Science.gov

Sample records for lake piediluco central

  1. Sediment toxicity and deformities of chironomid larvae in Lake Piediluco (Central Italy).

    PubMed

    Di Veroli, Alessandra; Selvaggi, Roberta; Pellegrino, Roberto Maria; Goretti, Enzo

    2010-03-01

    The chemical analysis of the bottom sediments of the Lake Piediluco (Central Italy) has been carried out in order to individuate the potential correlation between the sediment toxicity and the high incidence of mouthpart deformities in chironomid larvae (biological indicators) found in this lake. The environmental contamination has been analyzed by determining the concentrations of the main heavy metals (lead, copper, cadmium, chromium, zinc and nickel), and the concentrations of organic compounds of anthropic source: PAHs, NPPs and OCPs. Heavy metals concentrations have pointed out a non-elevated contamination grade for the Lake Piediluco. The highest level of metals has been detected in the western area that feels the effect of the continuous tributaries incoming load. Also, concerning PAHs, NPPs and OCPs the lake does not present high values of pollution. The highest concentrations of the organic toxicants has been observed in the eastern sector of the lake, which presents typical lentic characteristics. A clear relationship has not found between the toxic substances present in the lacustrine sediments and the deformities incidence for chironomid larvae, which represent an index of environmental alteration. Probably, the mouthpart deformities found in the chironomid larvae of Chironomus plumosus are affected by a synergic action due to the whole toxic mixture present in the sediments of the Lake Piediluco. PMID:20172586

  2. Hydrology of Central Florida Lakes - A Primer

    USGS Publications Warehouse

    Schiffer, Donna M.

    1998-01-01

    INTRODUCTION Lakes are among the most valued natural resources of central Florida. The landscape of central Florida is riddled with lakeswhen viewed from the air, it almost seems there is more water than land. Florida has more naturally formed lakes than other southeastern States, where many lakes are created by building dams across streams. The abundance of lakes on the Florida peninsula is a result of the geology and geologic history of the State. An estimated 7,800 lakes in Florida are greater than 1 acre in surface area. Of these, 35 percent are located in just four counties (fig. 1): Lake, Orange, Osceola, and Polk (Hughes, 1974b). Lakes add to the aesthetic and commercial value of the area and are used by many residents and visitors for fishing, boating, swimming, and other types of outdoor recreation. Lakes also are used for other purposes such as irrigation, flood control, water supply, and navigation. Residents and visitors commonly ask questions such as Whyare there so many lakes here?, Why is my lake drying up (or flooding)?, or Is my lake spring-fed? These questions indicate that the basic hydrology of lakes and the interaction of lakes with ground water and surface water are not well understood by the general population. Because of the importance of lakes to residents of central Florida and the many questions and misconceptions about lakes, this primer was prepared by the U.S. Geological Survey (USGS) in cooperation with the St. Johns River Water Management District and the South Florida Water Management District. The USGS has been collecting hydrologic data in central Florida since the 1920s, obtaining valuable information that has been used to better understand the hydrology of the water resources of central Florida, including lakes. In addition to data collection, as of 1994, the USGS had published 66 reports and maps on central Florida lakes (Garcia and Hoy, 1995). The main purpose of this primer is to describe the hydrology of lakes in central

  3. Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes

    USGS Publications Warehouse

    Carl, Leon M.; McGuiness, Fiona

    2006-01-01

    This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.

  4. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    PubMed

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. PMID:27104923

  5. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    PubMed

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  6. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia

    PubMed Central

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G.; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  7. Sedimentary Feature in Lake Terkhiin Tsagaan and Lake Ugii, Central Mongolia

    NASA Astrophysics Data System (ADS)

    Orkhonselenge, Alexander; Davaagatan, Tuyagerel

    2016-04-01

    We present characteristics of lacustrine sediments recorded from Lake Terkhiin Tsagaan and Lake Ugii at near latitudes in Central Mongolia. Physical-chemical properties of eight core sediments collected from these lakes show impact of different montane and prairie landscapes on the lacustrine sediments. Lake Terkhiin Tsagaan indicating a montane landscape with higher contents of organic matter and biogenic silica, and finer sediments differs from Lake Ugii reflecting a prairie landscape with higher contents of carbonates and minerals, and coarser sediments. Stratigraphical sequences of the lacustrine sediments recommend that these two lakes have experienced a numerous of environmental conditions during the arid mid Holocene and humid late Holocene reconstructed from the adjacent lakes in Central Mongolia. These Holocene climatic changes inferred from dramatic fluctuations in temperature and precipitation might have been responsible for the identical environmental conditions, resulting in the sedimentary feature in Lake Terkhiin Tsagaan and Lake Ugii. More investigations with precise dating are thus needed from the both lakes for determining lacustrine sedimentations and reconstructing paleoenvironmental changes in Central Mongolia.

  8. Geology and evolution of lakes in north-central Florida

    USGS Publications Warehouse

    Kindinger, J.L.; Davis, J.B.; Flocks, J.G.

    1999-01-01

    Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phased: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase

  9. The hydrology of Lake Rousseau, west-central Florida

    USGS Publications Warehouse

    German, E.R.

    1978-01-01

    Lake Rousseau, about 4 miles southwest of Inglis, Florida, was formed in 1909 by impoundment of the Withlacooche River by Inglis Dam, west of Dunnellon, Florida. The lake was to have been part of the Cross-Florida Barge Canal; a lock and channel associated with the presently inactive project were completed in 1969. Lake Rousseau is about 11 miles long, covers about 4,000 acres, and contains about 34,000 acre-feet of water at the normal pool elevation of 27.5 feet above mean sea level. Inflow to the lake is relatively constant and responds slowly to rainfall. The estimated 100-year peak inflow, 10,400 cubic feet per second, is only 19 percent higher than the 100-year high monthly inflow. Water in Lake Rousseau is a calcium-bicarbonate type and is hard. Mean total phosphorus and organic nitrogen concentrations are considerably lower in Lake Rousseau than in north-central Florida lakes which have been considered to be eutrophic by other investigators, however, the lake supports of prolific aquatic plant community. Dissolved-oxygen concentrations near the water surface are occasionally less than 3 mg/liter. (Woodard-USGS)

  10. Water quality of Somerville Lake, south-central Texas

    USGS Publications Warehouse

    McPherson, Emma; Mendieta, H.B.

    1983-01-01

    Lake Somerville in south-central Texas has excellent water for municipal, industrial, and agricultural use. The total dissolved solids of the water averaged 220 milligrams per liter during a study from 1975-80. This shallow lake has a mean depth of 14 feet. The average annual inflow and discharge is greater than the volume of the lake. These two factors, along with wind action and the cooling of surface water during both summer and winter keep the lake well mixed and aerated. Even in summer the dissolved oxygen concentrations at the bottom of the lake usually were in excess of 50 percent of saturation. Dissolved iron concentrations are less than 50 micrograms per liter and dissolved manganese concentrations are under 40 micrograms per liter. These small concentrations are largely attributable to year-round oxygenated water. Homogeneous or near homogeneous concentrations of total phosphorus and inorganic nitrogen can occur at any time of the year throughout the lake. Dissolved chloride concentrations averaged 43 milligrams per liter and dissolved sulfate concentrations averaged 63 milligrams per liter. The total hardness of the water averaged about 110 milligrams per liter, placing it in the moderately hard classfication. (USGS)

  11. Geomorphology, hydrology, and ecology of Lake Urema, central Mozambique, with focus on lake extent changes

    NASA Astrophysics Data System (ADS)

    Böhme, Beate; Steinbruch, Franziska; Gloaguen, Richard; Heilmeier, Hermann; Merkel, Broder

    Lake Urema is one of the most important ecological features of Gorongosa National Park, located in central Mozambique, in the East African Rift System. Understanding hydrology and ecology of the lake and its tributaries is particularly important for the conservation of the Park’s floodplain habitats and its biodiversity. There are concerns that hydrological boundary conditions and ecology of Lake Urema have changed in recent years. Possible causes for this change include climatic and land use changes as well as tectonic and geomorphological processes. In this study, a multi-temporal and multi-disciplinary approach was applied to investigate the dynamics and control mechanisms of Lake Urema. Principal methods comprised remote sensing analyses of time series of Landsat and ASTER data, geomorphological interpretations of a Digital Terrain Model (DTM) as well as field investigations such as analyses of water quality and sediment composition. The waters of Lake Urema have a low mineralization and pH values approximately neutral. The spatially dominant sediment type has a pure clay texture consisting of kaolinite and smectite. The sandy type consists of quartz, kali felspar, and plagioclase. The results of the supervised classifications for the satellite images from 1979 to 2000 showed that the lake’s extent ranged between 17 km 2 (09/1995) and 25 km 2 (08/1979). Above average rainfall was responsible for the extreme lake size in May 1997 (104 km 2). The interpretations of the Digital Terrain Model demonstrated that alluvial fans limit the Urema basin from all sides and make Lake Urema a form of “reservoir lake”. The control mechanisms of the hydrological regime of Lake Urema, such as the contribution of groundwater, are not yet fully understood. The lake’s condition during the rainy season was not investigated. In the future, investigations of the sources and amounts of sediment input into the lake should be conducted.

  12. Geophysical studies of Mono Lake, east-central California

    NASA Astrophysics Data System (ADS)

    Athens, N. D.; Ponce, D. A.

    2012-12-01

    Magnetic and gravity investigations were undertaken in Mono Lake, California to study regional crustal structures and to aid understanding the geologic framework of Mono Lake, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Recent geophysical surveys included over 600 line-kilometers of high-resolution ship-borne magnetometer data that augmented existing airborne data, 22 line-kilometers of ground magnetic data that were collected along six traverses across Paoha Island, 56 gravity stations that were collected on Paoha and Negit Islands, and 28 rock samples that were collected for physical property data. Magnetic highs in the study area occur to the east and west of Mono Lake, where pre-Tertiary basement is exposed. Magnetic data indicate that Mono Lake itself is dominated by three prominent magnetic anomalies that are from west to east: a magnetic high along the northwest part of the lake associated with the moderately magnetic basalt cinder cone at Black Point, a magnetic high associated with the young volcanic centers at Paoha and Negit Islands, and a broad magnetic high along the eastern margin of the lake probably associated with moderately magnetic granitic basement rocks at depth. Because volcanic rocks exposed at the surface of Paoha and Negit Islands are only weakly magnetic, magnetic data suggest that more mafic volcanic rocks probably occur at depth and are the source of the anomaly. The linear and steep magnetic gradient across the eastern part of the lake may reflect a fault. A fault may also be imaged in the northeastern part of the lake, where a possible laterally offset magnetic anomaly may be present. Within Mono Lake, gravity station control is poor because land-based gravity stations are limited to Paoha and Negit Islands. The gravity low in the basin reflects a moderately deep sedimentary basin filled with low density lacustrine and volcanic deposits. Isostatic gravity data indicate the central

  13. Repeated Lake-Stream Divergence in Stickleback Life History within a Central European Lake Basin

    PubMed Central

    Moser, Dario; Roesti, Marius; Berner, Daniel

    2012-01-01

    Life history divergence between populations inhabiting ecologically distinct habitats might be a potent source of reproductive isolation, but has received little attention in the context of speciation. We here test for life history divergence between threespine stickleback inhabiting Lake Constance (Central Europe) and multiple tributary streams. Otolith analysis shows that lake fish generally reproduce at two years of age, while their conspecifics in all streams have shifted to a primarily annual life cycle. This divergence is paralleled by a striking and consistent reduction in body size and fecundity in stream fish relative to lake fish. Stomach content analysis suggests that life history divergence might reflect a genetic or plastic response to pelagic versus benthic foraging modes in the lake and the streams. Microsatellite and mitochondrial markers further reveal that life history shifts in the different streams have occurred independently following the colonization by Lake Constance stickleback, and indicate the presence of strong barriers to gene flow across at least some of the lake-stream habitat transitions. Given that body size is known to strongly influence stickleback mating behavior, these barriers might well be related to life history divergence. PMID:23226528

  14. Lake sediments as natural seismographs: Earthquake-related deformations (seismites) in central Canadian lakes

    NASA Astrophysics Data System (ADS)

    Doughty, M.; Eyles, N.; Eyles, C. H.; Wallace, K.; Boyce, J. I.

    2014-11-01

    Central Canada experiences numerous intraplate earthquakes but their recurrence and source areas remain obscure due to shortness of the instrumental and historic records. Unconsolidated fine-grained sediments in lake basins are 'natural seismographs' with the potential to record ancient earthquakes during the last 10,000 years since the retreat of the Laurentide Ice Sheet. Many lake basins are cut into bedrock and are structurally-controlled by the same Precambrian basement structures (shear zones, terrane boundaries and other lineaments) implicated as the source of ongoing mid-plate earthquake activity. A regional seismic sub-bottom profiling of lakes Gull, Muskoka, Joseph, Rousseau, Ontario, Wanapitei, Fairbanks, Vermilion, Nipissing, Georgian Bay, Mazinaw, Simcoe, Timiskaming, Kipawa, Parry Sound and Lake of Bays, encompassing a total of more than 2000 kilometres of high-resolution track line data supplemented by multibeam and sidescan sonar survey records show a consistent sub-bottom stratigraphy of relatively-thick lowermost lateglacial facies composed of interbedded semi-transparent mass flow facies (debrites, slumps) and rhythmically-laminated silty-clays. Mass flows together with cratered ('kettled') lake floors and associated deformations reflect a dynamic ice-contact glaciolacustrine environment. Exceptionally thick mass flow successions in Lake Timiskaming along the floor of the Timiskaming Graben within the seismically-active Western Quebec Seismic Zone (WQSZ), point to a higher frequency of earthquakes and slope failure during deglaciation and rapid glacio-isostatic rebound though faulting continues into the postglacial. Lateglacial faulting, diapiric deformation and slumping of coeval lateglacial sediments is observed in Parry Sound, Lake Muskoka and Lake Joseph, which are all located above prominent Precambrian terrane boundaries. Lateglacial sediments are sharply overlain by relatively-thin rhythmically-laminated and often semi

  15. Subglacial Lake McGregor, south-central Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Munro-Stasiuk, Mandy J.

    2003-08-01

    It is proposed that a lake, here named "Subglacial Lake McGregor", existed beneath the Laurentide Ice Sheet at, or near, the last glacial maximum. The lake resided in the ancient buried McGregor and Tee Pee preglacial valleys, which are now mostly filled with glacigenic deposits. The greatest thickness of sediment in the valleys is in the form of chaotically deposited lake beds that were laid down in a subaqueous environment by a number of process: gravity flow, water transport, and suspension settling. Topographic, sedimentary, and stratigraphic evidence point to a subglacial, not a proglacial, origin for the beds. During the early stages of lake existence, ice movement was significant as there are numerous sets of shear planes in the sedimentary beds. This indicates that the lake filled (lake sedimentation) and drained (shearing of the beds by overlying ice when ice contacted the bed) often. Thus, early in its history, the lake(s) was/were ephemeral. During the later stages of lake existence, the lake was relatively stable with no rapid draining or influx of sediment. Gradual drainage of the lake resulted in lowering of the ice onto the lake beds resulting in subglacial till deposition. Drainage was not a single continuous event. Rather it was characterized by multiple phases of near total drainage (till deposition), followed by water accumulation (lake sedimentation). Water accumulation events became successively less significant reflected by thinning of lake beds and thickening of till beds higher in the stratigraphic sequence. Since subglacial lake sedimentation appears to be restricted to the subglacial valleys, it is suggested that the valleys acted as a large-scale interconnected cavity system that both stored and transported water. It is also suggested that these acted as the main routes of water flow beneath the Laurentide Ice Sheet.

  16. Holocene Record Of The Cuitzeo Lake, Michoacan, Central Mexico

    NASA Astrophysics Data System (ADS)

    Israde-Alcantar, I.; Bischoff, J.; Cram, S.; Ruiz-Fernandez, C.; Barron, J.; Lozano-Garcia, S.; Ortega-Guerrero, B.; Garduño-Monroy, V. H.

    2007-05-01

    A 205 cm-long core spanning the last ca.10,000 years was taken in the western basin of Lake Cuitzeo, located in the tectonic depressions of central Mexico. Age control for the core is provided by four AMS dates on organic sediment. The uppermost 30 cm of the core appears to be highly bioturbated according to Pb210 chronologies. A time plot of mass-accumulation rates of sediment (g/cm2/kyr) shows high rates from 10,000 to 6000 yrs BP, strikingly reduced mid-Holocene rates, and increasing rates post 1000 yrs (which could be due to introduction of European ranching and agriculture). Organic and inorganic carbon (TOC. TIC), diatoms, iron and titanium concentrations were analyzed and used to infer variations in the hydrological cycle and climatic conditions. The lower part of the core (ca.8000 C14 yr B.P.) is characterized by high percents of CaCO3 (more than 35 percent) which rapidly declines to values less than 20 percent after ca. 6000 C14 yr B.P., likely reflecting reduced summer precipitation due to decline summer insolation. Coincident with this decline in percents CaCO3 there is a decline greater that two-fold sediment accumulation rates and an increase in percents TOC. Two peaks TOC are recorded at 909 and 6744 C14 yr B.P. suggesting increased precipitation. The TOC peak at 909 C14 yr B.P. may be associated with increased precipitation during the Medieval Warm Period. The middle Holocene TOC peak at 6744 C14 yr B.P. coincides with a period of increased precipitation in the Cariaco Basin of Venezuela. These changes in precipitation are similar to those recorded in lake records from Guatemala and the marine record of the Cariaco Basin and can be explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ). The upper 100 cm of the core was studied at 1 cm intervals for metals (Al, Fe, Ti, Pb, etc.) using ICPMS geochemistry. These metals show strong cycles throughout the studied interval which may reflect wet-dry cycles. A two fold

  17. Glacial lake expansion in the central Himalayas by Landsat images, 1990-2010.

    PubMed

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  18. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010

    PubMed Central

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  19. Glacial Lake Expansion in the Central Himalayas By Landsat Images, 1990-2010

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Liu, Q.; Liu, S.

    2014-12-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  20. Assessment of lake trout spawning habitat quality in central Lake Huron by submarine

    USGS Publications Warehouse

    Manny, Bruce A.; Edsall, Thomas A.

    1989-01-01

    Interstitial water quality was measured using a submersible at seven locations on Six Fathom Bank. Historically, the bank was an important lake trout spawning ground. It is currently the focus of coordinated, interagency efforts to rehabilitate lake trout in Lake Huron. Water quality, evaluated from measurements of biochemical oxygen demand, dissolved oxygen, ammonia, and hydrogen sulfide among the rocks, would not prevent lake trout eggs from hatching successfully on the bank.

  1. Glacial lakes amplify glacier recession in the central Himalaya

    NASA Astrophysics Data System (ADS)

    King, Owen; Quincey, Duncan; Carrivick, Jonathan; Rowan, Ann

    2016-04-01

    The high altitude and high latitude regions of the world are amongst those which react most intensely to climatic change. Across the Himalaya glacier mass balance is predominantly negative. The spatial and temporal complexity associated with this ice loss across different glacier clusters is poorly documented however, and our understanding of the processes driving change is limited. Here, we look at the spatial variability of glacier hypsometry and glacial mass loss from three catchments in the central Himalaya; the Dudh Koshi basin, Tama Koshi basin and an adjoining section of the Tibetan Plateau. ASTER and SETSM digital elevation models (2014/15), corrected for elevation dependant biases, co-registration errors and along or cross track tilts, are differenced from Shuttle Radar Topographic Mission (SRTM) data (2000) to yield surface lowering estimates. Landsat data and a hypsometric index (HI), a classification scheme used to group glaciers of similar hypsometry, are used to examine the distribution of glacier area with altitude in each catchment. Surface lowering rates of >3 m/yr can be detected on some glaciers, generally around the clean-ice/debris-cover boundary, where dark but thin surface deposits are likely to enhance ablation. More generally, surface lowering rates of around 1 m/yr are more pervasive, except around the terminus areas of most glaciers, emphasising the influence of a thick debris cover on ice melt. Surface lowering is only concentrated at glacier termini where glacial lakes have developed, where surface lowering rates are commonly greater than 2.5 m/yr. The three catchments show contrasting hypsometric distributions, which is likely to impact their future response to climatic changes. Glaciers of the Dudh Koshi basin store large volumes of ice at low elevation (HI > 1.5) in long, debris covered tongues, although their altitudinal range is greatest given the height of mountain peaks in the catchment. In contrast, glaciers of the Tama Koshi

  2. The 7-decade degradation of a large freshwater lake in central Yangtze River, China.

    PubMed

    Zhao, Shuqing; Fang, Jingyun; Miao, Shili; Gu, Ben; Tao, Shu; Peng, Changhui; Tang, Zhiyao

    2005-01-15

    Freshwater lakes store water for human use and agricultural irrigation and provide habitats for aquatic fauna and flora. However, a number of these lakes have been degraded by human activities at a rapid rate. Here, we used historical land cover information and remotely sensed data to explore a 7-decade (between 1930s and 1998) shrinkage and fragmentation of Dongting Lake, the second largest freshwater lake in China, located in the drainage basin of Central Yangtze River. The water surface area of Dongting Lake decreased by 49.2%, from 4955 km2 in the 1930s to 2518 km2 in 1998, with an average decrease rate of 38.1 km2/yr in the past 7 decades. The lake was also fragmented, as indicated by a decreasing mean patch size from 4.2 km2 in the 1930s to 1.7 km2 in 1998. The degradation of the lake is largely attributed to a rapidly growing human population in the lake region that led to extensive impoldering. The degradation of the lake has resulted in negative ecological consequences, such as frequent flooding, a decline of biodiversity, and extinction of some endemic species. Our results also suggest that lake restoration projects implemented in this region since the end of the 1990s will help to decrease the lake degradation. PMID:15707041

  3. Ancient ice islands in salt lakes of the Central Andes

    USGS Publications Warehouse

    Hurlbert, S.H.; Chang, Cecily C.Y.

    1984-01-01

    Massive blocks of freshwater ice and frozen sediments protrude from shallow, saline lakes in the Andes of southwestern Bolivia and northeastern Chile. These ice islands range up to 1.5 kilometers long, stand up to 7 meters above the water surface, and may extend out tens of meters and more beneath the unfrozen lake sediments. The upper surfaces of the islands are covered with dry white sediments, mostly aragonite or calcite. The ice blocks may have formed by freezing of the fresh pore water of lake sediments during the "little ice age." The largest blocks are melting rapidly because of possibly recent increases in geothermal heat flux through the lake bottom and undercutting by warm saline lake water during the summer.

  4. Diversity of extremophilic purple phototrophic bacteria in Soap Lake, a Central Washington (USA) Soda Lake.

    PubMed

    Asao, Marie; Pinkart, Holly C; Madigan, Michael T

    2011-08-01

    Culture-based and culture-independent methods were used to explore the diversity of phototrophic purple bacteria in Soap Lake, a small meromictic soda lake in the western USA. Among soda lakes, Soap Lake is unusual because it consists of distinct upper and lower water bodies of vastly different salinities, and its deep waters contain up to 175 mM sulfide. From Soap Lake water new alkaliphilic purple sulfur bacteria of the families Chromatiaceae and Ectothiorhodospiraceae were cultured, and one purple non-sulfur bacterium was isolated. Comparative sequence analysis of pufM, a gene that encodes a key photosynthetic reaction centre protein universally found in purple bacteria, was used to measure the diversity of purple bacteria in Soap Lake. Denaturing gradient gel electrophoresis and subsequent phylogenetic analyses of pufMs amplified from Soap Lake water revealed that a significant diversity of purple bacteria inhabit this soda lake. Although close relatives of several of the pufM phylotypes obtained from cultured species could also be detected in Soap Lake water, several other more divergent pufM phylotypes were also detected. It is possible that Soap Lake purple bacteria are major contributors of organic matter into the ecosystem of this lake, especially in its extensive anoxic and sulfidic deep waters. PMID:21410624

  5. Glacial Lake Musselshell: Late Wisconsin slackwater on the Laurentide ice margin in central Montana, USA

    USGS Publications Warehouse

    Davis, N.K.; Locke, W. W., III; Pierce, K.L.; Finkel, R.C.

    2006-01-01

    Cosmogenic surface exposure ages of glacial boulders deposited in ice-marginal Lake Musselshell suggest that the lake existed between 20 and 11.5 ka during the Late Wisconsin glacial stage (MIS 2), rather than during the Late Illinoian stage (MIS 6) as traditionally thought. The altitude of the highest ice-rafted boulders and the lowest passes on the modern divide indicate that glacial lake water in the Musselshell River basin reached at least 920-930 m above sea level and generally remained below 940 m. Exposures of rhythmically bedded silt and fine sand indicate that Lake Musselshell is best described as a slackwater system, in which the ice-dammed Missouri and Musselshell Rivers rose and fell progressively throughout the existence of the lake rather than establishing a lake surface with a stable elevation. The absence of varves, deltas and shorelines also implies an unstable lake. The changing volume of the lake implies that the Laurentide ice sheet was not stable at its southernmost position in central Montana. A continuous sequence of alternating slackwater lake sediment and lacustrine sheetflood deposits indicates that at least three advances of the Laurentide ice sheet occurred in central Montana between 20 and 11.5 ka. Between each advance, it appears that Lake Musselshell drained to the north and formed two outlet channels that are now occupied by extremely underfit streams. A third outlet formed when the water in Lake Musselshell fully breached the Larb Hills, resulting in the final drainage of the lake. The channel through the Larb Hills is now occupied by the Missouri River, implying that the present Missouri River channel east of the Musselshell River confluence was not created until the Late Wisconsin, possibly as late as 11.5 ka. ?? 2005 Elsevier B.V. All rights reserved.

  6. Multidisciplinary characterisation of sedimentary processes in a recent maar lake (Lake Pavin, French Massif Central) and implication for natural hazards

    NASA Astrophysics Data System (ADS)

    Chapron, E.; Albéric, P.; Jézéquel, D.; Versteeg, W.; Bourdier, J.-L.; Sitbon, J.

    2010-09-01

    Sedimentation processes occurring in the most recent maar lake of the French Massif Central (Lake Pavin) are documented for the first time based on high resolution seismic reflection and multibeam bathymetric surveys and by piston coring and radiocarbon dating on a sediment depocentre developed on a narrow sub aquatic plateau. This new data set confirms the mid Holocene age of maar lake Pavin formation at 6970±60 yrs cal BP and highlights a wide range of gravity reworking phenomena affecting the basin. In particular, a slump deposit dated between AD 580-640 remoulded both mid-Holocene lacustrine sediments, terrestrial plant debris and some volcanic material from the northern crater inner walls. Between AD 1200 and AD 1300, a large slide scar mapped at 50 m depth also affected the southern edge of the sub aquatic plateau, suggesting that these gas-rich biogenic sediments (laminated diatomite) are poorly stable. Although several triggering mechanisms can be proposed for these prehistoric sub-aquatic mass wasting deposits in Lake Pavin, we argue that such large remobilisation of gas-rich sediments may affect the gas stability in deep waters of meromictic maar lakes. This study highlights the need to further document mass wasting processes in maar lakes and their impacts on the generation of waves, favouring the development of dangerous (and potentially deadly) limnic eruptions.

  7. Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa)

    PubMed Central

    Tiodjio, Rosine E.; Sakatoku, Akihiro; Nakamura, Akihiro; Tanaka, Daisuke; Fantong, Wilson Y.; Tchakam, Kamtchueng B.; Tanyileke, Gregory; Ohba, Takeshi; Hell, Victor J.; Kusakabe, Minoru; Nakamura, Shogo; Ueda, Akira

    2014-01-01

    The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial sequences suggest a close correspondence of the potential microbial functions to the physico-chemical pattern of the lake. We also obtained evidence of a rich microbial diversity likely to include several novel microorganisms of environmental importance in the large unexplored microbial reservoir of Lake Nyos. PMID:25141868

  8. Geologic controls on the formation of lakes in north-central Florida

    USGS Publications Warehouse

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.

    1998-01-01

    Fluid exchange between surficial waters and groundwater, as well as the processes that control this exchange, are of critical concern to water management districts and planners. Digital high-resolution seismic systems were used to collect geophysical data from 30 lakes of north-central Florida. Although using seismic profile data in the past has been less than successful, the use of digital technology has increased the potential for success. Seismic profiles collected from the lakes of north-central Florida have shown the potential application of these techniques in understanding the formation of individual lakes. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: 1) karstification or dissolution of the underlying limestone, and 2) me collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Lake size and shape are a factor of the thickness of overburden and size of the collapse or subsidence and/or clustering of depressions allowing for lake development. Lake development is through progressive sequence stages to maturity that can be delineated into geomorphic types. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young) - the open to partially filled collapse structures typically associated with sink holes; (2) transitional phase (middle age) - the sinkhole is plugged as the voids within the collapse are filled with sediment, periodic reactivation may occur; (3) baselevel phase (mature) - active sinkholes are progressively plugged by the continual erosion of material into the basin, and eventually sediment fills the basins; and (4) polje (drowned prairie) - broad flat-bottom basins located within the epiphreatic zone that are inundated at high

  9. Lake-levels, vegetation and climate in Central Asia during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amosov, Mikhail

    2014-05-01

    Central Asian region is bounded in the east corner of the Greater Khingan Range and the Loess Plateau, and to the west - the Caspian Sea. This representation of region boundaries is based on classical works of A.Humboldt and V.Obruchev. Three typical features of Central Asia nature are: climate aridity, extensive inland drainage basins with numerous lakes and mountain systems with developed glaciation. Nowadays the extensive data is accumulated about lake-levels during the Last Glacial Maximum (LGM) in Central Asia. Data compilation on 20 depressions, where lakes exist now or where they existed during LGM, shows that most of them had usually higher lake-level than at present time. This regularity could be mentioned for the biggest lakes (the Aral Sea, the Balkhash, the Ysyk-Kol etc.) and for small ones that located in the mountains (Tien Shan, Pamir and Tibet). All of these lake basins get the precipitation due to westerlies. On the other hand lakes, which are located in region's east rimland (Lake Qinghai and lakes in Inner Mongolia) and get the precipitation due to summer East Asian monsoons, do not comply with the proposed regularity. During LGM these lake-levels were lower than nowadays. Another exception is Lake Manas, its lake-level was also lowered. Lake Manas is situated at the bottom of Junggar Basin. There are many small rivers, which come from the ranges and suffer the violent fluctuation in the position of its lower channel. It is possible to assume that some of its runoff did not get to Lake Manas during LGM. Mentioned facts suggest that levels of the most Central Asian lakes were higher during LGM comparing to their current situation. However, at that period vegetation was more xerophytic than now. Pollen data confirm this information for Tibet, Pamir and Tien Shan. Climate aridization of Central Asia can be proved by data about the intensity of loess accumulation during LGM. This evidence received for the east part of region (the Loess Plateau) and

  10. The interdependence of lake ice and climate in central North America

    NASA Technical Reports Server (NTRS)

    Jelacic, A. J. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. This investigation is to identify any correlations between the freeze/ thaw cycles of lakes and regional weather variations. ERTS-1 imagery of central Canada and north central United States is examined on a seasonal basis. The ice conditions of certain major study lakes are noted and recorded on magnetic tape, from which the movement of a freeze/thaw transition zone may be deduced. Weather maps and tables are used to establish any obvious correlations. The process of selecting major study lakes is discussed, and a complete lake directory is presented. Various routines of the software support library are described, accompanied by output samples. Procedures used for ERTS imagery processing are presented along with the data analysis plan. Application of these procedures to selected ERTS imagery has demonstrated their utility. Preliminary results show that the freeze/thaw transition zone can be monitored from ERTS.

  11. Depositional environments of Late Triassic lake, east-central New Mexico

    SciTech Connect

    Hester, P.M. )

    1989-09-01

    The Redonda Member of the Chinle Formation represents deposition in a large, polymictic lake during the Late Triassic (Norian) in east-central New Mexico. This study documents and defines an extensive lacustrine system situated in western Pangaea which was influenced by both tectonic and climatic events. Areal extent of the lake may have been as much as 5,000 km{sup 2}.

  12. Sediment Characteristics of a High-Mountain Lake in South Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ataselim, Zeynep; Leroy, Suzanne; Gurbuz, Alper; Gurbuz, Esra; Onur Yucel, Tahsin; Yedek, Ozgur; Koc, Koray

    2016-04-01

    Lake Dipsiz is at the top of Mount Erenler, located 55 km west of Konya city in Central Anatolia, Turkey. Mount Erenler is the largest part of Central Anatolia Volcanic Province and consists of Miocene-Pliocene calc-alkaline lavas together with pyroclastic rocks and covers an area approximately 2000 km2. The peak of the Mount Erenler is at 1900 m while Lake Dipsiz is located at 1600 m altitude. Despite the small surface area (0.33 km2), the depth is relatively high (16 m). The drainage area of the lake is 8 km2. Although the topography of the lake points out to glacier presence, it formed as a landslide-dammed lake. Lake Dipsiz geographically is between mountainous Mediterranean region and Central Anatolia plateau. Climatically, the lake is in a transition zone between Taurids and Central Anatolia. In this study, we investigated sedimentation in a high altitude lake at a climatic transition. For this purpose, three cores (D1, D2 and D3) which are 50 cm length are taken with a hand corer from the coastline of the lake. D1 and D2 cores are sampled in every 2 cm and D3 core is samples in every 1 cm. Geochemical, total organic carbon, magnetic susceptibility and total carbonate analyses were performed on all sample sets. Lake sediments are brownish/green clay and silt in composition. Despite the proximity of the sediment source, no sand or more coarse grains were observed in the sedimentary filling. Organic matter content is between 2 - 28 %. According to one 14C date, the sequence indicates a Late Holocene age. δ13C isotope values are between -28.9 and -25.3 ‰ and it means that the sediment composed of terrestrial C3 organic matter. The detrital input in the lake has increased in the last 1000 years. Sedimentation rate was low between 3000 and cal. 1700 BP to the contrary of significant increasing from 250 BP to nowadays. Our data show that the sedimentation in this high altitude lake is more sensitive to other environmental conditions rather than climate.

  13. Escherichia Coli monitoring in the Spring Mill Lake watershed in south-central Indiana

    USGS Publications Warehouse

    Hasenmueller, N.R.; Comer, J.B.; Zamani, D.D.

    2003-01-01

    The escherichila (E) coli monitoring in the Spring Mill lake watershed in South-Central Indiana was presented. Water flowing from the springs in the park were analyzed to determine potential nonpoint-source contaminants entering Spring Mill Lake. E. Coli concentrations from the monitoring sites within the Spring Mill Lake watersheds varied greatly from concentrations below the detection limit, <1 most probable number (MPN) of organisms per 100 milliliters (mL) of water, to 980,000 MPN/100 mL. E. coli appears to be a potential health risk at several of the springs within the park, particularly at the Rubble site.

  14. High lake levels at Siling Co, central Tibet, during MIS 5e - 6

    NASA Astrophysics Data System (ADS)

    Shi, X.; Kirby, E.; Furlong, K. P.; Meng, K.; Marrero, S.; Wang, E.; Asmerom, Y.; Robinson, R. A.; Polyak, V. J.; Phillips, F. M.

    2013-12-01

    Flights of well-preserved paleoshorelines around lakes atop the Tibetan plateau reflect paleoclimatic conditions in this highest region in the world and provide important constraints on the history of hydrologic change. Regionally, previous studies have shown that many Tibetan lakes achieved highstand levels during the Late Pleistocene - Early Holocene transition. Whether similar extents were reached in the geologic past, however, remains uncertain due to sparse dating of ancient shoreline features. Here we focus on exposures of relict, high shorelines around Siling Co, in central Tibet. Previous study of a well-preserved sequence of shorelines suggest that lake levels during the Late Pleistocene - Early Holocene reached ~ 64 m above present lake level (referenced to 1976). We determined ages of even higher shorelines (up to ~76 m above present lake level) using a combination of U-series dating of tufa deposits, 36Cl depth profiles of beach ridges, and optically stimulated luminescence (OSL) of beach sand. We obtained a 36Cl depth profile age of 113 ka from a tombolo in central peninsula of Siling Co, 66 m above present level; an OSL age from this deposit, however, yielded an age of ~ 43 ka and probably reflects saturation of the OSL signal. U-Th ages of tufa deposits range from 145 - 159 ka and place minimum constraints on lake levels during MIS 6 of 65 - 76 m above present level. Finally, an even older 36Cl age of 178 ka was obtained from a high spit shoreline (~ 62 m above present level). Collectively, our results provide evidence that lake levels at Siling Co reached or exceeded the Early Holocene highstand during the MIS 5e (Eemian) interglacial, suggesting that paleohydrologic conditions were similar during these time periods. Moreover, the preservation of higher shorelines developed during MIS 6 suggest the presence of an even larger lake during the penultimate glacial stage. Comparison of our results with available δ18O records of an ice core in northern

  15. Composition, Diversity, and Stability of Microbial Assemblages in Seasonal Lake Ice, Miquelon Lake, Central Alberta

    PubMed Central

    Bramucci, Anna; Han, Sukkyun; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2013-01-01

    The most familiar icy environments, seasonal lake and stream ice, have received little microbiological study. Bacteria and Eukarya dominated the microbial assemblage within the seasonal ice of Miquelon Lake, a shallow saline lake in Alberta, Canada. The bacterial assemblages were moderately diverse and did not vary with either ice depth or time. The closest relatives of the bacterial sequences from the ice included Actinobacteria, Bacteroidetes, Proteobacteria, Verrucomicrobia, and Cyanobacteria. The eukaryotic assemblages were less conserved and had very low diversity. Green algae relatives dominated the eukaryotic gene sequences; however, a copepod and cercozoan were also identified, possibly indicating the presence of complete microbial loop. The persistence of a chlorophyll a peak at 25–30 cm below the ice surface, despite ice migration and brine flushing, indicated possible biological activity within the ice. This is the first study of the composition, diversity, and stability of seasonal lake ice. PMID:24832796

  16. Sublake geologic structure from high-resolution seismic-reflection data from four sinkhole lakes in the Lake Wales Ridge, Central Florida

    USGS Publications Warehouse

    Tihansky, A.B.; Arthur, J.D.; DeWitt, D.W.

    1996-01-01

    Seismic-reflection profiles from Lake Wales, Blue Lake, Lake Letta, and Lake Apthorp located along the Lake Wales Ridge in central Florida provide local detail within the regional hydrogeologic framework as described by litho- and hydrostratigraphic cross sections. Lakes located with the mantled karst region have long been considered to be sinkhole lakes, originating from subsidence activity. High-resolution seismic- reflection data confirm this origin for these four lakes. The geologic framework of the Lake Wales Ridge has proven to be a suitable geologic setting for continuous high-resolution seismic-reflection profiling in lakes; however, the nature of the lake-bottom sediments largely controls the quality of the seismic data. In lakes with significant organic-rich bottom deposits, interpretable record was limited to areas where organic deposits were minimal. In lakes with clean, sandy bottoms, the seismic-reflection methods were highly successful in obtaining data that can be correlated with sublake subsidence features. These techniques are useful in examining sublake geology and providing a better understanding of how confining units are affected by subsidence in a region where their continuity is of significant importance to local lake hydrology. Although local geologic control around each lake generally corresponds to the regional geologic framework, local deviations from regional geologic trends occur in sublake areas affected by subsidence activity. Each of the four lakes examined represents a unique set of geologic controls and provides some degree of structural evidence of subsidence activity. Sublake geologic structures identified include: (1) marginal lake sediments dipping into bathymetric lows, (2) lateral discontinuity of confining units including sags and breaches, (3) the disruption and reworking of overlying unconsolidated siliciclastic sediments as they subside into the underlying irregular limestone surface, and (4) sublake regions where

  17. Anthropogenic changes in Lake Korttajärvi, central Finland, during the last 400 years

    NASA Astrophysics Data System (ADS)

    Kehusmaa, Karoliina; Tammelin, Mira; Saarinen, Timo; Varjo, Eila

    2016-04-01

    Many European lakes have been heavily affected by human activity. These human-induced changes often relate to the post-1850s industrialization and modern agriculture. Lake sediments record these changes as variation in the physical and chemical properties of the sediment and in the species assemblages of the biological remains that are preserved in the sediment. In addition, anoxic conditions at the bottom of deep lake basins allow the formation of varved lake sediments. These can be inexpensively and rapidly used for dating the changes recorded in the sediment. Therefore, varved lakes are excellent archives for examining environmental change and the effect of humans on lakes. In this study, we investigated the human-induced changes in the varved Lake Korttajärvi in central Finland during the last 400 years. The sediment core was dated by varve counting to the year 1600 CE and divided into subsamples covering 10 years. From each subsample, we determined the sediment total phosphorus (S-TP), identified diatoms, examined their species turnover with multivariate analysis, and reconstructed the diatom-inferred total phosphorus (DI-TP) values of the past lake water. Three different phosphorus fractions will also be determined from the subsamples. In addition, the magnetic susceptibility (MS) of the whole core was measured prior to subsampling. According to our preliminary results, a constant diatom species turnover in Lake Korttajärvi started in the 1840s. However, the most notable anthropogenic deterioration phase was from the 1920s to the 1970s. During that time period catchment erosion and DI-TP increased, planktonic diatoms became more abundant in relation to benthic diatoms, and S-TP decreased. In the 1970s, municipal waste water treatment reduced nutrient loading into the lake. This started a recovery phase during which an opposite trend in these parameters can be observed. Currently, the diatom assemblage in Lake Korttajärvi resembles those of the early 20th

  18. Mining, metallurgy and the historical origin of mercury pollution in lakes and watercourses in Central Sweden.

    PubMed

    Bindler, Richard; Yu, Ruilian; Hansson, Sophia; Classen, Neele; Karlsson, Jon

    2012-08-01

    In Central Sweden an estimated 80% of the lakes contain fish exceeding health guidelines for mercury. This area overlaps extensively with the Bergslagen ore region, where intensive mining of iron ores and massive sulfide ores occurred over the past millennium. Although only a few mines still operate today, thousands of mineral occurrences and mining sites are documented in the region. Here, we present data on long-term mercury pollution in 16 sediment records from 15 lakes, which indicate that direct release of mercury to lakes and watercourses was already significant prior to industrialization (lakes show increases in mercury from 3-fold-equivalent to the enrichment factor in many remote lakes today-to as much as 60-fold already during the period AD 1500-1800, with the highest values in the three lakes most closely connected to major mines. Although the timing and magnitude of the historical increases in mercury are heterogeneous among lakes, the data provide unambiguous evidence for an incidental release of mercury along with other mining metals to lakes and watercourses, which suggests that the present-day problem of elevated mercury concentrations in the Bergslagen region can trace its roots back to historical mining. PMID:22731612

  19. Exposure and effects of perfluoroalkyl compounds on tree swallows nesting at Lake Johanna in east central Minnesota, USA

    USGS Publications Warehouse

    Custer, Christine M.; Custer, Thomas W.; Schoenfuss, Heiko L.; Poganski, Beth H.; Solem, Laura

    2012-01-01

    Tree swallow (Tachycineta bicolor) samples were collected at a reference lake and a nearby lake (Lake Johanna) in east central Minnesota, USA contaminated with perfluorinated carboxylic and sulfonic acids. Tissues were analyzed for a suite of 13 perfluoroalkyl compounds (PFCs) to quantify exposure and to determine if there was an association between egg concentrations of PFCs and reproductive success of tree swallows. Concentrations of perfluoroocatane sulfonate (PFOS) were elevated in all tree swallow tissues from Lake Johanna compared to tissues collected at the reference lake. Other PFCs, except for two, were elevated in blood plasma at Lake Johanna compared to the reference lake. PFOS was the dominant PFC (>75%) at Lake Johanna, but accounted for <50% of total PFCs at the reference lake. There was a negative association between concentrations of PFOS in eggs and hatching success. Reduced hatching success was associated with PFOS levels as low as 150 ng/g wet weight.

  20. Exposure and effects of perfluoroalkyl compounds on tree swallows nesting at Lake Johanna in east central Minnesota, USA.

    PubMed

    Custer, Christine M; Custer, Thomas W; Schoenfuss, Heiko L; Poganski, Beth H; Solem, Laura

    2012-07-01

    Tree swallow (Tachycineta bicolor) samples were collected at a reference lake and a nearby lake (Lake Johanna) in east central Minnesota, USA contaminated with perfluorinated carboxylic and sulfonic acids. Tissues were analyzed for a suite of 13 perfluoroalkyl compounds (PFCs) to quantify exposure and to determine if there was an association between egg concentrations of PFCs and reproductive success of tree swallows. Concentrations of perfluoroocatane sulfonate (PFOS) were elevated in all tree swallow tissues from Lake Johanna compared to tissues collected at the reference lake. Other PFCs, except for two, were elevated in blood plasma at Lake Johanna compared to the reference lake. PFOS was the dominant PFC (>75%) at Lake Johanna, but accounted for <50% of total PFCs at the reference lake. There was a negative association between concentrations of PFOS in eggs and hatching success. Reduced hatching success was associated with PFOS levels as low as 150ng/g wet weight. PMID:21296656

  1. Late Glacial and Holocene sedimentary evolution of Czechowskie Lake (Eastern Pomerania, North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jarosław; Błaszkiewicz, Mirosław; Kramkowski, Mateusz; Noryśkiewicz, Agnieszka M.; Słowiński, Michał; Tyszkowski, Sebastian; Brauer, Achim; Ott, Florian

    2015-04-01

    Czechowskie Lake is located in north-central Poland in Tuchola Forest, about 100 kilometers SW away from Gdańsk. In the deepest parts of the lake there are preserved laminated sediments with an excellent Holocene climatic record. The lake has the area of 76,6 ha. Actual water level is at 109,9 m a.s.l. The average depth is 9,59 m, maximal 32 m. It occupies a large subglacial channel, reproduced within the glacifluvial sediments of the last glaciation. The lake has a history reaching back to Pommeranian phase which is proved by analysis of sedimentary succesions in the vicinity of present-day waterbody. Primarily it come to existence as an very variable ice dammed lake but after dead ice and permafrost desintegration it changed into a stable lake. In the terrestrialised part oft the lake and in its litoral zone there were curried out numerous boreholes within limnic and slope sediments. They have been analysed in respect to lithology and structure. Some of them were also investigated palynologically which along with radiocarbon datings allowed to reconstruct major phases of the water level fluctuations. The maximum infilling with the limnic and telmatic sediments reaches over 12 m. In the bottom of the lake there is a marked presence of many overdeepenings with the diameter of dozen or several dozen meters and the depth of up to 10 m with numerous, distinct throughs between them. They favoured the preservation of the lamination in the deepest parts of the lake due to waves hampering and stopping of the density circulation in the lake waterbody. The analysis of limnic sediments revealed considerable spatial and temporal variability mainly in dependance of the area of the water body and water level in time of deposition. In the lake are recorded three distinct phases of lake level decrease. The sedimentary evolution in the isolated minor lake basins showed gradual decrease of mineral and organic deposition in favour for carbonate one although in places separated by

  2. The relative influences of climate and volcanic activity on Holocene lake development inferred from a mountain lake in central Kamchatka

    NASA Astrophysics Data System (ADS)

    Self, A. E.; Klimaschewski, A.; Solovieva, N.; Jones, V. J.; Andrén, E.; Andreev, A. A.; Hammarlund, D.; Brooks, S. J.

    2015-11-01

    A sediment sequence was taken from a closed, high altitude lake (informal name Olive-backed Lake) in the central mountain range of Kamchatka, in the Russian Far East. The sequence was dated by radiocarbon and tephrochronology and used for multi-proxy analyses (chironomids, pollen, diatoms). Although the evolution of Beringian climate through the Holocene is primarily driven by global forcing mechanisms, regional controls, such as volcanic activity or vegetation dynamics, lead to a spatial heterogeneous response. This study aims to reconstruct past changes in the aquatic and terrestrial ecosystems and to separate the climate-driven response from a response to regional or localised environmental change. Radiocarbon dates from plant macrophytes gave a basal date of 7800 cal yr BP. Coring terminated in a tephra layer, so sedimentation at the lake started prior to this date, possibly in the early Holocene following local glacier retreat. Initially the catchment vegetation was dominated by Betula and Alnus woodland with a mosaic of open, wet, aquatic and semi-aquatic habitats. Between 7800 and 6000 cal yr BP the diatom-inferred lake water was pH 4.4-5.3 and chironomid and diatom assemblages in the lake were initially dominated by a small number of acidophilic/acid tolerant taxa. The frequency of Pinus pumila (Siberian dwarf pine) pollen increased from 5000 cal yr BP and threshold analysis indicates that P. pumila arrived in the catchment between 4200 and 3000 cal yr BP. Its range expansion was probably mediated by strengthening of the Aleutian Low pressure system and increased winter snowfall. The diatom-inferred pH reconstructions show that after an initial period of low pH, pH gradually increased from 5500 cal yr BP to pH 5.8 at 1500 cal yr BP. This trend of increasing pH through the Holocene is unusual in lake records, but the initially low pH may have resulted directly or indirectly from intense regional volcanic activity during the mid-Holocene. The chironomid

  3. Water Quality and Evaluation of Pesticides in Lakes in the Ridge Citrus Region of Central Florida

    USGS Publications Warehouse

    Choquette, Anne F.; Kroening, Sharon E.

    2009-01-01

    Water chemistry, including major inorganic constituents, nutrients, and pesticide compounds, was compared between seven lakes surrounded by citrus agriculture and an undeveloped lake on the Lake Wales Ridge (herein referred to as the Ridge) in central Florida. The region has been recognized for its vulnerability to the leaching of agricultural chemicals into the subsurface due to factors including soils, climate, and land use. About 40 percent of Florida's citrus cultivation occurs in 'ridge citrus' areas characterized by sandy well drained soils, with the remainder in 'flatwoods citrus' characterized by high water tables and poorly drained soils. The lakes on the Ridge are typically flow-through lakes that exchange water with adjacent and underlying aquifer systems. This study is the first to evaluate the occurrence of pesticides in lakes on the Ridge, and also represents one of the first monitoring efforts nationally to focus on regional-scale assessment of current-use pesticides in small- to moderate-sized lakes (5 to 393 acres). The samples were collected between December 2003 and September 2005. The lakes in citrus areas contained elevated concentrations of major inorganic constituents (including alkalinity, total dissolved solids, calcium, magnesium, sodium, potassium, chloride, and sulfate), total nitrogen, pH, and pesticides compared to the undeveloped lake. Nitrate (as N) and total nitrogen concentrations were typically elevated in the citrus lakes, with maximum values of 4.70 and 5.19 mg/L (milligrams per liter), respectively. Elevated concentrations of potassium, nitrate, and other inorganic constituents in the citrus lakes likely reflect inputs from the surficial ground-water system that originated predominantly from agricultural fertilizers, soil amendments, and inorganic pesticides. A total of 20 pesticide compounds were detected in the lakes, of which 12 compounds exceeded the standardized reporting level of 0.06 ug/L (microgram per liter). Those

  4. Magnetic and gravity studies of Mono Lake, east-central, California

    USGS Publications Warehouse

    Athens, Noah D.; Ponce, David A.; Jayko, Angela S.; Miller, Matt; McEvoy, Bobby; Marcaida, Mae; Mangan, Margaret T.; Wilkinson, Stuart K.; McClain, James S.; Chuchel, Bruce A.; Denton, Kevin M.

    2014-01-01

    From August 26 to September 5, 2011, the U.S. Geological Survey (USGS) collected more than 600 line-kilometers of shipborne magnetic data on Mono Lake, 20 line-kilometers of ground magnetic data on Paoha Island, 50 gravity stations on Paoha and Negit Islands, and 28 rock samples on Paoha and Negit Islands, in east-central California. Magnetic and gravity investigations were undertaken in Mono Lake to study regional crustal structures and to aid in understanding the geologic framework, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Furthermore, shipborne magnetic data illuminate local structures in the upper crust beneath Mono Lake where geologic exposure is absent. Magnetic and gravity methods, which sense contrasting physical properties of the subsurface, are ideal for studying Mono Lake. Exposed rock units surrounding Mono Lake consist mainly of Quaternary alluvium, lacustrine sediment, aeolian deposits, basalt, and Paleozoic granitic and metasedimentary rocks (Bailey, 1989). At Black Point, on the northwest shore of Mono Lake, there is a mafic cinder cone that was produced by a subaqueous eruption around 13.3 ka. Within Mono Lake there are several small dacite cinder cones and flows, forming Negit Island and part of Paoha Island, which also host deposits of Quaternary lacustrine sediments. The typical density and magnetic properties of young volcanic rocks contrast with those of the lacustrine sediment, enabling us to map their subsurface extent.

  5. Tracking the hydro-climatic signal from lake to sediment: A field study from central Turkey

    NASA Astrophysics Data System (ADS)

    Dean, Jonathan R.; Eastwood, Warren J.; Roberts, Neil; Jones, Matthew D.; Yiğitbaşıoğlu, Hakan; Allcock, Samantha L.; Woodbridge, Jessie; Metcalfe, Sarah E.; Leng, Melanie J.

    2015-10-01

    Palaeo-hydrological interpretations of lake sediment proxies can benefit from a robust understanding of the modern lake environment. In this study, we use Nar Gölü, a non-outlet, monomictic maar lake in central Turkey, as a field site for a natural experiment using observations and measurements over a 17-year monitoring period (1997-2014). We compare lake water and sediment trap data to isotopic, chemical and biotic proxies preserved in its varved sediments. Nar Gölü underwent a 3 m lake-level fall between 2000 and 2010. δ18Olakewater is correlated with this lake-level fall, responding to the change in water balance. Endogenic carbonate is shown to precipitate in isotopic equilibrium with lake water and there is a strong relationship between δ18Olakewater and δ18Ocarbonate, which suggests the water balance signal is accurately recorded in the sediment isotope record. Over the same period, sedimentary diatom assemblages also responded, and conductivity inferred from diatoms showed a rise. Shifts in carbonate mineralogy and elemental chemistry in the sediment record through this decade were also recorded. Intra-annual changes in δ18Olakewater and lake water chemistry are used to demonstrate the seasonal variability of the system and the influence this may have on the interpretation of δ18Ocarbonate. We use these relationships to help interpret the sedimentary record of changing lake hydrology over the last 1725 years. Nar Gölü has provided an opportunity to test critically the chain of connection from present to past, and its sedimentary record offers an archive of decadal- to centennial-scale hydro-climatic change.

  6. Late Pleistocene/Holocene paleoclimate reconstruction and eruptive history of Central American volcanoes from lake bottom sediments of Lake Nicaragua

    NASA Astrophysics Data System (ADS)

    Wulf, S.; Dull, R. A.; Mann, P.; McIntosh, K. D.; Gardner, J. E.

    2007-12-01

    A shallow coring program in Lake Nicaragua was completed in May/June 2006 by the University of Texas (UT Department of Geography and UT Institute for Geophysics). A total of 35 sediment cores with lengths ranging between 12 cm and 100 cm along with five longer cores were extracted from the lake using a gravity corer and a modified manual square rod piston corer, respectively. Analyses of lake sediments have the following objectives: 1) to correlate the geophysical results with the core data to provide a stratigraphic framework for the shallow lake sediments; 2) to constrain past climate variability in this rather poorly investigated area; and 3) to establish a time series of explosive volcanic activity based on the identification and dating of tephra layers in the cores. Initial measurements of magnetic susceptibility, dry density, loss on ignition and XRF scanning indicated a dominance of fine-grained homogeneous diatomaceous sediments cover most of the lake floor. Increasing values in magnetic susceptibility in the upper part of several short cores most likely reflect increased erosion caused by land-use changes during the Spanish colonial period (1522-1822). Results on the two longest cores from the northeastern (355 cm) and southwestern (478 cm) parts of the lake reveal complete Holocene paleoclimate records in both areas that are comparable to other terrestrial and marine records in the Central and South- American tropics (i.e. Cariaco Basin). A lithologic change from homogeneous gyttia (diatomaceous mud) to blue- grayish waxy clay at the bottom of these records marks the Late Pleistocene-Holocene transition as indicated by a radiocarbon dating on plant remains. The latter dense clay forms a distinctive stratigraphic marker in the lake basin. Tephra layers to date were detected in most gravity cores recovered west of Ometepe Island (Volcan Concepcion), and in long records in the northeastern basin (San Antonio Tephra, Masaya volcano, ca. 7,400 interpolated cal

  7. Human Impact on Biogeochemical Cycles and Deposition Dynamics in Karstic Lakes: El Tobar Lake Record (Central Iberian Range, Spain)

    NASA Astrophysics Data System (ADS)

    Barreiro-Lostres, F.; Moreno-Caballud, A.; Giralt, S.; Hillman, A. L.; Brown, E. T.; Abbott, M. B.; Valero-Garces, B. L.

    2014-12-01

    Karstic lakes in the Iberian Range (Central Spain) provide a unique opportunity to test the human impact in the watersheds and the aquatic environments during historical times. We reconstruct the depositional evolution and the changes in biogeochemical cycles of El Tobar karstic lake, evaluating the response and the resilience of this Mediterranean ecosystem to both anthropogenic impacts and climate forcing during the last 1000 years. Lake El Tobar (40°32'N, 3°56'W; 1200 m a.s.l.; see Figure), 16 ha surface area, 20 m max. depth and permanent meromictic conditions, has a relatively large watershed (1080 ha). Five 8 m long sediment cores and short gravity cores where recovered, imaged, logged with a Geotek, described and sampled for geochemical analyses (elemental TOC, TIC, TN, TS), XRF scanner and ICP-MS, and dated (137Cs and 10 14C assays). The record is a combination of: i) laminated dark silts with terrestrial remains and diatoms and ii) massive to banded light silts (mm to cm -thick layers) interpreted as flood deposits. Sediments, TOC, and Br/Ti and Sr/Ca ratios identify four periods of increased sediment delivery occurred about 1500, 1800, 1850 and 1900 AD, coinciding with large land uses changes of regional relevance such as land clearing and increased population. Two main hydrological changes are clearly recorded in El Tobar sequence. The first one, marked by a sharp decrease in Mg, Ca and Si concentrations, took place about 1200 AD, and during a period of increasing lake level, which shifted from shallower to deeper facies and from carbonatic to clastic and organic-rich deposition. This change was likely related to increased water availability synchronous to the transition from the Medieval Climate Anomaly to the Little Ice Age. The second one was a canal construction in 1967 AD when a nearby reservoir provided fresh water influx to the lake, and resulted in stronger meromictic conditions in the system after canal construction, which is marked by lower

  8. CO2 emission from Costa Rica and Nicaragua volcanic lakes, Central America

    NASA Astrophysics Data System (ADS)

    Padilla, G.; Nolasco, D.; Ibarra, M.; Chavarría, D.; Alvarez, J.; Barrancos, J.; Rodriguez, F.; Padron, E.; Melian Rodriguez, G.; Hernandez Perez, P. A.; Perez, N.; Muñoz, A.

    2010-12-01

    Several volcanoes along the Central America Volcanic Arc (CAVA), which extends along 1.100 km from Guatemala to Panama, contain caldera or crater lakes. Diffuse surface CO2 degassing rate is a useful geochemical tool for volcano monitoring not only at the air-soil interphase of volcanic systems but also at the air-water boundary in lake-filled calderas and crater lakes. Studies of diffuse CO2 degassing rate in volcanic lakes can help to volcanic surveillance programs and to improve our knowledge on the global CO2 emission from volcanic lakes, which is actually estimated about 136 Mt year-1 (Pérez et al., 2010). The aim of this study is to evaluate diffuse CO2 emission rate from several Costa Rican (Botos, Hule and Laguna Río Cuarto) and Nicaragua volcanic lakes (Nejapa and Apoyeque). In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of the accumulation chamber method with a modified floating device. CO2 efflux maps were constructed using sequential Gaussian simulations (sGs) to quantify the total CO2 emission from each volcanic lake. CO2 efflux measurements from the lake filled Botos crater ranged from negligible values to 13.3 g m-2 d-1, while for Hule and Río Cuarto, these values ranged from 93.0 to 158.3 g m-2 d-1 and 71.9 and 91.7 g m-2 d-1, respectively. While for two crater lakes studied in Nicaragua, Apoyeque and Nejapa, CO2 values ranged from negligible to 2784.4 g m-2 d-1 and 9.9 to 388.9 g m-2 d-1, respectively. The total output of diffuse CO2 emission rate of these volcanic lakes were 0.8 ± 0.4 t d-1 from Botos, 100 ± 2 t d-1 from Hule, 31.4 ± 0.3 t d-1 from Río Cuarto, 211 ± 13 t d-1 from Apoyeque and 5.8 ± 0.5 t d-1 from Nejapa. The Botos crater lake showed a diffuse CO2 emission output per unit of area of 7.7 t d-1 km-2. While Nejapa crater lake showed 28.4 t d-1 km-2, the Laguna Río Cuarto and Apoyeque volcanic lakes showed similar diffuse CO2 emission output per unit of area (68 and

  9. Size, distribution and evolution of thermokarst lakes in Central Yakutia, Russia

    NASA Astrophysics Data System (ADS)

    Ulrich, M.; Iijima, Y.; PARK, H.; Fedorov, A. N.

    2015-12-01

    The permafrost landscape of Central Yakutia is subject to rapid modifications as a result of intensive land use, extreme weather, and the current global warming. With regard to the predicted increase in precipitation and temperature due to climate change, quantitative knowledge of the small-scale variability of active thermokarst processes is required. Here, we analyzed size and frequency distribution of lakes >0.1ha on different geomorphological ice-rich permafrost terraces east of Yakutsk using Landsat 8 data and we mapped the change of thermokarst and alas lakes since 1944 at the Yukechi study site using historical airborne and current satellite data and analyzed growth rates and thaw subsidence. Generally, larger lakes in higher frequency are dominating lower and younger terraces, while higher and older terraces are dominated by smaller lakes. In particular, smaller lakes in less density are distributed on older and more ice-rich terraces while the younger and less ice-rich terraces are characterized by highest lake densities and larger lakes. Remote sensing analysis at the Yukechi study site indicate that lake-level changes of residual alas lakes during the past 70 years were mainly affected by the winter precipitation and the annual water balance. In the meanwhile, extensive agricultural use in the post-war period led to the disturbance of the thermal and hydrological balance of the permafrost and results in rapid and sustained growth of young thermokarst lakes on undegraded ice-rich permafrost deposits. Climatic parameters, however, are affecting only growing rates within certain time periods. The mean growth rate of all mapped thermokarst lakes at Yukechi is 0.8 ±0.6 m a-1, with a mean thaw subsidence of 7.0 ±1.6 cm a-1. Our results indicate that topography, geomorphology, and surficial cryolithology are important controlling factors on the distribution of lakes. Furthermore, thermokarst activity is influenced by climatic parameters but it is accelerated

  10. Stable carbon and nitrogen isotopes and amino acids in Holocene sediments of Lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, Philip; Gaye, Birgit; Wiesner, Martin; Basavaiah, Nathani; Prasad, Sushma; Stebich, Martina; Anoop, Ambili; Riedel, Nils

    2013-04-01

    Investigations on surface sediments and a sediment core from Lake Lonar in central India were carried out within the framework of the HIMPAC (Himalaya: Modern and Past Climate) programme. The aim was to understand recent productivity, sedimentation, and degradation processes and to reconstruct variations in Holocene lake conditions on the basis of biogeochemical analysis on a 10 m long sediment core retrieved from the centre of Lake Lonar. Located in India's core monsoon zone, Lake Lonar offers valuable information about the climate development of the whole region. The lake is situated at the floor of a meteorite impact structure on the Deccan plateau basalt. The modern lake is characterised by brackish water, high alkalinity, severe eutrophication, and bottom water anoxia. The lake is about 6 m deep and fed by rainfall during the SW monsoon season and three perennial streams. Since no out-flowing stream is present and no seepage loss occurs, the lake level is highly sensitive to the balance of precipitation and evaporation. Here we present C/N, carbon and nitrogen isotope, and amino acid data of bulk organic matter from modern lake and Holocene core sediments. Modern conditions are mainly related to human activity which started to have persistent influence on the biological and chemical lake properties at ~1200 cal a BP. The distribution of δ13C in the modern sediments is driven by the ratio between terrestrial and aquatic organic matter, while δ15N seems to be influenced by redox conditions at the sediment-water-interface with elevated values at shallow oxic stations. Differences in the amino acid assemblages of oxic and anoxic surface sediment samples were used to calculate an Ox/Anox ratio indicating the redox conditions during organic matter degradation. The onset of the monsoon reconstructed from the sediment core occurred at ca. 11450 cal a BP. The early Holocene core sediments are characterised by low sedimentation rate, low aquatic productivity, and

  11. Sedimentary Evidence of Environmental Degradation in Sanliqi Lake, Daye City (A Typical Mining City, Central China).

    PubMed

    Zeng, Linghan; Ning, Dongliang; Xu, Lei; Mao, Xin; Chen, Xu

    2015-09-01

    To reconstruct the history of environmental degradation in Sanliqi Lake (Daye City, central China), multiple proxies were analyzed in a sedimentary core which was dated using (137)Cs and spheroidal carbonaceous particles (SCPs). The results show that Sanliqi Lake has experienced serious degradation during the past 60 years, resulting from a large influx of metals and nutrients. Expansion of agricultural and industrial activities between 1945 and 1993 enhanced nutrient and metal enrichment, indicated by increases in metals, SCPs, magnetic susceptibility, total phosphorus, total nitrogen and total organic carbon. Further enrichment of Zn, Cd, Ni and Cr after 1993 was linked to a recent intensification of mining activities. Decreases in Cu and Pb after 2006 probably resulted from recent environmental remediation. This study verified the coupling between lake sediment pollution and human activities in Daye City during the past 60 years. The reconstructed history of lake pollution can provide reference information for continued restoration of Sanliqi Lake and other similar heavily polluted lakes in the developing regions. PMID:26188661

  12. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    NASA Astrophysics Data System (ADS)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    In recent decades due to glacier retreat the glacial lakes in the Central Caucasus, as well as in other high-mountainous areas of the world, have expanded intensively. As result the risk of lake outbursts and destructive floods is raising. In this paper we present one of the most potentially hazardous lakes of this region - a group of glacial lakes near the Bashkara glacier in the upper Adylsu river valley, to the southeast of Mt. Elbrus. Total area of these lakes is about 100,000m2, and a total volume exceeds 1,000,000 m3. The biggest of them - the Bashkara lake has formed in late 1930s - early 1940s and the small Lapa lake has appeared in the end of 1980s. The Bashkara lake outburst occurred twice in the end of 1950s and produced devastating debris flows of ca. 2 million m3. We have monitored these lakes since 1999. Our work includes detailed field research: constant measurements of water level during warm period, annually repeated bathymetric surveys, geodetic surveys, observations on dam condition and some special measurements (i.e. water temperature distribution, current velocity). Also we use aerial and satellite images to obtain data about dynamic of areas for the lakes. From 2001 to 2006 years volume of the Lapa lake has increased 5 times (from 30,000 m3 to 140,000 m3), the Bashkara lake in this period was quasi-stable. In 2006-2008 volume of the Lapa lake has decreased due to sedimentation, however, rapid growth of water level in Bashkara lake (more than 20 sm. per day) has suddenly begun. As a result, volume of the Bashkara lake exceeded 1,000000 m3 in July 2008 whereas in 2001 -2007 year it was about 800,000 m3. Previous maximum of water level was exceeded on 3,5 m, moraine dam with ice core was overtopped and overflow has started. Thus, Bashkara glacier lakes are unstable and risk of outburst is increasing. To assess parameters and zones of potential outburst flood in the Adylsu River valley we have carried out hydrodynamic simulation. Two computer

  13. Results From NICLAKES Survey of Active Faulting Beneath Lake Nicaragua, Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Funk, J.; Mann, P.; McIntosh, K.; Wulf, S.; Dull, R.; Perez, P.; Strauch, W.

