess conditions contributing to elevated arsenic concentrations in Lake Arrowhead. This report describes the sampling and analytical methods, quality assurance, and physicochemical and analytical data. Physiochemical properties were measured in and water samples were collected from five tributaries to Lake Arrowhead (Little Wichita River, West Little Post Oak Creek, East Little Post Oak Creek, Deer Creek, and an unnamed tributary) immediately after storms. Lake water measuring and sampling were done approximately monthly from January through September 2006 at three deep-water sites and seasonally, in January and August 2006, at three shallow-water sites. Cores of lake bottom sediment were collected from five sites on August 30, 2006. Arsenic concentrations in tributary water samples ranged from 1.5 to 6.3 and 0.5 to 4.8 micrograms per liter for unfiltered and filtered samples, respectively. The highest arsenic concentrations were in samples collected from the West Little Post Oak Creek sampling site. Physicochemical properties in lake water varied with depth and season. Dissolved arsenite plus arsenate concentrations in lake water samples generally were between 3 and 5 micrograms per liter. Arsenite concentrations typically were below the laboratory reporting level of 0.6 microgram per liter. There were no detections of monomethylarsonate or dimethylarsinate. The concentration of arsenic in lake sediment samples ranged from 4.4 to 11.2 milligrams per kilogram, with a median of 6.4 milligrams per kilogram. The median arsenic concentration of the five top-interval sediment samples was 8.8 milligrams per kilogram, which generally is higher than the concentrations estimated to be on suspended sediment in

  16. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Druitt, T.H.

    1988-01-01

    The climactic eruption of Mount Mazama has long been recognized as a classic example of rapid eruption of a substantial fraction of a zoned magma body. Increased knowledge of eruptive history and new chemical analyses of ???350 wholerock and glass samples of the climactic ejecta, preclimactic rhyodacite flows and their inclusions, postcaldera lavas, and lavas of nearby monogenetic vents are used here to infer processes of chemical evolution of this late Pleistocene - Holocene magmatic system. The 6845??50 BP climactic eruption vented ???50 km3 of magma to form: (1) rhyodacite fall deposit; (2) welded rhyodacite ignimbrite; and (3) lithic breccia and zoned ignimbrite, these during collapse of Crater Lake caldera. Climactic ejecta were dominantly homogeneous rhyodacite (70.4??0.3% SiO2), followed by subordinate andesite and cumulate scoriae (48-61% SiO2). The gap in wholerock composition reflects mainly a step in crystal content because glass compositions are virtually continuous. Two types of scoriae are distinguished by different LREE, Rb, Th, and Zr, but principally by a twofold contrast in Sr content: High-Sr (HSr) and low-Sr (LSr) scoriae. HSr scoriae were erupted first. Trace element abundances indicate that HSr and LSr scoriae had different calcalkaline andesite parents; basalt was parental to some mafic cumulate scoriae. Parental magma compositions reconstructed from scoria wholerock and glass data are similar to those of inclusions in preclimactic rhyodacites and of aphyric lavas of nearby monogenetic vents. Preclimactic rhyodacite flows and their magmatic inclusions give insight into evolution of the climactic chamber. Evolved rhyodacite flows containing LSr andesite inclusions were emplaced between ???30000 and ???25000 BP. At 7015??45 BP, the Llao Rock vent produced a zoned rhyodacite pumice fall, then rhyodacite lava with HSr andesite inclusions. The Cleetwood rhyodacite flow, emplaced immediately before the climactic eruption and compositionally

  17. Simulation and validation of larval sucker dispersal and retention through the restored Williamson River Delta and Upper Klamath Lake system, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.

    2014-01-01

    A hydrodynamic model with particle tracking was used to create individual-based simulations to describe larval fish dispersal through the restored Williamson River Delta and into Upper Klamath Lake, Oregon. The model was verified by converting particle ages to larval lengths and comparing these lengths to lengths of larvae in net catches. Correlations of simulated lengths with field data were moderate and suggested a species-specific difference in model performance. Particle trajectories through the delta were affected by wind speed and direction, lake elevation, and shoreline configuration. Once particles entered the lake, transport was a function of current speed and whether behavior enhanced transport (swimming aligned with currents) or countered transport through greater dispersal (faster random swimming). We tested sensitivity to swim speed (higher speeds led to greater dispersal and more retention), shoreline configuration (restoration increased retention relative to pre-restoration conditions), and lake elevation (retention was maximized at an intermediate elevation). The simulations also highlight additional biological questions, such as the extent to which spatially heterogeneous mortality or fish behavior and environmental cues could interact with wind-driven currents and contribute to patterns of dispersal.

  18. Pygmy Rabbit Surveys on State Lands in Oregon

    USGS Publications Warehouse

    Hagar, Joan; Lienkaemper, George

    2007-01-01

    Introduction The pygmy rabbit (Brachylagus idahoensis) is classified by the federal government as a species of concern (i.e., under review by the U.S. Fish and Wildlife Service for consideration as a candidate for listing as threatened or endangered under the Endangered Species Act) because of its specialized habitat requirements and evidence of declining populations. The Oregon Department of Fish and Wildlife (ODFW) lists pygmy rabbits as 'sensitive-vulnerable,' meaning that protective measures are needed if sustainable populations are to be maintained over time (Oregon Natural Heritage Program, 2001). The Oregon Natural Heritage Program considers this species to be threatened with extirpation from Oregon. Pygmy rabbits also are a species of concern in all the other states where they occur (NatureServe, 2004). The Washington population, known as the Columbia Basin pygmy rabbit, was listed as endangered by the federal government in 2003. Historically, pygmy rabbits have been collected from Deschutes, Klamath, Crook, Lake, Grant, Harney, Baker, and Malheur Counties in Oregon. However, the geographic range of pygmy rabbit in Oregon may have decreased in historic times (Verts and Carraway, 1998), and boundaries of the current distribution are not known. Not all potentially suitable sites appear to be occupied, and populations are susceptible to rapid declines and local extirpation (Weiss and Verts, 1984). In order to protect and manage remaining populations on State of Oregon lands, Oregon Department of Fish and Wildlife needs to identify areas currently occupied by pygmy rabbits, as well as suitable habitats. The main objective of this survey was document to presence or absence of pygmy rabbits on state lands in Malheur, Harney, Lake, and Deschutes counties. Knowledge of the location and extent of pygmy rabbit populations can provide a foundation for the conservation and management of this species in Oregon. The pygmy rabbit is just one of a suite of species of

  19. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Camp Creek and Cottonwood Creek Wilderness Study Areas, Malheur County, Oregon

    SciTech Connect

    Johnes, Erickson, M.S.; Fey, D.L.; Kennedy, K.R.; Gent, C.A.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Camp Creek and Cottonwood Creek Wilderness Study Areas, Malheur County, Oregon.

  20. Pennsylvanian fusulinids from the Beaverhead Mountains, Morrison Lake area, Beaverhead County, Montana

    SciTech Connect

    Verville, G.J. ); Sanderson, G.A.; Baesemann, J.F. ); Hampton, G.L. III )

    1990-04-01

    A fusulinid fauna consisting of Triticites spp., Kansanella aff. K. tenuis (Merchant Keroher), Eowaeringella sp., Fusulina sp. (Beedeina of some authors), Wedekindellina henbesti (Skinner), Plectofusulina spp., Pseudostaffella sp., Fusulinella aff. F. acuminata Thompson, and Eoschubertella sp. has been identified from Pennsylvanian rocks exposed on the Continental Divide, Morrison Lake area, Beaverhead County, Montana. These fusulinids, the first to be published from Pennsylvanian rocks in southwestern Montana, indicate that strata of late Atokan, early Desmoinesian, Missourian, and Virgilian age are present. These rocks, previously assigned to the Quadrant Formation in the Morrison Lake area, are subdivided and correlated with the Bloom, Gallagher Peak Sandstone and Juniper Gulch members of the Snaky Canyon Formation (Skipp et al., 1979a).

  1. Quantification of anthropogenic threats to lakes in a lowland county of central Sweden.

    PubMed

    Brunberg, A K; Blomqvist, P

    2001-05-01

    An evaluation of the negative effects caused by anthropogenic influence on lake ecosystems was performed, using data from 143 catchments in Uppsala County, Sweden. The study included i) technical encroachments; i.e. construction of dams, dikes, etc. as well as effects of drainage of land; ii) pollution, i.e. eutrophication, acidification, and contamination by toxic substances; iii) introduction of nonnative species; and iv) exploitation of species populations. Severe damage was caused mostly by drainage of land followed by pollution by toxic substances and, to a smaller extent, introduction of nonnative species and eutrophication. Most lakes were subject to several types of disturbances, interacting in a complex pattern, which made it difficult to link the visible effects to the true causes of the disturbance. Future lake management should include analyses of all disturbances to the lake catchments, taking into account the historical perspective, in order to balance the threats/damages, in an analysis of the possibilities for maintaining biodiversity and sustainability in the ecosystems. PMID:11436659

  2. Land use inventory of Salt Lake County, Utah from color infrared aerial photography 1982

    NASA Technical Reports Server (NTRS)

    Price, K. P.; Willie, R. D.; Wheeler, D. J.; Ridd, M. K.

    1983-01-01

    The preparation of land use maps of Salt Lake County, Utah from high altitude color infrared photography is described. The primary purpose of the maps is to aid in the assessment of the effects of urban development on the agricultural land base and water resources. The first stage of map production was to determine the categories of land use/land cover and the mapping unit detail. The highest level of interpretive detail was given to the land use categories found in the agricultural or urbanized portions of the county; these areas are of primary interest with regard to the consumptive use of water from surface streams and wells. A slightly lower level of mapping detail was given to wetland environments; areas to which water is not purposely diverted by man but which have a high consumptive rate of water use. Photos were interpreted on the basis of color, tone, texture, and pattern, together with features of the topographic, hydrologic, and ecological context.

  3. Evaluation of Bacillus sphaericus against Mansonia dyari larvae in phosphate lakes in Polk County, Florida.

    PubMed

    Floore, Tom; Wardz, Robert

    2009-09-01

    Effective Mansonia larval control is difficult to achieve in Polk County, Florida, because the larvae attach to the root and stem mass of water lettuce (Pistia stratiotes) and water hyacinth (Eichhornia crassipes). This study evaluated 2 Bacillus sphaericus larvicides as possible control products in 3 phosphate lakes in 2 areas maintained by Polk County Mosquito Control. VectoLex WDG was applied at 56 kg/km2 and 170 kg/km2 and VectoLex CG at 560 kg/km2 and 1,100 kg/km2. One lake in each site was an untreated control. Larval collections were made by collecting water lettuce plants that were shaken, washed, and processed through a series of sieves to grade larvae as early (1st, 2nd) and late (3rd, 4th) instars. Pretreatment and posttreatment collections were made in each lake. More than 3,100 larvae were collected during the study. Approximately 65% of the larvae collected were Ist/2nd instars in both areas. The higher rate of VectoLex CG reduced the larval population 63% and the higher rate of VectoLex WDG by 44%. Against the Ist/2nd instar aggregate the higher rate of VectoLex CG was more effective (69%) than the VectoLex WDG. The VectoLex CG granules appeared to remain nearer the surface and the larvae than the WDG granules. Better effectiveness might have been attained if the entire lake had been treated. In this study, VectoLex CG appeared to be more effective than VectoLex WDG. PMID:19852221

  4. 33 CFR 207.170b - Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use, administration, and navigation. 207.170b Section... Lake County, Fla.; use, administration, and navigation. (a) The owner of or agency controlling the...

  5. 33 CFR 207.170b - Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use, administration, and navigation. 207.170b Section... Lake County, Fla.; use, administration, and navigation. (a) The owner of or agency controlling the...

  6. 33 CFR 207.170b - Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use, administration, and navigation. 207.170b Section... Lake County, Fla.; use, administration, and navigation. (a) The owner of or agency controlling the...

  7. 33 CFR 207.170b - Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use, administration, and navigation. 207.170b Section... Lake County, Fla.; use, administration, and navigation. (a) The owner of or agency controlling the...

  8. 33 CFR 207.170b - Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Apopka-Beauclair Navigation Lock in Apopka-Beauclair Canal in Lake County, Fla.; use, administration, and navigation. 207.170b Section... Lake County, Fla.; use, administration, and navigation. (a) The owner of or agency controlling the...

  9. Health and condition of endangered juvenile Lost River and shortnose suckers relative to water quality and fish assemblages in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California

    USGS Publications Warehouse

    Burdick, Summer M.; Elliott, Diane G.; Ostberg, Carl O.; Conway, Carla M.; Dolan-Caret, Amari; Hoy, Marshal S.; Feltz, Kevin P.; Echols, Kathy R.

    2015-01-01

    Differences in sucker health and condition between lakes were considered the most promising clues to the causes of differential juvenile sucker morality between lakes. A low prevalence of petechial hemorrhaging of the skin (16 percent) and deformed opercula (8 percent) in Upper Klamath Lake suckers may indicate exposure to a toxin other than microcystin. Suckers grew slower in their first year of life, but had similar or greater triglyceride and glycogen levels in Upper Klamath Lake compared to Clear Lake Reservoir. These findings do not suggest a lack of prey quantity but may indicate lower prey quality in Upper Klamath Lake.

  10. 78 FR 24231 - Notice of Realty Action: Proposed Direct Sale of Public Land in Josephine County, Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    .... ADDRESSES: Written comments concerning this proposed sale may be submitted to Grants Pass Field Manager... Bureau of Land Management Notice of Realty Action: Proposed Direct Sale of Public Land in Josephine..., Oregon, by direct sale procedures to Joan Conklin for the approved appraised fair market value of...

  11. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 6 Table 6 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 6 Table 6...

  12. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 6 Table 6 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 6 Table 6...

  13. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 6 Table 6 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 6 Table 6...

  14. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 6 Table 6 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 6 Table 6...

  15. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 6 Table 6 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 6 Table 6...

  16. Water volume and sediment accumulation in Lake Linganore, Frederick County, Maryland, 2009

    USGS Publications Warehouse

    Sekellick, Andrew J.; Banks, S.L.

    2010-01-01

    To assist in understanding sediment and phosphorus loadings and the management of water resources, a bathymetric survey was conducted at Lake Linganore in Frederick County, Maryland in June 2009 by the U.S. Geological Survey, in cooperation with the City of Frederick and Frederick County, Maryland. Position data and water-depth data were collected using a survey grade echo sounder and a differentially corrected global positioning system. Data were compiled and edited using geographic information system software. A three-dimensional triangulated irregular network model of the lake bottom was created to calculate the volume of stored water in the reservoir. Large-scale topographic maps of the valley prior to inundation in 1972 were provided by the City of Frederick and digitized. The two surfaces were compared and a sediment volume was calculated. Cartographic representations of both water depth and sediment accumulation were produced along with an area/capacity table. An accuracy assessment was completed on the resulting bathymetric model. Vertical accuracy at the 95-percent confidence level for the collected data, the bathymetric surface model, and the bathymetric contour map was calculated to be 0.95 feet, 1.53 feet, and 3.63 feet, respectively. The water storage volume of Lake Linganore was calculated to be 1,860 acre-feet at full pool elevation. Water volume in the reservoir has decreased by 350 acre-feet (about 16 percent) in the 37 years since the dam was constructed. The total calculated volume of sediment deposited in the lake since 1972 is 313 acre-feet. This represents an average rate of sediment accumulation of 8.5 acre-feet per year since Linganore Creek was impounded. A sectional analysis of sediment distribution indicates that the most upstream third of Lake Linganore contains the largest volume of sediment whereas the section closest to the dam contains the largest amount of water. In comparison to other Maryland Piedmont reservoirs, Lake Linganore

  17. Mercury sedimentation in lakes in western Whatcom County, Washington, USA and its relation to local industrial and municipal atmospheric sources

    USGS Publications Warehouse

    Paulson, A.J.; Norton, D.

    2008-01-01

    Concentrations of mercury (Hg) were measured in six dated cores from four lakes in western Whatcom County, Washington, USA, that were at various bearings from a chlor-alkali plant, two municipal waste incinerators and a municipal sewage sludge incinerator. The importance of atmospheric emissions of Hg from these local municipal and industrial sources was evaluating by comparing the temporal trends in sedimentation of the lake cores with the emission history of each Hg species and by examining the geographical distribution of Hg sedimentation in relation to the region's primary wind pattern. Local municipal and industrial sources of atmospheric Hg were not responsible for the majority of the Hg in the upper layer of sediments of Whatcom County lakes because of (1) the significant enrichment of Hg in lake sediments prior to emissions of local industrial and municipal sources in 1964, (2) smaller increases in Hg concentrations occurred after 1964, (3) the similarity of maximum enrichments found in Whatcom County lakes to those in rural lakes around the world, (4) the inconsistency of the temporal trends in Hg sedimentation with the local emission history, and (5) the inconsistency of the geographic trends in Hg sedimentation with estimated deposition. Maximum enrichment ratios of Hg in lake sediments between 2 and 3 that are similar to rural areas in Alaska, Minnesota, and New England suggest that global sources of Hg were primarily responsible for increases of Hg in Whatcom County lakes beginning about 1900. ?? 2007 GovernmentEmployee: U.S. Government, Department of Interior, U.S. Geological Survey.

  18. The comparative evaluation of ERTS-1 imagery for resource inventory in land use planning. [Oregon - Newberry Caldera, Mt. Washington, and Big Summit Prairie in Crook County

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J. (Principal Investigator); Simonson, G. H.; Paine, D. P.; Lawrence, R. D.; Pyott, W. T.; Herzog, J. H.; Murray, R. J.; Norgren, J. A.; Cornwell, J. A.; Rogers, R. A.

    1974-01-01

    The author has identified the following significant results. Multidiscipline team interpretation and mapping of resources for Crook County is complete on 1:250,000 scale enlargements of ERTS imagery and 1:120,000 hi-flight photography. Maps of geology, soils, vegetation-land use and land resources units were interpreted to show limitations, suitabilities, and geologic hazards for land use planning. Mapping of lineaments and structures from ERTS imagery has shown a number of features not previously mapped in Oregon. A multistage timber inventory of Ochoco National Forest was made, using ERTS images as the first stage. Inventory of forest clear-cutting practices was successfully demonstrated with color composites. Soil tonal differences in fallow fields correspond with major soil boundaries in loess-mantled terrain. A digital classification system used for discriminating natural vegetation and geologic material classes was successful in separating most major classes around Newberry Caldera, Mt. Washington, and Big Summit Prairie.

  19. Ground-water resources of Honey Lake valley, Lassen County, California, and Washoe County, Nevada

    USGS Publications Warehouse

    Handman, E.H.; Londquist, C.J.; Maurer, D.K.

    1990-01-01

    Honey Lake Valley is a 2,200 sq-mi, topographically closed basin about 35 miles northwest of Reno, Nevada. Unconsolidated basin-fill deposits on the valley floor and fractured volcanic rocks in northern and eastern uplands are the principal aquifers. In the study area, about 130,000 acre- ft of water recharges the aquifer system annually, about 40% by direct infiltration of precipitation and about 60% by infiltration of streamflow and irrigation water. Balancing this is an equal amount of groundwater discharge, of which about 65% evaporates from the water table or is transpired by phreatophytes, about 30 % is withdrawn from wells, and about 5% leaves the basin as subsurface outflow to the east. Results of a groundwater flow model of the eastern part of the basin, where withdrawals for public supply have been proposed, indicate that if 15,000 acre-ft of water were withdrawn annually, a new equilibrium would eventually be established by a reduction of about 60% in both evapotranspiration and subsurface outflow to the east. Hydrologic effects would be minimal at the western boundary of the flow-model area. Within the modeled area, the increased withdrawals cause an increase in the simulated net flow of groundwater eastward across the California-Nevada State line from about 670 acre-ft/yr to about 2,300 acre-ft/yr. (USGS)

  20. Assessment of suspended-sediment transport, bedload, and dissolved oxygen during a short-term drawdown of Fall Creek Lake, Oregon, winter 2012-13

    USGS Publications Warehouse

    Schenk, Liam N.; Bragg, Heather M.

    2014-01-01

    The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.

  1. Evidence for millennial-scale climate change during marine isotope stages 2 and 3 at Little Lake, Western Oregon, U.S.A.

    USGS Publications Warehouse

    Grigg, L.D.; Whitlock, C.; Dean, W.E.

    2001-01-01

    Pollen and geochemical data from Little Lake, western Oregon, suggest several patterns of millennial-scale environmental change during marine isotope stage (MIS) 2 (14,100-27,600 cal yr B.P.) and the latter part of MIS 3 (27,600-42,500 cal yr B.P.). During MIS 3, a series of transitions between warm- and cold-adapted taxa indicate that temperatures oscillated by ca. 2??-4??C every 1000-3000 yr. Highs and lows in summer insolation during MIS 3 are generally associated with the warmest and coldest intervals. Warm periods at Little Lake correlate with warm sea-surface temperatures in the Santa Barbara Basin. Changes in the strength of the subtropical high and the jet stream may account for synchronous changes at the two sites. During MIS 2, shifts between mesic and xeric subalpine forests suggest changes in precipitation every 1000-3000 yr. Increases in Tsuga heterophylla pollen at 25,000 and 22,000 cal yr B.P. imply brief warmings. Minimum summer insolation and maximum global ice-volumes during MIS 2 correspond to cold and dry conditions. Fluctuations in precipitation at Little Lake do not correlate with changes in the Santa Barbara Basin and may be explained by variations in the strength of the glacial anticyclone and the position of the jet stream. ?? 2001 University of Washington.

  2. Time scales of change in chemical and biological parameters after engineered levee breaches adjacent to Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Wood, Tamara M.; Parcheso, Francis; Cameron, Jason M.; Asbill, Jessica R.; Carlson, Rick A.; Fend, Steven V.

    2012-01-01

    Eight sampling trips were coordinated after engineered levee breaches hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. The reconnection, by a series of explosive blasts, was coordinated by The Nature Conservancy to reclaim wetlands that had for approximately seven decades been leveed for crop production. Sets of nonmetallic porewater profilers (U.S. Patent 8,051,727 B1; November 8, 2011; http://www.uspto.gov/web/patents/patog/ week45/OG/html/1372-2/US08051727-20111108.html.) were deployed during these trips in November 2007, June 2008, May 2009, July 2009, May 2010, August 2010, June 2011, and July 2011 (table 1). Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae and spatially involved three lake and four wetland sites. Spatial and temporal variation in solute benthic flux was determined by the field team, using the profilers, over an approximately 4-year period beginning 3 days after the levee breaches. The highest flux to the water column of dissolved organic carbon (DOC) was detected in the newly flooded wetland, contrasting negative or insignificant DOC fluxes at adjacent lake sites. Over the multiyear study, DOC benthic fluxes dissipated in the reconnected wetlands, converging to values similar to those for established wetlands and to the adjacent lake (table 2). In contrast to DOC, benthic sources of soluble reactive phosphorus, ammonium, dissolved iron and manganese from within the reconnected wetlands were consistently elevated (that is, significant in magnitude relative to riverine and established-wetland sources) indicating a multi-year time scale for certain chemical changes after the levee breaches (table 2). Colonization of the reconnected wetlands by aquatic benthic invertebrates during the study trended toward the assemblages in established wetlands, providing further evidence of a multiyear transition of this area to permanent aquatic habitat (table 3). Both the

  3. Sixty thousand years of magmatic volatile history before the caldera-forming eruption of Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Wright, Heather Michelle; Bacon, Charles R.; Vazquez, Jorge A.; Sisson, Thomas W.

    2012-12-01

    The well-documented eruptive history of Mount Mazama, Oregon, provides an excellent opportunity to use pre-eruptive volatile concentrations to study the growth of an explosive silicic magmatic system. Melt inclusions (MI) hosted in pyroxene and plagioclase crystals from eight dacitic-rhyodacitic eruptive deposits (71-7.7 ka) were analyzed to determine variations in volatile-element concentrations and changes in magma storage conditions leading up to and including the climactic eruption of Crater Lake caldera. Temperatures (Fe-Ti oxides) increased through the series of dacites, then decreased, and increased again through the rhyodacites (918-968 to ~950 to 845-895 °C). Oxygen fugacity began at nickel-nickel-oxide buffer (NNO) +0.8 (71 ka), dropped slightly to NNO +0.3, and then climbed to its highest value with the climactic eruption (7.7 ka) at NNO +1.1 log units. In parallel with oxidation state, maximum MI sulfur concentrations were high early in the eruptive sequence (~500 ppm), decreased (to ~200 ppm), and then increased again with the climactic eruption (~500 ppm). Maximum MI sulfur correlates with the Sr content (as a proxy for LREE, Ba, Rb, P2O5) of recharge magmas, represented by basaltic andesitic to andesitic enclaves and similar-aged lavas. These results suggest that oxidized Sr-rich recharge magmas dominated early and late in the development of the pre-climactic dacite-rhyodacite system. Dissolved H2O concentrations in MI do not, however, correlate with these changes in dominant recharge magma, instead recording vapor solubility relations in the developing shallow magma storage and conduit region. Dissolved H2O concentrations form two populations through time: the first at 3-4.6 wt% (with a few extreme values up to 6.1 wt%) and the second at ≤2.4 wt%. CO2 concentrations measured in a subset of these inclusions reach up to 240 ppm in early-erupted deposits (71 ka) and are below detection in climactic deposits (7.7 ka). Combined H2O and CO2

  4. Sixty thousand years of magmatic volatile history before the caldera-forming eruption of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Wright, Heather M.; Bacon, Charles R.; Vazquez, Jorge A.; Sisson, Thomas W.

    2012-01-01

    The well-documented eruptive history of Mount Mazama, Oregon, provides an excellent opportunity to use pre-eruptive volatile concentrations to study the growth of an explosive silicic magmatic system. Melt inclusions (MI) hosted in pyroxene and plagioclase crystals from eight dacitic–rhyodacitic eruptive deposits (71–7.7 ka) were analyzed to determine variations in volatile-element concentrations and changes in magma storage conditions leading up to and including the climactic eruption of Crater Lake caldera. Temperatures (Fe–Ti oxides) increased through the series of dacites, then decreased, and increased again through the rhyodacites (918–968 to ~950 to 845–895 °C). Oxygen fugacity began at nickel–nickel-oxide buffer (NNO) +0.8 (71 ka), dropped slightly to NNO +0.3, and then climbed to its highest value with the climactic eruption (7.7 ka) at NNO +1.1 log units. In parallel with oxidation state, maximum MI sulfur concentrations were high early in the eruptive sequence (~500 ppm), decreased (to ~200 ppm), and then increased again with the climactic eruption (~500 ppm). Maximum MI sulfur correlates with the Sr content (as a proxy for LREE, Ba, Rb, P2O5) of recharge magmas, represented by basaltic andesitic to andesitic enclaves and similar-aged lavas. These results suggest that oxidized Sr-rich recharge magmas dominated early and late in the development of the pre-climactic dacite–rhyodacite system. Dissolved H2O concentrations in MI do not, however, correlate with these changes in dominant recharge magma, instead recording vapor solubility relations in the developing shallow magma storage and conduit region. Dissolved H2O concentrations form two populations through time: the first at 3–4.6 wt% (with a few extreme values up to 6.1 wt%) and the second at ≤2.4 wt%. CO2 concentrations measured in a subset of these inclusions reach up to 240 ppm in early-erupted deposits (71 ka) and are below detection in climactic deposits (7.7 ka). Combined H2O and

  5. Streamflow and water quality of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, October 1984

    SciTech Connect

    Crawford, C.G.; Wangsness, D.J.

    1987-01-01

    A diel water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. 25 refs., 65 figs., 15 tabs.

  6. The Lake County Career Opportunities Study II: A Cooperative Study Presented to the Lake County Association of School Administrators and Lakeland Community College. Prepared as a Community Service Project.

    ERIC Educational Resources Information Center

    Lakeland Community Coll., Mentor, OH.

    The study on Lake County career opportunities was conducted (1) to forecast major population and demographic changes and their effects on schools and programs, (2) to determine the present and future occupational needs of employers, (3) to determine current program and enrollments in career training, (4) to determine student aspirations, (5) to…

  7. Geothermal Gradients in Oregon, 1985-1994

    SciTech Connect

    Blackwell, D.D.

    1995-01-01

    This data set is comprised of three groups of temperature-depth data. All the sites are located in southeastern Oregon. The first is a set of 7 wells logged during 1993 in south central Oregon in the Basin and Range province. All these wells, with the exception of the Blue Mountain Oil well, are water wells. These wells were part of a geothermal reconnaissance of this area. The Blue Mountain oil well of this set has been described by Sass et al. (1971) as well. Gannet in the vicinity of the Vale, Oregon (Bowen and Blackwell, 1972; Blackwell et al., 1978) geothermal system in Malheur County. These wells were logged in 1986 during a study of the area described by Gannett (1988). There are 17 wells (plus one relog) in this data set. All these wells are in a small area just east of the town of Vale in Malheur County. The second set of data consists of a group of wells that were logged by Marshall The third set of data represents the results of an exploration project in the general area of the Lake Owyhee thermal area in Malheur County. This data set is comprised of 16 wells. This data set was collected by Hunt Energy Corporation and made available though the efforts of Roger Bowers. A small scale map of the locations of the wells is shown in Figure 1. The well location and some pertinent information about the wells is shown in Table 1. The detailed lists of temperature-depth data and plots for each well, either individually or with a group, follow the list of references cited.

  8. 75 FR 50930 - Final Determination To Approve Alternative Final Cover Request for the Lake County, Montana Landfill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... approve in the Federal Register on February 10, 2010, (75 FR 6597) Lake County's site-specific flexibility... provides equivalent protection from wind and water erosion as the erosion layer specified in paragraph (a... 40 CFR 258.60, and the erosion layer provides equivalent protection from wind and water erosion...

  9. A Study of Child Care Professionals' Salaries, Benefits, and Working Conditions: Lake, Marin, Mendocino, Napa, and Sonoma Counties.

    ERIC Educational Resources Information Center

    Community Child Care Council of Sonoma County, Santa Rosa, CA.

    Surveys were made of the salaries, benefits, and working conditions of child care professionals in Lake, Marin, Mendocino, Napa, and Sonoma Counties. The centers sampled operated under a variety of auspices. Centers included nonprofit (without subsidized child care spaces), proprietary, public, and subsidized organizations. The survey instrument…

  10. The World of the Developmentally Disabled Child: A Parents' Handbook with Directory of Services for Families in Lake County, Illinois.

    ERIC Educational Resources Information Center

    Suelzle, Marijean; Keenan, Vincent

    Intended for parents of developmentally disabled children, the handbook provides information on service needs and services available in Lake County, Illinois. Section I focuses on life course planning with sections of diagnosis and assessment, professionals involved with special education, education for the developmentally disabled, vocational…

  11. Migrant Characteristics of a "Turnaround" Area: 1965-70 Immigration to a 45-County Subarea of the Upper Great Lakes.

    ERIC Educational Resources Information Center

    Voss, Paul R.; Fuguitt, Glenn V.

    Utilizing 1970 census data on a 45-county area in the northern Upper Great Lakes Region, the following questions were addressed: (1) In what ways do recent migrants to this nonmetropolitan region differ from those "nonmigrants" who resided in the region in both 1965 and 1970? (2) To what extent do the recent migrants from metropolitan counties…

  12. Analysis of meteorological data and water chemistry of Latir Lakes, Taos County, New Mexico, 1985-88

    USGS Publications Warehouse

    Anderholm, S.K.; Roybal, R.G.; Risser, D.W.; Somers, Georgene

    1994-01-01

    Data were analyzed to determine the chemistry of atmospheric deposition and water of the Latir Lakes in Taos County New Mexico, from 1985 to 1988. The Latir Lakes consist of a series of nine paternoster lakes that range in altitude from 11,061 to 11,893 feet above sea level. The pH of wet precipitation generally ranged from 4.6 to 5.5 and the specific conductance of wet precipitation ranged from 1 to 18 microsiemens per centimeter at 25 degrees Celsius from December 1985 through September 1988. Snowpack chemistry data indicate a change in the specific conductance, pH, and alkalinity of the snowpack from month to month. The dominant cation in the snowpack is calcium, and the dominant anions are nitrate and sulfate. The samples having the smallest values of specific conductance generally did not contain measurable alkalinity. When the snowpack starts to melt in the spring, specific conductance of the entire snowpack decreases, consistent with the hypothesis that the initial fluid draining from the snowpack transports a large amount of dissolved material out of the snowpack. Water chemistries in the Latir Lakes are similar although specific conductance increases downstream from lake 9 to lake 1. Calcium is the dominant cation and the ions that produce alkalinity are the dominant anions. Concentrations of sodium, magnesium, chloride, and sulfate do not vary substantially from year to year or during the year in a particular lake. Alkalinity and calcium concentration, however, do vary from year to year and during the year. The pH of outflow from the Latir Lakes varies from lake to lake and from year to year. In 1986, the range in pH in the lakes was less than 1 unit in mid-June, but was greater than 2.5 units by late October. The pH generally was larger than 7.0 in all of the lakes and was as large as 9.9 in several of the lakes during the period of study. The pH of outflow water generally increases from early spring to late summer in the Latir Lakes, and snowmelt does

  13. Seasonal Distribution and Abundance of Larval and Juvenile Lost River and Shortnose Suckers in Hanks Marsh, Upper Klamath National Wildlife Refuge, Upper Klamath Lake, Oregon: 2007 Annual Report

    USGS Publications Warehouse

    Anderson, Greer O.; Wilkens, Alexander X.; Burdick, Summer M.; VanderKooi, Scott P.

    2009-01-01

    In the summer of 2007, we undertook an assessment of larval and juvenile sucker use of Hanks Marsh in Upper Klamath Lake, Oregon. This 1,200-acre marsh on the southeastern shoreline of the lake represents part of the last remaining natural emergent wetland habitat in the lake. Because of the suspected importance of this type of habitat to larval and juvenile endangered Lost River and shortnose suckers, it was thought that sucker abundance in the marsh might be comparatively greater than in other non-vegetated areas of the lake. It also was hoped that Hanks Marsh would serve as a reference site for wetland restoration projects occurring in other areas of the lake. Our study had four objectives: to (1) examine seasonal distribution and relative abundance of larval suckers in and adjacent to Hanks Marsh in relation to habitat features such as depth, vegetation, water quality, and relative abundance of non-sucker species; (2) determine the presence or absence and describe the distribution of juvenile suckers [35 to 80 mm standard length (SL)] along the periphery of Hanks Marsh; (3) assess spatial and temporal overlap between larval suckers and their potential predators; and (4) assess suitability of water quality throughout the summer for young-of-the-year suckers. Due to the low number of suckers found in the marsh and our inability to thoroughly sample all marsh habitats due to declining lake levels during the summer, we were unable to completely address these objectives in this pilot study. The results, however, do give some indication of the relative use of Hanks Marsh by sucker and non-sucker species. Through sampling of larval and juvenile suckers in various habitat types within the marsh, we determined that sucker use of Hanks Marsh may be very low in comparison with other areas of the lake. We caught only 42 larval and 19 juvenile suckers during 12 weeks of sampling throughout the marsh. Sucker catches were rare in Hanks Marsh, and were lower than catch rates

  14. Water-quality and biological data for selected streams, lakes, and wells in the High Point Lake watershed, Guilford County, North Carolina, 1988-89

    USGS Publications Warehouse

    Davenport, M.S.

    1993-01-01

    Water and bottom-sediment samples were collected at 26 sites in the 65-square-mile High Point Lake watershed area of Guilford County, North Carolina, from December 1988 through December 1989. Sampling locations included 10 stream sites, 8 lake sites, and 8 ground-water sites. Generally, six steady-flow samples were collected at each stream site and three storm samples were collected at five sites. Four lake samples and eight ground-water samples also were collected. Chemical analyses of stream and lake sediments and particle-size analyses of lake sediments were performed once during the study. Most stream and lake samples were analyzed for field characteristics, nutrients, major ions, trace elements, total organic carbon, and chemical-oxygen demand. Analyses were performed to detect concentrations of 149 selected organic compounds, including acid and base/neutral extractable and volatile constituents and carbamate, chlorophenoxy acid, triazine, organochlorine, and organophosphorus pesticides and herbicides. Selected lake samples were analyzed for all constituents listed in the Safe Drinking Water Act of 1986, including Giardia, Legionella, radiochemicals, asbestos, and viruses. Various chromatograms from organic analyses were submitted to computerized library searches. The results of these and all other analyses presented in this report are in tabular form.

  15. 77 FR 59639 - Bear Lake National Wildlife Refuge, Bear Lake County, ID and Oxford Slough Waterfowl Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... notice in the Federal Register (75 FR 35829; June 23, 2010). Bear Lake National Wildlife Refuge Bear Lake... boats would still be allowed September 20 to January 15 in the Salt Meadow, the Rainbow Sub-Impoundment, and the Rainbow Units, as well as in the Merkley Lake Unit, and the Mud Lake Unit as far south as...

  16. Causes of fluctuations in the rate of discharge of Clear Lake Springs, Millard County, Utah

    USGS Publications Warehouse

    Mower, R.W.

    1967-01-01

    The Clear Lake Springs in southeastern Millard County are the source of water for the maintenance of the Clear Lakes Migratory Waterfowl Refuge. Seasonal declines in the rate of discharge were noted during 1959-60. Fluctuations in the flow of Clear Lake Springs are caused both by natural variations in the quantity of recharge and by variations in the quantity of water pumped from an increasing number of irrigation wells in the southern four districts of adjacent Pavant Valley. The springs are the principal discharge point for an aquifer in a complex of highly permeable basalt flows. Water enters the basalt aquifer as direct recharge from precipitation, as interformational leakage from a contiguous artesian aquifer in lake and alluvial sediments, and as infiltration of infrequent flood runoff and of unconsumed irrigation water in the lowlands of Pavant Valley. A hydrograph of the flow of the springs indicates that precipitation on the basalt outcrop recharges the aquifer; this conclusion is strengthened by fluctuations in the chemical quality of the spring water. The effects due to precipitation, however, are partly masked by the larger effects due to the pumping of ground water for irrigation in southern Pavant Valley. Withdrawal of ground water from wells in the southern four districts causes seasonal reductions in the flow of the springs by reducing the hydraulic gradient between the wells and the springs. Statistical analysis of three parameters--the (1) October-April precipitation, (2) annual pumpage, and (3) annual lowest rate of spring discharge--shows that a departure of 1 inch from the normal October-April precipitation at Fillmore is accompanied by a change of 0.41 cubic feet per second in the low flow of Clear Lake Springs. Similarly, a departure of 1,000 acre-feet from the 1961-64 average annual pumpage causes the low flow of the springs to change by 0.23 cubic feet per second. The average annual volume of discharge from Clear Lake Springs during 1960

  17. 1. General view of Oregon Electric Railway, view looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view of Oregon Electric Railway, view looking north at Hedges Creek trestle. - Oregon Electric Railroad, Hedges Creek Trestle, Garden Home to Wilsonville Segment, Milepost 38.7, Garden Home, Washington County, OR

  18. Mineral resources of the Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas, Malheur and Harney counties, Oregon

    SciTech Connect

    Sherrod, D.R.; Griscom, A.; Turner, R.L.; Minor, S.A.; Graham, D.E.; Buehler, A.R.

    1988-01-01

    The Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas encompass most of the Sheepshead Mountains in southeast Oregon. The mountains comprise several fault blocks of middle and late Miocene basalt, basaltic andesite, andesite, and dacite lava; pyroclastic and sedimentary rocks are minor. The three wilderness study areas have low resource potential for gold, silver, and oil and gas. A few small areas have low-to-high resource potential for diatomite, as indicated by the occurrence of low-grade diatomite. Some fault zones have a moderate potential for geothermal energy.

  19. EARTHQUAKE HAZARDS TO DOMESTIC WATER DISTRIBUTION SYSTEMS IN SALT LAKE COUNTY, UTAH.

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  20. Distribution and occurrence of total coliform bacteria in Floridan aquifer wells, western Lake County, Florida

    USGS Publications Warehouse

    Taylor, G.F.

    1984-01-01

    Total coliform bacteria data for Floridan aquifer wells in western Lake County, central Florida, are presented. Included are data collected from 1966 to 1979 by the Florida Department of Environmental Regulation for 98 public-supply wells, and data collected during 1982 by the U.S. Geological Survey for 29 wells. The data for the 98 public supplies indicate that 85 percent have a record of total coliform occurrence in the raw water. Data from the 29 wells sampled by the Geological Survey indicate that 55 percent have a record total coliform occurrence. Further comparison of the two data sets indicates that the Geological Survey data generally indicate a lower percentage of sites with coliform occurrence and, in some cases, a different pattern of occurrence than did the Department of Environmental Regulation data. (USGS)

  1. Surface-water and climatological data, Salt Lake County, Utah, water year 1980

    USGS Publications Warehouse

    Pyper, G.E.; Christensen, R.C.; Stephens, D.W.; McCormack, H.F.; Conroy, L.S.

    1981-01-01

    This report presents streamflow, water-quality, precipitation, and storm-runoff data collected in Salt Lake County, Utah, during the 1980 water year and certain water-quality data for the 1979 water year which were included for comparative purposes. Surface-water data consist of daily mean values of flow at 33 sites on natural streams, canals, and conduits. Water-quality data consist of chemical, biologic, and sediment analyses at 30 sites. Precipitation data consist of daily and monthly total at nine sites. Storm-runoff data consist of 5 and 15-minute interval discharge data for storms of July 1-2, August 19, and August 25, 1980, for most surface-water sites. (USGS)

  2. Assessing movement and sources of mortality of juvenile catostomids using passive integrated transponder tags, Upper Klamath Lake, Oregon - Summary of 2012 effort

    USGS Publications Warehouse

    Burdick, Summer M.

    2013-01-01

    Survival of juvenile endangered Lost River and shortnose suckers is thought to limit recruitment into the adult populations and ultimately limit the recovery of these species in Upper Klamath Lake, Oregon. Although many hypotheses exist about the sources of mortality, the contribution of each speculated source of mortality has not been examined. To examine causes of mortality, validate estimated age to maturity, and examine movement patterns for juvenile suckers in Upper Klamath Lake, passive integrated transponder (PIT) tags and remote tag detection systems were used. Age-1 suckers were opportunistically tagged in 2009 and 2010 during another study on juvenile sucker distribution. After the distribution study concluded in 2010, USGS redirected sampling efforts to target age-1 suckers for tagging. Tags were redetected using an existing infrastructure of remote PIT tag readers and tag scanning surveys at American white pelican (Pelecanus erythrorhynchos), double-crested cormorant (Phalacrocorax auritus), and Forster’s tern (Sterna forsteri) breeding and loafing areas. Individual fish histories are used to describe the distance, direction, and timing of juvenile sucker movement. Sucker PIT tag detections in the Sprague and Williamson Rivers in mid-summer and in autumn indicate tagged juvenile suckers use these tributaries outside of the known spring spawning season. PIT tags detected in bird habitats indicate predation by birds was a cause of mortality.

  3. Temporal and Spatial Distribution of Endangered Juvenile Lost River and Shortnose Suckers in Relation to Environmental Variables in Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    USGS Publications Warehouse

    Burdick, Summer M.; VanderKooi, Scott P.

    2010-01-01

    Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year and age-1 and older sub-adult suckers are rare. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. A lack of access to, or abundance of, optimal rearing habitat may exacerbate juvenile sucker mortality or restrict juvenile growth or development. Summer age-0 sucker habitat use and distribution has been studied extensively, but many uncertainties remain about age-1 and older juvenile habitat use, distribution, and movement patterns within Upper Klamath Lake. We designed a study to examine seasonal changes in distribution of age-1 suckers in Upper Klamath Lake as they relate to depth and water quality. In this document, which meets our annual data summary and reporting obligations, we discuss the results of our second annual spring and summer sampling effort. Catch data collected in 2007 and 2008 indicate seasonal changes in age-1 and older juvenile sucker habitat use coincident with changes in water quality, which were previously undocumented. In both years during April and May, age-1 and older juvenile suckers were found in shallow water environments. Then, as water temperatures began to warm throughout Upper Klamath Lake in June, age-1 and older juvenile suckers primarily were captured along the western shore in some of the deepest available environments. Following a dramatic decrease in dissolved oxygen concentrations in Eagle Ridge

  4. High-resolution digital elevation dataset for Crater Lake National Park and vicinity, Oregon, based on LiDAR survey of August-September 2010 and bathymetric survey of July 2000

    USGS Publications Warehouse

    Robinson, Joel E.

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-foot volcano known as Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Because the Crater Lake region is potentially volcanically active, knowledge of past events is important to understanding hazards from future eruptions. Similarly, because the area is seismically active, documenting and evaluating geologic faults is critical to assessing hazards from earthquakes. As part of the American Recovery and Reinvestment Act (ARRA) of 2009, the U.S. Geological Survey was awarded funding for high-precision airborne LiDAR (Light Detection And Ranging) data collection at several volcanoes in the Cascade Range through the Oregon LiDAR Consortium, administered by the Oregon Department of Geology and Mineral Industries (DOGAMI). The Oregon LiDAR Consortium contracted with Watershed Sciences, Inc., to conduct the data collection surveys. Collaborating agencies participating with the Oregon LiDAR Consortium for data collection in the Crater Lake region include Crater Lake National Park (National Park Service) and the Federal Highway Administration. In the immediate vicinity of Crater Lake National Park, 798 square kilometers of LiDAR data were collected, providing a digital elevation dataset of the ground surface beneath forest cover with an average resolution of 1.6 laser returns/m2 and both vertical and horizontal accuracies of ±5 cm. The LiDAR data were mosaicked in this report with bathymetry of the lake floor of Crater Lake, collected in 2000 using high-resolution multibeam sonar in a collaborative effort between the U.S. Geological Survey, Crater Lake National Park, and the Center for Coastal and Ocean Mapping at the University of New Hampshire. The bathymetric survey

  5. Integrating Climate Change Scenarios and Co-developed Policy Scenarios to Inform Coastal Adaptation: Results from a Tillamook County, Oregon Knowledge to Action Network

    NASA Astrophysics Data System (ADS)

    Lipiec, E.; Ruggiero, P.; Serafin, K.; Bolte, J.; Mills, A.; Corcoran, P.; Stevenson, J.; Lach, D.

    2014-12-01

    Local decision-makers often lack both the information and tools to reduce their community's overall vulnerability to current and future climate change impacts. Managers are restricted in their actions by the scale of the problem, inherent scientific uncertainty, limits of information exchange, and the global nature of available data, rendering place-based strategies difficult to generate. Several U.S. Pacific Northwest coastal communities are already experiencing chronic erosion and flooding, hazards only to be exacerbated by sea level rise and changing patterns of storminess associated with climate change. To address these issues, a knowledge to action network (KTAN) consisting of local Tillamook County stakeholders and Oregon State University researchers, was formed to project future flooding and erosion impacts and determine possible adaptation policies to reduce vulnerability. Via an iterative scenario planning process, the KTAN has developed four distinct adaptation policy scenarios, including 'Status Quo', 'Hold The Line', 'ReAlign', and 'Laissez-Faire'. These policy scenarios are being integrated with a range of climate change scenarios within the modeling framework Envision, a multi-agent GIS-based tool, which allows for the combination of physical processes data, probabilistic climate change information, coastal flood and erosion models, and stakeholder driven adaptation strategies into distinct plausible future scenarios. Because exact physical and social responses to climate change are impossible to ascertain, information about the differences between possible future scenarios can provide valuable information to decision-makers and the community at large. For example, the fewest projected coastal flood and erosion impacts to buildings occur under the 'ReAlign' policy scenario (i.e., adaptation strategies that move dwellings away from the coast) under both low and high climate change scenarios, especially in comparison to the 'Status Quo' or 'Hold The

  6. Superfund Record of Decision (EPA Region 5): Washington County Landfill, lake Elmo, MN. (Second remedial action), November 1990. Final report

    SciTech Connect

    Not Available

    1990-11-15

    The 40-acre Washington County Landfill site is an inactive sanitary landfill in Lake Elmo, Washington County, Minnesota. Land use in the area is predominantly residential and agricultural. From 1969 to 1975, Washington and Ramsey counties used the site as a sanitary landfill. Monitoring by Washington County in 1981 revealed low level VOC contamination, which poses a health risk based on long-term ingestion of ground water. The ROD addresses a final remedy for drinking water supply as part of a second operable unit. The primary contaminants of concern affecting the ground water are VOCs including benzene, PCE, TCE, and xylenes. The selected remedial action for the site includes providing a municipal drinking water supply system to supply drinking water to 10 homes with private wells that have been affected by the contaminant plume; and continuing operation of the gradient control well and spray-irrigation treatment system for the first operable unit.

  7. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    USGS Publications Warehouse

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were

  8. Public health assessment for Reynolds Metals Company, Troutdale, Multnomah County, Oregon, Region 10. Cerclis No. ORD009412677. Final report

    SciTech Connect

    1997-01-14

    The Reynolds Metals Company in Troutdale, Oregon, is a primary aluminum plant. When operating, the plant produced wastes that were contaminated with aluminum, mercury, fluoride, polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and cyanide. Studies are currently underway to determine the extent of environmental contamination and subsequent clean-up efforts which will be required. People may be exposed to contaminated soils and sediments in the area bordering the Columbia and Sandy rivers. Contamination at the site may have contributed to contamination of fish in the Columbia River, although it is difficult to determine what effect the site may have. Workers at the Reynolds site may also be exposed to contaminated soils and sediments, particularly those workers who are involved in outdoor activities.

  9. The effects of calcium magnesium acetate (CMA) deicing material on the water quality of Bear Creek, Clackamas County, Oregon, 1999

    USGS Publications Warehouse

    Tanner, Dwight Q.; Wood, Tamara M.

    2000-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Oregon Department of Transportation (ODOT), to evaluate the effects of the highway deicing material, calcium magnesium acetate (CMA), on the water quality of Bear Creek, in the Cascade Range of Oregon. ODOT began using CMA (an alternative deicer that has fewer adverse environmental effects than road salt) in the mid-1990s and began this study with the USGS to ensure that there were no unexpected effects on the water quality of Bear Creek. Streamflow, precipitation, dissolved oxygen, pH, specific conductance, and water temperature were measured continuously through the 1998?99 winter. There was no measurable effect of the application of CMA to Highway 26 on the biochemical oxygen demand (BOD), calcium concentration, or magnesium concentration of Bear Creek and its tributaries. BOD was small in all of the water samples, some of which were collected before CMA application, and some of which were collected after application. Five-day BOD values ranged from 0.1 milligrams per liter to 1.5 milligrams per liter, and 20-day BOD values ranged from 0.2 milligrams per liter to 2.0 milligrams per liter. Dissolved copper concentrations in a small tributary ditch on the north side of Highway 26 exceeded the U.S. Environmental Protection Agency aquatic life criteria on three occasions. These exceedances were probably not caused by the application of CMA because (1) one of the samples was a background sample (no recent CMA application), and (2) dissolved copper was not detected in Bear Creek water samples to which CMA was added during laboratory experiments.

  10. Geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado

    USGS Publications Warehouse

    Shroba, Ralph R.; Kellogg, Karl S.; Brandt, Theodore R.

    2014-01-01

    The geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado, portrays the geology in the upper Arkansas valley and along the lower flanks of the Sawatch Range and Mosquito Range near the town of Granite. The oldest rocks, exposed in the southern and eastern parts of the quadrangle, include gneiss and plutonic rocks of Paleoproterozoic age. These rocks are intruded by younger plutonic rocks of Mesoproterozoic age. Felsic hypabyssal dikes, plugs, and plutons, ranging in age from Late Cretaceous or Paleocene to late Oligocene, locally intruded Proterozoic rocks. A small andesite lava flow of upper Oligocene age overlies Paleoproterozoic rock, just south of the Twin Lakes Reservoir. Gravelly fluvial and fan deposits of the Miocene and lower Pliocene(?) Dry Union Formation are preserved in the post-30 Ma upper Arkansas valley graben, a northern extension of the Rio Grande rift. Mostly north-northwest-trending faults displace deposits of the Dry Union Formation and older rock units. Light detection and ranging (lidar) imagery suggests that two short faults, near the Arkansas River, may displace surficial deposits as young as middle Pleistocene. Surficial deposits of middle Pleistocene to Holocene age are widespread in the Granite quadrangle, particularly in the major valleys and on slopes underlain by the Dry Union Formation. The main deposits are glacial outwash and post-glacial alluvium; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; till deposited during the Pinedale, Bull Lake, and pre-Bull Lake glaciations; rock-glacier deposits; and placer-tailings deposits formed by hydraulic mining and other mining methods used to concentrate native gold. Hydrologic and geologic processes locally affect use of the land and locally may be of concern regarding the stability of buildings and infrastructure, chiefly in low-lying areas along and near stream channels and locally in areas of moderate to steep slopes. Low

  11. Basis for paleoenvironmental interpretation of magnetic properties of sediment from Upper Klamath Lake (Oregon): Effects of weathering and mineralogical sorting

    USGS Publications Warehouse

    Rosenbaum, J.G.; Reynolds, R.L.