    2006-12-01

    In May of 2006 we used a chartered ferry boat to collect 520 km of seismic data, 886 km of 3.5 kHz subbottom profiler data, and 35 cores from Lake Nicaragua. The lake covers an area of 7700 km2 within the active Central American volcanic arc, forms the largest lake in Central America, ranks as the twentieth largest freshwater lake in the world, and has never been previously surveyed or cored in a systematic manner. Two large stratovolcanoes occupy the central part of the lake: Concepcion is presently active, Maderas was last active less than 2000 years ago. Four zones of active faulting and doming of the lake floor were mapped with seismic and 3.5 kHz subbottom profiling. Two of the zones consist of 3-5-km-wide, 20-30-km-long asymmetric rift structures that trend towards the inactive cone of Maderas Volcano in a radial manner. The northeastern rift forms a 20-27-m deep depression on the lake bottom that is controlled by a north-dipping normal fault. The southwestern rift forms a 25-35-m deep depression controlled by a northeast-dipping normal fault. Both depressions contain mound-like features inferred to be hydrothermal deposits. Two zones of active faulting are associated with the active Concepcion stratovolcano. A 600-m-wide and 6-km-long fault bounded horst block extends westward beneath the lake from a promontory on the west side of the volcano. Like the two radial rift features of Maderas, the horst points roughly towards the active caldera of Concepcion. A second north-south zone of active faulting, which also forms a high, extends off the north coast of Concepcion and corresponds to a localized zone of folding and faulting mapped by previous workers and inferred by them to have formed by gravitational spreading of the flank of the volcano. The close spatial relation of these faults to the two volcanic cones in the lake suggests that the mechanism for faulting is a result of either crustal movements related to magma intrusion or gravitational sliding and is

  14. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years.

    PubMed

    Bai, Jie; Chen, Xi; Li, Junli; Yang, Liao; Fang, Hui

    2011-07-01

    Inland lakes are major surface water resource in arid regions of Central Asia. The area changes in these lakes have been proved to be the results of regional climate changes and recent human activities. This study aimed at investigating the area variations of the nine major lakes in Central Asia over the last 30 years. Firstly, multi-temporal Landsat imagery in 1975, 1990, 1999, and 2007 were used to delineate lake extents automatically based on Normalized Difference Water Index (NDWI) threshold segmentation, then lake area variations were detailed in three decades and the mechanism of these changes was analyzed with meteorological data and hydrological data. The results indicated that the total surface areas of these nine lakes had decreased from 91,402.06 km(2) to 46,049.23 km(2) during 1975-2007, accounting for 49.62% of their original area of 1975. Tail-end lakes in flat areas had shrunk dramatically as they were induced by both climate changes and human impacts, while alpine lakes remained relatively stable due to the small precipitation variations. With different water usage of river outlets, the variations of open lakes were more flexible than those of other two types. According to comprehensive analyses, different types of inland lakes presented different trends of area changes under the background of global warming effects in Central Asia, which showed that the increased human activities had broken the balance of water cycles in this region. PMID:20830516

  15. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  16. Challenges in understanding, modelling, and mitigating Lake Outburst Flood Hazard: experiences from Central Asia

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Schneider, Demian; Andres, Norina; Worni, Raphael; Gruber, Fabian; Schneider, Jean F.

    2010-05-01

    Lake Outburst Floods can evolve from complex process chains like avalanches of rock or ice that produce flood waves in a lake which may overtop and eventually breach glacial, morainic, landslide, or artificial dams. Rising lake levels can lead to progressive incision and destabilization of a dam, to enhanced ground water flow (piping), or even to hydrostatic failure of ice dams which can cause sudden outflow of accumulated water. These events often have a highly destructive potential because a large amount of water is released in a short time, with a high capacity to erode loose debris, leading to a powerful debris flow with a long travel distance. The best-known example of a lake outburst flood is the Vajont event (Northern Italy, 1963), where a landslide rushed into an artificial lake which spilled over and caused a flood leading to almost 2000 fatalities. Hazards from the failure of landslide dams are often (not always) fairly manageable: most breaches occur in the first few days or weeks after the landslide event and the rapid construction of a spillway - though problematic - has solved some hazardous situations (e.g. in the case of Hattian landslide in 2005 in Pakistan). Older dams, like Usoi dam (Lake Sarez) in Tajikistan, are usually fairly stable, though landsildes into the lakes may create floodwaves overtopping and eventually weakening the dams. The analysis and the mitigation of glacial lake outburst flood (GLOF) hazard remains a challenge. A number of GLOFs resulting in fatalities and severe damage have occurred during the previous decades, particularly in the Himalayas and in the mountains of Central Asia (Pamir, Tien Shan). The source area is usually far away from the area of impact and events occur at very long intervals or as singularities, so that the population at risk is usually not prepared. Even though potentially hazardous lakes can be identified relatively easily with remote sensing and field work, modeling and predicting of GLOFs (and also

  17. Limnology of Big Lake, south-central Alaska, 1983-84

    USGS Publications Warehouse

    Woods, Paul F.

    1992-01-01

    The limnological characteristics and trophic state of Big Lake in south-central Alaska were determined from the results of an intensive study during 1983-84. The study was begun in response to concern over the potential for eutrophication of Big Lake, which has experienced substantial residential development and recreational use because of its proximity to Anchorage. The east and west basins of the 1,213 square-hectometer lake were each visited 36 times during the 2-year study to obtain a wide variety of physical, chemical, and biological data. During 1984, an estimate was made of the lake's annual primary production. Big Lake was classified as oligotrophic on the basis of its annual mean values for total phosphorus (9.5 micrograms per liter), total nitrogen (209 micrograms per liter), chlorophyll-a (2.5 micrograms per liter), secchi-disc transparency (6.3 meters), and its mean daily integral primary production of 81.1 milligrams of carbon fixed per square meter. The lake was, however, uncharacteristic of oligotrophic lakes in that a severe dissolved-oxygen deficit developed within the hypolimnion during summer stratification and under winter ice cover. The summer dissolved-oxygen deficit resulted from the combination of strong and persistent thermal stratification, which developed within 1 week of the melting of the lake's ice cover in May, and the failure of the spring circulation to fully reaerate the hypolimnion. The autumn circulation did reaerate the entire water column, but the ensuing 6 months of ice and snow cover prevented atmospheric reaeration of the water column and led to development of the winter dissolved-oxygen deficit. The anoxic conditions that eventually developed near the lake bottom allowed the release of nutrients from the bottom sediments and facilitated ammonification reactions. These processes yielded hypolimnetic concentrations of nitrogen and phosphorus compounds, which were much larger than the oligotrophic concentrations measured

  18. Geothermal potential of the Lavic Lake Region, Central Mojave Desert, California

    SciTech Connect

    Katzenstein, A.M.; Sabin, A.E.; Meade, D.M.

    1995-12-31

    Lavic Lake is a playa lake located immediately south of Pisgah Crater within lands controlled by the Marine Corps Air/Ground Combat Center in the central Mojave Desert. The Department of the Navy`s Geothermal Program Office (GPO) recently completed a second season of drilling to assess the geothermal potential at Lavic Lake. Drilling was preceded by geologic reconnaissance and a detailed gravity and ground magnetic survey. Lavic Lake is bounded to the west by the northwest-trending, right-lateral Pisgah fault and an unnamed west-trending fault to the north. The {approximately}200 ka Sunshine basalt flows and the {approximately}2-20 ka Pisgah basalt flows straddle these northwest- and west-trending faults, respectively, in the Lavic Lake area. An extensional depression related to a right bend of the Pisgah fault forms the southwest end of Lavic Lake and was the focus of the above studies. A localized 10 mgal gravity low and a coincident 500 gamma aeromagnetic low are centered within this depression. The combination of elevated temperature gradients in initial shallow holes, recent basaltic volcanism, a seismicly active fluid conduit (Pisgah fault), and hydrothermal alteration in the nearby hectorite deposit prompted the GPO to focus deeper drilling adjacent to the geophysical anomalies at the southwest end of Lavic Lake. Drilling results reveal that the geothermal potential for electrical use is negligible; however, LLTGH-5 and -6 both encountered highly fractured zones. LLTGH-6 crossed a zone of warm (110{degrees}F) fluid at 750 ft and intercepted highly fractured granitic basement at 4,175 ft.

  19. Legacies of Glacio-fluvial Interactions in the Finger Lakes, Central New York

    NASA Astrophysics Data System (ADS)

    Safran, E. B.; Fountain, A. G.

    2011-12-01

    The Finger Lakes region of central New York exhibits spectacular examples of the interplay between glacial and fluvial processes. The Finger Lakes themselves were carved by ice sheets and related subglacial hydrologic processes that enlarged, over-deepened, and reversed the drainage direction of pre-existing fluvial valleys. The region's famous gorges flank the glacial troughs and reflect ongoing fluvial adjustment to glacially driven base level variations. Modern tools of topographic analysis permit quantification of the imprint that glacial processes leave on fluvial form and process. Regionally, ice sheet erosion is maximized along the north end of the Seneca/Cayuga trough. Local relief ranges from ~100 m at the north end of Seneca and Cayuga lakes to 250-400 m on the southern ends of these lakes and on the smaller, flanking lakes (Keuka, Canandaigua, Skaneateles, Owasco). Concavity indices for lake-tributary stream profiles are predominantly in the range of -7 to 0, reflecting a convex initial form imposed by glacial processes, while normalized channel steepness (ksn) indices are generally under 40 (reference concavity of 0.45), reflecting the gentle gradients of the glacial uplands. Concavity index and ksn values are maximized (>0, and >75, respectively) along short segments at the downstream ends of the so-called interglacial or post-glacial gorge reaches, again maximized at the southern and peripheral parts of the Seneca/Cayuga trough. Finally, streams that cross former channel courses buried by subglacial debris typically have more numerous and/or more pronounced knickpoints and more concave long profile segments than streams that do not. In short, the legacy of glaciations from the regional to the reach scale appears to be driving patterns of fluvial response in the Finger Lakes.

  20. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes

    USGS Publications Warehouse

    Striegl, R.G.; Michmerhuizen, C.M.

    1998-01-01

    Annual emissions of (CH4 + CO2) to the atmosphere were proportional to net hydrologic inputs of C, mostly by groundwater, at two lakes in the Shingobee River watershed in north-central Minnesota. Williams Lake (WL), a closed basin lake near the top of the watershed, had a hydraulic residence time of 2-4 yr and groundwater exchange of about +2 mol dissolved inorganic carbon (DIC) and -0.1 mol dissolved organic carbon (DOC) m-2 lake area yr-1. The Shingobee River flows through Shingobee Lake (SL) that had a hydraulic residence of 0.3-0.4 yr and received net groundwater plus surface-water inputs of +5.3 to +7.3 mol DIC and fewer than +1.3 mol (DOC + particulate organic carbon) m-2 yr-1. Approximately 60-80% of net annual C input to SL was from groundwater. Lake storage of CH4 and CO2 was greatest in late winter, with maximum emissions to the atmosphere immediately following ice melt. The lakes emitted CH4 continuously during open water, having annual losses of -1.6 mol CH4 m-2 yr-1 at WL and -1.9 mol CH4 m-2 yr-1 at SL. Although the WL epilimnion was CO2 depleted throughout summer, net annual CO2 exchange with the atmosphere was near zero because springtime emission offset summertime uptake. CO2 supersaturation resulted in emission of -8.0 mol CO2 m-2 yr-1 at SL.

  1. Sediment evidence of early eutrophication and heavy metal pollution of Lake Mälaren, central Sweden.

    PubMed

    Renberg, I; Bindler, R; Bradshaw, E; Emteryd, O; McGowan, S

    2001-12-01

    Lake Mälaren is the water supply and recreation area for more than 1 million people in central Sweden and subject to considerable environmental concern. To establish background data for assessments of contemporary levels of trophy and heavy metal pollution, sediment cores from the lake were analyzed. Diatom-inferred lake-water phosphorus concentrations suggest that pre-20th century nutrient levels in Södra Björkfjärden, a basin in the eastern part of Mälaren, were higher (c. 10-20 micrograms TP L-1) than previously assumed (c. 6 micrograms TP L-1). Stable lead isotope and lead concentration analyses from 3 basins (S. Björkfjärden, Gisselfjärden and Asköfjärden) show that the lake was polluted in the 19th century and earlier from extensive metal production and processing in the catchment, particularly in the Bergslagen region. The lake has experienced a substantial improvement of the lead pollution situation in the 20th century following closure of the mining and metal industry. The lead pollution from the old mining industry was large compared to late-20th century pollution from car emissions, burning of fossil fuels and modern industries. PMID:11878023

  2. Chemical evidences of the effects of global change in high elevation lakes in Central Himalaya, Nepal

    NASA Astrophysics Data System (ADS)

    Tartari, Gianni; Lami, Andrea; Rogora, Michela; Salerno, Franco

    2016-04-01

    It is well known that the lakes integrate the pressure of their surrounding terrestrial environment and the climatic variability. Both the water column and sediments are capable to accumulate signals of global change, such as warming of the deep layers or mutation of diverse biological records (e.g., fossil diatoms) and the nutrient loads variability affecting the trophic state. Typically, the biological responses to climate change have been studied in several types of lakes, while documented changes in water chemistry are much rare. A long term study of 20 high altitude lakes located in central southern Himalaya (Mt Everest) conducted since the 90s has highlighted a general change in the chemical composition of the lake water: a substantial rise in the ionic content was observed, particularly pronounced in the case of sulphate. In a couple of these lakes, monitored on an annual basis, the sulphate concentrations increased over 4-fold. A change in the composition of atmospheric wet deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes, were excluded. The chemical changes proved to be mainly related to the sulphide oxidation processes occurring in the bedrocks or the hydrographic basins. In particular, the oxidation processes, considered as the main factor causing the sulphate increase, occurred in subglacial environments characterized by higher glacier velocities causing higher glacier shrinkage. Associated to this mechanism, the exposure of fresh mineral surfaces to the atmosphere may have contributed also to increases in the alkalinity of lakes. Weakened monsoon of the past two decades may have partially contributed to the solute enrichment of the lakes through runoff waters. The almost synchronous response of the lakes studied, which differs in terms of the presence of glaciers in their basins, highlights the fact that the increasing ionic content of lake

  3. Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia)

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Müller, Johannes P.; Schneider, Jean F.

    2013-08-01

    The sources of the Amu Darya, one of the major Central Asian rivers draining to the Aral Sea, are located in the glacierized high-mountain areas of Tajikistan, Kyrgyzstan and Afghanistan. There, climate change and the resulting retreat of glaciers have led to the formation of numerous new glacial lakes. Other lakes in the area are embedded in older glacial landscapes (erosion lakes) or retained by block or debris dams (e.g., Lake Sarez). A multi-temporal lake inventory is prepared and analysed, based on remotely sensed data. Corona images from 1968 are used as well as more up-to-date ASTER and Landsat 7 scenes. 1642 lakes are mapped in total, 652 out of them are glacial lakes. 73% of all lakes are located above 4000 m a.s.l. Glacial lakes, abundant in those areas where glacier tongues retreat over flat or moderately steep terrain, have experienced a significant growth, even though changes are often superimposed by short-term fluctuations. The analysis results also indicate a shifting of the growth of glacial lakes from the south western Pamir to the central and northern Pamir during the observation period. This trend is most likely associated with more elevated contribution areas in the central and northern Pamir. The lakes of the other types have remained constant in size in general. The lake development reflects changes in the state of the water resources in the study area on the one hand and determines the level of lake outburst hazards on the other hand.

  4. Irrigation effects in the northern lake states: Wisconsin central sands revisited.

    PubMed

    Kraft, George J; Clancy, Katherine; Mechenich, David J; Haucke, Jessica

    2012-01-01

    Irrigated agriculture has expanded greatly in the water-rich U.S. northern lake states during the past half century. Source water there is usually obtained from glacial aquifers strongly connected to surface waters, so irrigation has a potential to locally decrease base flows in streams and water levels in aquifers, lakes, and wetlands. During the nascent phase of the irrigation expansion, water availability was explored in works of some fame in the Wisconsin central sands by Weeks et al. (1965) on the Little Plover River and Weeks and Stangland (1971) on "headwater area" streams and lakes. Four decades later, and after irrigation has grown to a dominant landscape presence, we revisited irrigation effects on central sands hydrology. Irrigation effects have been substantial, on average decreasing base flows by a third or more in many stream headwaters and diminishing water levels by more than a meter in places. This explains why some surface waters have become flow and stage impaired, sometimes to the point of drying, with attendant losses of aquatic ecosystems. Irrigation exerts its effects by increasing evapotranspiration by an estimated 45 to 142 mm/year compared with pre-irrigated land cover. We conclude that irrigation water availability in the northern lake states and other regions with strong groundwater-surface water connections is tied to concerns for surface water health, requiring a focus on managing the upper few meters of aquifers on which surface waters depend rather than the depletability of an aquifer. PMID:21707615

  5. Stable carbon and oxygen isotope record of central Lake Erie sediments

    USGS Publications Warehouse

    Tevesz, M.J.S.; Spongberg, A.L.; Fuller, J.A.

    1998-01-01

    Stable carbon and oxygen isotope data from mollusc aragonite extracted from sediment cores provide new information on the origin and history of sedimentation in the southwestern area of the central basin of Lake Erie. Sediments infilling the Sandusky subbasin consist of three lithologic units overlying glacial deposits. The lowest of these is a soft gray mud overlain by a shell hash layer containing Sphaerium striatinum fragments. A fluid mud unit caps the shell hash layer and extends upwards to the sediment-water interface. New stable isotope data suggest that the soft gray mud unit is of postglacial, rather than proglacial, origin. These data also suggest that the shell hash layer was derived from erosional winnowing of the underlying soft gray mud layer. This winnowing event may have occurred as a result of the Nipissing flood. The Pelee-Lorain moraine, which forms the eastern boundary of the Sandusky subbasin, is an elevated area of till capped by a sand deposit that originated as a beach. The presence of both the shell hash layer and relict beach deposit strengthens the interpretation that the Nipissing flood was a critical event in the development of the southwestern area of the central basin of Lake Erie. This event, which returned drainage from the upper lakes to the Lake Erie basin, was a dominant influence on regional stratigraphy, bathymetry, and depositional setting.

  6. Diatom assemblage responses to changing environment in the conspicuously eutrophic Kiuruvesi lake route, central-eastern Finland

    NASA Astrophysics Data System (ADS)

    Tammelin, Mira; Kauppila, Tommi

    2016-04-01

    Lakes and their water quality have been affected by anthropogenic actions for centuries. The most intensive changes have often occurred since the mid-19th century. Industrialization, modern agriculture, forest ditching and artificial lowering of water level are examples of these changes that have usually resulted in the deterioration of lake water quality. Many organisms, such as diatoms, are sensitive to these changes in their environmental conditions. Therefore, a marked species turnover is often seen between the pre and post human impact diatom assemblages. This turnover can be rapidly assessed simultaneously from many lakes by using multivariate methods and top-bottom sampling. Our study area consists of three adjacent lake routes in the grass cultivation and dairy production area of central-eastern Finland, where slash-and-burn cultivation and artificial water level lowering were common practice during the past centuries. The centermost Iisalmi lake route is particularly interesting because of the conspicuously eutrophic lakes in its Kiuruvesi subroute. We used the top-bottom approach to sample pre and post human impact samples from 47 lakes (50 sampling sites) located in the three lake routes. In addition, stratigraphic samples from the long cores of three lakes (one larger central basin and two small upstream lakes) in the Kiuruvesi subroute were studied in more detail. Multivariate methods were used to assess diatom assemblage change within the long cores and between the pre-disturbance and modern samples. The results indicate that most study lakes have undergone a marked shift in their diatom assemblages since the onset of human impact in the area. The lake routes are characterized by differing pre-impact diatom assemblages. However, human influence has reduced their natural variation. Similar diatom species are common in the modern samples of the heavily impacted lakes in all three lake routes. The detailed examination of the diatom assemblage turnover in

  7. Crustal structure of central Lake Baikal: Insights into intracontinental rifting

    USGS Publications Warehouse

    ten Brink, U.S.; Taylor, M.H.

    2002-01-01

    The Cenozoic rift system of Baikal, located in the interior of the largest continental mass on Earth, is thought to represent a potential analog of the early stage of breakup of supercontinents. We present a detailed P wave velocity structure of the crust and sediments beneath the Central Basin, the deepest basin in the Baikal rift system. The structure is characterized by a Moho depth of 39-42.5 km; an 8-km-thick, laterally continuous high-velocity (7.05-7.4 km/s) lower crust, normal upper mantle velocity (8 km/s), a sedimentary section reaching maximum depths of 9 km, and a gradual increase of sediment velocity with depth. We interpret the high-velocity lower crust to be part of the Siberian Platform that was not thinned or altered significantly during rifting. In comparison to published results from the Siberian Platform, Moho under the basin is elevated by <3 km. On the basis of these results we propose that the basin was formed by upper crustal extension, possibly reactivating structures in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system, the precursor to the formation of the North Atlantic Ocean. We also propose that the Central Baikal rift evolved by episodic fault propagation and basin enlargement, rather than by two-stage rift evolution as is commonly assumed.

  8. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia

    USGS Publications Warehouse

    Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao

    2014-01-01

    Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.

  9. Early Pleistocene Glacial Lake Lesley, West Branch Susquehanna River valley, central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Ramage, Joan M.; Gardner, Thomas W.; Sasowsky, Ira D.

    1998-02-01

    Laurentide glaciers extended into north central Pennsylvania repeatedly during at least the last 2 million years. Early Pleistocene glaciation extended farther south into central Pennsylvania than any subsequent glaciation, reaching the West Branch Susquehanna River (WBSR) valley. Early Pleistocene ice dammed the northeast-flowing West Branch Susquehanna River at Williamsport, forming Glacial Lake Lesley, a 100-km-long proglacial lake. In this paper, we present compelling evidence for the lake and its age. Maximum lake volume (˜ 100 km 3) was controlled by the elevation of the lowest drainage divide, ˜ 340 m above sea level at Dix, Pennsylvania. Stratified deposits at McElhattan and Linden are used to reconstruct depositional environments in Glacial Lake Lesley. A sedimentary section 40 m thick at McElhattan fines upward from crossbedded sand to fine, wavy to horizontally laminated clay, consistent with lake deepening and increasing distance from the sediment source with time. At Linden, isolated cobbles, interpreted as dropstones, locally deform glacio-lacustrine sediment. We use paleomagnetism as an age correlation tool in the WBSR valley to correlate contemporaneous glaciofluvial and proglacial lacustrine sediments. Reversed remanent polarity in finely-laminated lacustrine clay and silt at McElhattan ( I = 20.4°, D = 146.7°, α95 = 17.7°) and in interbedded silt and sand at Linden ( I = 55.3°, D = 175.2°, α95 = 74.6°) probably corresponds to the latter part of the Matuyama Reversed Polarity Chron, indicating an age between ˜ 770 and ˜ 970 ka. At McElhattan, a diamicton deformed the finely laminated silt and clay by loading and partial fluidization during or soon after lake drainage. As a result, the deformed clay at McElhattan lacks discrete bedding and records a different characteristic remanent magnetism from underlying, undeformed beds. This difference indicates that the characteristic remanent magnetism is detrital. An electrical resistivity

  10. Spatial and Temporal Trends of Snowfall in Central New York - A Lake Effect Dominated Region

    NASA Astrophysics Data System (ADS)

    Hartnett, Justin Joseph

    Central New York is located in one of the snowiest regions in the United States, with the city of Syracuse, New York the snowiest metropolis in the nation. Snowfall in the region generally begins in mid-November and lasts until late-March. Snow accumulation occurs from a multitude of conditions: frontal systems, mid-latitude cyclones, Nor'easters, and most notably lake-effect storms. Lake effect snowfall (LES) is a difficult parameter to forecast due to the isolated and highly variable nature of the storm. Consequently, studies have attempted to determine changes in snowfall for lake-effect dominated regions. Annual snowfall patterns are of particular concern as seasonal snowfall totals are vital for water resources, winter businesses, agriculture, government and state agencies, and much more. Through the use of snowfall, temperature, precipitation, and location data from the National Weather Service's Cooperative Observer Program (COOP), spatial and temporal changes in snowfall for Central New York were determined. In order to determine climatic changes in snowfall, statistical analyses were performed (i.e. least squares estimation, correlations, principal component analyses, etc.) and spatial maps analyzed. Once snowfall trends were determined, factors influencing the trends were examined. Long-term snowfall trends for CNY were positive for original stations (˜0.46 +/- 0.20 in. yr -1) and homogenously filtered stations (0.23 +/- 0.20 in. yr -1). However, snowfall trends for shorter time-increments within the long-term period were not consistent, as positive, negative, and neutral trends were calculated. Regional differences in snowfall trends were observed for CNY as typical lake-effect areas (northern counties, the Tug Hill Plateau and the Southern Hills) experienced larger snowfall trends than areas less dominated by LES. Typical lake-effect months (December - February) experienced the greatest snowfall trend in CNY compared to other winter months. The

  11. Nitrate attenuation potential of hypersaline lake sediments in central Spain: flow-through and batch experiments.

    PubMed

    Carrey, R; Rodríguez-Escales, P; Otero, N; Ayora, C; Soler, A; Gómez-Alday, J J

    2014-08-01

    Complex lacustrine systems, such as hypersaline lakes located in endorheic basins, are exposed to nitrate (NO3(-)) pollution. An excellent example of these lakes is the hypersaline lake located in the Pétrola basin (central Spain), where the lake acts as a sink for NO3(-) from agricultural activities and from sewage from the surrounding area. To better understand the role of the organic carbon (Corg) deposited in the bottom sediment in promoting denitrification, a four-stage flow-through experiment (FTR) and batch experiments using lake bottom sediment were performed. The chemical, multi-isotopic and kinetic characterization of the outflow showed that the intrinsic NO3(-) attenuation potential of the lake bottom sediment was able to remove 95% of the NO3(-) input over 296days under different flow conditions. The NO3(-) attenuation was mainly linked with denitrification but some dissimilatory nitrate reduction to ammonium was observed at early days favored by the high C/N ratio and salinity. Sulfate reduction could be neither confirmed nor discarded during the experiments because the sediment leaching masked the chemical and isotopic signatures of this reaction. The average nitrogen reduction rate (NRR) obtained was 1.25mmold(-1)kg(-1) and was independent of the flow rate employed. The amount of reactive Corg from the bottom sediment consumed during denitrification was 28.8mmol, representing approximately 10% of the total Corg of the sediment (1.2%). Denitrification was produced coupled with an increase in the isotopic composition of both δ(15)N and δ(18)O. The isotopic fractionations (ε of (15)N-NO3(-) and (18)O-NO3(-)) produced during denitrification were calculated using batch and vertical profile samples. The results were -14.7‰ for εN and -14.5‰ for εO. PMID:25041733

  12. A CHRONOLOGICAL FRAMEWORK FOR THE HOLOCENE VEGETATIONAL HISTORY OF CENTRAL MINNESOTA: THE STEEL LAKE POLLEN RECORD

    SciTech Connect

    Wright, H E; Stefanova, I; Tian, J; Brown, T A; Hu, F S

    2003-11-10

    Paleorecords from Minnesota and adjacent areas have often been used to evaluate large-scale climatic processes in the mid-continent of North America. However, most of these records are compromised by chronological flaws, making problematic any comparisons with climatic interpretations based on other records (e.g., GISP2 in Greenland). We report here a high-resolution pollen record with a secure chronology constrained by 26 {sup 14}C dates on terrestrial macrofossils from Steel Lake, central Minnesota. About 11,200 years ago (calibrated yr BP) the late-glacial Picea forest near Steel Lake was succeeded abruptly by Pinus banksiana and/or resinosa. The Pinus forest began to open 9.4 ka cal BP with the expansion of prairie taxa, and a pine parkland or savanna prevailed until about 8 ka cal BP, when Quercus replaced Pinus to become the dominant tree in the prairie areas for 4500 years. The close chronological control permits the correlation of key vegetational changes with those at other reliably dated sites in the eastern Dakotas and in Minnesota, suggesting that the abrupt decline of the spruce forest was time-transgressive from southwest to northeast during 2000 years, and that the development of prairie was time-transgressive in the same direction over 2600 years. Correlation of key pollen horizons at Steel Lake with those in the high-resolution pollen profiles of Elk Lake, ca. 50 km northwest of Steel Lake, suggests that the well-known Elk Lake varve chronology for the early Holocene is about 1000 years too young.

  13. Dust transport and palaeoclimate during the Oldest Dryas in Central Europe - implications from varves (Lake Constance)

    SciTech Connect

    Niessen, F.; Lister, G.; Giovanoli, F.

    1992-10-01

    This paper evaluates evidence for seasonal loess deposits in peri-Alpine Lake Constance at the end of the last Glacial (Oldest Dryas chronozone). The sedimentology of laminated couplets comprising yellow and grey silts evaluates the couplets as varves comprising alternations of loess and glacial silt and clay. The laminae, less than 1 mm thick, include from bottom to top: (1) a matrix of well-sorted, non-graded fine yellow silt with sand-size intraclasts, (2) coarsening-upward grey silt with a cap of fining-upward silt to clay. This is typical and reflects summer and winter deposits (silt and clay, respectively). The authors propose that the lack of grading and the matrix supported fabric is indicative of aeolian transport and interpret the yellow laminae as loess deposits. Volcanic glass intraclasts in the loess layers are probably derived from volcanic terrain to the west of the lake, indicating an easterly palaeowind direction. Deposition of loess in the lake occurred regularly at the beginning of each annual cycle, suggesting the palaeowinds were associated with winter and/or spring conditions. Two transport scenarios are suggested to explain the sand grains scattered in this deep-water lacustrine record. 1. The grains may have been transported as bedload over the annual winter ice-cover of the lake under moderate wind strengths, frozen into the ice, and released for deposition during spring melt. 2. The sand grains were blown directly out onto the lake water by very strong winds during spring. The first scenario is contrary to the general view that loess was transported during summer, and that loess deposits thus reflect summer conditions only. Loess input to the lake shows a transitional decrease after ca. 14.3 kyr BP and cessation at ca. 14 kyr BP, probably as a result of a change of wind behaviour, increased humidity and/or vegetational changes during the Oldest Dryas in central Europe. 62 refs., 8 figs.

  14. Results from NICLAKES Survey of Active Faulting Beneath Lake Managua,Central American Volcanic arc

    NASA Astrophysics Data System (ADS)

    McIntosh, K.; Funk, J.; Mann, P.; Perez, P.; Strauch, W.

    2006-12-01

    Lake Managua covers an area of 1,035 km2 of the Central American volcanic arc and is enclosed by three major stratovolcanoes: Momotombo to the northwest was last active in AD 1905, Apoyeque in the center on the Chiltepe Peninsula was last active ca. 4600 years BP, and Masaya to the southeast was last active in AD 2003. A much smaller volcano in the lake (Momotombito) is thought to have been active <4500 yrs B.P. In May of 2006, we used a chartered barge to collect 330 km of 3.5 kHz profiler data along with coincident 274 km of sidescan sonar and 27 km of seismic reflection data. These data identify three zones of faulting on the lake floor: 1) A zone of north-northeast-striking faults in the shallow (2.5-7.5 m deep) eastern part of the lake that extends from the capital city of Managua, which was severely damaged by shallow, left-lateral strike-slip displacements on two of these faults in 1931 (M 5.6) and 1972 (M 6.2): these faults exhibit a horst and graben character and include possible offsets on drowned river valleys 2) a semicircular rift zone that is 1 km wide and can be traced over a distance of 30 km in the central part of the lake; the rift structure defines the deepest parts of the lake ranging from 12 to 18 m deep and is concentric about the Apoyeque stratocone/Chiltepe Peninsula; and 3) a zone of fault scarps defining the northwestern lake shore that may correlate to the northwestern extension of the Mateare fault zone, a major scarp-forming fault that separates the Managua lowlands from the highlands south and west of the city. Following previous workers, we interpret the northeast- trending group of faults in the eastern part of the lake as part of a 15-km-long discontinuity where the trend of the volcanic arc is offset in a right-lateral sense. The semi-circular pattern of the rift zone that is centered on Chiltepe Peninsula appears to have formed as a distal effect of either magma intrusion or withdrawal from beneath this volcanic complex. The

  15. Microbial Decomposition of Cellulose in Acidifying Lakes of South-Central Ontario

    PubMed Central

    Hoeniger, Judith F. M.

    1985-01-01

    The rate of cellulose breakdown and density of bacterial populations were measured in the epilimnetic sediments and water columns of lakes in central Ontario that differ in pH, alkalinity, and nutrient status and are particularly sensitive to acidic inputs from atmospheric decomposition. There was no significant difference in decomposition rate in either oxic or anoxic sediment when mean epilimnetic pHs were in the range 5.5 to 6.9. The importance of these findings for the breakdown of autochthonous detritus in Canadian Shield lakes is discussed. Furthermore, the results of these experiments, in which dyed strips of cellophane (regenerated cellulose) were used as substrate, were compared with results of earlier decomposition studies carried out with coarse litter (leaves, twigs). Acridine orange direct counts of bacteria in the top 1 cm of sediment ranged from 5.5 × 108 to 1.0 × 109 per g and in planktonic water samples from 1.1 × 106 to 1.8 × 106 per ml. Bacterial densities were significantly higher in both the shallow sediment (P < 0.01) and the water column (P < 0.05) of dystrophic lakes than at these sites in oligotrophic lakes. PMID:16346853

  16. Microbial decomposition of cellulose in acidifying lakes of South-central ontario.

    PubMed

    Hoeniger, J F

    1985-08-01

    The rate of cellulose breakdown and density of bacterial populations were measured in the epilimnetic sediments and water columns of lakes in central Ontario that differ in pH, alkalinity, and nutrient status and are particularly sensitive to acidic inputs from atmospheric decomposition. There was no significant difference in decomposition rate in either oxic or anoxic sediment when mean epilimnetic pHs were in the range 5.5 to 6.9. The importance of these findings for the breakdown of autochthonous detritus in Canadian Shield lakes is discussed. Furthermore, the results of these experiments, in which dyed strips of cellophane (regenerated cellulose) were used as substrate, were compared with results of earlier decomposition studies carried out with coarse litter (leaves, twigs). Acridine orange direct counts of bacteria in the top 1 cm of sediment ranged from 5.5 x 10 to 1.0 x 10 per g and in planktonic water samples from 1.1 x 10 to 1.8 x 10 per ml. Bacterial densities were significantly higher in both the shallow sediment (P < 0.01) and the water column (P < 0.05) of dystrophic lakes than at these sites in oligotrophic lakes. PMID:16346853

  17. Spatial and seasonal contrasts of sedimentary organic matter in floodplain lakes of the central Amazon basin

    NASA Astrophysics Data System (ADS)

    Sobrinho, R. L.; Bernardes, M. C.; Abril, G.; Kim, J.-H.; Zell, C. I.; Mortillaro, J.-M.; Meziane, T.; Moreira-Turcq, P.; Sinninghe Damsté, J. S.

    2016-01-01

    In this study, we investigated the seasonal and spatial pattern of sedimentary organic matter (SOM) in five floodplain lakes of the central Amazon basin (Cabaliana, Janauaca, Canaçari, Mirituba and Curuai) which have different morphologies, hydrodynamics and vegetation coverages. Surface sediments were collected in four hydrological seasons: low water (LW), rising water (RW), high water (HW) and falling water (FW) in 2009 and 2010. We investigated commonly used bulk geochemical tracers such as the C : N ratio and the stable isotopic composition of organic carbon (δ13Corg). These results were compared with lignin phenol parameters as an indicator of vascular plant detritus and branched glycerol dialkyl glycerol tetraethers (brGDGTs) to trace the input of soil organic matter (OM) from land to the aquatic settings. We also applied the crenarchaeol as an indicator of aquatic (rivers and lakes) OM. Our data showed that during the RW and FW seasons, the surface sediments were enriched in lignin and brGDGTs in comparison to other seasons. Our study also indicated that floodplain lake sediments primarily consisted of allochthonous, C3 plant-derived OM. However, a downstream increase in C4 macrophyte-derived OM contribution was observed along the gradient of increasing open waters - i.e., from upstream to downstream. Accordingly, we attribute the temporal and spatial difference in SOM composition to the hydrological dynamics between the floodplain lakes and the surrounding flooded forests.

  18. The enigmatic Zerelia twin-lakes (Thessaly, Central Greece): two potential meteorite impact Craters

    NASA Astrophysics Data System (ADS)

    Dietrich, V. J.; Lagios, E.; Reusser, E.; Sakkas, V.; Gartzos, E.; Kyriakopoulos, K.

    2013-09-01

    Two circular permanent lakes of 150 and 250 m diameter and 6-8 m depth to an unconsolidated muddy bottom occur 250 m apart from each other in the agricultural fields SW of the town of Almiros (Thessaly, central Greece). The age of the lakes is assumed to be Late Pliocene to Early Holocene with a minimum age of approx. 7000 yr BP. The abundant polymict, quartz-rich carbonate breccia and clasts with a clay rich matrix in the shallow embankments of the lakes show weak stratification but no volcanic structures. The carbonate clasts and particles often display spheroidal shapes and consist of calcite aggregates with feathery, arborescent, variolitic to micro-sparitic textures and spheroidal fabrics, recrystallized and deformed glass-shaped fragments, calcite globules in quartz; thus indications of possible carbonate melting, quenching and devitrification. The carbonatic matrix includes small xenomorphic phases, such as chromspinel, zircon with blurred granular and skeletal textures, skeletal rutile and ilmenite, which are interpreted as relicts of partial melting and quenching under high temperatures of 1240-1800 °C. Only a few quartz fragments exhibit indistinct planar fractures. In several cases they include exotic Al-Si- and sulfur bearing Fe-phases, < 1-10 μm as globules. The modeled "Residual Gravity" profiles through the lakes indicate negative gravity anomalies of bowl-type structures down to 150 m for the eastern lake and down to 250 m for the larger western lake. Several hypotheses can be drawn upon to explain the origin of these enigmatic twin-lakes: (a) Maar-type volcanic craters; (b) hydrothermal or CO2/hydrocarbon gas explosion craters; (c) and (d) doline holes due to karstification; or (e) small meteorite impact craters, the latter being a plausible explanation due to geologic, petrologic, and geophysical evidence. The morphology and dimensions of the lakes as well as the density contrast tomography of the bedrock favor a meteorite impact hypothesis of a

  19. Chain Lakes massif, west central Maine: northern Appalachian basement or suspect terrane

    SciTech Connect

    Cheatham, M.M.; Olszewski, W.J. Jr.; Gaudette, H.E.

    1985-01-01

    The Chain Lakes massif of west-central Main is a 3 km thick sequence of diamictite and aquagene metavolcanics and metasediments, which contrasts strikingly with its surrounding Paleozoic rocks in lithology, structural style and metamorphic grade. The rocks of the massif are characterized by mineral assemblages developed during two separate metamorphic events. The first, of second sillimanite grade, is reflected by qtz-oligoclase-Kspar-sillimanite-biotite and muscovite. The second metamorphism is a retrograde event of greenschist facies, and chlorite grade. Isotopic Rb-Sr and Sm-Nd whole rock, and Rb-Sr mineral analyses of samples of the diamictite members, now gneiss and granofels, indicate that the first prograde metamorphism occurred at 770 Ma. with the retrograde event at approximately 405 Ma. Due to the restricted range of /sup 147/Sm//sup 144/Nd, no Sm-Nd isochron age could be determined. However, model ages for both Sr and Nd are approximately 1500 Ma for derivation of the Chain Lakes protolith material from depleted mantle. Lithology, bounding formations, complexes and plutons, and the isotopic data support previous contentions that the Chain Lakes massif is a suspect terrane. However, similarities with Proterozoic rocks along the Eastern Margin, as well as recent suggestions of similar rocks underlying the Kearsarge-Central Main synclinorium may suggest the possible widespread occurrence of dismembered masses of a perhaps once coherent, Precambrian terrane underlying the Northern Appalachians.

  20. Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere

    SciTech Connect

    Kober, B.; Wessels, M.; Bollhoefer, A.; Mangini

    1999-05-01

    Pb isotope ratios and Pb concentrations of well-dated sediments of Lake Constance, Central Europe have been analyzed using thermal ion mass spectrometry. Sequential extraction studies indicated isotope homogeneity of the leachable Pb components within the investigated layers. Since the middle of the 19th century a significant anthropogenic Pb component appeared in the lake sediments, and rapidly approaches concentration levels similar to that of the geogenic Pb background (20 ppm) at the beginning of the 20th century. Anthropogenic Pb was predominantly transferred to the lake sediments via the atmosphere. Pb sources were coal combustion, industrial ore processing and leaded gasoline. The flux of a fluvial Pb component to the lake sediments, additive to atmospheric Pb deposition, peaked in about 1960. This flux is attributed to (re)mobilization of Pb from polluted parts of the lake catchment, and indicates the change of catchment soils from a pollution sink to a heavy metal source. The strong reduction of anthropogenic Pb in the uppermost lake sediments since the 1960s has been caused by advances of environmental protection. The lake sediments record the changing fluxes and the isotope composition of the deposited aeolian Pb pollution. During the 20th century aeolian Pb fluxes to the lake sediments were in the range of 1--4 {micro}g/cm{sup 2}/a. During peak emission periods of gasoline Pb to the atmosphere (1960--1990) the aerosol Pb isotope composition was rather constant ({sup 206}Pb/{sup 207}Pb: 1.12--1.13) and probably a mixture of Canadian and Australian with Russian and Central European Pb types. Aeolian Pb isotope and Pb flux trends in the lake sediments as a whole agree well with the trends found in Alpine glaciers (Doering et al., 1997a,b) and in ombrotrophic peat bogs of Switzerland (Shotyk et al., 1996). However, different industrial Pb components were deposited in the archives of aeolian pollution during the early 20th century.

  1. A new node on the SE Asian paleoclimate map: the alkaline crater lakes of central Myanmar

    NASA Astrophysics Data System (ADS)

    Smittenberg, Rienk H.; Chabangborn, Akkaneewut; Thu Aung, Lin; Fritz, Sherilyn; Wohlfarth, Barbara

    2014-05-01

    SE Asia is climatically a key region where the Asian monsoon system connects with the Indo-Pacific warm pool and from where much (latent) heat gets transported to higher latitudes. We recently obtained sediment cores from four crater lakes located in Central Myanmar, with the aim to further colour the still largely white space on the SE Asian paleoclimate map. The chain of volcanic craters extending northeast to southwest in the vicinity of the lower Chindwin River in central Myanmar have been known for a long time. These craters are aligned west of the Sagaing Fault, which is a continental transform fault between the Indian and Sunda continental plates. Four of the craters still contain lakes, while several of the smaller craters are drained and used for agriculture. The region has a tropical Savannah climate, with warm temperatures throughout the year. Precipitation is almost absent during the dry season but increases to an average monthly precipitation of 100-134 mm per month during the monsoon season (May through October). Three of the four lakes, named Twin Ywa (30 m depth), Twin Taung (60 m), and Twin Pyauk (8m), are highly alkaline (pH 10-11), support extensive cyanobacterial blooms and are anoxic below a few meters water depth. Their sediments are composed of highly organic and laminated algae gyttjas. The shallower (2m), oxic and more neutral (pH 7.5) Lake Leshe contains organic-lean clays but with clear variations in colour and bulk density that likely mark changes in humidity though time. The lake levels of the relatively small crater lakes are solely regulated by precipitation and evaporation, and their limnology and water isotope compositions are therefore sensitive to changes in monsoon intensity. We will present limnological data including water isotopic compositions, and initial bulk sedimentary data as well as preliminary age determinations. These will form the basis for more extensive multi-proxy analyses that should result in an improved insight

  2. Diverging Histories of the Liberty Creek and Iceberg Lake Blueschist Bodies, south central Alaska

    NASA Astrophysics Data System (ADS)

    Day, E. M.; Pavlis, T. L.; Amato, J. M.

    2011-12-01

    New studies of the Liberty Creek and Iceberg Lake blueschist bodies of south central Alaska indicate that despite structural similarities, these blueschist bodies are derived from a different protolith and were metamorphosed to blueschist facies at distinctly different times. Both blueschists are located just south of the Border Ranges Fault (BRF) within outcrop belts of the McHugh Complex, a low-grade mélange assemblage that is now known from detrital zircon studies to consist of two distinct assemblages: a Jurassic to Earliest Cretaceous assemblage and a Late Cretaceous assemblage. The BRF is a megathrust system that represents the Late Triassic-Early Jurassic initiation of southern Alaskan subduction. Large scale (1:24,000) mapping revealed similar fabric overprint histories, epitomized by a previously undescribed youngest vertical N-S trending crenulation cleavage in both blueschist bodies which implies a structural correlation despite their separation of ~100 kilometers along strike. Despite structural similarities detrital zircon studies show that the Liberty Creek and Iceberg Lake blueschists do not have a similar maximum age of deposition. Thirteen samples from the Iceberg Lake blueschist were processed, none of which produced detrital zircons. Samples from the McHugh Complex greenschists that surround the Iceberg Lake blueschist produced numerous zircons indicating a Late Jurassic (~160 Ma) maximum age of deposition. Three out of sixteen samples from the Liberty creek blueschist produced detrital zircons indicating maximum depositional ages ranging from Late Jurassic (~160.1 Ma, n=64 grains; ~152.25 Ma, n=68 grains) to Early Cretaceous (~137.1 Ma, n=95 grains). The Late Jurassic dates are consistent with maximum depositional ages determined by Amato and Pavlis (2010) for McHugh Complex rocks along Turnagain Arm near Anchorage, AK. Sisson and Onstott (1986) reported a metamorphic cooling age of 185 Ma for the Iceberg Lake blueschist, thus, although no

  3. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie

    USGS Publications Warehouse

    Arend, Kristin K.; Beletsky, Dmitry; DePinto, Joseph; Ludsin, Stuart A.; Roberts, James J.; Rucinski, Daniel K.; Scavia, Donald; Schwab, David J.; Höök, Tomas O.

    2011-01-01

    1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L-1. 2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young-of-year, YOY, and adult), a cold-water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm-water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool-water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin. 3. Hypoxia occurred annually, typically from mid-July to mid-October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm-water temperatures. 4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: -35%), followed by adult emerald shiner (mean: -12%), YOY rainbow smelt (mean: -10%) and YOY and adult yellow perch (mean: -8.5%). 5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics

  4. A potential new energy pathway in Central Lake Erie: The round goby connection

    USGS Publications Warehouse

    Johnson, T.B.; Bunnell, D.B.; Knight, C.T.

    2005-01-01

    Round gobies, invasive fish that entered Lake Erie in 1994, are altering energy, contaminant, and nutrient pathways. Our objective was to quantify how they alter energy pathways in the central basin of Lake Erie by describing their diet and identifying the degree to which predatory fish feed upon round gobies. We used bioenergetic models parameterized with data collected in the central basin between 1995 and 2002 to estimate the type and amount of prey eaten, the biomass accumulation rate for the round goby population, and a partitioning of the food energy into “new” energy derived from dreissenids as opposed to existing energy derived from zooplankton and non-dreissenid benthic prey. Mean (± SE) prey consumption peaked at 5.98 ± 2.17×104 tonnes wet mass in 1999 coincident with the maximum population size of 4.2 ± 1.5 billion round gobies. Zooplankton (40.2% by biomass) and dreissenid mussels (38.3%) dominated the prey consumed. Almost 90% of the zooplankton biomass was consumed by age-0 round gobies, while over 80% of the dreissenids were eaten by older ages. Standing stock biomass of round gobies ranged between 203 and 4,803 tonnes y−1 (interannual range), with an additional 475 to 8,943 tonnes of biomass accumulating through growth each year. Piscivorous fish showed an increasing reliance on round gobies as prey, with round gobies being the dominant prey fish in the diets of benthic-oriented predators. Hence, by being one of the few benthivores that exploit dreissenid mussels as prey, our analyses reveal that round gobies transfer new energy up the central Lake Erie food web.

  5. Population dynamics of Aedes albifasciatus (Diptera: Culicidae) south of Mar Chiquita Lake, central Argentina.

    PubMed

    Gleiser, R M; Gorla, D E; Schelotto, G

    2000-01-01

    Spatial and temporal changes in the abundance of adult female Aedes (Ochlerotatus) albifasciatus (Macquart) were studied using CDC miniature light traps at 7 sites along an 80-km transect parallel to the southern shore of Mar Chiquita Lake (central Argentina) during the rainy seasons between 1994 and 1997. Abundance was greatest and most variable at sites near larval habitats. Rainfall and an index combining rainfall and temperature predicted adult female abundance near larval habitats 7-15 d in advance. The spatial distribution of population abundance seemed to be influenced strongly by local factors, because temporal change at sampling sites located >10 km apart was asynchronous. PMID:15218902

  6. Environmental controls and composition of anoxygenic photoheterotrophs in ultraoligotrophic high-altitude lakes (Central Pyrenees).

    PubMed

    Caliz, Joan; Casamayor, Emilio O

    2014-04-01

    The phylogenetic composition of freshwater anoxygenic photoheterotrophs (APs) has been poorly investigated as compared with their marine counterparts. In this study, we explored a set of ultraoligotrophic cold high mountain lakes (Central Pyrenees, Spain) by both pufM gene denaturing gradient gel electrophoresis fingerprinting, and cloning and sequencing of selected lakes samples. Different ranges of limnological and physico-chemical values were explored as environmental drivers of APs richness and composition. We did not observe significant relationships between richness/diversity of pufM and any of the limnological characteristics measured or trophic status, but a negative correlation with ammonia concentration. Conductivity, pH and nitrate concentration were significantly related to changes in APs community composition, whereas lake area, altitude, temperature and trophic status did not. Most of the sequences (> 85%) had the pufM sequences of Limnohabitans (Betaproteobacteria) as the closest relative in databases, whereas less abundant clones were more closely related to Rhodobacter, Sulfitobacter and Brevundimonas (Alphaproteobacteria), in agreement with 16S rRNA gene sequences previously found in the area. Congregibacter-like Gammaproteobacteria were not detected. Comparison with available studies in inland waters showed taxonomic partitioning along salinity gradients, and Congregibacter-like sequences restricted to high saline conditions in continental water bodies. PMID:24596287

  7. Spatial and seasonal contrasts of sedimentary organic matter in floodplain lakes of the central Amazon basin

    NASA Astrophysics Data System (ADS)

    Sobrinho, R. L.; Bernardes, M. C.; Abril, G.; Kim, J.-H.; Zell, C. I.; Mortillaro, J.-M.; Meziane, T.; Moreira-Turcq, P.; Sinninghe Damsté, J. S.

    2015-06-01

    In this study, we investigated the seasonal and spatial pattern of sedimentary organic matter (SOM) in five floodplain lakes of the central Amazon basin (Cabaliana, Janauaca, Canaçari, Miratuba, and Curuai) which have different morphologies, hydrodynamics and vegetation coverages. Surface sediments were collected in four hydrological seasons: low water (LW), rising water (RW), high water (HW) and falling water (FW) in 2009 and 2010. We investigated commonly used bulk geochemical tracers such as the C : N ratio and the stable isotopic composition of organic carbon (δ13Corg). These results were compared with lignin-phenol parameters as an indicator of vascular plant detritus and branched glycerol dialkyl glycerol tetraethers (brGDGTs) to trace the input of soil organic matter (OM) from land to the aquatic settings. We also applied the isoprenoid GDGT (iGDGT) crenarchaeol as an indicator of riverine suspended particulate organic matter (SPOM). Our data showed that during the RW and FW seasons, the surface sediments were enriched in lignin and brGDGTs in comparison to other seasons. Our study also indicated that floodplain lake sediments primarily consisted of allochthonous, C3 plant-derived OM. However, a downstream increase in C4 macrophyte derived OM contribution was observed along the gradient of increasing open waters, i.e. from upstream to downstream. Accordingly, we attribute temporal and spatial difference in SOM composition to the hydrological dynamics between the floodplain lakes and the surrounding flooded forests.

  8. Ground-water availability in the central part of Lake Ontario basin, New York

    USGS Publications Warehouse

    Miller, Todd S.; Krebs, Martha M.

    1988-01-01

    A set of three maps showing surficial geology, distribution of glacial aquifers, and potential well yield in the 708 sq mi central part of the Lake Ontario basin are presented at a scale of 1:125,000. The basin is parallel to Lake Ontario and extends from Rochester in the west to Oswego in the east. Aquifers consisting primarily of sand and gravel formed where meltwaters from glaciers deposited kame and outwash sand and gravel and where wave action along shores of glacial lakes eroded, reworked , and deposited beaches. Thick deposits of well-sorted sand and gravel yield relatively large quantities of water - typically more than 100 gal/min. Aquifers consisting of thin beds of sand and (or) gravel or thick gravel that contain a large proportion of silt and fine sand yield moderate amounts of water, 10 to 100 gal/min. Dug and driven wells that tap fine to medium sand deposits typically yield 1 to 10 gal/min. (USGS)

  9. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  10. Recent increases in atmospheric deposition of mercury to North-Central Wisconsin lakes inferred from sediment analyses

    USGS Publications Warehouse

    Rada, R.G.; Wiener, J.G.; Winfrey, M.R.; Powell, D.E.

    1989-01-01

    Profiles of total mercury (Hg) concentrations in sediments were examined in 11 lakes in north-central Wisconsin having a broad range of pH (5.1 to 7.8) and alkalinity (-12 to 769 μeq/L). Mercury concentrations were greatest in the top 15 cm of the cores and were much lower in the deeper strata. The Hg content in the most enriched stratum of individual cores ranged from 0.09 to 0.24 μg/g dry weight, whereas concentrations in deep, precolonial strata ranged from 0.04 to 0.07 μg/g. Sediment enrichment factors varied from 0.8 to 2.8 and were not correlated with lake pH. The increase in the Hg content of recent sediments was attributed to increased atmospheric deposition of the metal. Eight of the 11 systems studied were low-alkalinity lakes that presumably received most (≥90%) of their hydrologic input from precipitation falling directly onto the lake surface. Thus, the sedimentary Hg in these lakes seems more likely linked to direct atmospheric deposition onto the lake surfaces than to influxes from the watershed. The data imply that a potentially significant fraction of the high Hg burdens measured in game fish in certain lakes in north-central Wisconsin originated from atmospheric sources.

  11. Potential impact of Chironomus plumosus larvae on hypolimnetic oxygen in the central basin of Lake Erie

    USGS Publications Warehouse

    Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.; Edwards, William J.

    2015-01-01

    Previous studies have indicated that burrow-irrigating infauna can increase sediment oxygen demand (SOD) and impact hypolimnetic oxygen in stratified lakes. We conducted laboratory microcosm experiments and computer simulations with larvae of the burrowing benthic midge Chironomus plumosus to quantify burrow oxygen uptake rates and subsequent contribution to sediment oxygen demand in central Lake Erie. Burrow oxygen uptake and water flow velocities through burrows were measured using oxygen microelectrodes and hot film anemometry, respectively. Burrow oxygen consumption averaged 2.66 × 10− 10 (SE = ± 7.82 × 10− 11) mol O2/burrow/s at 24 °C and 9.64 × 10− 10 (SE = ± 4.86 × 10− 10) mol O2/burrow/s at 15 °C. In sealed microcosm experiments, larvae increased SOD 500% at 24 °C (density = 1508/m2) and 375% at 15 °C (density = 864/m2). To further evaluate effects of densities of C. plumosus burrows on SOD we developed a 3-D transport reaction model of the process. Using experimental data and chironomid abundance data in faunal surveys in 2009 and 2010, we estimated that bioirrigation by a population of 140 larvae/m2 could account for between 2.54 × 10− 11 mol/L/s (model results) and 5.58 × 10− 11 mol/L/s (experimental results) of the average 4.22 × 10− 11 mol/L/s oxygen depletion rate between 1970 and 2003, which could have accounted for 60–132% of the oxygen decline. At present, it appears that the population density of this species may be an important factor in development of hypoxic or anoxic conditions in central Lake Erie.

  12. Two times lowering of lake water at around 48 and 38 ka, caused by possible earthquakes, recorded in the Paleo-Kathmandu lake, central Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Sakai, Harutaka; Fujii, Rie; Sugimoto, Misa; Setoguchi, Ryoko; Paudel, Mukunda Raj

    2016-02-01

    Sedimentary facies and micro-fossil analyses, and AMS14C dating were performed in order to reveal the water-level fall events and draining process of the lake (Paleo-Kathmandu Lake) that existed in the past in the Central Nepal Himalaya. The sedimentary facies change from the lacustrine Kalimati Formation to the deltaic Sunakothi Formation in the southern and central Kathmandu basin, and the abrupt and prominent increase of phytoliths Bambusoideae and Pediastrum, and contemporaneous decrease of sponge spicule and charcoal grains around 48 and 38 ka support the lowering of water level at these times. According to the pollen analysis, both events occurred under rather warm and wet climate, thus supporting that they were triggered by tectonic cause and not by climate change. The first event might be linked to a possible occurrence of a large earthquake with an epicenter in the vicinity of the Paleo-Kathmandu Lake. The occurrence of a mega landslide in Langtang area close to the north of the Kathmandu Valley producing pseudotachylite dated at 51 ± 13 ka could be linked to this earthquake. Finally, the water was completely drained out from the remnant lake at the central part of the Kathmandu basin by ca.12 ka.

  13. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  14. Development stages of hazardous mountain lakes and simulation of their outbursts (Central Caucasus, Russia; Sichuan mountain region, China).

    NASA Astrophysics Data System (ADS)

    Kidyaeva, Vera; Krylenko, Inna; Chernomorets, Sergey; Petrakov, Dmitry

    2013-04-01

    The importance of mountain lakes studies is related to the increasing threat of natural disasters, associated with lake outbursts and debris flows formation, because of population growth on exposed areas. The outburst hazard has not been sufficiently researched, there is a lack of data because of the lakes inaccessibility and remote sensing data is usually not detailed enough. The main scientific topics include assessment of outburst possibility and further simulation of possible outbursts scenarios. There are two types of mountain lakes: glacial (cirque, cirque-moraine, barrier-moraine, glacial-barrier, etc.) lakes and barrier (landslide, rockfall, debris flow, etc.) lakes. The first type was studied in the Central Caucasus (Russia), and the second type - in the Sichuan mountain region (China). The group of scientists, including authors, has been monitoring glacial lakes in the Mnt. Elbrus area for more than ten years. The unique data were collected, including detailed hydrological characteristics of more than ten lakes (water level dynamics, temperature, morphometrical characteristics, water balance components, etc.). Outbursts of at least three glacial lakes were observed. Hydrological characteristics of landslide Tangjiashan Lake were collected with Chinese colleagues during field studies in 2010 and 2011 years. Analysis of the collected data was used to understand the outburst mechanisms, formation factors, dam breaking factors, development stages of mountain lakes. Statistical methods of analysis in this case can be applied with some limitations because of the lack of sufficient monitoring objects, and therefore the results has been verified by experts. All types of possible outbursts mechanisms were divided by the authors into five groups: geomorphologic (caused by changes in lake dams), seismic, or geodynamic (caused by seiches, waves from rockfalls, landslides), glacial (caused by breaks in impounding glaciers, ice floating and melting), water

  15. High-resolution single-channel seismic reflection surveys of Orange Lake and other selected sites of north central Florida

    USGS Publications Warehouse

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.

    1994-01-01

    The potential fluid exchange between lakes of north central Florida and the Floridan aquifer and the process by which exchange occurs is of critical concern to the St. Johns Water Management District. High-resolution seismic tools with relatively new digital technology were utilized in collecting geophysical data from Orange, Kingsley, Lowry and Magnolia Lakes, and the Drayton Island area of St. Johns River. The data collected shows the application of these techniques in understanding the formation of individual lakes, thus aiding in the management of these natural resources by identifying breaches or areas where the confining units are thin or absent between the water bodies and the Floridan aquifer. Orange Lake, the primary focus of the study, is a shallow flooded plain that was formed essentially as an erosional depression in the clayey Hawthorn formation. The primary karstic features identified in the lake were cover subsidence, cover collapse and buried sinkholes structures in various sizes and stages of development. Orange Lake was divided into three areas southeast, southwest, and north-central. Karst features within the southeast area of Orange Lake are mostly cover subsidence sinkholes and associated features. Many of the subsidence features found are grouped together to form larger composite sinkholes, some greater than 400 m in diameter. The size of these composite sinkholes and the number of buried subsidence sinkholes distinguish the southeast area from the others. The potential of lake waters leaking to the aquifer in the southeast area is probably controlled by the permeability of the cover sediments or by fractures that penetrate the lake floor. The lake bottom and subsurface of the north-central areas are relatively subsidence sinkholes that have no cover sediments overlying them, implying that the sinks have been actively subsiding with some seepage into the aquifer from the lake in this area due to the possible presence of the active subsidence

  16. Variability of Water Chemistry in Tundra Lakes, Petuniabukta Coast, Central Spitsbergen, Svalbard

    PubMed Central

    Mazurek, Małgorzata; Paluszkiewicz, Renata; Rachlewicz, Grzegorz; Zwoliński, Zbigniew

    2012-01-01

    Samples of water from small tundra lakes located on raised marine terraces on the eastern coast of Petuniabukta (Ebbadalen, Central Spitsbergen) were examined to assess the changes in water chemistry that had occurred during the summer seasons of 2001–2003 and 2006. The unique environmental conditions of the study region include the predominance of sedimentary carbonate and sulphate rocks, low precipitation values, and an active permafrost layer with a maximum thickness of 1.2 m. The average specific electric conductivity (EC) values for the three summer seasons in the four lakes ranged from 242 to 398 μS cm−1. The highest EC values were observed when the air temperature decreased and an ice cover formed (cryochemical effects). The ion composition was dominated by calcium (50.7 to 86.6%), bicarbonates (39.5 to 86.4%), and sulphate anions. The high concentrations of HCO3−, SO42−, and Ca2+ ions were attributed to the composition of the bedrock, which mainly consists of gypsum and anhydrite. The average proportion of marine components in the total load found in the Ebbadalen tundra lake waters was estimated to be 8.1%. Precipitation supplies sulphates (as much as 69–81%) and chlorides (14–36%) of nonsea origin. The chief source of these compounds may be contamination from the town of Longyearbyen. Most ions originate in the crust, the active layer of permafrost, but some are atmospheric in origin and are either transported or generated in biochemical processes. The concentrations of most components tend to increase during the summer months, reaching a maximum during freezing and partially precipitating onto the bottom sediments. PMID:22654629

  17. Variability of water chemistry in Tundra Lakes, Petuniabukta Coast, Central Spitsbergen, Svalbard.

    PubMed

    Mazurek, Małgorzata; Paluszkiewicz, Renata; Rachlewicz, Grzegorz; Zwoliński, Zbigniew

    2012-01-01

    Samples of water from small tundra lakes located on raised marine terraces on the eastern coast of Petuniabukta (Ebbadalen, Central Spitsbergen) were examined to assess the changes in water chemistry that had occurred during the summer seasons of 2001-2003 and 2006. The unique environmental conditions of the study region include the predominance of sedimentary carbonate and sulphate rocks, low precipitation values, and an active permafrost layer with a maximum thickness of 1.2 m. The average specific electric conductivity (EC) values for the three summer seasons in the four lakes ranged from 242 to 398 μS cm(-1). The highest EC values were observed when the air temperature decreased and an ice cover formed (cryochemical effects). The ion composition was dominated by calcium (50.7 to 86.6%), bicarbonates (39.5 to 86.4%), and sulphate anions. The high concentrations of HCO(3) (-), SO(4) (2-), and Ca(2+) ions were attributed to the composition of the bedrock, which mainly consists of gypsum and anhydrite. The average proportion of marine components in the total load found in the Ebbadalen tundra lake waters was estimated to be 8.1%. Precipitation supplies sulphates (as much as 69-81%) and chlorides (14-36%) of nonsea origin. The chief source of these compounds may be contamination from the town of Longyearbyen. Most ions originate in the crust, the active layer of permafrost, but some are atmospheric in origin and are either transported or generated in biochemical processes. The concentrations of most components tend to increase during the summer months, reaching a maximum during freezing and partially precipitating onto the bottom sediments. PMID:22654629

  18. Late Holocene Drought Record From Castor Lake, North-Central Washington State

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Abbott, M. B.; Polissar, P. J.; Finney, B.

    2006-12-01

    The effects of recent and historic drought in the North American west provide motivation for understanding the natural variability and underlying causes of these events. We present a 6,000-year lake sediment record of water balance from Washington State in an effort to address these questions. A series of overlapping sediment cores were collected and chronological control was established through a combination of radiocarbon, tephrochronology, and cesium isotope activity. Modern basin morphometry and lake water oxygen and hydrogen isotope data indicate closed-basin hydrology and the strong influence of evaporative enrichment on lake water composition, and therefore sensitivity of the system to changes in regional water balance and drought. Samples of endogenic aragonite precipitates were isolated from sediment cores at an average sampling interval of 3.7mm, corresponding to a temporal resolution of approximately 7 years. Grayscale data were generated from digital images of the cores collected under controlled light conditions and are shown to track changes in oxygen isotope values, with darker layers corresponding to periods of increased isotopic composition. In addition to supporting the notion that oxygen isotope data are primarily recording changes in water balance as opposed to changes in water source or temperature, the increased resolution of the grayscale record improves the resolution of the climate signal to the sub-millimeter scale of the laminations. There is a significant correlation between the most recent portion of the Castor Lake grayscale record and a 1,500-yr Palmer Drought Severity Index (PDSI) reconstruction from central Washington (1). The strong association between changes in the Castor Lake record and changes in the PDSI reconstruction provides convincing method validation and strengthens the interpretation of both as drought signals. Spectral analyses of the grayscale record using singular spectrum analysis (SSA), maximum entropy method (MEM

  19. Comparison of evaporation at two central Florida lakes, April 2005–November 2007

    USGS Publications Warehouse

    Swancar, Amy

    2015-01-01

    Both lakes are seepage lakes (no surface-water inflow or outflows) that are dependent on groundwater inflow from their basins to offset an atmospheric deficit, because long-term rainfall in this area is less than evaporation. The Lake Starr basin, where sandy, well-drained ridges surround the lake, has a greater capacity to store infiltrating rain than the Lake Calm basin, which is flat and has poorly drained soils. The storage capacities of the basins affect groundwater exchange with the lakes. Rainfall and net groundwater exchange, which is related to basin characteristics, varied more between these two lakes than did evaporation during this study.

  20. Hydrology of the Floral City Pool of Tsala Apopka Lake, west-central Florida

    USGS Publications Warehouse

    Bradner, L.A.

    1988-01-01

    Tsala Apopka Lake, in west-central Florida, has an area of about 19,000 acres and is divided into three water-management pools, with the Floral City Pool, the most upgradient. The Floral City Pool, which has a surface area of approximately 4,750 acres, contains an extensive combination of lakes, wetlands, and connecting canals. The Pool receives inflow from the Withlacoochee River through two canals. Outflow is through one manmade canal and one natural slough. Canal flow is partially controlled by manmade structures. A cumulative deficit of 19.4 inches of rainfall from August 1984 through May 1985 reduced surface-water inflow to the Floral City Pool to about 0.5 cu ft/sec by May 1985. During May 1985, pool levels declined approximately 0.04 ft/day. By the end of May, there was no observable outflow. From June 1985 through September 1985, 39.8 inches of rainfall caused above-average inflow to the Floral City Pool and a pool-level increase of 6.2 ft. The inflow of 340 CFS nearly equaled the outflow of 338 CFS by the end of September. (USGS)

  1. Twentieth century atmospheric metal fluxes into Central Park Lake, New York City

    SciTech Connect

    Chillrud, S.N.; Simpson, H.J.; Bopp, R.F.

    1999-03-01

    It is generally assumed that declining atmospheric lead concentrations in urban centers during the 1970s and 1980s were due almost entirely to the progressive introduction of unleaded gasoline. However, most environmental data are from monitoring programs that began only two to three decades ago, which limits their usefulness. Here, trace metal and radionuclide data from sediment cores in Central Park Lake provide a record of atmospheric pollutant deposition in New York City through the 20th century, which suggests that leaded gasoline combustion was not the dominant source of atmospheric lead for NYC. Lead deposition rates, normalized to known Pb-210 atmospheric influxes, were extremely high, reaching maximum values from the late 1930s to early 1960s, decades before maximum emissions from combustion of leaded gasoline. Temporal trends of lead, zinc, and tin deposition derived from the lake sediments closely resemble the history of solid waste incineration in New York City. Furthermore, widespread use of solid waste incinerators in the United States and Europe over the last century suggests that solid waste incineration may have provided the dominant source of atmospheric lead and several other metals to many urban centers.

  2. Twentieth Century Atmospheric Metal Fluxes into Central Park Lake, New York City

    PubMed Central

    CHILLRUD, STEVEN N.; BOPP, RICHARD F.; SIMPSON, H. JAMES; ROSS, JAMES M.; SHUSTER, EDWARD L.; CHAKY, DAMON A.; WALSH, DAN C.; CHOY, CRISTINE CHIN; TOLLEY, LAEL-RUTH; YARME, ALLISON

    2011-01-01

    It is generally assumed that declining atmospheric lead concentrations in urban centers during the 1970s and 1980s were due almost entirely to the progressive introduction of unleaded gasoline. However, most environmental data are from monitoring programs that began only two to three decades ago, which limits their usefulness. Here, trace metal and radionuclide data from sediment cores in Central Park Lake provide a record of atmospheric pollutant deposition in New York City through the 20th century, which suggests that leaded gasoline combustion was not the dominant source of atmospheric lead for NYC. Lead deposition rates, normalized to known Pb-210 atmospheric influxes, were extremely high, reaching maximum values (>70 μg cm−2 yr−1) from the late 1930s to early 1960s, decades before maximum emissions from combustion of leaded gasoline. Temporal trends of lead, zinc, and tin deposition derived from the lake sediments closely resemble the history of solid waste incineration in New York City. Furthermore, widespread use of solid waste incinerators in the United States and Europe over the last century suggests that solid waste incineration may have provided the dominant source of atmospheric lead and several other metals to many urban centers. PMID:21850150

  3. The impact of introduced round gobies (Neogobius melanostomus) on phosphorus cycling in central Lake Erie

    USGS Publications Warehouse

    Bunnell, D.B.; Johnson, T.B.; Knight, C.T.

    2005-01-01

    We used an individual-based bioenergetic model to simulate the phosphorus flux of the round goby (Neogobius melanostomus) population in central Lake Erie during 1995-2002. Estimates of round goby diet composition, growth rates, and population abundance were derived from field sampling. As an abundant introduced fish, we predicted that round gobies would influence phosphorus cycling both directly, through excretion, and indirectly, through consumption of dreissenid mussels, whose high mass-specific phosphorus excretion enhances recycling. In 1999, when age-1+ round gobies reached peak abundance near 350 million (2.4 kg??ha-1), annual phosphorus excretion was estimated at 7 t (1.4 ?? 10-3 mg P??m-2??day -1). From an ecosystem perspective, however, round gobies excreted only 0.4% of the phosphorus needed by the benthic community for primary production. Indirectly, round gobies consumed <0.2% of dreissenid population biomass, indicating that round gobies did not reduce nutrient availability by consuming dreissenids. Compared with previous studies that have revealed introduced species to influence phosphorus cycling, round gobies likely did not attain a sufficiently high biomass density to influence phosphorus cycling in Lake Erie. ?? 2005 NRC Canada.

  4. Regional trends in mercury distribution across the Great Lakes states, north central USA

    NASA Astrophysics Data System (ADS)

    Nater, Edward A.; Grigal, David F.

    1992-07-01

    CONCENTRATIONS of mercury in the environment are increasing as a result of human activities, notably fossil-fuel burning and incineration of municipal wastes. Increasing levels of mercury in aquatic environments and consequently in fish populations are recognized as a public-health problem1,2. Enhanced mercury concentrations in lake sediments relative to pre-industrial values have also been attributed to anthropogenic pollution. It is generally assumed that atmospheric mercury deposition is dominated by global-scale processes, consequently being regionally uniform. Here, to the contrary, we report a significant gradient in concentrations and total amounts of mercury in organic litter and surface mineral soil along a transect of forested sites across the north central United States from northwestern Minnesota to eastern Michigan. This gradient is accompanied by parallel changes in wet sulphate deposition and human activity along the transect, suggesting that the regional variation in mercury content is due to deposition of anthropogenic mercury, most probably in particulate form.

  5. Continuous Lake Recession of Siling Co, Central Tibet, Since the Middle Holocene

    NASA Astrophysics Data System (ADS)

    Shi, X.; Kirby, E.; Furlong, K. P.; Meng, K.; Robinson, R. A. J.; Lu, H.; Wang, E.

    2014-12-01

    Lake level changes and the associated water budget of closed lake basins are sensitive to climatic change. Although paleoshorelines around large lakes in Tibet were previously studied, reliable dating and surveying of these sequences of shorelines to reconstruct a detailed lake history in this region remain sparse. The rate of lake recession in response to paleoclimate changes remains poorly constrained. We have utilized flights of shoreline features with heights of up to 64 m above modern lake level within the Siling Co (lake) drainage basin to evaluate the history of the lake recession. Our results show that Siling Co underwent a continuous recession since ~ 4 ka from the Lingtong lake highstand (at ~ 4594 m in elevation). Simple calculations based on the history of these shorelines and the geometry of Siling Co lake basin suggest a systematic decrease in lake volume and surface area over the last 4 ka. Calculation of a 'hydrologic index' for closed lake basins (Mifflin and Wheat, 1979) suggests that historic lake levels reflect a decrease in effective moisture by a factor of 3 relative to the Middle Holocene lake highstand. The systematic recession of the lake likely reflects a progressive change in the water balance through time (rather than a protracted response to a step-function change). This is consistent with a weakening of the Indian Summer Monsoon. Our study shows how lacustrine shoreline archives can be used to quantify long-held inferences about the strength of the Indian Summer Monsoon.

  6. Quartz-molybdenite veins in the Priestly Lake granodiorite, north-central Maine

    USGS Publications Warehouse

    Ayuso, Robert A.; Shank, Stephen G.

    1983-01-01

    Quartz-molybdenite veins up to 15 cm in width occur in fine to medium-grained porphyritic biotite-hornblende granodiorite at Priestly Lake north-central Maine. An area of about 150 m x 150 m contains quartz-molybdenite veins; a larger area is characterized by barren quartz veins. Quartz-molybdenite veins are concentrated within the most felsic variants of the intrusion as suggested by lower mafic mineral contents. The pluton has a narrow range in SiO2 (67-70 wt.%), major oxides, and in trace-element compositions. Molybdenite occurs as coarse grained clusters in pockets within the quartz veins, and fills fractures in the quartz veins and host rocks. Disseminated molybdenite in the granodiorite is relatively rare and occurs only in the area characterized by a high density of quartz veins (up to 50 veins per square meter). Alteration envelopes along the quartz veins are very thin or absent, although in some areas the granodiorite appears to be selectively and pervasively altered. Sericite, chlorite, epidote, calcite, pyrite, and quartz are concentrated near the quartz-molybdenite veins. Many of the field and geochemical characteristics of the Priestly Lake pluton are unlike those of major molybdenum-producing areas (Climax, Henderson, Urad). For example, the area of alteration seems to be of limited extent, the host rock is not intensely altered hydrothermally at the surface, the density of fractures is rather low in the mineralized area, and the amount of disseminated molybdenite appears to be small. However, the Priestly Lake pluton may be a small fraction of a concealed batholith as suggested by geophysical data. It is conceivable that the type of mineralization at the surface might be the expression of more extensive molybdenite mineralization at depth. The quartz-molybdenite veins in the Priestly Lake pluton are significant because they indicate that potential molybdenum sources for producing mineralized granites were available at depth. Future studies should be

  7. Relating actual with subfossil chironomid assemblages. Holocene habitat changes and paleoenvironmental reconstruction of Basa de la Mora Lake (Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Tarrats, Pol; Rieradevall, Maria; González-Sampériz, Penélope; Pérez-Sanz, Ana; Valero-Garcés, Blas; Moreno, Ana

    2014-05-01

    Analyses of subfossil and actual macroinvertebrate fauna and Chironomidae larvae (Insecta: Diptera) assemblages of Basa de la Mora Lake (Central Pyrenees, Spain, 1914 m a.s.l.) improves the environmental calibration for lake paleoreconstruction and allow to infer lake habitat changes throughout the Holocene. The results of the actual Chironomidae community are consistent with other mountain lake studies (either in the Pyrenees or other regions), with a few mismatching due to lake specific conditions. The actual and the subfossil Chironomidae taxa present in Basa de la Mora Lake are the same, which is an essential requirement to apply the analogue methods. Although we could not find habitat-specific taxa, significant differences between the different habitats present in the lake were found. This circumstance allowed applying the Modern Analogue Technique (MAT) to infer lake habitat changes. The MAT method relates the actual community, defined from the species abundance matrix and an environmental variable (which is the object of the inference), and the past community, defined from the species abundance matrix downcore. Because the first axis of DCA carried out for the study of the actual Chironomidae larvae explained the assemblage changes between the different habitats, the scores of this first axis were used as representative of the environmental variable (dominant habitat type) to be inferred. The application of the MAT has allowed identifying two periods of lake productivity increase through the Holocene: i) around 2800 cal. yrs BP, which coincides with the first documented human occupation of the area, and ii) the last four centuries, synchronous to the maximum population of mountain areas in the Pyrenees and development of stockbreeding activities.

  8. LIMNETIC LARVAL FISH IN THE NEARSHORE ZONE OF THE SOUTH SHORE OF THE CENTRAL BASIN OF LAKE ERIE

    EPA Science Inventory

    This report presents the results of a survey of larval fish in the nearshore zone of the central basin of Lake Erie from Conneaut to Sandusky, Ohio. Larval fish were sampled at 10 transects during each of 8 cruise periods between 2 May and 9 August 1978. Concentrations of fish la...

  9. DISTRIBUTION, ABUNDANCE AND ENTRAINMENT STUDIES OF LARVAL FISHES IN THE WESTERN AND CENTRAL BASINS OF LAKE ERIE

    EPA Science Inventory

    To assess the impact of entrainment of larval fishes at steam generating electrical power plants, samples were collected in Lake Erie. In 1975, 1976 and 1977 the Western Basin was sampled and in 1978 the sampling was concentrated in the Central Basin. The 1975, 1976 sampling perm...

  10. Mineralogy, geochemistry and genesis of the modern sediments of Seyfe Lake, Kırşehir, central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Önalgil, Nergis; Kadir, Selahattin; Külah, Tacit; Eren, Muhsin; Gürel, Ali

    2015-02-01

    Seyfe Lake (Kırşehir, Turkey) is located within a depression zone extending along a NW-SE-trending fault in central Anatolia. Evaporite and carbonate sediments occur at the bottom of the lake which is fed by high-sulfate spring and well waters circulating N-S through salt domes. The recent sediments of Seyfe Lake are deposited in delta, backshore, beach, mud-flat and shallow lake environments. In the mud-flat environment, calcite, gypsum, halite, and thenardite are associated with fine-grained detrital sediments. Sediments from the margin to the lake center are distributed as calcite, gypsum and halite ± thenardite, yielding an annular distribution pattern. An increase in Na2O, SO3, and S, and a decrease in CaO toward the lake center are due to sediment distribution. On the other hand, a positive correlation of SiO2 with MgO, K2O, Na2O, Al2O3, and Fe2O3 + TiO2 is attributed to the presence of smectite, illite and feldspar. In addition, a positive correlation of Sr and Ba with CaO is related to the amount of gypsum in the sediments. Strontium is associated with in situ gypsum crystals; it increases in the intermediate and central zones of the lake as a result of a relative increase in salinity toward the lake center. The association of Sr with gypsum in the sediments suggests that Ca and Sr were derived from Sr-bearing evaporites and their carbonate host rocks, which were the likely aquifers for the brine. The S- and O-isotopic compositions of sulfate crystals range from +19.1‰ to +21.7‰ and from +16.9‰ to +20.9‰ SMOW, respectively, suggesting precipitation in a closed lake system. A relative increase of oxygen and sulfur isotope ratios toward the lake center suggests dissolution of gypsum in the host rock, with contributions from circulating groundwater and sulfate reduction (possibly by bacterial reduction). 87Sr/86Sr isotope ratios range from 0.707286 to 0.707879, suggesting a non-marine Oligo-Pliocene evaporitic host rock source for precipitation in

  11. Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972-2010

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Siegert, Florian; Zhou, Ai-guo; Franke, Jonas

    2013-12-01

    The alpine ecosystem of the Western Nyainqentanglha region, located in the Central Tibetan Plateau, has experienced a lot of changes in the context of climatic change. The long data record of remote sensing data allowed us to evaluate spatio-temporal change in this remote area. The ecosystem changes of the Western Nyainqentanglha region were detected by using Landast MSS/TM/ETM +, Hexagon KH-9, Glas/ICESat, SRTM3 DEM remote sensing data and GIS techniques. The area of glacier lakes was delineated by visual interpretation, while for the inland lake by image classification. The change of glacier thickness was obtained by Glas/ICESat data of 2004 and 2008. Results show high variation in extent of glaciers and lakes with increased temperature and precipitation in the past 40 years. These variations include glacial retreat, increased water level of inland lakes and increased number of glacier lakes to higher altitudes. Glaciers lost 22% of its coverage from 1977 to 2010, and the annual shrinkage rate accelerated in the last decade compared with the previous time period of 1977-2001. In average, the thickness of the monitored glaciers reduced by 4.48 m from 2004 to 2008 with an annual rate of 1.12 m. From 1972 to 2009, the number of new formed glacier lakes increased by 150 and the area of glacier lakes increased by 173% (4.53 km2). At the same time, the surface area of the largest salt lake in Tibet expanded by 4.13% (80.18 km2). These variations appear to be associated with an increase in mean annual temperature of 0.05 °C per year, and an increase in annual precipitation of 1.83 mm per year in the last four decades. By analyzing the relationship between the decreased glacier area and the increased number and extent of lakes in the vertical zones over the past 40 years, there is a high correlation of 0.81. These results indicate that the climate change has great impacts on glaciers and glacier lakes on the central Tibetan Plateau. Further detailed investigations are

  12. Digital models of a glacial outwash aquifer in the Pearl-Sallie Lakes area, west-central Minnesota

    USGS Publications Warehouse

    Larson, S.P.; McBride, Mark S.; Wolf, R.J.

    1975-01-01

    -p^e need for study of lake-ground-water interchange has been accentuated by eutrophication of lakes in the Pearl-Sallie Lakes area of west-central Minnesota. The local ground-water flow system is dominated by an outwash aquifer that is sandwiched between two till layers in the western part of the area and exposed at the land surface in the eastern part. Ground water discharges from the aquifer into lakes in the outwash area but is recharged from lakes in the till-covered area. Irregular aquifer geometry resulted in a complex ground-water flow system. Simulation of the system by areal and vertical-section models showed that the lakes significantly control groundwater flow near their boundaries. Inadequate field data and complex geology caused difficulty in obtaining solutions with the vertical-section model. The models may be used to guide collection and interpretation of field data, and quantification of the ground-water flow system. With modification, they could be used to predict aquifer response to transient stresses. They also could be incorporated into more complex models to determine the movement of solutes in the ground-water system.

  13. Seasonal and spatial contrasts of sedimentary organic carbon in floodplain lakes of the central Amazon basin.

    NASA Astrophysics Data System (ADS)

    Sobrinho, Rodrigo; Kim, Jung-Hyun; Abril, Gwenaël; Zell, Claudia; Moreira-Turcq, Patricia; Mortillaro, Jean-Michel; Meziane, Tarik; Damsté, Jaap; Bernardes, Marcelo

    2014-05-01

    Three-quarters of the area of flooded land in the world are temporary wetlands (Downing, 2009), which play a significant role in the global carbon cycle(Einsele et al., 2001; Cole et al., 2007; Battin et al., 2009; Abril et al., 2013). Previous studies of the Amazonian floodplain lakes (várzeas), one important compartment of wetlands, showed that the sedimentation of organic carbon (OC) in the floodplain lakes is strongly linked to the periodical floods and to the biogeography from upstream to downstream(Victoria et al., 1992; Martinelli et al., 2003). However, the main sources of sedimentary OC remain uncertain. Hence, the study of the sources of OC buried in floodplain lake sediments can enhance our understanding of the carbon balance of the Amazon ecosystems. In this study, we investigated the seasonal and spatial pattern of sedimentary organic matter in five floodplain lakes of the central Amazon basin (Cabaliana, Janauaca, Canaçari, Miratuba, and Curuai) which have different morphologies, hydrodynamics and vegetation coverage. Surface sediments were collected in four hydrological seasons: low water (LW), rising water (RW), high water (HW) and falling water (FW) in 2009 and 2010. We investigated commonly used bulk geochemical tracers such as C:N ratio and stable isotopic composition of organic carbon (δ13COC). These results were compared with lignin-phenol parameters as an indicator of vascular plant detritus (Hedges and Ertel, 1982) and branched glycerol dialkyl glycerol tetraethers (brGDGTs) to trace the soil OC from land to the aquatic settings (Hopmans et al., 2004). Our data showed that during the RW and FW seasons, the concentration of lignin and brGDGTs were higher in comparison to other seasons. Our study also indicated that floodplain lake sediments primarily consisted of a mixture of C3 plant detritus and soil OC. However, a downstream increase in C4 plant-derived OC contribution was observed along the gradient of increasingly open waters, i

  14. Effects of climatic warming on Lakes of the central boreal forest

    SciTech Connect

    Schindler, D.W.; Beaty, K.G.; Fee, E.J.; Cruikshank, D.R.; DeBruyn, E.R.; Findlay, D.L.; Linsey, G.A.; Shearer, J.A.; Stainton, M.P.; Turner, M.A. )

    1990-11-16

    Twenty years of climatic, hydrologic, and ecological records for the Experimental Lakes Area of northwestern Ontario show that air and lake temperatures have increased by 2{degree}C and the length of the ice-free season has increased by 3 weeks. Higher than normal evaporation and lower than average precipitation have decreased rates of water renewal in lakes. Concentrations of most chemicals have increased in both lakes and streams because of decreased water renewal and forest fires in the catchments. In Lake 239, populations and diversity of phytoplankton also increased, but primary production showed no consistent trend. Increased wind velocities, increased transparency, and increased exposure to wind of lakes in burned catchments caused thermoclines to deepen. As a result, summer habitats for cold stenothermic organisms like lake trout and opossum shrimp decreased. Our observations may provide a preview of the effects of increased greenhouse warming on boreal lakes. 27 refs., 1 fig.

  15. The sedimentary record of the 1960 tsunami in two coastal lakes on Isla de Chiloé, south central Chile

    NASA Astrophysics Data System (ADS)

    Kempf, P.; Moernaut, J.; Van Daele, M.; Vermassen, F.; Vandoorne, W.; Pino, M.; Urrutía, R.; Schmidt, S.; Garrett, E.; De Batist, M.

    2015-10-01

    This study describes sediments deposited by the tsunami following the 1960 Great Chilean Earthquake (MW 9.5) in two coastal lakes, Lakes Cucao and Huelde, on the west coast of Isla de Chiloé, south central Chile (42.6°S). Sub-bottom profiles and side scan sonar mosaics illustrate the sedimentary context of transects of gravity cores. The stratigraphy of both lakes features gyttja sedimentation, interrupted by the abrupt emplacement of a sandy layer with mud rip-up clasts and a mud cap. This sandy layer reflects a sudden change in sedimentary environment, most probably caused by a high-energy inundation. Radionuclide analyses (137Cs and 210Pb) date the inundation deposit to shortly before the mid 1960s. The only known event that matches the sedimentological and chronological criteria is the AD 1960 tsunami. Using grain size analysis and comparisons with samples from modern environments, we demonstrate that the proximal (seaward) part of the deposit consists of a mixture of sand derived from subaerial sources and reworked gyttja lake sediment. In the distal (landward) part of Lake Cucao, the sand component is lost and the deposit consists entirely of remobilised lake sediments. The repetition of tsunami deposit sequences in Lake Huelde suggests a minimum of three inundating waves. Sub-bottom profiles and side scan sonar mosaics reveal tsunami inundation over the barrier and more prominently through the outlet river channel. The dominant role of the river channel as a pathway for sediment transport is also described in core samples by tsunami deposits that fine away from the channel mouth. The identification and description of the deposit left by a known tsunami provide important insights into tsunami sedimentation in coastal lakes and have the potential to help in the search for paleotsunami evidence.

  16. Temporal trends of pollution Pb and other metals in east-central Baffin Island inferred from lake sediment geochemistry.

    PubMed

    Michelutti, Neal; Simonetti, Antonio; Briner, Jason P; Funder, Svend; Creaser, Robert A; Wolfe, Alexander P

    2009-10-15

    Concentrations and stable isotope ratios of lead (Pb) from lake sediments were used to quantify temporal patterns of anthropogenic Pb pollution in the Clyde River region of Baffin Island, Arctic Canada. Surface sediments from eight lakes on eastern Baffin Island and one from northern-most Greenland, spanning a gradient of 20 degrees latitude, showed great variability with respect to Pb concentration and stable isotopic Pb ratios, with little apparent latitudinal trend. To constrain the temporal evolution of regional Pb pollution, a well-dated core from one of the sites, Lake CF8 on east-central Baffin Island, was analyzed geochemically at high stratigraphic resolution. A pronounced decrease in the (206)Pb/(207)Pb ratio occurs in sediments deposited between 1923 and the mid-1970s, likely reflecting alkyl-Pb additives derived from the combustion of fossil fuels at a global scale. A two-component mixing model indicates that 17-26% of the Pb in the labile fraction of sediments deposited in Lake CF8 between 2001 and 2005 is from anthropogenic input. A Pb-Pb co-isotopic plot ((206)Pb/(207)Pb vs.(208)Pb/(206)Pb ratios) of the Lake CF8 time series data indicates multiple possible sources of industrial Pb pollution. Despite widespread reductions in industrial Pb emissions since the 1970s, there is no evidence for attendant reductions of pollution Pb at Lake CF8. Enhanced scavenging from increased primary production as well as changing precipitation rates as climate warms may represent important factors that modulate Pb deposition to Lake CF8, and Arctic lakes elsewhere. PMID:19665172

  17. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    USGS Publications Warehouse

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, R.C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley

  18. Late Quaternary volcanic record from lakes of Michoacán, central Mexico

    NASA Astrophysics Data System (ADS)

    Newton, Anthony J.; Metcalfe, Sarah E.; Davies, Sarah J.; Cook, Gordon; Barker, Philip; Telford, Richard J.

    2005-01-01

    This paper describes the initial stages of the development of a tephrochronology for the region of the Michoacán-Guanajuato volcanic field (MGVF) in central Mexico. There are two elements to this: the geochemical characterisation of volcanic glass and the linkage of tephra deposits to eruptions of known age. The MGVF is dominated by cinder cones and shield volcanoes which erupt only once. There are only two stratovolcanoes (multiple eruptions) which are common elsewhere in the Trans-Mexican Volcanic Belt. Tephras were sampled from sub-aerial sites close to cones of known age and from lake sediment cores from the Zirahuén, Pátzcuaro and Zacapu basins in the State of Michoacán. Multiple samples were collected to ensure that each tephra was well represented. The glass was analysed by electron microprobe and found to be calc-alkaline in composition. SiO 2 abundances varied from 52% to 75%. Full results are available at http://www.geo.ed.ac.uk/tephra/. The ages of the dated cones ranged from the 20th century AD to ca 17,000 14C years BP. Tephras from eruptions of El Jabali (3840 14C years BP), Jorullo (1759-1774) and Paricutín (1943-1952) have been identified in lake cores. These provide a means of correlating between basins and have the potential to provide a basis for understanding the volcanic history of this area and for dating a wider range of sediment sequences.

  19. Central Asian Paleoclimatology (Lake Karakul, Pamir) of the last 30,000 Years

    NASA Astrophysics Data System (ADS)

    Aichner, B.; Mischke, S.; Feakins, S. J.; Heinecke, L.; Rajabov, I.

    2014-12-01

    The goal of this study is to deepen the understanding of past changes in Central Asia, a climate sensitive region located at the intercept of large scale atmospheric circulation systems of which no pre-Holocene records exist so far. A ca. 10 m sediment core with a basal age of ca. 30 ka BP was drilled at Lake Karakul (Tajikistan), a large closed brackish lake situated in a tectonic basin at an altitude of 3,928 m. The lake catchment may be classified as alpine steppe to alpine desert with mean annual temperature and precipitation of ca. -3.9 °C and 82 mm, respectively. We applied a multi-proxy approach which combines inorganic and organic geochemical parameters. δ13C and δ18O values of authigenic carbonates show comparable trends with two pronounced episodes of depleted values at ca. 17.5 ka BP and 24 ka BP. These are indicative for fluctuations within the hydrological cycle and periods of low primary productivity which could have occurred synchronous to Northern Hemispheric climate events H1 and H2. Total organic carbon contents and organic biomarker concentrations are low during the glacial and rapidly increase to Holocene levels between ca. 14 and 11 ka BP. Biomarker fingerprints of aliphatic compounds are mostly dominated by mid-chain n-alkanes with δ13C values up to -14‰ which suggest a primarily aquatic origin. Terrestrial long-chain n-alkanes are mainly abundant during the late glacial to Holocene transition, possibly introduced by enhanced meltwater input during deglaciation. Their hydrogen isotopic variability is ca. 50‰ with constant depletion from ca. 19 to 10 ka BP. This is reflected by generally higher average δD values of aquatic n-alkanes throughout the glacial compared to Holocene values. Effective moisture variations alone cannot explain this offset. We suggest that changes in atmospheric circulation dynamics, origin of water vapour and source water for lipid synthesis (i.e. meltwater vs. precipitation) are the reasons for the observed

  20. Establishing the geometry and nature of sediments trapped in either natural or artificial dam lakes in contrasted drainage basins from Western Europe (French Massif Central and Pyrenees)

    NASA Astrophysics Data System (ADS)

    Chapron, Emmanuel; Chassiot, Léo; Zouzou, Claude; Simonneau, Anaelle; Galop, Didier; Di Giovanni, Christian

    2016-04-01

    Lacustrine sedimentary archives from artificial dam lakes are poorly documented both in terms of basin fill geometries and dominating sedimentary processes. In order to better understand their sensitivities to regional environmental changes, we performed a similar multidisciplinary study of French natural and artificial dam lakes in contrasted drainage basins from the volcanic Massif Central (lakes Aydat and Crégut) and two granitic sectors of the northern Pyrenees (lakes Fourcat and Orédon). Our approach combined high-resolution sub bottom profiling (14 kHz and 4 kHz chirp) and a detailed study of sediment cores based on qualitative and quantitative analysis (radiographies, sediment physical and chemical properties) together with radionuclide and radiocarbon dates. In all cases either changes in land uses within the drainage basin or the flooding of natural lakes by dams and the production of hydroelectricity induced changes in sedimentation rates and modes. Human activities affecting either the catchment or the lake itself favored enhanced clastic sediment supply in the lake basins and/or higher and fluctuating lake levels. Subaquatic slopes failures are also identified in Lake Aydat formed by a lava flow 8.5 kYrs ago and in glacial lakes Crégut (Massif Central) and Orédon (Pyrenees) now used to produce hydroelectricity and suggest that lake level changes and ground accelerations during earthquakes can remobilize distinct sectors of the basin fills and not only deltaic environments.

  1. Deglaciation of the Central Lake Superior Basin Imaged by High-Resolution Seismic-Reflection Profiles

    NASA Astrophysics Data System (ADS)

    Colman, S. M.; Breckenridge, A. J.; Wattrus, N. J.

    2015-12-01

    The Lake Superior basin experienced multiple episodes of glaciation, resulting in a variety of glacial deposits and landforms, most of which date to the final retreat of Laurentide ice from the basin. Prominent among these features are moraines and thick glacial lacustrine varve sequences in the central part of the lake. Because these features are now beneath deep water, they can be well imaged by modern marine seismic-reflection methods, providing a variety of insights into glacial processes and history. Two prominent moraines occur east of Isle Royale, and other morainal deposits exist. The prominent moraines are as much as 75 m high, asymmetric, and locally concave down-ice in plan view. They are steeper up-ice than down, but vary in morphology along strike. Air-gun seismic-reflection data show that the moraines are underlain by thick, acoustically massive deposits (till) over a smooth bedrock surface, and that, in front of the moraines, the till grades laterally into increasingly stratified deposits interpreted as glacial lacustrine outwash. Such lateral relations between till and outwash are rarely displayed so well in natural exposures. The moraines relate to the Marquette advance of the Laurentide ice sheet, but they are difficult to directly correlate with the terrestrial deposits used to define that advance. Overlying the till and moraines is a thick sequence of glacial lacustrine varves, which are well imaged by high-resolution CHIRP seismic-reflection profiles. Although the CHIRP data cannot resolve even the thickest of the individual varves, the section comprises distinct acoustic packages. The CHIRP data show that the base of the varve sequence becomes younger to the northeast, the direction of ice retreat. Throughout the varved sequence are lenses of acoustically massive material and local features interpreted as iceberg plow marks, which are especially concentrated at one horizon. Limited 3-D seismic data show the curvilinear plan view of the plough

  2. Effect of phosphorous concentrations on sedimentary distributions and isotopic composition of algal lipid biomarkers in lakes from central Switzerland

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Dubois, N.; Schubert, C. J.

    2015-12-01

    Lakes in the Swiss central plateau experienced increasing anthropogenic phosphorous loading throughout much of the 20th century. Since the 1980s concerted remediation efforts on the part of the Swiss government have significantly reduced P concentrations in most lakes and reversed previous eutrophication. However, P concentrations remain elevated above their preindustrial levels in many sites. High quality monitoring of lake nutrient levels since the 1950s, along with several lakes of wide-ranging P concentrations in close proximity, make central Switzerland an ideal location for studying the ways in which nutrient loading affects the organic composition of lacustrine sediments. Results of such studies can be used to develop proxies of eutrophication in sites where fewer historical data exist, and to reconstruct historical P concentrations in local lakes from the time before record keeping began. We analyzed the distributions of algal lipid biomarkers from surface sediment and sediment traps collected in the spring of 2015 from ten lakes with variable P concentrations in central Switzerland. Sedimentary lipid distributions from these lakes confirm that biomarkers associated with algal and cyanobacterial sources are more abundant in the sediment of lakes with greater P loading. The dry sedimentary concentrations of biomarkers such as brassicasterol (primarily diatom source) and diplopterol (cyanobacteria source), as well as the less source specific short-chain n-alkanols, linearly increase from 0.3 - 1.9 μg/g as total phosphorous in the upper water column increases by 1 μg/L over a range of 7 - 50 μg/L. We also present preliminary hydrogen isotope data from these biomarkers. Hydrogen isotopes of algal lipids primarily reflect the source water in which the algae grew, and this relationship has been developed as a paleohydrologic proxy. However, laboratory cultures of marine algae demonstrate that they discriminate more against 2H under nutrient replete conditions

  3. Deuterium excess in the water cycle of Cona Lake, central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cui, J.; Tian, L.; Biggs, T. W.; Wen, R.

    2015-12-01

    Large numbers of lakes on the Tibetan Plateau (TP) play an important role in the regional hydrological cycle, and the river systems they occur in serve as important water resources for more than a billion people, but systematic observations of the lake water balance is scarce on the TP. Stable isotopes of water (δ18O and δD) can be used to understand the lake water cycle and its impact on water resources. Here we present a detailed study on the water cycle of Cona Lake, at the headwater of Nujiang-Salween River, based on three years of observations of δ18O and δD, including samples from precipitation, upper lake water (<1 m), outlet surface water, and atmospheric water vapor. Theδ18O-δD relationship in lake water (δD = 6.67δ18O - 20.37) differed from that of precipitation (δD = 8.29δ18O + 12.50). The deuterium excess (d-excess = δD - 8δ18O) was lower in the Cona Lake water (-7.5‰) than in local precipitation (10.7‰), indicating evaporation of lake water. The ratio of evaporation to inflow (E/I) of the lake water was estimated using the Craig-Gordon model. The E/I ratios of Cona lake ranged from 0.24 to 0.27 in the three years, indicating that 73-76% of lake water flowed downstream. Compared to the Craig-Gordon model, the Rayleigh distillation model had limited success in estimating lake evaporation, especially when lake water experienced intensive evaporation. In-situ observation of atmospheric water vapor isotope improved the estimate of E/I by 0.04 for δ18O and 0.08 for δD on average compared to water vapor isotope derived from the precipitation-vapor equilibrium method. Continuous sampling of lake water was necessary to estimate the E/I ratio accurately for lakes impacted by seasonal precipitation or meltwater, with sampling in the late summer or fall recommended for regional surveys. The results from this work imply the feasibility of d-excess in the study of lake water cycle for other lakes on the TP. The result is also helpful for the

  4. Evidence for insolation and Pacific forcing of late glacial through Holocene climate in the Central Mojave Desert (Silver Lake, CA)

    NASA Astrophysics Data System (ADS)

    Kirby, Matthew E.; Knell, Edward J.; Anderson, William T.; Lachniet, Matthew S.; Palermo, Jennifer; Eeg, Holly; Lucero, Ricardo; Murrieta, Rosa; Arevalo, Andrea; Silveira, Emily; Hiner, Christine A.

    2015-09-01

    Silver Lake is the modern terminal playa of the Mojave River in southern California (USA). As a result, it is well located to record both influences from the winter precipitation dominated San Bernardino Mountains - the source of the Mojave River - and from the late summer to early fall North American monsoon at Silver Lake. Here, we present various physical, chemical and biological data from a new radiocarbon-dated, 8.2 m sediment core taken from Silver Lake that spans modern through 14.8 cal ka BP. Texturally, the core varies between sandy clay, clayey sand, and sand-silt-clay, often with abrupt sedimentological transitions. These grain-size changes are used to divide the core into six lake status intervals over the past 14.8 cal ka BP. Notable intervals include a dry Younger Dryas chronozone, a wet early Holocene terminating 7.8 - 7.4 cal ka BP, a distinct mid-Holocene arid interval, and a late Holocene return to ephemeral lake conditions. A comparison to potential climatic forcings implicates a combination of changing summer - winter insolation and tropical and N Pacific sea-surface temperature dynamics as the primary drivers of Holocene climate in the central Mojave Desert.

  5. Palaeoenvironmental history of the Holocene volcanic crater lake Lago d'Averno (central southern Italy) inferred from aquatic mollusc deposits

    NASA Astrophysics Data System (ADS)

    Welter-Schultes, F. W.; Richling, I.

    2000-12-01

    The mollusc record from Lago d'Averno, central southern Italy, provides a detailed 1600-yr record of changes in water quality in response to bradyseismic movements and salinity fluctuations. Bradyseismic vertical land movements and human impact in Roman times led to several transgressions from the Mediterranean Sea, 1 km distant, making the lake a valuable resource for documenting the effect of episodic marine transgressions of a freshwater lake. Low-oxygen-tolerant freshwater molluscs suggest that, at around 900-500 bc the lake had a slowly decreasing medium freshwater quality, resulting from contamination of volcanic origin. Disappearance of the obligate freshwater snails and transgression of low-salinity-tolerant marine species indicate that, after 500 bc, continuous subsidence resulted in episodic marine transgressions from the nearby sea. The construction of a canal that connected the lake with the sea, in 37 bc, is marked by a considerable increase in the number of shells and by arrival of brackish-water-intolerant marine species. Species diversity increased considerably when the area was partly depopulated towards the end of the Roman Empire around ad 400. When the land was slightly uplifted around ad 600-750, the water quality of the lake became less favourable for marine molluscs.

  6. The hydrological and environmental evolution of shallow Lake Melincué, central Argentinean Pampas, during the last millennium

    NASA Astrophysics Data System (ADS)

    Guerra, Lucía; Piovano, Eduardo L.; Córdoba, Francisco E.; Sylvestre, Florence; Damatto, Sandra

    2015-10-01

    Lake Melincué, located in the central Pampean Plains of Argentina, is a shallow (∼4 m), subsaline lake (TDS > 2000 ppm), highly sensitive to hydrological changes. The modern shallow lake system is composed of: (a) a supralittoral area, which includes a narrow mudflat, a vegetated mudflat and wetlands subenvironments; and (b) the main water body, comprising lacustrine marginal and inner areas. The development and extension of these subenvironments are strongly conditioned upon lake surface fluctuations. Past environmental changes were reconstructed through sedimentological, physical and geochemical proxy analyses of two short sedimentary cores (∼127 cm). Well-constrained 210Pb ages profiles were modeled and radiocarbon chronologies were determined, covering a period from ∼AD 800 to the present. The analyzed sedimentary cores from Lake Melincué allowed for the reconstruction of past hydrological scenarios and associated environmental variability, ranging from extremely low lake levels during dry phases to pronounced highstands at wet periods. The paleohydrological reconstruction revealed very shallow conditions in the period between AD 806 and AD 1880, which was registered by massive deposits with low organic matter. Relatively wetter phases disrupting this dry period were represented by organic matter increases. A major wet phase was registered by AD 1454, after the end of the Medieval Climate Anomaly. A subsequent abrupt shift from this wet phase to drier conditions could be matching the transition between the end of the Medieval Climatic Anomaly and the beginning of the Little Ice Age. The occurrence of sedimentary hiatuses between AD 1492 and AD 1880 in Melincué sequence could correspond to intensive droughts during the Little Ice Age. After AD 1880, banded and laminated, autochthonous, organic matter-rich sediments registered an important lacustrine transgression and the onset of a permanent shallow lake, corresponding to the beginning of the current

  7. The Cinder Lake Intrusive Complex, Knee Lake area, Central Manitoba: a Syenite- Carbonatite Association from a Neoarchean Continental Margin

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, A. R.; Böhm, C. O.; Kressall, R. D.; Lenton, P. G.

    2009-05-01

    The Cinder Lake intrusive complex is the only known occurrence of feldspathoid rocks in Manitoba. These rocks were initially mapped in the southeastern part of the Lake by Elbers (in Gilbert, 1985) and Lenton (1985), but have not been adequately studied. On the basis of new field, petrographic and geochemical evidence acquired in 2008, three discrete intrusive phases can be presently identified at Cinder Lake: fine-grained aegirine-nepheline syenite, fine-grained biotite-vishnevite syenite and syenitic pegmatite. There is also convincing mineralogical and geochemical evidence for the presence of unexposed clinopyroxenite and carbonatitic units genetically associated with the alkaline syenitic rocks. The evidence for the presence of unexposed carbonatite includes pervasive calcitization of the syenitic rocks, occurrence of rare-earth minerals (britholite, monazite and REE-rich apatite) in association with Sr-rich calcite in metasomatised pegmatite, and andradite veins crosscutting the syenites. The geochemistry of the Cinder Lake rocks is most consistent with the HFSE-depleted, potassic, high-Ba/La and high-Th/Nb signature of arc magmas (Edwards et al., 1994). In common with island-arc and continental-margin phonolites, the Cinder Lake syenites are potassic rocks with a chondritic Zr/Hf ratio, strong enrichment in Ba relative to La and Th relative to Nb. Uranium-lead dating of zircon crystals recovered from the biotite-vishnevite syenite yielded an age of 2705±2 Ma, interpreted as the timing of syenite emplacement. This value is close to the age of the incipient accretion of subprovinces in the northwestern Superior province at 2.70-2.71 Ga (Davis et al. 2005). Given this age relationship, the Cinder Lake complex is probably derived from magmas produced in a Neoarchean subduction zone underlying the North Caribou microcontinent. The regional geological setting of the complex (abundance of tonalite and granodiorite among the plutonic rocks and the predominance of

  8. Greenhouse gas fluxes of a shallow lake in south-central North Dakota, USA

    USGS Publications Warehouse

    Tangen, Brian; Finocchiaro, Raymond; Gleason, Robert A.; Dahl, Charles F.

    2016-01-01

    Greenhouse gas (GHG) fluxes of aquatic ecosystems in the northern Great Plains of the U.S. represent a significant data gap. Consequently, a 3-year study was conducted in south-central North Dakota, USA, to provide an initial estimate of GHG fluxes from a large, shallow lake. Mean GHG fluxes were 0.02 g carbon dioxide (CO2) m−2 h−1, 0.0009 g methane (CH4) m−2 h−1, and 0.0005 mg nitrous oxide (N2O) m−2 h−1. Fluxes of CO2 and CH4 displayed temporal and spatial variability which is characteristic of aquatic ecosystems, while fluxes of N2O were consistently low throughout the study. Comparisons between results of this study and published values suggest that mean daily fluxes of CO2, CH4, and N2O fromLong Lakewere low, particularly when compared to the well-studied prairie pothole wetlands of the region. Similarly, cumulative seasonal CH4 fluxes, which ranged from 2.68–7.58 g CH4 m−2, were relatively low compared to other wetland systems of North America. The observed variability among aquatic ecosystems underscores the need for further research.

  9. Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal

    NASA Astrophysics Data System (ADS)

    Hachikubo, Akihiro; Khlystov, Oleg; Krylov, Alexey; Sakagami, Hirotoshi; Minami, Hirotsugu; Nunokawa, Yutaka; Yamashita, Satoshi; Takahashi, Nobuo; Shoji, Hitoshi; Nishio, Shin'ya; Kida, Masato; Ebinuma, Takao; Kalmychkov, Gennadiy; Poort, Jeffrey

    2010-06-01

    We investigated the molecular composition (methane, ethane, and propane) and stable isotope composition (methane and ethane) of hydrate-bound gas in sediments of Lake Baikal. Hydrate-bearing sediment cores were retrieved from eight gas seep sites, located in the southern and central Baikal basins. Empirical classification of the methane stable isotopes (δ13C and δD) for all the seep sites indicated the dominant microbial origin of methane via methyl-type fermentation; however, a mixture of thermogenic and microbial gases resulted in relatively high methane δ13C signatures at two sites where ethane δ13C indicated a typical thermogenic origin. At one of the sites in the southern Baikal basin, we found gas hydrates of enclathrated microbial ethane in which 13C and deuterium were both highly depleted (mean δ13C and δD of -61.6‰ V-PDB and -285.4‰ V-SMOW, respectively). To the best of our knowledge, this is the first report of C2 δ13C-δD classification for hydrate-bound gas in either freshwater or marine environments.

  10. Hydrogeochemical investigations in a drained lake area: the case of Xynias basin (Central Greece).

    PubMed

    Charizopoulos, Nikos; Zagana, Eleni; Stamatis, Georgios

    2016-08-01

    In Xynias drained Lake Basin's area, central Greece, a hydrogeochemical research took place including groundwater sampling from 30 sampling sites, chemical analysis, and statistical analysis. Groundwaters present Ca-Mg-HCO3 as the dominant hydrochemical type, while their majority is mixed waters with non-dominant ion. They are classified as moderately hard to hard and are characterized by oxidizing conditions. They are undersaturated with respect to gypsum, anhydrite, fluorite, siderite, and magnesite and oversaturated in respect to calcite, aragonite, and dolomite. Nitrate concentration ranges from 4.4 to 107.4 mg/L, meanwhile 13.3 % of the samples exceed the European Community (E.C.) drinking water permissible limit. The trace elements Fe, Ni, Cr, and Cd present values of 30, 80, 57, and 50 %, respectively, above the maximum permissible limit set by E.C. Accordingly, the majority of the groundwaters are considered unsuitable for drinking water needs. Sodium adsorption ratio values (0.04-3.98) and the electrical conductivity (227-1200 μS/cm) classify groundwaters as suitable for irrigation uses, presenting low risk and medium soil alkalization risk. Factor analysis shows that geogenic processes associated with the former lacustrine environment and anthropogenic influences with the use of fertilizers are the major factors that characterized the chemical composition of the groundwaters. PMID:27450374

  11. Avian use of Sheyenne Lake and associated habitats in central North Dakota

    USGS Publications Warehouse

    Faanes, C.A.

    1982-01-01

    A study of avian use of various habitats was conducted in the Sheyenne Lake region of central North Dakota during April-June 1980. Population counts of birds were made in wetlands of various classes, prairie thickets, upland native prairie, shelterbelts, and cropland. About 22,000 breeding bird pairs including 92 species that nested occupied the area. Population means for most species were equal to or greater than statewide means. Red-winged blackbird (Agelaius phoeniceus), yellow-headed blackbird (Xanthocephalus xanthocephalus), mourning dove (Zenaida macroura), and blue-winged teal (Anas discors) were the most numerous species, and made up 32.9% of the total population . Highest densities of breeding birds occurred in shelterbelts, semipermanent wetlands, and prairie thickets. Lowest densities occurred in upland native prairie and cropland. The study area was used by 49.6% of the total avifauna of the State, and 51% of the breeding avifauna of North Dakota probably nested in the study area. The diversity of birds using the area was unusual in that such a large number of species occupied a relatively small area. The close interspersion of many native habitats, several of which are unique in North Dakota, probably accounted for this diversity. Data on dates of occurrence, nesting records, and habitat use are presented for the 175 species recorded in 1980. Observations of significance by refuge staff are also provided.

  12. Molecular Tracers of Saturated and Polycyclic Aromatic Hydrocarbon Inputs into Central Park Lake, New York City

    PubMed Central

    YAN, BEIZHAN; ABRAJANO, TEOFILO A.; BOPP, RICHARD F.; CHAKY, DAMON A.; BENEDICT, LUCILLE A.; CHILLRUD, STEVEN N.

    2011-01-01

    Saturated hydrocarbons (SH) and polycyclic aromatic hydrocarbons (PAHs) have been quantified in a sediment core obtained from Central Park Lake, New York City. Radionuclides 210Pb and 137Cs were used to assign approximate dates to each individual section in the core. The dating profile based on 210Pb matches very well with the time constraints provided by 137Cs. Radionuclide-derived depositional dates are consistent with temporal information from the petroleum-indicator ratio U/R [the ratio of unresolved complex mixture (UCM) to saturated hydrocarbons in the aliphatic fraction] and the history of fuel use in the NYC area. Ratios of 1,7-dimethylphenanthrane (DMP) to 1,7-DMP plus 2,6-DMP [1,7/(1,7 + 2,6)-DMP], retene to retene plus chrysene [Ret/(Ret + Chy)], and fluoranthene to fluoranthene plus pyrene [Fl/(Fl + Py)] provide additional source discrimination throughout the core. Results show that the ratio U/R is sensitive to petroleum inputs and Ret/(Ret + Chy) is responsive to contributions from softwood combustion, whereas both Fl/(Fl + Py) and 1,7/(1,7 + 2,6)-DMP can be used to discriminate among wood, coal, and petroleum combustion sources. Combined use of these ratios suggests that in New York City, wood combustion dominated 100 years ago, with a shift to coal combustion occurring from the 1900s to the 1950s. Petroleum use began around the 1920s and has dominated since the 1940s. PMID:16201624

  13. Multiproxy and multicore evidence of late Holocene monsoon reduction on the central Tibetan Plateau from Lake Taro Co

    NASA Astrophysics Data System (ADS)

    Turner, Falko; Lu, Xinmiao; Ahlborn, Marieke; Schwarz, Anja; Zhu, Liping; Haberzettl, Torsten; Wang, Junbo; Guo, Yun; Ju, Jianting; Frenzel, Peter; Wang, Yongbo; Mäusbacher, Roland; Alivernini, Mauro; Schwalb, Antje

    2016-04-01

    In lake ecosystems, climate change usually causes responses of multiple environmental factors. A reduction in the amount of precipitation for example may result in decreasing inflow, falling water level and rising ion concentration. While some of these factors as conductivity will influence biota in the entire lake, others will impact certain habitats more strongly. A drop in lake level for instance may severely change the extent and structure of littoral biota but might have only a minor impact on the deep profundal of large lakes. Here we present geochemical (XRF-) and organismic (pollen, chironomid, diatom, Pediastrum algae, ostracod) data for the past 7.2 ka from Taro Co, a large and deep lake on the Tibetan Plateau (31°03'- 31°13' N, 83°55' - 84°20' E, 4,567 m a.s.l., maximum depth 132 m). In addition to this multiproxy approach, three cores from different settings (central basin / profundal, sublittoral and subaquatic prodelta) are analysed to infer complementary information on mid- to late Holocene limnological changes. Independent radiocarbon chronologies for the three cores are established and patterns of the geochemical records are used to evaluate age models against each other. A pollen based quantitative reconstruction indicates a shift to increasingly arid conditions from 6 to 4 ka BP. Geochemical data and changes in species composition of diatom and Pediastrum assemblages in the profundal sediment core indicate increasing conductivity during the last 4 ka, while a chironomid-derived quantitative lake level record shows a 40 m lake level drop around 4.5 ka BP. In the prodelta sediment core, a strong lithological change from delta front to prodelta sediment and decreasing percentages of lotic chironomid taxa indicate a decreasing inflow around 4.5 ka BP. This approach to use several proxies in sediment cores from distinctive settings in one lake thus enables to infer a more complete and reliable picture of limnological changes associated with late

  14. A revised chronology for the last Pleistocene Lake cycle in the central Lahontan Basin

    USGS Publications Warehouse

    Thompson, R.S.; Benson, L.; Hattor, E.M.

    1986-01-01

    Radiocarbon dates of plant materials from packrat middens in caves below the elevation of the last high stand of Pleistocene Lake Lahontan, in conjunction with radiocarbon dates of ancient archaeological materials, provide evidence that the last high stand terminated before 12,070 yr B.P. This new information suggests that the last major fluctuation in the level of Lake Lahontan was approximately synchronous with those of Lakes Bonneville and Russell, and that these three lakes probably responded contemporaneously to the same regional paleoclimatic changes. ?? 1986.

  15. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lazhu, Kun Yang; Wang, Junbo; Lei, Yanbin; Chen, Yingying; Zhu, Liping; Ding, Baohong; Qin, Jun

    2016-07-01

    Most lakes in the interior Tibetan Plateau have expanded rapidly since the late 1990s. Because of a lack of observations, lake water balances and their changes are far from well understood. Evaporation is a component of the lake water balance, and this study quantifies its magnitude, decadal change, and its contribution to the water balance changes in Lake Nam Co, one of the largest lakes on the Tibetan Plateau (with an area of approximately 2000 km2 and a mean depth of approximately 40 m). The lake temperature and the evaporation are simulated by the Flake model. The simulation results are validated against observed lake temperature profile from 2013 and Moderate Resolution Imaging Spectroradiometer lake surface temperature data from 2000 to 2014. The simulated latent heat flux and sensible heat flux are validated against Bowen ratio-derived estimates for 2013. Based on the validated simulation results, the long-term mean annual evaporation is approximately 832 ± 69 mm, and this value is much less than the potential evaporation estimated using the Penman-Monteith equation. The annual evaporation from 1980 to 2014 displays a complex decadal oscillation, mainly due to the changes in energy-related terms (air temperature and radiation). The mean lake evaporation since the late 1990s is greater than previous periods; thus, this change in evaporation has suppressed the recent expansion of Nam Co.

  16. Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

    2009-12-01

    Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in

  17. Indications of human activity from amino acid and amino sugar analyses on Holocene sediments from lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Wiesner, M.; Prasad, S.; Basavaiah, N.; Stebich, M.; Anoop, A.; Riedel, N.; Brauer, A.

    2012-04-01

    The DFG funded HIMPAC (Himalaya: Modern and Past Climates) programme aims to reconstruct Holocene Indian Monsoon climate using a multi-proxy and multi-archive approach. First investigations made on sediments from a ca. 10 m long core covering the whole Holocene taken from the lake Lonar in central India's state Maharashtra, Buldhana District, serve to identify changes in sedimentation, lake chemistry, local vegetation and regional to supra-regional climate patterns. Lake Lonar occupies the floor of an impact crater that formed on the ~ 65 Ma old basalt flows of the Deccan Traps. It covers an area of ca. 1 km2 and is situated in India's core monsoon area. The modern lake has a maximum depth of about 5 m, is highly alkaline, and hyposaline, grouped in the Na-Cl-CO3 subtype of saline lakes. No out-flowing stream is present and only three small streams feed the lake, resulting in a lake level highly sensitive to precipitation and evaporation. The lake is eutrophic and stratified throughout most of the year with sub- to anoxic waters below 2 m depth. In this study the core sediments were analysed for their total amino acid (AA) and amino sugar (AS) content, the amino acid bound C and N percentage of organic C and total N in the sediment and the distribution of individual amino acids. The results roughly show three zones within the core separated by distinct changes in their AA content and distribution. (i) The bottom part of the core from ca. 12000 cal a BP to 11400 cal a BP with very low AA and AS percentage indicating high lithogenic contribution, most probably related to dry conditions. (ii) From 11400 cal a BP to 1200 cal a BP the sediments show moderate AA and AS percentages and low values for the ratios of proteinogenic AAs to their non-proteinogenic degradation products (e.g. ASP/β-ALA; GLU/γ-ABA). (iii) The top part of the core (< 1200 cal a BP) is characterised by an intense increase in total AA and AS, AA-C/Corg and AA-N/Ntotas well as in the ratio of

  18. Natural attenuation processes of nitrate in a saline lake-aquifer system: Pétrola Basin (Central Spain)

    NASA Astrophysics Data System (ADS)

    Valiente, Nicolas; Menchen, Alfonso; Jirsa, Franz; Hein, Thomas; Wanek, Wolfgang; Gomez-Alday, Juan Jose

    2016-04-01

    Saline wetlands associated with intense agricultural activities in semi-arid to arid climates are among the most vulnerable environments to NO3‑ pollution. The endorheic Pétrola Basin (High Segura River Basin, Central Spain) was declared vulnerable to NO3‑ pollution by the Regional Government of Castilla-La Mancha in 1998. The hypersaline lake was classified as a heavily modified waterbody, due to the inputs of pollutants from agricultural sources and urban waste waters, the latest are discharged directly into the lake without proper treatment. Previous studies showed that the aquifer system has two main flow components: regional groundwater flow from recharge areas into the lake, and a density-driven flow from the lake to the underlying aquifer. The NO3‑ inputs derived from agriculture originate from nitrification of synthetic ammonium fertilizers, and afterwards, NO3‑ is expected to be attenuated by denitrification (up to 60%) in the saltwater-freshwater interface around the lake. However, the spatial and temporal pattern of nitrate reduction in lake sediments is not known. In this study, an isotope pairing technique was used in order to clarify the main pathways for the NO3‑ attenuation linked to the sediment-water interface. For that purpose mesocosm experiments were performed: organic-rich lake sediment (up to 23% organic carbon content) was incubated for 96 hours with the addition of 15N nitrate tracer. During the experiments two factors were modified: light and oxic conditions. Analyzing inorganic N-species (n=20) over time (72 hours) showed that NO3‑ attenuation was coupled with an increment in the NH4+ concentration (from 0.8 mg/L up to 5.3 mg/L) and a decrease in redox values (from 135.1 mV up to -422 mV) in the water column. The main outcome of this study was to elucidate the importance of different microbial pathways denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (Anammox), in

  19. Cluster analysis of water-quality data for Lake Sakakawea, Audubon Lake, and McClusky Canal, central North Dakota, 1990-2003

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    As a result of the Dakota Water Resources Act of 2000, the Bureau of Reclamation, U.S. Department of the Interior, identified eight water-supply alternatives (including a no-action alternative) to meet future water needs in portions of the Red River of the North (Red River) Basin. Of those alternatives, four include the interbasin transfer of water from the Missouri River Basin to the Red River Basin. Three of the interbasin transfer alternatives would use the McClusky Canal, located in central North Dakota, to transport the water. Therefore, the water quality of the McClusky Canal and the sources of its water, Lake Sakakawea and Audubon Lake, is of interest to water-quality stakeholders. The Bureau of Reclamation collected water-quality samples at 23 sites on Lake Sakakawea, Audubon Lake, and the McClusky Canal system from 1990 through 2003. Physical properties and water-quality constituents from these samples were summarized and analyzed by the U.S. Geological Survey using hierarchical agglomerative cluster analysis (HACA). HACA separated the samples into related clusters, or groups. These groups were examined for statistical significance and relation to structure of the McClusky Canal system. Statistically, the sample groupings found using HACA were significantly different from each other and appear to result from spatial and temporal water-quality differences corresponding with different sections of the canal and different operational conditions. Future operational changes of the canal system may justify additional water-quality sampling to characterize possible water-quality changes.

  20. Post-glacial paleoenvironments of the Lake Winnebago basin, east central Wisconsin, based on ostracodes

    SciTech Connect

    Fielder, R.F.; Smith, G.L.; Fitzgerald, T.M. . Dept. of Geology)

    1994-04-01

    Ostracodes were used to determine post-glacial paleoenvironments of the Lake Winnebago Basin. Following the retreat of the Wisconsinian Green Bay Lobe, Glacial Lake Oshkosh was dammed behind the ice sheet. As the modern Fox River was established, Glacial Lake Oshkosh shrank to form modern Lake Winnebago. Ostracodes were sampled from four vibracores in attempts to correlate sedimentary units and determine paleoenvironments. The oldest unit identified in their vibracores is grayish red clay that is thought to be reworked glacial till that was deposited in a lacustrine setting. This clay is dominated by Candona rawsoni, an ostracod species that prefers cold and deep water. The broken and eroded carapaces of the C. rawsoni in the greyish-red clay suggest reworking and transport, perhaps from the Lake Superior Basin. The contact between the clay and overlying sediments is an erosional unconformity, overlain in some places by gravel. The clay is overlain by coarsening-upward from sandy-silt to medium-grained sand, suggesting a decrease in lake levels and water depths. Raised shorelines 20 and 60 ft above present lake level constitute the geomorphic evidence for higher lake levels. Offshore, at depths of ten to twenty feet, the sediment type above is an olive black organic-rich mud where juveniles of C. rawsoni are the dominant species.

  1. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    NASA Astrophysics Data System (ADS)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  2. Molecular tracers of saturated and polycyclic aromatic hydrocarbon inputs into Central Park Lake, New York City

    SciTech Connect

    Beizhan Yan; Teofilo A. Abrajano; Richard F. Bopp; Damon A. Chaky; Lucille A. Benedict; Steven N. Chillrud

    2005-09-15

    Saturated hydrocarbons (SH) and polycyclic aromatic hydrocarbons (PAHs) have been quantified in a sediment core obtained from Central Park Lake, New York City. Radionuclides {sup 210}Pb and {sup 137}Cs were used to assign approximate dates to each individual section in the core. The dating profile based on {sup 210}Pb matches very well with the time constraints provided by {sup 137}Cs. Radionuclide-derived depositional dates are consistent with temporal information from the petroleum-indicator ratio U/R (the ratio of unresolved complex mixture (UCM) to saturated hydrocarbons in the aliphatic fraction) and the history of fuel use in the NYC area. Ratios of 1,7-dimethylphenanthrane (DMP) to 1,7-DMP plus 2,6-DMP (1,7/(1,7 + 2,6)-DMP), retene to retene plus chrysene (Ret/(Ret + Chy)), and fluoranthene to fluoranthene plus pyrene (Fl/(Fl + Py))) provide additional source discrimination throughout the core. Results show that the ratio U/R is sensitive to petroleum inputs and Ret/(Ret + Chy) is responsive to contributions from softwood combustion, whereas both Fl/(Fl + Py) and 1,7/(1,7 + 2,6)-DMP can be used to discriminate among wood, coal, and petroleum combustion sources. Combined use of these ratios suggests that in New York City, wood combustion dominated 100 years ago, with a shift to coal combustion occurring from the 1900s to the 1950s. Petroleum use began around the 1920s and has dominated since the 1940s. 33 refs., 3 figs., 2 tabs.

  3. Analysis and simulation of ground-water flow in Lake Wales Ridge and adjacent areas of central Florida

    USGS Publications Warehouse

    Yobbi, Dann K.

    1996-01-01

    The Lake Wales Ridge is an uplands recharge area in central Florida that contains many sinkhole lakes. Below-normal rainfall and increased pumping of ground water have resulted in declines both in ground-water levels and in the water levels of many of the ridge lakes. A digital flow model was developed for a 3,526 square-mile area to help understand the current (1990) ground-water flow system and its response to future ground-water withdrawals. The ground-water flow system in the Lake Wales Ridge and adjacent area of central Florida consists of a sequence of sedimentary aquifers and confining units. The uppermost water-bearing unit of the study area is the surficial aquifer. This aquifer is generally unconfined and is composed primarily of clastic deposits. The surficial aquifer is underlain by the confined intermediate aquifer and confining units which consists of up to three water-bearing units composed of interbedded clastics and carbonate rocks. The lowermost unit of the ground- water flow system, the confined Upper Floridan aquifer, consists of a thick, hydraulically connected sequence of carbonate rocks. The Upper Floridan aquifer is about 1,200 to 1,400 feet thick and is the primary source for ground-water withdrawals in the study area. The generalized ground-water flow system of the Lake Wales Ridge is that water moves downward from the surficial aquifer to the intermediate aquifer and the Upper Floridan aquifer in the central area, primarily under the ridges, with minor amounts of water flow under the flatlands. The water flows laterally away fromn the central area, downgradient to discharge areas to the west, east, and south, and locally along valleys of major streams. Upward leakage occurs along valleys of major streams. The model was initially calibrated to the steady-state conditions representing September 1989. The resulting calibrated hydrologic parameters were then tested by simulating transient conditions for the period October 1989 through 1990. A

  4. The atyid shrimps from Lake Lindu, Central Sulawesi, Indonesia with description of two new species (Crustacea: Decapoda: Caridea).

    PubMed

    Annawaty; Wowor, Daisy

    2015-01-01

    The atyid shrimp Caridina linduensis Roux, 1904, has not been reported since its description more than a century ago. We here redescribe and figure this poorly known species based on new material from its type locality, Lake Lindu, Central Sulawesi, Indonesia. Two new species, C. dali sp. nov. and C. kaili sp. nov. are also found in this lake and they are described and illustrated. Compared to C. linduensis, C. dali sp. nov. is distinguished by its relatively shorter rostrum which only overreaches the end of basal segment of antennular peduncle and the fewer teeth on the incisor process of the mandible. Caridina kaili sp. nov. can be separated from C. linduensis by its extremely short rostrum, which reaches almost or just reaches the end of the basal segment of the antennular peduncle, proportionately stouter second pereiopod and larger egg size. The two new species also prefer different habitats; C. linduensis is a true lake inhabitant, C. dali sp. nov. can be found both in the lake itself and associated streams while C. kaili sp. nov. is an obligate stream species. PMID:26249092

  5. Stratigraphy and Facies Analysis of a 122 M Long Lacustrine Sequence from Chalco Lake, Central Mexico

    NASA Astrophysics Data System (ADS)

    Herrera, D. A.; Ortega, B.; Caballero, M.; Lozano, S.; Pi, T.; Brown, E. T.