    2004-01-01

    Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.

  12. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2005-2006 Annual Report.

    SciTech Connect

    Faucera, Jason

    2006-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  13. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2003-2004 Annual Report.

    SciTech Connect

    Faucera, Jason

    2004-05-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  14. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon : Coordination and Technical Assistance, 2004-2005 Annual Report.

    SciTech Connect

    Faucera, Jason

    2005-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  15. Estimation of reservoir storage capacity using multibeam sonar and terrestrial lidar, Randy Poynter Lake, Rockdale County, Georgia, 2012

    USGS Publications Warehouse

    Lee, K.G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Rockdale County Department of Water Resources, conducted a bathymetric and topographic survey of Randy Poynter Lake in northern Georgia in 2012. The Randy Poynter Lake watershed drains surface area from Rockdale, Gwinnett, and Walton Counties. The reservoir serves as the water supply for the Conyers-Rockdale Big Haynes Impoundment Authority. The Randy Poynter reservoir was surveyed to prepare a current bathymetric map and determine storage capacities at specified water-surface elevations. Topographic and bathymetric data were collected using a marine-based mobile mapping unit to estimate storage capacity. The marine-based mobile mapping unit operates with several components: multibeam echosounder, singlebeam echosounder, light detection and ranging system, navigation and motion-sensing system, and data acquisition computer. All data were processed and combined to develop a triangulated irregular network, a reservoir capacity table, and a bathymetric contour map.

  16. Water-surface elevations and channel characteristics for a selected reach of the Applegate River, Jackson County, Oregon

    USGS Publications Warehouse

    Harris, David Dell; Alexander, Clyde W.

    1970-01-01

    In land-use planning for the Applegate River and its flood plain, consideration should be given to (1) preservation of the recreational attributes of the area, (2) allowance for optimum development of the flood plain's natural resources, and (3) protection of the rights of private landowners. Major factors that influence evaluation of the above considerations are the elevations and characteristics of floods. Heretofore, such flood data for the Applegate River have been inadequate to evaluate the flood potential or to use as a basis for delineating reasonable land-use zones. Therefore, at the request of Jackson County, this study was made to provide flood elevations, water-surface profiles, and channel characteristics (geometry and slope) for a reach of the Applegate River from the Jackson-Josephine County line upstream to the Applegate damsite (fig. 1). A similar study was previously made for reaches of adjacent Rogue River and Elk Creek (Harris, 1970).

  17. Eighth year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL). [Oregon

    NASA Technical Reports Server (NTRS)

    Lewis, A. J.; Isaacson, D. L.; Schrumpf, B. J. (Principal Investigator)

    1980-01-01

    Projects completed for the NASA Office of University Affairs include the application of remote sensing data in support of rehabilitation of wild fire damaged areas and the use of LANDSAT 3 return beam vidicon in forestry mapping applications. Continuing projects for that office include monitoring western Oregon timber clearcut; detecting and monitoring wheat disease; land use monitoring for tax assessment in Umatilla, Lake, and Morrow Counties; and the use of Oregon Air National Guard thermal infrared scanning data. Projects funded through other agencies include the remote sensing inventory of elk in the Blue Mountains; the estimation of burned agricultural acreage in the Willamette Valley; a resource inventory of Deschutes County; and hosting a LANDSAT digital workshop.

  18. Geologic map of the Wildcat Lake 7.5' quadrangle: Kitsap and Mason counties, Washington

    USGS Publications Warehouse

    Haeussler, Peter J.; Clark, Kenneth P.

    2000-01-01

    The Wildcat Lake quadrangle lies in the forearc of the Cascadia subduction zone, about 20-km east of the Cascadia accretionary complex exposed in the Olympic Mountains (Tabor and Cady, 1978),and about 100-km west of the axis of the Cascades volcanic arc. The quadrangle lies near the middle of the Puget Lowland, which typically has elevations less than 600 feet (183 m), but on Gold Mountain, in the center of the quadrangle, the elevation rises to 1761 feet (537 m). This anomalously high topography also provides a glimpse of the deeper crust beneath the Lowland. Exposed on Green and Gold Mountains are rocks related to the Coast Range basalt terrane. This terrane consists of Eocene submarine and subaerial tholeiitic basalt of the Crescent Formation, which probably accreted to the continental margin in Eocene time (Snavely and others, 1968). The Coast Range basalt terrane may have originated as an oceanic plateau or by oblique marginal rifting (Babcock and others, 1992), but its subsequent emplacement history is complex (Wells and others, 1984). In southern Oregon, onlapping strata constrain the suturing to have occured by 50 Ma; but on southern Vancouver Island where the terrane-bounding Leech River fault is exposed, Brandon and Vance (1992) concluded suturing to North America occurred in the broad interval between 42 and 24 Ma. After emplacement of the Coast Range basalt terrane, the Cascadia accretionary complex,exposed in the Olympic Mountains west of the quadrangle,developed by frontal accretion and underplating (e.g., Clowes and others, 1987). The Seattle basin, part of which lies to the north of Green Mountain, also began to develop in late Eocene time due to forced flexural subsidence along the Seattle fault zone (Johnson and others, 1994). Domal uplift of the accretionary complex beneath the Olympic Mountains occurred after approximately 18 million years ago (Brandon and others, 1998). Ice-sheet glaciation during Quaternary time reshaped the topography of the

  19. Forensic Hydrogeography: Assessing Arsenic Contamination in Drinking Water, Livestock, and Agricultural Wells in Harney County, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Smitherman, L. L.

    2014-12-01

    This study investigates the relationship between elevated arsenic levels in groundwater and the regional geography within the Harney Basin in Eastern Oregon. There are multiple aquifers within this region used for public consumption, livestock production, and agriculture. Initial observations by the United States Geological Survey and independent residential water quality assessments have identified some wells containing arsenic concentrations an order of magnitude greater than the United States Environmental Protection Agency's Maximum Contaminant Level of 10 parts per billion for drinking water. However, these data are inadequate to characterize the spatial extent of arsenic contamination throughout the basin; it remains unclear which aquifers are contaminated. The basin contains a geology comprised of tuffaceous sedimentary rocks and basalt formations with extensive faulting. Productive wells range in depth from 6 to 240 meters. The present study examines the spatial extent and seasonal variation of arsenic concentrations due to changing water levels stemming from agricultural pumping. These data will aid in the development of a regional model of arsenic contamination throughout the basin.

  20. Formative Evaluation to Increase Availability of Healthy Snacks and Beverages in Stores Near Schools in Two Rural Oregon Counties, 2013

    PubMed Central

    Findholt, Nancy E.; Pickus, Hayley A.

    2015-01-01

    Introduction Children living in rural areas are at greater risk for obesity than their urban counterparts. Differences in healthy food access may contribute to this disparity. Most healthy food access initiatives target stores in urban areas. We conducted a formative evaluation to increase availability of healthy snacks and beverages in food stores near schools in rural Oregon. Methods We assessed availability of healthy snacks and beverages in food stores (n = 15) using the SNACZ (Students Now Advocating to Create Healthy Snacking Zones) checklist and conducted in-depth interviews with food store owners (n = 6). Frequency distributions were computed for SNACZ checklist items, and interview data were analyzed by using applied thematic analysis. Results Overall, availability of healthy snacks and beverages in study communities was low. Four interrelated themes regarding store owner perspectives on stocking healthy snacks and beverages emerged from the interviews: customer demand, space constraints, vendor influence, and perishability. Conclusion In addition to working with food store owners, efforts to increase availability of healthy snacks and beverages in rural areas should engage young people, food buyers (eg, schools), and vendors as stakeholders for identifying strategies to increase demand for and availability of these items. Further research will be needed to determine which strategies or combinations of strategies are feasible to implement in the study communities. PMID:26632956

  1. An integrated assessment for wind energy in Lake Michigan coastal counties.

    PubMed

    Nordman, Erik; VanderMolen, Jon; Gajewski, Betty; Isely, Paul; Fan, Yue; Koches, John; Damm, Sara; Ferguson, Aaron; Schoolmaster, Claire

    2015-04-01

    The benefits and challenges of onshore and offshore wind energy development were assessed for a 4-county area of coastal Michigan. Economic, social, environmental, and spatial dimensions were considered. The coastal counties have suitable wind resources for energy development, which could contribute toward Michigan's 10% renewable energy standard. Wind energy is cost-effective with contract prices less than the benchmark energy price of a new coal-fired power plant. Constructing a 100 MW wind farm could have a $54.7 million economic impact. A patchwork of township-level zoning ordinances regulates wind energy siting. Voluntary collaborations among adjacent townships standardizing the ordinances could reduce regulatory complexity. A Delphi Inquiry on offshore wind energy in Lake Michigan elicited considerable agreement on its challenges, but little agreement on the benefits to coastal communities. Offshore turbines could be acceptable to the participants if they reduced pollution, benefited coastal communities, involved substantial public participation, and had minimal impact on property values and tourism. The US Coast Guard will take a risk-based approach to evaluating individual offshore developments and has no plans to issue blanket restrictions around the wind farms. Models showed that using wind energy to reach the remainder of the 10% renewable energy standard could reduce SO2 , NOx , and CO2 pollution by 4% to 7%. Turbines are highly likely to impact the area's navigational and defense radar systems but planning and technological upgrades can reduce the impact. The integrated assessment shows that responsible wind energy development can enhance the quality of life by reducing air pollution and associated health problems and enhancing economic development. Policies could reduce the negative impacts to local communities while preserving the benefits to the broader region. PMID:25377179

  2. The application of magnetic susceptibility and grain-size in a lithostratigraphic study of Middle to Late Pleistocene lacustrine sediments near Summer Lake Oregon

    SciTech Connect

    Erbes, D.B.; Negrini, R.M. . Dept. of Physics and Geology)

    1993-04-01

    Positive results have been attained using volume magnetic susceptibility and sedimentological data for intrabasinal correlation of outcrop and core from a Great Basin style lacustrine sequence. The known sedimentary record from Pluvial Lke Chewaucan in south-central Oregon contains more than 70 laterally continuous and distinct tephra layers which enable high resolution intrabasinal correlation of outcrop and core. This phenomenon has allowed us to test the effectiveness of magnetic volume susceptibility data and sedimentological records as correlation tools. Preliminary results from this study indicate that magnetic susceptibility records can be correlated throughout the entire sampled interval to within a few cm of stratigraphic depth between exposures separated by one kilometer. Similar results have been obtained correlating laterally distinct sands, pebble lags, and carbonate layers. Grain-size data is currently being collected via standard pipette and Sedigraph methods to investigate its relationship to these correlations. The authors will also compare the magnetic susceptibility and sedimentological data with high resolution paleoenvironmental and paleosalinity records now available for the Lake Chewaucan sequence.

  3. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2002-2003 Annual Report.

    SciTech Connect

    Faucera, Jason

    2003-06-23

    This project was designed to provide project coordination and technical assistance to producers in Sherman County for on the ground water quality enhancement and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Enhancement Reserve Program (CREP) and other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Three of those four streams and one other major Sherman County stream are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Temperature in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns

  4. Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah

    USGS Publications Warehouse

    Stephens, D.W.

    1984-01-01

    Concentrations of dissolved oxygen in the Jordan River in Salt Lake County decrease considerably as the river flows northward. Mean concentrations of dissolved oxygen decreased from 8.1 milligrams per liter at the Jordan Narrows to 4.7 milligrams per liter at 500 North Street during April 1981 to September 1982. Coincident with the decrease, the biochemical-oxygen demand increased from 5 to 7 milligrams per liter. About 50 percent of the dissolved-oxygen concentrations and 90 percent of the 5-day biochemical-oxygen demand measured downstream from 1700 South Street exceeded the State intended-use standards. An estimated 6. million pounds of oxygen-demanding substances as measured by 5-day biochemical-oxygen demand were discharged to the Jordan River during 1981 from point sources downstream from 9000 South Street. Seven wastewater-treatment plants contributed 77 percent of this load, nonstorm base flows contributed 22 percent, and storm flows less than 1 percent. The Surplus Canal diversion at 2100 South Street removed about 70 percent of this load, and travel time of about 1 day also decreased the actual effects of the load on the river. Reaeration rates during September and October were quite high (average K2 at 20 degrees Celsius was about 12 per day) between the Jordan Narrows and 9000 South Street, but they decreased to 2.4 per day in the reach from 1330 South to 1800 North Streets. (USGS)

  5. Progress report on the geothermal assessment of the Jordan Valley, Salt Lake County, Utah

    SciTech Connect

    Klauk, R.H.; Darling, R.; Davis, D.A.; Gwynn, J.W.; Murphy, P.J.; Ruscetta, C.A.; Foley, D.

    1981-05-01

    Two known geothermal areas have been investigated previously in the Jordan Valley, Salt Lake County, Utah. These reports indicate meteoric water is being circulated to depth and heated by the ambient temperature derived from normal heat flow. This warm water subsequently migrates upward along permiable fault zones. The gravity survey conducted in the valley indicates a number of fault blocks are present beneath the unconsolidated valley sediments. The faults bounding these blocks could provide conduits for the upward migration of warm water. Four areas of warm water wells, in addition to the two known geothermal areas, have been delineated in the valley. However, the chemistry of the Jordan Valley is quite complex and at this time is not fully understood in regard to geothermal potential. Thick sequences of unconsolidated valley fill could conceal geothermal areas due to lateral dispersion or dilution within the principal aquifer, as well as retardation of warm water flow allowing time for cooling prior to discharge in wells or springs. Other areas are possibly diluted and cooled by high quality, ground water recharge from snow melt in the Wasatch Range.

  6. Oregon Migrant Health Project, 1970 Annual Report.

    ERIC Educational Resources Information Center

    Oregon State Board of Health, Portland.

    The 1970 annual report on the Oregon Migrant Health Project discusses health services for migrant agricultural workers and their families (approximately 30,000 individuals) who worked and lived temporarily in various Oregon counties. As noted, some 9,000 of the 30,000 migrants were estimated to be in need of some type of medical service. Thus, the…

  7. Aeolian sand as a tool for understanding Mars: Thermal infrared remote sensing of volcaniclastic Mars-analog sand dunes in Christmas Lake Valley, Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.

    1996-10-01

    INTRODUCTION: On Earth, aeolian sand dunes are used as tools of scientific inquiry. Holocene and Pleistocene dunes preserve clues about Quaternary climate variations and human activities ranging from Ice Age hunting practices to Twentieth Century warfare. Modern dunes contain the sedimentary textures and structures necessary for interpreting ancient sandstones, and they provide natural laboratories for investigation of aeolian physics and desertification processes. The dunes of Mars can likewise be used as scientific tools. Dunes provide relatively dust-free surfaces. From a remote sensing perspective, martian dunes have much potential for providing clues about surface mineralogy and the interaction between the surface and atmosphere. Such information can in turn provide insights regarding crust composition, volcanic evolution, present and past climate events, and perhaps weathering rates. The Mars Global Surveyor Thermal Emission Spectrometer (TES) is expected to reach the planet in September 1997. TES will provide 6 to 50 micrometer spectra of the martian surface at ground resolutions of 3 to 9 km. Sandy aeolian environments on Mars might provide key information about bedrock composition. To prepare for the TES investigation, I have been examining a thermal infrared image of a Mars-composition analog dune field in Christmas Lake Valley, Oregon. COMPOSITION AND GEOLOGIC SETTING: The "Shifting Sand Dunes" dune field is located at the eastern end of Christmas Lake Valley, in what was once the Pleistocene Fort Rock Lake [1]. Much of the sand that makes up the Shifting Sand Dunes dune field is reworked Mt. Mazama airfall from its terminal eruption 6,800 years ago, plus material deflated from the lake bed [1, 2]. The main constituents of the dunes are volcanic glass and devitrified glass fragments, plagioclase crystals, basalt lithic fragments, aggregates of silt and clay-size volcanic ash, pyroxenes, opaque oxide minerals (mostly magnetite), and trace occurrences of

  8. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    NASA Astrophysics Data System (ADS)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at ~ 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single ~ 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins ~ 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  9. Feedback between deglaciation and volcanism in arc settings: the example of the Mount Mazama volcanic system, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Branecky, C.; Farner, M. J.; Keller, T.; Lanza, F.; Siravo, G.; Gonnermann, H. M.; Huybers, P. J.; Manga, M.; van der Wal, W.

    2015-12-01

    Previous studies have found correlations between glacial cycles and volcanism. Any such feedback mechanisms could have important implications for climate through variations in volcanic outgassing. Although decompression melting has been established as a cause for increased volcanism during deglaciation at mid-ocean ridge systems (Jull and McKenzie, 1996), it has not been determined how changes in glacial loading affect other settings such as volcanic arcs. We examine the Mount Mazama volcanic system, Oregon, where pulses of volcanism have been suggested to follow major deglaciations (Bacon et al. 2006). A statistical test regarding the timing of eruptions is first developed, and its application to eruption dates demonstrates statistically significant clustering of eruptions following deglaciation. To explore potential causes for the identified changes in probability of eruptions, the effects of glacial unloading on melt production are computed using a 1D mantle melting model, and the effect of ice unloading on shallow crustal stress conditions is tested with a viscoelastic stress model. Combining these effects into a simple eruption model, we propose that variations in melt supply rates from the mantle and changing stress conditions around a shallow crustal magma reservoir modulate eruption probability during glacial cycles. This model illustrates the physical plausibility of glacial variability causing the identified changes in eruption rates at Mt Mazama.

  10. Aerolian erosion, transport, and deposition of volcaniclastic sands among the shifting sand dunes, Christmas Lake Valley, Oregon: TIMS image analysis

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Ramsey, Michael S.; Christensen, Philip R.

    1995-01-01

    Remote sensing is a tool that, in the context of aeolian studies, offers a synoptic view of a dune field, sand sea, or entire desert region. Blount et al. (1990) presented one of the first studies demonstrating the power of multispectral images for interpreting the dynamic history of an aeolian sand sea. Blount's work on the Gran Desierto of Mexico used a Landsat TM scene and a linear spectral mixing model to show where different sand populations occur and along what paths these sands may have traveled before becoming incorporated into dunes. Interpretation of sand transport paths and sources in the Gran Desierto led to an improved understanding of the origin and Holocene history of the dunes. With the anticipated advent of the EOS-A platform and ASTER thermal infrared capability in 1998, it will become possible to look at continental sand seas and map sand transport paths using 8-12 mu m bands that are well-suited to tracking silicate sediments. A logical extension of Blount's work is to attempt a similar study using thermal infrared images. One such study has already begun by looking at feldspar, quartz, magnetite, and clay distributions in the Kelso Dunes of southern California. This paper describes the geology and application of TIMS image analysis of a less-well known Holocene dune field in south central Oregon using TIMS data obtained in 1991.

  11. Preliminary Geologic Map of the Lake Mead 30' X 60' Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Beard, L.S.; Anderson, R.E.; Block, D.L.; Bohannon, R.G.; Brady, R.J.; Castor, S.B.; Duebendorfer, E.M.; Faulds, J.E.; Felger, T.J.; Howard, K.A.; Kuntz, M.A.; Williams, V.S.

    2007-01-01

    Introduction The geologic map of the Lake Mead 30' x 60' quadrangle was completed for the U.S. Geological Survey's Las Vegas Urban Corridor Project and the National Parks Project, National Cooperative Geologic Mapping Program. Lake Mead, which occupies the northern part of the Lake Mead National Recreation Area (LAME), mostly lies within the Lake Mead quadrangle and provides recreation for about nine million visitors annually. The lake was formed by damming of the Colorado River by Hoover Dam in 1939. The recreation area and surrounding Bureau of Land Management lands face increasing public pressure from rapid urban growth in the Las Vegas area to the west. This report provides baseline earth science information that can be used in future studies of hazards, groundwater resources, mineral and aggregate resources, and of soils and vegetation distribution. The preliminary report presents a geologic map and GIS database of the Lake Mead quadrangle and a description and correlation of map units. The final report will include cross-sections and interpretive text. The geology was compiled from many sources, both published and unpublished, including significant new mapping that was conducted specifically for this compilation. Geochronologic data from published sources, as well as preliminary unpublished 40Ar/39Ar ages that were obtained for this report, have been used to refine the ages of formal Tertiary stratigraphic units and define new informal Tertiary sedimentary and volcanic units.

  12. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon: II. Diagenetic modification of the sedimentary assemblage

    USGS Publications Warehouse

    Banfield, J.F.; Jones, B.F.; Veblen, D.R.

    1991-01-01

    This paper compares the mineralogy and chemistry of clay minerals in sediments from various depths and positions in Abert Lake and surrounding playa with those of the weathered materials entering the lake in order to reveal the nature and extent of post-depositional mineralogical modification. Analytical electron microscope (AEM) data from individual clay particles reveal that each sample is comprised of a highly inhomogeneous smectite assemblage. The thin clay flakes (commonly less than 10 nm wide) display a complete range in octahedral sheet compositions from nearly dioctahedral to nearly trioctahedral. The very abundant Mg-rich lake smectites with an estimated composition K0.29(Al0.23-Mg2.16Fe0.30)Si3.80Al0.20O10(OH)2 are not formed by weathering. This confirms the importance of diagenetic Mg uptake. Lattice-fringe imaging failed to reveal distinct brucite-like or vermiculite-like layers, suggesting that interstratifications of this type are rare or absent. Siliceous coatings on clay particles (identified by silica excess in smectite analyses) seem to favor topotactic overgrowth of stevensite rather than addition of brucite-like layers to the dioctahedral nuclei. The growth of K-stevensite dilutes the Al content of the crystal, and thus the increasing diagenetic modification reduces rather than supplements its illite component. Smectite compositions within individual samples were highly variable, yet source-related characteristics such as the abundance of Fe-rich smectite were apparent. Little evidence for systematic K or Mg enrichment with depth was identified in samples from depths of down to 16 feet below the sediment-water interface. The most magnesian assemblages are associated both with weathering sources of Mg-rich smectite and playa environments subjected to repeated wetting and drying cycles. Thus, the observations suggest that clay compositions primarily reflect changes in lake levels, brine composition, and source characteristics, rather than time and

  13. A review of possible causes of nutrient enrichment and decline of endangered sucker populations in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Bortleson, Gilbert C.; Fretwell, Marvin O.

    1993-01-01

    Ten possible causes for this excessive enrichment in nutrients are described. Three of these hypotheses are suggested for immediate testing because of large-scale changes in nutrient loading that may have occurred as a result of man’s activities. These three hypotheses relate nutrient enrichment to (1) conversion of marshland to agricultural land, (2) agricultural drainage from the basin, and (3) reservoir regulation. Eleven possible hypothetical causes for the decline in sucker populations also are described. The decline in sucker population may be related to excessive nutrient enrichment (eutrophication) of the lake.

  14. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon: II. Diagenetic modification of the sedimentary assemblage

    NASA Astrophysics Data System (ADS)

    Banfield, Jillian F.; Jones, Blair F.; Veblen, David R.

    1991-10-01

    This paper compares the mineralogy and chemistry of clay minerals in sediments from various depths and positions in Abert Lake and surrounding playa with those of the weathered materials entering the lake in order to reveal the nature and extent of post-depositional mineralogical modification. Analytical electron microscope (AEM) data from individual clay particles reveal that each sample is comprised of a highly inhomogeneous smectite assemblage. The thin clay flakes (commonly less than 10 nm wide) display a complete range in octahedral sheet compositions from nearly dioctahedral to nearly trioctahedral. The very abundant Mg-rich lake smectites with an estimated composition K 0.29(Al 0.23-Mg 2.16Fe 0.30)Si 3.80Al 0.20O 10(OH) 2 are not formed by weathering. This confirms the importance of diagenetic Mg uptake. Lattice-fringe imaging failed to reveal distinct brucite-like or vermiculite-like layers, suggesting that interstratifications of this type are rare or absent. Siliceous coatings on clay particles (identified by silica excess in smectite analyses) seem to favor topotactic overgrowth of stevensite rather than addition of brucite-like layers to the dioctahedral nuclei. The growth of K-stevensite dilutes the Al content of the crystal, and thus the increasing diagenetic modification reduces rather than supplements its illite component. Smectite compositions within individual samples were highly variable, yet source-related characteristics such as the abundance of Fe-rich smectite were apparent. Little evidence for systematic K or Mg enrichment with depth was identified in samples from depths of down to 16 feet below the sediment-water interface. The most magnesian assemblages are associated both with weathering sources of Mg-rich smectite and playa environments subjected to repeated wetting and drying cycles. Thus, the observations suggest that clay compositions primarily reflect changes in lake levels, brine composition, and source characteristics, rather than

  15. Climatic and lake temperature data for Wetland P1, Cottonwood Lake Area, Stutsman County, North Dakota, 1982-87

    USGS Publications Warehouse

    Parkhurst, Renee S.; Sturrock, A.M.; Rosenberry, D.O.; Winter, T.C.

    1995-01-01

    Research on the hydrology of Wetland P1 and the Cottonwood Lake Area includes the study of evaporation. Presented here in a graphical format are those data collected during the open-water seasons of 1982-87 that were needed for energy- budget and mass-transfer evaporation studies. The data include air temperatures, water surface and lake-bottom temperatures, windspeed, radiation, humidity, and precipitation. Data were collected at a raft station and two land stations.

  16. Distribution and condition of larval and juvenile Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Burdick, Summer M.; Brown, Daniel T.

    2010-01-01

    Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in others. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, which is seasonally anoxic. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana Unit) in October 2007 and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Unit) a year later to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2009 by the U.S. Geological Survey as a part of this monitoring effort. The Williamson River Delta appeared to provide suitable rearing habitat for endangered larval Lost River and shortnose suckers in 2008 and 2009. Larval suckers captured in this delta typically were

  17. Hydrologic and Water-Quality Characterization and Modeling of the Onondaga Lake Basin, Onondaga County, New York

    USGS Publications Warehouse

    Coon, William F.; Reddy, James E.

    2008-01-01

    Onondaga Lake in Onondaga County, New York, has been identified as one of the Nation?s most contaminated lakes as a result of industrial and sanitary-sewer discharges and stormwater nonpoint sources, and has received priority cleanup status under the national Water Resources Development Act of 1990. A basin-scale precipitation-runoff model of the Onondaga Lake basin was identified as a desirable water-resources management tool to better understand the processes responsible for the generation of loads of sediment and nutrients that are transported to Onondaga Lake. During 2003?07, the U.S. Geological Survey (USGS) developed a model based on the computer program, Hydrological Simulation Program?FORTRAN (HSPF), which simulated overland flow to, and streamflow in, the major tributaries of Onondaga Lake, and loads of sediment, phosphorus, and nitrogen transported to the lake. The simulation period extends from October 1997 through September 2003. The Onondaga Lake basin was divided into 107 subbasins and within these subbasins, the land area was apportioned among 19 pervious and impervious land types on the basis of land use and land cover, hydrologic soil group (HSG), and aspect. Precipitation data were available from three sources as input to the model. The model simulated streamflow, water temperature, concentrations of dissolved oxygen, and concentrations and loads of sediment, orthophosphate, total phosphorus, nitrate, ammonia, and organic nitrogen in the four major tributaries to Onondaga Lake?Onondaga Creek, Harbor Brook, Ley Creek, and Ninemile Creek. Simulated flows were calibrated to data from nine USGS streamflow-monitoring sites; simulated nutrient concentrations and loads were calibrated to data collected at six of the nine streamflow-monitoring sites. Water-quality samples were collected, processed, and analyzed by personnel from the Onondaga County Department of Water Environment Protection. Several time series of flow, and sediment and nutrient loads

  18. Assessment of water-quality conditions in the J.B. Converse Lake watershed, Mobile County, Alabama, 1990-98

    USGS Publications Warehouse

    Journey, Celeste A.; Gill, Amy C.

    2001-01-01

    J.B. Converse (Converse) Lake is a 3,600-acre, tributary-storage reservoir in Mobile County, southwestern Alabama. The lake serves as the primary drinking-water supply for the city of Mobile. The Converse Lake watershed lies within the Coastal Plain Physiographic Province. Semiconsolidated to unconsolidated sediments of sand, silt, gravel, and clay underlie the watershed, and are covered by acidic soils. Land use in the watershed is mainly forest (64 percent) and agriculture (31 percent). Residential and commercial development account for only 1 percent of the total land use in the watershed. Converse Lake receives inflow from seven major tributaries. The greatest inflows are from Big Creek, Crooked Creek, and Hamilton Creek that had mean annual streamflows of 72.2, 19.4, and 25.0 cubic feet per second, respectively, for the period 1990 to 1998, which represents about 72 percent of the total annual streamflow to the lake. The total mean annual inflow to the lake is estimated to be about 163 cubic feet per second. In general, water quality in Converse Lake and its tributaries meets the criteria established by the Alabama Department of Environmental Management (ADEM) for drinking-water supplies, whole-body contact, and aquatic life. The exceptions include acidic pH levels, iron and manganese levels above secondary or aesthetic criteria, and fecal bacterial levels in some tributaries above whole-body contact (swimmable) criteria. The pH levels throughout the watershed were commonly below the criteria level of 6.0, but this appears to have been a naturally occurring phenomenon caused by poorly buffered soil types, resistant sediments, and forested land use. Median iron and manganese levels were above aesthetic criteria levels of 300 and 50 micrograms per liter, respectively, in some tributaries. All tributary sites in the Converse Lake watershed had median and minimum dissolved-oxygen concentrations above the ADEM criteria level of 5 milligrams per liter except for

  19. Water quality of Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming, 1997-98

    USGS Publications Warehouse

    Ogle, Kathy Muller; Peterson, D.A.; Spillman, Bud; Padilla, Rosie

    1999-01-01

    The water quality of four reservoirs was assessed during 1997 and 1998 as a cooperative project between the Cheyenne Board of Public Utilities and the U. S. Geological Survey. The four reservoirs, Rob Roy, Lake Owen, Granite Springs, and Crystal Lake, provide approximately 75 percent of the public water supply for Cheyenne, Wyoming. Samples of water and bottom sediment were collected and analyzed for selected physical, chemical, and biological characteristics to provide data about the reservoirs. Water flows between the reservoirs through a series of pipelines and stream channels. The reservoirs differ in physical characteristics such as elevation, volume, and depth.Profiles of temperature, dissolved oxygen, specific conductance, and pH were examined. Three of the four reservoirs exhibited stratification during the summer. The profiles indicate that stratification develops in all reservoirs except Lake Owen. Stratification developed in Rob Roy, Granite Springs, and Crystal Lake Reservoirs by mid-July in 1998 and continued until September, with the thickness of the epilimnion increasing during that time. Secchi disk readings indicated Rob Roy Reservoir had the clearest water of the four reservoirs studied.The composition of the phytoplankton community was different in the upper two reservoirs from that in the lower two reservoirs. Many of the species found in Rob Roy Reservoir and Lake Owen are associated with oligotrophic, nutrient-poor conditions. In contrast, many of the species found in Granite Springs and Crystal Lake Reservoirs are associated with mesotrophic or eutrophic conditions. The total number of taxa identified also increased downstream.The chemical water type in the reservoirs was similar, but dissolved-solids concentrations were greater in the downstream reservoirs. Water in all four reservoirs was a calcium-bicarbonate type. In the fall of 1997, Rob Roy Reservoir had the lowest dissolved-solids concentration (19 milligrams per liter), whereas

  20. Geology of the Deer Butte Formation, Malheur county, Oregon: faulting, sedimentation and volcanism in a post-caldera setting

    NASA Astrophysics Data System (ADS)

    Cummings, Michael L.

    1991-11-01

    The Deer Butte Formation accumulated during the middle Miocene in fault-controlled basins in an extensional setting. The basins developed as regional faults asserted influence after eruption of ash-flow sheets and collapse of calderas of the Lake Owyhee volcanic field. The sequences of Hurley Flat, Dry Creek, and Oxbow Basin contain a lower basalt tephradominated unit formed by basalt hydrovolcanism overlain by fine-grained fluvial and lacustrine volcaniclastic sedimentary units. The sequence of Freezeout Creek was deposited in an erosional valley that was incised into older units and cut across the concurrently active Wall Rock Ridge fault zone. The sequence of Hurley Flat and Dry Creek contain alkaline tholeiitic basalt flows and tephra deposits, whereas the sequences of Freezeout Creek and Oxbow Basin contain subalkaline calcalkaline basaltic andesite. The compositional change occurred after local uplift due to faulting along the Wall Rock Ridge fault zone. The youngest unit, well-sorted, medium-grained, muscovite-bearing arkose of the arkose of Dry Creek Buttes, was deposited in a large river that drained westward from source areas in western Idaho. The Deer Butte Formation was deposited between approximately 15 and 12.6 Ma, while basin and range-type faulting dominated regional structural patterns.

  1. Mineral and geothermal resource potential of the Mount Hood Wilderness, Clackamas and Hood River Counties, Oregon. Summary report and map

    SciTech Connect

    Keith, T.E.C.; Causey, J.D.

    1982-01-01

    The potential for near-surface mineral resources in the Mount Hood Wilderness is low. Geochemical data suggest two areas of weak epithermal mineralization in the Zigzag Mountain part of the wilderness: (1) the Lost Creek-Burnt Lake-Cast Creek-Short Creek area on the north side of Zigzag Mountain where vein-type lead-zinc-silver mineralization occurs; and (2) the Lady Creek-Laurel Hill area on the south side of Zigzag Mountain where the upper part of a quartz diorite pluton has associated propylitic alteration resulting in some porphyry-type copper, gold, silver, lead, and zinc mineralization. Geothermal-resource potential for low- to intermediate-temperature (less than 248/sup 0/F, 120/sup 0/C) hot-water systems in the wilderness is moderate to high. Part of the wilderness is classified as a Known Geothermal Resources Area (KGRA) and two parts have been included in geothermal lease areas. Rock and gravel sources are present within the wilderness; however, quantities of similar and more accessible deposits are available outside the wilderness. Deposits outside the wilderness are large enough to supply local demand in the foreseeable future.

  2. Chemical Composition of Magnetic Minerals in the Sedimentary Interval Containing the Mono Lake Excursion from Summer Lake, Oregon, U.S.A

    NASA Astrophysics Data System (ADS)

    Horton, R. A.; Lopez, J.; Thompson, G. R.; Soto, C.; Herrera, I. S.; Sevier, K. L.; Negrini, R. M.

    2011-12-01

    Oriented piston cores were taken from Summer Lake for the purpose of obtaining a high-resolution paleomagnetic record of the Mono Lake Excursion. McCuan (2011) reported that the main magnetic carrier mineral is consistent throughout the cores and is composed principally of pseudo-single domain titanomagnetite. This result is based on XRD scans of magnetic mineral separates and modified Day plots of bulk sediment hysteresis parameters. In addition, small amounts of maghemite, hematite, and ilmenite were identified using reflected light microscopy though these did not show up in the XRD patterns or bulk hysteresis analyses. In contrast to the above results, preliminary SIRM unmixing results suggest the presence of at least three different significant magnetic carriers with moderately low coercivities. To test the unmixing results, magnetic separates were obtained from core samples and prepared into polished sections for analysis using the SEM-EDS at CSUB. Grains in excess of 10 um were randomly analyzed (N = 646). The vast majority of grains were titanomagnetites with atomic Fe:Ti ranging from 7.5:2.5 to 8.5:1.5, but there are also small amounts of ulvospinel, magnetite, and occasionally Fe-rich chromite, and most grains contain small amounts of Mg, Al, and Cr. Ternary plots of Fe-Ti-Cr show multiple wide but similar compositional ranges at all depths. These compositional data generally support the SIRM unmixing results suggesting three or so families of magnetic minerals.

  3. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-02-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber-dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10-30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  4. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-01-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber–dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10–30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  5. An evaluation and review of water-use estimates and flow data for the Lower Klamath and Tule Lake National Wildlife Refuges, Oregon and California

    USGS Publications Warehouse

    Risley, John C.; Gannett, Marshall W.

    2006-01-01

    The Lower Klamath and Tule Lake National Wildlife Refuges, located in the upper Klamath Basin of Oregon and California, encompass approximately 46,700 and 39,100 acres, respectively. Demand for water in the semiarid upper Klamath Basin has increased in recent years, resulting in the need to better quantify water availability and use in the refuges. This report presents an evaluation of water-use estimates for both refuges derived on the basis of two approaches. One approach used evaporation and evapotranspiration estimates and the other used measured inflow and outflow data. The quality of the inflow and outflow data also was assessed. Annual water use in the refuges, using evapotranspiration estimates, was computed with the use of different rates for each of four land-use categories. Annual water-use rates for grain fields, seasonal wetlands, permanently flooded wetlands with emergent vegetation, and open-water bodies were 2.5, 2.9, 2.63, and 4.07 feet per year, respectively. Total water use was estimated as the sum of the products of each rate and the number of acres in its associated land-use category. Mean annual (2003-2005) water use for the Lower Klamath and Tule Lake refuges was approximately 124,000 and 95,900 acre-feet, respectively. To estimate water deliveries needed for each refuge, first, annual precipitation for 2003-2005 was subtracted from the annual water use for those years. Then, an adjusted total was obtained by adding 20 percent to the difference to account for salinity flushing. Resulting estimated mean annual adjusted needed water deliveries in 2003-2005 for the Lower Klamath and Tule Lake refuges were 107,000 and 82,800 acre-feet, respectively. Mean annual net inflow to the refuges for 2003-2005 was computed by subtracting estimated and measured surface-water outflows from inflows. Mean annual net inflow during the 3-year period for the Lower Klamath refuge, calculated for a subsection of the refuge, was approximately 73,700 acre-feet. The

  6. Oregon Schools Begin Inspection, Cleanup.

    ERIC Educational Resources Information Center

    Buckley, James F.

    1987-01-01

    Discusses the need for environmental health inspections in schools. Reports on the results of a survey of Clackamas County (Oregon) school kitchens, in relation to a high incidence of hepatitis A. Describes the variety of violations found and urges that schools no longer be exempt from state health division regulations. (TW)

  7. Distribution and condition of larval and juvenile Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Burdick, Summer M.

    2012-01-01

    Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in other lakes. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high-quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, where they are assumed lost to Upper Klamath Lake populations. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana) in October 2007, and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Farms) in October 2008, in order to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2010 by the U.S. Geological Survey as a part of this monitoring effort and follows two annual reports on data collected in 2008 and 2009. Restoration modifications made to the Williamson River Delta appeared to provide

  8. Hydrology of Goat Lake watershed, Snohomish County, Washington, 1982-87

    SciTech Connect

    Dion, N.P.; Ebbert, J.C.; Poole, J.E.; Peck, B.S.

    1989-01-01

    The Goat Lake watershed functions as an experimental watershed for long-term studies to determine the effects of acidic precipitation on water resources. Data have been collected there by the US Geological Survey since 1982. The watershed is in a wilderness area of the Cascade Range and is downwind of an industrial and urban area that produces chemical compounds found in acidic precipitation. The lake is considered sensitive to acidic inputs from atmospheric deposition and streamflow. The mean annual discharge of the Goat Lake outflow is 35 cu ft/sec; precipitation on the watershed is calculated to be about 170 in/yr. The inflow to Goat Lake is sufficient to replace the entire contents of the lake basin on an average every 21.5 days, or 17 times/year. Water in Goat Lake, and that of the inlet and outlet, is of low ionic strength and of calcium-bicarbonate type. The lake, although considered oligotrophic, is sufficiently deep to stratify thermally, and summer dissolved-oxygen concentrations in the hypolimnion are depressed. Even though alkalinity and specific conductance at Goat Lake are in the range considered sensitive to acidic inputs, the pH of water in the lake has consistently ranged from 6.1 to 7.2, indicating that the lake is not acidified at this time. 36 refs., 11 figs., 8 tabs.

  9. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical

  10. Water quality of lake Waramaug and surrounding watershed, Litchfield County, Connecticut. Water resources investigation

    SciTech Connect

    Kulp, K.P.; Grason, D.

    1992-01-01

    Lake Waramaug and its watershed in western Connecticut were sampled from March 1977 to March 1978 to develop information for a lake-management plan. Nutrient enrichment has degraded the lake water quality, resulting in increased algal population in recent years. Chemical analyses of surface-water inflow, ground-water inflow, and atmospheric deposition in the watershed indicate that surface-water inflow at the northeastern corner of the lake is the major source of nutrients discharged to the lake. Atmospheric deposition contains 0.01 to 0.47 milligrams per liter total phosphorus and 0.52 to 3.2 milligrams per liter total nitrogen. During the 7.3-month period of investigation, atmospheric deposition contributed 61,400 pounds of nitrogen and 3,150 pounds of phosphorus to the lake's watershed. Nutrient concentrations in ground water were relatively low, with total phosphorus ranging from 0.008 to 0.14 milligrams per liter.

  11. Geologic map of the Bartlett Springs Fault Zone in the vicinity of Lake Pillsbury and adjacent areas of Mendocino, Lake, and Glenn Counties, California

    USGS Publications Warehouse

    Ohlin, Henry N.; McLaughlin, Robert J.; Moring, Barry C.; Sawyer, Thomas L.

    2010-01-01

    The Lake Pillsbury area lies in the eastern part of the northern California Coast Ranges, along the east side of the transform boundary between the Pacific and North American plates (fig. 1). The Bartlett Springs Fault Zone is a northwest-trending zone of faulting associated with this eastern part of the transform boundary. It is presently active, based on surface creep (Svarc and others, 2008), geomorphic expression, offset of Holocene units (Lienkaemper and Brown, 2009), and microseismicity (Bolt and Oakeshott, 1982; Dehlinger and Bolt, 1984; DePolo and Ohlin, 1984). Faults associated with the Bartlett Springs Fault Zone at Lake Pillsbury are steeply dipping and offset older low to steeply dipping faults separating folded and imbricated Mesozoic terranes of the Franciscan Complex and interleaved rocks of the Coast Range Ophiolite and Great Valley Sequence. Parts of this area were mapped in the late 1970s and 1980s by several investigators who were focused on structural relations in the Franciscan Complex (Lehman, 1978; Jordan, 1975; Layman, 1977; Etter, 1979). In the 1980s the U.S. Geological Survey (USGS) mapped a large part of the area as part of a mineral resource appraisal of two U.S. Forest Service Roadless areas. For evaluating mineral resource potential, the USGS mapping was published at a scale of 1:62,500 as a generalized geologic summary map without a topographic base (Ohlin and others, 1983; Ohlin and Spear, 1984). The previously unpublished mapping with topographic base is presented here at a scale of 1:30,000, compiled with other mapping in the vicinity of Lake Pillsbury. The mapping provides a geologic framework for ongoing investigations to evaluate potential earthquake hazards and structure of the Bartlett Springs Fault Zone. This geologic map includes part of Mendocino National Forest (the Elk Creek Roadless Area) in Mendocino, Glenn, and Lake Counties and is traversed by several U.S. Forest Service Routes, including M1 and M6 (fig. 2). The study

  12. Survival, movement, and health of hatchery-raised juvenile Lost River suckers within a mesocosm in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Hereford, Danielle M.; Burdick, Summer M.; Elliott, Diane G.; Dolan-Caret, Amari; Conway, Carla M.; Harris, Alta C.

    2016-01-01

    The recovery of endangered Lost River suckers (Deltistes luxatus) in Upper Klamath Lake is limited by poor juvenile survival and failure to recruit into the adult population. Poor water quality, degradation of rearing habitat, and toxic levels of microcystin are hypothesized to contribute to low juvenile survival. Studies of wild juvenile suckers are limited in that capture rates are low and compromised individuals are rarely captured in passive nets. The goal of this study was to assess the use of a mesocosm for learning about juvenile survival, movement, and health. Hatchery-raised juvenile Lost River suckers were PIT (passive integrated transponder) tagged and monitored by three vertically stratified antennas. Fish locations within the mesocosm were recorded at least every 30 minutes and were assessed in relation to vertically stratified water-quality conditions. Vertical movement patterns were analyzed to identify the timing of mortality for each fish. Most mortality occurred from July 28 to August 16, 2014. Juvenile suckers spent daylight hours near the benthos and moved throughout the entire water column during dark hours. Diel movements were not in response to dissolved-oxygen concentrations, temperature, or pH. Furthermore, low dissolved-oxygen concentrations, high temperatures, high pH, high un-ionized ammonia, or high microcystin levels did not directly cause mortality, although indirect effects may have occurred. However, water-quality conditions known to be lethal to juvenile Lost River suckers did not occur during the study period. Histological assessment revealed severe gill hyperplasia and Ichthyobodo sp. infestations in most moribund fish. For these fish, Ichthyobodo sp. was likely the cause of mortality, although it is unclear if this parasite originated in the rearing facility because fish were not screened for this parasite prior to introduction. This study has demonstrated that we can effectively use a mesocosm equipped with antennas to learn

  13. Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon - Evidence from sediment magnetism, trace-element geochemistry, and pollen

    USGS Publications Warehouse

    Rosenbaum, J.G.; Reynolds, R.L.; Adam, D.P.; Drexler, J.; Sarna-Wojcicki, A. M.; Whitney, G.C.

    1996-01-01

    Comparison of systematic variations in sediment magnetic properties to changes in pollen assemblages in middle Pleistocene lake sediments from Buck Lake indicates that the magnetic properties are sensitive to changes in climate. Buck Lake is located in southern Oregon just east of the crest of the Cascade Range. Lacustrine sediments, from 5.2 to 19.4 m in depth in core, contain tephra layers with ages of ???300-400 ka at 9.5 m and ???400-470 ka at 19.9 m. In these sediments magnetic properties reflect the absolute amount and relative abundances of detrital Fe-oxide minerals, titanomagnetite and hematite. The lacustrine section is divided into four zones on the basis of magnetic properties. Two zones (19.4-17.4 m and 14.5-10.3 m) of high magnetic susceptibility contain abundant Fe oxides and correspond closely to pollen zones that are indicative of cold, dry environments. Two low-susceptibility zones (17.4-14.5 m and 10.3-5.3 m) contain lesser amounts of Fe oxides and largely coincide with zones of warm-climate pollen. Transitions from cold to warm climate based on pollen are preceded by sharp changes in magnetic properties. This relation suggests that land-surface processes responded to these climate changes more rapidly than did changes in vegetation as indicated by pollen frequencies. Magnetic properties have been affected by three factors: (1) dissolution of Fe oxides, (2) variation in heavy-mineral content, and (3) variation in abundance of fresh volcanic rock fragments. Trace-element geochemistry, employing Fe and the immobile elements Ti and Zr, is utilized to detect postdepositional dissolution of magnetic minerals that has affected the magnitude of magnetic properties with little effect on the pattern of magnetic-property variation. Comparison of Ti and Zr values, proxies for heavy-mineral content, to magnetic properties demonstrates that part of the variation in the amount of magnetite and nearly all of the variation in the amount of hematite are due to

  14. An appraisal of potential water salvage in the Lake McMillan Delta area, Eddy County, New Mexico

    USGS Publications Warehouse

    Cox, Edward Riley; Havens, John S.

    1974-01-01

    The Lake McMillan delta area is located between Artesia and Lake McMillan on the Pecos River in Eddy County, N. Mex. Alluvium, which is more than 200 feet thick in places, is the principal water-bearing formation and is part of the 'shallow aquifer' of the Roswell basin. Recharge to the shallow aquifer is by infiltration from the Pecos River, by irrigation water, by precipitation, and by ground water that moves into the area. Discharge from the shallow aquifer is by wells, by transpiration from phreatophytes, and by evaporation from swampy areas. Saltcedar growth in the area increased during the study period from about 13,700 acres in 1952 to about 17,100 acres in 1960, a 25-percent increase. Most of this increase was in the areal-density range of zero to 30 percent. The estimated average transpiration of phreatophytes in the Artesia to Lake McMillan reach is about 29,000 acre-feet of water per year from ground-water sources. In the reach from Artesia to the Rio Pefiasco, where the regional water table is above the Pecos River, saltcedar eradication might salvage from 10,000 to 20,000 acre-feet of water per year for use downstream. From the Rio Pefiasco to Lake McMillan the river is perched above the water table; therefore, elimination of the saltcedar probably would not increase flow in the river, nor would drains be effective. Clearing in this reach, however, might increase the flow at Major Johnson Springs below Lake McMillan. Floodways through this reach would eliminate some evapotranspiration but might increase the amount of sediment deposited by floodwaters in bake McMillan.

  15. Hydrogeology of the Tully Lakes area in southern Onondaga and Cortland counties, New York

    USGS Publications Warehouse

    Kappel, William M.; Miller, Todd S.; Hetcher, Kari K.

    2001-01-01

    Glacial processes created the many kettlehole lakes, ponds, and depressions in the Tully Lakes area, as well as the Valley Heads Moraine, which forms the drainage divide between the St. Lawrence River drainage to the north and the Susquehanna River drainage to the south. The first hydrogeologic studies of the Tully Lakes area began in the 1870's, when the lakes were considered as a possible water supply for the city of Syracuse. Water was diverted from some of the northwestern lakes and ponds into the Tully Valley; these diversions occurred as early as the 1840's and ceased in the early 1960's, with the closure of the eastern Tully Valley brinefield. In 1998, the USGS began a 2-year hydrogeologic study of the aquifer system underlying the Tully Lakes area that included monitoring water levels in five of the Tully Lakes and more than 50 wells. The average annual water-level fluctuations in the three western lakes ranged from about 2.5 feet to 6 feet. Water-level fluctuations in the eastern lakes, near the center of the valley, were much less--about 1.5 feet, because these lakes have natural outlets. Three sets of ground-water-level measurements were made from the spring recharge period through the fall dry period of 2000. The resulting potentiometric-surface maps indicate that the water-level declines from the spring to the fall ranged from 1.5 to 8 feet. The ground-water divide is about 1 mile south of the Valley Heads Moraine crest in the spring and migrates southward in response to declining water levels in the surficial aquifer during the fall. Water-surface altitudes in the kettlehole lakes and ponds respond slowly to seasonal water-level changes in the surrounding aquifer and often differ from water levels in the aquifer because the poorly permeable lakebed sediments impede the exchange of water.

  16. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.

    2013-12-01

    The Snake River Plain - Yellowstone (SRP-Y) hotspot trend is one of the largest known low-δ18O magmatic provinces, yet the timing and distribution of hydrothermal alteration relative to hotspot magmatism remains incompletely understood. Existing models for SRP-Y low-δ18O magma genesis differ regarding the timing of protolith alteration (e.g. Eocene vs. present), depth at which alteration occurs (e.g. 15 km vs. <5 km), and physical controls on the extent of alteration (e.g. caldera collapse, crustal scale fluid flow, etc.). We expand the existing oxygen isotope data set for zircon in the Lake Owyhee volcanic field (LOVF) of east central Oregon to further identify magmatic oxygen isotope trends within the field. These data offer insight into the timing of alteration and the extent of the greater SRP-Y low-δ18O province, as well as the conditions that generate large low-δ18O provinces. 16-14 Ma silicic volcanism in the LOVF is linked to the pre-14 Ma SRP-Y hotspot, with volcanism partially overlapping extension in the north-south trending Oregon-Idaho Graben (OIG). Ion microprobe analyses of zircons from 16 LOVF silicic lavas and tuffs reveal homogeneous zircons on both the single grain and hand sample scales: individual samples have 2 S.D. for δ18O ranging from 0.27 to 0.96‰ (SMOW), and sample averages ranging from 1.8 to 6.0‰, excluding texturally chaotic and/or porous zircons which have δ18O values as low as 0.0‰. All low-δ18O LOVF magmas, including the caldera-forming Tuff of Leslie Gulch and Tuff of Spring Creek, are confined to the OIG, although not all zircons from within the OIG have low δ18O values. The presence and sequence of low-δ18O magmas in the LOVF and adjacent central Snake River Plain (CSRP) cannot be explained by existing caldera subsidence or pre-hotspot source models. These data, however, combined with volumetrically limited low-δ18O material in the adjacent Idaho Batholith and Basin and Range, are consistent with low-δ18O magmas

  17. Spring and Summer Spatial Distribution of Endangered Juvenile Lost River and Shortnose Suckers in Relation to Environmental Variables in Upper Klamath Lake, Oregon: 2007 Annual Report

    USGS Publications Warehouse

    Burdick, Summer M.; VanderKooi, Scott P.; Anderson, Greer O.