    2010-12-01

    Chalco lake is located SE of the outskirts of Mexico City, at the central part of the Trans Mexican Volcanic Belt. Previous studies show the importance of this lacustrine sequence as an archive of paleoenvironmental and paleoclimatic changes. A set of five cores up to 122 m depth were drilled in the basin, in order to analyze the sedimentary record and to extent the previous knowledge of past environmental changes in central Mexico. As an initial step, in this work we present the identification and classification of sedimentary facies. Preliminary paleomagnetism analyses recognize the possible record of the Blake Event (ca. 120 kyr BP), and suggest that the sequence might span the last 240 kyr. In this case, variations in sedimentary facies could reflect the conditions of the MIS 1-7. The facies are mostly diatom ooze, carbonate mud, organic rich silt and volcaniclastic, both massive and laminated, and massive dark gray to reddish brown silt. From 1 to 8 m depth dominates the organic rich silt facies, which correlates with the MIS 1. Intercalations of reddish brown and grayish brown silt facies, between 8 to 60 m depth, indicate changes occurred during MIS 2 to 5d. Between 60-75 m depth the sequence is characterized by dark grayish silty clay facies, which possibly coincide with the MIS 5e. At 79 m depth (ca. 130 kyr BP) we found struvite (MgNH4PO4.6H2O), which may be related to dry conditions. The laminated diatom ooze facies dominates between 90 to 122 m depth and indicates rhythmic changes in the sediment deposition of the basin. The volcaniclastic facies is represented by lapilli and ash deposits in more than 100 individual tephra layers of both mafic and felsic composition. Some of them correspond to main volcanic eruptions, as the Upper Toluca Pumice (13,500 cal yr BP), from the Nevado de Toluca volcano and the Pómez con Andesita (17,700 cal yr BP) from the Popocatépetl volcano. The carbonate mud facies is composed of calcite and siderite, with frequent

  6. Seasonal evolution of water and dissolved gas chemistry in monomictic lakes: an example from Paterno sinkhole (Central Italy).

    NASA Astrophysics Data System (ADS)

    Tassi, F.; Cabassi, J.; Rouwet, D.; Palozzi, R.; Marcelli, M.; Quartararo, M.; Capecchiacci, F.; Nocentini, M.; Vaselli, O.

    2012-04-01

    This study examines the distribution of chemical (major, minor and trace compounds) and isotope compositions of water and dissolved gases along the vertical water column of Lake Paterno, a sinkhole located in the NE sector of the S. Vittorino plain (Rieti, Central Italy), an area showing evidences of past and present hydrothermal activity. The main aim of this investigation is to describe the seasonal evolution of the water and dissolved gas chemistry and its dependence on biogeochemical processes occurring in the lake water and within the bottom sediments. Water and dissolved gases were sampled in winter (February) and summer (July) 2011 from the surface to the maximum depth of 54 m at regular intervals of 5 m. Analytical results show that in winter Lake Paterno waters were almost completely mixed, although relatively low amounts of minerogenic and biogenic products were recognized at the interface between lake water and bottom sediments. In summer, well-defined thermal and chemical stratifications established. The occurrence of annual meromixis is a typical feature of non-freezing lakes in temperate climates and is called monomixis. During the stratification period, biological processes, such as sulfate-reduction, denitrification, and NH4 and H2 production are the main controlling factors for the vertical distribution of the chemical species in the water body The carbon isotopic signature of CH4 suggests that this gas is produced by methanogenic processes related to anaerobic activity of archeabacteria. On the contrary, dissolved CO2 seems to have two different sources: 1) bacteria-driven reactions; 2) contribution from the hydrothermal system that is also feeding the CO2-rich mineralized springs discharging in the surrounding areas of the lake. The input of deep-seated CO2 may play a significant role for the development of the seasonal stratification of Lake Paterno. The latter controls the macro-invertebrate population dynamics: in summer, fishes are forced to

  7. Contemporary (1979-1988) and inferred historical status of headwater lakes in North Central Ontario, Canada.

    PubMed

    Kelso, J R; Shaw, M A; Jeffries, D S

    1992-01-01

    Fifty-six headwater Canadian Shield lakes were repetitively sampled from 1979 to 88 to determine their response to changes in acidic deposition of the period. Annual wet sulphate loadings varied between 38 and 83 meq m(-2), with highest deposition in the late 1970s followed by somewhat lower but variable deposition in the 1980s. Median pH of the lakes increased 0.42 pH units from 1979 to 1985 and decreased by 0.15 units between 1985 and 1988. Short water renewal times (x=1.1 y) promoted rapid equilibration. Since lake were so responsive to changes in SO4(2-) inputs, they were at or near steady state at all times. Comparison of predicted original pH and ANC with 1979 data indicate a median decline of 0.45 pH units and a loss of 34 microeq litre(-1). ANC. Four of 9 lakes were found to be historically fishless, based on the continued presence of Chaoborus americanus in sediment cores. The remaining five lakes historically had fish populations, but fish were not collected in 1979 when pH ranged betwen 4.6 and 5.3. By 1987, fish species were found in five of these lakes where pH had increased on average by 0.9 pH units. Our data indicate that water quality improvements could allow for the reinvasion or resumption of recruitment for a significant number of Ontario lakes. PMID:15091929

  8. Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA

    USGS Publications Warehouse

    Hupp, C.R.

    2000-01-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet

  9. Age, growth, sex ratio, and maturity of the whitefish in central Green Bay and adjacent waters of Lake Michigan

    USGS Publications Warehouse

    Mraz, Donald

    1964-01-01

    This study is based on 1,023 whitefish, Coregonus clupeaformis (Mitchill)--819 in seven samples from five localitites in central Green Bay in 1948-49 and 1851-52 and 204 in a single 1948 collection from northwestern Lake Michigan proper. Records of age indicated unusual strength for only one year class--1943 which strongly dominated the 1948 sample from Lake Michigan and the 1949 sample from Green Bay and was well represented in the 1948 collection from green Bay. Collection of 1951-52 without exception were dominated by age group III. Length distributions of samples varied widely according to the age composition. Among fish more than 2 years old, the length distributions of age groups overlapped broadly. Several 1-inch intervals included fish of four age groups. The length-weight relation varied considerably among central Green Bay samples, but differences among localitites were nearly equalled by the year-to-year difference at a single locality. Lake Michigan whitefish were generally lighter than those from Green Bay. Weight increased to the 3.386 power of length in Green Bay (combined samples) and the 3.359 power in Lake Michigan. Growth in length, calculated by direct proportion from diameter measurements of growth fields on scales, differed among localities in central Green Bay and between samples of different years at a single locality. If permanent locality differences exist they are not large and can be obscured by the evident annual fluctuations of growth. The grand average calculated length of Green Bay whitefish (combined collections) exceeded that of Lake Michigan fish in all years of life. The advantage was greatest (2.2 inches) at 3 years (calculated lengths of 16.0 inches and 13.8 inches) and subsequently declined to 0.5 inch at 9 years (lengths of 24.6 and 24.1 inches). Both groups reached the minimum legal length of 17 inches during the fourth growing season. Green Bay whitefish also had the larger calculated weights. The advantage reached 9

  10. Hydrologic reconnaissance of the southern Great Salt Lake Desert and summary of the hydrology of west-central Utah

    USGS Publications Warehouse

    Gates, Joseph S.; Kruer, Stacie A.

    1981-01-01

    This report is the last of 19 hydrologic reconnaissances of the basins in western Utah. The purposes of this series of studies are (1) to analyze available hydrologic data and describe the hydrologic system, (2) to evaluate existing and potential water-resources development, and (3) to identify additional studies that might be needed. Part 1 of this report gives an estimate of recharge and discharge, an estimate of the potential for water-resources development, and a statement on the quality of water in the southern Great Salt Lake Desert part of west-central Utah. Part 2 deals with the same aspects of west-central Utah as a whole. Part 2 also summarizes the evidence of interbasin ground-water flow in west-central Utah and presents a theory for the origin of the water discharged from Fish Springs.

  11. Quantifying Evaporation and Its Decadal Change for Lake Nam Co, Central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    La, Z.

    2015-12-01

    Most lakes in the interior Tibetan Plateau expanded rapidly since the late 1990s. Because of the lack of observations, the lake water balance and its change are far from well understood. Evaporation is a component of lake water balance, and this study quantifies its magnitude, decadal change, and its contribution to water balance change of Lake Nam Co, one of the largest lakes (with an area of about 2000 km2 and a mean depth of about 40 m) in the Tibetan Plateau. The lake temperature and evaporation are simulated by Flake model. The simulated lake temperature during 2000 to 2012 is validated against MODIS observations and its mean bias error (model simulation minus satellite retrieval) and root mean square error are -0.44 ºC and 3.37 ºC during the day, and 0.02 ºC and 2.27 ºC at night, respectively. The simulated latent heat flux and sensible heat flux are in good agreement with Bowen-ratio-derived ones in 2012, indicating that the simulation results are reasonable. The simulated long-term mean annual evaporation is about 750-850 mm, and this value is much less than potential evaporation estimated with Penman-Monteith equation. The simulated annual evaporation over 1980 ~ 2012 displays a complex decadal oscillation, mainly due to the change in energy-related terms (air temperature, solar radiation and atmospheric long-wave radiation). The mean lake evaporation since the late 1990s is slightly greater than before, and thus evaporation change played a role in suppressing the recent expansion of Nam Co.

  12. Reconstruction of Holocene Climate Variability within the Central Mediterranean Using Lake Sediments from the Akrotiri Peninsula, Crete

    NASA Astrophysics Data System (ADS)

    Magill, C. R.; Rosenmeier, M. F.; Cavallari, B. J.; Curtis, J. H.; Weiss, H.

    2005-12-01

    Middle and late Holocene geochemical records from the Limnes depression, a small sinkhole located within the Akrotiri Peninsula, Crete, document centennial and millennial-scale climate variability within the central Mediterranean region. The oldest sediments of the basin consist largely of fibrous plant macrofossils and organic matter and likely indicate lake filling and expansion of wetland vegetation beginning ~5700 radiocarbon years before present (14C-yrs B.P.) (4550 B.C.). The basal peat layers grade into predominantly open water and less shallow lacustrine deposits by 4500 14C-yrs B.P (3200 B.C.). Continuous open water sedimentation within the Limnes core is interrupted by a number of distinct lag deposits and peaty deposits centered at 3700, 1600, and 350 14C-yrs B.P (2100 B.C., 500 A.D., and 1500 A.D.) indicating periods of significantly lowered lake level or perhaps lake desiccation. These ages coincide roughly with oxygen isotope (δ18O) minima measured in biogenic carbonates (ostracod shells) and support the inference for low lake stage. Trace element (Ca, Mg, and Sr) concentrations in ostracod shells from the Limnes core parallel the oxygen isotope record, suggesting that the data reflect basin hydrology rather than changes in the isotopic composition of rainfall. Furthermore, covariance in both δ18O and Mg concentrations eliminate temperature as a control on the oxygen isotope record. Sediments from the basin also contain aragonite remains of the green alga Chara and isotope analysis of the calcite may record additional paleoenvironmental information. The paleoclimate history inferred from the Limnes record correlates temporally (albeit tenuously) to previous paleoenvironmental data that document abrupt onset of arid conditions in the eastern Mediterranean and western Asia ca. 2200 B.C. Moreover, stratigraphic and geochemical evidence of low lake level (drying) within the Limnes basin at 2100 B.C. may correspond to the termination of the Early Minoan

  13. InSAR measurement of the deformation around Siling Co Lake: Inferences on the lower crust viscosity in central Tibet

    NASA Astrophysics Data System (ADS)

    Doin, Marie-Pierre; Twardzik, Cédric; Ducret, Gabriel; Lasserre, Cécile; Guillaso, Stéphane; Jianbao, Sun

    2015-07-01

    The Siling Co Lake is the largest endorheic lake in Central Tibet. Altimetric measures, combined with lake contours, show that in 1972-1999 its water level remained stable, while it increased by about 1.0 m/yr in the period 2000-2006. The increased rate gradually stepped down to 0.2 m/yr in 2007-2011. The ground motion associated with the water load increase is studied by interferometric synthetic aperture radar (InSAR) using 107 ERS and Envisat SAR images during the period 1992-2011. The deformation amplitude closely follows the lake level temporal evolution, except that subsidence continues in 2008-2011, while the lake level stagnated. This temporal evolution suggests a non elastic relaxation process taking place at a decade timescale. Phase delay maps are used to constrain possible layered viscoelastic rheological models. An elastic model could partly explain the observed subsidence rate if elastic moduli are about twice lower than those extracted from VP/VS profiles. The surface deformation pattern is also extracted by projecting the phase delay maps against the best fit model temporal behavior. It shows that deep relaxation in the asthenosphere is negligible at the decade timescale and favors the existence of a ductile channel in the deep crust above a more rigid mantle. Overall, the best fit model includes a ductile lower crust, with a viscosity of 1-3 × 1018 Pa s between 25 and 35 km and the Moho (at 65 km), overlying a rigid mantle.

  14. Forest responses to late Holocene climate change in north-central Wisconsin: a high- resolution study from Hell's Kitchen Lake.

    NASA Astrophysics Data System (ADS)

    Urban, M. A.; Booth, R. K.; Jackson, S. T.; Minckley, T. A.

    2007-12-01

    Forest dynamics at centennial to millennial timescales can be identified using paleoecological records with high spatial, temporal, and taxonomic resolution. These dynamics are linked to climate changes by comparing the paleoecological records with independent paleoclimate records of complementary sensitivity and temporal resolution. We analyzed plant macrofossils at contiguous 1cm intervals (representing 5 to 35 yr/cm) from late Holocene sediments of Hell's Kitchen Lake (3 ha) in north-central Wisconsin. Most of the plant macrofossils derive from trees growing on the slopes directly adjacent to the lake, and were identified to the species. We also analyzed pollen at an approximately100 year resolution to provide a regionally integrated record of forest composition. We then compared the macrofossil and pollen records with independent records of climate change in the region, particularly paleohydrological records from kettle bogs. The most notable feature of the late Holocene record occurs between 2300-2000 cal yr BP. During this period yellow birch (Betula alleghaniensis) macrofossils first appear in the record, along with a corresponding increase in pollen percentages. Hemlock (Tsuga canadensis) macrofossils and pollen also show a marked increase at this time. These changes coincide with a major transition towards wetter conditions recorded in the testate amoebae record of Hornet Bog (~200km northwest) and in a number of other kettle bog records from the region. Directly following this transition, tamarack (Larix laricina) and Sphagnum macrofossils at Hell's Kitchen Lake increase dramatically, likely representing the initiation of bog-mat growth along the southwest margin of the lake during the wet period. . We are continuing our high-resolution sampling downcore at Hell's Kitchen Lake. This will permit us to examine additional ecologic and climatic events in the early and mid-Holocene.

  15. Hydrological and sedimentological regime of lower Vistula fluvial lakes (North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jarosław; Kubiak-Wójcicka, Katarzyna; Tyszkowski, Sebastian; Solarczyk, Adam

    2015-04-01

    Regarding the outflow the Vistula River is the largest river in the Baltic catchment. In its lower course it has developed an anastomosing channel pattern modified strongly by intensive human hydrotechnical activity and by the regulation which have intensified about 200 years ago. Channel regulation apart from already existing lakes have left many new artificially created ones. This activity have also altered the hydrological and sedimentary regime. It turned out that only the small portion of the lakes infilled rapidly but the majority have persisted to present day almost unchanged in spite of regulation. The reason of this resistence to silting is connected with specific interaction of sediment removing during high flood water episodes and strong groundwater circulation in former river arms transformed in present-day lakes. As an example of a lake with an intensive groundwater exchange rate with the main Vistula channel and supposed Quaternary and Tertiary aquifers was selected the Old Vistula lake (Stara Wisła) near Grudziądz town. It has got an area of 50 ha, mean depth 1,73 m, maximum depth 8 m, length about 4 km and medium width about 100 m. In the years 2011-2015 in its surficial water were conducted measures with two weeks frequency which included: temperature, pH, Eh, suspended matter amount, total and carbonaceous mineralization. For comparison similar measurements were also conducted in other fluvial lakes and Vistula tributaries. Hydrological data were supplemented by geological investigations of floodplain sediments cover which has important impact on the rate of groundwater migration and circulation. Investigations carried proved that there exists distinct gradient of carbonaceous mineralization from small values in the Vistula channel to high values at the valley edges. PH and Eh parameters in the Old Vistula lake were different than in all other surveyed sites what leads to conclusion that it is fed by deeper groundwaters than in the case of other

  16. Preliminary Results of a Multi-Proxy Lake Sediment Core Study in East-Central France

    NASA Astrophysics Data System (ADS)

    Misner, T.; Meyers, S.; Rosenmeier, M.; Strano, S.; Straffin, E.

    2008-12-01

    This paper presents the preliminary results of a multi-proxy study of natural and human-induced changes in the Burgundian environment, as recorded in the sediment geochemistry of three small freshwater basins within the Arroux River Valley, east-central France. Accelerator mass spectrometry radiocarbon dates constrain the age of core material collected from the basins, and indicate that these mill and farm ponds were constructed by at least 1200 A.D. The pond sediments are predominantly massive, organic-rich muds that contain discrete sand and gravel lenses likely related to episodic flooding and/or basin drainage. In this study, continuous X-ray fluorescence (XRF) scanning is used to quantify bulk geochemical variability throughout the lake sediment cores, and to investigate specific elemental proxies for paleoenvironmental change (detrital flux, biogenic flux, and redox state). The high-resolution XRF data are supplemented by sediment magnetic susceptibility measurements, and organic matter concentration as determined by loss on ignition. These records demonstrate a general increase in detrital sediment input from 1200 to 1300 A.D., during a period of known regional agricultural expansion. We infer these changes to be the consequence of increased catchment soil erosion and material flux to the water bodies. The data also suggest changes in mill and farm pond primary productivity, also related to soil erosion and changing transport of soil nutrients to the basins. Near the onset of the Little Ice Age (ca. 1500 A.D.) pond productivity reductions are apparent, likely indicating colder climates. These mill and farm pond sedimentary archives, in conjunction with historic records, can be used to better understand past land management strategies. Furthermore, historically documented landscape changes can be examined within the context of prevailing climatic conditions over the last ~800 years in an effort to establish future best management practices and the most

  17. Hydrologic analysis of two headwater lake basins of differing lake pH in the west-central Adirondack Mountains of New York

    USGS Publications Warehouse

    Murdoch, Peter S.; Peters, N.E.; Newton, R.M.

    1987-01-01

    Hydrologic analysis of two headwater lake basins in the Adirondack Mountains, New York, during 1980-81 indicates that the degree of neutralization of acid precipitation is controlled by the groundwater contribution to the lake. According to flow-duration analyses, daily mean outflow/unit area from the neutral lake (Panther Lake, pH 5-7) was more sustained and contained a higher percentage of groundwater than that of the acidic lake (Woods Lake, pH 4-5). Outflow recession rates and maximum base-flow rates, derived from individual recession curves, were 3.9 times and 1.5 times greater, respectively, in the neutral-lake basin than in the acidic-lake basin. Groundwater contribution to lake outflow was also calculated from a lake-water budget; the groundwater contribution to the neutral lake was about 10 times greater than that to the acidic lake. Thick sandy till forms the groundwater reservoir and the major recharge area in both basins but covers 8.5 times more area in the neutral-lake basin than in the acidic-lake basin. More groundwater storage within the neutral basin provides longer contact time with neutralizing minerals and more groundwater discharge. As a result, the neutral lake has relatively high pH and alkalinity, and more net cation transport. (USGS)

  18. Gonopodial system review and a new fish record of Poeciliopsis infans (Cyprinodontiformes: Poeciliidae) for Lake Patzcuaro, Michoacan, central Mexico.

    PubMed

    Galindo-Villegas, Jorge; Sosa-Lima, F

    2002-01-01

    Since 1997, Poeciliopsis infans Woolman 1894 has been recognized as a new inhabitant of Lake Patzcuaro, Michoacan in Central Mexico. Between February 1997 and October 1998, nine fish samples were collected at Lake Patzcuaro. Morphometric and meristic counts were conducted on a random selection of 40 organisms of both sexes of Poeciliopsis infans. Males of these viviparous fish posses a modified anal fin called gonopodium. The characteristic hemal spine on the 18th caudal vertebra for this species is described herein and the bony components of the gonopodial structure and suspensoria that together comprise the gonopodial system, which is important for taxonomic studies at various levels of classification were reviewed. Poeciliopsis infans displays a high degree of sexual dimorphism in body shape and anal fin anatomy with the most conspicuous difference observed in anal fin height, which averages 40% of SI in males and 17% in females. Comparisons between male and female anal fins are described herein as well as the possible impacts of this species on Lake Patzcuaro fish fauna. PMID:12947598

  19. The effect of seasonality on the structure of rotifers in a black-water shallow lake in Central Amazonia.

    PubMed

    Nova, Clarice C; Lopes, Vanessa G; Souza, Leonardo Coimbra E; Kozlowsky-Suzuki, Betina; Pereira, Talita A A; Branco, Christina W C

    2014-09-01

    Rotifers have often been used as indicators of sudden changes in physical and chemical features of the aquatic environment. Such features vary greatly during flood pulse events in small lakes connected to major floodplains. However, few are the studies that investigate the consequences of the flood pulse in rotifer species composition, abundance, richness and diversity, especially in Amazonian lakes. We analyzed samples from a small blackwater lake of an "igarapé" connected permanently to the Negro river, in Central Amazonia. Samples were taken twice a year for two years, comprising flooding and receding periods of the flood pulse. Rotifer abundance increased significantly after draught events, and electrical conductivity and turbidity were intrinsically related to such variation. Species composition also changed from flooding to receding periods. Some taxa, such as Brachionus zahniseri reductus and Lecane remanei were restricted to receding periods, while Brachionus zahniseri, Brachionus gillardi and Lecane proiecta were only present during flooding. A shift in the composition of rotifer families was observed from one period to another, showing the effect of renewing waters of the flood pulse. These results suggest that the flood pulse acts as a driving force and stressing condition, considerably altering rotifer community dynamics, either changing species composition or decreasing abundance. PMID:25119730

  20. Reconnaissance survey for lightweight and carbon tetrachloride extractable hydrocarbons in the central and eastern basins of Lake Erie: September 1978

    SciTech Connect

    Zapotosky, J.E.; White, W.S.

    1980-10-01

    A reconnaissance survey of the central and eastern basins of Lake Erie (22,240 km/sup 2/) was conducted from September 17 to 27, 1978. The survey provided baseline information on natural gas and oil losses from geologic formations, prior to any potential development of natural gas resources beneath the United States portion of the Lake. Lightweight hydrocarbons indicative of natural gas (methane, ethane, propane, isobutane, and n-butane) are introduced into the waters of Lake Erie by escape from geologic formations and by biological/photochemical processes. The geochemical exploration technique of hydrocarbon sniffing provided enough data to reveal significant distribution patterns, approximate concentrations, and potential sources. Twelve sites with elevated lightweight hydrocarbon concentrations had a composition similar to natural gas. In one area of natural gas input, data analysis suggested a potential negative effect of natural gas on phytoplanktonic metabolism (i.e., ethylene concentration). Samples taken for liquid hydrocarbon analysis (carbon tetrachloride extractable hydrocarbons) correlated best with biologically derived lightweight hydrocarbons.

  1. A link between North Atlantic cooling and dry events in the core SW monsoon region in Lonar Lake, central India

    NASA Astrophysics Data System (ADS)

    Menzel, Philip; Gaye, Birgit; Prasad, Sushma; Plessen, Birgit; Stebich, Martina; Anoop, Ambili; Riedel, Nils; Basavaiah, Nathani

    2014-05-01

    A sediment core from Lonar Lake in central India covers the complete Holocene and was used to reconstruct the monsoon history of the core SW-monsoon region. We compare C/N ratios, stable carbon and nitrogen isotopes, grain size, as well as amino acid derived degradation proxies with climatically sensitive proxies of other records from South Asia and the North Atlantic region. The comparison reveals some more or less contemporaneous climate shifts. At Lonar Lake, a general long term climate transition from wet conditions during the early Holocene to drier conditions during the late Holocene, delineating the insolation curve, can be reconstructed. Several phases of shorter term climate alteration that superimpose the general climate trend correlate with cold phases in the North Atlantic region. The most pronounced climate deteriorations indicated by our data occurred between 6.2 - 5.2, 4.65 - 3.9, and 2.05 - 0.55 cal ka BP. The strong dry phase between 4.65 - 3.9 cal ka BP at Lonar Lake corroborates the hypothesis that severe climate deterioration contributed to the decline of the Indus Civilisation about 3.9 ka BP.

  2. Peak-flow frequency and extreme flood potential for streams in the vicinity of the Highland Lakes, central Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, R.M.; Lanning-Rush, Jennifer

    1996-01-01

    The Highland Lakes on the Colorado River are in an area periodically threatened by large storms and floods. Many storms exceeding 10 inches (in.) in depth have been documented in the area, including some with depths approaching 40 in. These storms typically produce large peak discharges that often threaten lives and property. The storms sometimes occur with little warning. Steep stream slopes and thin soils characteristic of the area often cause large peak discharges and rapid movement of floods through watersheds. A procedure to predict the discharge associated with large floods is needed for the area so that appropriate peak discharges can be used in the design of flood plains, bridges, and other structures.The U.S. Geological Survey (USGS), in cooperation with the Lower Colorado River Authority (LCRA), studied flood peaks for streams in the vicinity of the Highland Lakes of central Texas. The Highland Lakes are a series of reservoirs constructed on the Colorado River. The chain of lakes (and year each was completed) comprises Lake Buchanan (1937), Inks Lake (1938), Lake Lyndon B. Johnson (1950), Lake Marble Falls (1951), Lake Travis (1942), and lake Austin (1890). The study area (fig. 1), which includes all or parts of 21 counties in the vicinity of the Highland Lakes, was selected because most streams in the area have flood characteristics similar to streams entering the Highland Lakes. The entire study area is in a region subject to large storms.The purpose of this report is to present (1) peak-flow frequency data for stations and equations to estimate peak-flow frequency for large streams with natural drainage basins in the vicinity of the Highland Lakes, and (2) a technique to estimate the extreme flood peak discharges for the large streams in the vicinity of the Highland Lakes. Peak-flow frequency in this report refers to the peak discharges for recurrence intervals of 2,5, 10,25,50, and 100 years. A large stream is defined as having a contributing drainage

  3. Quantification of anthropogenic threats to lakes in a lowland county of central Sweden.

    PubMed

    Brunberg, A K; Blomqvist, P

    2001-05-01

    An evaluation of the negative effects caused by anthropogenic influence on lake ecosystems was performed, using data from 143 catchments in Uppsala County, Sweden. The study included i) technical encroachments; i.e. construction of dams, dikes, etc. as well as effects of drainage of land; ii) pollution, i.e. eutrophication, acidification, and contamination by toxic substances; iii) introduction of nonnative species; and iv) exploitation of species populations. Severe damage was caused mostly by drainage of land followed by pollution by toxic substances and, to a smaller extent, introduction of nonnative species and eutrophication. Most lakes were subject to several types of disturbances, interacting in a complex pattern, which made it difficult to link the visible effects to the true causes of the disturbance. Future lake management should include analyses of all disturbances to the lake catchments, taking into account the historical perspective, in order to balance the threats/damages, in an analysis of the possibilities for maintaining biodiversity and sustainability in the ecosystems. PMID:11436659

  4. Isolation of Acholeplasma laidlawii from centrarchids in a Central Florida Lake

    USGS Publications Warehouse

    Francis-Floyd, R.; Reed, P.; Gibbs, P.; Shotts, E.; Bolon, B.; Coleman, W.; Klinger, R.

    1998-01-01

    In 1991, the poor physical condition of largemouth bass Micropterus salmoides from Lake Harris, Florida, was associated with the decline of the lake's fishery. The swim bladders of emaciated bass had mild inflammation and ecchymotic hemorrhages. A mycoplasma-like organism isolated from swim bladders was initially believed to be the causative agent. The organism was later identified as Acholeplasma laidlawii by using a fluorescent antibody procedure and was demonstrated to be nonpathogenic. Parenteral injection of the organism into healthy largemouth bass fingerlings produced no signs of disease or difference in growth rate compared with control fish during a 16-month period. Field studies resulted in isolation of A. laidlawii from black crappies Pomoxis nigromaculatus, bluegills Lepomis macrochirus, and redear sunfish L. microlophus, but not from noncentrarchids in Lake Harris or from any fish species in a control fishery (Lake Holly, Florida). The absence of organisms in all emaciated bass, our inability to reproduce the disease, and isolation of the organism from seemingly healthy fish suggest this organism was not pathogenic.

  5. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    USGS Publications Warehouse

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  6. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in Central Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Rea, Alan; Runkle, D.L.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in central Oklahoma. Ground water in approximately 400 square miles of Quaternary-age alluvial and terrace aquifer is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer consists of clay, silt, sand, and gravel. Sand-sized sediments dominate the poorly sorted, fine to coarse, unconsolidated quartz grains in the aquifer. The hydraulically connected alluvial and terrace deposits unconformably overlie Permian-age formations. The aquifer is overlain by a layer of wind-blown sand in parts of the area. Most of the lines in the aquifer boundary, hydraulic conductivity, and recharge data sets were extracted from published digital surficial geology data sets based on a scale of 1:250,000. The ground-water elevation contours and some of the lines for the aquifer boundary, hydraulic conductivity, and recharge data sets were digitized from a ground-water modeling report about the aquifer published at a scale of 1:250,000. The hydraulic conductivity values and recharge rates also are from the ground-water modeling report. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  7. Late Early Permian continental ichnofauna from Lake Kemp, north-central Texas, USA

    USGS Publications Warehouse

    Lucas, S.G.; Voigt, S.; Lerner, A.J.; Nelson, W.J.

    2011-01-01

    Continental trace fossils of Early Permian age are well known in the western United States from Wolfcampian (~. Asselian to Artinskian) strata, but few examples are known from Leonardian (~. Kungurian) deposits. A substantial ichnofauna from strata of the lower part of the Clear Fork Formation at Lake Kemp, Baylor County, Texas, augments the meager North American record of Leonardian continental trace fossil assemblages. Ichnofossils at Lake Kemp occur in the informally-named Craddock dolomite member of the Clear Fork Formation, which is 12-15. m above the local base of the Clear Fork. The trace-bearing stratum is an up-to-0.3. m thick, laminated to flaser-bedded, dolomitic siltstone that also contains mud cracks, raindrop impressions, microbially induced mat structures, and some land-plant impressions. We interpret the Craddock dolomite member as the feather-edge of a marine transgressive carbonate deposit of an irregular coastline marked by shallow bays or estuaries on the eastern shelf of the Midland basin, and the trace-fossil-bearing stratum at Lake Kemp is an unchannelized flow deposit on a muddy coastal plain. The fossil site at Lake Kemp yields a low to moderately diverse fauna of invertebrate and vertebrate traces. A sparse invertebrate ichnofauna consists of arthropod feeding and locomotion traces assigned to Walpia cf. W. hermitensis White, 1929 and Diplichnites gouldi Gevers in Gevers et al., 1971. Tetrapod footprints are most common and assigned to Batrachichnus salamandroides (Geinitz, 1861), cf. Amphisauropus kablikae (Geinitz and Deichm??ller, 1882), and Dromopus lacertoides (Geinitz, 1861), which represent small temnospondyl, seymouriamorph, and basal sauropsid trackmakers. Both the traces and sedimentary features of the fossil horizon indicate a freshwater setting at the time of track formation, and the trace assemblage represents the Scoyenia ichnofacies and the Batrachichnus ichnofacies in an overbank environment with sheet flooding and shallow

  8. Aqueous Geochemistry of Lake Tuscaloosa, West-Central Alabama, USA: Drought Response

    NASA Astrophysics Data System (ADS)

    Creech, L., Jr.; Donahoe, R. J.

    2008-12-01

    Lake Tuscaloosa was created in 1969 by the impoundment of the North River near Northport and Tuscaloosa, AL. The reservoir is 25 miles long with a capacity of 123,000 acre-feet, a surface area of 5,885 acres, and an estimated safe yield of 200 M gal/d. It is the receiving water body of a 432 square mile watershed. This project studies the aqueous geochemistry of surface waters using samples representative of different seasonal conditions and land cover. Of the 21 sample locations in this study, three are located on tributaries, four transect the axis of the lake, and the rest are divided among semi-restricted coves representing forested and residential land cover. Sample chemistry is quantified for major, minor, and trace cations, anions, and nutrients, total dissolved nitrogen, DOC, and ALK. The current study presents data collected from the lake and its tributaries during recent severe drought conditions impacting much of the southeastern United States. These data are compared with data from an identical study conducted five years ago during a more normal water year. For each sampling year, four seasonal sampling events were conducted. Both intra- and inter-annual results are reported. Historical USGS data for seven locations sampled since 1986 on a semi-annual basis illustrate a general increase in TDS and nutrients since the lake's creation. Some USGS sample locations coincide with those of the current study. Recently collected data agrees well with recent USGS data for the same locations. It is likely that trends observed in this study are related to anthropogenic effects along the lake shore, as evidenced by the geochemical differences between residential and forested coves. Long-term trends observed in historical data are likely the result of land use in the watershed related to mining, agriculture, and residential development. It is also observed that lower flow conditions are associated with increased solute concentrations, indicating that dilution by

  9. Occurrence and distribution of endocrine-disrupting compounds in the Honghu Lake and East Dongting Lake along the Central Yangtze River, China.

    PubMed

    Yang, Yuyi; Cao, Xinhua; Zhang, Miaomiao; Wang, Jun

    2015-11-01

    Lakes along the Yangzte River are very important for inhabitants due to their ecosystem service values. In this study, the level of eight endocrine-disrupting compounds (EDCs) was studied in the Honghu Lake and East Dongting Lake. In each lake, 21 water samples and 21 sediment samples were collected. The total concentrations of eight EDCs in surface water (47.60-419.82 ng L(-1), mean value: 225.65 ng L(-1)) and sediments (202.71-635.36 ng g(-1) dry weight (dw), mean value 371.90 ng g(-1) dw) of Honghu Lake were significantly higher than those in surface water (43.52-394.21 ng L(-1), mean value 153.03 ng L(-1)) and sediment (70.01-464.63 ng g(-1) dw, mean value 238.42 ng g(-1) dw) in East Dongting Lake. 4-Nonylphenol (NP), 4-octylphenol (OP), and bisphenol A (BPA) in surface water and sediments were main EDCs in two lakes. No correlation relationships were found between concentrations of EDCs in water and sediment from two lakes. The concentrations of OP and 17α-ethinylestradiol (EE2) in sediments of Honghu Lake had significant positive correlation with the content of total organic carbon (TOC). The concentrations of EDCs in outlet of Honghu Lake were comparable to those in the main lake, whereas the EDCs in outlet of East Dongting Lake were lower than those in the main lake. The EDCs in Honghu Lake and East Dongting Lake may have a significant potential biological effect on fish based on the estimation of EDC estrogenicity. PMID:26150298

  10. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Biskop, S.; Maussion, F.; Krause, P.; Fink, M.

    2016-01-01

    The contrasting patterns of lake-level fluctuations across the Tibetan Plateau (TP) are indicators of differences in the water balance over the TP. However, little is known about the key hydrological factors controlling this variability. The purpose of this study is to contribute to a more quantitative understanding of these factors for four selected lakes in the southern-central part of the TP: Nam Co and Tangra Yumco (increasing water levels), and Mapam Yumco and Paiku Co (stable or slightly decreasing water levels). We present the results of an integrated approach combining hydrological modeling, atmospheric-model output and remote-sensing data. The J2000g hydrological model was adapted and extended according to the specific characteristics of closed-lake basins on the TP and driven with High Asia Refined analysis (HAR) data at 10 km resolution for the period 2001-2010. Differences in the mean annual water balances among the four basins are primarily related to higher precipitation totals and attributed runoff generation in the Nam Co and Tangra Yumco basins. Precipitation and associated runoff are the main driving forces for inter-annual lake variations. The glacier-meltwater contribution to the total basin runoff volume (between 14 and 30 % averaged over the 10-year period) plays a less important role compared to runoff generation from rainfall and snowmelt in non-glacierized land areas. Nevertheless, using a hypothetical ice-free scenario in the hydrological model, we indicate that ice-melt water constitutes an important water-supply component for Mapam Yumco and Paiku Co, in order to maintain a state close to equilibrium, whereas the water balance in the Nam Co and Tangra Yumco basins remains positive under ice-free conditions. These results highlight the benefits of linking hydrological modeling with atmospheric-model output and satellite-derived data, and the presented approach can be readily transferred to other data-scarce closed lake basins, opening new

  11. Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: Strategies to prevent dangerous human exposures to cyanotoxins.

    PubMed

    Manganelli, Maura; Stefanelli, Mara; Vichi, Susanna; Andreani, Paolo; Nascetti, Giuseppe; Scialanca, Fabrizio; Scardala, Simona; Testai, Emanuela; Funari, Enzo

    2016-06-01

    Vico Lake, a volcanic meso-eutrophic lake in Central Italy, whose water is used for drinking and recreational activities, experienced the presence of the microcystins (MC) producing cyanobacterium Planktothrix rubescens. In order to assess the human health risks and to provide the local health authorities with a scientific basis for planning tailored monitoring activities, we studied P. rubescens ecology and toxicity for two years. P. rubescens generally dominated the phytoplankton community, alternating with Limnothrix redekei, potentially toxic. P. rubescens was distributed throughout the water column during winter; in summer it produced intense blooms where drinking water is collected (-20 m); here MC were detected all year round (0.5-5 μg/L), with implications for drinking water quality. In surface waters, MC posed no risk for recreational activities in summer, while in winter surface blooms and foams (containing up to 56 μg MC/L) can represent a risk for people and children practicing water sports and for animals consuming raw water. Total phosphorus, phosphate and inorganic nitrogen were not relevant to predict densities nor toxicity; however, a strong correlation between P. rubescens density and aminopeptidase ectoenzymatic activity, an enzyme involved in protein degradation, suggested a role of organic nitrogen for this species. The fraction of potentially toxic population, determined both as mcyB(+)/16SrDNA (10-100%) and as the MC/mcyB(+) cells (0.03-0.79 pg MC/cell), was much more variable than usually observed for P. rubescens. Differently from other Italian and European lakes, the correlation between cell density or the mcyB(+) cells and MC explained only ∼50 and 30% of MC variability, respectively: for Vico Lake, monitoring only cell or the mcyB(+) cell density is not sufficient to predict MC concentrations, and consequently to protect population health. Finally, during a winter bloom one site has been sampled weekly, showing that

  12. Geochemistry of saline lakes of the northeastern Yukon Flats, east central Alaska

    NASA Astrophysics Data System (ADS)

    Hawkins, D. B.

    1985-01-01

    Above the Arctic Circle in the Yukon Flats of northeastern Alaska, shallow, brackish water ponds are rimmed with evaporite minerals such as trona (NaHCO3Na2CO3). These ponds form in an area of Alaska characterized by an extreme continental climate with about six inches of precipitation annually. Evaporite formation occurs because evaporation exceeds inflow. The hydrogeochemistry of the waters of the Yukon Flats was investigated to determine the origin of the ponds and evaporite minerals. Evaporation of the freshwater lakes will first precpitate calcite and ultimately form trona. The change in relative concentrations of Ca(+2), HCO3, and SO4 in going from river water to lake water is critical and indicates that sulfate reduction accompanied by bicarbonate formation is an essential process that produces an excess of HCO3 over CA(+2).

  13. Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    Qiao, Liu; Mayer, Christoph; Liu, Shiyin

    2015-01-01

    Supraglacial lakes are widely formed on debris-covered glaciers in the Khan Tengri-Tumor Mountains (KTTM), Tianshan, Central Asia. Study of their distribution characters based on regional-wide remote sensing investigations is still lacking, but it can promote our understanding about the influence of supraglacial lakes on the surface melting, hydrology and dynamics of debris-covered glaciers in this region. This study presents results of the supraglacial lake inventory in the KTTM region, based on multi-year Landsat images. We focus on the glacio-geomorphological characters of the supraglacial lakes and their late summer conditions, since all suitable Landsat images were acquired between August and September during 1990-2011. With a minimum threshold extent of 3600 m2 for conservative mapping results, we totally mapped 775 supraglacial lakes and 38 marginal glacial lakes on eight huge debris-covered glaciers. Supraglacial lakes are concentrated on the Tumor Glacier and the South Inylchek Glacier, two biggest glaciers in this region. Although most supraglacial lakes are short-lived, a number of lakes can be repeatedly identified between different Landsat images. Detailed investigation of these ‘perennial’ lakes on the Tumor Glacier indicates that their filling frequency and area contributions have increased since 2005. Analysis of the area-elevation distributions for all mapped supraglacial lakes shows that they predominantly occur close to the altitude of 3250 m a.s.l., as high as the lowest reach of clean ice where surface debris begins to appear, and can further develop upglacier to a limit of about 3950 m a.s.l.. Total and mean area of supraglacial lakes in the KTTM region during the late summer seasons show great variability between years. Correlation analysis between the annual lake area and the observed nearby meteorological conditions suggests that warmer springs seem related to the draining of some supraglacial lakes during the following seasons, due to

  14. Impulse waves generated by rock falls: Run-up assessment along a lakeshore (Lake Lucerne, Central Switzerland)

    NASA Astrophysics Data System (ADS)

    Erni, Corinne; Buckingham, Thomas; Louis, Klaus; Fuchs, Helge; Boes, Robert; Pedrazzini, Andrea; Jaboyedoff, Michel

    2010-05-01

    The inoperative Obermatt quarry is an up to 160 m high rock face located directly at the lakeside of Lake Lucerne in Central Switzerland. Geologically the study site is situated in the Helvetic nappes and at its base consists of siliceous limestone (Kieselkalk Formation). The upper part of the quarry can be characterized by alternating limestone and weak marly layers (Drusbergschichten). Several major rock fall events in the past are documented causing two human casualties in the 1960's, as a consequence of the failure of rock masses in the range of approximately 70'000 m3 and 100'000 m3. The most recent rock falls, occurring in 2007, involved volumes in the range of 10'000 - 20'000 m3. All events generated impulse waves with different heights in the lake, directly in the slope line of the instable rock face. The 1-2 m high waves reached the community of Weggis at the opposite lakeside at 3.5 km distance, causing large damage to infrastructure along the entire lake shoreline. The object of this study was to assess the structural predisposition of potential rock slope instabilities that menace to fail, plunge into the lake and induce impulse waves. The wave propagation and its variability across the lake and along the vulnerable lakeshore were studied. As a consequence from the hazard assessment several monitoring systems and structural measures in the source as well as the potentially affected areas across the lake were evaluated. Due to the difficult access to the steep slope, structural and stability analyses have been carried out based on a High Resolution Digital Elevation Model (HRDEM) point cloud derived from terrestrial and airborne laser scanners. Besides detailed investigations of probable triggering factors of previous rock falls, potential instable rock masses where investigated by fieldwork (rappelling) and extensive image analysis of the scar area. By compilation of field observations and structural data, unstable volumes ranging from 4'000 m3 to 309

  15. Hydrogeologic comparison of an acidic-lake basin with a neutral-lake basin in the West-Central Adirondack Mountains, New York

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.

    1985-01-01

    Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4.7 to 7; that at Woods Lake (acidic) ranges from about 4.3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that differences in lakewater pH can be attributed to differences in the ground-water contribution to the lakes. A larger percentage of the water discharged from the neutral lake is derived from ground water than that from the acidic lake. Ground water has a higher pH resulting from a sufficiently long residence time for neutralizing chemical reactions to occur with the till. The difference in ground-water contribution is attributed to a more extensive distribution of thick till (<3m) in the neutral-lake basin than in the acidic-lake basin; average thickness of till in the neutral-lake basin is 24m whereas that in the other is 2.3m. During the snowmelt period, as much as three months of accumulated precipitation may be released within two weeks causing the lateral flow capacity of the deeper mineral soil to be exceeded in the neutral-lake basin. This excess water moves over and through the shallow acidic soil horizons and causes the lakewater pH to decrease during snowmelt.Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4. 7 to 7; that at Woods Lake (acidic) ranges from about 4. 3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that

  16. A digital model for planning water management at Benton Lake National Wildlife Refuge, west-central Montana

    USGS Publications Warehouse

    Nimick, David A.; McCarthy, Peter M.; Fields, Vanessa

    2011-01-01

    Benton Lake National Wildlife Refuge is an important area for waterfowl production and migratory stopover in west-central Montana. Eight wetland units covering about 5,600 acres are the essential features of the refuge. Water availability for the wetland units can be uncertain owing to the large natural variations in precipitation and runoff and the high cost of pumping supplemental water. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, has developed a digital model for planning water management. The model can simulate strategies for water transfers among the eight wetland units and account for variability in runoff and pumped water. This report describes this digital model, which uses a water-accounting spreadsheet to track inputs and outputs to each of the wetland units of Benton Lake National Wildlife Refuge. Inputs to the model include (1) monthly values for precipitation, pumped water, runoff, and evaporation; (2) water-level/capacity data for each wetland unit; and (3) the pan-evaporation coefficient. Outputs include monthly water volume and flooded surface area for each unit for as many as 5 consecutive years. The digital model was calibrated by comparing simulated and historical measured water volumes for specific test years.

  17. Widespread waterborne pollution in central Swedish lakes and the Baltic Sea from pre-industrial mining and metallurgy.

    PubMed

    Bindler, Richard; Renberg, Ingemar; Rydberg, Johan; Andrén, Thomas

    2009-07-01

    Metal pollution is viewed as a modern problem that began in the 19th century and accelerated through the 20th century; however, in many parts of the globe this view is wrong. Here, we studied past waterborne metal pollution in lake sediments from the Bergslagen region in central Sweden, one of many historically important mining regions in Europe. With a focus on lead (including isotopes), we trace mining impacts from a local scale, through a 120-km-long river system draining into Mälaren--Sweden's third largest lake, and finally also the Baltic Sea. Comparison of sediment and peat records shows that pollution from Swedish mining was largely waterborne and that atmospheric deposition was dominated by long-range transport from other regions. Swedish ore lead is detectable from the 10th century, but the greatest impact occurred during the 16th-18th centuries with improvements occurring over recent centuries, i.e., historical pollution > modern industrial pollution. PMID:19268409

  18. A 900-year pollen-inferred temperature and effective moisture record from varved Lake Mina, west-central Minnesota, USA

    NASA Astrophysics Data System (ADS)

    St. Jacques, Jeannine-Marie; Cumming, Brian F.; Smol, John P.

    2008-04-01

    Drought is endemic to the North American Great Plains, causing severe economic consequences. However, instrumental climate data only exist from ca AD 1890, and limited tree-ring, paleolimnological, archeological and eolian records document the last two millennia. To address this lack of monitoring and paleoclimatic data, the pollen preserved in the varved sediments of Lake Mina, Minnesota, on the northeastern border of the Great Plains, were analyzed. May and February mean monthly temperatures and "annual precipitation minus potential evapotranspiration" were reconstructed at a 4-year resolution using a pre-settlement pollen-climate calibration set. The period of the so-called Little Ice Age (LIA) (AD 1500-1870) was colder than the Medieval Climate Anomaly (MCA) (AD 1100-1500) in west-central Minnesota. Winter temperatures in the LIA declined more than summer ones. The pollen record suggests that the LIA occurred in three phases: an initial cold phase from AD 1505 to AD 1575, a warmer phase, and then a very cold phase from AD 1625 to AD 1775. There were severe droughts detected in the Lake Mina record from AD 1660 to AD 1710 and AD 1300 to AD 1400, suggesting that high-resolution pollen records can detect events previously defined from the tree-ring records. This latter century-scale drought is concurrent with the widely reported "AD 1250-1400 mega-drought", which exceeds the severity of 20th century droughts.

  19. Salt lakes of La Mancha (Central Spain): A hot spot for tiger beetle (Carabidae, Cicindelinae) species diversity.

    PubMed

    Rodríguez-Flores, Paula C; Gutiérrez-Rodríguez, Jorge; Aguirre-Ruiz, Ernesto F; García-París, Mario

    2016-01-01

    The tiger beetle assemblage of the wetlands of La Mancha (central Spain) comprises nine species: Calomera littoralis littoralis, Cephalota maura maura, Cephalota circumdata imperialis, Cephalota dulcinea, Cicindela campestris campestris, Cicindela maroccana, Cylindera paludosa, Lophyra flexuosa flexuosa, and Myriochila melancholica melancholica. This assemblage represents the largest concentration of tiger beetles in a single 1º latitude / longitude square in Europe. General patterns of spatial and temporal segregation among species are discussed based on observations of 1462 specimens registered during an observation period of one year, from April to August. The different species of Cicindelini appear to be distributed over space and time, with little overlapping among them. Three sets of species replace each other phenologically as the season goes on. Most of the species occupy drying or dried salt lakes and salt marshes, with sparse vegetation cover. Spatial segregation is marked in terms of substrate and vegetation use. Calomera littoralis and Myriochila melancholica have been observed mainly on wet soils; Cephalota circumdata on dry open saline flats; Cephalota dulcinea and Cylindera paludosa in granulated substrates with typical halophytic vegetation; Cephalota maura is often present in man-modified areas. Cephalota circumdata and Cephalota dulcinea are included as species of special interest in the list of protected species in Castilla-La Mancha. Conservation problems for the Cicindelini assemblage arise from agricultural activities and inadequate use of sport vehicles. Attempts at restoring the original habitat, supressing old semi-industrial structures, may affect the spatial heterogeneity of the lakes, and have an effect on Cicindelinae diversity. PMID:27006617

  20. Formation of analcime and moganite at Lake Lewis, central Australia: significance of groundwater evolution in diagenesis

    NASA Astrophysics Data System (ADS)

    English, P. M.

    2001-09-01

    Lake Lewis basin in the Northern Territory is a hydrologically closed intermontane basin in which clay-rich palaeolacustrine sediments are infused with highly evolved brines. Acquisition of dissolved silica and sodium by groundwaters from the Proterozoic Arunta granite-gneiss terrain, and from arkosic alluvium and weathering products sourced from these bedrocks, is important to diagenesis at the salt lake. Supersaturation of groundwaters with respect to SiO 2 and the availability of catalytic ions, coupled with high rates of evaporation, favour neoformation of opal and chalcedonic silica from solution near the groundwater discharge zone. Moganite, a distinctive silica polymorph that is commonly associated with evaporites, has been identified amongst precipitated silica species. Down-gradient from the zone of silica precipitation, beneath the playa, brines are SiO 2-deficient. Long periods of weathering and diagenesis of lacustrine clays immersed in semi-stagnant brines has transformed detrital minerals into substantial proportions of amorphous or gelatinous aluminosilicate material. Aluminosilicate phases have become metastable in the presence of evolved SiO 2-deficient interstitial brine. Analcime, a sodium-bearing zeolite group mineral, is stable in the presence of the Na-rich brine and is crystallizing authigenically below the watertable from the amorphous aluminosilicate material in the lacustrine sediment. No volcanic rocks or pyroclastic sediments are involved in this diagenetic occurrence of analcime. The appearance of analcime in the evolution of the salt lake system probably commenced within the last 100 000 years and is occurring in the present-day hydrologic and climatic regime of this arid zone area.

  1. Biotic and abiotic response to palaeoenvironmental changes at Lake Pannons' western margin (Central Europe, Late Miocene)

    PubMed Central

    Gross, Martin; Piller, Werner E.; Scholger, Robert; Gitter, Frank

    2011-01-01

    A multidisciplinary study was performed on a c. 30 m thick, limnic–deltaic sequence in the Styrian Basin (Austria). Geophysical (gamma ray activity, rock magnetism), geochemical (organic carbon, sulphur) and sedimentological observations were combined with palaeontological information (mainly ostracods). On this base, several ecological factors were deduced (terrigenous influx, salinity, water depth and oxygenation). Based on integrated stratigraphy as well as on palaeomagnetic results the whole section is set to Chron C5r.2r−1n (11.308–11.263 Ma) and covers a period of less than 45 kyr. In addition to the long-term record, we analysed short-term changes by high-resolution sampling (5 mm sample interval; ostracods, magnetic susceptibility). This ~ 2.3 m-thick interval spans in total < 3500 yr with an individual sample resolution of a few years only. The combination of these data permit the description of the palaeoenvironmental evolution of the section in detail: at the base of the section, the development of a conifer swamp on the lakeside of Lake Pannon is documented. This almost freshwater swamp existed for some centuries before it became extinct within a few decades due to a rise of the water-table. The drowning is related to a transgression of Lake Pannon, which triggered the establishment of a brackish-water fauna as well as greigite formation in the lake sediments. In general, the ongoing transgression favoured benthic life due to increased salinity (up to mesohaline conditions). The high-resolution ostracod and magnetic susceptibility record reflect short-term fluctuations in bottom-water ventilation. These oscillations probably range in the order of centuries and decades and are possibly related to climatic shifts. Later, the successive deepening of the lake resulted in a significant faunal turnover. A meromictic system with a well-established, oxygen-depleted hypolimnion developed. Finally, the limnic phase was replaced by a prograding

  2. Abundance, composition, and distribution of crustacean zooplankton in relation to hypolimnetic oxygen depletion in west-central Lake Erie

    USGS Publications Warehouse

    Heberger, Roy F.; Reynolds, James B.

    1977-01-01

    Samples of crustacean zooplankton were collected monthly in west-central Lake Erie in April and June to October 1968, and in July and August 1970, before and during periods of hypolimnetic dissolved oxygen (DO) depletion. The water column at offshore stations was thermally stratified from June through September 1968, and the hypolimnion contained no DO in mid-August of 1968 or 1970. Composition, abundance, and vertical distribution of crustacean zooplankton changed coincidentally with oxygen depletion. From July to early August, zooplankton abundance dropped 79% in 1968 and 50% in 1970. The declines were attributed largely to a sharp decrease in abundance of planktonic Cyclops bicuspidatus thomasi. Zooplankton composition shifted from mainly cyclopoid copepods in July to mainly cladocerans and copepod nauplii in middle to late August. We believe that mortality of adults and dormancy of copepodites in response to anoxia was the probable reason for the late summer decline in planktonic C. b. thomasi.

  3. SOURCE APPORTIONMENT OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) INTO CENTRAL PARK LAKE, NEW YORK CITY, OVER A CENTURY OF DEPOSITION

    PubMed Central

    Yan, Beizhan; Bopp, Richard F.; Abrajano, Teofilo A.; Chaky, Damon; Chillrud, Steven N.

    2014-01-01

    Relative contributions of polycyclic aromatic hydrocarbons (PAHs) from combustion sources of wood, petroleum, and coal were computed in sediments from Central Park Lake in New York City (NY, USA) by chemical mass balance based on several reliable source indicators. These indicators are the ratio of retene to the sum of retene and chrysene, the ratio of 1,7-dimethylphenanthrene (DMP) to 1,7-DMP and 2,6-DMP, and the ratio of fluroanthene to fluroanthene and pyrene. The authors found that petroleum combustion–derived PAH fluxes generally followed the historical consumption data of New York State. Coal combustion-derived PAH flux peaked approximately in the late 1910s, remained at a relatively high level over the next 3 decades, then rapidly declined from the 1950s to the 1960s; according to historical New York State coal consumption data, however, there was a 2-peak trend, with peaks around the early 1920s and the mid-1940s. The 1940s peak was not observed in Central Park Lake, most likely because of the well-documented shift from coal to oil as the major residential heating fuel in New York City during the late 1930s. It was widely believed that the decreased PAH concentrations and fluxes in global sediments during the last century resulted from a major energy shift from coal to petroleum. The data, however, show that this shift occurred from 1945 through the 1960s and did not result in an obvious decline. The sharpest decrease, which occurred in the 1970s was not predominantly related to coal usage but rather was the result of multiple factors, including a decline in petroleum usage largely, the introduction of low sulfur–content fuel in New York City, and the introduction of emission-control technologies. PMID:24375577

  4. Holocene evolution of the River Nile drainage system as revealed from the Lake Dendi sediment record, central Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Viehberg, F. A.; Wennrich, V.; Junginger, A.; Kolvenbach, A.; Rethemeyer, J.; Schaebitz, F.; Schmiedl, G. H.

    2015-12-01

    A 12 m long sediment sequence from Dendi Crater lakes, located on the central Ethiopian Plateau, was analysed with sedimentological and geochemical methods to reconstruct the regional environmental history. Bulk organic carbon samples from 23 horizons throughout the sequence were used for AMS radiocarbon dating and indicate that the sediment sequence spans the last ca. 12 cal kyr BP. Microscope analyses and sedimentological data reveal three tephra layers, of which the most prominent layer with a thickness of ~2 m was deposited at 10.2 cal kyr BP and probably originates from an eruption of the Wenchi crater 12 km to the west of the Dendi lakes. Sedimentological data of the pelagic deposits indicate shifts in erosion and rainfall throughout the record. A decrease in Ca and Sr at 11.6 cal kyr BP is related to the shift of less humid condition during the Younger Dryas (YD) to the return to full humid conditions of the African Humid Period (AHP). Single thin horizons with high carbonate content or high Ti and K imply that short spells of dry conditions and significantly increased rainfall superimpose the generally more humid conditions during the AHP. The end of the AHP is gradual. Relatively stable and less humid conditions characterised the Dendi Crater lakes until around 3.9 cal kyr BP. A highly variable increase in clastic matter over the last 1500 years indicates higher erosion due to short-term variations in precipitation within the Dendi catchment. Overall, the sediment record suggests moderate change of precipitation during the Holocene, which is probably due to their exposed location in the Ethiopian highlands. The data from the Dendi Crater lakes show, in concert with other records from the Nile catchment and the Eastern Mediterranean Sea (EMS), that the Blue Nile provided the main freshwater source for maintaining EMS stratification and sapropel S1 formation between ca. 10.0 and 8.7 cal kyr BP. Subsequent aridification is recorded from equatorial East Africa

  5. Human-climate interactions in the central Mediterranean region during the last millennia: The laminated record of Lake Butrint (Albania)

    NASA Astrophysics Data System (ADS)

    Morellón, Mario; Anselmetti, Flavio S.; Ariztegui, Daniel; Brushulli, Brunhilda; Sinopoli, Gaia; Wagner, Bernd; Sadori, Laura; Gilli, Adrian; Pambuku, Arben

    2016-03-01

    Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC-0 AD), the Medieval Climate Anomaly (MCA) (800-1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400-500 BC, the Late Roman and the Early Medieval periods (0-800 AD) and during the Little Ice Age (1400-1800 AD

  6. Understanding Natural and Human-induced Impacts on the Hydrology of Central Rift Valley Lakes in Ethiopia Using Hydrologic Modeling and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Seyoum, W. M.; Milewski, A.

    2013-12-01

    In the past decades lake level fluctuations have been observed in the Central Rift Valley (CRV) lakes of Ethiopia, specifically Lake Abiyata, which is receding at an alarming rate. The cause is largely unknown and thus this research identifies and quantifies the causes and effects of climate variability and human-induced factors on the CRV lakes in Ethiopia using ground data, remote sensing, and hydrologic modeling. The CRV is a closed basin with an area of 10,185 sq. km. and contains three major surficially interconnected lakes: Lake Abiyata, Lake Langano and Lake Ziway. Remote sensing data (e.g. LANDSAT and TRMM) and ground data (e.g. river discharge, lake levels) was analyzed to understand the impact of climate variability on the lakes. Image processing such as radiometric correction and Normalized Difference Water Index (NDWI) was performed to calculate the surface area of the lakes and understand the temporal variation. The semi-distributed physically based hydrologic model, Soil Water Assessment Tool (SWAT), was employed to estimate the total surface runoff to the lakes. SWAT was simulated from 1980 to 2010 and monthly preliminary calibration was performed from 1985 to 2000 using two river gauging stations. The preliminary R2 and Nash-Sutcliffe simulation efficiency values are 0.65 and 0.60, and 0.61 and 0.60. The output from SWAT, total runoff, along with precipitation and evaporation is used to calculate the water budget of each lake. Changes in the total volume of lake water were converted to changes in water heights using the geometry data of lakes (e.g. bathymetry data). The modeled lake level time series, which does not take into account the abstraction rates, are compared with the remote sensing and ground observed data. Surface area mapping from satellite imagery shows that the surface Area of L. Ziway and L. Langano remained unchanged throughout the period 1985 - 2010, whereas the surface area of L. Abiyata is decreasing from approximately 180 sq. km

  7. Understanding Natural and Human-induced Impacts on the Hydrology of Central Rift Valley Lakes in Ethiopia Using Hydrologic Modeling and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Seyoum, W. M.; Milewski, A.

    2011-12-01

    In the past decades lake level fluctuations have been observed in the Central Rift Valley (CRV) lakes of Ethiopia, specifically Lake Abiyata, which is receding at an alarming rate. The cause is largely unknown and thus this research identifies and quantifies the causes and effects of climate variability and human-induced factors on the CRV lakes in Ethiopia using ground data, remote sensing, and hydrologic modeling. The CRV is a closed basin with an area of 10,185 sq. km. and contains three major surficially interconnected lakes: Lake Abiyata, Lake Langano and Lake Ziway. Remote sensing data (e.g. LANDSAT and TRMM) and ground data (e.g. river discharge, lake levels) was analyzed to understand the impact of climate variability on the lakes. Image processing such as radiometric correction and Normalized Difference Water Index (NDWI) was performed to calculate the surface area of the lakes and understand the temporal variation. The semi-distributed physically based hydrologic model, Soil Water Assessment Tool (SWAT), was employed to estimate the total surface runoff to the lakes. SWAT was simulated from 1980 to 2010 and monthly preliminary calibration was performed from 1985 to 2000 using two river gauging stations. The preliminary R2 and Nash-Sutcliffe simulation efficiency values are 0.65 and 0.60, and 0.61 and 0.60. The output from SWAT, total runoff, along with precipitation and evaporation is used to calculate the water budget of each lake. Changes in the total volume of lake water were converted to changes in water heights using the geometry data of lakes (e.g. bathymetry data). The modeled lake level time series, which does not take into account the abstraction rates, are compared with the remote sensing and ground observed data. Surface area mapping from satellite imagery shows that the surface Area of L. Ziway and L. Langano remained unchanged throughout the period 1985 - 2010, whereas the surface area of L. Abiyata is decreasing from approximately 180 sq. km

  8. The lacustrine carbon cycle as illuminated by the waters and sediments of two hydrologically distinct headwater lakes in North-Central Minnesota, U.S.A

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2002-01-01

    The accumulation rates of CaCO3 and organic carbon (OC) in lake sediments are delicately balanced between production in the epilimnion and destruction in the hypolimnion. The cycling of these two forms of carbon makes a "carbon pump" that greatly affects the biogeochemical cycles of other elements. To further understand these biogeochemical dynamics, the lakes, streams, and wetlands of the Shingobee River headwater area of north-central Minnesota have been subjected to intensive hydrologic and biogeochemical studies. Williams Lake, situated close to the highest point in the regional flow system, is hydrologically closed, with no surface inlet or outlet, and ground water and precipitation as the only sources of water. Shingobee Lake, situated at the lowest point in the regional flow system, has the Shingobee River as an inlet and outlet. The surface waters of both lakes are oversaturated, and the bottom waters undersaturated, with respect to CaCO3 during the summer. The small amount of CaCO3 that is precipitated in the epilimnion of Williams Lake during the summer is dissolved in the undersaturated hypolimnion and sediments with the result that no CaCO3 is incorporated into the profundal surface sediments. Because of the high phytoplankton productivity of Shingobee Lake, sufficient CaCO3 is produced in the epilimnion that large amounts survive the corrosive hypolimnion and sediments, and an average of 46 wt. % accumulates in surface sediments. Another consequence of higher phytoplankton productivity in Shingobee Lake is that the hypolimnion becomes oxygen deficient within a month after overturn in both the spring and fall. Because of reducing conditions that develop in the hypolimnion of Shingobee Lake, high concentrations of dissolved Fe and Mn accumulate there during summer stratification. Precipitation of Fe and Mn oxyhydroxides during periods of fall and spring overturn results in high concentrations of Fe and Mn in surface sediments. In Williams Lake, high

  9. Hydrological and chemical estimates of the water balance of a closed-basin lake in north central Minnesota

    USGS Publications Warehouse

    LaBaugh, J.W.; Winter, T.C.; Rosenberry, D.O.; Schuster, P.F.; Reddy, M.M.; Aiken, G.R.

    1997-01-01

    Chemical mass balances for sodium, magnesium, chloride, dissolved organic carbon, and oxygen 18 were used to estimate groundwater seepage to and from Williams Lake, Minnesota, over a 15-month period, from April 1991 through June 1992. Groundwater seepage to the lake and seepage from the lake to groundwater were determined independently using a flow net approach using data from water table wells installed as part of the study. Hydrogeological analysis indicated groundwater seepage to the lake accounted for 74% of annual water input to the lake; the remainder came from atmospheric precipitation, as determined from a gage in the watershed and from nearby National Weather Service gages. Seepage from the lake accounted for 69% of annual water losses from the lake; the remainder was removed by evaporation, as determined by the energy budget method. Calculated annual water loss exceeded calculated annual water gain, and this imbalance was double the value of the independently measured decrease in lake volume. Seepage to the lake determined from oxygen 18 was larger (79% of annual water input) than that determined from the flow net approach and made the difference between calculated annual water gain and loss consistent with the independently measured decrease in lake volume. Although the net difference between volume of seepage to the lake and volume of seepage from the lake was 1% of average lake volume, movement of water into and out of the lake by seepage represented an annual exchange of groundwater with the lake equal to 26-27% of lake volume. Estimates of seepage to the lake from sodium, magnesium, chloride, and dissolved organic carbon did not agree with the values determined from flow net approach or oxygen 18. These results indicated the importance of using a combination of hydrogeological and chemical approaches to define volume of seepage to and from Williams Lake and identify uncertainties in chemical fluxes.

  10. Late Holocene climate history recorded in Karakel lake sediments, Central Caucasus

    NASA Astrophysics Data System (ADS)

    Solomina, Olga; Kalugin, Ivan; Darin, Andrey; Chepurnaya, Anna; Alexandrin, Mikhail

    2013-04-01

    The Holocene climatic history in Caucasus is poorly studied. Two lake sediment cores up to 180 cm long retrieved from the Karakel lake (N 43° 26' 12,13" E 41° 44' 34,72" H=1335 m, Teberda valley, Western Caucasus) in 2010 provide a unique opportunity for the high resolution reconstruction of climate and environment in the Late Holocene in this region. For this purpose we used the scanning X-ray Fluorescence Analyses on Synchrotron Radiation technique (SRXFA) (0.1 mm resolution equal to 4 years), providing data of distribution of more than 50 micro- and macroelements, the loss-on-ignition, magnetic susceptibility, water content, wet and dry bulk density and other physical properties of the sediments as well as palynology (10 mm resolution approximately equal to 40 years). The surface of the lake Karakel is 140x280 m, the lake is 6-8 m deep and is dammed by an old moraine covered by a sparse pine forest. Two units are clearly distinguished in the sediments: the uppermost part (0-54 cm) consists of dark brown to black organic reach sediments, the lower part is light gray laminated clay, poor in organic. Three radiocarbon dates (AMS) from the depth 30-31 cm (1550 ± 30 BP), 52-54 cm (2235 ± 35 BP), 143-145 μm (9760 ± 80 BP) provide the chronological control for the sedimentation rate. The hiatus between the lower and upper units is possible, while the uniform continuous accumulation rate 0.22-0.23 mm/year without major episodes of erosion is supposed for the upper part of the sediments. Seven years from the uppermost part of the sediments is lost in the column collected by the borer in comparison with those retrieved by the box. The late Holocene unit is subdivided into four palynological zones characterizing the changes in the surrounding vegetation and climate. The very good correspondence exists between the total pollen productivity, especially for the tree pollen, and the bromide content in the sediments, which is in turn correlative with the total

  11. Relation of adult size to movements and distribution of smallmouth bass in a central Maine Lake

    USGS Publications Warehouse

    Cole, M.B.; Moring, J.R.

    1997-01-01

    Forty-four smallmouth bass Micropterus dolomieu of three size-classes were radiotracked in Green Lake, Maine, during summer 1993 (10 June-1 September) to determine whether adult size influenced distribution and movement. Large smallmouth bass (>406 mm) used deep water (>8 m) more often than did small (248-279 mm) or medium-sized (305-356 mm) smallmouth bass during the late summer (15 July-1 September). Large smallmouth bass also were found at middepths (4-8 m) significantly more often than were small individuals during late summer. Small fish used cover more frequently than large ones during early summer (10 June-13 July). Both small and medium-sized individuals were associated with cover more frequently than large smallmouth bass were during the late summer. Small smallmouth bass exhibited significantly smaller summer total ranges than did large individuals, and mean active displacement differed among all three size-classes.

  12. Deposition and chemistry of bottom sediments in Cochiti Lake, north-central New Mexico

    USGS Publications Warehouse

    Wilson, Jennifer T.; Van Metre, Peter C.

    2000-01-01

    Bottom sediments were sampled at seven sites in Cochiti Lake in September 1996. Sediment cores penetrating the entire lacustrine sediment sequence were collected at one site near the dam. Surficial sediments were sampled at the near-dam site and six other sites located along the length of the reservoir. Analyses included grain size, major and trace elements, organochlorine compounds, polycyclic aromatic hydrocarbons (PAH's), and radionuclides. Concentrations of trace elements, organic compounds, and radionuclides are similar to those in other Rio Grande reservoirs and are low compared to published sediment-quality guidelines. Most elements and compounds that were detected did not show trends in the age estimated sediment cores with the exception of a decreasing trend in total DDT concentrations from about 1980 to 1992. The mixture of PAH's suggests that the increase is caused by inputs of fuel-related PAH and not combustion- related PAH.

  13. Pseudotachylite Bearing Cretaceous Fault in the Saddlebag Lake Pendant, Central Sierra Nevada, CA

    NASA Astrophysics Data System (ADS)

    Whitesides, A. S.; Cao, W.; Paterson, S. R.

    2010-12-01

    Over the past several years the undergraduate researchers and mentors in the University of Southern California’s Undergraduate Team Research program has mapped the northern continuation of the Gem Lake shear zone from Gem Lake to Virginia Canyon near the north end of the Saddlebag pendant. In the center of this dominantly dextral, ductile shear zone we now recognize a pseudotachylite bearing brittle fault that often juxtaposes Triassic metavolcanics to the east of the fault with a Jurassic metasedimentary package to the west of the fault. Kinematic indicators such as slickenlines, steps, and offset dikes found within the brittle fault zone also suggest dextral oblique motion, similar to the motion of the ductile shear zone. The brittle fault dips steeply and strikes N-NW with the fault zone width varying from narrow (sub m scale) to a 100-200 m wide fracture zone as seen in the Sawmill area. Jurrasic metasediments (> 177Ma) and Cretaceous metavolcanics (110-95Ma) lie to the West of the fault and Triassic metavolcanics (219Ma) lie to the East of the fault in the Virginia Canyon, Saddlebag Lake, and Sawmill areas. The absence of ~45 million years of Jurassic metavolcanics along the contact of the fault in each area, suggests tectonic removal of the sequence. Pseudotachylite, quartz vein rich breccias, gouge, fault scarps, and truncated Cathedral Peak dikes (~88 Ma) originating from the Tuolumne Batholith (TB), are common features associated with the brittle fault. The truncated, 88 Ma Cathedral Peak dikes plus nearby biotite cooling ages of 82 Ma indicate that displacement on the brittle fault continued well after TB emplacement and cooling and likely continued after ~80 Ma. The pseudotachylite suggests earthquakes occurred on the brittle fault during the Cretaceous. Movement also occurred along the fault at fairly shallow depths as indicated by the presence of vugs, or cavities with free euhedral crystal growth, within the quartz vein breccias. In the Sawmill

  14. Nitrogen-cycling genes in epilithic biofilms of oligotrophic high-altitude lakes (central Pyrenees, Spain).

    PubMed

    Vila-Costa, Maria; Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2014-07-01

    Microbial biofilms in oligotrophic environments are the most reactive component of the ecosystem. In high-altitude lakes, exposed bedrock, boulders, gravel, and sand in contact with highly oxygenated water and where a very thin epilithic biofilm develops usually dominate the littoral zone. Traditionally, these surfaces have been considered unsuitable for denitrification, but recent investigations have shown higher biological diversity than expected, including diverse anaerobic microorganisms. In this study, we explored the presence of microbial N-cycling nirS and nirK (denitrification through the conversion of NO2(-) to NO), nifH (N2 fixation), anammox (anaerobic ammonium oxidation), and amoA (aerobic ammonia oxidation, both bacterial and archaeal) genes in epilithic biofilms of a set of high-altitude oligotrophic lakes in the Pyrenees. The concentrations of denitrifying genes determined by quantitative PCR were two orders of magnitude higher than those of ammonia-oxidizing genes. Both types of genes were significantly correlated, suggesting a potential tight coupling nitrification-denitrification in these biofilms that deserves further confirmation. The nifH gene was detected after nested PCR, and no signal was detected for the anammox-specific genes used. The taxonomic composition of denitrifying and nitrogen-fixing genes was further explored by cloning and sequencing. Interestingly, both microbial functional groups were richer and more genetically diverse than expected. The nirK gene, mostly related to Alphaproteobacteria (Bradyrhizobiaceae), dominated the denitrifying gene pool as expected for oxygen-exposed habitats, whereas Deltaproteobacteria (Geobacter like) and Cyanobacteria were the most abundant among nitrogen fixers. Overall, these results suggest an epilithic community more metabolically diverse than previously thought and with the potential to carry out an active role in the biogeochemical nitrogen cycling of high-altitude ecosystems. Measurements of

  15. Simulation of the effects of operating lakes Mendota, Monona, and Waubesa, south-central Wisconsin, as multipurpose reservoirs to maintain dry-weather flow

    USGS Publications Warehouse

    Krug, W.R.

    1999-01-01

    A digital reservoir routing model was used to simulate the operation of Lakes Mendota, Monona, and Waubesa, south-central Wisconsin for various levels of minimum release. Twenty-five years of record (1970?94) were used in model simulation. The amount of water available to maintain streamflow and lake levels during dry periods has declined because of extensive pumping of ground water for municipal use and diversion of the effluent around the lakes. The goal of the simulation was to determine whether using the lakes as multipurpose reservoirs to maintain flow during periods of low flow would appreciably lower the lake levels. The model results indicated that it would be possible to maintain a minimum flow of 36 cubic feet per second in all but the driest years simulated (1970, 1976, 1977, 1981, 1989, and 1991) without lowering the lake levels more than they have been lowered from 1970 to 1994 under current operating conditions. Maintaining minimum flow would require detailed computations to guide the operation of the dams during the year.

  16. A Holocene lacustrine record of Lake Sonkul: hydro-climatic changes in central Asia and possible interactions between westerlies and Asian monsoon

    NASA Astrophysics Data System (ADS)

    Huang, X.; Oberhänsli, H.; Mathis, M.; Prasad, S.; von Suchodoletz, H.

    2012-04-01

    As evidenced by a number of lake sediment records, the climate in central Asia has experienced a significant change from wet to dry during the Holocene. However, it is still highly debated on which component of atmospheric circulation, either mid-latitude westerlies or Asian monsoon, should be responsible for the climate change in central Asia. By a detailed investigation on a 133-cm length of paleolimnological record of Lake Sonkul in Kyrgyzstan and comparison with previously published records, we attempt to understand hydro-climatic changes in central Asia and discuss the possible interactions between westerlies and Asian monsoon. The age-depth model of this record was established based on six AMS 14C dates. We examined the geochemical and isotopic signatures of the record at a depth interval of 1 cm (equivalent to ~40 year), including total nitrogen (TN), total carbon (TC), total organic carbon (TOC), organic carbon isotopes as well as oxygen and carbon isotopes of bulk carbonates. To thoroughly understand and explain the above indicators, microfacies and X-ray diffraction analyses of selected samples and three thin sections were also conducted. As shown by the results, there were two significant changes of the lake environment centered at ~5, 300 cal yr BP and at ~3,400 cal yr BP. Accordingly, the lake hydrological history could be defined into three units. Unit III (133-88cm; 7, 600- 5, 300 cal yr BP) is characterized by rapid fluctuations in the lake level as indicated by pronounced changes in TN, TOC, CaCO3, carbon and oxygen isotopes of carbonates. In contrast, variations of these proxies in Unit II (88 - 44.5 cm; 5, 300 - 3, 400 cal yr BP) and Unit I (44.5 - 0 cm; 3, 400 -1, 900 cal yr BP) are less significant, suggesting relatively stable hydrological environment. We conclude that the hydrological changes of Lake Sonkul are generally consistent with the climate trend from wet to dry in central Asia during the early and mid Holocene. The changes are

  17. Chronology and climatic controls of late Quaternary lake-level fluctuations in Chewaucan, Fort Rock and Alkali basins, south-central Oregon

    SciTech Connect

    Freidel, D.E.

    1993-01-01

    In this study, lake-level chronologies of three closed-basin lakes in south-central Oregon were developed and compared with the chronologies of Lakes Bonneville and Lahontan in Utah and Nevada. Geomorphic and stratigraphic study of shoreline features, and radiocarbon dating of rock varnish and gastroped shells associated with high shorelines indicate that the three Oregon paleolakes reached their most recent high stands synchronously before 18,000 to 17,000 radiocarbon yrs B.P., three thousand to forty-five hundred years earlier than the high stands of Lakes Lahontan and Bonneville. Levels of the Oregon paleolakes began to drop at a time when Lakes Lahontan and Bonneville were still rising. This study employed water balance modelling to evaluate several climatic scenarios that would generate high stands in the three Oregon lakes. Latitudinal shifts in the polar jet stream and associated westerlies, that occurred in response to the growth and decay of the continental ice sheets, have been proposed as a mechanism for the timing and magnitude of the Northern Great Basin paleolake high stands. General circulation model simulations and paleoenvironmental evidence indicate that at 18,000 radiocarbon yrs B.P. colder and moister than present conditions prevailed in the Northern Great Basin, while very cold, arid climatic conditions prevailed in the Northwest due to strong, glacial anticyclonic circulation generated by the continental ice sheet. Water balance modelling in this study indicates that colder and moister than present climatic conditions caused the Oregon lakes to rise to their highest level. Climatic conditions of south-central Oregon at 18,000 radiocarbon yrs B.P. were probably influenced more by the westerlies associated with the jet stream to the south than by the glacial anticylonic circulation to the north.

  18. Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul

    NASA Astrophysics Data System (ADS)

    Huang, Xiangtong; Oberhänsli, Hedi; von Suchodoletz, Hans; Prasad, Sushma; Sorrel, Philippe; Plessen, Birgit; Mathis, Marie; Usubaliev, Raskul

    2014-11-01

    The hydrology of western Central Asia is highly sensitive to climatic perturbations. In order to understand its long-term variability and to infer linkages between precipitation and atmospheric and oceanic systems, we conducted a thorough sedimentary and geochemical study on a composite core retrieved in lake Son Kul (central Kyrgyzstan). A multi-proxy approach was conducted on lake sediments based on grain size analyses, magnetic susceptibility, total organic carbon (TOC), total nitrogen (TN) and carbon and oxygen isotope analyses on bulk and biogenic materials (ostracoda and molluscs shells) at a resolution equivalent to ca 40 years, aiming to characterise the sequence of palaeolimnological changes in Son Kul. As indicated by δ18O record of bulk carbonates, mainly consisting of aragonite, the Holocene hydrological balance was negative during most of time, suggesting an excess of evaporation (E) over precipitation (P). Limnological conditions fluctuated rapidly before 5000 cal yr BP indicating significant changes in regional hydrology and climate. In particular, the long-term negative hydrological balance was impeded by several short stages with marked increase of precipitation, lasting several decades to a few centuries (e.g., 8300-8200, 6900-6700, 6300-6100, 5500-5400, 5300-5200 and 3100-3000 cal yr BP). Precipitation changes as inferred from δ18O data are also documented by increased minerogenic detritus and higher TOC. We propose that the seasonal pattern of precipitation varied transiently in western Central Asia during the Holocene, although evaporation changes may also account for the rapid changes observed in δ18O data. When the annual water balance was less critical (P ≤ E), the excess of water might be ascribed to increased precipitation during cold seasons mainly because winter precipitation has more negative δ18O than its summer equivalent. Conversely, when the annual water balance is negative (P ≪ E), the moisture was mainly delivered during

  19. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California

    USGS Publications Warehouse

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-01-01

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and in preparing emergency response plans. The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group of California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping (NSHM) Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault to the east of the study area. Earthquake scenarios are intended to depict the potential consequences of significant earthquakes. They are not necessarily the largest or most damaging earthquakes possible. Earthquake scenarios are both large enough and likely enough that emergency planners should consider them in regional emergency response plans. Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM).For the Hilton Creek Fault, two alternative scenarios were developed in addition to the NSHM scenario to account for different opinions in how far north the fault extends into the Long Valley Caldera. For each scenario, ground motions were calculated using the current standard practice

  20. Linking hydro-climate to the sediment archive: a combined monitoring and calibration study from a varved lake in central Turkey

    NASA Astrophysics Data System (ADS)

    Roberts, C. Neil; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Allcock, Samantha L.; Leng, Melanie J.; Metcalfe, Sarah E.; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Hydro-climatic reconstructions from lake sediment proxies require an understanding of modern formation processes and calibration over multiple years. Here we use Nar Gölü, a non-outlet, monomictic maar lake in central Turkey, as a field site for such a natural experiment. Fieldwork since 1997 has included observations and measurements of lake water and sediment trap samples, and automated data logging (Jones et al., 2005; Woodbridge and Roberts, 2010; Dean et al., 2015). We compare these data to isotopic, chemical and biotic proxies preserved in the lake's annually-varved sediments. Nar Gölü underwent a 3 m lake-level fall between 2000 and 2010, and δ18O in both water and carbonates is correlated with this lake-level fall, responding to the change in water balance. Over the same period, sedimentary diatom assemblages responded via changes in habitat availability and mixing regime, while conductivity inferred from diatoms showed a rise in inferred salinity, although with a non-linear response to hydro-climatic forcing. There were also non-linear shifts in carbonate mineralogy and elemental chemistry. Building on the relationship between lake water balance and the sediment isotope record, we calibrated sedimentary δ18O against local meteorological records to derive a P/E drought index for central Anatolia. Application to of this to the longer sediment core isotope record from Nar Gölü (Jones et al. 2006) highlights major drought events over the last 600 years (Yiǧitbaşıoǧlu et al., 2015). Although this lacustrine record offers an archive of annually-dated, decadally-averaged hydro-climatic change, there were also times of non-linear lake response to climate. Robust reconstruction therefore requires understanding of physical processes as well as application of statistical correlations. Dean, J.R., Eastwood, W.J., Roberts, N., Jones, M.D., Yiǧitbaşıoǧlu, H., Allcock, S.L., Woodbridge, J., Metcalfe, S.E. and Leng, M.J. (2015) Tracking the hydro

  1. Salt lakes of La Mancha (Central Spain): A hot spot for tiger beetle (Carabidae, Cicindelinae) species diversity

    PubMed Central

    Rodríguez-Flores, Paula C.; Gutiérrez-Rodríguez, Jorge; Aguirre-Ruiz, Ernesto F.; García-París, Mario

    2016-01-01

    Abstract The tiger beetle assemblage of the wetlands of La Mancha (central Spain) comprises nine species: Calomera littoralis littoralis, Cephalota maura maura, Cephalota circumdata imperialis, Cephalota dulcinea, Cicindela campestris campestris, Cicindela maroccana, Cylindera paludosa, Lophyra flexuosa flexuosa, and Myriochila melancholica melancholica. This assemblage represents the largest concentration of tiger beetles in a single 1º latitude / longitude square in Europe. General patterns of spatial and temporal segregation among species are discussed based on observations of 1462 specimens registered during an observation period of one year, from April to August. The different species of Cicindelini appear to be distributed over space and time, with little overlapping among them. Three sets of species replace each other phenologically as the season goes on. Most of the species occupy drying or dried salt lakes and salt marshes, with sparse vegetation cover. Spatial segregation is marked in terms of substrate and vegetation use. Calomera littoralis and Myriochila melancholica have been observed mainly on wet soils; Cephalota circumdata on dry open saline flats; Cephalota dulcinea and Cylindera paludosa in granulated substrates with typical halophytic vegetation; Cephalota maura is often present in man-modified areas. Cephalota circumdata and Cephalota dulcinea are included as species of special interest in the list of protected species in Castilla–La Mancha. Conservation problems for the Cicindelini assemblage arise from agricultural activities and inadequate use of sport vehicles. Attempts at restoring the original habitat, supressing old semi-industrial structures, may affect the spatial heterogeneity of the lakes, and have an effect on Cicindelinae diversity. PMID:27006617

  2. Holocene environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake

    NASA Astrophysics Data System (ADS)

    Hoff, Ulrike; Biskaborn, Boris K.; Dirksen, Veronika G.; Dirksen, Oleg; Kuhn, Gerhard; Meyer, Hanno; Nazarova, Larisa; Roth, Alexandra; Diekmann, Bernhard

    2015-11-01

    Within the scope of Russian-German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5 × 2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka.

  3. Rock magnetic and geochemical proxies for iron mineral diagenesis in a tropical lake: Lago Verde, Los Tuxtlas, East Central Mexico

    NASA Astrophysics Data System (ADS)

    Ortega, Beatriz; Caballero, Margarita; Lozano, Socorro; Vilaclara, Gloria; Rodríguez, Alejandro

    2006-10-01

    Magnetic and non-magnetic mineral analyses were conducted on a lacustrine sequence from Lago Verde in the tropical coast along the Gulf of Mexico that covers the last 2000 years. The site witnessed the transformation of the environment since the early Olmec societies until forest clearance in the last century. Through these analyses we investigated the processes that affected the magnetic mineralogy in order to construct a model of past environmental changes, and compare this model with the archeological record and inferred climatic changes in the northern hemisphere of tropical America. Volcanic activity has played a major influence on sediment magnetic properties, as a purveyor of Ti-magnetites/Ti-maghemites, and as a factor of instability in the environment. Anoxic reductive conditions are evident in most of Lago Verde's sedimentary record. Direct observations of magnetic minerals and ratios of geochemical (Fe, Ti), and ferrimagnetic ( χf) and paramagnetic ( χp) susceptibility ( χ) data, are used as parameters for magnetite dissolution ( χp/ χ, Fe/ χf), and precipitation ( χf/Ti) of magnetic minerals. Intense volcanic activity and anoxia are recorded before A.D. 20, leading to the formation of framboidal pyrite. Increased erosion, higher evaporation rates, lower lake levels, anoxia and reductive diagenesis in non-sulphidic conditions are inferred for laminated sediments between A.D. 20-850. This deposit matches the period of historical crisis and multiyear droughts that contributed to the collapse of the Maya civilization. Dissolution of magnetite, a high organic content and framboidal pyrite point to anoxic, sulphidic conditions and higher lake levels after A.D. 850. Higher lake levels in Lago Verde broadly coincide with the increased precipitation documented during the Medieval Warm Period (A.D. 950-1350) in the northern tropical and subtropical regions of the American continent. For the Little Ice Age (A.D. 1400-1800), the relatively moist conditions

  4. Geochemical proxies and millennial-scale climate variability during MIS 3 at Lake Chalco, central Mexico

    NASA Astrophysics Data System (ADS)

    Torres, E.; Lozano, S.; Roy, P.; Ortega, B.; Caballero, M.

    2013-05-01

    The Basin of Mexico (20N, 99W; 2240 m.a.s.l.) is present at the northern limit of the American tropics and is surrounded by up to 5400 m high mountains. The Lake Chalco is situated at the southern part of the basin and spreads over 120 km2. The precipitation in the modern era is influenced by the seasonal displacement of the Intertropical Convergence Zone and the high-pressure belt located at about 35 N. Five cores were drilled (up to 122.5 m depth) in order to document climate variability in paleohydrological conditions during the late Quaternary. The age model includes several 14C dates and tephra layers present in the upper 25 m of the core. We documented millennial-scale events during MIS 3 based on geochemical data (total organic carbon (TOC), total inorganic carbon (TIC), C/N ratio) and abundance of charcoal particles. By temporal correlation with GISP2 core we founded that Greenland interstadials match with TOC percentages suggesting wet conditions while stadials match with high TIC percentages and high charcoal concentrations suggesting dry conditions. We compared our data with speleothem records (δ18O) from Fort Station Cave (New Mexico) and Terciopelo Cave (Costa Rica), our preliminary results indicate that Chalco record has a similar climatic signal as Terciopelo Cave, both presented wet interstadials and dry stadials which appear to have been regulated by the seasonal migration of the ITCZ.

  5. Age, growth, sexual maturity, and food of channel catfish in central Lake Oahe, 1968-69

    USGS Publications Warehouse

    Starostka, Victor J.; Nelson, William R.

    1974-01-01

    Channel catfish, Ictalurus punctatus, were collected with gill nets, trawl, and trap nets at three localities in Lake Oahe for the study of year-class strength, growth in length and weight, age composition, sexual maturity, and food. Fish were recruited to all the collection gears at age II. Relatively strong year classes were produced in 1962, 1965, and 1966. Youngest fish were captured in the upper end of the Moreau River embayment, which apparently serves as a nursery area. Growth of age 0 fish was poor probably because the growing season was short; optimum spawning temperature were not reached until mid-summer. Growth of age II and older fish reached a peak in 1963 and declined rather steadily in 1964-68. Males began to mature at age VIII, and all fish of both sexes were mature at age XI. The diet changed from zooplankton to fish as channel catfish increased in length; aquatic insects (primarily chironomid larvae and pupae) were important foods for fish of all sizes. Fish less than 300 mm long selected large zooplankters -- Leptodora kindtii and Daphnia spp -- over smaller copepods. Larger channel catfish ate principally yellow perch, Perca flavescens.

  6. Late Quaternary lake records from the Anadyr Lowland, Central Chukotka (Russia)

    NASA Astrophysics Data System (ADS)

    Lozhkin, Anatoly; Anderson, Patricia

    2013-05-01

    Three lake cores provide insight into the vegetation and climate history of the past ∼45,000 14C yr in the Anadyr Lowland, a key paleogeographic link between the Bering Land Bridge (BLB) and interior Western Beringia (WB). Although not without chronological issues, these records suggest that the Late Pleistocene interstade (approximating Oxygen Isotope Stage (OIS) 3) was a time of unstable environments consistent with previous interpretations for southern areas of WB and in contrast to more stable conditions inferred for northern WB. A hiatus in the records during OIS2 implies dry, frigid environments in the Anadyr Lowland. Previous research suggested that Chuktoka was a westward extension of relatively mesic environments of the BLB, which acted as a “filter” to intercontinental migrations. The Lowland data indicate that Chukotka may have been more of a transitional zone between mesic BLB and more xeric regions of western WB. A structurally novel biome dominated by deciduous forest and high-shrub tundra was proposed as occupying much of Beringia between ∼11,000 and 9000 14C yr BP. The unusual pollen assemblage that characterizes the Lowland suggests that perhaps a second biome was also present in Beringia, one that was dominated by meadows with Betula shrub thickets.

  7. Soil formation on a calcic chronosequence of Ancient Lake Konya in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ozaytekin, Hasan Huseyin; Mutlu, Hasan Huseyin; Dedeoglu, Mert

    2012-11-01

    With the passage of time, different soils show a wide range of variation in their formation. The passage of time in soil formation affects both soil features and the rates of weathering. The aim of this research is to study and compare the pedogenic evolution of soils developed on the terraces of Ancient Lake Konya using weathering indices such as Chemical Index of Alteration (CIA), Chemical Index of Weathering (CIW), and Eu and Ce anomalies. The study will also take into account other features, such as the physical and chemical properties, the analytical characteristics and how soil formation is determined according to the passage of time. For this purpose, four representative profiles were dug at different levels. After the macro-morphological identifications were completed in all the profiles, the samples were then collected from the horizons and were analysed for their physical, chemical, mineralogical and geochemical properties. Although the soils in the study field were formed in different terrace levels, no significant relationship between the age of the soil and the soil properties was found. The lone exception was the clay movement in profile 1, which resulted from the limitation in profile development caused by erosion. Moreover, this erosion was the result of an increasing slope from the low terrace to the high coastal terraces. Similar physical, chemical and mineralogical characteristics were determined in the profiles. Using geochemical characteristics, the determined weathering indexes and their anomalies showed a very limited variation between the profiles, which suggests that though they differ in terms of age, the profiles have similar weathering levels. The climatological factors continuing along the Holocene were not efficient enough to change the effect of the other soil formation factors in the last period of the Quaternary. Therefore, it was concluded that the main factors determining soil formation are climate and topography, both of which

  8. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    PubMed

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. PMID:22047737

  9. 5,000 years of water level changes infered from ostracod assemblages in a lowland lake in Romania (Central Eastern Europe)

    NASA Astrophysics Data System (ADS)

    Iepure, Sanda; Hutchinson, Simon; Namiotko, Tadeusz; Feurdean, Angelica

    2014-05-01

    Oscillations of lake levels in Central Eastern Europe during the Holocene are crucial records of past regional climatic conditions reflecting the balance between evaporation and precipitation in their catchment. Lake Stiucii (38 ha, 10 m depth) is located in Transylvanian Plain (NW Romania) at 296 m asl. A recently extracted sediment core from the central part of the lake provides the first ostracod sediment record of the lake water level fluctuations in this region covering the last 5000 cal years BP. The sediment sequence yielded approximately 1600 valves of 18 freshwater and halophile ostracod species of 11 genera. The most abundant and frequent in the entire record were Heterocypris salina (Brady 1868), Limnocythere inopinata (Baird 1843) and Plesiocypridopsis newtoni (Brady & Robertson 1870) (abundance range between 16-25%). The ostracod assemblages also show a marked variability in diversity and abundance over the past 5000 years, which appear to closely follow water level oscillations. The assemblages indicate three periods of low diversity and density of ostracods primarily represented by Candonidae between (i) 3800 and 3150 cal yr BP, (ii) 2900 and 2400 cal yr BP and (iii) 1600 and 1200 cal yr BP and probably reflect a response to low lake water levels. This inference is supported by the deposition of gyttja and low Zr concentrations. The dominance of Cyclocypris ovum (Jurine, 1820) and Candoninae in a ostracod community of otherwise poor density and diversity between 2200 and 1800 cal yr BP probably reflects littoral environments in the central, deepest part of the present lake. The ostracod assemblages diversified (up to 10 species) between 1100 and 250 cal yr BP and are dominated by co-occurrences of halophile species e.g. Heterocypris salina and Plesiocypridopsis newtoni until 700 cal yr BP, suggesting increased supply of salty water into the lake by salt springs. Thereafter Limnocythere inopinata, a typical shallow water species (<10 m) is dominant

  10. Hydro-isostatic deflection and tectonic tilting in the central Andes: Initial results of a GPS survey of Lake Minchin shorelines

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; De Silva, Shanaka L.; Currey, Donald R.; Emenger, Robert S.; Lillquist, Karl D.; Donnellan, Andrea; Worden, Bruce

    1994-01-01

    Sufficiently large lake loads provide a means of probing rheological stratification of the crust and upper mantle. Lake Minchin was the largest of the late Pleistocene pluvial lakes in the central Andes. Prominent shorelines, which formed during temporary still-stands in the climatically driven lake level history, preserve records of lateral variations in subsequent net vertical motions. At its maximum extent the lake was 140 m deep and spanned 400 km N-S and 200 km E-R. The load of surficial water contained in Lake Minchin was sufficient to depress the crust and underlying mantle by 20-40 m, depending on the subjacent rheology. Any other differential vertical motions will also be recorded as departures from horizontality of the shorelines. We recently conducted a survey of shoreline elevations of Lake Minchin with the express intent of monitoring the hydro-isostatic deflection and tectonic tilting. Using real-time differential Global Positioning System (GPS), we measured topographic profiles across suites of shorelines at 15 widely separated locations throughout the basin. Horizontal and vertical accuracies attained are roughly 30 and 70 cm, respectively. Geomorphic evidence suggests that the highest shoreline was occupied only briefly (probably less than 200 years) and radiocarbon dates on gastropod shells found in association with the shore deposits constrain the age to roughly 17 kyr. The basin-side pattern of elevations of the highest shoreline is composed of two distinct signals: (27 +/- 1) m of hydro-isostatic deflection due to the lake load, and a planar tilt with east and north components of (6.8 +/- 0.4) 10(exp -5) and 9-5.3 +/- 0.3) 10(exp -5). This rate of tilting is too high to be plausibly attributed to steady tectonism, and presumably reflects some unresolved combination of tectonism plus the effects of oceanic and lacustrine loads on a laterally heterogeneous substrate. The history of lake level fluctuations is still inadequately known to allow

  11. Chemical and biotic characteristics of prairie lakes and large wetlands in south-central North Dakota—Effects of a changing climate

    USGS Publications Warehouse

    Mushet, David M.; Goldhaber, Martin B.; Mills, Christopher T.; McLean, Kyle I.; Aparicio, Vanessa M.; McCleskey, R. Blaine; Holloway, JoAnn M.; Stockwell, Craig A.

    2015-01-01

    The climate of the prairie pothole region of North America is known for variability that results in significant interannual changes in water depths and volumes of prairie lakes and wetlands; however, beginning in July 1993, the climate of the region shifted to an extended period of increased precipitation that has likely been unequaled in the preceding 500 years. Associated changing water volumes also affect water chemical characteristics, with potential effects on fish and wildlife populations. To explore the effect of changing climate patterns, in 2012 and 2013, the U.S. Geological Survey revisited 167 of 178 prairie lakes and large wetlands of south-central North Dakota that were originally sampled in the mid-1960s to mid-1970s. During the earlier sampling period, these lakes and wetlands displayed a great range of chemical characteristics (for example, specific conductance ranged from 365 microsiemens per centimeter at 25 degrees Celsius to 70,300 microsiemens per centimeter at 25 degrees Celsius); however, increased water volumes have resulted in greatly reduced variation among lakes and wetlands and a more homogeneous set of chemical conditions defined by pH, specific conductance, and concentrations of major cations and anions. High concentrations of dissolved solids previously limited fish occurrence in many of the lakes and wetlands sampled; however, freshening of these lakes and large wetlands has allowed fish to populate and flourish where they were previously absent. Conversely, the freshening of previously saline lakes and wetlands has resulted in concurrent shifts away from invertebrate species adapted to live in these highly saline environments. A shift in the regional climate has changed a highly diverse landscape of wetlands (fresh to highly saline) to a markedly more homogeneous landscape that has reshaped the fish and wildlife communities of this ecologically and economically important region.

  12. Pesticides and nitrate in groundwater underlying citrus croplands, Lake Wales Ridge, central Florida, 1999-2005.

    USGS Publications Warehouse

    Choquette, Anne F.

    2014-01-01

    This report summarizes pesticide and nitrate (as nitrogen) results from quarterly sampling of 31 surficial-aquifer wells in the Lake Wales Ridge Monitoring Network during April 1999 through January 2005. The wells, located adjacent to citrus orchards and used for monitoring only, were generally screened (sampled) within 5 to 40 feet of the water table. Of the 44 citrus pesticides and pesticide degradates analyzed, 17 were detected in groundwater samples. Parent pesticides and degradates detected in quarterly groundwater samples, ordered by frequency of detection, included norflurazon, demethyl norflurazon, simazine, diuron, bromacil, aldicarb sulfone, aldicarb sulfoxide, deisopropylatrazine (DIA), imidacloprid, metalaxyl, thiazopyr monoacid, oxamyl, and aldicarb. Reconnaissance sampling of five Network wells yielded detection of four additional pesticide degradates (hydroxysimazine, didealkylatrazine, deisopropylhydroxyatrazine, and hydroxyatrazine). The highest median concentration values per well, based on samples collected during the 1999–2005 period (n=14 to 24 samples per well), included 3.05 µg/L (micrograms per liter) (simazine), 3.90 µg/L (diuron), 6.30 µg/L (aldicarb sulfone), 6.85 µg/L (aldicarb sulfoxide), 22.0 µg/L (demethyl norflurazon), 25.0 µg/ (norflurazon), 89 µg/ (bromacil), and 25.5 mg/L (milligrams per liter) (nitrate). Nitrate concentrations exceeded the 10 mg/L (as nitrogen) drinking water standard in one or more groundwater samples from 28 of the wells, and the median nitrate concentration among these wells was 14 mg/L. Sampled groundwater pesticide concentrations exceeded Florida’s health-guidance benchmarks for aldicarb sulfoxide and aldicarb sulfone (4 wells), the sum of aldicarb and its degradates (6 wells), simazine (2 wells), the sum of simazine and DIA (3 wells), diuron (2 wells), bromacil (1 well), and the sum of norflurazon and demethyl norflurazon (1 well). The magnitude of fluctuations in groundwater pesticide

  13. Role of lake regulation on glacier-fed rivers in enhancing salmon productivity: the Cook Inlet watershed, south-central Alaska, USA

    NASA Astrophysics Data System (ADS)

    Dorava, Joseph M.; Milner, Alexander M.

    2000-10-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.

  14. Extreme events in the sedimentary record of maar Lake Pavin: Implications for natural hazards assessment in the French Massif Central

    NASA Astrophysics Data System (ADS)

    Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel

    2016-06-01

    A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.

  15. Nature and origin of a Pleistocene-age massive ground-ice body exposed in the Chapman Lake moraine complex, central Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Lacelle, Denis; Lauriol, Bernard; Clark, Ian D.; Cardyn, Raphaelle; Zdanowicz, Christian

    2007-09-01

    A massive ground-ice body was found exposed in the headwall of a thaw flow developed within the Chapman Lake terminal moraine complex on the Blackstone Plateau (Ogilvie Mountains, central Yukon Territory), which is contemporaneous to the Reid glaciation. Based on visible cryostructures in the 4-m-high headwall, two units were identified: massive ground ice, overlain sharply by 2 m of icy diamicton. The nature and origin of the Chapman Lake massive ground ice was determined using cryostratigraphy, petrography, stable O-H isotopes and the molar concentration of occluded gases (CO 2, O 2, N 2 and Ar) entrapped in the ice, a new technique in the field of periglacial geomorphology that allows to distinguish between glacial and non-glacial intrasedimental ice. Collectively, the results indicate that the Chapman Lake massive ground ice formed by firn densification with limited melting-refreezing and underwent deformation near its margin. Given that the massive ground-ice body consists of relict glacier ice, it suggests that permafrost persisted, at least locally, on plateau areas in the central Yukon Territory since the middle Pleistocene. In addition, the d value of Chapman Lake relict glacier ice suggests that the ice covering the area during the Reid glaciation originated from a local alpine glaciation in the Ogilvie Mountains.

  16. Unified Scaling Law for Earthquakes: Seismic hazard and risk assessment for Himalayas, Lake Baikal, and Central China regions

    NASA Astrophysics Data System (ADS)

    Nekrasova, Anastasia; Kossobokov, Vladimir; Parvez, Imtiyaz; Tao, Xiaxin

    2015-04-01

    The Unified Scaling Law for Earthquakes (USLE), that generalizes the Gutenberg-Richter recurrence relation, has evident implications since any estimate of seismic hazard depends on the size of the territory that is used for investigation, averaging, and extrapolation into the future. Therefore, the hazard may differ dramatically when scaled down to the proportion of the area of interest (e.g. territory occupied by a city) from the enveloping area of investigation. In fact, given the observed patterns of distributed seismic activity the results of multi-scale analysis embedded in USLE approach demonstrate that traditional estimations of seismic hazard and risks for cities and urban agglomerations are usually underestimated. Moreover, the USLE approach provides a significant improvement when compared to the results of probabilistic seismic hazard analysis, e.g. the maps resulted from the Global Seismic Hazard Assessment Project (GSHAP). We apply the USLE approach to evaluating seismic hazard and risks to population of the three territories of different size representing a sub-continental and two different regional scales of analysis, i.e. the Himalayas and surroundings, Lake Baikal, and Central China regions.

  17. "A Liberal Arts Education of Enduring Value." Self-Study Report of Lake Forest College for the North Central Association of Colleges and Schools, Commission on Institutions of Higher Education.

    ERIC Educational Resources Information Center

    Gayle, Carol; And Others

    The purpose of Lake Forest College's 1986 self-study was to provide the North Central Association's Commission on Institutions of Higher Education Evaluation Team with materials needed for reaccreditation; to evaluate Lake Forest's efforts to fulfill the purposes and meet the goals established in the new mission statement; and to evaluate the…

  18. A multi-proxy intercomparison of environmental change in two maar lake records from central Turkey during the last 14 ka

    NASA Astrophysics Data System (ADS)

    Roberts, C. Neil; Allcock, Samantha L.; Arnaud, Fabien; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Leng, Melanie J.; Metcalfe, Sarah E.; Malet, Emmanuel; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Individual palaeoenvironmental records are a combination of regional-scale (e.g. climatic) and local factors. In order to separate these signals, we compare multiple proxies from two nearby maar lake records, on the assumption that common signals are due to regional-scale forcing. On the other side, we infer that residual signals are likely to be local and site-specific, rather than reflecting regional climate changes. A new core sequence from Nar lake has been dated by varve counting and U-Th as covering the last 13,800 years (Dean et al., 2015; Roberts et al., 2016). Periods of marked dryness are associated with peaks in Mg/dolomite, elevated Diatom-Inferred Electrical Conductivity, an absence of laminated sediments, and low Quercus/chenopod ratios. These conditions occurred during the Late-Glacial stadial, at 4.3-3.7 and 3.2-2.6 ka BP. Wet phases occurred during the early Holocene and again 1.5-0.6 ka, characterised by negative δ18O values, calcite precipitation, high Ca/Sr ratios, a high % of planktonic diatoms, laminated sediments, and high Quercus/chenopod ratios. Comparison with the independently dated record from Eski Acıgöl (Roberts et al., 2001) shows good correspondence for many proxies, especially for δ18O. A ranking of multiple proxies shows the worst correspondence is for clastic lithogenic elements (e.g. Ti flux). Differences between the two lake records are caused by basin infilling at Eski Acıgöl, which fails to register climatic changes during the last 2 ka, and to catchment erosion and increased flux of lithogenic elements into Nar lake; this is catchment-specific and primarily anthropogenic rather than climatic in origin. In separating a regional signal from site-specific "noise", two lakes may therefore be better than one. Dean, J.R. et al. 2015 Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy. Quaternary

  19. Decomposition studies in two central Ontario lakes having surficial pHs of 4. 6 and 6. 6

    SciTech Connect

    Hoeniger, J.F.M.

    1986-09-01

    The rates of cellulose breakdown, composition of detrital microflora, and density of bacterial populations were determined in the epilimnetic sediments and water columns of two poorly buffered, oligotrophic, Canadian Shield lakes having mean surficial pHs of 4.6 (Bat Lake) and 6.6 (Harp Lake). The decomposition rate was significantly lower in oxic sediment of the acidified lake than of the circumneutral lake, but water column rates were almost identical in the two lakes. These results are explained in terms of the groups of cellulolytic microorganisms which were observed by phase-contrast microscopy as being active at the different sites: fungi in Bat Lake water and Cytophaga-like bacteria in the water and sediment of Harp Lake. Cytophaga-like bacteria were also the main decomposers in Bat Lake sediment, but their activity was restricted at porewater pHs of <5.0. Acridine orange direct counts of bacteria in the top centimeter of sediment ranged from 3.7 x 10/sup 8/ to 1.0 x 10/sup 9/ per g, and counts in planktonic water samples ranged from 4.9 to 10/sup 5/ to 1.2 x 10/sup 6/ per ml. Bacterial densities at most sites decreased significantly from August to late October, but did not show a consistent pattern of differences related to pH.

  20. Decomposition Studies in Two Central Ontario Lakes Having Surficial pHs of 4.6 and 6.6.

    PubMed

    Hoeniger, J F

    1986-09-01

    The rates of cellulose breakdown, composition of detrital microflora, and density of bacterial populations were determined in the epilimnetic sediments and water columns of two poorly buffered, oligotrophic, Canadian Shield lakes having mean surficial pHs of 4.6 (Bat Lake) and 6.6 (Harp Lake). The decomposition rate was significantly lower in oxic sediment of the acidified lake than of the circumneutral lake, but water column rates were almost identical in the two lakes. These results are explained in terms of the groups of cellulolytic microorganisms which were observed by phase-contrast microscopy as being active at the different sites: fungi in Bat Lake water and Cytophaga-like bacteria in the water and sediment of Harp Lake. Cytophaga-like bacteria were also the main decomposers in Bat Lake sediment, but their activity was restricted at porewater pHs of <5.0. Acridine orange direct counts of bacteria in the top centimeter of sediment ranged from 3.7 x 10 to 1.0 x 10 per g, and counts in planktonic water samples ranged from 4.9 x 10 to 1.2 x 10 per ml. Bacterial densities at most sites decreased significantly (P < 0.001) from August to late October, but did not show a consistent pattern of differences related to pH. PMID:16347147

  1. Land Use Controls on Stream and Lake Dissolved Silica Concentrations: A Case Study from the Finger Lakes, Central New York State, USA.

    NASA Astrophysics Data System (ADS)

    Halfman, J. D.

    2014-12-01

    Bedrock geology, climate and time are important controls on chemical weathering and release of dissolved silica. Forested land vs. other land uses was recently hypothesized as another control. The Finger Lakes region is an ideal natural laboratory to test this hypothesis as local watersheds vary in area, bedrock and agricultural to forested land cover in this rural setting. Annual mean dissolved silica data from 11 watersheds in our ongoing monitoring program ranged from 100 to 4,000 μg/L Si, analyzing filtered (0.45 μm) samples by spectrophotometer (molybdate indicator with metol/oxalic acid reagents). Like earlier work, only forested land use (12 to 73%) correlated to the mean silica concentrations (r2 = 0.3), which improves (r2 = 0.6) when a small, primarily (24%) developed watershed is excluded from the correlation. Bedrock (Devonian carbonates, 0 to 8% and clastics, 0 to 99% covered by till) and basin area (10 to 500 km2) did not correlate (r2 <= 0.1). Event and base flow samples of an agricultural (64%) watershed revealed peak to base flow fluctuations in silica concentrations that more closely mimic nitrates and other groundwater solutes than suspended particles, phosphates and other runoff signature parameters. Annual mean epilimnion and hypolimnion dissolved silica data from the 8 easternmost Finger Lakes in our ongoing monitoring program ranged from 250 to 1,500 μg/L Si. Forested cover (30 to 75%) positively correlated to epilimnion silica concentrations (r2 = 0.6). Lake water residence time (1 to 17 yr) negatively correlated to hypolimnion silica concentrations (r2 = 0.5). Agricultural land use, bedrock, and productivity indicators (chlorophyll-a, total phosphate, and secchi disk depth) lacked correlation (r2 <= 0.1). It suggested that land use impacts stream and, surprisingly, lake dissolved silica chemistry. Biogeochemical processes in the lakes like diatom uptake appears to increasingly decrease silica concentrations in lakes with longer residence

  2. Hydrology of the Wolf Branch sinkhole basin, Lake County, east-central Florida

    USGS Publications Warehouse

    Schiffer, D.M.

    1996-01-01

    A 4-year study of the hydrology of the Wolf Branch sinkhole basin in Lake County, Florida, was conducted from 1991-95 by the U.S. Geological Survey to provide information about the hydrologic characteristics of the drainage basin in the vicinity of Wolf Sink. Wolf Branch drains a 4.94 square mile area and directly recharges the Upper Floridan aquifer through Wolf Sink. Because of the direct connection of the sinkhole with the aquifer, a contaminant spill in the basin could pose a threat to the aquifer. The Wolf Branch drainage basin varies in hydrologic characteristics from its headwaters to its terminus at Wolf Sink. Ground- water seepage provides baseflow to the stream north of Wolf Branch Road, but the stream south of State Road 46 is intermittent and the stream can remain dry for months. A single culvert under a railroad crossing conducts flow from wetlands just south of State Road 46 to a well-defined channel which leads to Wolf Sink. The basin morphology is characterized by karst terrain, with many closed depressions which can provide intermittent surface-water storage. Wetlands in the lower third of the basin (south of State Road 46) also provide surface water storage. The presence of numerous water-control structures (impoundments, canals, and culverts), and the surface-water storage capacity throughout the basin affects the flow characteristics of Wolf Branch. Streamflow records for two stations (one above and one below major wetlands in the basin) indicate the flow about State Road 46 is characterized by rapid runoff and continuous baseflow, whereas below State Road 46, peak discharges are much lower but of longer duration than at the upstream station. Rainfall, discharge, ground-water level, and surface-water level data were collected at selected sites in the basin. Hydrologic conditions during the study ranged from long dry periods when there was no inflow to Wolf Sink, to very wet periods, as when nearly 7 inches of rain fell in a 2-day period in

  3. Evaluation of the potential of organic geochemical proxies from lake sediments from Central India to reconstruct monsoon variability during the Holocene

    NASA Astrophysics Data System (ADS)

    Sarkar, Saswati; Sachse, Dirk; Wilkes, Heinz; Prasad, Sushma; Brauer, Achim; Strecker, Manfred; Basavaiah, Nathani

    2010-05-01

    A better understanding of the past variations of the Indian Monsoon system, which has a deep societal impact on the subcontinent, is essential to determine its behavior under a changing global climate. We aim to reconstruct the variability of the Indian Monsoon, which has both spatially as well as temporally variable nature, during the last 10,000 years using lipid biomarker abundances and stable isotopes from continuous, high-resolution lake sediments in a climatically sensitive region of Central India. Previous sedimentological and geochemical studies on bulk material from a well dated long lake sediment core covering the last 11,000 years have already shown evidence of rapid changes in lithology, sedimentation rate, paleo lake productivity and supply of terrestrial organic matter. Changes in the abundance of source-specific organic compounds - lipid biomarkers - can be useful for the interpretation of past changes in hydrology and ecosystem of the lake and its catchment area as well as their relation to climatic factors. We have identified a number of suitable biomarker compounds for paleohydrological and environmental reconstruction from surface sediments and short cores. Identified biomarker compounds include both aquatic and terrestrial biomarkers. Among the aquatic biomarkers short chain n-alkanes and phytane, most probably derived from cyanobacteria and microbial biomarkers like moretene, diploptene and other hopenes were present. Additionally long chain n-alkanes from vascular land plants from the lake catchment area were identified. Interestingly, the triterpene lipid tetrahymanol and tetrahymanone was found to be the biomarker of highest concentration in all analyzed surface sediments, with concentrations higher than the ubiquitous short-chain fatty acids. Tetrahymanol is often attributed to certain protozoa and frequently found in hypersaline lakes. However, studies have shown that this lipid can also be found in sizable amounts in phototrophic bacteria

  4. The Potential Impact of Increased Phosphorus Loads in Lakes Acting as Heavy Metal Reservoirs: A case study from west-central Indiana

    NASA Astrophysics Data System (ADS)

    McLennan, D. A.; Latimer, J. C.; Smith, E.; Stone, J.

    2015-12-01

    Green Valley Lake is a designated state fishing area in west-central Indiana. Prior to this designation, the lake was a water supply reservoir for the adjacent and now abandoned Green Valley Coal Mine (Operating from 1948-1963). The Green Valley Coal Mine property continues to produce excess acidity despite reclamation efforts. The former mine property and the lake are connected by a channel that discharges acidic drainage directly into Green Valley Lake. To evaluate temporal variability in metal and phosphorus (P) geochemistry, two short cores were collected in spring 2014 (38cm) and spring 2015 (39cm). Metal concentrations were determined by a hand-held X-ray fluorescence analyzer after the samples had been dried and crushed. Approximately 20% of these metal concentrations will be verified by ICP-OES following extraction in 50% aqua regia. Detailed P geochemistry was determined using a sequential extraction technique (SEDEX). The sediments in Green Valley Lake are characterized by heavy metal concentrations that are elevated above typical background levels. These metals tend to be concentrated near the sediment water interface, often 3-5 times greater than the average concentration for the rest of the core, which suggests that they are diagenetically mobile and possibly diffusing out of the sediments under dysoxic to anoxic conditions and returning to the sediments under oxic conditions. Total sedimentary P averages 57 umol/g, but oscillates between 20 - 110 umol/g. The most dramatic shift in the detailed P geochemistry is the significant reduction of mineral P at 15 cm and the increasing importance of oxide-associated and adsorbed P upcore. Diatom assemblages suggest that the lake has become increasingly more eutrophic over time. As nutrient loads continue to increase, the oxygen depleted zone may expand impacting fish populations and changing water geochemistry significantly, in particular, mobilizing heavy metals.

  5. High (ground) water levels and dune development in central Australia: TL dates from gypsum and quartz dunes around Lake Lewis (Napperby), Northern Territory

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Chappell, J.; Murray, A. S.

    1995-03-01

    An episode of high lake levels prior to the last maximum glaciation has been identified at many localities in wastern Australia. Similar events have been recognized at playa lakes in central Australia, where gypsum dunes along playa margins formed during one or more episodes of high groundwater discharge, with a large influx of calcium sulphate. At Lake Lewis, exposures at two islands show similar sediment sequences: three pedogenic gypcrete layers interbedded with aeolian quartz and gypsum sand horizons form three units within gypsum dunes up to 7 m high. The lowest unit has cliffed edges buried by the upper units, indicating a significant time break. Four TL dates (coarse-grained quartz) show that this lowest unit was deposited at or before 70-80 ka. The middle unit of mixed gypsum and quartz sand capped by gypcrete represents the major phase of gypsum dune formation, and 6 TL dates range from 33 to 46 ka with overlapping error bars. These are slightly younger but statistically similar to TL dates (from 39 to 59 ka) of the shoreline gypsum dune at Lake Amadeus in the same region. The top unit of the two islands, up to 1 m thick, has not yet been well dated. One date is inconsistent with the well dated middle layer below, possibly because of incomplete bleaching, and has been rejected. The other date (17 ± 5 ka) is much younger which possibly indicates a minor and local reactivation of old gypsum sediments. At the lake margin, there are quartz dunes overlying the gypsum dunes, and a buried aeolian quartz sand layer occurs in a lake-margin terrace. These represent reactivation of the regional quartz dune field after the major gypsum dune formation. Two consistent TL dates (21 ± 4 ka and 23 ± 6 ka) indicate that regional dunes were active at about the time of the Last Glacial Maximum.

  6. Long-term hydrologic and biogeochemical responses of a soft water seepage lake in north central Wisconsin

    USGS Publications Warehouse

    Wentz, Dennis A.; Rose, William J.; Webster, K.E.

    1995-01-01

    Hydrologic and chemical budgets were determined for the period October 1980 through September 1988 for Vandercook Lake, a 43-ha soft water seepage lake located in predominantly sandy outwash in northern Wisconsin. The 1951-1980 mean annual precipitation for the lake, based on nearby National Weather Service (NWS) stations, was 825 mm; volume-weighted p H of bulk atmospheric deposition during the 8-year study averaged 4.7. From October 1980 through September 1983, annual precipitation was 108% of the 30-year NWS average, annual recharge was 144% of the 8-year study period average, and annual groundwater inflow to the lake ranged from 5 to 9% of the total inflow. From October 1986 through September 1988, annual precipitation was 90% of the NWS average, annual recharge was 30% of the study period average, and the lake received no groundwater inflow. During the study, the lake changed from a system whose buffering mechanism was significantly influenced by mineral weathering in inflowing groundwater to one dominated by in-lake sulfate reduction. The functional differences exhibited by this lake during the 8 years of study demonstrate the tenuousness with which conclusions based on shorter-term studies of similar systems must be considered.

  7. SIMULATION AND VALIDATION OF FISH THERMAL DO HABITAT IN NORTH-CENTRAL US LAKES UNDER DIFFERENT CLIMATE SCENARIOS. (R824801)

    EPA Science Inventory

    Abstract

    Fish habitat in lakes is strongly constrained by water temperature and available dissolved oxygen (DO). Suitable fish habitat for three fish assemblages (cold-, cool-, and warm-water) in Minnesota (US) lakes was therefore determined from simulated daily water ...

  8. Significant melting of ice-wedges and formation of thermocirques on hill-slopes of thermokarst lakes in Central Yakutia (Siberia)

    NASA Astrophysics Data System (ADS)

    Séjourné, Antoine; Costard, François; Gargani, Julien; Fedorov, Alexander; Skorve, Johnny

    2013-04-01

    On Earth, permafrost containing a high ice volume (referred as ice-rich) are sensible to climate change, they have been regionally degraded (thermokarst) during the early Holocene climatic optimum forming numerous thermokarst lakes in Central Yakutia (eastern Siberia). Recent temperature increases in the Arctic and Subarctic have been significantly greater than global averages. The frequency and magnitude of terrain disturbances associated with thawing permafrost are increasing in these regions and are thought to intensify in the future. Therefore, understand how is the current development of thermokarst is a critical question. Here, we describe the significant melting of ice-wedges on slopes of thermokarst lakes that leads to formation of amphitheatrical hollows referred as thermocirques. The evolution of thermocirques in Central Yakutia has been little studied and analyzing their formation could help to understand the recent thermokarst in relation to climate change in Central Yakutia. We studied the thermocirques at two scales: (i) field surveys of different thermocirques in July 2009-2010 and October 2012 to examine the processes and origin of melting of ice-wedges and; (ii) photo-interpretation of time series of satellite images (KH-9 Hexagon images of 6-9 m/pixel and GeoEye images of 50 cm/pixel) to study the temporal evolution of thermocirques. The melting of ground-ice on the scarp of thermocirque triggers falls and small mud-flows that induce the retreat of the scarp parallel to itself. Based on field studies and on GeoEye image comparison, we show that their rate of retrogressive growth is 1-2 m/year. On the hill-slopes of lakes, the thermokarst could be initiated by different processes that lead to the uncover and then melting of ice-wedges: thermal erosion by the waves of the ice-rich bluff; active-layer detachment (a form of slope failure linked to detachment of the seasonally thawed upper ground); flowing of water on the slope (precipitation) or

  9. Eutrophication, pollution and fragmentation: effects on the parasite communities in roach and perch in four lakes in central Finland.

    PubMed

    Valtonen, E T; Holmes, J C; Koskivaara, M

    1997-09-01

    Parasite communities in the four study lakes reflected the influences of habitat fragmentation, pollution and eutrophication. Discriminant analysis of communities at the individual host level reveal two major axes. One, characterized by reduced numbers of digeneans and myxosporeans and increased numbers of acanthocephalans and monogeneans, contrasts communities in a lake affected by chemical pollution from a pulp mill with two eutrophic, less polluted lakes. Changes in the density of intermediate hosts, direct effects on ectoparasites and impaired immune systems were regarded as important mechanisms. The second contrasts communities in an oligotrophic, unpolluted lake with the two eutrophic lakes, and was more complex, reflecting habitat fragmentation, and pollution or eutrophication, probably mediated by the same mechanisms as above. Monitoring easily seen discriminating parasites following 8 years of reduced pollutant loading showed some, but not all, of the effects of pollution could be reserved in a relatively short time. PMID:9802072

  10. 1000 years of climate variability in central Asia: assessing the evidence using Lake Baikal (Russia) diatom assemblages and the application of a diatom-inferred model of snow cover on the lake

    NASA Astrophysics Data System (ADS)

    Mackay, Anson W.; Ryves, D. B.; Battarbee, R. W.; Flower, R. J.; Jewson, D.; Rioual, P.; Sturm, M.

    2005-04-01

    The mainly endemic phytoplankton record of Lake Baikal has been used in this study to help interpret climate variability during the last 1000 years in central Asia. The diatom record was derived from a short core taken from the south basin and has been shown to be free from any sedimentary heterogeneities. We employ here a diatom-based inference model of snow accumulation on the frozen lake for the first time ( r2boot=0.709; RMSEP=0.120 log cm). However, palaeoenvironmental reconstructions have been improved by the use of correction factors, specifically developed for the dominant phytoplankton ( Aulacoseira baicalensis, Aulacoseira skvortzowii, Cyclotella minuta, Stephanodiscus meyerii and Synedra acus) in the south basin of Lake Baikal. Cluster analysis identifies three significant zones in the core, zone 1 (c. 880 AD-c. 1180 AD), zone 2 (c. 1180-1840 AD) and zone 3 (c. 1840-1994 AD), coincident with the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the period of recent warming, respectively. Our results indicate that S. acus dominated the diatom phytoplankton within zone 1 coincident with the MWP. S. acus is an opportunistic species that is able to increase its net growth when A. baicalensis does not. During this period, conditions are likely to have been unfavourable for the net increases in A. baicalensis growth due to the persistence of warm water in the lake, together with an increased length of summer stratification and delay in timing of the autumnal overturn. In zone 2, spring diatom crops blooming under the ice declined in abundances due in part to increased winter severity and snow cover on the lake. Accumulating snow on the lake is likely to have arisen from increased anticyclonic activity, resulting in prolonged winters expressed during the LIA. Thick, accumulating snow cover inhibits light penetration through the ice, thereby having negative effects on cell division rate and extent of turbulence underneath the ice. Consequently, only taxa

  11. Charcoal and fly-ash particles from Lake Lucerne sediments (Central Switzerland) characterized by image analysis: anthropologic, stratigraphic and environmental implications

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Anselmetti, Flavio S.

    2007-10-01

    In order to link the charcoal record from sedimentary archives with the combustion processes that reflect past anthropogenic activity, a novel method based on automated image analysis was developed. It allows a detailed quantification and morphological analysis of the combustion-derived products that were emitted in the area of Lake Lucerne (Central Europe) throughout the last 7200 years. Charcoal-particle distribution reconstructed from the composite sedimentary record shows that the charcoal input is primarily linked to redistribution of detrital μm-size charcoal degradation products from surface runoff into the large lake basin. However, the independent distribution of the coarser charcoal fraction (>38 μm) exhibits four major periods of large-scale fire activity around 5500, 3300, 2400, and 530 cal. BP. These events are synchronous with major anthropogenic changes (lake-dwellings, land-use changes, technological innovations), although it is possible that these major fire episodes could have been indirectly triggered by climatic deterioration and unfavorable environmental conditions. During the late-nineteenth-century, a great increase in slag particles and magnetic spherules of fly-ash occurred due to the steamboat navigation on Lake Lucerne. The successive burning of wood (after AD 1838), coal (after AD 1862), and diesel (after AD 1931) by the steamboat traffic produced specific particle shapes, providing valuable chronological markers for dating the recent sediments and a proxy for fossil fuel combustion.

  12. Hydrochemical and multivariate statistical interpretations of spatial controls of nitrate concentrations in a shallow alluvial aquifer around oxbow lakes (Osong area, central Korea).

    PubMed

    Kim, Kyoung-Ho; Yun, Seong-Taek; Choi, Byoung-Young; Chae, Gi-Tak; Joo, Yongsung; Kim, Kangjoo; Kim, Hyoung-Soo

    2009-07-21

    Hydrochemical and multivariate statistical interpretations of 16 physicochemical parameters of 45 groundwater samples from a riverside alluvial aquifer underneath an agricultural area in Osong, central Korea, were performed in this study to understand the spatial controls of nitrate concentrations in terms of biogeochemical processes occurring near oxbow lakes within a fluvial plain. Nitrate concentrations in groundwater showed a large variability from 0.1 to 190.6 mg/L (mean=35.0 mg/L) with significantly lower values near oxbow lakes. The evaluation of hydrochemical data indicated that the groundwater chemistry (especially, degree of nitrate contamination) is mainly controlled by two competing processes: 1) agricultural contamination and 2) redox processes. In addition, results of factorial kriging, consisting of two steps (i.e., co-regionalization and factor analysis), reliably showed a spatial control of the concentrations of nitrate and other redox-sensitive species; in particular, significant denitrification was observed restrictedly near oxbow lakes. The results of this study indicate that sub-oxic conditions in an alluvial groundwater system are developed geologically and geochemically in and near oxbow lakes, which can effectively enhance the natural attenuation of nitrate before the groundwater discharges to nearby streams. This study also demonstrates the usefulness of multivariate statistical analysis in groundwater study as a supplementary tool for interpretation of complex hydrochemical data sets. PMID:19524319

  13. Morphogenesis of the Czechowskie Lake as inferred from the sedimentological analysis of limnic, colluvial and glacifluvial deposits (Eastern Pomerania, North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jaroslaw; Błaszkiewicz, Mirosław; Kramkowski, Mateusz; Słowiński, Michał; Tyszkowski, Sebastian; Brauer, Achim; Ott, Florian

    2014-05-01

    Czechowskie Lake is situated in north-central Poland in Tuchola Forest, about 100 kilometers SW away from Gdańsk. In the deepest parts of the lake bottom, there are hidden laminated sediments which hold the Late Glacial and Holcene climatic record. These deposits are subject of detailled work of the joint German-Polish Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association. It has the area of 76,6 ha. Actual water level is at 109,9 m a.s.l. The average depth is 9,59 m, maximal 32 m. The lake occupies a large subglacial channel, reproduced within the glacifluvial sediments of the Pomeranian Phase of the last glaciation. In the widest place it has the width of 1 kilometer. The maximal depth of the channel (counting from the channel edges to the reconstructed deepest lake mineral floor (after removal of the limnic sediments)) may reach 70 meters. Inside of the channel some throughs and small hills do exist which are built of outwash sediments but, considering internal structures, they bear some similarity to the dead ice moraines and kames. The vicinity of the channel consists of two outwash plain levels. The lower one was created on the dead ice blocks. The maximum infilling with the limnic and telmatic sediments reaches over 12 m. In the bottom of the lake there is a marked presence of many overdeepenings with the diameter of dozen or several dozen meters and the depth of up to 10 m with numerous, distinct throughs between them. They favoured the preservation of the lamination in the deepest parts of the lake due to waves hampering and stopping of the density circulation in the lake waterbody. In the colluvial and fluvioglacial deposits there were carried out carefull sedminetological analyses. Limnic sediments were identified by bore holes with preserved undisturbed structure. All done works revealed that some of the glacifluvial deposits were deposited in subglacial conditions in supercritical flow regime. They were

  14. Lower Vistula fluvial lakes as possible places of deep groundwaters effluence (Grudziądz Basin, North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jaroslaw; Kubiak-Wójcicka, Katarzyna; Solarczyk, Adam; Tyszkowski, Sebastian

    2014-05-01

    Regarding the outflow the Vistula River is the largest river in the Baltic catchment. In its lower course, below Bydgoszcz, in the Late Holocene Vistula channel adopted an weakly anastomosing fluvial pattern destroyed by intensive human hydrotechnical activity and by the regulation which have intensified about 200 years ago. Channel regulation have left many artificially separated fluvial lakes. Part of them infilled rapidly but the majority have persisted to present day almost unchanged. It has also arised the question: what drives the resistence for silting? To solve the problem there were conducted simultaneous hydrological and geomorphological investigations, because there were two concepts: one that the mineral material is removed from fluvial lakes while high stands by flood waters and second that the material is removed due to high groundwater "exchange" rate when the fluvial lake has a sufficient hydrological connectivity to the main Vistula channel. The Vistula valley crosses morainic plains of the last glaciation. On the average it has about 10 km width and is incised about 70 - 80 m deep, compared to neighbouring plains, dissecting all the Quaternary aquifers. On the floodplain area the Quaternary sediments lay with a layer of only 10-20 m thickness over Miocene and Oligocene sands. In favourable conditions, particularly while a low stand there exists the possibility of Tertiary water migration toward the surface of fluvial lakes provided they have not continuous flood sediments cover on their floors. As an example of such a lake with an intensive water exchange rate by supposed deep groundwaters was chosen the Old Vistula lake (Stara Wisła) near Grudziądz town. The lake has an area of 40 ha, mean depth 1,73 m, maximum depth 8 m, length about 4 km and medium width about 100 m. In the years 2011-2014, with two weeks frequency, in its surficial water layer were conducted measures which included temperature, pH, Eh, suspended matter amount, total and

  15. Biogeochemical processes involving dissolved CO2 and CH4 at Albano, Averno, and Monticchio meromictic volcanic lakes (Central-Southern Italy)

    NASA Astrophysics Data System (ADS)

    Cabassi, Jacopo; Tassi, Franco; Vaselli, Orlando; Fiebig, Jens; Nocentini, Matteo; Capecchiacci, Francesco; Rouwet, Dmitri; Bicocchi, Gabriele

    2013-01-01

    This paper focuses on the chemical and isotopic features of dissolved gases (CH4 and CO2) from four meromictic lakes hosted in volcanic systems of Central-Southern Italy: Lake Albano (Alban Hills), Lake Averno (Phlegrean Fields), and Monticchio Grande and Piccolo lakes (Mt. Vulture). Deep waters in these lakes are characterized by the presence of a significant reservoir of extra-atmospheric dissolved gases mainly consisting of CH4 and CO2. The δ13C-CH4 and δD-CH4 values of dissolved gas samples from the maximum depths of the investigated lakes (from -66.8 to -55.6 ‰ V-PDB and from -279 to -195 ‰ V-SMOW, respectively) suggest that CH4 is mainly produced by microbial activity. The δ13C-CO2 values of Lake Grande, Lake Piccolo, and Lake Albano (ranging from -5.8 to -0.4 ‰ V-PDB) indicate a significant CO2 contribution from sublacustrine vents originating from (1) mantle degassing and (2) thermometamorphic reactions involving limestone, i.e., the same CO2 source feeding the regional thermal and cold CO2-rich fluid emissions. In contrast, the relatively low δ13C-CO2 values (from -13.4 to -8.2 ‰ V-PDB) of Lake Averno indicate a prevalent organic CO2. Chemical and isotopic compositions of dissolved CO2 and CH4 at different depths are mainly depending on (1) CO2 inputs from external sources (hydrothermal and/or anthropogenic); (2) CO2-CH4 isotopic exchange; and (3) methanogenic and methanotrophic activity. In the epilimnion, vertical water mixing, free oxygen availability, and photosynthesis cause the dramatic decrease of both CO2 and CH4 concentrations. In the hypolimnion, where the δ13C-CO2 values progressively increase with depth and the δ13C-CH4 values show an opposite trend, biogenic CO2 production from CH4 using different electron donor species, such as sulfate, tend to counteract the methanogenesis process whose efficiency achieves its climax at the water-bottom sediment interface. Theoretical values, calculated on the basis of δ13C-CO2 values, and

  16. Pseudotachylyte and Fluid Alteration at Seismogenic Depths (Glacier Lakes and Granite Pass Faults, Central Sierra Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Prante, Mitchell R.; Evans, James P.