    2009-01-01

    Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year, and age-1 and older subadult suckers are rare. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. A lack of optimal rearing habitat may exacerbate juvenile sucker mortality or restrict juvenile growth or development. In 2007, we continued research on juvenile sucker habitat use begun by the U.S. Geological Survey (USGS) in 2001. Age-0 catch rates in 2006 were more than an order of magnitude greater than in previous years, which prompted us to refocus our research from age-0 suckers to age-1 sucker distributions and habitat use. We took a two-phased approach to our research in 2007 that included preliminary spring sampling and intense summer sampling components. Spring sampling was a pilot study designed to gather baseline data on the distribution of age-1 suckers as they emerge from winter in shoreline environments throughout Upper Klamath Lake (Chapter 1). Whereas, summer sampling was designed to quantitatively estimate the influence of environmental variables on age-0 and age-1 sucker distribution throughout Upper Klamath Lake, while accounting for imperfect detection (Chapter 2). In addition to these two components, we began a project to evaluate passive integrated transponder (PIT) tag loss and the effects of PIT tags on mortality of age-1 Lost River suckers (Chapter 3). The spring pilot study built the foundation for future research

  18. Physical and chemical limnological study of an acid mine lake in Sullivan County, Indiana

    SciTech Connect

    Broomall, P.A.

    1992-01-01

    Southwestern Indiana has numerous lakes developed in abandoned coal mine spoils which support recreational sports fisheries. Some lakes, due to exposure to acid mine drainage from coal wastes and pyritic spoils, are unsuitable habitats for fisheries development. This study examines a publicly owned acid mine lake with an area of approximately 51 ha, following reclamation and elimination of acid producing areas in its drainage basin. Fifteen physico-chemical sample collections were made over a thirteen month period (1991--1992). Parameters sampled included pH, total acidity, iron, manganese, and aluminum. Comparisons were made to historic pre-reclamation water quality data and to established models of acid mine lake recovery. Due to the local topography and exposure to prevailing winds, the lake was generally well mixed throughout the study. Virtually no summer stratification was found, but typical winter season stratification occurred. The water column was well oxygenated throughout the study. Secchi disk transparency varied from 2.5 m to clear to lake bottom (6 m). This study found no significant change in lake water pH (2.9--3.0 to 3.0--3.2 s.u.) since reclamation activities in 1988. However, changes in total acidity and total metal concentrations had occurred since reclamation which suggested that the lake was in early recovery stages. No trends in water quality improvement were determined which could assist in planning toward the eventual establishment of a sports fishery.

  19. GEOCHEMICAL FEATURES OF WATER-ROCK INTERACTIONS AT THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine on the eastern shore of Clear Lake is the source of poor quality acid mine drainage seeping into Clear Lake. Lateral and vertical geochemical trends in ground water composition point to a number of redox reactions taking place as a function of subsu...

  20. Simulation of stage and the the hydrologic budget of Devils Lake, Sauk County, Wisconsin

    USGS Publications Warehouse

    Krohelski, J.T.; Batten, W.G.

    1995-01-01

    Three mitigation plans were simulated. Mitigation plan 3, which includes the addition of water from a basin adjacent to the northeastern side of the Devils Lake Basin, allows for withdrawals of hypolimnetic water and maintaining lake stage closer to optimal levels than would result without mitigation.

  1. STRAWBERRY MOUNTAIN WILDERNESS, OREGON.

    USGS Publications Warehouse

    Thayer, T.P.; Stotelmeyer, Ronald B.

    1984-01-01

    The Strawberry Mountain Wilderness extends 18 mi along the crest of the Strawberry Range and comprises about 53 sq mi in the Malheur National Forest, Grant County, Oregon. Systematic geologic mapping, geochemical sampling and detailed sampling of prospect workings was done. A demonstrated copper resource in small quartz veins averaging at most 0. 33 percent copper with traces of silver occurs in shear zones in gabbro. Two small areas with substantiated potential for chrome occur near the northern edge of the wilderness. There is little promise for the occurrence of additional mineral or energy resources in the Strawberry Mountain Wilderness.

  2. Lidar-revised geologic map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haugerud, Ralph A.; Haeussler, Peter J.; Clark, Kenneth P.

    2011-01-01

    This map is an interpretation of a 6-ft-resolution (2-m-resolution) lidar (light detection and ranging) digital elevation model combined with the geology depicted on the Geologic Map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington (Haeussler and Clark, 2000). Haeussler and Clark described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Wildcat Lake 7.5' quadrangle. This map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of approximately 40 ft (12 m), and nominal mean vertical accuracy of approximately 10 ft (3 m). Similar to many geologic maps, much of the geology in the Haeussler and Clark (2000) map-especially the distribution of surficial deposits-was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound lidar Consortium obtained a lidar-derived digital elevation model (DEM) for Kitsap Peninsula including all of the Wildcat Lake 7.5' quadrangle. This new DEM has a horizontal resolution of 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air photo stereo models have much improved the interpretation of geology in this heavily vegetated landscape, especially the distribution and relative age of some surficial deposits. Many contacts of surficial deposits are adapted unmodified or slightly modified from Haugerud (2009).

  3. Data on ground-water quality, Carson Valley and Topaz Lake areas, Douglas County, Nevada, for year ending September 1986

    USGS Publications Warehouse

    Thodal, Carl E.

    1989-01-01

    Douglas County, Nevada encompasses 708 sq mi and has been one of the fastest growing counties in the Nation, according to the 1980 census. This rapid population growth has led to concern about the present and future impacts of development upon the groundwater. A network of 33 wells was recently established (1985) in the Carson Valley and Topaz Lake areas of Douglas County to characterize the current groundwater quality and its seasonal variability and to monitor temporal responses to changing land-use activities. This report presents data collected from that network during November 1985 through September 1986. The primary drinking water standard was exceeded for fluoride at two domestic wells, for nitrate-nitrogen at one domestic well, and for arsenic in one non-domestic shallow monitoring well. Secondary drinking water standards were exceeded as follows: pH at one public-supply well and one domestic well; sulfate at one shallow monitoring well; and manganese at three shallow monitoring wells and one public-supply well. Concentrations of unidentified organic compounds were estimated by gas chromatograph and flame ionization detector for groundwater samples collected from 30 network wells. Seven wells (2 domestic and 5 non-domestic) had concentrations greater than 10 micrograms/L relative to the internal standard compound perdeuteronaphthalene. (Thacker-USGS)

  4. Postimpoundment survey of water-quality characteristics of Raystown Lake, Huntingdon and Bedford Counties, Pennsylvania

    USGS Publications Warehouse

    Williams, Donald R.

    1978-01-01

    Water-quality data, collected from May 1974 to September 1976 at thirteen sites within Raystown Lake and in the inflow and outflow channels, define the water-quality characteristics of the lake water and the effects of impoundment on the quality of the lake outflow. Depth-profile measurements show Raystown Lake to be dimictic. Thermal stratification is well developed during the summer. Generally high concentrations of dissolved oxygen throughout the hypolimnion during thermal stratification, low phytoplankton concentrations, and small diel fluctuations of dissolved oxygen, pH, and specific conductance indicate that the lake is low in nutrients, or oligotrophic. Algal assays of surface samples indicate that orthophosphate was a growth-limiting nutrient. The diatoms (Chrysophyta) were the dominant phytoplankton group found through-out the study period. The lake waters contained very low populations of zooplankton. Fecal coliform and fecal streptococcus densities measured throughout the lake indicated no potentially dangerous areas of water-contact recreation. The most apparent effect that the impoundment had on water quality was the removal of nutrients, particularly orthophosphate, through phytoplankton uptake and sediment deposition.

  5. Hydrology, water quality, and response to changes in phosphorus loading of Minocqua and Kawaguesaga Lakes, Oneida County, Wisconsin, with special emphasis on effects of urbanization

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Saad, David A.

    2010-01-01

    Minocqua and Kawaguesaga Lakes are 1,318- and 690-acre interconnected lakes in the popular recreation area of north-central Wisconsin. The lakes are the lower end of a complex chain of lakes in Oneida and Vilas Counties, Wis. There is concern that increased stormwater runoff from rapidly growing residential/commercial developments and impervious surfaces from the urbanized areas of the Town of Minocqua and Woodruff, as well as increased effluent from septic systems around their heavily developed shoreline has increased nutrient loading to the lakes. Maintaining the quality of the lakes to sustain the tourist-based economy of the towns and the area was a concern raised by the Minocqua/Kawaguesaga Lakes Protection Association. Following several small studies, a detailed study during 2006 and 2007 was done by the U.S. Geological Survey, in cooperation with the Minocqua/Kawaguesaga Lakes Protection Association through the Town of Minocqua to describe the hydrology and water quality of the lakes, quantify the sources of phosphorus including those associated with urban development and to better understand the present and future effects of phosphorus loading on the water quality of the lakes. The water quality of Minocqua and Kawaguesaga Lakes appears to have improved since 1963, when a new sewage-treatment plant was constructed and its discharge was bypassed around the lakes, resulting in a decrease in phosphorus loading to the lakes. Since the mid-1980s, the water quality of the lakes has changed little in response to fluctuations in phosphorus loading from the watershed. From 1986 to 2009, summer average concentrations of near-surface total phosphorus in the main East Basin of Minocqua Lake fluctuated from 0.009 mg/L to 0.027 mg/L but generally remained less than 0.022 mg/L, indicating that the lake is mesotrophic. Phosphorus concentrations from 1988 through 1996, however, were lower than the long-term average, possibly the result of an extended drought in the area

  6. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  7. Analytical results and sample dlocality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Alvord Desert and East Alvord Wilderness Study Areas (OR-002-074 and OR-002-073A), Malheur and Harney Counties, Oregon

    SciTech Connect

    Johnes, J.L.; Erickson, M.S.; Turner, R.L.

    1989-01-01

    A U.S. Geological Survey report is presented giving analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Alvord Desert and East Alvord Wilderness Study Areas, Malheur and Harney Counties, Oregon.

  8. Illinois Higher Education in the 21st Century. Identifying and Responding to the Educational Needs in Lake County: A Committee Report.

    ERIC Educational Resources Information Center

    Illinois State Board of Higher Education, Springfield.

    This report presents the findings of a pilot study conducted in Lake County (Illinois) that was designed to identify higher educational needs and to develop recommendations to respond to those needs. Several methodologies were employed: public hearings; market research; analyses of census, labor, economic, and educational data; consultations with…

  9. A Survey: Perceptions of the College of Lake County's G.E.D. Program as Seen by Former Students and Area Personnel Managers.

    ERIC Educational Resources Information Center

    Mally, Nell; Charuhas, Mary

    The College of Lake County conducted surveys in December 1976 to determine if the eight-week course to prepare students for the General Educational Development (GED) test was meeting the needs of the students and the community. Questionnaires soliciting information on age, educational background, satisfaction with the course, and subsequent…

  10. Bathymetric, geophysical and geologic sample data from Medicine Lake, Siskiyou County, northern California

    USGS Publications Warehouse

    Childs, Jonathan R.; Lowenstern, J. B.; Phillips, R.L.; Hart, P.E.; Rytuba, J.J.; Barron, J.A.; Starratt, S.W.; Spaulding, Sarah

    2000-01-01

    In September, 1999, the U.S. Geological Survey acquired high-resolution bathymetry, seismic reflection profiles, and geologic sample data from Medicine Lake, a high altitude (2,036 m) lake located within the summit caldera/basin at Medicine Lake volcano (MLV), a dormant Quaternary shield volcano located in the Cascade Range, 50 km northeast of Mt. Shasta. It last erupted less than 1000 years ago.The purpose of this work was to assess whether sediments in the lake might provide a high-resolution record of the climate, volcanic and geochemical (particularly mercury) history of the region. We are still working with our data to assess whether the sediments are appropriate for further study. This report provides a summary of what we have learned to date.

  11. 75 FR 22832 - Lake Wales Ridge National Wildlife Refuge, Highlands and Polk Counties, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ..., 2008 (73 FR 35149). For more about the refuge and our CCP process, please see that notice. Lake Wales... frequencies would be reduced to provide for the production of saw palmetto for use as forage by...

  12. Surficial geology and stratigraphy of Pleistocene Lake Manix, San Bernardino County, California

    USGS Publications Warehouse

    Reheis, Marith C.; Redwine, Joanna R.; Wan, Elmira; McGeehin, John P.; VanSistine, D. Paco

    2014-01-01

    Pluvial Lake Manix and its surrounding drainage basin, in the central Mojave Desert of California, has been a focus of paleoclimate, surficial processes, and neotectonic studies by the U.S. Geological Survey (USGS) since about 2004. The USGS initiated studies of Lake Manix deposits to improve understanding of the paleoclimatic record and the shifts in atmospheric circulation that controlled precipitation in the Mojave Desert. Until approximately 25,000 years ago, Lake Manix was the terminus of the Mojave River, which drains northeasterly from the San Bernardino Mountains; the river currently terminates in the Soda Lake and Silver Lake playas. Pleistocene Lake Manix occupied several subbasins at its maximum extent. This map focuses on the extensive exposures created by incision of the Mojave River and its tributaries into the interbedded lacustrine and alluvial deposits within the central (Cady) and northeastern (Afton) subbasins of Lake Manix, and extends from the head of Afton Canyon to Manix Wash. The map illuminates the geomorphic development and depositional history of the lake and alluvial fans within the active tectonic setting of the eastern California shear zone, especially interactions with the left-lateral Manix fault. Lake Manix left an extraordinarily detailed but complex record of numerous transgressive-regressive sequences separated by desiccation and deposition of fan, eolian, and fluvial deposits, and punctuated by tectonic movements and a catastrophic flood that reconfigured the lake basin. Through careful observation of the intercalated lacustrine and fan sequences and by determining the precise elevations of unit contacts, this record was decoded to understand the response of the lake and river system to the interplay of climatic, geomorphic, and tectonic forces. These deposits are exposed in steep badland topography. Mapping was carried out mostly at scales of 1:12,000, although the map is presented at 1:24,000 scale, and employs custom unit

  13. Automatic classification of eutrophication of inland lakes from spacecraft data. [Oakland County, Michigan

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Shah, N. J.; Smith, V. E.

    1974-01-01

    The author has identified the following significant results. Spacecraft data and computer techniques can be used to rapidly map and store onto digital tapes watershed land use information. Software is now available by which this land use information can be rapidly and economically extracted from the tapes and related to coliform counts and other lake contaminants (e.g. phosphorus). These tools are basic elements for determining those land use factors and sources of nutrients that accelerate eutrophication in lakes and reservoirs.

  14. Physical, chemical, and biological characteristics of Sturgeon Lake, Goodhue County, Minnesota, 2003-04

    USGS Publications Warehouse

    Lee, Kathy E.; Sanocki, Christopher A.; Montz, Gary R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Prairie Island Indian Community and the Minnesota Department of Natural Resources, conducted a study of Sturgeon Lake (a backwater lake in Navigation Pool 3 of the Mississippi River) during 2003-04 to describe the physical, chemical, and biological characteristics of the lake. Riparian and shoreline areas surrounding Sturgeon Lake consist primarily of deciduous tree and shrub cover with minimal amounts of commercial or residential land use. Woody debris and aquatic vegetation are the major types of physical habitat suitable for fish and invertebrates. Among 10 bottom-sediment sampling sites, 24 organic wastewater compounds, 1 organochlorine pesticide metabolite (p,p’DDE), and total polychlorinated biphenyls (PCBs) were detected in the bottom sediments of Sturgeon Lake. The most prevalent class of compounds detected were polyaromatic hydrocarbons. Other classes of compounds detected include sterols, disinfectants, plastic components, alkylphenols, and fragrances. Three compounds detected (bisphenol A, benzo[a]pyrene, and triclosan) are considered endocrine disrupting compounds. Twenty-one and 49 invertebrate taxa were identified from 10 bottom-sediment and 6 woody-debris/vegetation samples, respectively. Most of the taxa were Diptera in the family Chironomidae. The most common invertebrate in terms of density in bottom-sediment samples was the burrowing mayfly (Hexagenia sp.). Trichoptera in the families Hydropsychidae or Polycentropodidae were common in most of the woody-debris samples. The presence of the Hexagenia larvae in samples indicates that the bottom sediments are stable and that dissolved oxygen concentrations in the lake do not drop to acute or sub-lethal anoxic conditions. Backwater lakes such as Sturgeon Lake are important areas of habitat for aquatic organisms along the Mississippi River, and this report provides baseline physical, chemical, and biological information that resource managers can

  15. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    USGS Publications Warehouse

    Adamski, J.C.; Knowles, Leel, Jr.

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  16. Equations for estimating synthetic unit-hydrograph parameter values for small watersheds in Lake County, Illinois

    USGS Publications Warehouse

    Melching, C.S.; Marquardt, J.S.

    1997-01-01

    Design hydrographs computed from design storms, simple models of abstractions (interception, depression storage, and infiltration), and synthetic unit hydrographs provide vital information for stormwater, flood-plain, and water-resources management throughout the United States. Rainfall and runoff data for small watersheds in Lake County collected between 1990 and 1995 were studied to develop equations for estimation of synthetic unit-hydrograph parameters on the basis of watershed and storm characteristics. The synthetic unit-hydrograph parameters of interest were the time of concentration (TC) and watershed-storage coefficient (R) for the Clark unit-hydrograph method, the unit-graph lag (UL) for the Soil Conservation Service (now known as the Natural Resources Conservation Service) dimensionless unit hydrograph, and the hydrograph-time lag (TL) for the linear-reservoir method for unit-hydrograph estimation. Data from 66 storms with effective-precipitation depths greater than 0.4 inches on 9 small watersheds (areas between 0.06 and 37 square miles (mi2)) were utilized to develop the estimation equations, and data from 11 storms on 8 of these watersheds were utilized to verify (test) the estimation equations. The synthetic unit-hydrograph parameters were determined by calibration using the U.S. Army Corps of Engineers Flood Hydrograph Package HEC-1 (TC, R, and UL) or by manual analysis of the rainfall and run-off data (TL). The relation between synthetic unit-hydrograph parameters, and watershed and storm characteristics was determined by multiple linear regression of the logarithms of the parameters and characteristics. Separate sets of equations were developed with watershed area and main channel length as the starting parameters. Percentage of impervious cover, main channel slope, and depth of effective precipitation also were identified as important characteristics for estimation of synthetic unit-hydrograph parameters. The estimation equations utilizing area

  17. 78 FR 28550 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lake and Porter Counties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... Porter Counties, Indiana, 1997 8-Hour Ozone Maintenance Plan and 1997 Annual Fine Particulate Matter... and Porter State Implementation Plans (SIPs) for the 1997 8-hour ozone standard, and the 1997...

  18. Geologic map of the Hebgen Lake quadrangle, Beaverhead, Madison, and Gallatin counties, Montana, Park and Teton counties, Wyoming, and Clark and Fremont counties, Idaho

    USGS Publications Warehouse

    O'Neill, J. Michael; Christiansen, Robert L.

    2004-01-01

    The geology of the Hebgen Lake Quadrangle was mapped as part of an Ongoing research effort by the USGS to understand the geologic framework of the area in and around Yellowstone National Park. Prior to 1965 the regional geology was known only from reconnaissance surveys. Two important components of this effort are an evaluation of (1) the seismic risk hazard and (2) the mineral resource potential.

  19. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A. V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for

  20. A new species of Helobdella (Hirudinida: Glossiphoniidae) from Oregon

    USGS Publications Warehouse

    Moser, William E.; Fend, Steven V.; Richardson, Dennis J.; Hammond, Charlette I.; Lazo-Wasem, Eric A.; Govedich, Fredric R.; Gullo, Bettina S.

    2013-01-01

    Helobdella bowermani n. sp. is described from specimens collected in fine sediment of open water benthos of Upper Klamath Lake, Klamath County, Oregon. The new species has pale yellow/buff coloration with scattered chromatophore blotches throughout the dorsal surface, lateral extensions or papillae only on the a2 annulus, dorsal medial row of papillae with small papilla on a1 and larger papillae on a2 and a3, and a small oval scute (rarely triangular). Helobdella bowermani n. sp. is morphologically similar to Helobdella atli and Helobdella simplex. Molecular comparison of CO-I sequence data from H. bowermani n. sp. revealed differences of 10.6%–10.8% with Helobdella californica, differences of 12.2%–13.7% with H. atli, and differences of 12.7%–13.2% with H. simplex.

  1. Phosphate and carbonate mass balances and their relationships to ground-water inputs at Beaver Lake, Waukesha County, Wisconsin. Technical report

    SciTech Connect

    Brown, B.E.; Cherkauer, D.S.

    1991-01-01

    The water and chemical budgets of Beaver Lake, Waukesha County, Wisconsin were examined to determine the role of groundwater and sediments in controlling lake quality in a seepage lake. Groundwater dominates the water budget, providing 70% of annual inflow and 60% of the outflow. The 15-m deep lake diverts flow from a depth of at least 90 m in the glacial aquifer of which it is a part. Acting as a flow-through system, the lake receives inflow predominantly from nearshore springs. Outflow occurs in the deeper parts of the lake. Groundwater provides more than 90% of the mass inflow of the major chemicals examined (Ca, Mg, Na, K, HCO3, SO4, Cl and NO3). It is also the major path of outflow for chemicals, accounting for more than 60% of the lake's loss of all the above ions except Ca and HCO3. Sedimentation of 270 + or - 82 g/sqm/yr of precominatly CaCO3 marl with significant silica and organic matter accounts for removal of 43 and 15% of the Ca and HCO3, respectively. Losses of Mg, Na, K, S and Cl to the sediment are insignificant. Data on NO3 fluxes indicate groundwater provides more N than can be accounted for in water and sediment effluxes. Seasonal denitrification in the lake's hypolimnion may account for the difference.

  2. Detecting agricultural to urban land use change from multi-temporal MSS digital data. [Salt Lake County, Utah

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Merola, J. A.; Jaynes, R. A.

    1983-01-01

    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.

  3. Study of the utilization of EREP data from the Wabash River Basin. [Allen County and Lake Monroe in Indiana

    NASA Technical Reports Server (NTRS)

    Silva, L. F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Analysis of the digitized SL/4 S190A color IR photography proved very difficult. An area within Allen County, including Ft. Wayne, was studied. Eight segments of the study area were clustered separately and the cluster maps were then compared with the photography and maps available. The training areas for the land use classes were selected from the cluster maps. The separability measures (transformed divergence) of the classes indicated that many of the land use classes were not spectrally separable. The classification results bore this out. Visually the resulting classification map was poor, with 67 percent correct data. These results were of significantly lower quality than those obtained for the summertime SL/2 data near Lake Monroe, Indiana. Low contrast between land use classes during the wintertime and the limited spectral range and resolution are the major causes for the poor performance.

  4. Estimating ground-water exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and Highlands counties, Florida

    USGS Publications Warehouse

    Sacks, L.A.; Swancar, Amy; Lee, T.M.

    1998-01-01

    Water budget and chemical mass-balance approaches were used to estimate ground-water exchange with 10 lakes in ridge areas of Polk and Highlands Counties, Florida. At each lake, heads were monitored in the surficial aquifer system and deeper Upper Floridan aquifer, lake stage and rainfall were measured continuously, and lakes and wells were sampled three times between October 1995 and December 1996. The water-budget approach computes net ground-water flow (ground-water inflow minus outflow) as the residual of the monthly waterbudget equation. Net ground-water flow varied seasonally at each of the 10 lakes, and was notably different between lakes, illustrating short-term differences in ground-water fluxes. Monthly patterns in net ground-water flow were related to monthly patterns of other hydrologic variables such as rainfall, ground-water flow patterns, and head differences between the lake and the Upper Floridan aquifer. The chemical mass-balance approach combines the water budget and solute or isotope mass-balance equations, and assumes steady-state conditions. Naturally occurring tracers that were analyzed for include calcium, magnesium, sodium, potassium, chloride, and bromide, the isotopes deuterium and oxygen-18. Chloride and sodium were the most successful solute tracers; however, their concentrations in ground water typically varied spatially, and in places were similar to that in lake water, limiting their sensitivity as tracers. In contrast, the isotopes were more robust tracers because the isotopic composition of ground water was relatively uniform and was distinctly different from the lake water. Groundwater inflow computed using the chemical massbalance method varied significantly between lakes, and ranged from less than 10 to more than 150 inches per year. Both water-budget and chemical mass-balance approaches had limitations, but the multiple lines of evidence gained using both approaches improved the understanding of the role of ground water in the

  5. Winter Temperature Inversions and Emergency Department Visits for Asthma in Salt Lake County, Utah, 2003–2008

    PubMed Central

    Beck, Celeste; Graham, Randall; Packham, Steven C.; Traphagan, Monica; Giles, Rebecca T.; Morgan, John G.

    2012-01-01

    Background: Winter temperature inversions—layers of air in which temperature increases with altitude—trap air pollutants and lead to higher pollutant concentrations. Previous studies have evaluated associations between pollutants and emergency department (ED) visits for asthma, but none have considered inversions as independent risk factors for ED visits for asthma. Objective: We aimed to assess associations between winter inversions and ED visits for asthma in Salt Lake County, Utah. Methods: We obtained electronic records of ED visits for asthma and data on inversions, weather, and air pollutants for Salt Lake County, Utah, during the winters of 2003 through 2004 to 2007 through 2008. We identified 3,425 ED visits using a primary diagnosis of asthma. We used a time-stratified case-crossover design, and conditional logistic regression models to calculate odds ratios (ORs) and 95% confidence intervals (CIs) to estimate rate ratios of ED visits for asthma in relation to inversions during a 4-day lag period and prolonged inversions. We evaluated interactions between inversions and weather and pollutants. Results: After adjusting for dew point and mean temperatures, the OR for ED visits for asthma associated with inversions 0–3 days before the visit compared with no inversions during the lag period was 1.14 (95% CI: 1.00, 1.30). The OR for each 1-day increase in the number of inversion days during the lag period was 1.03 (95% CI: 1.00, 1.07). Associations were only apparent when PM10 and maximum and mean temperatures were above median levels. Conclusions: Our results provide evidence that winter inversions are associated with increased rates of ED visits for asthma. PMID:22784691

  6. Demographics and run timing of adult Lost River (Deltistes luxatus) and short nose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2012

    USGS Publications Warehouse

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2014-01-01

    Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during spring 2012 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations in 2011. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). Shortnose suckers (SNS) and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. In 2012, we captured, tagged, and released 749 LRS at four lakeshore spawning areas and recaptured an additional 969 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,578 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Cinder Flats and

  7. Demographics and run timing of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2009

    USGS Publications Warehouse

    Hewitt, David A.; Hayes, Brian S.; Janney, Eric C.; Harris, Alta C.; Koller, Justin P.; Johnson, Mark A.

    2011-01-01

    Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout the spawning areas. Captures and remote encounters during spring 2009 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics over the last decade. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish was examined for any additional evidence of recruitment. Survival and recruitment estimates were combined to estimate changes in population size over time and to determine the status of the populations through 2007. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). One subpopulation of LRS migrates into tributaries to spawn, similar to shortnose suckers (SNS), whereas the other subpopulation spawns at upwelling areas along the eastern shoreline of the lake. In 2009, we captured and tagged 781 LRS at four shoreline areas and recaptured an additional 638 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,056 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Sucker Springs and Cinder Flats. In the Williamson

  8. Concentrations of mercury and other metals in black bass (Micropterus spp.) from Whiskeytown Lake, Shasta County, California, 2005

    USGS Publications Warehouse

    May, Jason T.; Hothem, Roger L.; Bauer, Marissa L.; Brown, Larry R.

    2012-01-01

    This report presents the results of a reconnaissance study conducted by the U.S. Geological Survey (USGS) to determine mercury (Hg) and other selected metal concentrations in Black bass (Micropterus spp.) from Whiskeytown Lake, Shasta County, California. Total mercury concentrations were determined by cold-vapor atomic absorption spectroscopy (CVAAS) in fillets and whole bodies of each sampled fish. Selected metals scans were performed on whole bodies (less the fillets) by inductively coupled plasma–mass spectroscopy (ICP-MS) and inductively coupled plasma–optical emission spectroscopy (ICP-OES). Mercury concentrations in fillet samples ranged from 0.06 to 0.52 micrograms per gram (μg/g) wet weight (ww). Total mercury (HgT) in the same fish whole-body samples ranged from 0.04 to 0.37 (μg/g, ww). Mercury concentrations in 17 percent of "legal catch size" (≥305 millimeters in length) were above the U.S. Environmental Protection Agency water-quality criterion for the protection of human health of 0.30 μg/g (ww). These data will serve as a baseline for future monitoring efforts within Whiskeytown Lake.

  9. 27 CFR 9.177 - Alexandria Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Lake Darling at benchmark (BM) 1366, which is an unmarked bridge on County Road 11, known as the... road known as County Road 62; then (5) North along County Road 62 on to the Lake Miltona, East, Minn...; then (10) South along County Road 34 until the point where County Road 34 runs parallel to Lake...

  10. 27 CFR 9.177 - Alexandria Lakes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Lake Darling at benchmark (BM) 1366, which is an unmarked bridge on County Road 11, known as the... road known as County Road 62; then (5) North along County Road 62 on to the Lake Miltona, East, Minn...; then (10) South along County Road 34 until the point where County Road 34 runs parallel to Lake...

  11. 27 CFR 9.177 - Alexandria Lakes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and Lake Darling at benchmark (BM) 1366, which is an unmarked bridge on County Road 11, known as the... road known as County Road 62; then (5) North along County Road 62 on to the Lake Miltona, East, Minn...; then (10) South along County Road 34 until the point where County Road 34 runs parallel to Lake...

  12. 27 CFR 9.177 - Alexandria Lakes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and Lake Darling at benchmark (BM) 1366, which is an unmarked bridge on County Road 11, known as the... road known as County Road 62; then (5) North along County Road 62 on to the Lake Miltona, East, Minn...; then (10) South along County Road 34 until the point where County Road 34 runs parallel to Lake...

  13. 27 CFR 9.177 - Alexandria Lakes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and Lake Darling at benchmark (BM) 1366, which is an unmarked bridge on County Road 11, known as the... road known as County Road 62; then (5) North along County Road 62 on to the Lake Miltona, East, Minn...; then (10) South along County Road 34 until the point where County Road 34 runs parallel to Lake...

  14. 76 FR 4129 - Lake Wales Ridge National Wildlife Refuge, Highlands and Polk Counties, FL; Final Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... 20, 2008 (73 FR 35149). Lake Wales Ridge NWR is a unit of the Merritt Island National Wildlife Refuge... Unit contains the vast majority of the refuge's sand pine scrub habitat where rare, threatened, and... period via a Federal Register notice on April 30, 2010 (75 FR 22832). We received comments from...

  15. Temperature fluctuations underneath the ice in Diamond Lake, Hennepin County, Minnesota

    NASA Astrophysics Data System (ADS)

    Kletetschka, Gunther; Fischer, Tomas; Mls, Jiří; DěDeček, Petr

    2013-06-01

    Diamond Lake in Minnesota is covered every winter with ice and snow providing a modified thermal insulation between water and air. Autonomous temperature sensors, data loggers, were placed in this lake so that hourly measurements could be obtained from the snow-covered ice and water. The sensors that became frozen measured damped and delayed thermal response from the air-temperature fluctuation. Those sensors that were deeper within the snow-covered ice measured continuous, almost constant, temperature values near freezing. Several of them were within the liquid water and responded with a fluctuation of 24 h periods of amplitudes up to 0.2°C. Our analysis of the vertical temperature profiles suggested that the source of periodic water heating comes from the lake bottom. Because of the absence of daily temperature variations of the snow-covered ice, the influence of the air-temperature fluctuation can be ruled out. We attribute the heating process to the periodic inflow of groundwater to the lake and the cooling to the heat diffusion to the overlying ice cover. The periodic groundwater inflow is interpreted due to solid Earth tides, which cause periodic fluctuations of the groundwater pressure head.

  16. Workforce: Oregon

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    This fact sheet states that in 2006, a good education is no longer just a way for an individual to get ahead. It is also the best way a state can get ahead -- and therefore a real economic priority. A state must ensure that all of its citizens have access to a college education. In Oregon, a state recovering from the 2000-03 recession, the demand…

  17. Oregon Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Smoke Plumes from the B&B Complex Fires, Oregon     ... The results indicate that the tops of the two main plumes originating from the B&B complex differ in altitude by about 1-2 ... The  animation  depicts a "multi-angle fly-over" of the plumes, and was generated using red-band data from MISR's vertical and ...

  18. Hydrology of the Wolf Branch sinkhole basin, Lake County, east-central Florida

    USGS Publications Warehouse

    Schiffer, D.M.

    1996-01-01

    A 4-year study of the hydrology of the Wolf Branch sinkhole basin in Lake County, Florida, was conducted from 1991-95 by the U.S. Geological Survey to provide information about the hydrologic characteristics of the drainage basin in the vicinity of Wolf Sink. Wolf Branch drains a 4.94 square mile area and directly recharges the Upper Floridan aquifer through Wolf Sink. Because of the direct connection of the sinkhole with the aquifer, a contaminant spill in the basin could pose a threat to the aquifer. The Wolf Branch drainage basin varies in hydrologic characteristics from its headwaters to its terminus at Wolf Sink. Ground- water seepage provides baseflow to the stream north of Wolf Branch Road, but the stream south of State Road 46 is intermittent and the stream can remain dry for months. A single culvert under a railroad crossing conducts flow from wetlands just south of State Road 46 to a well-defined channel which leads to Wolf Sink. The basin morphology is characterized by karst terrain, with many closed depressions which can provide intermittent surface-water storage. Wetlands in the lower third of the basin (south of State Road 46) also provide surface water storage. The presence of numerous water-control structures (impoundments, canals, and culverts), and the surface-water storage capacity throughout the basin affects the flow characteristics of Wolf Branch. Streamflow records for two stations (one above and one below major wetlands in the basin) indicate the flow about State Road 46 is characterized by rapid runoff and continuous baseflow, whereas below State Road 46, peak discharges are much lower but of longer duration than at the upstream station. Rainfall, discharge, ground-water level, and surface-water level data were collected at selected sites in the basin. Hydrologic conditions during the study ranged from long dry periods when there was no inflow to Wolf Sink, to very wet periods, as when nearly 7 inches of rain fell in a 2-day period in

  19. Hydrologic conditions and lake-level fluctuations at Long Lost Lake, 1939-2004, White Earth Indian Reservation, Clearwater County, Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Bergman, Andrea L.

    2005-01-01

    Aerial photography and a geographic information system were used to construct a historical lake record from 1939 to 2001. Lake-level increases match similar increases in precipitation, indicating a strong link between the two. Results show that lake-level increases in Long Lost Lake appear to primarily be due to natural rather than anthropogenic effects.

  20. Analysis of remote sensing data for geothermal exploration over Fish Lake Valley, Esmeralda County, Nevada

    NASA Astrophysics Data System (ADS)

    Littlefield, Elizabeth F.

    The purpose of this study was to identify and map hydrothermal alteration and geothermal deposits in northern Fish Lake Valley, Nevada using both visible, near, shortwave infrared (0.4-2.5 microm) and thermal infrared (8-12 microm) remote sensing data. Visible, near, and shortwave infrared data were collected by four airborne instruments including NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) instruments, HyVista Corporation's HyMap sensor, and SpecTIR Corporation's ProSpecTIR instrument. MASTER also collected thermal infrared data over Fish Lake Valley. Hydrothermal alteration minerals and hot spring deposits were identified using diagnostic spectra extracted from the remote sensing data. Mapping results were verified in the field using a portable spectrometer. Two areas of opaline sinter and travertine deposits were identified west of the Fish Lake Valley playa. Field observation reveals the alternating nature of these beds, which likely reflects fluctuating hot spring fluid chemistries. Sinter and travertine were likely deposited around fault-related hot springs during the Pleistocene when the water table was higher. Previously undiscovered Miocene crystalline travertine was identified within the Emigrant Hills near Columbus Salt Marsh. Argillic alteration was mapped in parts of the ranges surrounding Fish Lake Valley. Kaolinite, and to a lesser extent, muscovite and montmorillonite, were used as indicator minerals for argillic alteration. In these regions, thermal fluids were likely discharged from faults to alter rhyolite tuff. Mineral maps were synthesized with previously published geologic data and used to delineate four new targets for future geothermal exploration. The abundant hot spring deposits along the edge of the Volcanic Hills combined with argillic alteration minerals mapped in the ranges suggest geothermal influence throughout much of the valley.

  1. CHARLES SHELDON ANTELOPE RANGE AND SHELDON NATIONAL ANTELOPE REFUGE, NEVADA AND OREGON.

    USGS Publications Warehouse

    Cathrall, J.B.; Tuchek, E.T.

    1984-01-01

    A mineral survey of the Charles Sheldon Antelope Range and Sheldon National Antelope Refuge, in Humboldt and Washoe Counties, Nevada, and Lake and Harney Counties, Oregon, was conducted. The investigation identified areas of mineral-resource potential within the range and refuge. The range and refuge have areas of substantiated resource potential for precious opal and uranium, a demonstrated resource of decorative building stone, and areas with probable resource potential for mercury and for base- and precious-metal sulfide deposits. Reservoir temperatures, estimated from the analysis of thermal springs, indicate that a probable potential for geothermal resources exists in two areas in the range. No other energy resources were identitied in the area.

  2. STRUCTURAL FLOOR PLAN, SHEET 2 OF 6. Oregon Inlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STRUCTURAL FLOOR PLAN, SHEET 2 OF 6. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  3. INTERIOR TOWER ROOM LOOKING NORTHEAST. Oregon Inlet Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER ROOM LOOKING NORTHEAST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  4. LOOKOUT TOWER DETAILS, SHEET 5 OF 6. Oregon Inlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKOUT TOWER DETAILS, SHEET 5 OF 6. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  5. Sedimentation and Occurrence and Trends of Selected Chemical Constituents in Bottom Sediment, Empire Lake, Cherokee County, Kansas, 1905-2005

    USGS Publications Warehouse

    Juracek, Kyle E.

    2006-01-01

    For about 100 years (1850-1950), the Tri-State Mining District in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma was one of the primary sources of lead and zinc ore in the world. The mining activity in the Tri-State District has resulted in substantial historical and ongoing input of cadmium, lead, and zinc to the environment including Empire Lake in Cherokee County, southeast Kansas. The environmental contamination caused by the decades of mining activity resulted in southeast Cherokee County being listed on the U.S. Environmental Protection Agency's National Priority List as a superfund hazardous waste site in 1983. To provide some of the information needed to support efforts to restore the ecological health of Empire Lake, a 2-year study was begun by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service and the Kansas Department of Health and Environment. A combination of sediment-thickness mapping and bottom-sediment coring was used to investigate sediment deposition and the occurrence of cadmium, lead, zinc, and other selected constituents in the bottom sediment of Empire Lake. The total estimated volume and mass of bottom sediment in Empire Lake were 44 million cubic feet and 2,400 million pounds, respectively. Most of the bottom sediment was located in the main body and the Shoal Creek arm of the reservoir. Minimal sedimentation was evident in the Spring River arm of the reservoir. The total mass of cadmium, lead, and zinc in the bottom sediment of Empire Lake was estimated to be 78,000 pounds, 650,000 pounds, and 12 million pounds, respectively. In the bottom sediment of Empire Lake, cadmium concentrations ranged from 7.3 to 76 mg/kg (milligrams per kilogram) with an overall median concentration of 29 mg/kg. Compared to an estimated background concentration of 0.4 mg/kg, the historical mining activity increased the median cadmium concentration by about 7,200 percent. Lead concentrations ranged from 100 to

  6. Origin of the Mariano Lake uranium deposit, McKinley County, New Mexico

    USGS Publications Warehouse

    Fishman, Neil S.; Reynolds, Richard L.

    1982-01-01

    The Mariano Lake uranium deposit, hosted by the Brushy Basin Member of the Jurassic Morrison Formation, occurs in the trough of an east-west trending syncline at the western end of the Smith Lake-Mariano Lake group of uranium deposits near Crownpoint, New Mexico. The orebody, which contains abundant amorphous organic material, is situated on the reduced side of a regional reduction-oxidation (redox) interface. The presence of amorphous organic material suggests the orebody may represent a tabular (primary) deposit, whereas the close proximity of the orebody to the redox interface is suggestive that uranium was secondarily redistributed by oxidative processes from pre-existing tabular orebodies. Uranium contents correlate positively with both organic carbon and vanadium contents. Petrographic evidence and scanning electron microscope-energy dispersive analyses point to uranium residence in the epigentically introduced amorphous organic material, which coats detrital grains and fills voids. Uranium mineralization was preceded by the following diagenetic alterations: precipitation of pyrite (d34S values ranging from-11.0 to-38.2 per mil); precipitation of mixed-layer smectite-illite clays; partial dissolution of some of the detrital feldspar population; and precipitation of quartz and adularia overgrowths. Alterations associated with uranium mineralization include emplacement of amorphous organic material (possibly uranium bearing); destruction of detrital iron-titanium oxide grains; coprecipitation of chlorite and microcrystalline quartz, and precipitation of pyrite and marcasite (d34S values for these sulfides ranging from -29.4 to -41.6 per mil). After mineralization, calcite, dolomite, barite, and kaolinite precipitated, and authigenic iron disulfides were replaced by ferric oxides and hydroxides. Geochemical data (primarily the positive correlation of uranium content to both organic carbon and vanadium contents) and petrographic observations (epigentically

  7. Internal architecture of the proto-Kern Canyon Fault at Engineer's Point, Lake Isabella Dam site, Kern County, California

    NASA Astrophysics Data System (ADS)

    Martindale, Z. S.; Andrews, G. D.; Brown, S. R.; Krugh, W. C.

    2014-12-01

    The core of the Cretaceous (?) proto-Kern Canyon Fault (KCF) is exposed continuously for 1.25 km along Engineer's Point at Lake Isabella, Kern County, California. The proto-KCF is notable for (1) its long and complex history within, and perhaps preceding the Sierra Nevada batholith, and (2) hosting the Quaternary Kern Canyon Fault, an active fault that threatens the integrity of the Lake Isabella auxiliary dam and surrounding communities. We are investigating the internal architecture of the proto-KCF to explore its control on the likely behavior of the modern KCF. The proto-KCF is developed in the Alta Sierra biotite-granodiorite pluton. A traverse across Engineer's Point, perpendicular to the proto-KCF trace, reveals gradational increases in fracture density, fracture length, bulk alteration, and decreases in fracture spacing and grain size toward the fault core. Mapping of the fault core reveals two prominent and laterally extensive zones: (1) continuous foliated blastomylonitic granodiorite with steeply-dipping, anastomosing shear bands and minor mylonite planes, and (2) foliated orange and green fault breccia with intergranular gouge, strong C/S fabric, and a central gouge plane. The fault breccia zone is intruded by a lensoidal, post-deformation dacite dike, probably ca. 105 - 102 Ma (Nadin & Saleeby, 2008) and is weakly overprinted by a set of cross-cutting spaced, short, brittle fractures, often coated in calcite, which we infer to be genetically related to the modern KCF. We present our structural and lithological data that will be supported by mineralogical and geochemical analyses. E. Nadin & J. Saleeby (2008) Disruption of regional primary structure of the Sierra Nevada batholith by the Kern Canyon fault system, California: Geological Society of America Special Paper 438, p. 429-454.

  8. Surficial geologic map of the Cuddeback Lake 30' x 60' quadrangle, San Bernardino and Kern counties, California

    USGS Publications Warehouse

    Amoroso, Lee; Miller, David M.

    2012-01-01

    The 1:100,000-scale Cuddeback Lake quadrangle is located in the western Mojave Desert north-northeast of Los Angeles, between the southern Sierra Nevada and San Bernardino Mountains, in Kern and San Bernardino Counties, California. Geomorphic features include high-relief mountains, small hills, volcanic domes, pediments, broad alluvial valleys, and dry lakes. It is one in a series of surficial geologic maps created to investigate landscape development and tectonic evolution of the northern Mojave Desert. The mapped area includes pre-Tertiary plutonic, metavolcanic, metasedimentary, and igneous rocks; Tertiary sedimentary and volcanic rocks; and Quaternary sediments and basalts. The map area includes the El Paso, Lockhart, Blackwater, and Muroc Faults, as well as the central segment of the Garlock Fault Zone. The tectonically active western Mojave Desert and the variety of surficial materials have resulted in distinctive geomorphic features and terrains. Geologic mapping shows that active faults are widespread and have diverted drainage patterns. The tectonically active area near the Garlock Fault Zone and the nearby El Paso Fault influenced development of drainage networks; base level is controlled by fault offset. Evidence of a late Tertiary drainage network is preserved in remnants of alluvial fans and paleodrainage deposits north of the El Paso Mountains, west of the Lava Mountains, and south and west of the Rand Mountains. Holocene fault activity for the Cantil Valley, Lockhart, Garlock, and Rand Mountain Faults is indicated by displaced stream channels, playa-filled depressions, scarps, and shutter ridges. Previously unmapped Holocene and Late Pleistocene fault strands identified near the Rand Mountains may represent a splay at the northwest termination of the Lockhart Fault. The Grass Valley Fault, northwest of Black Mountain, is a right-lateral, strike-slip fault that may be a splay of the Blackwater Fault. Holocene activity on the Grass Valley Fault is

  9. Surficial Geologic Map and Geodatabase of the Cuddeback Lake 30' x 60' Quadrangle, San Bernardino and Kern Counties, California

    USGS Publications Warehouse

    Amoroso, Lee; Miller, David M.

    2006-01-01

    A USGS surficial geologic mapping project, focused on the arid Southwest USA, conducted mapping and process studies to investigate landscape development and tectonic evolution. This project included the Cuddeback Lake 1:100,000-scale quadrangle located in the western Mojave Desert north-northeast of Los Angeles, between the southern Sierra Nevada and San Bernardino Mountains, in Kern and San Bernardino Counties, California. Geomorphic features include high-relief mountains, small hills, volcanic domes, pediments, broad alluvial valleys, and dry lakes. The mapped area includes pre-Tertiary plutonic, metavolcanic, metasedimentary, and other metamorphic rocks; Tertiary sedimentary and volcanic rocks; and Quaternary sediments and basalts. Included in the area are the El Paso, Lockhart, Blackwater, and Muroc faults as well as the central segment of the Garlock fault zone. The tectonically active western Mojave Desert and the variety of surficial materials have resulted in distinctive geomorphic features and terrains. Mapping has shown that the tectonically active area near the Garlock fault zone and El Paso Fault influenced development of drainage networks; base level is controlled by fault offset. There is evidence of a late Tertiary drainage network preserved in remnants of alluvial fans and paleo-drainage deposits north of the El Paso Mountains, west of the Lava Mountains, and south and west of the Rand Mountains. Faults identified as being active in the Holocene based on displaced stream channels, scarps, and shutter ridges include the Cantil Valley, Lockhart, Garlock, and Rand Mountain faults. Previously unmapped Holocene and late Pleistocene fault strands identified near the Rand Mountains may represent a splay at the northwest termination of the Lockhart Fault. The informally named Grass Valley fault, NW of Black Mountain, is a right-lateral strike-slip fault that may be a splay of the Blackwater Fault. Holocene activity on the Grass Valley fault is indicated by

  10. OLALLIE ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Neumann, Terry R.

    1984-01-01

    The Olallie Roadless Area, Oregon, is devoid of mines and mineral prospects, and a mineral-resource evaluation of the area did not identify any mineral-resource potential. There is no evidence that fossil fuels are present in the roadless area. Nearby areas in Clackamas, Marion, Jefferson, and Wasco Counties are characterized by higher-than-normal heat flow and by numerous thermal springs, some of which have been partly developed. this may indicate that the region has some, as yet undefined, potential for the development of geothermal energy. Lack of thermal springs or other evidence of localized geothermal anomalies within the roadless area may be the result of masking by young, nonconductive rock units and by the flooding out and dilution of rising thermal waters by cool meteoric water.

  11. Coleoptera species inhabiting prairie wetlands of the Cottonwood Lake Area, Stutsman County, North Dakota

    USGS Publications Warehouse

    Hanson, B.A.; Swanson, G.A.

    1989-01-01

    The aquatic Coleoptera of a prairie wetland complex in Stutsman County, North Dakota, were collected from April 1979 to November 1980. Identification of 2594 individuals confirmed 57 species, including seven new records for North Dakota. Two seasonally flooded and two semipermanent wetlands, totaling 7.43 ha, contained 53% of the Dytiscidae, 43% of the Haliplidae, 38% of the Hydrophilidae, and 22% of the Gyrinidae species previously identified from North Dakota. Although 49.1% of the Coleoptera species occurred in both types of wetlands, the occurrence of 29 species varied by wetland class.

  12. View of Lake Sabrina Dam and Lake Sabrina from east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam and Lake Sabrina from east ridge showing spillway at photo center, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  13. Water-quality assessment of Cache Creek, Yolo, Lake, and Colusa counties, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Elliott, Ann L.

    1981-01-01

    Cache Creek and its tributaries from Clear Lake to Yolo Bypass have been the subject of quality and quantity of water studies by several governmental agencies since the early 1900's. Water-quality data from these studies showed that water in the basin is of good quality for most of the beneficial uses defined by the California State Water Resources Control Board. Concentrations of dissolved constituents are substantially higher in the water in the two largest tributaries than in Cache Creek. Seasonal variations in dissolved constituents are also greater in the tributaries than in Cache Creek. Clear Lake has a major effect on water quality, resulting in little seasonal fluctuation in water quality in Cache Creek. Excessive voron and suspended-sediment concentrations are the greatest water-quality problems, according to existing data. Both of these problems are from natural sources. Water-quality monitoring is presently being conducted monthly at four sites by the California Department of Water Resurces and at several other sites by other agencies. Modifications in current monitoring are proposed to gain further information on diel dissolved-oxygen cycles, pesticides, and biological constituents that may adversely affect beneficial uses. (USGS)

  14. Swath bathymetric survey of Englebright Lake, Yuba-Nevada Counties, California

    USGS Publications Warehouse

    Childs, Jonathan R.; Stevenson, Andrew J.

    2006-01-01

    In March, 2004, the USGS conducted a swath bathymetric survey of Englebright Lake, a 9-mile long reservoir located in the Sierra Nevada foothills of northern California on the Yuba River. This survey was follow-on to an earlier bathymetric survey and sediment thickness analysis done by the USGS in 2001 (Childs and others, 2003). The primary purpose of these studies is to assess the quantity and nature of the sediment that has accumulated since the dam was completed in 1940. The specific purpose of the swath bathymetry was to map in high detail the prograding delta that is being formed as the lake fills in with sediment. In the event of another large flood such as occurred on January 1, 1997, the survey could be repeated to determine the effect of such an event on the sediment volume and distribution. This study was conducted under the auspices of the Upper Yuba River Studies Program (UYRSP) . The UYRSP is funded by the CALFED Bay-Delta Program, whose mission is to "develop and implement a long-term comprehensive plan that will restore ecological health and improve water management for beneficial uses of the San Francisco Bay-Delta System".

  15. Bathymetric and geophysical surveys of Englebright Lake, Yuba-Nevada Counties, California

    USGS Publications Warehouse

    Childs, Jonathan R.; Snyder, Noah P.; Hampton, Margaret A.

    2003-01-01

    Harry L. Englebright Lake is a 9-mile-long (14-kilometer) reservoir located in the Sierra Nevada foothills of northern California on the Yuba River gorge known as The Narrows. The reservoir is impounded by Englebright Dam (Photo 1), a concrete arch structure spanning 348 meters (1,142 feet) across and 79 meters (260 feet) high. The dam was constructed in 1941 for the primary purpose of trapping sediment derived from anticipated hydraulic mining operations in the Yuba River watershed. Hydraulic mining in the Sierra Nevada was halted in 1884 but resumed on a limited basis until the 1930's under the regulation of the California Debris Commission. Although no hydraulic mining in the upper Yuba River watershed resumed after the construction of the dam, the historical mine sites continued to contribute sediment to the river. Today, Englebright Lake is used primarily for recreation and hydropower. In 2001 and 2002, the U.S. Geological Survey (USGS) conducted bathymetric, geophysical, and geological studies of the reservoir under the auspices of the Upper Yuba River Studies Program (UYRSP), a multi-disciplinary investigation into the feasibility of introducing anadromous fish species to the Yuba River system upstream of Englebright Dam. A primary purpose of these studies was to assess the quantity and nature of the sediment that has accumulated behind the dam over the past 60 years. This report presents the results of those surveys, including a new bathymetric map of the reservoir and estimates of the total accumulated sediment volume.

  16. 75 FR 441 - Notice of Proposed Withdrawal Extension and Opportunity for Public Meeting; Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Number 6865 (56 FR 32515), which withdrew 507.50 acres of public land in Baker County, Oregon, from... Interior proposes to extend the duration of Public Land Order (PLO) Number 6865 for an additional 20-year term. This PLO withdrew approximately 507.50 acres of public land in Baker County, Oregon,...