    2015-05-01

    We present evidence for ancient seismicity in the form of tectonic pseudotachylyte and coeval, cyclic hydrothermal alteration, and cataclasis along fault zones exhumed from 2.4 to 6.0 km in the central Sierra Nevada, CA. The Glacier Lakes fault (GLF) and Granite Pass fault (GPF) are exhumed left-lateral to left-lateral oblique, strike-slip faults with up to 125 m of left-lateral separation exposed in Mesozoic granite and granodiorite plutons. Precipitation of epidote along fault slip-surfaces, chloritization of biotite, saussurite and sericite alteration of plagioclase, and quartz- and-calcite filled veins are present in the GLF and GPF zones. One difficulty encountered in studying exhumed fault zones is providing convincing evidence for a frictional melt origin of pseudotachylyte. Rocks in the field may preserve convincing evidence for frictional melt (i.e., aphanitic, dark, injection structures) that are later shown to be related to cataclasis or injection of hydrothermal fluids. Another challenge results from the low preservation potential of several of the microscopic features that are convincing evidence of a frictional melt origin (microlites, amygdules, and glassy matrix). Here we test the usefulness of grain shape and nearest neighbor distribution analysis of pseudotachylyte and cataclasites from the GLF and GPF to discriminate between these fault rocks and to determine a frictional melt origin for pseudotachylyte. Fabric analyses of the clasts within the pseudotachylytes examined are more circular and exhibit a random nearest neighbor clast distribution relative to adjacent cataclasites. With increased comminution and melting the mean clast circularity increases and the nearest neighbor distances approach a random distribution. We conclude that this observed pattern can be applied to other fault zones as an indicator of a frictional melt origin for fault-related rocks. Mutually cross-cutting zones of hydrothermal alteration and calcite deformation twins

  17. Water quality of Lake Austin and Town Lake, Austin, Texas

    SciTech Connect

    Andrews, F.L.; Wells, F.C.; Shelby, W.J.; McPherson, E.M.

    1988-01-01

    Lake Austin and Town Lake are impoundments on the Colorado River in Travis County, central Texas, and are a source of water for municipal industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Small vertical temperature variations in both lakes were attributed to shallow depths in the lakes and short retention times of water in the lakes during the summer months. The largest areal variations in dissolved oxygen generally occur in Lake Austin during the summer as a result of releases of water from below the thermocline in Lake Travis. Except for iron, manganese, and mercury, dissolved concentrations of trace elements in water collected from Lake Austin and Town Lake did not exceed the primary or secondary drinking water standards set by the US Environmental Protection Agency. Little or no effect of stormwater runoff on temperature, dissolved oxygen, or minor elements could be detected in either Lake Austin or Town Lake. Little seasonal or areal variation was noted in nitrogen concentrations in Lake Austin or Town lake. Total phosphorus concentrations generally were small in both lakes. Increased concentrations of nitrogen and phosphorus were detected after storm runoff inflow in Town Lake, but not in Lake Austin; densities of fecal-coliform bacteria increased in Lake Austin and Town Lake, but were substantially greater in Town Lake than in Lake Austin. 18 refs., 38 figs., 59 tabs.

  18. The Interdependence of Lake Ice and Climate in Central North America. [correlation between freeze/than cycles of lakes and regional weather variations

    NASA Technical Reports Server (NTRS)

    Jelacic, A. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A comparison of lake freeze transition zone migration with the movement of large pressure centers reveals the following consistencies: (1) polar continental cyclones originate within and/or travel along the trend of the transition zone; (2) polar continental anticyclones fail to cross the transition zone; (3) polar outbreak anticyclones pass through the transition zone, apparently unaffected. In addition, storm centers associated with the transition zone undergo significant intensification manifest by a deepening of the pressure through and increased precipitation outside the zone.

  19. Evaluation of 11 equations for determining evaporation for a small lake in the North Central United States

    USGS Publications Warehouse

    Winter, T.C.; Rosenberry, D.O.; Sturrock, A.M.

    1995-01-01

    Eleven equations for calculating evaporation were compared with evaporation determined by the energy budget method for Williams Lake, Minnesota. Data were obtained from instruments on a raft, on land near the lake, and at a weather station 60 km south of the lake. The comparisons were based on monthly values for the open-water periods of 5 years, a total of 22 months. A modified DeBruin-Keijman, Priestley-Taylor, and a modified Penman equation resulted in monthly evaporation values that agreed most closely with energy budget values. To use these equations, net radiation, air temperature, wind speed, and relative humidity need to be measured near the lake. In addition, thermal surveys need to be made to determine change in heat stored in the lake. If data from distant climate stations are the only data available, and they include solar radiation, the Jensen-Haise and Makkink equations resulted in monthly evaporation values that agreed reasonably well with energy budget values.

  20. Phylogenetic Analysis of a Microbialite-Forming Microbial Mat from a Hypersaline Lake of the Kiritimati Atoll, Central Pacific

    PubMed Central

    Schneider, Dominik; Arp, Gernot; Reimer, Andreas; Reitner, Joachim; Daniel, Rolf

    2013-01-01

    On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth. PMID:23762495

  1. Influence of the Westerlies in arid Central Asia during the Holocene recorded in sediments from lakes Son Kol and Chatyr Kol, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Witt, R.; Lauterbach, S.; Plessen, B.; Prasad, S.; Maeusbacher, R.; Gleixner, G.

    2013-12-01

    Knowledge about past Asian climate variability and particularly teleconnections between the Westerlies in arid Central Asia and the Monsoon on the Tibetan Plateau is still limited. To reconstruct the Westerlies intensity during the Holocene in arid Central Asia and its effect on vegetation dynamics, we compared the sediment records from alpine lakes Son Kol (273 km2; 13 m depth) and Chatyr Kol (170 km2; 20 m depth), located in the central Tien Shan mountain range (Kyrgyzstan). Both sites differ in the mean annual amount of precipitation received (Son Kol: 550 mm; Chatyr Kol: 260 mm), but show identical recent catchment vegetation (montane grassland). To find out, whether the precipitation primarily causes differences in sedimentary organic matter accumulation, we investigated the distribution of n-alkanes in recent surface sediments from both lakes. The distribution of these biomarkers in Lake Son Kol is dominated by higher input of terrestrial plant material, whereas the one of Lake Chatyr Kol is characterized by mixed input of terrestrial and aquatic material. Additionally, we investigated the n-alkane distributions and compound-specific δD values of radiocarbon-dated sediment cores from Son Kol (core length: 154 cm), dating back to 6000 years BP, and from Chatyr Kol (core length: 625 cm), which dates back to the early Holocene. The combination of terrestrial and aquatic alkane-specific δD values can be used to determine changes of relative humidity. A generally stable n-alkane composition and relatively high amounts of terrestrial biomarkers within the sediments of Lake Son Kol display relatively stable climatic conditions for organic matter production during the mid-to late Holocene. Throughout the record, depleted δD values (-180 ‰) of terrestrial n-alkanes prevail, only periodically interrupted by phases with enriched values (-140 ‰). This suggests a predominance of generally wet conditions due to the influence of the Westerlies with only short

  2. Potential hydrologic effects of peat mining in the Red Lake Peatlands, north-central Minnesota: A project plan

    USGS Publications Warehouse

    Siegel, Donald I.

    1979-01-01

    Peat is being considered for fuel in Minnesota. This study will investigate the potential effects of large-scale surface mining of peat on the hydrology and water quality of Upper Red Lake and the Tamarac River. The major aspects of the study are the characterization of the surface-water and groundwater hydrology and water quality, including the trace-metal content of the peat. Data will be collected to construct two- and three-dimensional digital models to simulate the movement of ground water and its relation to surface water in the peatlands, streams, and lakes. After the model is calibrated with field data, it will be used to evaluate the effect of mining peat on the hydrology and water quality of the Upper Red Lake and Tamarac River.

  3. Preliminary assessment of heavy metal contamination in surface water and sediments from Honghu Lake, East Central China

    NASA Astrophysics Data System (ADS)

    Hu, Ying; Qi, Shihua; Wu, Chenxi; Ke, Yanping; Chen, Jing; Chen, Wei; Gong, Xiangyi

    2012-03-01

    Heavy metal concentrations in surface water and sediments collected from Honghu Lake in Hubei Province, China were analyzed, and ecological risks were evaluated according to the sediment quality guidelines. The results showed that the average concentrations of heavy metals in surface water were ranked as: As>Zn> Cu>Cr>Pb>Ni>Cd>Hg. In comparison with results reported in other rivers and the background values, The Honghu Lake was polluted by As, Cr, Pb, Cu and Ni. Most of metals might be mainly from fertilizers, industrial effluent and domestic wastewater around the lake. Heavy metals concentrations were relatively higher in the inlet area than in other areas. Negative correlations were observed between most heavy metals and pH, while a significant positive correlation was present between Zn, Cd and Pb. In the sediment core, Cu, Zn, Cr and Ni showed a decreasing trend while Cd present an increasing trend. The decrease of As, Cu, Zn, Cr and Ni in the 1990s might due to the flood event in 1998. The analysis of ecological risk assessment based on sediment quality guidelines suggested that heavy metals in most sediments from the Honghu Lake had moderate toxicity, with Cr being the highest priority pollutant.

  4. Increasing heavy metals in the background atmosphere of central North China since the 1980s: Evidence from a 200-year lake sediment record

    NASA Astrophysics Data System (ADS)

    Wan, Dejun; Song, Lei; Yang, Jinsong; Jin, Zhangdong; Zhan, Changlin; Mao, Xin; Liu, Dongwei; Shao, Yue

    2016-08-01

    Long-term trends of atmospheric compositions are significant for assessing the influence of human activities on the atmosphere and protecting the atmospheric environment. In this study, based on heavy metal concentrations and Pb isotope ratios in a well-dated sediment core from a remote alpine lake in central North China, anthropogenic fluxes of As, Cd, Sb, and Pb were reconstructed and heavy metal evolutions in the atmosphere were revealed in the last 200 years. The heavy metals in the atmosphere were generally natural origins before 1980 A.D. Since the 1980s they began to increase gradually, but they increased the most in the 1990s resulting from rapid developments of rough and high energy-consuming industries in North China. After entering the 21st century the industries still developed rapidly, but the atmospheric Pb ceased increase and the As and Sb even decreased in the 2000s due to (1) phasing out of leaded gasoline and (2) implementing stricter industrial emission standards in 2000 A.D. in China. However, in the 2000s the atmospheric heavy metals still kept at a relatively high level and even likely began to increase again in the 2010s. Considering the lake relatively remote and seldom affected by local human activities, the results likely reflect heavy metal evolutions in the regional background atmosphere of central North China at the annual/decadal timescale in the last 200 years.

  5. The 1.1-Ga Midcontinent Rift System, central North America: sedimentology of two deep boreholes, Lake Superior region

    NASA Astrophysics Data System (ADS)

    Ojakangas, Richard W.; Dickas, Albert B.

    2002-03-01

    The Midcontinent Rift System (MRS) of central North America is a 1.1-Ga, 2500-km long structural feature that has been interpreted as a triple-junction rift developed over a mantle plume. As much as 20 km of subaerial lava flows, mainly flood basalts, are overlain by as much as 10 km of sedimentary rocks that are mostly continental fluvial red beds. This rock sequence, known as the Keweenawan Supergroup, has been penetrated by a few deep boreholes in the search for petroleum. In this paper, two deep boreholes in the Upper Peninsula of Michigan are described in detail for the first time. Both the Amoco Production #1-29R test, herein referred to as the St. Amour well, and the nearby Hickey Creek well drilled by Cleveland Cliffs Mining Services, were 100% cored. The former is 7238 ft (2410 m) deep and the latter is 5345 ft (1780 m) deep. The entirety of the stratigraphic succession of the Hickey Creek core correlates very well with the upper portion of the St. Amour core, as determined by core description and point-counting of 43 thin sections selected out of 100 studied thin sections. Two Lower Paleozoic units and two Keweenawan red bed units—the Jacobsville Sandstone and the underlying Freda Sandstone—are described. The Jacobsville is largely a feldspatholithic sandstone and the Freda is largely a lithofeldspathic sandstone. Below the Freda, the remaining footage of the St. Amour core consists of a thick quartzose sandstone unit that overlies a heterogenous unit of intercalated red bed units of conglomerate, sandstone, siltstone, and shale; black shale; individual basalt flows; and a basal ignimbritic rhyolite. This lower portion of the St. Amour core presents an enigma, as it correlates very poorly with other key boreholes located to the west and southwest. While a black shale sequence is similar to the petroleum-bearing Nonesuch Formation farther west, there is no conglomerate unit to correlate with the Copper Harbor Conglomerate. Other key boreholes are

  6. Physical, chemical, and biological data for detailed study of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92, with selected data for 1987-89

    USGS Publications Warehouse

    Lambing, J.H.; Nimick, D.A.; Knapton, J.R.; Palawski, D.U.

    1994-01-01

    Physical chemical, and biological data were collected in the lower Sun River area of west-central Montana during 1990-92 as part of a U.S. Department of the Interior detailed study of the extent, magnitude, sources, and potential biological impacts of contaminants associated with irrigation drainage. Physical and chemical data were collected from areas within and near the Sun River Irrigation Project and from wetland areas receiving irrigation drainage. Biological data were collected from areas in and near Freezout Lake Wildlife Management Area and Benton Lake National Wildlife Refuge. Additional biological data were collected previously during 1987-89 as part of a U.S. Fish and Wildlife Service program. This report presents data for selenium and other potentially toxic constituents in solid-phase, water, and biological media. Data consist of concentrations of major and trace elements in soil and drill cores; concen- trations of major ions, nutrients, and trace elements in ground water and surface water; and trace-element concentrations in bottom sediment and biological tissue. Hydrogeologic data for domestic and test wells and daily streamflow data for selected sites also are included.

  7. Indian Ocean Summer Monsoon (IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, central Tibetan Plateau (China)

    NASA Astrophysics Data System (ADS)

    Kasper, Thomas; Haberzettl, Torsten; Doberschütz, Stefan; Daut, Gerhard; Wang, Junbo; Zhu, Liping; Nowaczyk, Norbert; Mäusbacher, Roland

    2012-04-01

    In September 2008 several cores (68 cm-115 cm length) (water depth: 93 m) were retrieved from Lake Nam Co (southern-central Tibetan Plateau; 4718 m a.s.l.). This study focuses on the interpretation of high-resolution (partly 0.2 cm) data from three gravity cores and the upper part of a 10.4 m long piston core, i.e., the past 4000 cal BP in terms of lake level changes, hydrological variations in the catchment area and consequently variations in monsoon strength. A wide spectrum of sedimentological, geochemical and mineralogical investigations was carried out. Results are presented for XRF core-scans, grain size distribution, XRD-measurements and SEM-image analyses. These data are complemented by an age-depth model using 210Pb and 137Cs analyses as well as eleven AMS-14C-ages. This model is supported by excellent agreement between secular variations determined on one of the gravity cores to geomagnetic field models. This is a significant improvement of the chronology as most catchments of lacustrine systems on the Tibetan Plateau contain carbonates resulting in an unknown reservoir effect for radiocarbon dates. The good correlation of our record to the geomagnetic field models confirms our age-depth model and indicates only insignificant changes in the reservoir effect throughout the last 4 ka. High (summer-) monsoonal activity, i.e. moist environmental conditions, was detected in our record between approximately 4000 and 1950 cal BP as well as between 1480 and 1200 cal BP. Accordingly, lower monsoon activity prevails in periods between the two intervals and thereafter. This pattern shows a good correlation to the variability of the Indian Ocean Summer Monsoon (IOSM) as recorded in a peat bog ˜1000 km in NE direction from Lake Nam Co. This is the first time that such a supra regional homogenous monsoon activity is shown on the Tibetan Plateau and beyond. Finally our data show a significant lake level rise after the Little Ice Age (LIA) in Lake Nam Co which is

  8. InSAR detection of aquifer recovery: Case studies of Koehn Lake (central California) and Lone Tree Gold Mine (Basin and Range)

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Greene, F.; Amelung, F.

    2013-12-01

    Anthropogenic intervention in groundwater flow and aquifer storage often results in vertical movements of Earth's surface, which are well detected by InSAR observations. Most anthropogenic intervention occurs due to groundwater extraction for both agriculture and human consumption and results in land subsidence. However in some cases, ending anthropogenic intervention can lead to aquifer recovery and, consequently, surface uplift. In this study we present two such cases of aquifer recovery. The first case is the aquifer beneath Koehn Lake in Central California, which was overused to meet agricultural demands until the 1990's. The second case is the Lone Tree Gold Mine in Nevada that during active mining in the 1991-2006 groundwater pumping disrupted the aquifer and cause subsidence. But after mining ceased, groundwater flow was recovered and resulted in uplift. In both cases we studied the surface uplift using InSAR time series observations. We conduct an ERS and Envisat InSAR survey over Koehn Lake in California and Lone Tree Gold Mine in Nevada between 1992 and 2010. We followed the SBAS algorithm to generate a time-series of ground displacements and average velocities of pixels, which remain coherent through time in the SAR dataset. A total of 100 and 80 combined ERS and Envisat SAR dates are inverted for Koehn Lake and Lone Tree Gold Mine respectively. Results for the Koehn Lake area indicate a rapid uplift of about 3.5 mm/yr between 1992-2000 and a slower uplift rate of 1.6 mm/yr between 2000-2004, suggesting a decrease in the recovery process. The observed uplift correlates well with groundwater level increase in the Koehn Lake area. Results for the Lone Tree Gold Mine show a constant subsidence (~ 1 cm/yr) due to groundwater extraction between 1992-2006, but uplift of ~1 cm/yr since the beginning of 2007. In both case studies, InSAR observations reveal that the aquifer recovery is accompanied by surface uplift. We plan to use the InSAR observations and the

  9. Glacialmorphological reconstruction of glacier advances and glacial lake outburst floods at the Cachapoal glacier in the Dry Central Andes of Chile (34°S)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam; Charrier, Reynaldo

    2013-04-01

    Throughout the Andes Mountain range of South America a general trend of glacier shrinkage has taken place in the last century. Only a few glaciers have shown a rather non-continuous trend of glacier retreat and temporally advanced or even surged during the mid-19th to 20th century. One of the earliest assumed glacier surges has occurred in the upper Cachapoal catchment area at the homonymous glacier. In climatic respect the Cachapoal glacier is located in the transition zone from the most southern part of the Dry Central Andes of Chile to the more humid zone of the Wet Andes. The region is affected mainly by winter precipitation deriving from the Westerlies. The debris-covered, 12 km-long Cachapoal glacier represents one of the largest valley glaciers in the Central Andes. It is an avalanche-fed glacier with an almost 1500 m-high head wall in its upper catchment area flowing down from Picos del Barroso (5180 m) and terminates at an elevation of 2630 m a.s.l. with a bifurcated glacier tongue. A large moraine complex, almost 2 km in length and 500 m in width, separates the two glacier lobes. During times of advanced glacier tongue positions the Ríos Molina and Cachapoal may be have blocked independently at two distinct localities which are situated about 2300 m apart from each other. A blockage with temporal lake formation has occurred at least in the years 1848, 1955 and 1981 (cf. Plagemann 1887, Peña 1981), from which the rupture of the earliest glacier barrier has been the most devastating. This event is locally reminded as "la gran avenida en seco" in the historical record. Geomorphological evidence of the past historical and modern glacier expansions is given in the proglacial area by a fresh dead-ice hummocky topography and glacial trimlines at the valley flanks. More down valley broad outwash plains and boulder clusters indicate past high energy floods produced by glacier lake outbursts. Regarding the small size of the catchment area of the Río Molina

  10. A New, Continuous 5400 Yr-long Paleotsunami Record from Lake Huelde, Chiloe Island, South Central Chile.

    NASA Astrophysics Data System (ADS)

    Kempf, P.; Moernaut, J.; Vandoorne, W.; Van Daele, M. E.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    After the last decade of extreme tsunami events with catastrophic damage to infrastructure and a horrendous amount of casualties, it is clear that more and better paleotsunami records are needed to improve our understanding of the recurrence intervals and intensities of large-scale tsunamis. Coastal lakes (e.g. Bradley Lake, Cascadia; Kelsey et al., 2005) have the potential to contain long and continuous sedimentary records, which is an important asset in view of the centennial- to millennial-scale recurrence times of great tsunami-triggering earthquakes. Lake Huelde on Chiloé Island (42.5°S), Chile, is a coastal lake located in the middle of the Valdivia segment, which is known for having produced the strongest ever instrumentally recorded earthquake in 1960 AD (MW: 9.5), and other large earthquakes prior to that: i.e. 1837 AD, 1737 AD (no report of a tsunami) and 1575 AD (Lomnitz, 1970, 2004, Cisternas et al., 2005). We present a new 5400 yr-long paleotsunami record with a Bayesian age-depth model based on 23 radiocarbon dates that exceeds all previous paleotsunami records from the Valdivia segment, both in terms of length and of continuity. 18 events are described and a semi-quantitative measure of the event intensity at the study area is given, revealing at least two predecessors of the 1960 AD event in the mid to late Holocene that are equal in intensity. The resulting implications from the age-depth model and from the semi-quantitative intensity reconstruction are discussed in this contribution.

  11. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Graham, Neil D; Meijer, Maria; Prabakar, Kandasamy; Mubedi, Josué I; Elongo, Vicky; Mpiana, Pius T; Ibelings, Bastiaan Willem; Wildi, Walter; Poté, John

    2015-06-01

    Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum ß-lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ≥ 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality. PMID:25933054

  12. Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 96LCA04 in Lakes Mabel and Starr, Central Florida, August 1996

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; Swancar, Amy; Tihansky, Ann B.; Flocks, James G.; Wiese, Dana S.

    2008-01-01

    In August of 1996, the U.S. Geological Survey conducted geophysical surveys of Lakes Mabel and Starr, central Florida, as part of the Central Highlands Lakes project, which is part of a larger USGS Lakes and Coastal Aquifers (LCA) study. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, observer's logbook; and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. For detailed information about the hydrologic setting of Lake Starr and the interpretation of some of these seismic reflection data, see Swancar and others (2000) at http://fl.water.usgs.gov/publications/Abstracts/wri00_4030_swancar.html. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. The USGS Florida Integrated Science Center (FISC) - St. Petersburg assigns a unique identifier to each cruise or field activity. For example, 96LCA04 tells us the data were collected in 1996 for the Lakes and Coastal Aquifers (LCA) study and the data were collected during the fourth field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. The boomer plate is an acoustic energy source that consists of capacitors charged to a high voltage and discharged through a transducer in the water. The transducer is towed on a sled floating on the water surface and when

  13. Transit losses and traveltimes for reservoirs releases during drought conditions along the Neosho River from Council Grove Lake to Iola, east-central Kansas

    USGS Publications Warehouse

    Carswell, W.J.; Hart, R.J.

    1985-01-01

    Knowledge of the transit losses and water-wave traveltimes in the Neosho River for varying reservoir-release volumes and durations is necessary for proper management of water supply. Two reaches were studied along the Neosho River in east-central Kansas. The upper reach is from Council Grove Lake to John Redmond Reservoir, a distance of 83.0 river miles. The lower reach is from John Redmond Reservoir to Iola, Kansas, a distance of 56.3 river miles. Channel and aquifer characteristics were estimated from available data and used in a streamflow routing model. These estimated characteristics were verified using the model by comparing simulated reservoir releases to observed reservoir releases. The verified model then was used to simulate transit losses (or gains) and traveltimes for selected reservoir release volumes and durations from Council Grove Lake to Iola. Transit losses and traveltimes were investigated for the selected reservoir releases while under a severe drought antecedent streamflow condition (zero base flow) and a less severe drought antecedent streamflow condition (2% drought base flows). The largest total transit loss from Council Grove Lake to Iola occurred during the severe drought antecedent streamflow condition, small reservoir release rates, and long reservoir release durations. The total transit loss included water that was temporarily lost to bank storage. For a severe drought condition, transit losses ranged from 1,100 acre-ft for a release volume of 1,840 acre-ft for a duration of 50 days to 6 ,280 acre-ft for a release volume of 6,280 acre-ft for a duration of 365 days. For a less severe drought condition, transit losses ranged from 860 acre-ft to 3,234 acre-ft for the same release volumes and durations as for the severe drought condition. (Author 's abstract)

  14. Diagenesis of Paleozoic playa-lake and ephemeral-stream deposits from the Pimenta Bueno Formation, Siluro-Devonian (?) of the Parecis Basin, central Brazil

    NASA Astrophysics Data System (ADS)

    Goldberg, K.; Morad, S.; Al-Aasm, I. S.; De Ros, L. F.

    2011-07-01

    The Parecis Basin is a large intracratonic rift located in central Brazil and filled with Paleozoic carbonate, evaporite and siliciclastic sediments. The occurrence of gas seeps has recently attracted significant exploration interest by the Brazilian petroleum agency and by Petrobras. The continuously cored PB-01-RO well provided the first opportunity to study the depositional environments, diagenetic evolution and hydrocarbon potential of the largely unknown sedimentary successions of the Parecis Basin. The cored lithologies, belonging to the Siluro-Devonian (?) Pimenta Bueno Formation, are interpreted as deposited in playa-lake and ephemeral-stream environments. The deposits display a strong facies control on the diagenetic mineral assemblages and evolution. Diagenetic minerals in the ephemeral-stream deposits include eogenetic hematite and smectitic clay coats and quartz cement, and the mesogenetic process includes precipitation of sulfates (anhydrite and barite) and carbonates (calcite, dolomite and kutnahorite-ankerite-huntite), followed by partial dissolution of these carbonates and sulfates, and of feldspar grains. Telogenetic processes include the precipitation of hematite and kaolinite within secondary pores, and the replacement of anhydrite by gypsum. A second burial phase and mesodiagenesis is indicated by the precipitation of discrete K-feldspar crystals within moldic pores after dissolved feldspars, and by the illitization of etched, telogenetic kaolinite. The playa-lake deposits show early diagenetic dolomitization of lime mud, precipitation of anhydrite nodules and extensive silicification. The anhydrite nodules were replaced by gypsum and chalcedony during telodiagenesis. Potential source rocks are locally represented by organic shales. The fluvial sandstones show fair reservoir quality and limited compaction, as indicated by their intergranular volume, suggesting that the succession has undergone moderate burial. Potential seals for hydrocarbon

  15. Late Holocene evolution of playa lakes in the central Ebro depression based on geophysical surveys and morpho-stratigraphic analysis of lacustrine terraces

    NASA Astrophysics Data System (ADS)

    Gutiérrez, F.; Valero-Garcés, B.; Desir, G.; González-Sampériz, P.; Gutiérrez, M.; Linares, R.; Zarroca, M.; Moreno, A.; Guerrero, J.; Roqué, C.; Arnold, L. J.; Demuro, M.

    2013-08-01

    The origin and morpho-stratigraphic evolution of the largest playa-lake system (La Playa-El Pueyo) in the Bujaraloz-Sástago endorheic area, located in the semiarid central sector of the Ebro Depression, are analysed. The enclosed depressions are developed on gypsiferous Tertiary bedrock and show a prevalent WNW-ESE orientation parallel to the direction of the prevalent strong local wind (Cierzo). Yardangs have been carved in bedrock and unconsolidated terrace deposits in the leeward sector of the largest lake basins. A sequence of three lacustrine terrace levels has been identified by detailed geomorphological mapping. The treads of the upper, middle and lower terrace levels are situated at + 9 m, + 6 m and + 0.5 m above the playa-lake floors, respectively. Seismic refraction and electrical resistivity profiles acquired in La Playa reveal a thin basin fill (~ 2 m) with a planar base. These data allow ruling out the genetic hypothesis for the depressions involving the collapse of large bedrock cavities and support a mixed genesis of combined widespread dissolution and subsidence by groundwater discharge and eolian deflation during dry periods. The 5 m thick deposit of the middle terrace was investigated in hand-dug and backhoe trenches. Six AMS radiocarbon ages from this terrace indicate an aggradation phase between 3.9 ka and ca. 2 ka. These numerical ages yield a maximum average aggradation rate of 2.6 mm/yr and a minimum excavation rate by wind deflation of 3 mm/yr subsequent to the accumulation of the middle terrace. The latter figure compares well with those calculated in several arid regions of the world using yardangs carved in palaeolake deposits. The aggradation phase between 4 and 2 ka is coherent with other Iberian and Mediterranean records showing relatively more humid conditions after 4 ka, including the Iron Ages and the Iberian-Roman Period.

  16. A 900-Year Diatom and Chrysophyte Record of Spring Mixing and Summer Stratification From Varved Lake Mina, West-Central Minnesota, USA

    NASA Astrophysics Data System (ADS)

    St. Jacques, J.; Cumming, B. F.; Smol, J. P.

    2009-05-01

    A high-resolution, independent pollen-inferred paleoclimate record and direct algal seasonality data from the actual time of sediment deposition are used to interpret the high-resolution diatom and chrysophyte record of varved Lake Mina, west-central Minnesota, USA during AD 1116-2002. This direct algal seasonality information was obtained by a new technique of splitting varves into constituent winter-spring and summer lamina, and separately analyzing the siliceous algae in each layer. Analyses of integrated, continuous four-year diatom and chrysophyte samples from a sedimentary sequence show that the time period AD 1116-1478 (i.e. the Atlantic- centered Medieval Climate Anomaly (MCA)) was characterized by periods of vigorous and prolonged spring mixing, suggesting that ice-out occurred early. However, the warm summer temperatures in the MCA, particularly in a massive drought spanning AD 1300-1400, frequently caused the lake to stratify strongly, leading to nutrient depletion. During AD 1478-1870 (i.e. the Atlantic-centered Little Ice Age (LIA)), Lake Mina was characterized by weak spring circulation and increasing nutrient depletion, suggesting late ice-out conditions. Strong summer stratification and/or nutrient depletion in both time periods is shown by the occurrence of the nutrient-poor oligotrophic taxon Cyclotella pseudostelligera. The diatom and chrysophyte assemblages of the period of Euro-American settlement AD 1870-2002 show higher nutrient availability and increased spring mixing intensity, due to forest clearance and increasingly earlier ice-out (documented in regional historical records).

  17. Concentrations and loads of nutrients in the tributaries of the Lake Okeechobee watershed, south-central Florida, water years 2004-2008

    USGS Publications Warehouse

    Byrne, Michael J.; Wood, Molly S.

    2011-01-01

    Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic

  18. Hydrologic data from the integrated lake-watershed acidification study in the west-central Adirondack Mountains, New York : October 1977 through January 1982

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, P.S.; Dalton, F.N.

    1987-01-01

    Hydrologic data were collected from three forested headwater lake watersheds in Herkimer and Hamilton Counties from October 1977 through early January 1982 as part of the Integrated Lake-Watersheds Acidification Study (ILWAS). ILWAS was established in 1977 to determine why these lakes differ in pH when all receive equal amounts of acidic atmospheric deposition. Woods Lake is acidic (pH ranges from 4 to 5), Panther Lake is neutral (pH ranges from 5 to 7.5), and Sagamore Lake is intermediate (pH ranges from 5 to 6). The data tabulated herein include discharge at the three lake outlets and in a tributary to each lake; lake-water stage at each lake; chemical quality of lake water, including total concentrations of zinc, iron, manganese, and lead, at each lake outlet and at Lost Brook (a tributary to Sagamore Lake); groundwater stage from 29 wells; major ion concentrations of groundwater from 22 of these wells; temperature of soil from three depths at one site in each watershed; soil-moisture tension at three depths at eight sites - four in the neutral-lake basin, three in the acidic-lake basin , and one in the intermediate-lake basin; and average snowpack depths and water equivalents at approximately 20 snow-course sites in each basin for three sampling periods during the 1979-80 winter. (USGS)

  19. Chloride cycling in two forested lake watersheds in the west-central Adirondack Mountains, New York, U.S.A.

    USGS Publications Warehouse

    Peters, N.E.

    1991-01-01

    The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling C1- cycling. Results indicate that C1- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived C1- through the ecosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till( > 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl- cycling. Results indicate that Cl- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl- through the excosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of

  20. Agricultural nitrate monitoring in a lake basin in Central Italy: a further step ahead towards an integrated nutrient management aimed at controlling water pollution.

    PubMed

    Garnier, Monica; Recanatesi, Fabio; Ripa, Maria Nicoletta; Leone, Antonio

    2010-11-01

    Water pollution from point sources has been considerably reduced over the last few decades. Nevertheless, some water quality problems remain, which can be attributed to non-point pollution sources, and in particular to agriculture. In this paper the results of a study intended to assess the consequences, in terms of NO3 water pollution, of growing a crop, whose impact in terms of P pollution is already well known, are presented. The potential consequences, in terms of water pollution from nitrates of a BMP expressly applied to reduce P pollution are also discussed. The study site is the Lake Vico basin, Central Italy, which has suffered a shift in trophic state since the mid 1990s, caused by P compounds used for intensive cultivation of hazelnut trees. The results of the monitoring campaign described in this paper allow to assert that hazelnut tree cropping has probably caused a considerable increase in nitrate concentration in the groundwater, although not in the lake water, because of the specific hydrogeological characteristics of the basin. The main conclusion is that monitoring is essential to single out environmental characteristics peculiar of a specific area, which even the most sophisticated model would not have been able to highlight. This is why monitoring and model simulations should be integrated. PMID:19911291

  1. Use of zooplankton to assess the movement and distribution of alewife (Alosa pseudoharengus) in south-central Lake Ontario in spring

    USGS Publications Warehouse

    O'Gorman, Robert; Mills, Edward L.; DeGisi, Joe

    1991-01-01

    Data from assessments of fish and zooplankton conducted during April and May-June 1986-88 in south-central Lake Ontario were examined for evidence that zooplankton size structure can be used to follow the movement of alewife (Alosa pseudoharengus). The spring influx of alewife into nearshore waters was linked with water temperature and coincided with a decline in the mean length of crustacean zooplankton and the virtual disappearance of zooplankters a?Y 0.9 mm. Alewife moving inshore to spawn fed heavily on the largest zooplankters, negating the possibility that changes in zooplankton size were wholly a response to seasonal recruitment as waters warm and the competition shifts to Bosmina. Offshore, there was usually no significant (P < 0.05) change in mean lengths of zooplankton in the upper water column between April and May-June, and zooplankters a?Y 0.9 mm always remained abundant, suggesting that few alewife were there from April through mid-June. We conclude that in large freshwater lakes where a planktivore is abundant, yet spatially concentrated, changes in size of crustacean zooplankton can facilitate understanding of the fish's movement and distribution.

  2. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    NASA Astrophysics Data System (ADS)

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-05-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11 000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11 000-7500 calendar years before present [cal yr BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11 200-9300 cal yr BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500 cal yr BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000 cal yr BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160 cal yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500 years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history.

  3. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    USGS Publications Warehouse

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  4. Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 08LCA04 in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, Central Florida, September 2008

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; Davis, Jeffrey B.; Flocks, James G.; Wiese, Dana S.

    2009-01-01

    From September 2 through 4, 2008, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided.

  5. Comparative Results of Using Different Methods for Discovery of Microorganisms in very Ancient Layers of the Central Antarctic Glacier above the Lake Vostok

    NASA Technical Reports Server (NTRS)

    Abyzov, S. S.; Hoover, R. B.; Imura, S.; Mitskevich, I. N.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.

    2002-01-01

    The ice sheet of the Central Antarctic is considered by the scientific community worldwide, as a model to elaborate on different methods to search for life outside Earth. This became especially significant in connection with the discovery of the underglacial lake in the vicinity of the Russian Antarctic Station Vostok. Lake Vostok is considered by many scientists as an analog of the ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is the possibility that relict forms of microorganisms, well preserved since the Ice Age, may be present in this lake. Investigations throughout the thickness of the ice sheet above Lake Vostok show the presence of microorganisms belonging to different well-known taxonomic groups, even in the very ancient horizons near close to floor of the glacier. Different methods were used to search for microorganisms that are rarely found in the deep ancient layers of an ice sheet. The method of aseptic sampling from the ice cores and the results of controlled sterile conditions in all stages when conducting these investigations, are described in detail in previous reports. Primary investigations tried the usual methods of sowing samples onto different nutrient media, and the result was that only a few microorganisms grew on the media used. The possibility of isolating the organisms obtained for further investigations, by using modern methods including DNA-analysis, appears to be the preferred method. Further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence, and scanning electron microscopy methods at different modifications, revealed the quantity and morphological diversity of the cells of microorganisms that were distributed on the different horizons. Investigations over many years have shown that the microflora in the very ancient strata of the Antarctic ice cover, nearest to the bedrock, support the effectiveness of using a combination of different methods

  6. Map of water table in Solomon River valley, Waconda Lake to Solomon, north-central Kansas, May 1980

    USGS Publications Warehouse

    Reed, Thomas B.

    1983-01-01

    A map of the water table in the Solomon River valley from Waconda Lake to Solomon presents current (1980) data on water levels in the unconsolidated deposits. The Solomon River, which originates in western Kansas, flows southeastward from Waconda Lake to its confluence with the Smoky Hill River at Solomon. In the study area, its valley is incised into consolidated rocks that are composed mostly of shale and limestone. The unconsolidated deposits in the valley underlie the flood plain and the terrace. The alluvial deposits generally consist of gravel and sand, grading upward to sand and silt, with clay lenses interbedded throughout. Thickness of the deposits may be as much as 70 feet. Ground water in the unconsolidated deposits is a principal source of supply for domestic, stock, and irrigation use. Water-table contours indicate that ground water moves from the alluvial deposits to the stream. Thus, the Solomon River gains in flow through most of the reach. Water-level measurements for this study were made during the spring of 1980, prior to the irrigation season. (USGS)

  7. [Detection of methane in the water column at gas and oil seep sites in central and southern Lake Baikal].

    PubMed

    Zakharenko, A S; Pimenov, N V; Ivanov, V G; Zemskaia, T I

    2015-01-01

    Microbiological and biogeochemical investigation of the water column of oligotrophic Lake Baikal at the sites of the K2 and Bolshoy mud volcanoes and the Gorevoy Utes oil seep was carried out in July 2013. Total microbial numbers (TMN), cell numbers of type I and type II methanotrophs, and methane concentrations were measured; the rate of methane oxidation was determined. Methane concentrations in Lake Baikal water column varied from 0.09 to 1 μL/L, while methane oxidation rates varied from 0.007 to 0.9 nL/(L day). The highest rates of methane oxidation were revealed in the near-bottom water horizons at the sites of the Bolshoy mud volcano and the Gorevoy Utes oil seep. These were the sites where the most pronounced anomalies in methane concentration were also detected. TMN varied from 0.123 x 10(6) to 1.64 x 10(6) cells/mL. Methanotrophic bacteria were revealed in the water column at all sites, their abundance did not always correlate with methane concentrationsand the rates of methane oxidation. Methanotrophs constituted not more than 1.63% of the total microbial number, with their highest abundance in the upper 200 m of the water column. PMID:25916152

  8. Palaeoclimate reconstructions from lacustrine terraces and lake-balance modeling in the southern central Andes: New insights from Salar de Pocitos (Salta Province, Argentina)

    NASA Astrophysics Data System (ADS)

    Bekeschus, Benjamin; Bookhagen, Bodo; Strecker, Manfred R.; Freymark, Jessica; Eckelmann, Felix; Alonso, Ricardo

    2013-04-01

    The arid Puna Plateau in the southern central Andes of NW-Argentina constitutes the southern part of Earth's second largest orogenic plateau. Numerous internally drained basins are restricted by ranges that peak 5-6 km above sea level, creating a compressional basin and range morphology. The conspiring effects of this structurally controlled topography and the high degree of aridity have resulted in low stream power of the fluvial network and internally drained basins. A steep rainfall gradient exists across this area ranging from a humid Andean foreland (>1m/yr annual rainfall) to progressively drier areas westwards. At the present-day, the interior of the plateau is widely characterized by < 0.1m/yr annual rainfall and high evaporation rates. Thus continuous lacustrine archives are limited and sediments are dominated by evaporites. Several closed basins contain vestiges of moister conditions from past pluvial periods. For example, the staircase morphology of lacustrine shorelines and abrasion platforms in the distal sectors of alluvial fans and pediments at Salar de Pocitos (24.5°S, 67°W, 3650 m asl) records repeated former lake highstands. This intermontane basin has existed since the late Tertiary, constituting a 435 km² salt flat in the region of Salta, NW Argentina. Comparison with palaeoclimate records from the neighboring Salar de Atacama suggests that the terrace systems at Salar de Pocitos were formed during the Late Pleistocene and early Holocene. Here we report on our preliminary results of the extent of several terrace generations in this region. We mapped terraces in the field and on satellite images and determined their elevations during a high-resolution DGPS field survey. Our analysis reveals 3-4 distinct terrace levels associated with individual lake-level highstands. However, basin-wide correlation is difficult due to ongoing tectonism and differential tilting of the basin. The highest lake terrace, ca. 25 m above modern base level, locally

  9. Simulation of the effects of rainfall and groundwater use on historical lake water levels, groundwater levels, and spring flows in central Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Roehl, Edwin A., Jr.; Conrads, Paul A.; Daamen, Ruby C.; Petkewich, Matthew D.

    2014-01-01

    The urbanization of central Florida has progressed substantially in recent decades, and the total population in Lake, Orange, Osceola, Polk, and Seminole Counties more than quadrupled from 1960 to 2010. The Floridan aquifer system is the primary source of water for potable, industrial, and agricultural purposes in central Florida. Despite increases in groundwater withdrawals to meet the demand of population growth, recharge derived by infiltration of rainfall in the well-drained karst terrain of central Florida is the largest component of the long-term water balance of the Floridan aquifer system. To complement existing physics-based groundwater flow models, artificial neural networks and other data-mining techniques were used to simulate historical lake water level, groundwater level, and spring flow at sites throughout the area. Historical data were examined using descriptive statistics, cluster analysis, and other exploratory analysis techniques to assess their suitability for more intensive data-mining analysis. Linear trend analyses of meteorological data collected by the National Oceanic and Atmospheric Administration at 21 sites indicate 67 percent of sites exhibited upward trends in air temperature over at least a 45-year period of record, whereas 76 percent exhibited downward trends in rainfall over at least a 95-year period of record. Likewise, linear trend analyses of hydrologic response data, which have varied periods of record ranging in length from 10 to 79 years, indicate that water levels in lakes (307 sites) were about evenly split between upward and downward trends, whereas water levels in 69 percent of wells (out of 455 sites) and flows in 68 percent of springs (out of 19 sites) exhibited downward trends. Total groundwater use in the study area increased from about 250 million gallons per day (Mgal/d) in 1958 to about 590 Mgal/d in 1980 and remained relatively stable from 1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a maximum of 773

  10. Continuation of the San Andreas fault system into the upper mantle: Evidence from spinel peridotite xenoliths in the Coyote Lake basalt, central California

    NASA Astrophysics Data System (ADS)

    Titus, Sarah J.; Medaris, L. Gordon; Wang, Herbert F.; Tikoff, Basil

    2007-01-01

    The Coyote Lake basalt, located near the intersection of the Hayward and Calaveras faults in central California, contains spinel peridotite xenoliths from the mantle beneath the San Andreas fault system. Six upper mantle xenoliths were studied in detail by a combination of petrologic techniques. Temperature estimates, obtained from three two-pyroxene geothermometers and the Al-in-orthopyroxene geothermometer, indicate that the xenoliths equilibrated at 970-1100 °C. A thermal model was used to estimate the corresponding depth of equilibration for these xenoliths, resulting in depths between 38 and 43 km. The lattice preferred orientation of olivine measured in five of the xenolith samples show strong point distributions of olivine crystallographic axes suggesting that fabrics formed under high-temperature conditions. Calculated seismic anisotropy values indicate an average shear wave anisotropy of 6%, higher than the anisotropy calculated from xenoliths from other tectonic environments. Using this value, the anisotropic layer responsible for fault-parallel shear wave splitting in central California is less than 100 km thick. The strong fabric preserved in the xenoliths suggests that a mantle shear zone exists below the Calaveras fault to a depth of at least 40 km, and combining xenolith petrofabrics with shear wave splitting studies helps distinguish between different models for deformation at depth beneath the San Andrea fault system.

  11. Regional seismic reflection profile from Railroad Valley to Lake Valley, east-central Nevada, reveals a variety of structural styles beneath Neogene basins

    SciTech Connect

    Potter, C.J.; Grow, J.A.; Lund, K.; Perry, W.J. Jr.; Miller, J.J.; Lee, M.W. )

    1991-06-01

    Two seismic reflection lines that compose a 90-km east-west profile at approximately 38{degree}25{prime}N latitude, east-central Nevada, help define the structure beneath Railroad Valley, White River Valley, the southern Egan Range, Cave Valley, Muleshoe Valley, the southern Schell Creek Range, and Lake Valley, Preliminary seismic interpretations are being integrated with ongoing geologic mapping, gravity, and magnetic studies and with drill-hole data along this transect. In the Grant Canyon oil field of Railroad Valley, a gently west-dipping normal fault appears to have controlled the development of the Neogene basin. The fault is clearly defined by fault-plane reflections and by terminations of east-dipping reflections from Tertiary and Paleozoic strata that have rotated toward the fault; the fault projects to nearby outcrops of a major low-angle extensional fault mapped in the Grant Range to the east. White River Valley at this latitude consists of three east-dipping half-grabens and two intervening basement highs. Two half-grabens in the western part of the valley are bounded by west-dipping faults with intermediate to steep dips. East-dipping reflections in the southern Egan Range correspond to a homoclinal Paleozoic panel overlain by a veneer of Late Cretaceous and early Tertiary rocks. The north end of Muleshoe Valley yields a narrow sag basin pattern between the southern Schell Creek Range and Dutch John Mountain, with no well-defined bounding faults. Lake Valley, on the east end of the profile, is a broad, complex basin containing normal faults with opposing dips. The progressive steepening of westerly dips in basin-fill beneath the west side of the basin suggests the presence of a major east-dipping listric fault.

  12. Lake Store Finnsjøen - a key for understanding Lateglacial/early Holocene vegetation and ice sheet dynamics in the central Scandes Mountains

    NASA Astrophysics Data System (ADS)

    Paus, Aage; Boessenkool, Sanne; Brochmann, Christian; Epp, Laura Saskia; Fabel, Derek; Haflidason, Haflidi; Linge, Henriette

    2015-08-01

    The Lateglacial (LG) deglaciation and vegetation development in the Scandes Mountains has been debated for a century. Here we present new evidence from microfossils, radiocarbon dated plant macrofossils and sedimentary ancient DNA from laminated sediments in Lake Store Finnsjøen (1260 m a.s.l.) at Dovre, Central Norway. Combined with previous results from three other Dovre lakes, this allows for new interpretations of events during and immediately after the LG deglaciation. The Finnsjøen sediments present the first uninterrupted record of local vegetation development in the Scandes Mountains from the late Younger Dryas (YD), ca 12,000 cal years BP, to the early Holocene around 9700 cal years BP. The local vegetation in late YD/early Holocene was extremely sparse with pioneer herbs (e.g. Artemisia norvegica, Beckwithia, Campanula cf. uniflora, Koenigia, Oxyria, Papaver, Saxifraga spp.) and dwarf-shrubs (Betula nana, Salix including Salix polaris). From 11,300 cal years BP, local vegetation rapidly closed with dominant Dryas, Saxifraga spp., and Silene acaulis. From ca 10,700 cal years BP, open birch-forests with juniper, Empetrum nigrum and other dwarf-shrubs developed. Pine forests established within the area from 10,300 cal years BP. We identified the cold Preboreal Oscillation (PBO), not earlier described from pollen data in South Norway, around 11,400 cal years BP by a regional pollen signal. Distinct local vegetation changes were not detected until the post-PBO warming around 11,300 cal years BP. Apparently, the earlier warming at the YD/Holocene transition at 11,650 cal years BP was too weak and short-lived for vegetation closure at high altitudes at Dovre. For the first time, we demonstrate a regional glacier readvance and local ice cap formations during the YD in the Scandes Mountains. In two of the deep lakes with small catchments, YD glaciation blocked sedimentation without removing old sediments and caused a hiatus separating sediments of the ice

  13. Lake Life.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This quarterly publication of the State Historical Society of Iowa features articles and activities for elementary school students. This summer issue focuses on the topic of lake life. The issue includes the following features: (1) "Where the Lakes Are Map"; (2) "Letter from the Lake"; (3) "Lake People"; (4) "Spirit Lake"; (5) "Lake Manawa"; (6)…

  14. Contaminants in American alligator eggs from Lake Apopka, Lake Griffin, and Lake Okeechobee, Florida

    USGS Publications Warehouse

    Heinz, G.H.; Percival, H.F.; Jennings, Michael L.

    1991-01-01

    Residues of organochlorine pesticides, polychlorinated biphenyls (PCBs), and 16 elements were measured in American alligator (Alligator mississippiensis) eggs collected in 1984 from Lakes Apopka, Griffin, and Okeechobee in central and south Florida. Organochlorine pesticides were highest in eggs from Lake Apopka. None of the elements appeared to be present at harmful concentrations in eggs from any of the lakes. A larger sample of eggs was collected in 1985, but only from Lakes Griffin, a lake where eggs were relatively clean, and Apopka, where eggs were most contaminated. In 1985, hatching success of artificially incubated eggs was lower for Lake Apopka, and several organochlorine pesticides were higher than in eggs from Lake Griffin. However, within Lake Apopka, higher levels of pesticides in chemically analyzed eggs were not associated with reduced hatching success of the remaining eggs in the clutch. Therefore, it did not appear that any of the pesticides we measured were responsible for the reduced hatching of Lake Apopka eggs.

  15. A comprehensive assessment of agricultural intensification scenarios for the Dongting Lake basin in south-central China in 2030.

    PubMed

    Yin, Guanyi; Liu, Liming; Chang, Xiao; Sun, Jin

    2016-07-01

    To explore the future of the material demand, pollutant emission, production, and arable land area surrounding the Dongting Lake basin, and to find a potential solution for agricultural development, this study assumes the following four agriculture intensification scenarios: the natural development scenario (ND), the production development scenario (PD), the moderate intensification scenario (MI), and the local resilience scenario (LR). The scenarios focus on different developmental patterns (natural development, short-term production growth, long-term sustainability, or self-sufficiency).The result shows to satisfy the food demand in 2030, and the production of crop and meat will be 26.96, 30.25, 28.05, and 16.27 × 10(6) t in ND, PD, MI, and LR, respectively; more than 1.78 × 10(6) ha of arable land is needed. Compared with the year 2012, the material input and pollutant output will increase by a maximum of 18.32 and 122.31 %, respectively. By classifying the environmental risk into four categories-greenhouse gas emission, air pollution, eutrophication, and ecotoxicity-the composite environmental risk index (CER) is calculated. The CER in PD was the highest, followed by that in ND, LR, and MI. Due to the production allocation within the 35 cities and counties, the spatial distribution of CER is more homogenous in PD and MI than in ND. The analysis of the scenarios reveals that through technological improvement and spatial allocation of agricultural production, scenario MI could be a potential direction for the government to design a sustainable agricultural-environmental system. PMID:27040549

  16. A 3000-year record of ground-rupturing earthquakes along the central North Anatolian fault near Lake Ladik, Turkey

    USGS Publications Warehouse

    Fraser, J.; Pigati, J.S.; Hubert-Ferrari, A.; Vanneste, K.; Avsar, U.; Altinok, S.

    2009-01-01

    The North Anatolian fault (NAF) is a ???1500 km long, arcuate, dextral strike-slip fault zone in northern Turkey that extends from the Karliova triple junction to the Aegean Sea. East of Bolu, the fault zone exhibits evidence of a sequence of large (Mw >7) earthquakes that occurred during the twentieth century that displayed a migrating earthquake sequence from east to west. Prolonged human occupation in this region provides an extensive, but not exhaustive, historical record of large earthquakes prior to the twentieth century that covers much of the last 2000 yr. In this study, we extend our knowledge of rupture events in the region by evaluating the stratigraphy and chronology of sediments exposed in a paleoseismic trench across a splay of the NAF at Destek, ???6:5 km east of Lake Ladik (40.868?? N, 36.121?? E). The trenched fault strand forms an uphill-facing scarp and associated sediment trap below a small catchment area. The trench exposed a narrow fault zone that has juxtaposed a sequence of weakly defined paleosols interbedded with colluvium against highly fractured bedrock. We mapped magnetic susceptibility variations on the trench walls and found evidence for multiple visually unrecognized colluvial wedges. This technique was also used to constrain a predominantly dip-slip style of displacement on this fault splay. Sediments exposed in the trench were dated using both charcoal and terrestrial gastropod shells to constrain the timing of the earthquake events. While the gastropod shells consistently yielded 14 C ages that were too old (by ???900 yr), we obtained highly reliable 14 C ages from the charcoal by dating multiple components of the sample material. Our radiocarbon chronology constrains the timing of seven large earthquakes over the past 3000 yr prior to the 1943 Tosya earthquake, including event ages of (2?? error): A.D. 1437-1788, A.D. 1034-1321, A.D. 549-719, A.D. 17-585 (1-3 events), 35 B.C.-A.D. 28, 700-392 B.C., 912-596 B.C. Our results

  17. Planning applications in east central Florida. [resources management and planning, land use, and lake algal blooms in Brevard County from Skylab imagery

    NASA Technical Reports Server (NTRS)

    Hannah, J. W.; Thomas, G. L.; Esparza, F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Lake Apopka and three lakes downstream of it (Dora, Eustis, and Griffin) are in an advanced state of eutrophication with high algal concentrations. This feature has shown up consistently on ERTS-1 images in the form of a characteristic water color for those lakes. As expected, EREP photographs also show a characteristic color for those lakes. What was not expected is that Lake Griffin shows a clear pattern of this coloration. Personnel familiar with the lake believe that the photograph does, indeed, show an algal bloom. It is reported that the algal concentration is often significantly higher in the southern portion of the lake. What the photograph shows that was not otherwise known is the pattern of the algal bloom. A similar, but less pronounced, effect is seen in Lake Tohopekaliga. Personnel stationed at Kissimmee reported that there was an algal bloom on that lake at the time of the EREP pass and that its extent corresponded approximately to that shown on the photograph. Again, the EREP photograph gives information about the extent of the bloom that could not be obtained practically by sampling. ERTS-1 images give some indication of this algal distribution on Lake Griffin in some cases, but are inconclusive.

  18. Inference of the viscosity structure and mantle conditions beneath the Central Nevada Seismic Belt from combined postseismic and lake unloading studies

    NASA Astrophysics Data System (ADS)

    Dickinson, Haylee; Freed, Andrew M.; Andronicos, Christopher

    2016-05-01

    We test whether a single depth-dependent Newtonian viscosity structure can be found to explain measured surface deformation in Western Nevada from two separate loading events: tectonic loading from a series of seven historic earthquakes in the Central Nevada Seismic Belt and nontectonic loading from the formation and evaporation of co-located Pleistocene-aged Lake Lahontan. Rheologic studies are generally plagued with nonuniqueness issues due to the limitations of observational constraints. Here, we reduce nonuniqueness by solving for a single rheologic structure that can simultaneously satisfy all observational constraints associated with all events. Model results suggest that Western Nevada is underlain by a strong lower crust (order 1020 Pa s), a relatively weak mantle (order 5 × 1018 Pa s) from 40 to 80 km, and a much weaker mantle (order 1018 Pa s) below 80 km. We would thus place the mechanical lithosphere/asthenosphere boundary (LAB) at 40 km depth. Thermal modeling of conductive geothermal gradients, combined with melting curves calculated for enriched and depleted mantle compositions suggest that the viscosity decrease at 40 km depth (the LAB) is associated with the onset of wet melting of mantle lithosphere hydrated by past subduction and is about 10 km shallower than the inferred transition from conduction to convection.

  19. Comparison between BCR sequential extraction and geo-accumulation method to evaluate metal mobility in sediments of Dongting Lake, Central China

    NASA Astrophysics Data System (ADS)

    Yao, Zhigang

    2008-02-01

    The form in which a metal exists strongly influences its mobility and thus, the effects on the environment. Operational methods of speciation analysis, such as the use of sequential extraction procedures, are commonly applied. The Dongting Lake, the second largest fresh-water lake in China, contains three China wetlands of international importance, the East Dongting Lake, South Dongting Lake, and West Dongting Lake. In this work, an optimized BCR sequential extraction procedure was used to assess the environmental risk of Cd, Cr, Cu, Ni, Pb and Zn in contaminated sediment of the Dongting Lake. The procedure was evaluated by using a certified reference material, BCR701. The results of the partitioning study indicated that in the lake sediments, more easily mobilized forms (acid exchangeable) were predominant for Cd, particularly in the samples from the East Dongting Lake. In contrast, the largest amount of Pb was associated with the iron and manganese oxide fractions and Cu, Zn, Cr, and Ni analyzed were mainly distributed in residual phase at an average percentage greater than 60% of the total metals. The potential risk to the lake’s water contamination was highest in the East Dongting Lake based on the calculated contamination factors. On the other hand, the total metal content was determined as well by inductively coupled plasma and mass spectrometry (ICP-MS) and assessed by using geo-accumulation index. The assessment results using geo-accumulation index were compared with the information on metal speciation. Both were correspondent with each other.

  20. Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 02LCA02 in Lakes Ada, Crystal, Jennie, Mary, Rice, and Sylvan, Central Florida, July 2002

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; Davis, Jeffrey B.; Wiese, Dana S.

    2008-01-01

    In July of 2002, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Ada, Crystal, Jennie, Mary, Rice, and Sylvan, central Florida, as part of the USGS Lakes and Coastal Aquifers (LCA) study. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. The USGS Florida Integrated Science Center (FISC) - St. Petersburg assigns a unique identifier to each cruise or field activity. For example, 02LCA02 tells us the data were collected in 2002 for the Lakes and Coastal Aquifers (LCA) study and the data were collected during the second field activity for that study in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. The boomer plate is an acoustic energy source that consists of capacitors charged to a high voltage and discharged through a transducer in the water. The transducer is towed on a sled floating on the water surface and when discharged emits a short acoustic pulse, or shot, which propagates through the water, sediment column, or rock beneath. The acoustic energy is reflected at density boundaries (such as the seafloor, sediment, or rock layers beneath the

  1. Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 08LCA01 in 10 Central Florida Lakes, March 2008

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; Davis, Jeffrey B.; Flocks, James G.; Wiese, Dana S.

    2009-01-01

    In March of 2008, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Avalon, Big, Colby, Helen, Johns, Prevatt, Searcy, Saunders, Three Island, and Trout, located in central Florida, as part of the USGS Lakes and Coastal Aquifers (LCA) study. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, Field Activity Collection System (FACS) logs, Geographic Information System (GIS) files, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU) (Cohen and Stockwell, 2005). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. The USGS Florida Integrated Science Center (FISC) - St. Petersburg assigns a unique identifier to each cruise or field activity. For example, 08LCA01 tells us the data were collected in 2008 for the Lakes and Coastal Aquifers (LCA) study and the data were collected during the first field activity for that study in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. The naming convention used for each seismic line is as follows: yye##a, where yy is the last two digits of the year in which the data were collected, e is a 1-letter abbreviation for the equipment type (for example, b for boomer), ## is a 2-digit number representing a specific track, and a is a letter representing the section of a line

  2. A multi-proxy record of Holocene climate and glacier activity from proglacial lake Hvítárvatn, central Iceland

    NASA Astrophysics Data System (ADS)

    Larsen, D. J.; Miller, G. H.; Geirsdottir, A.; Ólafsdóttir, S.

    2010-12-01

    The climatically sensitive location of Iceland, near the boundary between opposing atmospheric and oceanic flows in the North Atlantic, presents a unique opportunity for paleoclimate investigations. Laminated sediments from proglacial lake Hvítárvatn (422 asl), central Iceland, are used to reconstruct regional climate variability and the activity of the Langjökull ice cap for the last ca. 10.2 ka. A continuous, high-resolution (annual to multi-decadal) age model is constructed by splicing a varve chronology of the past 3 ka with a tephra-constrained, paleomagnetic secular variation derived chronology for older sediments. Multiple proxies, including sedimentation rate, bulk density, ice-rafted debris (IRD), TOC, C:N, 13C, and biogenic silica, reveal a dynamic Holocene terrestrial climate. Holocene Thermal Maximum (HTM) conditions are achieved shortly after ca. 8 ka and result in the disappearance of Langjökull from the catchment. Subsequently, a broad trend toward cooler summers and ice-cap regrowth and expansion begins by ca. 6 ka, with a notable increase in glacier activity at 4.2 ka. The past millennium is characterized by some of the most unstable conditions of the record, with the abrupt onset of sustained cold periods at ca. 550 and 1250 AD. These periods are separated by a pronounced interval of relative warmth and reduced glacier size from ca. 950 to 1150 AD. The greatest Holocene extent of Langjökull occurs in the nineteenth century AD and is coincident with significant landscape instability in the watershed. Additional periods of notable glacier growth and/or landscape instability are recorded in all proxies at ca. 8.2 ka, ca. 4.2 ka, and ca. 3.0 ka.

  3. Arsenic and lead distribution and mobility in lake sediments in the south-central Puget Sound watershed: the long-term impact of a metal smelter in Ruston, Washington, USA.

    PubMed

    Gawel, James E; Asplund, Jessica A; Burdick, Sarah; Miller, Michelle; Peterson, Shawna M; Tollefson, Amanda; Ziegler, Kara

    2014-02-15

    The American Smelting and Refining Company (ASARCO) smelter in Ruston, Washington, contaminated the south-central Puget Sound region with heavy metals, including arsenic and lead. Arsenic and lead distribution in surface sediments of 26 lakes is significantly correlated with atmospheric model predictions of contaminant deposition spatially, with concentrations reaching 208 mg/kg As and 1,375 mg/kg Pb. The temporal distribution of these metals in sediment cores is consistent with the years of operation of the ASARCO smelter. In several lakes arsenic and lead levels are highest at the surface, suggesting ongoing inputs or redistribution of contaminants. Moreover, this study finds that arsenic is highly mobile in these urban lakes, with maximum dissolved arsenic concentrations proportional to surface sediment levels and reaching almost 90 μg/L As. With 83% of the lakes in the deposition zone having surface sediments exceeding published "probable effects concentrations" for arsenic and lead, this study provides evidence for possible ongoing environmental health concerns. PMID:24317160

  4. Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy

    NASA Astrophysics Data System (ADS)

    Dean, Jonathan R.; Jones, Matthew D.; Leng, Melanie J.; Noble, Stephen R.; Metcalfe, Sarah E.; Sloane, Hilary J.; Sahy, Diana; Eastwood, Warren J.; Roberts, C. Neil

    2015-09-01

    There is a lack of high-resolution records of hydroclimate variability in the Eastern Mediterranean from the late glacial and early Holocene. More knowledge of the speed of climate shifts and the degree to which they were synchronous with changes in the North Atlantic or elsewhere is required to understand better the controls on Eastern Mediterranean climate. Using endogenic carbonate from a sediment sequence from Nar Gölü, a maar lake in central Turkey, dated by varve counting and uranium-thorium methods, we present high-resolution (˜25 years) oxygen (δ18O) and carbon isotope records, supported by carbonate mineralogy data, spanning the late glacial and Holocene. δ18Ocarbonate at Nar Gölü has been shown previously to be a strong proxy for regional water balance. After a dry period (i.e. evaporation far exceeding precipitation) in the Younger Dryas, the data show a transition into the relatively wetter early Holocene. In the early Holocene there are two drier periods that appear to peak at ˜9.3 ka and ˜8.2 ka, coincident with cooling 'events' seen in North Atlantic records. After this, and as seen in other records from the Eastern Mediterranean, there is a millennial-scale drying trend through the Mid Holocene Transition. The relatively dry late Holocene is punctuated by centennial-scale drought intervals, at the times of 4.2 ka 'event' and Late Bronze Age societal 'collapse'. Overall, we show that central Turkey is drier when the North Atlantic is cooler, throughout this record and at multiple timescales, thought to be due to a weakening of the westerly storm track resulting from reduced cyclogenesis in the North Atlantic. However, some features, such as the Mid Holocene Transition and the fact the early Holocene dry episodes at Nar Gölü are of a longer duration than the more discrete 'events' seen in North Atlantic records, imply there are additional controls on Eastern Mediterranean hydroclimate.