  17. Distribution, Health, and Development of Larval and Juvenile Lost River and Shortnose Suckers in the Williamson River Delta Restoration Project and Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    USGS Publications Warehouse

    Burdick, Summer M.; Ottinger, Christopher; Brown, Daniel T.; VanderKooi, Scott P.; Robertson, Laura; Iwanowicz, Deborah

    2009-01-01

    Federally endangered Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris were once abundant throughout their range but populations have declined; they have been extirpated from several lakes, and may no longer reproduce in others. Poor recruitment into the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species, and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable rearing habitat. Within Upper Klamath Lake, a lack of marshes also may allow larval suckers to be swept from suitable rearing areas downstream into the seasonally anoxic waters of the Keno Reservoir. The Nature Conservancy (TNC) flooded about 3,600 acres to the north of the Williamson River mouth (Tulana Unit) in October 2007, and about 1,400 acres to the south and east of the Williamson River mouth (Goose Bay Unit) a year later, to retain larval suckers in Upper Klamath Lake, create nursery habitat for suckers, and improve water quality. In collaboration with TNC, the Bureau of Reclamation, and Oregon State University, we began a long-term collaborative research and monitoring program in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. Our approach includes two equally important aspects. One component is to describe habitat use and colonization processes by larval and juvenile suckers and non-sucker fish species. The second is to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report contains a summary of the first year of data collected as a part of this monitoring effort.

  18. Health assessment for West Lake Landfill, Bridgeton, St. Louis County, Missouri, Region 7. CERCLIS No. MODO79900932. Preliminary report

    SciTech Connect

    Not Available

    1991-10-04

    The West Lake Landfill, located in the City of Bridgeton, St. Louis County, Missouri, was proposed for the National Priorities List (NPL) in October 1989. Soil contaminated with radioactive waste from decontamination efforts at the Cotter Corporation's Latty Avenue plant in Hazelwood, Missouri, was dumped at the landfill in 1973. The radioactive soil was used as cover over refuse and in later years the radioactive soil itself was covered with additional soil and debris. The area around the landfill consists mostly of industrial buildings and business offices with small residential communities to the south and east. Agricultural river bottom land borders to the west, but it is fast being encroached upon by Earth City which is being developed for commercial purposes. The site presents no apparent public health hazard because the available data indicate human health is not currently being affected. Exposures of concern could occur if ground water contamination increases and spreads, exposed radioactive materials on the northwestern edges of the landfill move off site, or on-site worker exposure increases. Continued monitoring is recommended until additional environmental data are available to assess the on-site and off-site contamination and help predict future activity.

  19. Morphological abnormalities in chironomidae in relation to sediment metals concentrations in Empire Lake, Cherokee County, Kansas

    SciTech Connect

    Ferringington, L.C. Jr.

    1994-12-31

    Morphological abnormalities of headcapsule structures of chironomid larvae were quantified in relation to concentrations of heavy metals in sediments of Empire Lake. This reservoir is situated in a catchment downstream of a US EPA Superfund Site in the Tri-State Mining District of southeast Kansas, and receives discharges from several streams that flow through the abandoned mining areas. Sediments have elevated concentrations of Zinc, Lead, and Cadmium in varying concentrations. Chironomini had the highest incidence of morphological abnormalities, followed by Procladius. Although deformities of the mentum, premandibles, and antennae were found in several taxa, no clear trends were seen for increasing concentrations of any of the metals individually or collectively. From this study it appears as if the incidence of morphological abnormalities is not a linear function of metals concentrations in sediments of this reservoir.

  20. Potential flood and debris hazards at Cottonwood Cove, Lake Mead National Recreation Area, Clark County, Nevada

    USGS Publications Warehouse

    Moosburner, Otto

    1981-01-01

    At Cottonwood Cove, Nevada, most of the existing dikes at the recreation sites are effective in diverting and routing floodflows, up to and including the 100-year flood, away from people and facilities. The dikes across Ranger Residence Wash and Access Road Wash at the mouth divert floods up to the 50-year recurrence interval away from residential areas. Flow and debris damage in protected areas will be relatively minor minor for floods including the 100-year flood, whereas damage caused by sediment deposition at the mouths of the washes near Lake Mohave could be significant for floods equal to or less than the 100-year flood. The extreme flood, a flood meteorologically and hydrologically possible but so rare as to preclude a frequency estimate, could cause great damage and possible loss of life. The present dikes would be topped or breached by such flooding. (USGS)

  1. Bathymetric survey of Carroll Creek Tributary to Lake Tuscaloosa, Tuscaloosa County, Alabama, 2010

    USGS Publications Warehouse

    Lee, K.G.; Kimbrow, D.R.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, conducted a bathymetric survey of Carroll Creek, on May 12-13, 2010. Carroll Creek is one of the major tributaries to Lake Tuscaloosa and contributes about 6 percent of the surface drainage area. A 3.5-mile reach of Carroll Creek was surveyed to prepare a current bathymetric map, determine storage capacities at specified water-surface elevations, and compare current conditions to historical cross sections. Bathymetric data were collected using a high-resolution interferometric mapping system consisting of a phase-differencing bathymetric sonar, navigation and motion-sensing system, and a data acquisition computer. To assess the accuracy of the interferometric mapping system and document depths in shallow areas of the study reach, an electronic total station was used to survey 22 cross sections spaced 50 feet apart. The data were combined and processed and a Triangulated Irregular Network (TIN) and contour map were generated. Cross sections were extracted from the TIN and compared with historical cross sections. Between 2004 and 2010, the area (cross section 1) at the confluence of Carroll Creek and the main run of LakeTuscaloosa showed little to no change in capacity area. Another area (cross section 2) showed a maximum change in elevation of 4 feet and an average change of 3 feet. At the water-surface elevation of 224 feet (National Geodetic Vertical Datum of 1929), the cross-sectional area has changed by 260 square feet for a total loss of 28 percent of cross-sectional storage area. The loss of area may be attributed to sedimentation in Carroll Creek and (or) the difference in accuracy between the two surveys.

  2. 77 FR 14853 - Oregon Disaster #OR-00041

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... adversely affected by the disaster: Primary Counties: Benton, Columbia, Coos, Curry, Douglas, Hood River... ADMINISTRATION Oregon Disaster OR-00041 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  3. Hydrogeology and simulation of the effects of reclaimed-water application in west Orange and southeast Lake counties, Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    1998-01-01

    Wastewater reclamation and reuse has become increasingly popular as water agencies search for alternative water-supply and wastewater-disposal options. Several governmental agencies in central Florida currently use the land-based application of reclaimed water (wastewater that has been treated beyond secondary treatment) as a management alternative to surface-water disposal of wastewater. Water Conserv II, a water reuse project developed jointly by Orange County and the City of Orlando, began operation in December 1986. In 1995, the Water Conserv II facility distributed approximately 28 Mgal/d of reclaimed water for discharge to rapid-infiltration basins (RIBs) and for use as agricultural irrigation. The Reedy Creek Improvement District (RCID) began operation of RIBs in September 1990, and in 1995 these RIBs received approximately 6.7 Mgal/d of reclaimed water. Analyses of existing data and data collected during the course of this study were combined with ground-water flow modeling and particle-tracking analyses to develop a process-oriented evaluation of the regional effects of reclaimed water applied by Water Conserv II and the RCID RIBs on the hydrology of west Orange and southeast Lake Counties. The ground-water flow system beneath the study area is a multi-aquifer system that consists of a thick sequence of highly permeable carbonate rocks overlain by unconsolidated sediments. The hydrogeologic units are the unconfined surficial aquifer system, the intermediate confining unit, and the confined Floridan aquifer system, which consists of two major permeable zones, the Upper and Lower Floridan aquifers, separated by the less permeable middle semiconfining unit. Flow in the surficial aquifer system is dominated regionally by diffuse downward leakage to the Floridan aquifer system and is affected locally by lateral flow systems produced by streams, lakes, and spatial variations in recharge. Ground water generally flows laterally through the Upper Floridan aquifer

  4. Public health assessment for McCormick and Baxter Creosoting Company (Portland), Portland, Multnomah County, Oregon, Region 10. Cerclis No. ORD009020603. Final report

    SciTech Connect

    1995-06-13

    The McCormick and Baxter Creosoting site is located on the Willamette River in Portland, Oregon. ATSDR considers the site to have been a public health hazard for former plant workers because of past ingestion exposure to arsenic, creosote, pentachlorophenol, polychlorinated dibenzodioxins, and dibenzofurans at levels of public health concern. The site also poses an ongoing and future public health hazard because people might encounter hazardous chemicals along the shoreline on or near the site at levels that can damage the skin, as was reported to have happened to two boys. Finally, dioxin levels would pose a public health hazard if people subsist on crayfish and suckers contaminated with polychlorinated dibenzodioxins and dibenzofurans.

  5. Evaluation of seepage from Chester Morse Lake and Masonry Pool, King County, Washington

    USGS Publications Warehouse

    Hidaka, F.T.; Garrett, Arthur Angus

    1967-01-01

    Hydrologic data collected in the Cedar and Snoqualmie River basins on the west slope of the Cascade Range have been analyzed to determine the amount of water lost by seepage from Chester Morse Lake and Masonry Pool and the. consequent gain by seepage to the Cedar and South Fork Snoqualmie Rivers. For water years 1957-64, average losses were about 220 cfs (cubic feet per second) while average gains were about 180 cfs in the Cedar River and 50 cfs in the South Fork Snoqualmie River. Streamflow and precipitation data for water years 1908-26 and 1930-F2 indicate that a change in runoff regimen occurred in Cedar and South Fork Snoqualmie Rivers after the Boxley Creek washout in December 1918. For water years 1919-26 and 1930-32, the flow of Cedar River near Landsburg averaged about 80 cfs less than it would have if the washout had not occurred. In contrast, the flow of South Fork Snoqualmie River at North Bend averaged about 60 cfs more than it would have.

  6. Ground-water quality in Bannock, Bear Lake, Caribou, and part of Power counties, southeastern Idaho

    USGS Publications Warehouse

    Seitz, H.R.; Norvitch, R.F.

    1979-01-01

    The 103 wells sampled during the study establish a quasi-network that could be resampled in the future to document and analyze changes in ground-water quality in the southeastern Idaho study area. The main aquifers are categorized as alluvium of Quaternary age, basalt of Quaternary and (or) Tertiary age, rocks of the Salt Lake Formation of Tertiary age, and undifferentiated bedrock of pre-Tertiary age. Dissolved solids, hardness, nitrite plus nitrate as nitrogen, and chloride concentrations in the ground waters ranged from 165 to 1,690; 78 to 1,700; 0 to 29; and 1.9 to 360 milligrams per liter, respectively. The areal distributions of these constituents are shown on maps. The range and median values of these same constituents are tabulated by aquifer occurrence. Some of the most mineralized and hardest waters occur in the basalt aquifer near travertine deposits (or terraces), which are composed of calcium carbonate precipitates from mineral springs. For irrigation purposes, all the waters are classified as having low-sodium hazard. Most have medium- to high-salinity hazard. (Woodard-USGS)

  7. Mineral resources of the Henry's Lake Wilderness Study Area, Fremont County, Idaho

    SciTech Connect

    Tysdal, R.G.; Kulik, D.M.; Peters, T.J.

    1988-06-10

    A mineral-resource survey of the 350-acre Henry's Lake Wilderness Study Area (ID-035-077) was made in 1986-87. No identified resources (known) or currently active claims exist within or adjacent to the wilderness study area. There is potential for several types of undiscovered mineral resources within the study area. The southwestern part of the wilderness study area, along the Madison Range fault, is rated as having a moderate energy-resource potential for geothermal water; the remainder of the study area has a low potential for resources of this commodity. A small outcrop of marble in the southernmost part of the study area has a low mineral-resource potential for talc; for talc in marble possibly concealed beneath the study area the mineral-resource potential is rated as unknown. The study area has a low mineral-resource potential for iron in hematite-mineralized amphibolite gneiss, and for gold, silver, and uranium. The area has no mineral-resource potential for phosphate, because the host strata have been eroded; and no resource potential for oil and gas.

  8. Hydrologic investigation of Powell Marsh and its relation to Dead Pike Lake, Vilas County, Wisconsin

    USGS Publications Warehouse

    Krohelski, James T.; Rose, William J.; Hunt, Randall J.

    2002-01-01

    Ground-water levels measured in piezometers installed along a flow path indicated that ground-water flow primarily is horizontal in the marsh and moves upward in the vicinity of a ditch where it discharges. Flow from Vista Pond is downward to the ground-water system but eventually also discharges upward to the ditches. Based on analyses of water samples from piezometers, the ditch, and Vista Pond, it was shown that dissolved iron is transported in the ground water. When ground water is discharged, iron and manganese react with dissolved oxygen, then precipitates, and forms the oxyhydroxide floc present in the Powell Marsh ditches. The processes involved in the transport and floc formation are not unique to the ditches, but are an expected outcome where discharging ground water and oxygenated surface water meet. Therefore, although floc formed in the ditches would no longer be available for transport if ditches were removed, it is likely that the floc formation would be redirected to the near-shore areas of Dead Pike Lake where increased groundwater discharge is expected.

  9. Availability and quality of ground water in the Lake George area, southeastern Park County, Colorado

    USGS Publications Warehouse

    Goddard, Kimball E.

    1978-01-01

    Water for domestic use in the Lake George area, Colo., is produced from four aquifers. Two of the aquifers, fractured-cyrstalline and volcanic rocks, have a water table ranging from 10 to 100 feet below land surface and well yields range from 0.08 to 6 gallons per minute. The consolidated sedimentary-rock and unconsolidated-alluvial aquifers have a water table ranging from near land surface to 60 feet below land surface and well yields range from 2 to 50 gallons per minute. The aquifers generally contain calcium bicarbonate water with concentrations of dissolved solids ranging from 101 to 636 milligrams per liter. In some areas, concentrations of iron as much as 18,000 micrograms per liter and concentrations of fluoride as much as 5.6 milligrams per liter affect suitability for domestic use. Chemical degradation of ground water has occurred in 18 of the 35 wells and in the 1 spring that were sampled. Bacterial contamination was found in water from six wells. (Woodard-USGS)

  10. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and

  11. Influence of evaporation, ground water, and uncertainty in the hydrologic budget of Lake Lucerne, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Lee, Terrie Mackin; Swancar, Amy

    1997-01-01

    A detailed hydrologic budget was constructed of a seepage lake of sinkhole origin in the karst terrain of central Florida. During the drought period studied, lake evaporation computed by the energy-budget and mass-transfer methods was the largest component in the budget, followed by rainfall. Ground-water inflow contributed about one-third of the total inflow. Lake leakage was about one-fourth of the evaporative losses and was increased substantially by pumping from the Upper Floridan aquifer.

  12. Water Resources Data for California, Water Year 1986. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Mullen, J.R.; Shelton, W.F.; Simpson, R.G.; Grillo, D.A.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 156 gaging stations; stage and contents for 37 lakes and reservoirs; water precipitation data for 2 stations; and water quality for 8 stations. Also included is one water-quality partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  13. Water Resources Data, California, Water Year 1990. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Mullen, J.R.; Shelton, W.F.; Markham, K.L.; Anderson, S.W.

    1991-01-01

    Water resources data for the 1990 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 182 gaging stations; stage and contents for 34 lakes and reservoirs; precipitation data for 3 stations; and water quality. for 12 stations. Also included is one low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  14. Water Resources Data, California, Water Year 1989. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Anderson, S.W.; Mullen, J.R.; Shelton, W.F.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 177 gaging stations; stage and contents for 34 lakes and reservoirs; precipitation data for 3 stations; and water quality for 9 stations. Also included is one low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  15. Water Resources Data for California, Water Year 1985. Volume 4. Northern California Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Mullen, J.R.; Shelton, W.F.; Simpson, R.G.; Grillo, D.A.

    1987-01-01

    Water resources data for the 1985 water year for California consists of records of stage, discharge, and water quality of streams; and stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 155 gaging stations; stage and contents for 29 lakes and reservoirs; water precipitation data for 2 stations; and water quality for 16 stations. Also included are 7 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  16. Water Resources Data for California, Water Year 1988. Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Shelton, W.F.; Anderson, S.W.; Mullen, R.J.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wellso Volume 4 contains discharge records for 160 gaging stations; stage and contents for 35 lakes and reservoirs; water precipitation data for 2 stations; and water quality for 9 stations Also included is one low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  17. Water Resources Data for California, Water Year 1987. Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Mullen, J.R.; Shelton, W.F.; Simpson, R.G.

    1988-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 154 gaging stations; stage and contents for 33 lakes and reservoirs; water precipitation data for 2 stations; and water quality for 5 stations. Also included is one low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  18. Water Resources Data, California, Water Year 1997. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Rockwell, G.L.; Friebel, M.F.; Webster, M.D.; Anderson, S.W.

    1998-01-01

    Water-resources data for the 1997 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 176 gaging stations and 1 partial-record station, stage and contents for 45 lakes and reservoirs, gage-height records for 3 stations, precipitation data for 3 stations, and water quality data for 14 stations and 6 waterquality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  19. Water Resources Data -- California, Water Year 2003, Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Friebel, M.F.; Webster, M.D.; Rockwell, G.L.; Smithson, J.R.

    2004-01-01

    Water-resources data for the 2003 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 195 gaging stations, stage and contents for 62 lakes and reservoirs, gage-height records for 1 station, water quality for 33 streamflow-gaging stations and 8 partial-record stations. Also included are 4 miscellaneous partial-record sites. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  20. Water Resources Data--California, Water Year 2001. Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Rockwell, G.L.; Smithson, J.R.; Friebel, M.F.; Webster, M.D.

    2002-01-01

    Water-resources data for the 2001 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 191 gaging stations, stage and contents for 53 lakes and reservoirs, gage-height records for 1 station, and water quality for 18 stations. Also included are 3 miscellaneous partial-record sites, and 3 parital-record water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  1. Water Resources Data, California, Water Year 1998. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Friebel, M.F.; Webster, M.D.; Anderson, S.W.; Rockwell, G.L.; Smithson, J.R.

    1999-01-01

    Water-resources data for the 1998 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 176 gaging stations and 1 partial-record station, stage and contents for 45 lakes and reservoirs, gage-height records for 1 station, precipitation data for 3 stations, and water quality for 14 stations and 7 waterquality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  2. Water Resources Data--California, Water Year 2000. Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Anderson, S.W.; Rockwell, G.L.; Smithson, J.R.; Friebel, M.F.; Webster, M.D.

    2001-01-01

    Water-resources data for the 2000 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 190 gaging stations and 5 partial-record stations, stage and contents for 60 lakes and reservoirs, gage-height records for 1 station, precipitation data for 3 stations, and water quality for 10 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  3. Water resources data-California, water year 2004. volume 4. northern central valley basins and the Great Basin from Honey Lake basin to Oregon state line

    USGS Publications Warehouse

    Webster, M.D.; Rockwell, G.L.; Friebel, M.F.; Brockner, S.J.

    2005-01-01

    Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 188 gaging stations, stage and contents for 62 lakes and reservoirs, gage-height records for 1 station, water quality for 20 streamflow-gaging stations and 1 partial-record stations. Also included are 4 miscellaneous partial-record sites. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  4. Water Resources Data--California, Water Year 2002, Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Smithson, J.R.; Friebel, M.F.; Webster, M.D.; Rockwell, G.L.

    2002-01-01

    Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 191 gaging stations, stage and contents for 60 lakes and reservoirs, gage-height records for 2 stations, and water quality for 21 stations. Also included are 4 miscellaneous partial-record sites. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  5. Water Resources Data, California, Water Year 1996. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Anderson, S.W.; Rockwell, G.L.; Friebel, M.F.; Webster, M.D.

    1997-01-01

    Water-resources data for the 1996 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 180 gaging stations, stage and contents for 45 lakes and reservoirs, gage-height records for 5 stations, precipitation data for 3 stations, and water quality for 15 stations. Also included is 1 low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  6. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    NASA Astrophysics Data System (ADS)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  7. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    USGS Publications Warehouse

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.

  8. Flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Lane County, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Haluska, Tana L.

    2016-01-01

    Digital flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Oregon, were developed by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers (USACE). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected stages at the USGS streamgage at Coast Fork Willamette River near Goshen, Oregon (14157500), at State Highway 58. Current stage at the streamgage for estimating near-real-time areas of inundation may be obtained at http://waterdata.usgs.gov/or/nwis/uv/?site_no=14157500&PARAmeter_cd=00065,00060. In addition, the National Weather Service (NWS) forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, areas of inundation were provided by USACE. The inundated areas were developed from flood profiles simulated by a one-dimensional unsteady step‑backwater hydraulic model. The profiles were checked by the USACE using documented high-water marks from a January 2006 flood. The model was compared and quality assured using several other methods. The hydraulic model was then used to determine eight water-surface profiles at various flood stages referenced to the streamgage datum and ranging from 11.8 to 19.8 ft, approximately 2.6 ft above the highest recorded stage at the streamgage (17.17 ft) since 1950. The intervals between stages are variable and based on annual exceedance probability discharges, some of which approximate NWS action stages.The areas of inundation and water depth grids provided to USGS by USACE were used to create interactive flood‑inundation maps. The availability of these maps with current stage from USGS streamgage and forecasted stream stages from the NWS provide emergency management

  9. 75 FR 66746 - SPS of Oregon; Notice of Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... for public inspection: a. Type of Application: Conduit Exemption. b. Project No.: 13832-000. c. Date filed: August 9, 2010. d. Applicant: SPS of Oregon. e. Name of Project: SPS of Oregon Hydroelectric Project. f. Location: The project is located near the City of Wallowa, in Wallowa County, Oregon. g....

  10. Quality and quantity of runoff and atmospheric deposition in urban areas of Salt Lake County, Utah, 1980-81

    USGS Publications Warehouse

    Christensen, R.C.; Stephens, D.W.; Pyper, G.E.; McCormack, H.F.; Weigel, J.F.

    1984-01-01

    Water of good quality from mountain streams is degraded as it moves through urban areas to the Jordan River in Salt Lake County, Utah. The impact of urban runoff and atmospheric deposition on the quality of water in those streams and in storm conduits and canals functioning as storm drains was evaluated using data collected during 1980-81. Atmospheric-wetfall loads for an average storm were as much as 10 pounds per acre for total solids, but the dissolved trace metals were generally present in insignificant quantities. Wetfall-deposition loads generally were greater than storm-runoff loads, indicating that a large quantity of the wetfall load remained as soil deposits. Acid rain fell in more than one-half of the storms sampled, most commonly in September and October. Dustfall concentrations reflected the composition of local soils, particularly with regard to iron, manganese, and chromium; but concentrations of cadmium, copper, lead, zinc, and chloride were considerably enriched. Monthly loads of dryfall solids reached a maximum of 62 pounds per acre in the Little Cottonwood Creek urban basin, but were of the same magnitude as total storm loads for a heavy rainfall. Urban runoff represented about 38 percent of the discharge in three canals. The water in the canals was poorer in quality than the water in the mountain streams. The impact of the canal discharges to the streams is slight, however, owing to their ' relatively small amounts. ' Concentrations of sediment, suspended solids, suspended trace metals, phosphorus, and oxygen-demanding substances were much greater during storm runoff than under base-flow conditions. This report contains data for basin and storm characteristics and water-quality information for atmospheric deposition and urban runoff. (USGS)

  11. Map of debris flows caused by rainfall during 1996 in parts of the Reedsport and Deer Head Point quadrangles, Douglas County, southern Coast Range, Oregon

    USGS Publications Warehouse

    Coe, Jeffrey A.; Michael, John A.; Burgos, Marianela Mercado

    2011-01-01

    This 1:12,000-scale map shows an inventory of debris flows caused by rainfall during 1996 in a 94.4 km2 area in the southern Coast Range of Oregon. This map and associated digital data are part of a larger U.S. Geological Survey study of debris flows in the southern Coast Range. Available evidence indicates that the flows were triggered by a rain storm that occurred between November 17 and 19. The closest rain gage in the Coast Range (Goodwin Peak) recorded 245 mm during the storm. Maximum rainfall intensity during the storm was 13.2 mm/hr on November 18. Debris flows were photogrammetrically mapped from 1:12,000-scale aerial photographs flown in May, 1997. The inventory is presented on imagery derived from LiDAR data acquired in 2008. We classified mapped debris flows into four categories based on the type of debris-flow activity: (1) discrete slide source areas, (2) predominantly erosion, (3) predominantly transport or mixed erosion and deposition, and (4) predominantly deposition. Locations of woody-debris jams are also shown on the map. The area encompassed by debris flows is 2.1 percent of the 94.4 km2 map area.

  12. DESCHUTES CANYON ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Winters, Richard A.

    1984-01-01

    An examination of the Deschutes Canyon Roadless Area, Oregon indicated that the area is devoid of mines and active mineral prospects or claims and that there is little likelihood for the occurrence of metallic or nonmetallic mineral resources. There is no evidence to indicate that mineral fuels are present in the roadless area. Nearby parts of central Jefferson County on the Warm Springs Indian Reservation are characterized by higher-than-normal heat flow and by numerous thermal springs, some of which have been partly developed. This may indicate that the region has some as yet undefined potential for the development of geothermal energy.

  13. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  14. Questa baseline and premining ground-water quality investigation. 8. Lake-sediment geochemical record from 1960 to 2002, Eagle Rock and Fawn Lakes, Taos County, New Mexico

    USGS Publications Warehouse

    Church, S.E.; Fey, D.L.; Marot, M.E.

    2005-01-01

    Geochemical studies of lake sediment from Eagle Rock Lake and upper Fawn Lake were conducted to evaluate the effect of mining at the Molycorp Questa porphyry molybdenum deposit located immediately north of the Red River. Two cores were taken, one from each lake near the outlet where the sediment was thinnest, and they were sampled at 1-cm intervals to provide geochemical data at less than 1-year resolution. Samples from the core intervals were digested and analyzed for 34 elements using ICP-AES (inductively coupled plasma-atomic emission spectrometry). The activity of 137Cs has been used to establish the beginning of sedimentation in the two lakes. Correlation of the geochemistry of heavy-mineral suites in the cores from both Fawn and Eagle Rock Lakes has been used to develop a sedimentation model to date the intervals sampled. The core from upper Fawn Lake, located upstream of the deposit, provided an annual sedimentary record of the geochemical baseline for material being transported in the Red River, whereas the core from Eagle Rock Lake, located downstream of the deposit, provided an annual record of the effect of mining at the Questa mine on the sediment in the Red River. Abrupt changes in the concentrations of many lithophile and deposit-related metals occur in the middle of the Eagle Rock Lake core, which we correlate with the major flood-of-record recorded at the Questa gage at Eagle Rock Lake in 1979. Sediment from the Red River collected at low flow in 2002 is a poor match for the geochemical data from the sediment core in Eagle Rock Lake. The change in sediment geochemistry in Eagle Rock Lake in the post-1979 interval is dramatic and requires that a new source of sediment be identified that has substantially different geochemistry from that in the pre-1979 core interval. Loss of mill tailings from pipeline breaks are most likely responsible for some of the spikes in trace-element concentrations in the Eagle Rock Lake core. Enrichment of Al2O3, Cu, and Zn

  15. Geologic map and sections of the Holy Cross Quadrangle, Eagle, Lake, Pitkin, and Summit counties, Colorado

    USGS Publications Warehouse

    Tweto, Ogden; Digital edition and database by Brandt, Theodore R.

    1974-01-01

    This map was first published as a printed edition in 1974. The geologic data have now been captured digitally and are presented here along with images of the printed map sheets. The map encompasses the area of four 7.5-minute quadrangles between 39º15' and 39º 30'N and 106º15' and 106º30'W in the Sawatch and Gore mountain ranges, and upper part of the Arkansas River drainage in central Colorado. The Holy Cross geologic map depicts in detail the complex geology at the north end of the Sawatch Range on the west at its junction with south end of the Gore Range on the east. The ranges are separated in the southern part of the map area by the upper reaches of the Arkansas River, and in the northeast part by the narrow valley of the upper Eagle River. Sixty map units and numerous individual beds and thin units within the principal map units are shown. Paleoproterozoic and Mesoproterozoic metamorphic rocks are the principal rocks of the Sawatch Range. In the Gore Range, lower and upper Paleozoic sedimentary rocks rest unconformably on the Precambrian metamorphic rocks. Paleozoic rocks that range in age from Upper Cambrian though Middle Pennsylvanian support the Gore Range along the eastern quarter of the map. The sequence includes a basal quartzite overlain by interbedded, shale, dolomite, quartzite, and sandstone. The Leadville Dolomite, below the dark shale, is the host rock for the ore deposits at Leadville and the neighboring lead-zinc-silver districts. A wide range of Miocene to Cretaceous intrusive rocks dip east off the Sawatch Range. The Dry Union Formation of Pliocene and Miocene age fills the valley of the Arkansas River and is covered by Quaternary alluvium and glacial sediment. Glacial deposits of Bull Lake, Pinedale, and neoglacial age are present in many of the mountain valleys. The geologic structure of the quadrangle is complex in geometry and time with a distinct structural and geographic break along the west front of the Gore Range in the eastern

  16. Discharge and water-quality data for selected streams at low flow including some bottom-material analyses, and limnological study of six lakes, Westchester County, New York

    USGS Publications Warehouse

    Archer, Roger J.; Turk, John T.

    1977-01-01

    Water-quality data collected at sites on 33 Westchester County, N.Y., streams August 4 to 6, 1976 during low flow (80-percent or more duration) indicate that although the chemical characteristics of most streams met State standards for water-supply source waters, none met the coliform standard, and several failed to meet standards for organic nitrogen, pH, and dissolved oxygen. Chemical analyses of bottom materials indicated detectable concentrations of the insecticides chlordane, dieldrin, and DDT at most of the 17 stream sites sampled. Polychlorinated biphenyls(PCB's) were found in more than half the samples, and the lead concentration on one stream was significantly higher than at the other sites. The six lakes studied are similar in bedrock geology, climate, and algal types and numbers. Minor differences in the chemistry of the lakes is attributable to the presence or absence of marble (calcium carbonate) in the gneissic basins, septic loadings of soluble constituents, or runoff containing salt from winter road deicing. The lakes probably receive most of their water by direct runoff and groundwater seepage rather than from major streams. All six lakes can be classed as eutrophic on the basis of algal type and density, dissolved-oxygen distribution, and nitrogen and phosphorus concentrations. (Woodard-USGS)

  17. Water Resources Data for California, water year 1984. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Fogelman, R.P.; Mullen, J.R.; Shelton, W.F.; Simpson, R.G.; Grillo, D.A.

    1986-01-01

    Water resources data for the 1984 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 152 gaging stations; stage and contents for 25 lakes and reservoirs; water precipitation data for 2 stations; water quality for 9 stations; water levels for 12 and water quality for 46 observation wells. Also included is one low-flow partialrecord station and 19 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and federal agencies in California.

  18. Water Resources Data for California Water Year 1982, Volume 4. Northern California Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Fogelman, R.P.; Mullen, J.R.; Shelton, W.F.; Simpson, R.G.

    1984-01-01

    Water-resources data for the 1982 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 163 gaging stations; stage and contents for 27 lakes and reservoirs; precipitation data for 2 stations; water quality for 7 stations; and water levels for 54 observation wells, Also included are 4 crest-stage partial-record stations and 4 low-flow partial-record stations. Additional wator data are collected at various sites, not part of the systematic data collection program, and are published as special investigations. These data represent that part of the National Water Data System operated by the u.s. Geological Survey and cooperating State and Federal agencies in California.

  19. Water Resources Data for California, Water Year 1983, Volume 4. Northern California Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Fogelman, R.P.; Mullen, J.R.; Shelton, W.F.; Simpson, R.G.; Grillo, D.A.

    1985-01-01

    Water-resources data for the 1983 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 153 gaging stations; stage and contents for 25 lakes and reservoirs; precipitation data for 2 stations; water quality for 7 stations; and water levels for 147 observation wells. Also included is one low-flow partial-record station. Additional water data are collected at various sites, not part of the systematic data collection program, and are published as special investigations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  20. The reinterpretation of Leone Lake sediments as a pyroclastic surge deposit and its tectonic significance. [volcanics in Cascade Range of Oregon

    NASA Technical Reports Server (NTRS)

    Mcdonough, W. F.; Waibel, A. F.; Gannett, M. W.

    1984-01-01

    The Leone Lake sediments, previously interpreted as being of fluvial and lacustrine origin, are reinterpreted as subaerial pyroclastic surge and palagonite tuff cone deposits. This conclusion is based on bedforms, particle morphology, the primary mineral assemblage, and the nature and mineralogy of the alteration. The principal characteristics of the pyroclastic surge units and palagonite tuffs are examined, and the tectonic significance of the reinterpretation is briefly discussed.

  1. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation to the chemistry of locally occurring oil, natural gas, and brine

    USGS Publications Warehouse

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-01-01

    Environmental samples collected in the Mosquito Creek Lake area were used to characterize water quality in relation to the chemistry of locally occurring oil, natural gas, and brine and to establish baseline water quality. Mosquito Creek Lake (a manmade reservoir) and the shallow bedrock aquifers near the lake are major sources of potable water in central Trumbull County. The city of Warren relies on the lake as a sole source of potable water. Some of the lake bottom may be in direct hydraulic connection with the underlying aquifers. The city of Cortland, along the southeastern shore of the lake, relies on the Cussewago Sandstone aquifer as a sole source of potable water. This aquifer subcrops beneath the glacio-fluvial sediments that underlie the lake. Nearly all residential homes around the lake, with the exception of homes in the city of Cortland, rely on domestic supply wells as a source of potable water. Oil and natural gas exploration and production have been ongoing in the Mosquito Creek Lakearea since the discovery of the historic Mecca Oil Pool in the Mississippian Berea and Cussewago Sandstones in 1860. Since the late 1970' s, the major drilling objective and zone of production is the Lower Silurian Clinton sandstone. The oil and natural gas resources of the Mosquito Creek Lake area, including reservoir pressure, production history, and engineering and abandonment practices are described in this report. The chemical and isotopic characteristics of the historic Mecca oil and natural gas are very different than those of the Clinton sandstone oil and natural gas. Gas chromatograms show that Mecca oil samples are extensively altered by biodegradation, whereas Clinton sandstone oils are not. Extensive alteration of Mecca oil is consistent with their occurrence at very shallow depths (less than 100 ft below land surface) where microbial activity can affect their composition. Also, the carbon-isotope composition of dissolved methane gas from Berea and Cussewago

  2. Historical streamflows of Double Mountain Fork of Brazos River and water-surface elevations of Lake Alan Henry, Garza County, Texas, water years 1962-2010

    USGS Publications Warehouse

    Asquith, William H.; Vrabel, Joseph

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the City of Lubbock, Texas, operates two surface-water stations in Garza County, Tex.: USGS streamflow-gaging station 08079600 Double Mountain Fork Brazos River at Justiceburg, Tex., and 08079700 Lake Alan Henry Reservoir, a water-supply reservoir about 60 miles southeast of Lubbock, Tex., and about 10 miles east of Justiceburg, Tex. The streamflow and water-surface elevation data from the two stations are useful to water-resource managers and planners in support of forecasting and water-resource infrastructure operations and are used in regional hydrologic studies.

  3. An investigation of the origin of Rock City and cause of piping problems at Mountain Lake, Giles County, Virginia

    NASA Astrophysics Data System (ADS)

    Atallah, Nidal Walid

    Mountain Lake is one of only two natural lakes in the state of Virginia. The lake's origin has been attributed to either a natural solution-collapse basin, or to a landslide damming the valley of northwesterly flowing Pond Drain, or to a NW-SE trending fracture lineation. The lake is located within the breached northwest limb of a gently plunging anticline, a part of the larger Valley and Ridge physiographic province. In recent years, the lake drained almost completely, exposing the lake bottom and revealing the presence of four sinkhole-like depressions, containing piping holes at their sides and bottoms, at the northeastern and northwestern margins of the lake. This study focuses on the most likely origin of large sandstone blocks present at the northern end of the lake in an area locally referred to as "Rock City", including mapping of the block locations and analyzing the mode and extent of displacement that they have undergone. An additional objective is to investigate the piping potential of the lake-bottom sediment and its role in seepage out of the lake basin causing lake-level fluctuations. Mapping of Rock City was conducted by taking GPS readings at the corners of the rock blocks and using ArcMap Software. Investigations of the displacement mode of the rock blocks was done by comparing the measured orientations of principal discontinuity sets, forming the rock-block boundaries, with discontinuity orientations of undisturbed outcrops within the headscarp, using stereonet analysis. Grain size analysis, Atterberg limits, and a compaction-mold permeameter test were used to evaluate lake sediment's susceptibility to piping. Field observations and discontinuity data analysis indicate that Rock City is a landslide that dammed the valley of Pond Drain, consequently forming the lake. The primary mode of slope movement involves lateral spreading that is associated with extension occurring along discontinuities. The Tuscarora Sandstone rock blocks comprising Rock

  4. Limnological study of Shasta Lake, Shasta County, California, with emphasis on the effects of the 1977 drought

    USGS Publications Warehouse

    Rettig, S.A.; Bortleson, Gilbert C.

    1983-01-01

    An intensive limnological study of Shasta Lake was made in conjunction with the California Department of Water Resources during the 1977 drought. Water-quality data were collected from March 1977 through September 1978 at six lake stations and four lake tributary stations. Data collected during and after the drought were compared. Lake water quality is described as a function of lake morphometry, climate, hydrology, and reservoir hydraulics. Results indicate Shasta Lake is a warm monomictic lake. Tributary inflow to the lake and outflow through the dam generate density currents which promote mixing at depth and the development of an extensive metalimnion. During the drought, record low lake levels resulted in the exposure of an extensive nearshore sediment zone. Resuspended sediments caused a deterioration of water quality. The most notable effects, in comparison with post-drought conditions, were decreased light penetration, increased dissolved-solids concentration and specific conductance, decreased dissolved-oxygen concentrations, and elevated nutrient levels. A hypolimnetic anoxic condition was observed at the upstream stations of the lake. (USGS)

  5. Arsenic levels in Oregon waters.

    PubMed Central

    Stoner, J C; Whanger, P D; Weswig, P H

    1977-01-01

    The arsenic content of well water in certain areas of Oregon can range up to 30 to 40 times the U.S.P.H.S. Drinking Water Standard of 1962, where concentrations in excess of 50 ppb are grounds for rejection. The elevated arsenic levels in water are postulated to be due to volcanic deposits. Wells in central Lane County, Oregon, that are known to contain arsenic rich water are in an area underlain by a particular group of sedimentary and volcanic rocks, which geologists have named the Fischer formation. The arsenic levels in water from wells ranged from no detectable amounts to 2,000 ppb. In general the deeper wells contained higher arsenic water. The high arsenic waters are characterized by the small amounts of calcium and magnesium in relation to that of sodium, a high content of boron, and a high pH. Water from some hot springs in other areas of Oregon was found to range as high as 900 ppb arsenic. Arsenic blood levels ranged from 32 ppb for people living in areas where water is low in arsenic to 250 ppb for those living in areas where water is known to contain high levels of arsenic. Some health problems associated with consumption of arsenic-rich water are discussed. PMID:908291

  6. Status and trends of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) sucker populations in Upper Klamath Lake, Oregon, 2014

    USGS Publications Warehouse

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2015-01-01

    Despite relatively high survival in most years, we conclude that both species have experienced substantial decreases in the abundance of spawning adults because losses from mortality have not been balanced by recruitment of new individuals. Although capture-recapture data indicate substantial recruitment of new individuals into the spawning populations for SNS and river spawning LRS in some years, size data do not corroborate these estimates. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains worrisome, especially for shortnose suckers. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.

  7. Water quality and algal conditions in the North Umpqua River, Oregon, 1995-2007, and their response to Diamond Lake restoration

    USGS Publications Warehouse

    Carpenter, Kurt D.; Anderson, Chauncey W.; Jones, Mikeal E.

    2014-01-01

    This study also provided an opportunity to examine changes in stream conditions in the main stem North Umpqua River and its tributaries, which were previously sampled in July 1995. The 1995 study was designed to provide background data during relicensing of the upstream hydroelectric facilities, and was partly motivated by anecdotal concerns about increase periphyton growth and reduced water clarity. As part of the 2005–07 study associated with the Diamond Lake restoration project, we repeated the 1995 basinwide synoptic survey in 2005, before the rotenone treatment. Although both samplings were just a snapshot of conditions, these data were evaluated for possible changes between 1995 and 2005.

  8. Physical, chemical, and isotopic data for samples from the Anderson Springs area, Lake County, California, 1998-1999

    USGS Publications Warehouse

    Janik, C.J.; Goff, F.; Sorey, M.L.; Rytuba, J.J.; Counce, D.; Colvard, E.M.; Huebner, M.; White, L.D.; Foster, A.

    1999-01-01

    Anderson Springs is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. In the rugged hills to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. In the 1970s, the high-elevation areas surrounding Anderson Springs became part of The Geysers geothermal field. Today, several electric powerplants are located on the ridges above Anderson Springs, utilizing steam produced from a 240°C vapor-dominated reservoir. The primary purpose of this report is to provide physical, chemical, and isotopic data on samples collected in the Anderson Springs area during 1998 and 1999, in response to a Freedom of Information Act request. In July 1998, drainage from the Schwartz adit of the abandoned Anderson mercury mine increased substantially over a 2-day period, transporting a slurry of water and precipitates down a tributary and into Anderson Creek. In August 1998, J.J. Rytuba and coworkers sampled the Schwartz adit drainage and water from the Anderson Springs Hot Spring for base metal and methylmercury analysis. They measured a maximum temperature (Tm) of 85°C in the Hot Spring. Published records show that the temperature of the Anderson Springs Hot Spring (main spring) was 63°C in 1889, 42–52°C from 1974 through 1991, and 77°C in March 1995. To investigate possible changes in thermal spring activity and to collect additional samples for geochemical analysis, C.J. Janik and coworkers returned to the area in September and December 1998. They determined that a cluster of springs adjacent to the main spring had Tm=98°C, and they observed that a new area of boiling vents and small fumaroles (Tm=99.3°C) had formed in an adjacent gully about 20 meters to the north of the main spring

  9. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Brown County, Calumet County, Door County, Fond du Lac County, Green Lake County, Kewaunee County... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Lake Michigan Intrastate Air Quality... Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The...

  10. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Brown County, Calumet County, Door County, Fond du Lac County, Green Lake County, Kewaunee County... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Lake Michigan Intrastate Air Quality... Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The...

  11. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Brown County, Calumet County, Door County, Fond du Lac County, Green Lake County, Kewaunee County... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Lake Michigan Intrastate Air Quality... Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The...

  12. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Brown County, Calumet County, Door County, Fond du Lac County, Green Lake County, Kewaunee County... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Lake Michigan Intrastate Air Quality... Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The...

  13. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Brown County, Calumet County, Door County, Fond du Lac County, Green Lake County, Kewaunee County... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Lake Michigan Intrastate Air Quality... Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The...

  14. A Latest Glacial and Holocene Record From Medicine Lake, Siskiyou County, California: Preliminary Diatom, Pollen, and Sediment Data

    NASA Astrophysics Data System (ADS)

    Starratt, S. W.; Barron, J. A.; Kneeshaw, T.; Phillips, L.; Lowenstern, J.; Wanket, J. A.

    2002-12-01

    Medicine Lake is a small (165 ha), relatively shallow (average 7.3 m), medium- altitude (2,036 m) lake located within the summit caldera of Medicine Lake volcano, a dormant Quaternary shield volcano located in the southern Cascade Range. During September 1999 and 2000, high-resolution bathymetry, seismic-reflection profiles, and sediment cores were collected from the lake. Twenty six samples from core B100NC-1 (water depth 12.6 m; length 226 cm) were analyzed for physical properties, sediment grain size, diatoms, pollen, and total organic carbon (TOC). Using both 14C (AMS) dating and tephrochronology, the sediments at the bottom of the core are estimated to be 11,000 cal yr B.P., thus yielding an estimated average sedimentation rate of about 21 cm/1,000 yr. The lowermost part of the core (226 cm - ~200 cm) records the transition from glacial to interglacial conditions. During the period from about 11,000-7,200 cal yr B.P., lake level fluctuated between deeper oligotrophic conditions with a diatom flora dominated by Cyclotella spp. and shallower intervals with a diverse benthic flora. The relative low abundance (10-15%) of Abies (fir) pollen and relative high abundance (30-40%) of Artemesia (sagebrush) pollen in this interval suggest drier than present-day conditions. The lowest part of this interval (226 cm - 210 cm) is almost devoid of Cyclotella and may represent an ice-covered lake in which only a small benthic flora could exist around the margins of the lake where light penetration was the greatest. The sediments in this interval are relatively low in TOC and are dominated by glacial flour. From about 7,200 cal yr B.P. to the present, conditions have fluctuated between higher lake levels (three intervals) that are dominated by Cyclotella with a reduced number and diversity of benthic taxa, and lower lake levels (two intervals) during which the abundances of Cyclotella decrease to less than 10%. Relative values of Abies and Pinus (pine) pollen are higher during

  15. Direct evidence for the origin of low-18O silicic magmas: quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Adami, L.H.; Lanphere, M.A.

    1989-01-01

    Partially fused granitoid blocks were ejected in the climactic eruption of Mount Mazama, which was accompanied by collapse of Crater Lake caldera. Quartz, plagioclase, and glass in the granitoids have much lower ??18O values (-3.4 to +4.9???) than any fresh lavas of Mount Mazama and the surrounding region (+5.8 to +7.0???). Oxygen isotope fractionation between phases in granitoids is consistent with equilibrium at T ??? 900??C following subsolidus exchange with hydrothermal fluids of meteoric origin. Assimilation of ??? 10-20% of material similar to these granitoids can account for the O and Sr isotopic compositions of lavas and juvenile pyroclasts derived from the climactic magma chamber, many of which have ??18O values ??? 0.5??? or more lower than comparable lavas of Mount Mazama. The O isotope data provide the only clear evidence for such assimilation because the mineralogy and chemical and radiogenic isotopic compositions of the granitoids (dominantly granodiorite) are similar to those of erupted juvenile magmas. The granitoid blocks from Crater Lake serve as direct evidence for the origin of 18O depletion in large, shallow silicic magma bodies. ?? 1989.

  16. Limnological Conditions in Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina, August to September 2005, May 2006, and October 2006

    USGS Publications Warehouse

    Journey, Celeste A.; Abrahamsen, Thomas A.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Spartanburg Water System, conducted three spatial surveys of the limnological conditions in Lake William C. Bowen (Lake Bowen) and Municipal Reservoir #1 (Reservoir #1), Spartanburg County, South Carolina, during August to September 2005, May 2006, and October 2006. The surveys were conducted to identify spatial distribution and concentrations of geosmin and 2-methylisoborneol, common trophic state indicators (nutrients, transparency, and chlorophyll a), algal community structure, and stratification of the water column at the time of sampling. Screening tools such as the Carlson trophic state index, total nitrogen to total phosphorus ratios, and relative thermal resistance to mixing were used to help compare data among sites and among seasons. Water-column samples were collected at two depths at each selected site: a near-surface sample collected above a 1-meter depth and a lake-bottom sample collected at a depth of 2.5 to 7 meters, depending on the depth at the site. The degree of stratification of the water column was demonstrated by temperature-depth profiles and computed relative thermal resistance to mixing. Seasonal occurrence of thermal stratification (August to September 2005; May 2006) and de-stratification (October 2006) was evident in the depth profiles of water temperature in Lake Bowen. The most stable water-column (highest relative thermal resistance to mixing) conditions occurred in Lake Bowen during the August to September 2005 survey. The least stable water-column (destratified) conditions occurred in Lake Bowen during the October 2006 survey and Reservoir #1 during all three surveys. Changes with depth in dissolved oxygen (decreased with depth to near anoxic conditions in the hypolimnion), pH (decreased with depth), and specific conductance (increased with depth) along with thermal stratification indicated Lake Bowen was exhibiting characteristics common to both mesotrophic and eutrophic

  17. Hydrology, geomorphology, and dam-break modeling of the July 15, 1982, Lawn Lake Dam and Cascade Lake Dam failures, Larimer County, Colorado

    USGS Publications Warehouse

    Jarrett, R.D.; Costa, J.E.

    1984-01-01

    On July 15, 1982, Lawn Lake Dam, a 26-foot-high earthfill irrigation dam built in 1903 in Rocky Mountain National Park, Colorado, failed, due to piping, releasing 674 acre-feet of water with a peak discharge of 18,000 cubic feet per second down the Roaring River. Three people were killed, and damages were estimated at $31 million. Cascade Lake Dam, downstream from Lawn Lake Dam, subsequently failed as a result of the flood, increasing the peak flow at this point from 7,210 cubic feet per second to 16,000 cubic feet per second. The flood wave took 3.28 hours to travel 12.5 miles to Lake Estes, where all the floodwater was stored. The channel of the Roaring River was scoured as much as 50 feet and widened 300 feet. An alluvial fan of 42.3 acres, containing 10 million cubic feet of material, was deposited at the mouth of the Roaring River, damming the Fall River and forming a 17-acre lake. Various methods were used to indirectly compute peak discharge, attenuation of flow, and flood traveltime. A version of the National Weather Service dam-break flood model was used to evaluate its performance on high-gradient streams, to provide supplemental hydrologic information, and to evaluate various scenarios of dam-break development. (USGS)

  18. Public health assessment for Onondaga Lake, Syracuse, Onondaga County, New York, Region 2. Cerclis No. NYD986913580. Final report

    SciTech Connect

    1995-07-24

    The Onondaga Lake site is described as Onondaga lake and any source that may be contributing to its contamination (e.g., hazardous waste sites discharging contaminants directly or indirectly via surface or groundwater into Ononaga Lake). The site is contaminated with many chemicals, including mercury, polychlorinated biphenyls (PCBs), petroleum hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs). Based on the information reviewed, the Onondaga Lake site is a public health hazard. Fish from the site are contaminated with mercury and PCBs at levels which have a high risk of adverse health effects. The presence of fecal bacteria is an indicator of potential contamination by other microorganisms that can produce disease. Fecal bacteria contamination of the lake poses a potential health hazard to recreational users, particularly swimmers.

  19. The Ambrosia Lake project archaeological investigations of three small sites associated with the southern Chacoan outlier of Kin Nizhoni, McKinley County, New Mexico

    SciTech Connect

    Cullington, B.J.; Hammack, L.C.; Baugh, T.G.

    1990-03-15

    During the fall of 1987, Complete Archaeological Service Associates conducted mitigative excavations at three sites (LA50363, LA50364, and LA50371) in McKinley County, New Mexico. These sites are adjacent to the Phillips/United Nuclear Inactive Uranium Mill and Tailings site at Ambrosia Lake, New Mexico. The primary deposition at each of these sites appears to be related to a Pueblo II or Bonito Phase occupation. Temporal placement is based primarily on the cross dating of ceramics and archaeomagnetic determinations when possible. No tree-ring or radiocarbon samples are available from these sites. These Ambrosia Lake sites indicate that this area was occupied primarily by Pueblo II people who may have had close social, economic, and ceremonial ties with the people living at the nuclear community of Lower Nizhoni about 3 km south-southeast. The later component at LA50364 indicates a Pueblo III occupation by people who may have had similar ties to the people of the Kin Nizhoni nuclear community. The Ambrosia Lake sites, then, provide important information on the structure of subnuclear communities within the southern Chaco periphery.

  20. Near-Shore and Off-Shore Habitat Use by Endangered Juvenile Lost River and Shortnose Suckers in Upper Klamath Lake, Oregon: 2006 Data Summary

    USGS Publications Warehouse

    Burdick, Summer M.; Wilkens, Alexander X.; VanderKooi, Scott P.

    2008-01-01

    INTRODUCTION Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris, listed as endangered in 1988 under the Endangered Species Act, have shown infrequent recruitment into adult populations in Upper Klamath Lake (NRC 2004). In an effort to understand the causes behind and provide management solutions to apparent recruitment failure, a number of studies have been conducted including several on larval and juvenile sucker habitat use. Near-shore areas in Upper Klamath Lake with emergent vegetation, especially those near the mouth of the Williamson River, were identified as important habitat for larval suckers (Cooperman and Markle 2000; Reiser et al. 2001). Terwilliger et al. (2004) characterized primary age-0 sucker habitat as near-shore areas in the southern portion of Upper Klamath Lake with gravel and cobble substrates. Reiser et al. (2001) provided some evidence that juvenile suckers use habitats with emergent vegetation, but nothing concerning the extent or timing of use. The U.S. Geological Survey (USGS) began investigating the importance of near-shore and off-shore habitats with and without emergent vegetation for juvenile suckers in 2000. We found substantial numbers of juvenile suckers using these habitats near the mouth of the Williamson River into late August (VanderKooi and Buelow 2003). The distribution and relative abundance of juvenile suckers showed high spatial variability throughout the summer for all species combined, Lost River suckers, and shortnose suckers (VanderKooi et al. 2006; Hendrixson et al. 2007a). Results from sampling near-shore areas in 2002 suggested juvenile sucker proximity to shoreline changes depending on the presence or absence of shoreline vegetation (VanderKooi et al. 2006), whereas in 2004 and 2005 results were equivocal (Hendrixson et al. 2007a, 2007b). Research by USGS of juvenile suckers in Upper Klamath Lake conducted since 2000 provides a valuable long-term data set which can be used to