  5. Facies changes and high calorific peat formation in a quaternary maar lake, central Anatolia, Turkey: the possible role of geothermal processes in a closed lacustrine basin

    NASA Astrophysics Data System (ADS)

    Kazanci, Nizamettin; Gevrek, Aliİhsan; Varol, Baki

    1995-01-01

    The sedimentary infill of the Acigöl maar lake, one of the volcanic centres in the Cappadocia district of Anatolia, contains unusual, high-calorific sub-Recent peat deposits, of which the origin is attributed to geothermal processes. The sedimentary facies record is analyzed to reconstruct the lake's depositional history and to disentangle the combined signal of climatic and geothermal factors. The facies succession comprises: a lake-fringe clastic apron shed from the maar walls; early-stage, coarse-grained tuffaceous deposits of the lake proper, intercalated with brecciated mudstones and limestones; and final-stage, fine-grained tuffaceous deposits of the lake proper, intercalated with peats and plant-bearing clastics and with some terminal travertines. The closed lake was highly dependent on climate, particularly precipitation, and the depositional conditions were further controlled by a connective hydrothermal system which itself was driven by the input of meteoric water. The associated heat flow played an important role by creating a microclimatic niche, where even the impoverished late-Quaternary (cold regional climate) vegetation could flourish and form substantial peats. The varying hydrological budget of the lake was the main "switching" mechanism for the peat-forming conditions, with two water-depth thresholds involved. If the lake level rose too high, the low vegetation was drowned and hemipelagic clastic sedimentation prevailed. If the lake level fell too low, the vegetation was killed and formation of travertine took place. The heat flow through the pore water and clastic sediments was crucial to the high maturation of the peat deposits.

  6. Water, Energy, and Biogeochemical Budgets (WEBB) program: Data availability and research at the Northern Temperate Lakes site in north-central Wisconsin

    USGS Publications Warehouse

    Elder, John F.; Krabbenhoft, David P.; Walker, John F.

    1992-01-01

    The NTL-WEBB study area includes seven lakes that are also the site of a Long-Term Ecological Research (LTER) project, sponsored by the National Science Foundation. This project incorporates diverse research investigations conducted by faculty and research associates of the University of Wisconsin-Madison. The research orientation of NTL-LTER is principally toward aquatic ecology and geochemistry of the lakes. The WEBB research plan, with its emphasis on hydrologic processes in the lake watersheds, is designed to complement and enhance the LTER work.

  7. Tectonic and climate changes expressed as sedimentary cycles and stratigraphic sequences of the Paleogene Lake Uinta System, central Rocky Mountains, Utah and Colorado

    SciTech Connect

    Fouch, T.D.; Pitman, J.K.

    1991-03-01

    Lake Uinta strata record both long- and short-term changes in climate and tectonic regime. Late Paleocene to late Eocene deposits are characterized by evaporite units (including halite and bicarbonate salts) and organically derived carbonate with extreme positive {delta}{sup 13}C and slightly negative {delta}{sup 18}O values that serve as evidence the lake was the center of a closed hydrologic system. Large reconfigurations of the lake system were tectonically induced and gave rise to relatively thick, lithologically distinct stratigraphic sequences. Simultaneous climate changes initiated very rapid lake level expansions and contractions as well as shifts in lake-water alkalinity and salinity (or chemistry) which resulted in the development of small- to large-scale sedimentary and stratigraphic cycles. Maastrichtian to earliest Eocene phases formed in local depressions (piggy back basins) on the thrust sheets, and in the incipient Uinta basin. Lake system reached its greatest aerial and volumetric extent in the middle and late Eocene and was centered in the foreland formed in front of high-angle reverse faults that bounded the rising Laramide structural blocks. At this time chemical precipitates, including basin centered carbonate and evaporite facies, formed during episodes of tectonically induced subsidence at the center of the clastic sediment-starved basin. Some fault-bounded margins of the Uinta basin are marked by synorogenic coarse debris that extends from the mountain front to the clastic sediment-starved lake. Tectonically induced stratigraphic sequences of the Lake Uinta system express environments for several million years whereas climatic cycles reflect much shorter episodes and very rapidly changing conditions.

  8. Effects of Surficial Geology, Lakes and Swamps, and Annual Water Availability on Low Flows of Streams in Central New England, and Their Use of Low-Flow Estimation

    USGS Publications Warehouse

    Wandle, S. William, Jr.; Randall, Allan D.

    1994-01-01

    Equations developed by multiple-regression analysis of data from 49 drainage basins in Massachusetts, New Hampshire, Rhode Island, Vermont, and southwestern Maine indicate that low flow of streams in this region is largely a function of the amount of water available to the basin and the extent of surficial sand and gravel relative to the extent of till and fine-grained stratified drift. Low flow per square mile from areas of surficial sand and gravel is consistently much greater than that from areas of till and bedrock, but flood plains and alluvial fans seem to contribute less low flow per square mile than do other types of surficial sand and gravel. The areal extent of lakes and swamps also correlates negatively with low flow in multiple-regression equations, presumably because intense evapotranspiration from these localities consumes water that would otherwise become streamflow. The annual minimum 7-day mean low flows that occur during summer and fall at 2-year and 10-year recurrence intervals (7Q2 and 7QIO) were selected as indices of low flow and were adjusted to a common base period, 1942-71. Central New England was divided into a region of high relief that com- prises much of New Hampshire, Vermont, and western Massachusetts, and a region of low relief that generally lies to the east and south but also includes the Lake Champlain lowland of Vermont. In the high-relief region, mean basin elevation proved to be the most significant index of the amount of water available. In the low-relief region, mean annual runoff per square mile was more significant than elevation, particularly when multiplied by the areal extent of sand and gravel and that of till. Dividing the areal extent of sand and gravel by stream length improved the fit of regression equations for the low-relief region. Regression equations were developed that explained at least 95 percent of the variation in 7QIO within both the high-relief and the low-relief data sets. Equations proposed for

  9. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    NASA Astrophysics Data System (ADS)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  10. Whole-catchment inventories of trace metals in soils and sediments in mountain lake catchments in the Central Pyrenees: Apportioning the anthropogenic and natural contributions

    NASA Astrophysics Data System (ADS)

    Bacardit, Montserrat; Krachler, Michael; Camarero, Lluís

    2012-04-01

    We measured the concentrations of Pb, Zn, Cd, Cu and Ni in rocks, soils, sediments and plants from three catchments in the Central Pyrenees, with the aim of producing whole-catchment inventories for these trace metals and apportioning natural and anthropogenic fractions. We used Pb isotopes to distinguish between natural and contaminant Pb, and compared the results to apportioning based on reference element ratios (e.g. Pb/Ti) in order to validate this second method. Both methods gave similar results, except in one of the catchments where soils presented a highly organic upper horizon with a different geochemistry. Because of this, specific element ratios had to be used for the organic horizon that were different from those used for the mineral horizon, in order to obtain the correct apportioning as estimated by the Pb isotope method. Taking this into account, we then calculated inventories for the other metals for which isotopic methods are not available. Previous studies have shown that Pb contamination started in the area as early as the 1st century BCE. In the present study, the earliest indication of Pb contamination in lake sediments was dated ˜1250 CE and has continued until the present. During the 19th century, there was a change in the source of anthropogenic Pb as indicated by its isotopic composition. The estimated inventories of anthropogenic trace metals for the whole catchments were ˜1 g m-2 of Pb and Zn, ˜0.1-0.2 g m-2 of Ni and Cu and ˜0.01 g m-2 of Cd. The Pb and Zn inventories are similar to those for other mountainous and rural areas in northern and eastern European locations, whereas Ni, Cu and Cd inventories were lower in the Pyrenees. The anthropogenic trace metals accumulated in Pyrenean catchments were three orders of magnitude higher than the current yearly atmospheric deposition over the area. This indicates the potential of sediments and soils as sources of a delayed contamination caused by the remobilisation of anthropogenic trace

  11. MORPHOLOGICAL VARIATION IN HATCHLING AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM THREE FLORIDA LAKES

    EPA Science Inventory

    Morphological variation of 508 hatchling alligators from three lakes in north central Florida (Lakes Woodruff, Apopka, and Orange) was analyzed using multivariate statistics. Morphological variation was found among clutches as well as among lakes. Principal components analysis wa...

  12. Facies and depositional sequences of the Late Pleistocene Göçü shoreline system, Konya basin, Central Anatolia: Implications for reconstructing lake-level changes

    NASA Astrophysics Data System (ADS)

    Karabiyikoǧlu, Mustafa; Kuzucuoǧlu, Catherine; Fontugne, Michel; Kaiser, Brigitte; Mouralis, Damase

    1999-04-01

    Well-developed coarse-grained palaeo-shoreline deposits are found along the rising margins of the Konya basin, marking the former extent of a now desiccated Late Pleistocene lake. This study evaluates the depositional environments and the sequential evolution of a shoreline system that developed at the northern margin of the Konya palaeolake near Göçü. Several laterally continuous quarry sections provided an excellent opportunity for studying spatial and temporal changes of depositional environments and related lake-level fluctuations. Eight principal sedimentary facies and six major lithostratigaphic units have been identified in these deposits representing progradational and retrogradational episodes of shoreline development. The lowest sequence is an aggradational unit formed by wind-driven currents and waves in a sand-dominant lake bottom above the wave base. It is overlain by a convoluted palaeosol 14C dated to ca 28,300 BP representing a major lowering of lake levels. Following an unconformity, the next sequence is characterised by large-scale gravelly clinoforms that progressively offlap/downlap onto the underlying sequence, and correspond to progradation of a foreshore resulting from storm-originated oscillating and unidirectional currents, avalanching processes and minor subaqueous debris flows. It is overlain by an areally extensive lensoid body of structureless clays comprising a thin organic layer, abundant rootlets and freshwater mollusc shells, formed from suspension fallout in a quiet, very shallow freshwater lagoonal environment. This phase, representing a more minor lake regression, has been 14C dated to ca. 21,960-20,730 BP. The final sequences include large-scale sand waves and bars, which developed by storm-originated wave surges and strong shoreline currents, and prograding delta foresets. These sequences indicate a renewed lake transgression to higher water levels, before a final regression after 17,500 BP. Lack of tectonic deformation and

  13. Water Resources Data for California, Water Year 1986. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Mullen, J.R.; Shelton, W.F.; Simpson, R.G.; Grillo, D.A.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 156 gaging stations; stage and contents for 37 lakes and reservoirs; water precipitation data for 2 stations; and water quality for 8 stations. Also included is one water-quality partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  14. Water Resources Data, California, Water Year 1990. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Mullen, J.R.; Shelton, W.F.; Markham, K.L.; Anderson, S.W.

    1991-01-01

    Water resources data for the 1990 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 182 gaging stations; stage and contents for 34 lakes and reservoirs; precipitation data for 3 stations; and water quality. for 12 stations. Also included is one low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  15. Water Resources Data, California, Water Year 1989. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Anderson, S.W.; Mullen, J.R.; Shelton, W.F.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 177 gaging stations; stage and contents for 34 lakes and reservoirs; precipitation data for 3 stations; and water quality for 9 stations. Also included is one low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  16. Water Resources Data for California, Water Year 1988. Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Shelton, W.F.; Anderson, S.W.; Mullen, R.J.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wellso Volume 4 contains discharge records for 160 gaging stations; stage and contents for 35 lakes and reservoirs; water precipitation data for 2 stations; and water quality for 9 stations Also included is one low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  17. Water Resources Data for California, Water Year 1987. Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Mullen, J.R.; Shelton, W.F.; Simpson, R.G.

    1988-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 154 gaging stations; stage and contents for 33 lakes and reservoirs; water precipitation data for 2 stations; and water quality for 5 stations. Also included is one low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  18. Water Resources Data, California, Water Year 1997. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Rockwell, G.L.; Friebel, M.F.; Webster, M.D.; Anderson, S.W.

    1998-01-01

    Water-resources data for the 1997 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 176 gaging stations and 1 partial-record station, stage and contents for 45 lakes and reservoirs, gage-height records for 3 stations, precipitation data for 3 stations, and water quality data for 14 stations and 6 waterquality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  19. Water Resources Data -- California, Water Year 2003, Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Friebel, M.F.; Webster, M.D.; Rockwell, G.L.; Smithson, J.R.

    2004-01-01

    Water-resources data for the 2003 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 195 gaging stations, stage and contents for 62 lakes and reservoirs, gage-height records for 1 station, water quality for 33 streamflow-gaging stations and 8 partial-record stations. Also included are 4 miscellaneous partial-record sites. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  20. Water Resources Data--California, Water Year 2001. Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Rockwell, G.L.; Smithson, J.R.; Friebel, M.F.; Webster, M.D.

    2002-01-01

    Water-resources data for the 2001 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 191 gaging stations, stage and contents for 53 lakes and reservoirs, gage-height records for 1 station, and water quality for 18 stations. Also included are 3 miscellaneous partial-record sites, and 3 parital-record water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  1. Water Resources Data, California, Water Year 1998. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Friebel, M.F.; Webster, M.D.; Anderson, S.W.; Rockwell, G.L.; Smithson, J.R.

    1999-01-01

    Water-resources data for the 1998 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 176 gaging stations and 1 partial-record station, stage and contents for 45 lakes and reservoirs, gage-height records for 1 station, precipitation data for 3 stations, and water quality for 14 stations and 7 waterquality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  2. Water Resources Data--California, Water Year 2000. Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Anderson, S.W.; Rockwell, G.L.; Smithson, J.R.; Friebel, M.F.; Webster, M.D.

    2001-01-01

    Water-resources data for the 2000 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 190 gaging stations and 5 partial-record stations, stage and contents for 60 lakes and reservoirs, gage-height records for 1 station, precipitation data for 3 stations, and water quality for 10 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  3. Water resources data-California, water year 2004. volume 4. northern central valley basins and the Great Basin from Honey Lake basin to Oregon state line

    USGS Publications Warehouse

    Webster, M.D.; Rockwell, G.L.; Friebel, M.F.; Brockner, S.J.

    2005-01-01

    Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 188 gaging stations, stage and contents for 62 lakes and reservoirs, gage-height records for 1 station, water quality for 20 streamflow-gaging stations and 1 partial-record stations. Also included are 4 miscellaneous partial-record sites. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  4. Water Resources Data--California, Water Year 2002, Volume 4. Northern Central Valley Basins and The Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Smithson, J.R.; Friebel, M.F.; Webster, M.D.; Rockwell, G.L.

    2002-01-01

    Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 191 gaging stations, stage and contents for 60 lakes and reservoirs, gage-height records for 2 stations, and water quality for 21 stations. Also included are 4 miscellaneous partial-record sites. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  5. Water Resources Data, California, Water Year 1996. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Anderson, S.W.; Rockwell, G.L.; Friebel, M.F.; Webster, M.D.

    1997-01-01

    Water-resources data for the 1996 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 180 gaging stations, stage and contents for 45 lakes and reservoirs, gage-height records for 5 stations, precipitation data for 3 stations, and water quality for 15 stations. Also included is 1 low-flow partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  6. A vast medieval dam-lake cascade in northern central Europe: review and new data on late Holocene water-level dynamics of the Havel River, Berlin-Brandenburg area (Germany)

    NASA Astrophysics Data System (ADS)

    Kaiser, Knut; Keller, Nora; Brande, Arthur; Dalitz, Stefan; Hensel, Nicola; Heußner, Karl-Uwe; Kappler, Christoph; Michas, Uwe; Müller, Joachim; Schwalbe, Grit; Weiße, Roland; Bens, Oliver

    2016-04-01

    An interdisciplinary study was carried out in order to trace the human transformation of the medium-scale Havel River in northeastern central Europe during the last c. 2000 years. This research was driven by the hypothesis that the present-day riverscape is widely a legacy of medieval and modern human transformation of the drainage system initiated essentially by damming for the operation of water mills. Recent opportunities to investigate the extent of this human impact arose during the course of archaeological rescue excavations and palaeoecologic studies, which significantly enhanced the amount of respective high-quality data. Along the middle course of the Havel, sedimentary sequences were analysed in order to explore the potential for reconstructing regional water-level dynamics. The river, draining the Berlin metropolitan area, forms a chain of dammed lakes and meandering river sections which were strongly modified by hydraulic engineering in the past. We have not only recorded new sections but also re-evaluated older ones, forming a total of sixteen sedimentary sequences along the river. Chronological control is provided by a multitude of palynological, dendrochronological, archaeological, and radiocarbon data. The sections upriver from the Brandenburg/H. and Spandau weirs, representing sites with historic water mills, reveal substantial water-level changes during the late Holocene. Generally, lower water levels before and higher levels parallel to the medieval German colonisation of that area (c. 1180/1250 AD) can be inferred. This water-level increase, which is attributed to be caused by medieval mill stowage, took place rapidly and amounted to a relative height of c. 1.5 m. It has caused the widening of river sections and the enlargement of existing lakes or its secondary formation when already aggraded, and thus a flooding of large portions of land. The rising water level has even influenced the settlement topography to a large degree. Several medieval

  7. Lead and Lags of Lake System Responses to Late Allerød and Early Younger Dryas Climatic Fluctuation - an Example from Varved Lake Sediments from Northern Poland (Central Europe)

    NASA Astrophysics Data System (ADS)

    Slowinski, M. M.; Zawiska, I.; Ott, F.; Noryśkiewicz, A. M.; Plessen, B.; Apolinarska, K.; Lutyńska, M.; Michczynska, D. J.; Wulf, S.; Skubała, P.; Błaszkiewicz, M.; Brauer, A.

    2014-12-01

    The transition from the warmer Allerød to the cooler Younger Dryas period is well understood to represent sudden and extreme climate changes during the end of the last glaciation. Thus, lake sediment studies within paleoclimatic and paleoecological research on this transition are ideal to enhance the knowledge about "lead and lags" of lake system responses to abrupt climate changes through applying multi-proxy sediment analyses. In this study, we present the results of high-resolution studies on varved late glacial sediments from the Trzechowskie paleolake, located in the northern Poland (center Europe). High-resolution bio-proxies (pollen, macrofossils, Cladocera and diatoms), geochemical analyses (µ-XRF data, TOC, C/N ratios, δ18Ocarb and δ13Corg stable isotopes) and a robust chronology based on varve counting, AMS 14C dating and tephrochronology were used to reconstruct the lake system responses to rapid climatic and environmental changes of Trzechowskie paleolake during the late Allerød - Younger Dryas transition. Paleoecological and geochemical analyses, which were carried out in a 4 to 16 years temporal sample resolution, allowed to defining short-termed shifts of the ecosystem that were triggered by abrupt climate changes. The rapid and pronounced cooling at the beginning of the Younger Dryas had a major impact on the lake and its catchment as clearly reflected by not synchronous changes of both, biotic and geochemical proxies. The results of high-resolution analysis indicate (a) an increased precipitation during the Allerød-YD transition, which is responsible for an increase of soil erosion in the catchment during this period, (b) a delayed response of the vegetation compared to the lake depositional system at the YD onset of 20 years, and (c) a non-synchronicity of vegetation responses between Western (Lake Meerfelder Maar) and Eastern European sites (Trzechowskie palaeolake) at the YD onset. This study is a contribution to the Virtual Institute

  8. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a

  9. Hydrology of Lake County, Florida

    USGS Publications Warehouse

    Knochenmus, Darwin D.; Hughes, G.H.

    1976-01-01

    Lake County includes a 1,150 square-mile area consisting of ridges, uplands, and valleys in central-peninsular Florida. About 32 percent of the county is covered by lakes, swamps, and marshes. Water requirements in 1970 averaged about 54 million gallons per day. About 85 percent of the water was obtained from wells; about 15 percent from lakes. The Floridan aquifer supplies almost all the ground water used in Lake County. Annual recharge to the Floridan aquifer averages about 7 inches over the county; runoff average 8.5 inches. The quality of ground and surface water in Lake County is in general good enough for most uses; however, the poor quality of Floridan-aquifer water in the St. John River Valley probably results from the upward movement of saline water along a fault zone. Surface water in Lake County is usually less mineralized than ground water but is more turbid and colored. (Woodard-USGS)

  10. An 8000 Year History of Fire and Productivity in a Nutrient-Poor Boreal Landscape Reconstructed from Two Lakes in Central Labrador.

    NASA Astrophysics Data System (ADS)

    Umbanhowar, C. E., Jr.; Camill, P.; Voldal, E.; Gatlin, J.; Butka, E.

    2015-12-01

    Fire plays an important role in many boreal ecosystems, and fire severity depends on productivity and climate. The boreal forest region of eastern Canada is characterized by both poor soils and a cool, moist climate, suggesting that fire may be less common than in other regions. We collected sediment cores from Canoe (elev. 152 m) and Big Beer (elev. 411 m) lakes and analyzed cores for charcoal, carbon, d15C, biogenic silica, and magnetics. The sediment record for both lakes dated to ~9000 calibrated years BP, and sediment accumulation rates were low for both lakes (40 and 95 yrs cm-1). Biogenic silica and carbon data indicate nearly simultaneous increases in lake and terrestrial productivity from ~8000-7000 BP. As indicated by charcoal, fire was present in the landscape as early as 8500 BP. Fire was more common at the lower elevation Canoe site and largely absent from the higher elevation Big Beer site. Average charcoal accumulation rates at both sites (< 0.01 mm2 cm-2 yr-1) were < 50% of those previously reported for boreal forest sites in more western Canada. Our results support a reduced role for fire in this landscape although it is yet unclear whether poor soils or climate are more directly causal.

  11. LAKE RESTORATION: A FIVE-YEAR EVALUATION OF THE MIRROR AND SHADOW LAKES PROJECT WAUPACA, WISCONSIN

    EPA Science Inventory

    Mirror and Shadow Lakes, small seepage lakes in central Wisconsin, had experienced cultural eutrophication as a result of storm water drainage. Storm sewers were diverted from the lakes in 1976 and in 1978 aluminum sulfate was applied to enhance the recovery rate by reducing inte...

  12. A possible link between North Atlantic cooling and dry events in the core SW monsoon region identified from Lonar Lake in central India: Indication of a connection between solar output and monsoon variability

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Prasad, S.; Plessen, B.; Stebich, M.; Anoop, A.; Riedel, N.; Basavaiah, N.

    2013-12-01

    Former comparison of climate sensitive proxies from natural archives of the northern monsoon domain with proxy data from mid and high latitude archives have proven a correlation between the proxies of both regions. But still some ambiguities concerning the mechanisms that drive this correlation exist. During our investigation of a sediment core from Lonar Lake in central India, which covers the complete Holocene sedimentation history of the lake, we could identify several phases of centennial scale climate alteration on the basis of stable carbon and nitrogen isotope ratios, mineralogy, and amino acid derived degradation proxies. These phases correlate with climate sensitive proxies from the North Atlantic region as well as with 14C nuclide production rate, which indicates changes in solar output. The results from this first continuous, high resolution record of Holocene climate history from central India indicate sensitivity of monsoon climate to solar forcing. Additionally, a connection between North Atlantic climate and the climate of a region that is not affected by the Westerlies or shifts of the summer ITCZ to a position south of the investigation site could be identified.

  13. Denitrification in a hypersaline lake-aquifer system (Pétrola Basin, Central Spain): the role of recent organic matter and Cretaceous organic rich sediments.

    PubMed

    Gómez-Alday, J J; Carrey, R; Valiente, N; Otero, N; Soler, A; Ayora, C; Sanz, D; Muñoz-Martín, A; Castaño, S; Recio, C; Carnicero, A; Cortijo, A

    2014-11-01

    Agricultural regions in semi-arid to arid climates with associated saline wetlands are one of the most vulnerable environments to nitrate pollution. The Pétrola Basin was declared vulnerable to NO3(-) pollution by the Regional Government in 1998, and the hypersaline lake was classified as a heavily modified body of water. The study assessed groundwater NO3(-) through the use of multi-isotopic tracers (δ(15)N, δ(34)S, δ(13)C, δ(18)O) coupled to hydrochemistry in the aquifer connected to the eutrophic lake. Hydrogeologically, the basin shows two main flow components: regional groundwater flow from recharge areas (Zone 1) to the lake (Zone 2), and a density-driven flow from surface water to the underlying aquifer (Zone 3). In Zones 1 and 2, δ(15)NNO3 and δ(18)ONO3 suggest that NO3(-) from slightly volatilized ammonium synthetic fertilizers is only partially denitrified. The natural attenuation of NO3(-) can occur by heterotrophic reactions. However, autotrophic reactions cannot be ruled out. In Zone 3, the freshwater-saltwater interface (down to 12-16 m below the ground surface) is a reactive zone for NO3(-) attenuation. Tritium data suggest that the absence of NO3(-) in the deepest zones of the aquifer under the lake can be attributed to a regional groundwater flow with long residence time. In hypersaline lakes the geometry of the density-driven flow can play an important role in the transport of chemical species that can be related to denitrification processes. PMID:25169874

  14. Lake Powell

    Atmospheric Science Data Center

    2014-05-15

    article title:  Lake Powell     View Larger Image ... (14.42 mb)   This true-color image over Lake Powell was acquired by Multi-angle Imaging SpectroRadiometer (MISR) in late March 2000. Lake Powell was formed with the construction of the Glen Canyon Dam in 1963, on the ...

  15. CONNECTICUT LAKES

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of named lakes in Connecticut. It is a polygon Shapefile that includes all lakes that are named on the U.S. Geologicial Survey (USGS) 7½ minute topographic quadrangle maps that cover the State of Connecticut, plus other officially named lakes i...

  16. Lake Eyre

    Atmospheric Science Data Center

    2013-04-16

    ...   View Larger Image Lake Eyre is a large salt lake situated between two deserts in one of Australia's driest regions. ... the effect of sunglint at the nadir camera view angle. Dry, salt encrusted parts of the lake appear bright white or gray. Purple areas have ...

  17. Water Resources Data for California, water year 1984. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line

    USGS Publications Warehouse

    Fogelman, R.P.; Mullen, J.R.; Shelton, W.F.; Simpson, R.G.; Grillo, D.A.

    1986-01-01

    Water resources data for the 1984 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 152 gaging stations; stage and contents for 25 lakes and reservoirs; water precipitation data for 2 stations; water quality for 9 stations; water levels for 12 and water quality for 46 observation wells. Also included is one low-flow partialrecord station and 19 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and federal agencies in California.

  18. Holocene changes in fire frequency in the Daihai Lake region (north-central China): indications and implications for an important role of human activity

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Xiao, Jule; Cui, Linlin; Ding, Zhongli

    2013-01-01

    Black carbon (BC) content in a sediment core from Daihai Lake, Inner Mongolia, was analyzed to reconstruct a high-resolution history of fires occurring in northern China during the Holocene and to examine the impacts of natural changes and human activities on the fire regime. The black carbon mass sedimentation rate (BCMSR) was disintegrated into two components: the background BCMSR and the BCMSR peak, with the BCMSR peak representing the frequency of fire episodes. Both the background BCMSR and the magnitude of the BCMSR peak display a close relation with the percentage of tree pollen from the same sediment core, suggesting that regional vegetation type would be a factor controlling the intensity of fires. The inferred fire-episode frequency for the Holocene exhibits two phases of obvious increases, i.e., the first increase from <5 to ˜10 episodes/1000 yrs occurring at 8200 cal. yrs BP when the vegetation of the lake basin shifted from grasses to forests and the climate changed from warm/dry to warm/humid condition, and the further increase to a maximum frequency of 13 episodes/1000 yrs occurring at 2800 cal. yrs BP when herbs and shrubs replaced the forests in the lake basin and the climate became cool/dry. Both increases in the fire frequency contradict the previous interpretation that fires occurred frequently in the monsoon region of northern China when steppe developed under the cold/dry climate. We thus suggest that human activities would be responsible for the increased frequencies of fires in the Daihai Lake region in terms that the appearance of early agriculture and the expansion of human land use were considered to take place in northern China at ca 8000 and 3000 cal. yrs BP, respectively.

  19. Is Lake Tahoe Terminal?

    NASA Astrophysics Data System (ADS)

    Coats, R. N.; Reuter, J.; Heyvaert, A.; Lewis, J.; Sahoo, G. B.; Schladow, G.; Thorne, J. H.

    2014-12-01

    Lake Tahoe, an iconic ultra-oligotrophic lake in the central Sierra Nevada, has been studied intensively since 1968, with the goal of understanding and ultimately controlling its eutrophication and loss of clarity. Research on the lake has included a) periodic profiles of primary productivity, nutrients, temperature, and plankton; b) Secchi depth; c) nutrient limitation experiments; d) analysis of sediment cores; e) radiocarbon dating of underwater in-place tree stumps; g) analysis of long-term temperature trends. Work in its watershed has included a) monitoring of stream discharge, sediment and nutrients at up to 20 stream gaging stations; b) monitoring of urban runoff water quality at selected sites; c) development of a GIS data base, including soils, vegetation, and land use. Based on these studies, we know that a) primary productivity in the lake is limited by phosphorus, and continues to increase; b) the loss of clarity continues, but at a declining rate; c) the lake has been warming since 1970, and its resistance to deep mixing is increasing; d) historically the lake level drops below the outlet elevation about one year in seven; e) 6300 to 4300 yrs BP lake level was below the present outlet elevation long enough for large trees to grow; f) the date of the peak snowmelt runoff is shifting toward earlier dates; g) after accounting for annual runoff, loads of nutrients and suspended sediment have declined significantly in some basin streams since 1980. Downscaled outputs from GCM climatic models have recently been used to drive hydrologic models and a lake clarity model, projecting future trends in the lake and watersheds. Results show a) the temperature and thermal stability will likely continue to increase, with deep mixing shutting down in the latter half of this century; b) the lake may drop below the outlet for an extended period beginning about 2085; c) the annual snowpack will continue to decline, with earlier snowmelt and shift from snowfall to rain; d

  20. Hydrogeology and simulated effects of ground-water withdrawals from the Floridan aquifer system in Lake County and in the Ocala National Forest and vicinity, north-central Florida

    USGS Publications Warehouse

    Knowles, Leel, Jr.; O'Reilly, Andrew M.; Adamski, James C.

    2002-01-01

    The hydrogeology of Lake County and the Ocala National Forest in north-central Florida was evaluated (1995-2000), and a ground-water flow model was developed and calibrated to simulate the effects of both present day and future ground-water withdrawals in these areas and the surrounding vicinity. A predictive model simulation was performed to determine the effects of projected 2020 ground-water withdrawals on the water levels and flows in the surficial and Floridan aquifer systems. The principal water-bearing units in Lake County and the Ocala National Forest are the surficial and Floridan aquifer systems. The two aquifer systems generally are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Florida aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which generally are separated by one or two less-permeable confining units. The Floridan aquifer system is the major source of ground water in the study area. In 1998, ground-water withdrawals totaled about 115 million gallons per day in Lake County and 5.7 million gallons per day in the Ocala National Forest. Of the total ground water pumped in Lake County in 1998, nearly 50 percent was used for agricultural purposes, more than 40 percent for municipal, domestic, and recreation supplies, and less than 10 percent for commercial and industrial purposes. Fluctuations of lake stages, surficial and Floridan aquifer system water levels, and Upper Floridan aquifer springflows in the study area are highly related to cycles and distribution of rainfall. Long-term hydrographs for 9 lakes, 8 surficial aquifer system and Upper Floridan aquifer wells, and 23 Upper Floridan aquifer springs show the most significant increases in water levels and springflows following consecutive years with above-average rainfall, and significant decreases following consecutive years

  1. Lake Sarez, Tajikistan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Sarez (top), deep in the Pamir mountains of Tajikistan, was created 90 years ago when a strong earthquake triggered a massive landslide that, in turn, became a huge dam along the Murghob River, now called the Usoi Dam. The resulting lake is perched above surrounding drainages at an elevation greater than 3000m, and is part of the watershed that drains the towering Akademi Nauk Range (see the regional image, lower). The lake is 61 km long and as deep as 500 m, and holds an estimated 17 cubic km of water. The area experiences considerable seismic activity, and scientists fear that part of the right bank may slump into the lake, creating a huge wave that will top over and possibly breach the natural dam. Such a wave would create a catastrophic flood downstream along the Bartang, Panj and Amu Darya Rivers, perhaps reaching all the way to the Aral Sea. Currently, central Asian governments, as well as the World Bank and the UN are monitoring the dam closely, and have proposed gradually lowering the lake level as a preventive measure. More information about the lake is available at the following web sites: Lake Sarez Study group, UN Report, Reliefweb Digital photograph numbers ISS002-E-7771 and ISS002-E-7479 were taken in the spring of 2001 from Space Station Alpha and are provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  2. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    USGS Publications Warehouse

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ???2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  3. Tephrochronology of Lacustrine Ash Layers in Lake Petén Itzá Sediments drilled in the Frame of the International Continental Scientific Drilling Program (ICDP): Implications for Regional Volcanology and Central American Palaeoclimate

    NASA Astrophysics Data System (ADS)

    Kutterolf, S.; Schindlbeck, J. C.; Anselmetti, F.; Mueller, A.; Schwalb, A.; Eisele, S.; Hemming, S. R.; Wang, K. L.

    2015-12-01

    Climate records from lacustrine systems have been established in the last years to improve our understanding of the regional and temporal expression of climate change on the continents, and how it influenced the human evolution. Lake Petén Itzá, located in the center of the climatically sensitive Peninsula Yucatán, is a surficial closed-basin lake located in the lowlands of northern Guatemala drilled by ICDP. The region itself exhibits characteristic climate conditions, making it an ideal region for paleoclimatological and paleoecological studies. A key problem in obtaining a long-lasting climate record is to establish robust chronologies beyond 40 ka since they exceed the range of 14C dating, but tephra layers within these sediments may provide good age-constraints >40 ka. We here use large-magnitude, widespread, Pleistocene to Holocene silicic eruptions from caldera volcanoes in the Central American volcanic arc (CAVA), contributing to the drilled Petén Itzá lake sediments in the form of numerous lacustrine tephras providing time markers to develop a new, extended age model. We established robust and well-constrained correlations between the tephras in Lake Petén Itzá and the deposits at the CAVA source as well as their marine equivalents in the sediments of the Pacific Ocean based on major and trace element glass compositions. We document here 8 well-constraint time markers for the Petén Itza age models, which so far were only based on younger 14C dates and some preliminary, only major-element based, tephra correlations. Additionally ongoing Ar/Ar age dating of the Los Chocoyos eruption will provide a new pinning point froma an important regional marker horizon. In summary we have been able to modify the current age models, extend the paleoclimate and paleoecological record in this neotropical region to ~300 ka, and contribute greatly to the determination of the magnitude (eruptive volumes) and more precise eruption dates of CAVA eruptions.

  4. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    USGS Publications Warehouse

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.

  5. Lake Constance

    Atmospheric Science Data Center

    2013-04-17

    ... Swiss shores of Lake Constance at the town of Rorschach. Eutrophication, or the process of nutrient enrichment, is rapidly accelerated ... of the value of Lake Constance, efforts to mitigate eutrophication were initiated in the 1970's. MISR was built and is managed ...

  6. LAKE FORK

    EPA Science Inventory

    The Lake Fork of the Arkansas River Watershed has been adversely affected through mining, water diversion and storage projects, grazing, logging, and other human influences over the past 120 years. It is the goals of the LFWWG to improve the health of Lake fork by addressing th...

  7. Simulation of Heavy Lake-Effect Snowstorms across the Great Lakes Basin by RegCM4

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Zarrin, A.; Vavrus, S. J.; Bennington, V.

    2013-12-01

    A historical simulation (1976-2002) of the Abdus Salam International Centre for Theoretical Physics Regional Climate Model Version 4 (ICTP RegCM4), coupled to a one-dimensional lake model, is validated against observed lake ice cover and snowfall across the Great Lakes Basin. The model reproduces the broad temporal and spatial features of both variables in terms of spatial distribution, seasonal cycle, and interannual variability, including climatological characteristics of lake-effect snowfall, although the simulated ice cover is overly extensive largely due to the absence of lake circulations. A definition is introduced for identifying heavy lake-effect snowstorms in regional climate model output for all grid cells in the Great Lakes Basin, using criteria based on location, wind direction, lake ice cover, and snowfall. Simulated heavy lake-effect snowstorms occur most frequently downwind of the Great Lakes, particularly to the east of Lake Ontario and to the east and south of Lake Superior, and are most frequent in December-January. The mechanism for these events is attributed to an anticyclone over the central United States and related cold air outbreak for areas downwind of Lakes Ontario and Erie, in contrast to a nearby cyclone over the Great Lakes Basin and associated cold front for areas downwind of Lakes Superior, Huron, and Michigan. Projections of mid- and late-21st century lake-effect snowstorms in the Great Lakes Basin will be summarized, based on dynamically downscaled CMIP5 (Coupled Model Intercomparison Project Phase Five) simulations.

  8. InSAR imaging of displacement on flexural-slip faults triggered by the 2013 Mw 6.6 Lake Grassmere earthquake, central New Zealand

    NASA Astrophysics Data System (ADS)

    Kaneko, Y.; Hamling, I. J.; Van Dissen, R. J.; Motagh, M.; Samsonov, S. V.

    2015-02-01

    Interferometric Synthetic Aperture Radar (InSAR) data reveal surface slip on multiple faults triggered by the 2013 Mw 6.6 Lake Grassmere earthquake, New Zealand. Surface offsets of 1-2 cm occurred on previously inferred flexural-slip faults located ˜4 km from the epicenter. We document dip slip on at least three different northeast striking, northwest dipping, flexural-slip faults located in the western limb of a syncline. The along-strike extent of the triggered slip is 1-1.5 km for each fault. Dislocation models suggest that triggered slip is confined to shallow depths (˜800 m). Coulomb stress analysis indicates that slip was not triggered by the static stress change of the main shock but was likely caused by dynamic shaking during the passage of seismic waves. Our finding also provides an important clue on how some slip on shallow flexural-slip faults takes place.

  9. Tracing the impact of climate change since 1960s on the south slope of Mt Everest (central southern Himalaya) on glaciers, lakes and river disharge

    NASA Astrophysics Data System (ADS)

    Tartari, Gianni; Salerno, Franco; Thakuri, Sudeep; Guyennon, Nicolas; Viviano, Gaetano; Smiraglia, Claudio

    2014-05-01

    We contribute to the debate on the impact of climate change in Himalaya by analyzing the glaciers, lakes and river discharge in southern slopes of Mt. Everest. We present here a complete analysis from '60s to todays using all available optical satellite imagery and a discharge time series monitored by the Nepali Department of Hydrology and Meteorology (DHM). We found an overall surface area shrinkage of 13.0±3%, an upward shift of the Snow Line Altitude (SLA) of 182±9 m, a terminus retreat of 403±9 m, and an increase of the debris coverage of 17.6±3%. The recession process of glaciers has been relentlessly continuous over the past fifty years. Furthermore, since the early 1990s, we have observed an acceleration of the surface area shrinkage, which resulted in a median annual rate double that of the previous three decades (an increase from 0.27% a-1 to 0.46% a-1). Comparing the SLA over the same periods, it shifts upward with a velocity almost three times greater (from 2.2±0.5 m a-1 to 6.1±0.9 m a-1), which points to a worsening of the already negative mass balance of these glaciers. However, the increased recession rate has only significantly affected the glaciers with the largest sizes, which are located at higher altitudes and along the preferable south-oriented direction of the monsoons. Moreover, these glaciers present median upward shifts of the SLA that are double the others; this finding leads to the hypothesis that the Mt. Everest glaciers are shrinking, beyond that due to warming temperatures, as a result of the weakening Asian monsoon registered over the last decades. However the shrinkage of these glaciers is less than that of others in the Himalayan range. Their high elevations have surely reduced the impact of warming, have not been able to exclude these glaciers from a relentlessly continuous and slow recession process over the past fifty years. As regards the glacial lakes, using the same satellite imagery considered for glacier surfaces, we

  10. Trout Lake, Wisconsin: A water, energy, and biogeochemical budgets program site

    USGS Publications Warehouse

    Walker, John F.; Bullen, Thomas D.

    2000-01-01

    The Trout Lake Watershed is in the Northern Highlands Lake District in north-central Wisconsin. The study area includes four subbasins with five lakes and two bog lakes. The objectives of the Trout Lake WEBB project are to (1) describe processes controlling water and solute fluxes in the Trout Lake watershed, (2) examine interactions among those processes and (3) improve the capability to predict changes in water and solute fluxes for a range of spatial and temporal scales (Elder and others, 1992).

  11. LAKE DRAWDOWN AS A METHOD OF IMPROVING WATER QUALITY

    EPA Science Inventory

    Investigations were made to determine the feasibility of radical drawdown as a restoration technique for Lake Apopka, Florida, a 12,545 hectare lake in central Florida. Field studies showed the lake to be hypereutrophic with continual algal blooms, mats of floating water hyacinth...

  12. Time series analysis of satellite multi-sensors imagery to study the recursive abnormal grow of floating macrophyte in the lake victoria (central Africa)

    NASA Astrophysics Data System (ADS)

    Fusilli, Lorenzo; Cavalli, Rosa Maria; Laneve, Giovanni; Pignatti, Stefano; Santilli, Giancarlo; Santini, Federico

    2010-05-01

    Remote sensing allows multi-temporal mapping and monitoring of large water bodies. The importance of remote sensing for wetland and inland water inventory and monitoring at all scales was emphasized several times by the Ramsar Convention on Wetlands and from EU projects like SALMON and ROSALMA, e.g. by (Finlayson et al., 1999) and (Lowry and Finlayson, 2004). This paper aims at assessing the capability of time series of satellite imagery to provide information suitable for enhancing the understanding of the temporal cycles shown by the macrophytes growing in order to support the monitor and management of the lake Victoria water resources. The lake Victoria coastal areas are facing a number of challenges related to water resource management which include growing population, water scarcity, climate variability and water resource degradation, invasive species, water pollution. The proliferation of invasive plants and aquatic weeds, is of growing concern. In particular, let us recall some of the problems caused by the aquatic weeds growing: Ø interference with human activities such as fishing, and boating; Ø inhibition or interference with a balanced fish population; Ø fish killing due to removal of too much oxygen from the water; Ø production of quiet water areas that are ideal for mosquito breeding. In this context, an integrated use of medium/high resolution images from sensors like MODIS, ASTER, LANDSAT/TM and whenever available CHRIS offers the possibility of creating a congruent time series allowing the analysis of the floating vegetation dynamic on an extended temporal basis. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution, further its spatial resolution can results not always adequate to map the extension of floating plants. Therefore, the integrated use of sensors with different spatial resolution, were used to map across seasons the evolution of the phenomena. The

  13. Upwellings in Lake Baikal

    NASA Astrophysics Data System (ADS)

    Shimaraev, M. N.; Troitskaya, E. S.; Blinov, V. V.; Ivanov, V. G.; Gnatovskii, R. Yu.

    2012-02-01

    Based on shipboard and satellite observations, the characteristics of upwelling in Lake Baikal in the period of direct temperature stratification have been determined for the first time. Coastal upwellings appear annually under the effect of run-down and alongshore winds and are traced along the coast to a distance of up to 60-100 km and up to 250 km in North Baikal. Analogous to the way it occurs in seas, water rises from the depths of 100-200 m (350 m as a maximum) at the velocity of 0.1 × 10-2-6.5 × 10-2 cm/s. Divergence in the field of intràbasin cyclonic macrovortices produces upwelling in the Baikal pelagic zone and downwelling in the vicinity of shores; this lasts from 7 to 88 days and covers the depth interval of 80-300 m in August and up to 400-800 m in early-mid November. The area of upwellings occupies up to 20-60% of the separate basins of the lake. Vertical circulation of water in the field of pelagic upwellings leads to intensification of coastal currents and to formation of the thermobar with a heat inert zone in the central part of the lake in November, and this thermobar is not observed in other lakes, at that.

  14. Imaging radar observations of frozen Arctic lakes

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bryan, M. L.; Weeks, W. F.

    1976-01-01

    A synthetic aperture imaging L-band radar flown aboard the NASA CV-990 remotely sensed a number of ice-covered lakes about 48 km northwest of Bethel, Alaska. The image obtained is a high resolution, two-dimensional representation of the surface backscatter cross section, and large differences in backscatter returns are observed: homogeneous low returns, homogeneous high returns and/or low returns near lake borders, and high returns from central areas. It is suggested that a low return indicates that the lake is frozen completely to the bottom, while a high return indicates the presence of fresh water between the ice cover and the lake bed.

  15. Metagenome sequencing of the prokaryotic microbiota of the hypersaline and meromictic soap lake, washington.

    PubMed

    Hawley, Erik R; Hess, Matthias

    2014-01-01

    Soap Lake is a small saline lake in central eastern Washington that is sharply stratified into two layers. In addition to being highly alkaline (~pH 10), Soap Lake also contains high concentrations of sulfide. Here, we report the community profile of the prokaryotic microbiota associated with Soap Lake surface water. PMID:24459273

  16. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa

    NASA Astrophysics Data System (ADS)

    Garcin, Yannick; Schefuß, Enno; Schwab, Valérie F.; Garreta, Vincent; Gleixner, Gerd; Vincens, Annie; Todou, Gilbert; Séné, Olivier; Onana, Jean-Michel; Achoundong, Gaston; Sachse, Dirk

    2014-10-01

    Trees and shrubs in tropical Africa use the C3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C27 to n-C33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane δ13C values are often used to reconstruct past C3/C4 composition of vegetation, assuming that the relative proportions of C3 and C4 leaf waxes reflect the relative proportions of C3 and C4 plants. We have compared the δ13C values of n-alkanes from modern C3 and C4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C3 vegetation cover (fC3) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C3-dominated rain forest by C4-dominated savanna. The C3 plants analysed were characterised by substantially higher abundances of n-C29 alkanes and by substantially lower abundances of n-C33 alkanes than the C4 plants. Furthermore, the sedimentary δ13C values of n-C29 and n-C31 alkanes from recent lake sediments in Cameroon (-37.4‰ to -26.5‰) were generally within the range of δ13C values for C3 plants, even when from sites where C4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C3 and C4 vegetation cover when using the δ13C values of sedimentary n-alkanes, overestimating the proportion of C3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C3 and C4 plants. We therefore tested a set of non-linear binary mixing models using δ13C values from both C3 and C4

  17. Sampling history and 2009--2010 results for pesticides and inorganic constituents monitored by the Lake Wales Ridge Groundwater Network, central Florida

    USGS Publications Warehouse

    Choquette, Anne F.; Freiwald, R. Scott; Kraft, Carol L.

    2012-01-01

    The Lake Wales Ridge Monitoring (LWRM) Network was established to provide a long-term record of water quality of the surficial aquifer in one of the principal citrus-production areas of Florida. This region is underlain by sandy soils that contain minimal organic matter and are highly vulnerable to leaching of chemicals into the subsurface. This report documents the 1989 through May 2010 sampling history of the LWRM Network and summarizes monitoring results for 38 Network wells that were sampled during the period January 2009 through May 2010. During 1989 through May 2010, the Network’s citrus land-use wells were sampled intermittently to 1999, quarterly from April 1999 to October 2009, and thereafter quarterly to semiannually. The water-quality summaries in this report focus on the period January 2009 through May 2010, during which the Network’s citrus land-use wells were sampled six times and the non-citrus land-use wells were sampled two times. Within the citrus land-use wells sampled, a total of 13 pesticide compounds (8 parent pesticides and 5 degradates) were detected of the 37 pesticide compounds analyzed during this period. The most frequently detected compounds included demethyl norflurazon (83 percent of wells), norflurazon (79 percent), aldicarb sulfoxide (41 percent), aldicarb sulfone (38 percent), imidacloprid (38 percent), and diuron (28 percent). Agrichemical concentrations in samples from the citrus land-use wells during the 2009 through May 2010 period exceeded Federal drinking-water standards (maximum contaminant levels, MCLs) in 1.5 to 24 percent of samples for aldicarb and its degradates (sulfone and sulfoxide), and in 68 percent of the samples for nitrate. Florida statutes restrict the distance of aldicarb applications to drinking-water wells; however, these statutes do not apply to monitoring wells. Health-screening benchmark levels that identify unregulated chemicals of potential concern were exceeded for norflurazon and diuron in 29 and

  18. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget- derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  19. Monitoring the abundance of Aedes (Ochlerotatus) albifasciatus (Macquart 1838) (Diptera: Culicidae) to the south of Mar Chiquita Lake, central Argentina, with the aid of remote sensing.

    PubMed

    Gleiser, R M; Gorla, D E; Ludueña Almeida, F F

    1997-12-01

    Surges in the size of adult populations of the flood-water mosquito Aedes albifasciatus can produce important economical losses because of the way this species irritates livestock. Although this species is also the main vector of west equine encephalitis in Argentina, little is known about the factors affecting its population dynamics, as it is difficult to obtain data on its abundance over a large area. However, the results of intensive study of the mosquito in a few sites might reasonably be extrapolated to a regional scale by the use of remotely sensed data. The adult, larval and pupal stages of Ae. albifasciatus were sampled at five field sites to the south of Mar Chiquita Lake, either once a month (during the dry, cold season) or once a fortnight (during the warm, rainy season), between August 1992 and April 1993. The measured abundance of adults or pre-adults and a meteorological coefficient useful for the estimation of larval abundance each showed significant correlation with various statistics derived from normalized-difference, vegetation indices (NDVI) calculated from satellite (NOAA-AVHRR) imagery. A linear discriminant analysis, using data on NDVI, rainfall and temperature, accurately identified periods with and without pre-adults. The satellite imagery was also useful in the estimation of larval abundance and consequently could be used to predict adult abundance 7 days in advance. Even though the satellite data employed have poor spatial resolution, their high temporal resolution makes them very useful in studies of the population dynamics of mosquitoes in general, at least once the relevant variables and their relationships with mosquito breeding and survival have been identified. PMID:9579211

  20. Flooding in Central China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    During the summer of 2002, frequent, heavy rains gave rise to floods and landslides throughout China that have killed over 1,000 people and affected millions. This false-color image of the western Yangtze River and Dongting Lake in central China was acquired on August 21, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. (right) The latest flooding crisis in China centers on Dingtong Lake in the center of the image. Heavy rains have caused it to swell over its banks and swamp lakefront towns in the province of Hunan. As of August 23, 2002, more than 250,000 people have been evacuated, and over one million people have been brought in to fortify the dikes around the lake. Normally the lake would appear much smaller and more defined in the MODIS image. Credit: Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC.

  1. Fluids preserved in variably altered graphitic pelitic schists in the Dufferin Lake Zone, south-central Athabasca Basin, Canada: implications for graphite loss and uranium deposition

    NASA Astrophysics Data System (ADS)

    Pascal, Marjolaine; Boiron, Marie-Christine; Ansdell, Kevin; Annesley, Irvine R.; Kotzer, Tom; Jiricka, Dan; Cuney, Michel

    2016-06-01

    The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake Zone are variably graphitic, pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ). They were locally bleached near the unconformity during paleoweathering and/or later fluid interaction. Overall, graphite was lost from the RGZ and the bleached zone relative to the original VGPS. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman spectroscopy, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, and N2-rich fluid inclusions, which homogenize into the vapor phase between -100 and -74 °C, and -152 and -125 °C, respectively, and CO2-rich fluid inclusions, homogenizing either into vapor or liquid between 20 and 28 °C, are present. Carbonic fluids could be the result of the breakdown of graphite to CH4 + CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4 ++N2. In the RGZ, the presence of fluid inclusions with low ice melting temperature (-38 to -16 °C) reflect the presence of CaCl2, and fluid inclusions with halite daughter minerals that dissolve between 190 and 240 °C indicate the presence of highly saline fluids. These fluids are interpreted to be derived from the Athabasca Basin. The circulation of carbonic fluids and brines occurred during two different events related to different P-T conditions of trapping. The carbonic fluids interacted with basement rocks during retrograde metamorphism of the basement rocks before deposition of the Athabasca Basin, whereas the brines circulated after the deposition of the Athabasca Basin. These latter fluids are similar to brines related to uranium mineralization at McArthur River and thus, in addition to possibly being related to graphite depletion in the RGZ, they could

  2. Fluids preserved in variably altered graphitic pelitic schists in the Dufferin Lake Zone, south-central Athabasca Basin, Canada: implications for graphite loss and uranium deposition

    NASA Astrophysics Data System (ADS)

    Pascal, Marjolaine; Boiron, Marie-Christine; Ansdell, Kevin; Annesley, Irvine R.; Kotzer, Tom; Jiricka, Dan; Cuney, Michel

    2015-12-01

    The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake Zone are variably graphitic, pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ). They were locally bleached near the unconformity during paleoweathering and/or later fluid interaction. Overall, graphite was lost from the RGZ and the bleached zone relative to the original VGPS. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman spectroscopy, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, and N2-rich fluid inclusions, which homogenize into the vapor phase between -100 and -74 °C, and -152 and -125 °C, respectively, and CO2-rich fluid inclusions, homogenizing either into vapor or liquid between 20 and 28 °C, are present. Carbonic fluids could be the result of the breakdown of graphite to CH4 + CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4 ++N2. In the RGZ, the presence of fluid inclusions with low ice melting temperature (-38 to -16 °C) reflect the presence of CaCl2, and fluid inclusions with halite daughter minerals that dissolve between 190 and 240 °C indicate the presence of highly saline fluids. These fluids are interpreted to be derived from the Athabasca Basin. The circulation of carbonic fluids and brines occurred during two different events related to different P-T conditions of trapping. The carbonic fluids interacted with basement rocks during retrograde metamorphism of the basement rocks before deposition of the Athabasca Basin, whereas the brines circulated after the deposition of the Athabasca Basin. These latter fluids are similar to brines related to uranium mineralization at McArthur River and thus, in addition to possibly being related to graphite depletion in the RGZ, they could

  3. Palaeolimnological evidence of vulnerability of Lake Neusiedl (Austria) toward climate related changes since the last "vanished-lake" stage.

    NASA Astrophysics Data System (ADS)

    Tolotti, Monica; Milan, Manuela; Boscaini, Adriano; Soja, Gerhard; Herzig, Alois

    2013-04-01

    The palaeolimnological reconstruction of secular evolution of Euroepan Lakes with key socio-economical relevance respect to large (climate change) and local scale (land use, tourism) environmental changes, represents one of the objectives of the project EuLakes (European Lakes Under Environmental Stressors, Supporting lake governance to mitigate the impact of climate change, Reg. N. 2CE243P3), launched in 2010 within the Central European Inititiative. The project consortium comprises lakes of different morphology and prevalent human uses, including the meso-eutrophic Lake Neusiedl, the largest Austrian lake (total area 315 km2), and the westernmost shallow (mean depth 1.2 m) steppe lake of the Euro-Asiatic continent. The volume of Lake Neusiedl can potentially change over the years, in relation with changing balance between atmospheric precipitation and lake water evapotranspiration. Changing water budget, together with high lake salinity and turbidity, have important implications over the lake ecosystem. This contribution illustrates results of the multi-proxi palaeolimnological reconstruction of ecologial changes occurred in Lake Neusiedl during the last ca. 140 years, i.e. since the end of the last "vanished-lake" stage (1865-1871). Geochemical and biological proxies anticipate the increase in lake productivity of ca. 10 years (1950s) respect to what reported in the literature. Diatom species composition indicate a biological lake recovery in the late 1980s, and suggest a second increment in lake productivity since the late 1990s, possibly in relation with the progressive increase in the nitrogen input from agriculture. Abundance of diatoms typical of brackish waters indicated no significant long-term change in lake salinity, while variations in species toleranting dessiccation confirm the vulnerability of Lake Neusiedl toward climate-driven changes in the lake water balance. This fragility is aggravated by the the semi-arid climate conditions of the catchemnt

  4. Lake Powell

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The white ring around Lake Powell tells the story. The surface is down 98 feet. This is critical, because Powell, Lake Mead, and other lakes along the Colorado River provide water for millions of people in five states. We are in the eighth year of a drought on the Colorado River. This year was the driest year ever reported in Southern California, and there is a severe drought in Northern California, down to less than 30-percent of snow pack. This ASTER image of part of Lake Powell was acquired in 2001. The gray area depicts the shrunken, reduced 2007 lake extent compared to the extended, larger black area in 2001.

    The image covers an area of 24 x 30 km, and is centered near 37.1 degrees north latitude, 111.3 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  5. LAKE ERIE NUTRIENT CONTROL PROGRAM - AN ASSESSMENT OF ITS EFFECTIVENESS IN CONTROLLING LAKE EUTROPHICATION

    EPA Science Inventory

    A three-year assessment of nutrient control efforts was conducted in the western and central basins of Lake Erie during the period June 1973 to June 1976. The objective of the study was to determine recent trends in lake eutrophication and water quality which may be related to re...

  6. Deep structure beneath Lake Ontario: crustal-scale Greeneville subdivisions

    USGS Publications Warehouse

    Forsyth, D. A.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  7. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, Donna; Rea, Alan; Becker, C.J.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma. Ground water in 710 square miles of Quaternary-age alluvial and terrace deposits along the North Canadian River is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer, composed of alluvial and terrace deposits, consists of sand, silt, clay, and gravel. The aquifer is underlain and in hydraulic connection with the upper zone of the Permian-age Garber-Wellington aquifer and the Pennsylvanian-age Ada-Vamoosa aquifer. Most of the lines in the four digital data sets were digitized from a published ground-water modeling report but portions of the aquifer boundary data set was extracted from published digital geologic data sets. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  8. Hydrologic considerations in dewatering and refilling Lake Carlton : Orange and Lake Counties, Florida

    USGS Publications Warehouse

    Anderson, Warren; Hughes, G.H.

    1977-01-01

    Lake Carlton straddles the line between Lake and Orange Counties in central Florida. The 382-acre lake is highly eutrophic and subject to virtually perpetual algal blooms. The Florida Game and Fresh Water Fish Commission has proposed to restore the lake to a less eutrophic state by dewatering the lake long enough to allow the muck on its bottom to dry and compact. Lake Carlton would be permanently sealed off from Lake Carlton. On the assumption that the seasonal rainfall would be normal, and that the dewatering phase would begin on March 1, the predicted time required to dewater the lake at a pumping rate of 50,000 gpm (gallons per minute) is 21 days. The average rate of pumping required to maintain the lake in a dewatered condition is computed to be 2,400 gpm. If pumping is ended May 31, the predicted altitude to which the lake would recover by October 31 as a result of net natural input is 56.2 feet above sea level. Raising the lake level to 63 feet above sea level by October 31 would require that the net natural input be supplemented at an average rate of about 4,860 gpm between May 31 and October 31. (Woodard-USGS)

  9. CHARACTERIZATION OF ENDOCRINE-DISRUPTION AND CLINICAL MANIFESTATIONS IN LARGE-MOUTH BASS FROM FLORIDA LAKES

    EPA Science Inventory

    Previous efforts from this laboratory, have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefo...

  10. Ground-water movement and effects of coal strip mining on water quality of high-wall lakes and aquifers in the Macon-Huntsville area, north- central Missouri

    USGS Publications Warehouse

    Hall, D.C.; Davis, R.E.

    1986-01-01

    Glacial drift and Pennsylvanian bedrock were mixed together forming spoil during pre-reclamation strip mining for coal in north-central Missouri. This restructuring of the land increases the porosity of the material, and increases aqueous concentrations of many dissolved constituents. Median sodium and bicarbonate concentrations were slightly greater, calcium 5 times greater, magnesium 6 times greater, manganese 15 times greater, iron 19 times greater, and sulfate 24 times greater in water from spoil than in water from glacial drift. Median potassium concentrations were slightly greater, and chloride concentrations were two times greater in water from glacial drift than in water from spoil. Water types in glacial drift and bedrock were mostly sodium bicarbonate and calcium bicarbonate; in spoil and lakes in the spoil, the water types were mostly calcium sulfate. Median pH values in water from spoil were 6.6, as compared to 7.4 in water from glacial drift and 9.0 in water from bedrock. Neutralization of acid by carbonate rocks causes the moderate pH values in water from spoil; a carbonate system closed to the atmosphere may result in alkaline pH values in bedrock. Transmissivities generally are greatest for spoil, and decrease in the following order: alluvium, glacial drift, and bedrock. Recharge to spoil is from precipitation, lateral flow from glacial drift, and lateral and vertical flow from bedrock. The rate of recharge to the aquifers is unknown, but probably is small. Groundwater discharge from the glacial drift, bedrock, and spoil is to alluvium. The direction of flow generally was from high-wall lakes in the spoil toward East Fork Little Chariton River or South Fork Claybank Creek. Significant differences (95% confidence level) in values and concentrations of aqueous constituents between spoil areas mined at different times (1940, 1952, and 1968) were obtained for pH, calcium, magnesium, manganese, sulfate, chloride, and dissolved solids, but not for iron

  11. Cooling and eutrophication of southern Chilean lakes.

    PubMed

    Pizarro, Jaime; Vergara, Pablo M; Cerda, Sergio; Briones, Daniela

    2016-01-15

    Understanding the impacts of global warming and human-disturbances on lakes is required for implementing management strategies aimed at mitigating the decline of the quality and availability of water for humans. We assessed temporal trends in water parameters, and the contribution of land use to the eutrophication of the largest lakes of central-southern Chile. The mean values of water parameters varied seasonally, with lakes Chapo and Caburgua exhibiting lower pH, temperature, and N/P ratio values. Over the assessed period (19 years), we found a temporal reduction in water conductivity and temperature of the lakes. The concentration of NO3(-)-N, PO4(3-)-P and dissolved oxygen increased in all the lakes, but pH increased in eight out of the ten lakes. The negative temporal trend in temperature was more pronounced as the depth level increased. Lakes whose basins had a higher percentage of forest plantation and urban areas had larger values of Chlorophyll a and pH, as well as, smaller values of dissolved oxygen. Lakes whose basins included larger percentages of native forest had smaller nutrient (NO3(-)-N, PO4(3-)-P) concentrations. Our findings suggest that decreased rainfall in central-southern Chile due to climate change may cause a decrease of particulate material that is carried by tributaries into the lakes. The observed temporal decrease in temperature, especially at the deeper levels, may be explained by the rapid melting of glaciers. Although the studied lakes are classified as oligotrophic, deforestation and expansion of urban areas around the lakes have led to increased nutrient input, thus accelerating their eutrophication. PMID:26437345

  12. Linking lake variability, climate, and human activity in Basotu, Tanzania.

    NASA Astrophysics Data System (ADS)

    Higgins, Lindsey; Westerberg, Lars-Ove; Risberg, Jan

    2016-04-01

    Lake Basotu (4.3697°S, 35.0728°E) is a crater lake in north-central Tanzania. This lake is an important source of freshwater for local people as no perennial rivers are present. Due to intensive agricultural methods and climatic factors, lake level has fluctuated greatly over time. A history of environmental variability of the past 1800 years was established using the diatom record, magnetic parameters, and carbon content from a three meter long sediment core. Fluctuations in modern lake extent (1973 - 2015) were calculated using archived Landsat images and compared to meteorological records and documents of activity around the lake to determine the greatest impacts and their consequences on this essential water resource. Variations in the paleo-record indicate that fluctuations in lake level are not abnormal, however human influence has likely increased the sensitivity of Lake Basotu to climatic fluctuations.

  13. Angora Fire, Lake Tahoe

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  14. Floods in Central China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of true- and false-color images from the Moderate resolution Imaging Spectroradiometer (MODIS) shows flooding in central China on July 4, 2002. In the false-color image vegetation appears orange and water appears dark blue to black. Because of the cloud cover and the fact that some of the water is filled with sediment, the false-color image provides a clearer picture of where rivers have exceeded their banks and lakes have risen. The river in this image is the Yangtze River, and the large lake is the Poyang Hu. Credits: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  15. Bathymetric Contour Maps of Lakes Surveyed in Iowa in 2005

    USGS Publications Warehouse

    Linhart, S.M.; Lund, K.D.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted bathymetric surveys on seven lakes in Iowa during 2005 (Arrowhead Pond, Central Park Lake, Lake Keomah, Manteno Park Pond, Lake Miami, Springbrook Lake, and Yellow Smoke Lake). The surveys were conducted to provide the Iowa Department of Natural Resources with information for the development of total maximum daily load limits, particularly for estimating sediment load and deposition rates. The bathymetric surveys provide a baseline for future work on sediment loads and deposition rates for these lakes. All of the lakes surveyed in 2005 are man-made lakes with fixed spillways. Bathymetric data were collected using boat-mounted, differential global positioning system, echo depth-sounding equipment, and computer software. Data were processed with commercial hydrographic software and exported into a geographic information system for mapping and calculating area and volume. Lake volume estimates ranged from 47,784,000 cubic feet (1,100 acre-feet) at Lake Miami to 2,595,000 cubic feet (60 acre-feet) at Manteno Park Pond. Surface area estimates ranged from 5,454,000 square feet (125 acres) at Lake Miami to 558,000 square feet (13 acres) at Springbrook Lake.

  16. Geological nature of subglacial Lake Vostok

    NASA Astrophysics Data System (ADS)

    Leitchenkov, G. L.; Masolov, V. N.; Lukin, V. V.; Bulat, S. A.; Kurinin, R. G.; Lipenkov, V. Ya.

    2003-04-01

    depths (stratal waters?). Lake Vostok seemed to be unique rift-related lake in Central Antarctica, however analyses of available Radarsat and geophysical (gravity and ice thickness) data allow us to suggest the existence of another large and deep (more than 1000 m b.s.l.) subglacial lake at about 82.5S, 18E. Tectonic setting of this lake is very close to that of Lake Vostok and biota ecosystem of two lakes is also expected to be similar.

  17. Search for ancient microorganisms in Lake Baikal

    SciTech Connect

    Hunter-Cevera, Jennie C.; Repin, Vladimir E.; Torok, Tamas

    2000-06-14

    Lake Baikal in Russia, the world's oldest and deepest continental lake lies in south central Siberia, near the border to Mongolia. The lake is 1,643 m deep and has an area of about 46,000 km2. It holds one-fifth of all the terrestrial fresh water on Earth. Lake Baikal occupies the deepest portion of the Baikal Rift Zone. It was formed some 30-45 million years ago. The isolated Lake Baikal ecosystem represents a unique niche in nature based on its historical formation. The microbial diversity present in this environment has not yet been fully harvested or examined for products and processes of commercial interest and value. Thus, the collection of water, soil, and sub-bottom sediment samples was decided to characterize the microbial diversity of the isolated strains and to screen the isolates for their biotechnological value.

  18. Mono Lake's Radiocarbon Budget: An unsolved enigma

    NASA Astrophysics Data System (ADS)

    Broecker, Wallace; Stine, Scott

    Mono Lake occupies a semiarid basin just east of the central Sierra Nevada in California. During the past 4 decades, diversion of the lake's tributary streams by the Los Angeles Department of Water and Power (LADWP) has caused the lake to shrink dramatically. This shrinkage has concentrated the salts that occur naturally in the lake, forcing the salinity to rise toward levels that will cause the extinction of the resident brine shrimp and brine flies that provide food for many hundreds of thousands of migratory waterfowl. The lake is now the focus of a pitched battle between conservationists who want to curtail diversions before serious ecological consequences occur and the LADWP, whose responsibility is to supply the city with water.

  19. 18. SOUTH CENTRAL SECTION OF HISTORIC DISTRICT LOOKING NORTH TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SOUTH CENTRAL SECTION OF HISTORIC DISTRICT LOOKING NORTH TO WATER TOWER (Buildings No. 43, 42, 78) (Copy negative made from National Archives negative No. 92-F-61B-5) - Fort Sheridan, 25 miles Northeast of Chicago, on Lake Michigan, Lake Forest, Lake County, IL

  20. Lake trout spawning habitat in the Six Fathom Bank-Yankee Reef lake trout sanctuary, Lake Huron

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; Poe, Thomas P.

    1992-01-01

    Attempts to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes, where the species was extinguished in the 1950s and 1960s, have been largely unsuccessful. To avoid many of the problems believed to be contributing to this failure, the fishery management community recently established several sanctuaries in the offshore waters of the Great Lakes where the development and protection of self-sustaining stocks of lake trout would be a primary management objective. One of these, the Six Fathom Bank-Yankee Reef sanctuary, was created in the south-central portion of Lake Huron. This sanctuary covers 168,000 ha and includes the shallower portions of the Six Fathom and Ipperwash scarps, which are major bathymetric features in the southern half of the lake. Historical accounts describe Six Fathom Bank as the most important lake trout spawning ground in the lake. Here we present the results of lake bed surveys conducted in the sanctuary with side-scan sonar, underwater videocamera systems, and a small research submarine. Our observations of the lake bed are consistent with what is known of the bedrock stratigraphy, glacial history, and karst geomorphology of the Lake Huron basin. Most of the loose rock we found seemed to be derived from local carbonate bedrock formations, although non-carbonate rock probably from Precambrian sources to the north was also present in some areas. Much of the bedrock and loose rock displayed karst solution features described for the Bruce Peninsula on the Ontario shoreline. Our surveys revealed substantial areas of lake bed at water depths of 20–36 m that resembled suitable spawning and fry production habitat for the shallow-water strains of lake trout that are the focus of the rehabilitation effort. Low mid-lake nutrient levels documented recently by others and the extremely high abundance of Mysis relicta (an important item in the diet of young lake trout) that we documented on Yankee Reef

  1. ALPINE LAKES WILDERNESS STUDY AREA, WASHINGTON.

    USGS Publications Warehouse

    Gualtieri, J.L.; Thurber, H.K.

    1984-01-01

    The Alpine Lakes Wilderness study area, located in the central part of the Cascade Mountains of Washington was examined for its mineral-resource potential. On the basis of that study the area was found to contain deposits of copper, other base metals, and gold and silver. Probable or substantiated mineral-resource potential exists for these commodities in the southwest-central, northwest, and southeast-central parts of the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  2. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    NASA Astrophysics Data System (ADS)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  3. Water resources data for California, water year 1995. Volume 4. Northern Central Valley basins and the great basin from Honey Lake basin to Oregon State line. Water-data report (Annual), 1 October 1994-30 September 1995

    SciTech Connect

    Markham, K.L.; Anderson, S.W.; Rockwell, G.L.; Friebel, M.F.

    1996-04-01

    Volume 4 contains discharge records for 181 gaging stations, stage and contents for 47 lakes and reservoirs, precipitation data for 3 stations, and water quality for 6 stations. Also included is one low-flow partial-record station.

  4. [Studies on the massive flights of chironomid midges (Diptera: Chironomidae) as nuisance insects and plans for their control in the Lake Suwa area, central Japan. 2. Quantitative evaluations of the nuisance of chironomid midges].

    PubMed

    Hirabayashi, K

    1991-06-01

    In order to make clear the present "nuisance" caused by chironomid midges around a eutrophic lake, a questionnaire survey of 249 leaders of the Hygiene Self-governing Association of the cities of Suwa and Okaya and the town of Shimosuwa near Lake Suwa was conducted. The results are as follows: 1. More than 90% of the respondents had specific knowledge about the chironomid midge, but 40% of them didn't know about its role as a purifier in the lake. 2. More than 10% of respondents answered that they were "can not able to stand any more" massive flights of chironomid midges, and about half of them lived within 500 m of the lake shore. The damages "nuisances" were "running laundry or defacing walls (67.1%) and "contamination of food (15.3%)", suggesting that chironomid midges influenced the daily life of the residents. 3. The selected causes of massive flights of chironomid midges were "pollution in Lake Suwa" and "decreases in the numbers of birds and dragonflies" as well as others. This means that the deterioration of the environmental situation around the lake may cause the "nuisance" of chironomid midges. 4. The respondents were more strongly interested in counterplans for the control of the chironomid midges made by administrative authorities than in plans made by each family. 5. "The distance from the lake shore" was the major factor contributing to the impression of chironomid damage. "The occupation of the respondent" was the second important factor. To redirect the insect flights away from the residential area, and to decrease the number of adult midges coming from the lake, are thought to be the most important measures for the resolution of this problem. PMID:1890774

  5. Water resources data for California, water year 1993. Volume 4. Northern Central valley basins and the Great Basin from Honey Lake basin to Oregon State line. Water-data report (Annual), 1 October 1992-30 September 1993

    SciTech Connect

    Mullen, J.R.; Friebel, M.F.; Markham, K.L.; Anderson, S.W.

    1994-04-01

    Water-resources data for the 1993 water year for California consist of records of stage, discharge and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 190 gaging stations, stage and contents for 41 lakes and reservoirs, precipitation data for 3 stations, and water quality for 8 stations. Also included are two low-flow partial-record stations.

  6. Water resources data for California, water year 1992. Volume 4. Northern central valley basins and the great basin from Honey Lake basin to Oregon state line. Water-data report (Annual), 1 October 1991-30 September 1992

    SciTech Connect

    Anderson, S.W.; Mullen, J.R.; Friebel, M.F.; Markham, K.L.

    1993-05-01

    Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains discharge records for 190 gaging stations; stage and contents for 44 lakes and reservoirs; precipitation data for 3 stations; and water quality for 10 stations. Also included are two low-flow partial-record stations.

  7. Water resources data for California water year 1994. Volume 4. Northern Central Valley basins and the Great Basin from Honey Lake basin to Oregon state line. Water-data report (Annual), 1 October 1993-30 September 1994

    SciTech Connect

    Friebel, M.F.; Markham, K.L.; Anderson, S.W.; Rockwell, G.L.

    1995-03-01

    Water-resources data for the 1994 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 187 gaging stations, stage and contents for 47 lakes and reservoirs, precipitation data for 3 stations, and water quality for 6 stations. Also included are two low-flow partial-record stations.

  8. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  9. Slip rate variations on faults in the Basin-and-Range Province caused by regression of Late Pleistocene Lake Bonneville and Lake Lahontan

    NASA Astrophysics Data System (ADS)

    Karow, Tobias; Hampel, Andrea

    2010-12-01

    Late Pleistocene regression of two large pluvial lakes—Lake Bonneville and Lake Lahontan—caused considerable lithospheric rebound in the Basin-and-Range Province, USA. Here, we use finite-element models to show how lake growth and regression affect the temporal and spatial slip evolution on faults near the former lakes. Our results show that fluctuations in the volume of Lake Bonneville caused along-strike slip variations on the Wasatch normal fault, with a pronounced slip rate increase on its northern and central parts during lake regression. The response of normal and strike-slip faults near the ring-shaped Lake Lahontan depends on their location within the rebound area. Faults located in the centre of rebound show a slip rate increase during lake regression, whereas strike-slip faults at the periphery decelerate. All slip rate variations are caused by differential stress changes owing to changing lake levels, regardless of the individual fault response.

  10. Asia Lakes

    Atmospheric Science Data Center

    2013-04-16

    article title:  Central Asia - Mongolia, China and Russia     View Larger ... Imaging SpectroRadiometer (MISR) image of Mongolia, China and Russia covers an area of about 317 kilometers x 412 kilometers, and ...

  11. Towards the water level fluctuations of Lake Nam Co with a lumped watershed-lake model

    NASA Astrophysics Data System (ADS)

    Li, Binquan; Chen, Li; Liang, Zhongmin; Yu, Zhongbo

    2015-04-01

    Hydrologic cycles of most inland lake watersheds on the Tibetan Plateau are not closely monitored due to lack of observation abilities in the harsh environment. Understanding the hydrologic processes of lake watersheds in the Tibetan Plateau could provide insights into the responses of Tibetan lake dynamics to climate change. An efficient approach for this purpose is to represent complex hydrologic behaviors of such Tibetan lake watersheds with simple and plausible hydrologic models. In this study, water level fluctuations of an inland saline lake in the central Tibetan Plateau, Nam Co, were investigated using a lumped watershed-lake model. This terminal lake is fed by both precipitation and glacier melt water from west slopes of Nyainqentanglha Ranges. The degree-day factor method was introduced to improve the model applicability in the glacier-covered basins. The model simulated the hydrologic processes as well as lake water budget of the Nam Co watershed. Remote sensing images (Landsat MSS, TM and ETM) from 1972 to 2008 were used to identify the boundaries of glacier and lake. Multi-source climate data (e.g., ground point observation, 0.25o gridded APHRODITE and TRMM 3B42 v7) were used to drive the hydrologic model at a monthly time step. It was found that both precipitation and air temperature experienced increasing trends with rates of 2.2 mm/year and 0.04 oC/year, respectively, for the period of 1963-2012. As a response to climate change, in the study basin, glaciers decreased by 51 km2 (-23%) while lakes expanded by 98 km2 (+5%) from 1972 to 2007. Results also showed that, during the period of 1961-2013, precipitation on lake, surface and subsurface runoff productions contributed 33%, 39% and 28%, respectively, to the total water mass gain of Lake Nam Co. As for its water sinks, lake water evaporation and groundwater outflow contributions were 63% and 23%, respectively. Consequently, a 14% of incoming water remained in the lake, producing an increase of the

  12. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    USGS Publications Warehouse

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  13. The High-Lakes Project

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Grin, Edmond A.; Chong, Guillermo; Minkley, Edwin; Hock, Andrew N.; Yu, Youngseob; Bebout, Leslie; Fleming, Erich; Häder, Donat P.; Demergasso, Cecilia; Gibson, John; Escudero, Lorena; Dorador, Cristina; Lim, Darlene; Woosley, Clayton; Morris, Robert L.; Tambley, Cristian; Gaete, Victor; Galvez, Matthieu E.; Smith, Eric; Uskin-Peate, Ingrid; Salazar, Carlos; Dawidowicz, G.; Majerowicz, J.

    2009-06-01

    The High Lakes Project is a multidisciplinary astrobiological investigation studying high-altitude lakes between 4200 m and 6000 m elevation in the Central Andes of Bolivia and Chile. Its primary objective is to understand the impact of increased environmental stress on the modification of lake habitability potential during rapid climate change as an analogy to early Mars. Their unique geophysical environment and mostly uncharted ecosystems have added new objectives to the project, including the assessment of the impact of low-ozone/high solar irradiance in nonpolar aquatic environments, the documentation of poorly known ecosystems, and the quantification of the impact of climate change on lake environment and ecosystem. Data from 2003 to 2007 show that UV flux is 165% that of sea level with maximum averaged UVB reaching 4 W/m2. Short UV wavelengths (260-270 nm) were recorded and peaked at 14.6 mW/m2. High solar irradiance occurs in an atmosphere permanently depleted in ozone falling below ozone hole definition for 33-36 days and between 30 and 35% depletion the rest of the year. The impact of strong UVB and UV erythemally weighted daily dose on life is compounded by broad daily temperature variations with sudden and sharp fluctuations. Lake habitat chemistry is highly dynamical with notable changes in yearly ion concentrations and pH resulting from low and variable yearly precipitation. The year-round combination of environmental variables define these lakes as end-members. In such an environment, they host ecosystems that include a significant fraction of previously undescribed species of zooplankton, cyanobacterial, and bacterial populations.

  14. PLASMA STEROID CONCENTRATIONS IN RELATION TO SIZE AND AGE IN JUVENILE ALLIGATORS FROM TWO FLORIDA LAKES.

    EPA Science Inventory

    Previous studies have reported a number of physiological differences among juvenile alligators from two well-studied populations (Lake Apopka and Lake Woodruff) in north central Florida. These studies obtained alligators of similar size from each lake under the assumption that th...

  15. Longevity of Lake Superior lake trout

    USGS Publications Warehouse

    Schram, Stephen T.; Fabrizio, Mary C.

    1998-01-01

    The age structure of mature lake trout Salvelinus namaycush from the Wisconsin waters of Lake Superior increased following a population recovery that has taken place since the 1960s. As the population aged, it became apparent that scales were unreliable aging structures. Beginning in 1986, we examined both scale and sagittal otolith ages from tagged fish with a known period at liberty. We found large discrepancies in scale and sagittal otolith ages of mature fish, such that scale ages were biased low. We estimated lake trout living up to 42 years, which is greater than previously reported from Lake Superior. Investigators studying lake trout population dynamics in the Great Lakes should be aware that lake trout can live longer than previously thought.

  16. Lake Volta, Ghana

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of Lake Volta in Ghana was acquired March 31, 2002 by the Moderate Resolution Imaging Spectroradiometer (MODIS). Lake Volta is one of the world's largest artificially created lakes. Lake Volta is actually a reservoir formed from the damming of the Volta River, and extends 250 miles north of the Akosombo Dam. The lake covers an area of 8,482 square km. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  17. Food Web Topology in High Mountain Lakes

    PubMed Central

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235

  18. Food Web Topology in High Mountain Lakes.

    PubMed

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235

  19. District wide water resources investigation and management using LANDSAT data. Phase 1: Lake volume

    NASA Technical Reports Server (NTRS)

    Shih, S. F. (Principal Investigator)

    1982-01-01

    A technique for estimating available water storage volume using LANDSAT data was developed and applied to Lake Washington and Lake Harris in central Florida. The technique can be applied two ways. First, where the historical stage records are available, the historical LANDSAT data can be used to establish the relationship between lake volume and lake stage. In the second case, where the historical stage records are not available, the historical LANDSAT data can be used to estimate the historical lake stage after the lake volume and stage information become available in the future.

  20. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    NASA Astrophysics Data System (ADS)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the Indo-Pacific warm pool (IPWP), heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2013 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance variations in Lake Towuti during the past 60 kyr BP. In detail our datasets show that wet conditions and rainforest ecosystems in central Indonesia persisted during Marine Isotope Stage 3 (MIS3) and the Holocene, and were interrupted by severe

  1. Seismic Data Reveal Lake-Level Changes in Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Spiess, V.; Keil, H.; Sauermilch, I.; Oberhänsli, H.; Abdrakhmatov, K.; De Batist, M. A.; Naudts, L.; De Mol, L.

    2013-12-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan, Kyrgyzstan, Central Asia, at 1607 m above sea level. It has formed in a tectonically active region with W-E striking major thrust zones both N and S of the lake. The lake is elongated with 180 km in W-E and 60 km in S-N direction and a water depth of roughly 670 m at its central plain. With a surface area of 6232 km2 and a total water colume of around 1736 km3, Lake Issyk-Kul is the second largest lake in the higher altitudes (De Batist et al., 2002). Two large delta areas have formed at the E and W end. Steep slopes at both the N and S shore separate rather narrow, shallow shelf areas from the central deeper plain. First seismic data of lake Issyk-Kul were acquired in 1982 by the Moscow University with a total of 31 profiles across the lake. In 1997 and 2001, a second and third seismic survey of the lake were carried out by the group of Marc De Batist (Ghent, Belgium) in cooperation with the Royal Museum of Central Africa (Tervuren, Belgium) and the SBRAS (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia) using a sparker system with a single-channel streamer. These surveys were recently completed by a fourth expedition carried out by the University of Bremen in April 2013. During this expedition, 33 additional profiles were acquired with an airgun and a multi-channel streamer. The sparker surveys mostly cover the delta and shelf areas in high detail, while the airgun survey covers the deeper parts of the lake with penetration beyond the first multiple. Bathymetry data reveal that at the delta areas, the shelf is divided into two parts. The shallower comprises the part down to 110 m water depth with an average inclination of 0.5°, while the deeper part reaches from 110 m to 300 m water depth with an average slope inclination of 1°. Incised paleo-river channels of up to 2-3 km width and 50 m depth are visible both on the eastern and western shelf, but are limited to the

  2. Occurrence of methylmercury in Lake Valencia, Venezuela

    SciTech Connect

    Jaffe, R.; Cai, Y.; West-Thomas, J.

    1997-12-31

    The presence of mercury in the environment has received renewed attention during recent years. This is in part due to the known human health and ecological effects of the highly toxic organomercury compounds, and to the fact that novel and improved analytical techniques such as atomic fluorescence spectroscopy (AFS) and capillary chromatography with AFS detection, have enhanced significantly the detection of trace amounts of mercury and organo mercurials in environmental samples. Such techniques have allowed for a better understanding of the biogeochemical cycle of mercury in the aquatic environment. This paper reports on the presence of methylmercury in the water column and sediments of a hyper-eutrophic lake. Lake Valencia is a freshwater lake located in North-Central Venezuela`s Aragua Valley. The lake`s surface area covers approximately 350 km{sup 2}, with a mean depth of 19 m and a maximum depth of 41 m. Due to the discharge of waste waters from the cities of Maracay and Valencia, as well as from other smaller villages and agricultural areas in its watershed, Lake Valencia has become hyper-eutrophic. The population of phytoplankton, particularly of blue-green algae, has increased dramatically during the last two decades resulting in anoxic conditions in the lower part of the water column during most of the year. In addition, concentrations of anthropogenic chemicals, including heavy metals, have increased in the Lake during the last four decades. 15 refs., 2 figs.

  3. Status of lake trout rehabilitation on Six Fathom Bank and Yankee Reef in Lake Huron

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; McClain, Jerry R.; Woldt, Aaron P.; Holuszko, Jeffrey D.; Bowen, Charles A., II

    2004-01-01

    Six Fathom Bank, an offshore reef in the central region of Lake Huron's main basin, was stocked annually with hatchery-reared lake trout Salvelinus namaycush during 1985–1998, and nearby Yankee Reef was stocked with hatchery-reared lake trout in 1992, 1997, and annually during 1999–2001. We conducted gill-net surveys during spring and fall to evaluate performances of each of the various strains of lake trout, as well as the performance of the entire lake trout population (all strains pooled), on these two offshore reefs during 1992–2000. Criteria to evaluate performance included the proportion of “wild” fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lamprey Petromyzon marinus. Although naturally reproduced age-0 lake trout fry were caught on Six Fathom Bank and Yankee Reef, wild lake trout did not recruit to the adult population to any detectable degree. The density of spawning lake trout on Six Fathom Bank (>100 fish/305 m of gill net) during 1995–1998 appeared to be sufficiently high to initiate a self-sustaining population. However, annual mortality estimates for all lake trout strains pooled from catch curve analyses ranged from 0.48 to 0.62, well exceeding the target level of 0.40 suggested for lake trout rehabilitation. Annual mortality rate for the Seneca Lake strain (0.34) was significantly lower than that for the Superior–Marquette (0.69) and Lewis Lake (0.69) strains. This disparity in survival among strains was probably attributable to the lower sea-lamprey-induced mortality experienced by the Seneca Lake strain. The relatively high mortality experienced by adult lake trout partly contributed to the lack of successful natural recruitment to the adult population on these offshore reefs, but other factors were probably also involved. We recommend that both stocking of the Seneca Lake strain and enhanced efforts to reduce sea lamprey abundance in Lake Huron be continued.

  4. Identifying Nutrient Sources to Lake Erie Using Isotope Geochemistry

    NASA Astrophysics Data System (ADS)

    Elsbury, K.; Paytan, A.

    2006-12-01

    Large areas of Lake Erie's hypolimnon continue to undergo seasonally hypoxic conditions, despite extensive efforts over the past 30 years to reduce phosphorus loads from known sources. The oxygen isotopic composition of dissolved phosphate found in lake waters can be used to identify the nutrient source or sources responsible for rising phosphate concentrations contributing to eutrophication and hypoxia. Isotope data from the West and Central Basins of Lake Erie and from seven key tributaries collected during August of 2005, June of 2006, and October of 2006 give a seasonal overview of phosphate sources to Lake Erie.

  5. An inventory of glacial lakes in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Buckel, Johannes; Otto, Jan-Christoph; Keuschnig, Markus; Götz, Joachim

    2016-04-01

    The formation of lakes is one of the consequences of glacier retreat due to climate change in mountain areas. Numerous lakes have formed in the past few decades in many mountain regions around the globe. Some of these lakes came into focus due to catastrophic hazard events especially in the Himalayas and the Andes. Glacial lake development and lifetime is controlled by the complex interplay of glacier dynamics, geomorphological process activity and geological boundary conditions. Besides the hazard potential new lakes in formerly glaciated areas will significantly contribute to a new landscape setting and to changing geomorphologic, hydrologic and ecologic conditions at higher alpine altitudes. We present an inventory of high alpine lakes in the Austrian Alps located above an altitude of 1700 m asl. Most of these lakes are assumed to be of glacial origin, but other causes for development, like mass movements are considered as well. The inventory is a central part of the project FUTURELAKES that aims at modelling the potential development of glacial lakes in Austria (we refer to the presentation by Helfricht et al. during the conference for more details on the modelling part). Lake inventory data will serve as one basis for model validation since modelling is performed on different time steps using glacier inventory data. The purpose of the lake inventory is to get new insights into boundary conditions for lake formation and evolution by analysing existing lake settings. Based on these information the project seeks to establish a model of lake sedimentation after glacier retreat in order to assess the potential lifetime of the new lakes in Austria. Lakes with a minimum size of 1000 m² were mapped using multiple aerial imagery sources. The dataset contains information on location, geometry, dam type, and status of sedimentation for each lake. Additionally, various geologic, geomorphic and morphometric parameters describe the lake catchments. Lake data is related to

  6. Water resources data for California, water year 1996. Volume 4. Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line. Water-data report (Annual), 1 October 1995-30 September 1996

    SciTech Connect

    Anderson, S.W.; Rockwell, G.L.; Friebel, M.F.; Webster, M.D.

    1997-06-01

    Volume 4 contains discharge records for 180 gaging stations, stage and contents for 45 lakes and reservoirs, gage-height records for 5 stations, precipitation data for 3 stations, and water quality for 15 stations. Also included is 1 low-flow partial-record station.

  7. Dreissenid mussels are not a "dead end" in Great Lakes food webs

    USGS Publications Warehouse

    Madenijan, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; Ebener, Mark P.; Mohr, Lloyd C.; Nalepa, Thomas F.; Bence, James R.

    2010-01-01

    Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.

  8. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    NASA Astrophysics Data System (ADS)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Fowle, David; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Marwoto, Ristiyanti; Melles, Martin; Crowe, Sean; Haffner, Doug; King, John

    2013-04-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the tropical Western Pacific warm pool, heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. While the Malili Lakes have long been considered high-priority drilling sites, only now do we have the requisite site survey information to propose the development of ICDP's first lake drilling target in the tropical western Pacific. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2010 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance

  9. Macroinvertebrates as indicators of fish absence in naturally fishless lakes

    USGS Publications Warehouse

    Schilling, Emily Gaenzle; Loftin, C.S.; Huryn, Alexander D.

    2009-01-01

    1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish-containing lakes (n = 18) of similar size, location and maximum depth. We used non-metric multidimensional scaling to assess differences in community structure and t-tests for taxon-specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish-containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish-containing lakes, especially taxa that are large, active and free-swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus

  10. Lake Nasser and Toshka Lakes, Egypt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Nasser (center) and the Toshka Lakes (center left) glow emerald green and black in this MODIS true-color image acquired March 8, 2002. Located on and near the border of Egypt and Norther Sudan, these lakes are an oasis of water in between the Nubian (lower right) and Libyan Deserts (upper left). Also visible are the Red Sea (in the upper right) and the Nile River (running north from Lake Nasser). Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  11. Forecasting cyanobacteria dominance in Canadian temperate lakes.

    PubMed

    Persaud, Anurani D; Paterson, Andrew M; Dillon, Peter J; Winter, Jennifer G; Palmer, Michelle; Somers, Keith M

    2015-03-15

    Predictive models based on broad scale, spatial surveys typically identify nutrients and climate as the most important predictors of cyanobacteria abundance; however these models generally have low predictive power because at smaller geographic scales numerous other factors may be equally or more important. At the lake level, for example, the ability to forecast cyanobacteria dominance is of tremendous value to lake managers as they can use such models to communicate exposure risks associated with recreational and drinking water use, and possible exposure to algal toxins, in advance of bloom occurrence. We used detailed algal, limnological and meteorological data from two temperate lakes in south-central Ontario, Canada to determine the factors that are closely linked to cyanobacteria dominance, and to develop easy to use models to forecast cyanobacteria biovolume. For Brandy Lake (BL), the strongest and most parsimonious model for forecasting % cyanobacteria biovolume (% CB) included water column stability, hypolimnetic TP, and % cyanobacteria biovolume two weeks prior. For Three Mile Lake (TML), the best model for forecasting % CB included water column stability, hypolimnetic TP concentration, and 7-d mean wind speed. The models for forecasting % CB in BL and TML are fundamentally different in their lag periods (BL = lag 1 model and TML = lag 2 model) and in some predictor variables despite the close proximity of the study lakes. We speculate that three main factors (nutrient concentrations, water transparency and lake morphometry) may have contributed to differences in the models developed, and may account for variation observed in models derived from large spatial surveys. Our results illustrate that while forecast models can be developed to determine when cyanobacteria will dominate within two temperate lakes, the models require detailed, lake-specific calibration to be effective as risk-management tools. PMID:25585147

  12. Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes

    SciTech Connect

    Teuscher, D.M.; Taki, D.; Ariwite, K.

    1996-05-01

    Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged from 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600.

  13. Hydrothermal vents of Yellowstone Lake, Yellowstone National Park, Wyoming

    SciTech Connect

    Kaplinski, M.A.; Morgan, P. . Geology Dept.)

    1993-04-01

    Hydrothermal vent systems within Yellowstone Lake are located within the Yellowstone caldera in the northeastern and West Thumb sections of the lake. The vent systems lie within areas of extremely high geothermal gradients (< 1,000 C/km) in the lake sediments and occur as clusters of individual vents that expel both hydrothermal fluids and gas. Regions surrounding the vents are colonized by unique, chemotropic biologic communities and suggest that hydrothermal input plays an important role in the nutrient dynamics of the lake's ecosystem. The main concentration of hydrothermal activity occurs in the northeast region of the main lake body in a number of locations including: (1) along the shoreline from the southern edge of Sedge Bay to the inlet of Pelican Creek; (2) the central portion of the partially submerged Mary Bay phreatic explosion crater, within deep (30--50 m) fissures; (3) along the top of a 3 km long, steep-sided ridge that extends from the southern border of Mary Bay, south-southeast into the main lake basin; and (4) east of Stevenson Island along the lower portion of the slope (50--107 m) into the lake basin, within an anastomosing series of north to northwest trending, narrow troughs or fissures. Hydrothermal vents were also located within, and surrounding the West Thumb of Yellowstone Lake, with the main concentration occurring the offshore of the West Thumb and Potts Geyser Basin. Hydrothermal vents in Yellowstone Lake occur along fractures that have penetrated the lake sediments or along the tops of ridges and near shore areas. Underneath the lake, rising hydrothermal fluids encounter a semi-permeable cap of lake sediments. Upwardly convecting hydrothermal fluid flow may be diverted by the impermeable lake sediments along the buried, pre-existing topography. These fluids may continue to rise along topography until fractures are encountered, or the lake sediment cover is thinned sufficiently to allow egress of the fluids.

  14. Auke Lake Campus Site Development Plan.

    ERIC Educational Resources Information Center

    Alaska Univ., Juneau. Dept. of Facilities Planning and Construction.

    The University of Alaska, Juneau (UAJ), is the center for the University of Alaska Southeast and includes both a senior college and a community college. Most of the university facilities within the Juneau area are on the Auke Lake Campus, approximately 12 miles northwest of central Juneau. This report delineates the location of the campus, then…

  15. SCOPSCO - Scientific Collaboration On Past Speciation Conditions in Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Wilke, T.; Grazhdani, A.; Kostoski, G.; Krastel, S.; Reicherter, K. R.; Zanchetta, G.

    2009-12-01

    Lake Ohrid is a transboundary lake with approximately two thirds of its surface area belonging to the Former Yugoslav Republic of Macedonia and about one third belonging to the Republic of Albania. With more than 210 endemic species described, the lake is a unique aquatic ecosystem and a hotspot of biodiversity. This importance was emphasized, when the lake was declared a UNESCO World Heritage Site in 1979. Though the lake is considered to be the oldest, continuously existing lake in Europe, the age and the origin of Lake Ohrid are not completely unravelled to date. Age estimations vary between one and ten million years and concentrate around two to five million years, and both marine and limnic origin is proposed. Extant sedimentary records from Lake Ohrid cover the last glacial/interglacial cycle and reveal that Lake Ohrid is a valuable archive of volcanic ash dispersal and climate change in the central northern Mediterranean region. These records, however, are too short to provide information about the age and origin of the lake and to unravel the mechanisms controlling the evolutionary development leading to the extraordinary high degree of endemism. Concurrent genetic brakes in several invertebrate groups indicate that major geological and/or environmental events must have shaped the evolutionary history of endemic faunal elements in Lake Ohrid. High-resolution hydroacoustic profiles taken between 2004 and 2008, and multichannel seismic (Mini-GI-Gun) studies in 2007 and 2008 demonstrate well the interplay between sedimentation and active tectonics and impressively prove the potential of Lake Ohrid for an ICDP drilling campaign. The maximal sediment thickness is c. 680 m in the central basin, where unconformities or erosional features are absent. Thus the complete history of the lake is likely recorded. A deep drilling in Lake Ohrid would help (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history

  16. Lakes Ecosystem Services Online

    EPA Science Inventory

    Northeastern lakes provide valuable ecosystem services that benefit residents and visitors and are increasingly important for provisioning of recreational opportunities and amenities. Concurrently, however, population growth threatens lakes by, for instance, increasing nutrient ...

  17. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    article title:  Winter and Summer Views of the Salt Lake Region     View Larger Image Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the ...

  18. Lake trout rehabilitation in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Eckert, Thomas H.; Schaner, Ted; Bowlby, James N.; Schleen, Larry P.

    1995-01-01

    Attempts to maintain the native lake trout (Salvelinus namaycush) population in Lake Ontario by stocking fry failed and the species was extirpated by the 1950s. Hatchery fish stocked in the 1960s did not live to maturity because of sea lamprey (Petromyzon marinus) predation and incidental commercial harvest. Suppression of sea lampreys began with larvicide treatments of Lake Ontario tributaries in 1971 and was enhanced when the tributaries of Oneida Lake and Lake Erie were treated in the 1980s. Annual stocking of hatchery fish was resumed with the 1972 year class and peaked at about 1.8 million yearlings and 0.3 million fingerlings from the 1985–1990 year classes. Survival of stocked yearlings declined over 50% in the 1980 s and was negatively correlated with the abundance of lake trout > 550 mm long (r = −0.91, P < 0.01, n = 12). A slot length limit imposed by the State of New York for the 1988 fishing season reduced angler harvest. Angler harvest in Canadian waters was 3 times higher in eastern Lake Ontario than in western Lake Ontario. For the 1977–1984 year classes, mean annual survival rate of lake trout age 6 and older was 0.45 (range: 0.35–0.56). In U.S. waters during 1985–1992, the total number of lake trout harvested by anglers was about 2.4 times greater than that killed by sea lampreys. The number of unmarked lake trout < 250 mm long in trawl catches in 1978–1992 was not different from that expected due to loss of marks and failure to apply marks at the hatchery, and suggested that recruitment of naturally-produced fish was nil. However, many of the obstacles which may have impeded lake trout rehabilitation in Lake Ontario during the 1980s are slowly being removed, and there are signs of a general ecosystem recovery. Significant recruitment of naturally produced lake trout by the year 2000, one interim objective of the rehabilitation plan for the Lake, may be achieved.

  19. Lake salinity variations resulting from wind direction, Gobi Desert, China

    NASA Astrophysics Data System (ADS)

    Bradley, D. C.; Cartwright, I.; Currell, M.

    2010-12-01

    The southern reaches of the Gobi desert, central China, host a large number (~50) of shallow (<3m depth), narrow, north-south trending through-flow lakes. The size of the sand dunes (many over 150m) in this area means that the valleys between the largest dunes can intersect with the water table. The resultant lakes are of particular interest, not only because they are host to a number of unique ecosystems, including several rare species, but also because they are very susceptible to environmental disturbances. Physical development of the lakes is a clear threat, but also small scale withdrawal of groundwater in proximity to the lakes can cause a drop in the water table, forcing it below the lake floor, and consequently causing many lakes to dry up. Due to their inaccessibility, many of these lakes have remained relatively untouched by development, and only those lakes closest to the eastern edge of the desert have been utilized directly for either salt harvesting or tourism. This paper reports on research from both pristine and developed lakes, and reveals a higher TDS (20-50mS/cm compared to 0.5-5mS/cm) in the northern end relative to the southern end for undisturbed lakes. Water entering the southern end of the lakes is chemically identical to the local groundwater (TDS ~0.5mS/cm). This geographic difference in lake properties is remarkable, not only in terms of chemical variation, but also in terms of plant variety and abundance. Stable isotopes show a clear evaporation trend for these lakes, increasing from the southern tip, to the northern tip of individual lakes (-3 to -1‰ in the south, compared with 2-8‰ in the north, and -6 to -3‰ in the groundwater for δ2H). TDS likewise increases with increasing isotopic fractionation. The primary wind direction fluctuates from the southeast to the east, causing the movement of water from the southern end of the lake to the northern, and aiding in the evaporation. Once at the northern end of the lake, the water

  20. Seasonal habitat selection by lake trout (Salvelinus namaycush) in a small Canadian shield lake: Constraints imposed by winter conditions

    USGS Publications Warehouse

    Blanchfield, P.J.; Tate, L.S.; Plumb, J.M.; Acolas, M.-L.; Beaty, K.G.

    2009-01-01

    The need for cold, well-oxygenated waters significantly reduces the habitat available for lake trout (Salvelinus namaycush) during stratification of small temperate lakes. We examined the spatial and pelagic distribution of lake trout over two consecutive summers and winters and tested whether winter increased habitat availability and access to littoral regions in a boreal shield lake in which pelagic prey fish are absent. In winter, lake trout had a narrowly defined pelagic distribution that was skewed to the upper 3 m of the water column and spatially situated in the central region of the lake. Individual core areas of use (50% Kernel utilization distributions) in winter were much reduced (75%) and spatially non-overlapping compared to summer areas, but activity levels were similar between seasons. Winter habitat selection is in contrast to observations from the stratified season, when lake trout were consistently located in much deeper waters (>6 m) and widely distributed throughout the lake. Winter distribution of lake trout appeared to be strongly influenced by ambient light levels; snow depth and day length accounted for up to 69% of the variation in daily median fish depth. More restricted habitat use during winter than summer was in contrast to our original prediction and illustrates that a different suite of factors influence lake trout distribution between these seasons. ?? Springer Science+Business Media B.V. 2009.

  1. Lake Layers: Stratification.

    ERIC Educational Resources Information Center

    Brothers, Chris; And Others

    This teacher guide and student workbook set contains two learning activities, designed for fifth through ninth grade students, that concentrate on lake stratification and water quality. In the activities students model the seasonal temperature changes that occur in temperate lakes and observe the resulting stratification of lake waters. Students…

  2. Great Lakes: Chemical Monitoring

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1976-01-01

    The Tenth Great Lakes Regional Meeting of the American Chemical Society met to assess current Chemical Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)

  3. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This book contains lesson plans that provide an integrated approach to incorporating Great Lakes environmental issues into elementary subjects. The book is divided into three subject areas: (1) History, which includes the origins of the Great Lakes, Great Lakes people, and shipwrecks; (2) Social Studies, which covers government, acid rain as a…

  4. A Killer Lake

    ERIC Educational Resources Information Center

    Horvath, Thomas

    2005-01-01

    In 1986, Lake Nyos, a volcanic lake in Cameroon, released a huge amount of carbon dioxide gas, killing over 1,700 people in the surrounding area. This case study, developed for use in a limnology or aquatic biology course, explores that event, introducing students to concepts relating to lake formation, thermal stratification, and dissolved gases.…

  5. Linkage of the Soil and Water Assessment Tool and the Texas Water Availability Model to simulate the effects of brush management on monthly storage of Canyon Lake, south-central Texas, 1995-2010

    USGS Publications Warehouse

    Asquith, William H.; Bumgarner, Johnathan R.

    2014-01-01

    The mean monthly offset storages of Canyon Lake during the Drought Quartile were 110 acre-ft (20 percent); 448 acre-ft (40 percent); 754 acre-ft (60 percent); 1,080 acre-ft (80 percent); and 1,090 acre-ft (100 percent). A particular mean was interpreted as follows: the value of 754 acre-ft for the 60-percent brush-management scenario implies that, on average, this scenario indicates an additional 754 acre-ft per month of storage in Canyon Lake relative to the baseline during the Drought Quartile. All of the five scenarios resulted in an increase on average to water supply relative to the baseline scenario during the Drought Quartile through the SWAT-WAM linkage.

  6. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    PubMed Central

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  7. Lake Effects: The Lake Superior Curriculum Guide.

    ERIC Educational Resources Information Center

    Beery, Tom; And Others

    This curriculum guide was launched in response to a need for Lake Superior-specific educational materials and contains lessons and activities that can be used to teach about Lake Superior. The lessons in this book are divided into four sections. Each of the first three sections has a background section that provides basic information about Lake…

  8. Plasma steroid concentrations and male phallus size in juvenile alligators from seven Florida lakes

    USGS Publications Warehouse

    Guillette, L.J., Jr.; Woodward, A.R.; Crain, D.A.; Pickford, D.B.; Rooney, A.A.; Percival, H.F.

    1999-01-01

    Neonatal and juvenile alligators from contaminated Lake Apopka in central Florida exhibit abnormal plasma sex steroid concentrations as well as morphological abnormalities of the gonad and phallus. This study addresses whether similar abnormalities occur in juvenile alligators inhabiting six other lakes in Florida. For analysis, animals were partitioned into two subsets, animals 40-79 cm total length (1-3 years old) and juveniles 80-130 cm total length (3-7 years old). Plasma testosterone (T) concentrations were lower in small males from lakes Apopka, Griffin, and Jessup than from Lake Woodruff National Wildlife Refuge (NWR). Similar differences were observed in the larger juveniles, with males from lakes Jessup, Apopka, and Okeechobee having lower plasma T concentrations than Lake Woodruff males. Plasma estradiol-17?? (E2) concentrations were significantly elevated in larger juvenile males from Lake Apopka compared to Lake Woodruff NWR. When compared to small juvenile females from Lake Woodruff NWR, females from lakes Griffin, Apopka, Orange, and Okeechobee had elevated plasma E2 concentrations. Phallus size was significantly smaller in males from lakes Griffin and Apopka when compared to males from Lake Woodruff NWR. An association existed between body size and phallus size on all lakes except Lake Apopka and between phallus size and plasma T concentration on all lakes except lakes Apopka and Orange. Multiple regression analysis, with body size and plasma T concentration as independent covariables, explained the majority of the variation in phallus size on all lakes. These data suggest that the differences in sex steroids and phallus size observed in alligators from Lake Apopka are not limited to that lake, nor to one with a history of a major pesticide spill. Further work examining the relationship of sex steroids and phallus size with specific biotic and abiotic factors, such as antiandrogenic or estrogenic contaminants, is needed.

  9. Pleistocene lake level changes in Western Mongolia

    NASA Astrophysics Data System (ADS)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The

  10. Food of lake trout in Lake Superior

    USGS Publications Warehouse

    Dryer, William R.; Erkkila, Leo F.; Tetzloff, Clifford L.

    1965-01-01

    Stomachs were examined from 1,492 lake trout and 83 siscowets collected from Lake Superior. Data are given on the food of lake trout of legal size (17 inches or longer) by year, season, and depth of water, and on the relation between food and size among smaller lake trout. Fish contributed 96.7 to 99.9 per cent of the total volume of food in the annual samples. Ciscoes (Coregonus spp.) were most common (52.2 to 87.5 per cent of the volume) in 1950 to 1953 and American smelt ranked first (65.6 per cent of the volume) in 1963. Cottids were in 8.9 to 12.3 per cent of the stomachs in 1950 to 1953 but in only 4.3 per cent in 1963. Insects ranked second to fish in occurrence (9.6 per cent for the combined samples) and crustaceans followed at 3.9 per cent. The greatest seasonal changes in the food of lake trout were among fish caught at 35 fathoms and shallower. The occurrence of Coregonus increased from 34.6 per cent in February-March to 71.1 per cent in October-December. Smelt were in 76.9 per cent of the stomachs in February-March but in only 2.2 per cent in October-December. Cottids, Mysis relicta, and insects were most common in the July-September collections. Lake trout taken at depths greater than 35 fathoms had eaten a higher percentage of Cottidae and Coregonus than had those captured in shallower water. Smelt, ninespine sticklebacks, Mysis, and insects were more frequent in stomachs of lake trout from less than 35 fathoms. Crustaceans comprised more than 70 per cent of the total volume of food for 4.0- to 7.9-inch lake trout but their importance decreased as the lake trout grew larger. Pontoporeia affinis was the most common in the stomachs of 4.0- to 6.9-inch lake trout and Mysis held first rank at 7.0 to 12.9 inches. Ostracods were important only to 4.0- to 4.9-inch lake trout. As the lake trout became larger, the importance of fish grew from 4.4-per cent occurrence at 5.0 to 5.9 inches to 93.9 per cent at 16.0 to 16.9 inches. Smelt were most commonly eaten by

  11. A proposed aquatic plant community biotic index for Wisconsin lakes

    USGS Publications Warehouse

    Nichols, S.; Weber, S.; Shaw, B.

    2000-01-01

    The Aquatic Macrophyte Community Index (AMCI) is a multipurpose tool developed to assess the biological quality of aquatic plant communities in lakes. It can be used to specifically analyze aquatic plant communities or as part of a multimetric system to assess overall lake quality for regulatory, planning, management, educational, or research purposes. The components of the index are maximum depth of plant growth; percentage of the littoral zone vegetated; Simpson's diversity index; the relative frequencies of submersed, sensitive, and exotic species; and taxa number. Each parameter was scaled based on data distributions from a statewide database, and scaled values were totaled for the AMCI value. AMCI values were grouped and tested by ecoregion and lake type (natural lakes and impoundments) to define quality on a regional basis. This analysis suggested that aquatic plant communities are divided into four groups: (1) Northern Lakes and Forests lakes and impoundments, (2) North-Central Hardwood Forests lakes and impoundments, (3) Southeastern Wisconsin Till Plains lakes, and (4) Southeastern Wisconsin Till Plains impoundments, Driftless Area Lakes, and Mississippi River Backwater lakes. AMCI values decline from group 1 to group 4 and reflect general water quality and human use trends in Wisconsin. The upper quartile of AMCI values in any region are the highest quality or benchmark plant communities. The interquartile range consists of normally impacted communities for the region and the lower quartile contains severely impacted or degraded plant communities. When AMCI values were applied to case studies, the values reflected known impacts to the lakes. However, quality criteria cannot be used uncritically, especially in lakes that initially have low nutrient levels.The Aquatic Macrophyte Community Index (AMCI) is a multipurpose tool developed to assess the biological quality of aquatic plant communities in lakes. It can be used to specifically analyze aquatic plant

  12. Geology of the Ohio portion of Lake Erie

    SciTech Connect

    Fuller, J.A. ); Oldale, R.N. ); Circe, R. )

    1994-04-01

    Seismic-reflection records from the Ohio portion of Lake Erie were interpreted to map the acoustic boundaries inferred to represent the contacts between the postglacial lacustrine deposits and the glacial deposits, and between the glacial deposits and the bedrock. All interpretations were checked against available ground trust data (cores, borings, jetted holes). Generally, in the nearshore the postglacial and glacial deposits pinch out against a rising bedrock surface. Offshore of most of the major rivers there is an indication of down-cutting of the glacial deposits and/or the bedrock. The shale bedrock in the eastern part of the lake has a relatively smooth surface. On the other hand, the carbonate bedrock shows local relief up to 20 m. From the shore, the bedrock surface and overlying sediments dip independently toward the centers of the western and central basins, except where bedrock is at or near the lake floor. In these areas, the bedrock surface controls the distribution of the overlying glacial and postglacial deposits. The glacial deposit has, in places, internal reflectors which may represent multiple tills. These internal reflectors are most common in the central basin. Also, there is evidence that the late Wisconsinan Lake Border Moraine crosses the lake near Cleveland. The last glacier left the Lake Erie basin about 12,600 years ago causing a low stand of the lake. The postglacial deposits began to accumulate during this low and are thickest in the central part of the basins where there has been continuous lacustrine deposition since deglaciation.

  13. Elevated concentrations of actinides in mono lake.

    PubMed

    Anderson, R F; Bacon, M P; Brewer, P G

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply. PMID:17735740

  14. Elevated concentrations of actinides in Mono Lake

    SciTech Connect

    Anderson, R.F.; Bacon, M.P.; Brewer, P.G.

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply.

  15. Seismicity of southern Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Lavayssiere, A.; Gallacher, R. J.; Keir, D.; Ebinger, C. J.; Drooff, C.; Khalfan, M.; Bull, J. M.

    2015-12-01

    Global seismic networks document frequent and unusually deep earthquakes in East African rift sectors lacking central volcanoes. The deep seismicity means that we can use earthquakes to probe the geometry and kinematics of fault systems throughout the crust, and to understand the distribution of strain between large offset border fault systems and intrabasinal faults. The southern Tanganyika rift zone has the highest seismicity rate within East Africa during the period 1973-present, yet earlier temporary seismometer networks have been too sparse in space and time to relocate earthquakes with location and depth errors of < 5-10 km. We address this issue by recording seismicity of southern Lake Tanganyika since June 2014 using a network at 12 broadband seismic stations. The distribution of earthquakes shows that deformation primarily occurs on large offset border faults beneath the lake. Subsidiary earthquake activity occurs along the subparrallel Rukwa graben, and beneath the NE-SW striking Mweru rift. The distribution of earthquakes suggests the southern end of lake Tanganyika is characterized by a network of intersecting NNW and NE striking faults. The depths of earthquakes are distributed throughout the crust, consistent with the relatively strong lithosphere.

  16. Effects of nearshore recharge on groundwater interactions with a lake in mantled karst terrain

    USGS Publications Warehouse

    Lee, T.M.

    2000-01-01

    The recharge and discharge of groundwater were investigated for a lake basin in the mantled karst terrain of central Florida to determine the relative importance of transient groundwater inflow to the lake water budget. Variably saturated groundwater flow modeling simulated water table responses observed beneath two hillsides radiating outward from the groundwater flow-through lake. Modeling results indicated that transient water table mounding and groundwater flow reversals in the nearshore region following large daily rainfall events generated most of the net groundwater inflow to the lake. Simulated daily groundwater inflow was greatest following water table mounding near the lake, not following subsequent peaks in the water level of upper basin wells. Transient mounding generated net groundwater inflow to the lake, that is, groundwater inflow in excess of the outflow occurring through the deeper lake bottom. The timing of the modeled net groundwater inflow agreed with an independent lake water budget; however, the quantity was considerably less than the budge-derived value.

  17. Lake trout rehabilitation in Lake Huron

    USGS Publications Warehouse

    Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles, II; Ebener, Mark P.

    1995-01-01

    Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.

  18. Seismic investigation of Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Naudts, L.; De Mol, L.; De Batist, M.

    2012-04-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan mountains in Kyrgyzstan, Central Asia. It has formed in a tectonically active region with W-E striking major thrust zones north and south of the lake. The lake's modern surface level is at 1607 m above sea level, maximum depth in the central basin of the lake is roughly 670 m, and the total water volume is around 1736 km3. The lake is elongated with 180 km in west-east and 60 km in south-north direction. With a surface area of 6232 km2, Lake Issyk-Kul is the second largest lake in the higher altitudes. The lake is characterized by two large delta areas at its western and eastern end, with the deltaic area being as wide as up to 60 km in the eastern and 40 km in the western part, and by steep slopes at the northern and southern shore with only a rather narrow shallower shelf area. The lake contains the sediments of the past up to several million years, and has been proposed as a future target for deep drilling within ICDP. Three seismic surveys by Russian and Belgian groups in 1982, 1997 and 2001 revealed a thick sediment infill in Lake Issyk-Kul. At both the western and the eastern end of the lake, large delta systems were formed by actual and previous inlets, namely the Tyup and Djyrgalan rivers in the eastern part of the lake (still active) and the Chu River at the western end (currently bypassing the lake). Large sub-aquatic channel systems are visible in the lake's bathymetry in the shallower part of the delta systems close to the river mouths. They were quite likely formed by these rivers during a former lake level lowstand. The delta system consists of stacked prograding delta lobes with a characteristic topset-foreset-bottomset configuration. These lobes together with sub-aerial terraces found at several spots around the lake witness lake level fluctuations of up to >400 m. The sediments in the central plain of Lake Issyk-Kul are mainly well-layered with many turbiditic sequences

  19. Freshwater oncolites created by industrial pollution, Onondaga Lake, New York

    NASA Astrophysics Data System (ADS)

    Dean, Walter E.; Eggleston, Jane R.

    1984-08-01

    Onondaga Lake is a moderately saline, eutrophic lake characterized by waters rich in calcium, sodium, chloride and bicarbonate. Large quantities of CaCO 3 that are precipitated in the lake result from excess calcium supplied as calcium chloride wastes produced by soda-ash manufacturing to lake waters that are at or near saturation with respect to CaCO 3 from solution of carbonate rocks in the drainage basin. Beaches along the leeward (northeastern) shore of the lake are composed almost entirely of oncolites ranging from a few millimeters to several centimeters in maximum dimension. Offshore, in 1-2 m of water, the oncolites are biscuit-shaped concretions as much as 15 cm in diameter. The oncolites consist mainly of low-magnesium calcite, but dissolution of the carbonate with dilute acid results in a mass of blue-green algal filaments of the same approximate size and shape as the original oncolite. Most oncolites have an obvious nucleus; the most common nucleus is the hollow stem and cortication tubules of charophytes. Charophytes do not occur in Onondaga Lake today although they are common in other limestone-bedrock lakes in central New York State. Charophytes probably were eliminated by the marked increases in salinity of the lake that resulted from the introduction of soda-ash manufacturing on the lake shores around 1880 which means that growth of the oncolites began at least 100 years ago.

  20. Anthropopression markers in lake bottom sediments

    NASA Astrophysics Data System (ADS)

    Nadolna, Anna; Nowicka, Barbara

    2014-05-01

    top layer of sediments consists of organic sediment ("sapropel" type). The littoral zone is dominated by sandy material from the shores denudation. In river mouths sandy deltas are formed. The most contaminated sediments are deposited in the central pool, which is a natural trap for the substances flowing with the river that is draining wastewaters from urban areas. At its mouth the sediment samples were significantly contaminated with chromium, zinc, cadmium, copper, nickel, lead and mercury. A high content of total phosphorus was also detected. A different role is played by a large river flowing through the lake. While flushing the sediments it reduces their pollution. The lowest content of markers was detected in headwater areas and in littoral zones exposed to waving.

  1. spatial and temporal distribution of nutrients in a linked stream-lake ecosystem

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Covino, T. P.; McGlynn, B. L.

    2011-12-01

    The movement of nutrients between streams and lakes can impact nutrient export and aquatic ecology in linked stream-lake ecosystems. Specifically, lakes can alter water chemistry and buffer downstream export of nutrients through physical, chemical, and biological processes. This study characterizes nitrogen storage and transport dynamics in a connected stream-lake ecosystem over the summer of 2008 in the Bull Trout Lake Watershed in the Sawtooth Mountains of central Idaho, USA. Water samples were collected for chemical analyses at the lake inflow, outflow, and at six sites across the lake, on hourly to bi-weekly intervals. Lake sampling sites were each sampled at six depths in order to capture all strata of the lake. Additionally, a dye-tracer (Rhodamine-WT) was co-injected with LiCl into the lake to determine water flow-paths and residence time distributions. Inflow and outflow fluxes, spatial and temporal distributions of dissolved organic nitrogen(DON) and dissolved inorganic nitrogen (DIN), as well as water residence times at different lake depths were evaluated. Over the summer of 2008, net influx of NO3 to the lake and net export of DON and NH4 from the lake was observed. While NO3 dominated the DIN fraction at the inflow, NH4 was dominant both at the lake outflow and within the lake, suggesting potential contributions of NH4 to the lake from adjacent wetland and groundwater sources. Differences in transport dynamics between NO3 and NH4, and temporal concentration dynamics both in the stream and lake support this hypothesis. NO3 concentrations were driven by snowmelt flushing and peaked with the hydrograph, subsequently declining for the rest of the summer. NH4 concentrations however remained stable and peaked three weeks after NO3 at the lake outflow, at a time when the contribution of snow melt water had declined and groundwater contribution increased proportionally. In the lake, NH4 and DON concentrations declined during peak runoff in May and June, and

  2. Hydrological regime of Lake Adygine, Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Falátková, Kristýna; Šobr, Miroslav; Kocum, Jan; Janský, Bohumír

    2014-05-01

    Glacier retreat in high mountain areas around the world is considered one of the major geosciences research topics of last decades. This process may result in formation and further development of glacial lakes that are often unstable and pose a threat to downstream valleys. The studied area is situated at the end of a tributary valley on the northern side of Kyrgyz range, about 40 km south of the capital - Bishkek. Glaciers of Central Tien Shan are considered very sensitive indicators of climate change. The studied lake is part of a system of young lakes situated near the front of a retreating glacier therefore it ranks among potentially dangerous ones. The area is closely observed, terrain research including bathymetric, geophysical, geodetic measurements was carried out during last ten years. The lake level and its dependence on the changing climatic conditions in the area have been monitored in detail at this location since August 2007. Data from two meteorological stations are used to explain lake water level fluctuations, especially during ablation season when the lake is drained by a surface channel. The hydrological regime of the lake is compared with a regime of glacial streams, individual factors that affect it are described and possible trends and uncertainties that arise from it are analysed. The lake is also drained by subsurface channels, and as the water level declines over the cold part of a year, their capacity is studied and compared among years. The main aim of the study is to explain any deviations or changes found in the hydrological regime of the lake and to decide whether their cause could mean a decreased stability of the lake dam. Part of the dam is made up of moraine with buried ice and as the lake is drained by subsurface channels, their capacity can be changed due to moraine subsidence when the ice melts. This may lead either to sudden enlargement of channels' capacity or to their blockage, both of which could cause lake outburst.

  3. View of Lake Sabrina Dam and Lake Sabrina from east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam and Lake Sabrina from east ridge showing spillway at photo center, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  4. Influence of evaporation, ground water, and uncertainty in the hydrologic budget of Lake Lucerne, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Lee, Terrie Mackin; Swancar, Amy

    1997-01-01

    A detailed hydrologic budget was constructed of a seepage lake of sinkhole origin in the karst terrain of central Florida. During the drought period studied, lake evaporation computed by the energy-budget and mass-transfer methods was the largest component in the budget, followed by rainfall. Ground-water inflow contributed about one-third of the total inflow. Lake leakage was about one-fourth of the evaporative losses and was increased substantially by pumping from the Upper Floridan aquifer.

  5. Two new species of Sellaphora (Bacillariophyta) from a deep oligotrophic plateau lake, Lake Fuxian in subtropical China

    NASA Astrophysics Data System (ADS)

    Li, Yanling; Metzeltin, Ditmar; Gong, Zhijun

    2010-11-01

    We describe two new species of Sellaphora from Lake Fuxian, Yunnan Plateau, China. Based on both light and scanning electron microscopy, these species are described as S. yunnanensis sp. nov. and S. sinensis sp. nov. The primary features of S. yunnanensis are: elliptical to linear-elliptical valves with broadly rounded ends, straight filiform raphe, almost straight central endings and small, slightly expanding central pores, small central area, symmetrical or slightly asymmetrical central nodule. The primary features of S. sinensis are: elliptical valves, obtusely rounded ends, similar raphe and axial area, transapically less expanded central area, larger, elliptical central nodule. We compare these species to those of a similar shape and morphology.

  6. Origins of rainbow smelt in Lake Ontario

    USGS Publications Warehouse

    Bergstedt, Roger A.

    1983-01-01

    The first rainbow smelt (Osmerus mordax) to enter Lake Ontario were probably migrants from an anadromous strain introduced into New York's Finger Lakes. Since the upper Great Lakes were originally stocked with a landlocked strain from Green Lake, Maine, subsequent migration to Lake Ontario from Lake Erie makes Lake Ontario unique among the Great Lakes in probably having received introductions from two distinct populations.

  7. Comparison of catch and lake trout bycatch in commercial trap nets and gill nets targeting lake whitefish in northern Lake Huron

    USGS Publications Warehouse

    Johnson, James E.; Ebener, Mark P.; Gebhardt, Kenneth; Bergstedt, Roger

    2004-01-01

    We compared seasonal lake whitefish catch rates, lake trout bycatch, and gearinduced lake trout mortality between commercial trap nets and gill nets in north-central Lake Huron. Onboard monitors recorded catches from 260 gill net and 96 trap net lifts from October 1998 through December 1999. Catch rates for lake whitefish were highest in fall for both gear types, reflecting proximity of spawning sites to the study area. Lake whitefish catch rates were also relatively high in spring but low in both gear types in summer. Lake trout were the principal bycatch species in both gears. The lake trout bycatch was lowest in both gear types in fall, highest in gill nets in spring, and highest in trap nets in summer. The ratio of lake trout to legal whitefish (the target species) was highest in summer and lowest in fall in both gear types. The high lake trout ratio in summer was due principally to low catch rates of lake whitefish. All but 3 of 186 live lake trout removed from trap net pots survived for at least two days of observation in laboratory tanks. Therefore, we estimated that post-release survival of trap netted lake trout that had not been entangled in the mesh was 98.4%. In addition, we accounted for stress-induced mortality for lake trout that were live at capture but entangled in the mesh of either gear type. Resulting estimates of lake trout survival were higher in trap nets (87.8%) than in gill nets (39.6%). The number of lake trout killed per lift was highest during summer in trap nets and during spring in gill nets. In trap nets, 85% of dead lake trout were observed to be entangled in the mesh of the pot or tunnels. Survival rates of lake trout in gill nets were higher in our study than reported by others, probably because our nets were hand lifted in a small boat. Our trap net-induced mortality estimates on lake trout were higher than those reported by others because we adjusted our estimates to account for post-release mortality caused by handling and

  8. David Morrison on Lake Vostok

    NASA Video Gallery

    Dr. David Morrison discusses the implications of research possibilities at Lake Vostok, one of the largest subglacial lakes located over two miles beneath the ice in Antarctica. The lake has been c...

  9. Lake Mead, NV

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Lake Mead, Nevada, (36.0N, 114.5E) where the water from the Colorado River empties after it's 273 mile journey through the Grand Canyon of Arizona is the subject of this photo. Other features of interest are Hoover Dam on the south shore of Lake Mead where cheap hydroelectric power is secondary to the water resources made available in this northern desert region and the resort city of Las Vegas, just to the west of Lake Mead.

  10. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-01

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations. PMID:25660534

  11. Great Lakes Literacy Principles

    NASA Astrophysics Data System (ADS)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  12. High Lakes Project -- Impact of Climate Variability and High UV Flux on Lake Habitat: Implications for Early Mars and Present-Day Earth

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.; Grin, E. A.; Bebout, L.; Chong, G.; Demergasso, C.; Fleming, E.; Gaete, V.; Gibson, J.; Häder, D. P.; Mack, J.; Minkley, E.; Pinto, E.; Rose, K.; Ukstins Peate, I.; Tambley, C.; Williamson, C.; Wynne, J. J.

    2009-03-01

    HLP studies lakes between 4,200-6,000 m elevation in the Central Andes. Its primary objective is to understand the impact of increased environmental stress on lake habitats and their evolution during rapid climate change as an analogy to early Mars.

  13. Blue Mountain Lake, New York, earthquake of October 7, 1983.

    USGS Publications Warehouse

    Wendt, G.

    1984-01-01

    The October 7 earthquake near Blue Mountain Lake in the central Adirondack Mountains registered a preliminary Richter magnitude of 5.2. It was widely felt throughout the Northeastern United States and Canada and occurred in an area that has been periodically shaken by earthquakes throughout recorded history. Since 1737, at least 346 felt earthquakes have occurred in New York; an earthquake of similar magnitude last shook the Blue Mountain Lake area on June 9, 1975.    

  14. Climatic data for Mirror Lake, West Thornton, New Hampshire, 1984

    USGS Publications Warehouse

    Sturrock, A.M.; Buso, D.C.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of Mirror lake, (north-central) New Hampshire includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: temperature of lake water surface; dry-bulb and wet-bulb air temperatures; wind speed at 3 levels above the water surface; and solar and atmospheric radiation. Data are collected at raft and land stations. (USGS)

  15. Purines and pyrimidines in sediments from lake erie.

    PubMed

    Van Der Velden, W; Schwartz, A W

    1974-08-23

    Quantitative analyses of purines and pyrimidines in sequential sections of cores from the central and eastern basins of Lake Erie show steeply increasing concentrations in the youngest sediments. This may be related to increased loading of nutrients and recent cultural eutrophication of the lake. The purine and pyrimidine distributions suggest the operation of a specific degradative process for uracil at an extremely early stage in, or prior to, sediment formation. PMID:17736373

  16. Holocene Lake Records on Kamchatka

    NASA Astrophysics Data System (ADS)

    Diekmann, Bernhard; Biskaborn, Boris; Chapligin, Bernhard; Dirksen, Oleg; Dirksen, Veronika; Hoff, Ulrike; Meyer, Hanno; Nazarova, Larisa

    2014-05-01

    The availibility of terrestrial records of Holocene palaeoenvironmental changes in eastern Siberia still is quite limited, compared to other regions on the northern hemisphere. In particular, the Kamchatka Peninsula as an important climate-sensitive region is very underrepresented. Situated at the border of northeastern Eurasia, the maritime-influenced terrestrial setting of Kamchatka offers the potential to pinpoint connections of environmental changes between the periglacial and highly continental landmasses of eastern Siberia and the sub-Arctic Pacific Ocean and Sea of Okhotsk. The study region lies at the eastern end-loop of the global thermohaline ocean conveyor belt and is strongly affected by atmospheric teleconnections. Volcanic, tectonic, and glacial processes overprint palaeoenvironmental changes in addition to primary climate forcing. In order to widen our understanding of plaeoclimate dynamics on Kamchatka, sediment cores from different lake systems and peat sections were recovered and analysed by a multi-proxy approach, using sedimentological and geochemical data as well as fossil bioindicators, such as diatoms, pollen, and chironomids. Chronostratigraphy of the studied records was achieved through radiocarbon dating and tephrostratigraphy. Sediment cores with complete Holocene sedimentary sequences were retrieved from Lake Sokoch, an up to six metre deep lake of proglacial origin, situated at the treeline in the Ganalsky Ridge of southern central Kamchatka (53°15,13'N, 157°45.49' E, 495 m a.s.l.). Lacustrine sediment records of mid- to late Holocene age were also recovered from the up to 30 m deep Two-Yurts Lake, which occupies a former proglacial basin at the eastern flank of the Central Kamchatka Mountain Chain, the Sredinny Ridge (56°49.6'N, 160°06.9'E, 275 m a.s.l.). In addition to sediment coring in the open and deep Two-Yurts Lake, sediment records were also recovered from peat sections and small isolated forest lakes to compare

  17. 11. View of east entry to central corridor of filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View of east entry to central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  18. 32. Piping under central corridor of filtration bed building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Piping under central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  19. 13. View of west entrance to central corridor of filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of west entrance to central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  20. 28. Main water inlet and outlet pipes under central corridor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main water inlet and outlet pipes under central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT