Science.gov

Sample records for laminar airflow tla

  1. Economic analysis of temperature-controlled laminar airflow (TLA) for the treatment of patients with severe persistent allergic asthma

    PubMed Central

    Brazier, Peter; Schauer, Uwe; Hamelmann, Eckard; Holmes, Steve; Pritchard, Clive; Warner, John O

    2016-01-01

    Introduction Chronic asthma is a significant burden for individual sufferers, adversely impacting their quality of working and social life, as well as being a major cost to the National Health Service (NHS). Temperature-controlled laminar airflow (TLA) therapy provides asthma patients at BTS/SIGN step 4/5 an add-on treatment option that is non-invasive and has been shown in clinical studies to improve quality of life for patients with poorly controlled allergic asthma. The objective of this study was to quantify the cost-effectiveness of TLA (Airsonett AB) technology as an add-on to standard asthma management drug therapy in the UK. Methods The main performance measure of interest is the incremental cost per quality-adjusted life year (QALY) for patients using TLA in addition to usual care versus usual care alone. The incremental cost of TLA use is based on an observational clinical study monitoring the incidence of exacerbations with treatment valued using NHS cost data. The clinical effectiveness, used to derive the incremental QALY data, is based on a randomised double-blind placebo-controlled clinical trial comprising participants with an equivalent asthma condition. Results For a clinical cohort of asthma patients as a whole, the incremental cost-effectiveness ratio (ICER) is £8998 per QALY gained, that is, within the £20 000/QALY cost-effectiveness benchmark used by the National Institute for Health and Care Excellence (NICE). Sensitivity analysis indicates that ICER values range from £18 883/QALY for the least severe patients through to TLA being dominant, that is, cost saving as well as improving quality of life, for individuals with the most severe and poorly controlled asthma. Conclusions Based on our results, Airsonett TLA is a cost-effective addition to treatment options for stage 4/5 patients. For high-risk individuals with more severe and less well controlled asthma, the use of TLA therapy to reduce incidence of hospitalisation would be a cost

  2. Improved asthma control in patients with severe, persistent allergic asthma after 12 months of nightly temperature-controlled laminar airflow: an observational study with retrospective comparisons

    PubMed Central

    Schauer, Uwe; Bergmann, Karl-Christian; Gerstlauer, Michael; Lehmann, Sylvia; Gappa, Monika; Brenneken, Amelie; Schulz, Christian; Ahrens, Peter; Schreiber, Jens; Wittmann, Michael; Hamelmann, Eckard

    2015-01-01

    Introduction Continuous or episodic allergen exposure is a major risk factor of frequent symptoms and exacerbations for patients with allergic asthma. It has been shown that temperature-controlled laminar airflow (TLA) significantly reduced allergen exposure and airway inflammation and improved quality of life of patients with poorly controlled allergic asthma. Objective The objective was to evaluate the effects of nighttime TLA when used during real-life conditions for 12 consecutive months in addition to the patients’ regular medication. Methods This multicenter, pre- and postretrospective observational study included patients with inadequately controlled moderate-to-severe allergic asthma who received add-on treatment with TLA for 12 consecutive months. Data on medication use, asthma control, asthma symptoms, lung function, use of hospital resources, and exacerbations were collected after 4 and 12 months and compared with corresponding data collected retrospectively from medical records during the year prior to inclusion in the study. Results Data from 30 patients (mean age 28; range 8–70) completing 4 months and 27 patients completing 12 months of TLA use are presented. The mean number of exacerbations was reduced from 3.6 to 1.3 (p<0.0001), and the ratio of asthma-related emergency room visits or hospitalizations diminished from 72.4 to 23.3% (p=0.001) or from 44.8 to 20.0% (p<0.05), respectively, after 12 months of TLA use. The Asthma Control Test index increased from 14.1 to 18.5 (p<0.0001). After 4 months of TLA use, clear improvements can be shown for most variables in line with the data collected after 12 months. Conclusions The addition of TLA to the patients’ regular medication significantly reduced exacerbations, asthma symptoms, and the utilization of hospital resources. The data support that TLA may be an important new non-pharmacological approach in the management of poorly controlled allergic asthma. PMID:26557252

  3. Effect of a novel temperature-controlled laminar airflow device on personal breathing zone aeroallergen exposure.

    PubMed

    Gore, R B; Boyle, R J; Gore, C; Custovic, A; Hanna, H; Svensson, P; Warner, J O

    2015-02-01

    Temperature-controlled laminar airflow improves symptoms in atopic asthmatics, but its effects on personal allergen exposure are unknown. We aimed to evaluate its effects on personal cat allergen and particulate exposures in a simulated bedroom environment. Five healthy volunteers lay under an active and an inactive temperature-controlled laminar airflow device for 175 min, in a simulated bedroom containing bedding from a cat owner. Total airborne particles (≥0.5 - ≥10 μm diameter) were quantified with a laser particle counter. Airborne allergen was sampled with Institute of Occupational Medicine filters. Inhaled exposure was sampled with nasal air samplers. Allergen-containing particles were quantified by immunoassay. Treatment reduced total airborne particles (>0.5 μm diameter) by >99% (P < 0.001) and reduced airborne allergen concentration within the breathing zone (ratio of median counts = 30, P = 0.043). Treatment reduced inhaled allergen (ratio of median counts = 7, P = 0.043). Treatment was not associated with a change in airborne allergen concentration outside of the breathing zone (P = 0.160). Temperature-controlled laminar airflow treatment of individuals in an allergen-rich experimental environment results in significant reductions in breathing zone allergenic and non-allergenic particle exposure, and in inhaled cat allergen exposure. These findings may explain the clinical benefits of temperature-controlled laminar airflow. PMID:24750266

  4. Microbiological Studies on the Performance of a Laminar Airflow Biological Cabinet

    PubMed Central

    Mcdade, Joseph J.; Sabel, Fred L.; Akers, Ronald L.; Walker, Robert J.

    1968-01-01

    Engineering and microbiological tests indicated that a typical, commercial laminar airflow cabinet was not effective in providing either product protection or agent containment. The cabinet was modified and tested through a series of alternate configurations to establish a set of design criteria. A mock-up cabinet was developed from these design criteria. The mock-up unit was evaluated for efficiency in providing both product protection and agent containment. In these evaluations, challenge methods were developed to simulate normal, in-use laboratory operations. Controlled bacterial or viral aerosol challenges were used at higher than normal levels to provide stringent test conditions. Test results indicated that the mock-up unit was considerably better in preventing agent penetration (0.1 to 0.2 particles per 100 ft3 of air) than the commercial cabinet (5 to 6 particles per 100 ft3 of air) during product protection tests. Similarly, agent containment was considerably better in the new cabinet (particle escape of 2 to 3 per 100 ft3 of air at only one of the five test sites) than in the commercial cabinet (particle escape of 2 to 14 per 100 ft3 of air at three of the five test sites). PMID:4874462

  5. Sequence types of Staphylococcus epidermidis associated with prosthetic joint infections are not present in the laminar airflow during prosthetic joint surgery.

    PubMed

    Månsson, Emeli; Hellmark, Bengt; Sundqvist, Martin; Söderquist, Bo

    2015-07-01

    Molecular characterization of Staphylococcus epidermidis isolates from prosthetic joint infections (PJIs) has demonstrated a predominance of healthcare-associated multi-drug resistant sequence types (ST2 and ST215). How, and when, patients acquire these nosocomial STs is not known. The aim was to investigate if sequence types of S. epidermidis associated with PJIs are found in the air during prosthetic joint surgery. Air sampling was undertaken during 17 hip/knee arthroplasties performed in operating theaters equipped with mobile laminar airflow units in a 500-bed hospital in central Sweden. Species identification was performed using MALDI-TOF MS and 16S rRNA gene analysis. Isolates identified as S. epidermidis were further characterized by MLST and antibiotic susceptibility testing. Seven hundred and thirty-five isolates were available for species identification. Micrococcus spp. (n = 303) and coagulase-negative staphylococci (n = 217) constituted the majority of the isolates. Thirty-two isolates of S. epidermidis were found. S. epidermidis isolates demonstrated a high level of allelic diversity with 18 different sequence types, but neither ST2 nor ST215 was found. Commensals with low pathogenic potential dominated among the airborne microorganisms in the operating field during prosthetic joint surgery. Nosocomial sequence types of S. epidermidis associated with PJIs were not found, and other routes of inoculation are therefore of interest in future studies. PMID:25951935

  6. Timeline Analysis Program (TLA-1)

    NASA Technical Reports Server (NTRS)

    Miller, K. H.

    1976-01-01

    The Timeline Analysis Program (TLA-1) was described. This program is a crew workload analysis computer program that was developed and expanded from previous workload analysis programs, and is designed to be used on the NASA terminal controlled vehicle program. The following information is described: derivation of the input data, processing of the data, and form of the output data. Eight scenarios that were created, programmed, and analyzed as verification of this model were also described.

  7. Timeline analysis program (TLA-1), appendices

    NASA Technical Reports Server (NTRS)

    Miller, K. H.

    1976-01-01

    Appendices for the Timeline Analysis Program (TLA-1) were given. The appendices contain the Atlanta terminal area scenarios, the task catalog and the control and display configurations for the forward and aft flight decks of the NASA 515 aircraft, and the event/procedure, phase, mission, and subsystem catalogs.

  8. F-16XL Supersonic Laminar Flow Test Flight

    NASA Video Gallery

    An F-16XL aircraft was used by the Dryden Flight Research Center, Edwards, California, in a NASA-wide program to improve laminar airflow on aircraft flying at sustained supersonic speeds. It was th...

  9. Airflow resistance in soybean

    NASA Astrophysics Data System (ADS)

    Kenghe, R. N.; Nimkar, P. M.; Shirkole, S. S.; Shinde, K. J.

    2012-04-01

    Resistance of material to airflow is an important factor to consider in the design of a dryer or an aeration system. The airflow resistance of soybean was determined with the modified airflow resistance apparatus. It was found that pressure drop increased with increase in airflow rate, bulk density, bed depth and decreased with moisture content. Modified Shedd equation, Hukill and Ives equation and modified Ergun equation were examined for pressure drop prediction. Airflow resistance was accurately described by modified Shedd equation followed by Hukill and Ives equation and modified Ergun equation. The developed statistical model comprised of airflow rate, moisture content and bulk density could fit pressure drop data reasonably well.

  10. Airflow control system

    DOEpatents

    Motszko, Sean Ronald; McEnaney, Ryan Patrick; Brush, Jeffrey Alan; Zimmermann, Daniel E.

    2007-03-13

    A dual airflow control system for an environment having a first air zone and a second air zone. The system includes a first input device operable to generate a first input signal indicative of a desired airflow to the first zone and a second input device operable to generate a second input signal indicative of a desired airflow to the second zone. First and second flow regulators are configured to regulate airflow to the first and second zones, respectively, such that the first and second regulators selectively provide the airflow to each of the first and second zones based on the first and second input signals. A single actuator is associated with the first and second flow regulators. The actuator is operable to simultaneously actuate the first and second flow regulators based on an input from the first and second input devices to allow the desired airflows to the first and the second zones.

  11. Assessing multizone airflow software

    SciTech Connect

    Lorenzetti, D.M.

    2001-12-01

    Multizone models form the basis of most computer simulations of airflow and pollutant transport in buildings. In order to promote computational efficiency, some multizone simulation programs, such as COMIS and CONTAM, restrict the form that their flow models may take. While these tools allow scientists and engineers to explore a wide range of building airflow problems, increasingly their use has led to new questions not answerable by the current generation of programs. This paper, directed at software developers working on the next generation of building airflow models, identifies structural aspects of COMIS and related programs that prevent them from easily incorporating desirable new airflow models. The paper also suggests criteria for evaluating alternate simulation environments for future modeling efforts.

  12. Defining Airflow Obstruction

    PubMed Central

    Eschenbacher, William L.

    2016-01-01

    Airflow obstruction has been defined using spirometric test results when the forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) ratio is below a fixed cutoff (<70%) or lower limits of normal (LLN) from reference equations that are based on values from a normal population. However, similar to other positive or abnormal diagnostic test results that are used to identify the presence of disease, perhaps airflow obstruction should be defined based on the values of FEV1/FVC for a population of individuals with known disease such as chronic obstructive pulmonary disease (COPD). Unfortunately, we do not know such a distribution of values of FEV1/FVC for patients with COPD since there is no gold standard for this syndrome or condition. Yet, we have used this physiologic definition of airflow obstruction based on a normal population to identify patients with COPD. In addition, we have defined airflow obstruction as either being present or absent. Instead, we should use a different approach to define airflow obstruction based on the probability or likelihood that the airflow obstruction is present which in turn would give us the probability or likelihood of a disease state such as COPD. PMID:27239557

  13. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  14. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  15. Airflow models gaining clout

    SciTech Connect

    Post, N.M.

    1994-10-10

    Move over, mock-ups. So long, smoke bombs. Take a walk, wind tunnels. Computational fluid dynamics, a spaceage simulation technique, is gaining velocity in the building community. And the design of inner spaces may never be the same. CFD is an equation-intensive computer modeling method that can simulate transient and steady-state airflow patterns and temperature gradients, indoors or out. CFD is used to downsize heating, ventilating and air conditioning systems, locate air outlets, and in general, create spaces that offer creature comfort, provide quality air and use less energy. The method is good for new construction, retrofits and forensic work, for example to investigate a building fire or a contaminant. In a room, CFD helps engineers consider, over a period of time, the combined impacts of ventilation, size, shape, contents, weather, even fenestration. For its first decade or two, CFD stayed the near-exclusive domain of aerospace, defense and electronics. With few exceptions, the building community could not afford the supercomputers that were needed to run the tens of thousands of equations involved. However, in the past few years, thanks to the increasing power and decreasing cost of computers, CFD simulation became practical. Curtain wall designers are even using it, though not without some controversy. Indoor air quality specialists, smoke and fire-spread researchers, laboratory designers, energy engineers, code writers, architects, and plant and building engineers are uncharacteristically upbeat about the tool. {open_quotes}CFD modeling is so many light years ahead of design tools that exist,{close_quotes} says Mariano Rodriguez, director of research and development for architect The Hillier Group, Princeton, N.J. {open_quotes}It`s the next step up from a wind tunnel test, and you don`t need a $300,000 wind tunnel.{close_quotes}

  16. Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference

    PubMed Central

    Mitra, Mautusi; Kirst, Henning; Dewez, David; Melis, Anastasios

    2012-01-01

    Truncated light-harvesting antenna 1 (TLA1) is a nuclear gene proposed to regulate the chlorophyll (Chl) antenna size in Chlamydomonas reinhardtii. The Chl antenna size of the photosystems and the chloroplast ultrastructure were manipulated upon TLA1 gene over-expression and RNAi downregulation. The TLA1 over-expressing lines possessed a larger chlorophyll antenna size for both photosystems and contained greater levels of Chl b per cell relative to the wild type. Conversely, TLA1 RNAi transformants had a smaller Chl antenna size for both photosystems and lower levels of Chl b per cell. Western blot analyses of the TLA1 over-expressing and RNAi transformants showed that modulation of TLA1 gene expression was paralleled by modulation in the expression of light-harvesting protein, reaction centre D1 and D2, and VIPP1 genes. Transmission electron microscopy showed that modulation of TLA1 gene expression impacts the organization of thylakoid membranes in the chloroplast. Over-expressing lines showed well-defined grana, whereas RNAi transformants possessed loosely held together and more stroma-exposed thylakoids. Cell fractionation suggested localization of the TLA1 protein in the inner chloroplast envelope and potentially in association with nascent thylakoid membranes, indicating a role in Chl antenna assembly and thylakoid membrane biogenesis. The results provide a mechanistic understanding of the Chl antenna size regulation by the TLA1 gene. PMID:23148270

  17. Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.

    NASA Astrophysics Data System (ADS)

    Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David

    1996-11-01

    A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.

  18. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  19. MICROPROCESSOR CONTROL OF ROTOGRAVURE AIRFLOWS

    EPA Science Inventory

    The report discusses the technical and economic viability of using micro-processor-based control technology to collect volatile organic compound (VOC) emissions from a paper coating operation. The microprocessor-based control system monitors and controls both the airflow rate and...

  20. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    Lin, K. -C.; Dai, Z.; Faeth, G. M.

    1999-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide associated with soot emissions is responsible for most fire deaths, and limited understanding of soot processes is a major impediment to the development of computational combustion. Thus, soot processes within laminar nonpremixed (diffusion) flames are being studied, emphasizing space-based experiments at microgravity. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. The microgravity environment is emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. Results discussed here were obtained from experiments carried out on two flights of the Space Shuttle Columbia. After a brief discussion of experimental methods, results found thus far are described, including soot concentration measurements, laminar flame shapes, laminar smoke points and flame structure. The present discussion is brief.

  1. Visual exploration of nasal airflow.

    PubMed

    Zachow, Stefan; Muigg, Philipp; Hildebrandt, Thomas; Doleisch, Helmut; Hege, Hans-Christian

    2009-01-01

    Rhinologists are often faced with the challenge of assessing nasal breathing from a functional point of view to derive effective therapeutic interventions. While the complex nasal anatomy can be revealed by visual inspection and medical imaging, only vague information is available regarding the nasal airflow itself: Rhinomanometry delivers rather unspecific integral information on the pressure gradient as well as on total flow and nasal flow resistance. In this article we demonstrate how the understanding of physiological nasal breathing can be improved by simulating and visually analyzing nasal airflow, based on an anatomically correct model of the upper human respiratory tract. In particular we demonstrate how various Information Visualization (InfoVis) techniques, such as a highly scalable implementation of parallel coordinates, time series visualizations, as well as unstructured grid multi-volume rendering, all integrated within a multiple linked views framework, can be utilized to gain a deeper understanding of nasal breathing. Evaluation is accomplished by visual exploration of spatio-temporal airflow characteristics that include not only information on flow features but also on accompanying quantities such as temperature and humidity. To our knowledge, this is the first in-depth visual exploration of the physiological function of the nose over several simulated breathing cycles under consideration of a complete model of the nasal airways, realistic boundary conditions, and all physically relevant time-varying quantities. PMID:19834215

  2. Development of laminar flow control wing surface porous structure

    NASA Technical Reports Server (NTRS)

    Klotzsche, M.; Pearce, W.; Anderson, C.; Thelander, J.; Boronow, W.; Gallimore, F.; Brown, W.; Matsuo, T.; Christensen, J.; Primavera, G.

    1984-01-01

    It was concluded that the chordwise air collection method, which actually combines chordwise and spanwise air collection, is the best of the designs conceived up to this time for full chord laminar flow control (LFC). Its shallower ducting improved structural efficiency of the main wing box resulting in a reduction in wing weight, and it provided continuous support of the chordwise panel joints, better matching of suction and clearing airflow requirements, and simplified duct to suction source minifolding. Laminar flow control on both the upper and lower surfaces was previously reduced to LFC suction on the upper surface only, back to 85 percent chord. The study concludes that, in addition to reduced wing area and other practical advantages, this system would be lighter because of the increase in effective structural wing thickness.

  3. Laminar Multicell Lithium Batteries

    SciTech Connect

    Bruder, A. H.

    1984-01-31

    Laminar batteries of series connected cells comprising lithium anodes and an electrolyte containing a passivating solvent reactive with lithium in which the cells are electrically connected in series by intercell barriers comprising outer layers of electrochemically inert electronically conducting material in contact with the electrochemically active anode and cathode of adjacent cells and a layer of metal foil between the electrochemically inert layers.

  4. Laminar cells and batteries

    SciTech Connect

    Plasse, P.A.

    1983-06-21

    A laminar battery comprising an end terminal formed with a pocket to accept internal components without requiring additional edge thickness in the seal area, incorporating as the separator in at least the cell immediately adjacent the pocketed end terminal a layer of cellophane together with a layer of paper on the side of the cellophane confronting the cathode.

  5. Mechanical responses of rat vibrissae to airflow.

    PubMed

    Yu, Yan S W; Graff, Matthew M; Hartmann, Mitra J Z

    2016-04-01

    The survival of many animals depends in part on their ability to sense the flow of the surrounding fluid medium. To date, however, little is known about how terrestrial mammals sense airflow direction or speed. The present work analyzes the mechanical response of isolated rat macrovibrissae (whiskers) to airflow to assess their viability as flow sensors. Results show that the whisker bends primarily in the direction of airflow and vibrates around a new average position at frequencies related to its resonant modes. The bending direction is not affected by airflow speed or by geometric properties of the whisker. In contrast, the bending magnitude increases strongly with airflow speed and with the ratio of the whisker's arc length to base diameter. To a much smaller degree, the bending magnitude also varies with the orientation of the whisker's intrinsic curvature relative to the direction of airflow. These results are used to predict the mechanical responses of vibrissae to airflow across the entire array, and to show that the rat could actively adjust the airflow data that the vibrissae acquire by changing the orientation of its whiskers. We suggest that, like the whiskers of pinnipeds, the macrovibrissae of terrestrial mammals are multimodal sensors - able to sense both airflow and touch - and that they may play a particularly important role in anemotaxis. PMID:27030774

  6. Airflow measurement inaccuracies in aerosol imaging

    SciTech Connect

    Sirr, S.A.; Miltz-Miller, S.; Notman, D.N.; Boyle, M.J.; Boudreau, R.J.; Loken, M.K.

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors.

  7. Airflow measurement inaccuracies in aerosol imaging.

    PubMed

    Sirr, S A; Miltz-Miller, S; Notman, D N; Boyle, M J; Boudreau, R J; Loken, M K

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors. PMID:3952316

  8. Laminar Soot Processes (LSP)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Kim, C. H.; Krishnan, S. S.; Lin, K.-C.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering the structure and the soot surface reaction properties of laminar nonpremixed (diffusion) flames. The study was limited to ground-based measurements of buoyant laminar jet diffusion flames at pressures of 0.1-1.0 atm. The motivation for the research is that soot formation in flames is a major unresolved problem of combustion science that influences the pollutant emissions, durability and performance of power and propulsion systems, as well as the potential for developing computational combustion. The investigation was divided into two phases considering the structure of laminar soot-containing diffusion flames and the soot surface reaction properties (soot surface growth and oxidation) of these flames, in turn. The first phase of the research addressed flame and soot structure properties of buoyant laminar jet diffusion flames at various pressures. The measurements showed that H, OH and O radical concentrations were generally in superequilibrium concentrations at atmospheric pressure but tended toward subequilibrium concentrations as pressures decreased. The measurements indicated that the original fuel decomposed into more robust compounds at elevated temperatures, such as acetylene (unless the original fuel was acetylene) and H, which are the major reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. The second phase of the research addressed soot surface reaction properties, e.g., soot surface growth and surface oxidation. It was found that soot surface growth rates in both laminar premixed and diffusion flames were in good agreement, that these rates were relatively independent of fuel type, and that these rates could be correlated by the Hydrogen-Abstraction/Carbon-Addition (HACA) mechanisms of Colket and Hall (1994), Frenklach et al. (1990,1994), and Kazakov et al. (1995). It was also

  9. Supersonic Laminar Flow Control Research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Wiberg, Clark G.

    1996-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique will be studied. The primary tasks of the research apply to the NASA/Ames PoC and LFSWT's nozzle design with laminar flow control and are listed as follows: Predictions of supersonic laminar boundary layer stability and transition; Effects of wall heating and cooling on supersonic laminar flow control on a flat plate; Performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; Effects of a conducted-vs-pulse wall temperature distribution for the LFSWT; and Application of wall heating and/or cooling to laminar boundary layer and flow separation control of airfoils and investigation of related active control techniques.

  10. Submegabase Clusters of Unstable Tandem Repeats Unique to the Tla Region of Mouse T Haplotypes

    PubMed Central

    Uehara, H.; Ebersole, T.; Bennett, D.; Artzt, K.

    1990-01-01

    We describe here the identification and genomic organization of mouse t haplotype-specific elements (TSEs) 7.8 and 5.8 kb in length. The TSEs exist as submegabase-long clusters of tandem repeats localized in the Tla region of the major histocompatibility complex of all t haplotype chromosomes examined. In contrast, no such clusters were detected among 12 inbred strains of Mus musculus and other Mus species; thus, clusters of TSEs represent the first absolutely qualitative difference between t haplotypes and wild-type chromosomes. Pulsed field gel electrophoresis shows that the number of clusters, and the number of repeats in each cluster are extremely variable. Dramatic quantitative differences of TSEs uniquely distinguish every independent t haplotype from any other. The complete nucleotide sequence of one 7.8-kb TSE reveals significant homology to the ETn (a major transcript in the early embryo of the mouse), and some homologies to intracisternal A-particles and the mammary tumor virus env gene. Apart from the diagnostic relevance to t haplotypes, evolutionary and functional significances are discussed with respect to chromosome structure and genetic recombination. PMID:2076812

  11. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Image of soot (smoke) plume made for the Laminar Soot Processes (LSP) experiment during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2002. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  12. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Interior of the Equipment Module for the Laminar Soot Processes (LSP-2) experiment that fly in the STS-107 Research 1 mission in 2002 (LSP-1 flew on Microgravity Sciences Lab-1 mission in 1997). The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner (yellow ellipse), similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a radiometer or heat sensor (blue circle), and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  13. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Laminar Soot Processes (LSP) experiment under way during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2001. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  14. Flight experiences with laminar flow

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    1986-01-01

    A review of natural laminar flow (NLF) flight experiences over the period from the 1930's to the present has been given to provide information on the achievability and maintainability of NLF in typical airplane operating environments. Significant effects of loss of laminar flow on airplane performance have been observed for several airplanes, indicating the importance of providing information on these changes to laminar flow airplane operators. Significant changes in airplane stability and control and maximum lift were observed in flight experiments with the loss of laminar flow. However, these effects can be avoided by proper selection of airfoils. Conservative laminar flow airfoil designs should be employed which do not experience significant loss of lift (caused by flow separation) upon the loss of laminar flow. Mechanisms have been observed for the effects of insect accumulation, flight through clouds and precipitation, and propeller slipstreams on laminar flow behavior. Fixed transition testing, in addition to free transition testing, is recommended as a new standard procedure for airplanes with surfaces designed to support laminar flow.

  15. Airflow resistance of selected biomass materials

    SciTech Connect

    Cooper, S.C.; Sumner, H.R.

    1985-01-01

    Pressure drop created when air was forced through beds of selected biomass materials was determined. Materials tested included peanut hulls, peanut hull pellets, maize cobs, and wood shavings, chips and bark. The data were presented as logarithmic plots and equations of pressure drop versus airflow. The airflow resistances of the biomass materials increased with an increase in bulk density and were found to be in the range between values for ear and shelled maize. 12 references.

  16. Structure of laminar sooting inverse diffusion flames

    SciTech Connect

    Mikofski, Mark A.; Fernandez-Pello, A. Carlos; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.

    2007-06-15

    The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

  17. Continuous laminar smoke generator

    NASA Technical Reports Server (NTRS)

    Weinstein, L. M. (Inventor)

    1985-01-01

    A smoke generator capable of emitting a very thin, laminar stream of smoke for use in high detail flow visualization was invented. The generator is capable of emitting a larger but less stable rope of smoke. The invention consists of a pressure supply and fluid supply which supply smoke generating fluid to feed. The feed tube is directly heated by electrical resistance from current supplied by power supply and regulated by a constant temperature controller. A smoke exit hole is drilled in the wall of feed tube. Because feed tube is heated both before and past exit hole, no condensation of smoke generating occurs at the smoke exit hole, enabling the production of a very stable smoke filament. The generator is small in size which avoids wind turbulence in front of the test model.

  18. Supersonic Laminar Flow Control Research

    NASA Technical Reports Server (NTRS)

    Lo, C. F.; Wiberg, Clark G.

    1996-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques are developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique are studied. The primary tasks of the research apply to the NASA/Ames Proof-of-Concept (PoC) and the Laminar Flow Supersonic Wind Tunnel's (LFSWT's) nozzle design with laminar flow control and are listed as follows: (1) Predictions of supersonic laminar boundary layer stability and transition; (2) Effects of wall heating and cooling on supersonic laminar flow control on a flat plate; (3) Performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; (4) Effects of a conducted -vs- pulse wall temperature distribution for the LFSWT; and (5) Application of wall heating and/or cooling to laminar boundary layer and flow separation control of airfoils and investigation of related active control techniques.

  19. Airflow resistance of airflow-regulating devices described by independent coefficients.

    PubMed

    Verkerke, G J; Geertsema, A A; Schutte, H K

    2001-07-01

    Rehabilitation after laryngectomy includes more and more the use of airflow-regulating devices such as shunt valves (SVs), tracheostoma valves (TSVs), and heat and moisture exchange (HME) filters. In determining the quality of those devices, airflow resistance is a very important factor. It is currently defined as pressure drop divided by airflow. However, for most applications, this definition does not result in a pressure- and airflow-independent parameter. Therefore, a new set of parameters is defined and applied to pressure-airflow curves of airflow-regulating devices. Pressure drop over TSVs and HME filters appears to have a squared relationship with flow. In SVs, it has a linear relationship. The new set of parameters describes the pressure-airflow relationship properly for all considered devices. In conclusion, theoretical predictions of flow mechanics appear to be valid for SVs, TSVs, and HME filters. Only 2 coefficients are necessary to describe the pressure-flow characteristics of these airflow-regulating devices, independent of pressure drop over and flow through the device. PMID:11465823

  20. Overview of Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    The history of Laminar Flow Control (LFC) from the 1930s through the 1990s is reviewed and the current status of the technology is assessed. Early studies related to the natural laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. Although most of this publication is about slot-, porous-, and perforated-suction LFC concept studies in wind tunnel and flight experiments, some mention is made of thermal LFC. Theoretical and computational tools to describe the LFC aerodynamics are included for completeness.

  1. RANS and LES simulations of the airflow through nasal cavities

    NASA Astrophysics Data System (ADS)

    Lamberti, Giacomo

    2015-11-01

    The prediction of detailed flow patterns in nasal cavities using computational fluid dynamics (CFD) can provide essential information on the potential relationship between patient-specific geometrical characteristics and health problems. The long-term goal of the OpenNOSE project is to develop a reliable open-source computational tool based on the OpenFOAM CFD toolbox that can assist surgeons in their daily practice. The objective of this study was to investigate the effect of the turbulence model and boundary conditions on simulations of the airflow in nasal cavities. The geometry, including paranasal sinuses, was reconstructed from a carefully selected CT scan, and RANS and LES simulations were carried out for steady inspiration and expiration. At a flow rate near 20 l/min, the flow is laminar in most of the domain. During the inspiration phase, turbulence develops in nasopharynx and oropharynx regions; during the expiration phase, another vortical region is observed down the nostrils. A comparison between different boundary conditions suggests the use of a total pressure condition, or alternatively a uniform velocity, at the inlet and outlet. In future work the same geometry will be used for setting up a laboratory experiment, intended to cross-validate the numerical results.

  2. Measurement of airflow in residential furnaces

    SciTech Connect

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  3. An electromagnetic energy scavenger from direct airflow

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Hyok; Ji, Chang-Hyeon; Galle, Preston; Herrault, Florian; Wu, Xiaosong; Lee, Jin-Ho; Choi, Chang-Auk; Allen, Mark G.

    2009-09-01

    This paper presents two types of electromagnetic power generators exploiting direct conversion of airflow into mechanical vibration: (1) a windbelt-based vibratory linear energy scavenger targeting strong airflows and (2) a Helmholtz-resonator-based generator capable of scavenging energy from weaker airflows, i.e. environmental airflows. Both devices consist of two tightly coupled parts: a mechanical resonator, which produces high-frequency mechanical oscillation from quasi-constant airflow, and a permanent magnet/coil system, which generates electrical power from the resonator's motion. The proposed energy scavengers obviate the typically required matching of the resonant frequencies of the scavenger and the ambient energy sources it taps. This enables a device that is simpler, smaller and higher-frequency than the previously reported resonant power generator. The windbelt-based energy scavenger demonstrated a peak-to-peak output voltage of 81 mV at 0.53 kHz, from an input pressure of 50 kPa. The Helmholtz-resonator-based energy scavenger achieved a peak-to-peak output voltage of 4 mV at 1.4 kHz, from an input pressure of 0.2 kPa, which is equivalent to 5 m s-1 (10 mph) of wind velocity.

  4. Laminar Flow Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, David F.

    1992-10-01

    The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.

  5. Convection warmers--a possible source of contamination in laminar airflow operating theatres?

    PubMed

    Tumia, N; Ashcroft, G P

    2002-11-01

    This work results from concerns that forced-air convection heaters applied to patients in the operating theatre might interfere with ultra-clean ventilation system and thus be a potential source of wound contamination. Air samples were taken in the operative field and the bacterial load calculated by estimating the number of colony forming units per cubic metre of air (cfu/m(3)). Six tests were carried out, two in empty theatres and four during standard orthopaedic operating lists. Differences were seen between empty theatres and those standing empty for short periods during busy operating lists. Increases were seen on entry to theatre of staff and patients with the convection heaters off. A further small rise was seen after the convection heaters were turned on when applied to patients. This study showed that use of warm air convection heaters on patients produced a small increase in the number of colony forming units in ultra-clean air theatres but the levels were unlikely to have clinical significance. By far the greatest effect on numbers was movement and presence of the patient and theatre staff in the theatre. PMID:12419268

  6. AIRFLOW CHARACTERISTICS IN A BABOON NASAL PASSAGE CAST

    EPA Science Inventory

    Airflow patterns in the nasal Passages influence the distribution of air-pollutant-induced lesions in the airway mucosa. ittle is known about airflow characteristics or the complex nasopharyngeal airway of man and experimental animals. irflow characteristics in the nasopharyngeal...

  7. Instrument Measures Airflow Friction Without Contact

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    Dual beam laser interferometer determines airflow friction against body by measuring time-varying thickness of wind sheared oil film. Measurements yield skin friction between film and airstream. Errors from prerun oil flow, tunnel starting transients, and initial surface waves therefore eliminated.

  8. Laminar flow control is maturing

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D.; Bartlett, Dennis W.; Maddalon, Dal V.

    1988-01-01

    Recent research demonstrates that laminar flow (LF) can be reliable in flight and that the support system need not be complex. Shaping produces favorable pressure gradients for maintaining natural laminar flow (NLF), and laminar flow control (LFC) techniques such as full chord suction promise a fuel-saving payoff of up to 30 percent on long-range missions. For large aircraft, current research is concentrated on hybrid LFC concepts which combine suction and pressure-gradient control. At NASA Ames, an F-14 with variable wing sweep has been flight tested with smooth surface gloves on the wings; preliminary results indicate high transition Reynolds numbers to sweep angles as large as 25 deg. In addition, a 757 was flight tested with an NLF glove on the right wing just outboard of the engine pylon; and the LF was found to be suprisingly robust.

  9. Supersonic laminar-flow control

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Malik, Mujeeb R.

    1987-01-01

    Detailed, up to date systems studies of the application of laminar flow control (LFC) to various supersonic missions and/or vehicles, both civilian and military, are not yet available. However, various first order looks at the benefits are summarized. The bottom line is that laminar flow control may allow development of a viable second generation SST. This follows from a combination of reduced fuel, structure, and insulation weight permitting operation at higher altitudes, thereby lowering sonic boom along with improving performance. The long stage lengths associated with the emerging economic importance of the Pacific Basin are creating a serious and renewed requirement for such a vehicle. Supersonic LFC techniques are discussed.

  10. Hybrid laminar flow control study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Hybrid laminar flow control (HLFC) in which leading edge suction is used in conjunction with wing pressure distribution tailoring to postpone boundary layer transition and reduce friction drag was examined. Airfoil design characteristics required for laminar flow control (LFC) were determined. The aerodynamic design of the HLFC wing for a 178 passenger commercial turbofan transport was developed, and a drag was estimated. Systems changes required to install HLFC were defined, and weights and fuel economy were estimated. The potential for 9% fuel reduction for a 3926-km (2120-nmi) mission is identified.

  11. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer

  12. F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dryden research pilot Dana Purifoy bends NASA F-16 XL #848 away from the tanker on the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight from NASA's Dryden Flight Research Center, Edwards, California, on Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds. The flight tests at Dryden involved use of a suction system which drew boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' that was fitted to the upper surface of the F-16XL's left wing.

  13. F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The perforated titanium overlay mounted on the upper surface of the left wing is clearly evident on this view of NASA 848, a highly modified F-16XL aircraft flown by NASA's Dryden Flight Research Center in the Supersonic Laminar Flow Control (SLFC) research program. The two-seat, single-engine craft, one of only two 'XL' F-16s built, recently concluded the SLFC project with its 45th data collection mission. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew a small part of the boundary-layer air through millions of tiny laser-drilled holes in the 'glove' fitted to the upper left wing.

  14. Laminar flow control for transport aircraft applications

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.

    1986-01-01

    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  15. The Laminar Soot Processes (LSP)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Laminar Soot Processes (LSP) Experiment Mounting Structure (EMS) was used to conduct the LSP experiment on Combustion Module-1. The EMS was inserted into the nozzle on the EMS and ignited by a hot wire igniter. The flame and its soot emitting properties were studied.

  16. Laminar flow: Challenge and potential

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.

    1987-01-01

    Commercial air transportation has experienced revolutionary technology advances since WWII. These technology advances have resulted in an explosive growth in passenger traffic. Today, however, many technologies have matured, and maintaining a similar growth rate will be a challenge. A brief history of laminar flow technology and its application to subsonic and supersonic air transportation is presented.

  17. Laminar-flow flight experiments

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D.; Maddalon, Dal V.; Bartlett, D. W.; Collier, F. S., Jr.; Braslow, A. L.

    1989-01-01

    The flight testing conducted over the past 10 years in the NASA laminar-flow control (LFC) will be reviewed. The LFC program was directed towards the most challenging technology application, the high supersonic speed transport. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time.

  18. Hybrid mesh for nasal airflow studies.

    PubMed

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  19. Hybrid Mesh for Nasal Airflow Studies

    PubMed Central

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  20. Operational considerations for laminar flow aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Wagner, Richard D.

    1986-01-01

    Considerable progress has been made in the development of laminar flow technology for commercial transports during the NASA Aircraft Energy Efficiency (ACEE) laminar flow program. Practical, operational laminar flow control (LFC) systems have been designed, fabricated, and are undergoing flight testing. New materials, fabrication methods, analysis techniques, and design concepts were developed and show much promise. The laminar flow control systems now being flight tested on the NASA Jetstar aircraft are complemented by natural laminar flow flight tests to be accomplished with the F-14 variable-sweep transition flight experiment. An overview of some operational aspects of this exciting program is given.

  1. Assembly of the Light-Harvesting Chlorophyll Antenna in the Green Alga Chlamydomonas reinhardtii Requires Expression of the TLA2-CpFTSY Gene1[C][W][OA

    PubMed Central

    Kirst, Henning; García-Cerdán, Jose Gines; Zurbriggen, Andreas; Melis, Anastasios

    2012-01-01

    The truncated light-harvesting antenna2 (tla2) mutant of Chlamydomonas reinhardtii showed a lighter-green phenotype, had a lower chlorophyll (Chl) per-cell content, and higher Chl a/b ratio than corresponding wild-type strains. Physiological analyses revealed a higher intensity for the saturation of photosynthesis and greater Pmax values in the tla2 mutant than in the wild type. Biochemical analyses showed that the tla2 strain was deficient in the Chl a-b light-harvesting complex, and had a Chl antenna size of the photosystems that was only about 65% of that in the wild type. Molecular and genetic analyses showed a single plasmid insertion in the tla2 strain, causing a chromosomal DNA rearrangement and deletion/disruption of five nuclear genes. The TLA2 gene, causing the tla2 phenotype, was cloned by mapping the insertion site and upon complementation with each of the genes that were deleted. Successful complementation was achieved with the C. reinhardtii TLA2-CpFTSY gene, whose occurrence and function in green microalgae has not hitherto been investigated. Functional analysis showed that the nuclear-encoded and chloroplast-localized CrCpFTSY protein specifically operates in the assembly of the peripheral components of the Chl a-b light-harvesting antenna. In higher plants, a cpftsy null mutation inhibits assembly of both the light-harvesting complex and photosystem complexes, thus resulting in a seedling-lethal phenotype. The work shows that cpftsy deletion in green algae, but not in higher plants, can be employed to generate tla mutants. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions. PMID:22114096

  2. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.

    PubMed

    Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-03-01

    In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers-due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation. PMID:26541595

  3. Effects of the ambient temperature on the airflow across a Caucasian nasal cavity.

    PubMed

    Burgos, M A; Sanmiguel-Rojas, E; Martín-Alcántara, A; Hidalgo-Martínez, M

    2014-03-01

    We analyse the effects of the air ambient temperature on the airflow across a Caucasian nasal cavity under different ambient temperatures using CFD simulations. A three-dimensional nasal model was constructed from high-resolution computed tomography images for a nasal cavity from a Caucasian male adult. An exhaustive parametric study was performed to analyse the laminar-compressible flow driven by two different pressure drops between the nostrils and the nasopharynx, which induced calm breathing flow rates ࣈ 5.7 L/min and ࣈ 11.3 L/min. The inlet air temperature covered the range - 10(o) C ⩽ To ⩽50(o) C. We observed that, keeping constant the wall temperature of the nasal cavity at 37(o) C, the ambient temperature affects mainly the airflow velocity into the valve region. Surprisingly, we found an excellent linear relationship between the ambient temperature and the air average temperature reached at different cross sections, independently of the pressure drop applied. Finally, we have also observed that the spatial evolution of the mean temperature data along the nasal cavity can be collapsed for all ambient temperatures analysed with the introduction of suitable dimensionless variables, and this evolution can be modelled with the help of hyperbolic functions, which are based on the heat exchanger theory. PMID:24574201

  4. Natural Laminar Flow Flight Experiment

    NASA Technical Reports Server (NTRS)

    Steers, L. L.

    1981-01-01

    A supercritical airfoil section was designed with favorable pressure gradients on both the upper and lower surfaces. Wind tunnel tests were conducted in the Langley 8 Foot Transonic Pressure Tunnel. The outer wing panels of the F-111 TACT airplane were modified to incorporate partial span test gloves having the natural laminar, flow profile. Instrumentation was installed to provide surface pressure data as well as to determine transition location and boundary layer characteristics. The flight experiment encompassed 19 flights conducted with and without transition fixed at several locations for wing leading edge sweep angles which varied from 10 to 26 at Mach numbers from 0.80 to 0.85 and altitudes of 7620 meters and 9144 meters. Preliminary results indicate that a large portion of the test chord experienced laminar flow.

  5. Considerations for efficient airflow design in cleanrooms

    SciTech Connect

    Xu, Tengfang

    2004-07-29

    A high-performance cleanroom should provide efficient energy performance in addition to effective contamination control. Energy-efficient designs can yield capital and operational cost savings, and can be part of a strategy to improve productivity in the cleanroom industry. Based upon in-situ measurement data from ISO Class 5 clean rooms, this article discusses key factors affecting cleanroom air system performance and benefits of efficient airflow design in clean rooms. Cleanroom HVAC systems used in the semiconductor, pharmaceutical, and healthcare industries are very energy intensive, requiring large volumes of cleaned air to remove or dilute contaminants for satisfactory operations. There is a tendency, however, to design excessive airflow rates into cleanroom HVAC systems, due to factors such as design conservatism, lack of thorough understanding of airflow requirements, concerns about cleanliness reliability, and potential design and operational liabilities. Energy use of cleanroom environmental systems varies with system type and design, cleanroom functions, and the control of critical parameters such as temperature and humidity. In particular, cleanroom cleanliness requirements specified by cleanliness class have an impact on overall energy use. A previous study covering Europe and the US reveals annual cleanroom electricity usage for cooling and fan energy varies significantly depending on cleanliness class, and may account for up to three-quarters of total annual operating costs. A study on a semiconductor cleanroom in Japan found air delivery systems account for more than 30% of total power consumption. It is evident that the main factors dictating cleanroom operation energy include airflow rates and HVAC system efficiency. Improving energy efficiency in clean rooms may potentially contribute to significant savings in the initial costs of the facilities as well as operation and maintenance costs. For example, energy consumption by a typical chip

  6. Laminar electrical cells and batteries

    SciTech Connect

    Bruder, A.H.

    1983-08-23

    Laminar electrical cells and batteries of the Leclanche type are disclosed, in which the electrolyte comprises an aqueous solution containing from about 18 to about 22 percent of NH/sub 4/Cl and from about 25 to about 40 percent of ZnCl/sub 2/ by weight, based on the weight of solution. The electrolyte may contain a gelling agent, and may initially contain a minor amount of mercuric chloride.

  7. Laminar electrical cells and batteries

    SciTech Connect

    Nel, P.E.; Pleskowicz, J.C.

    1982-11-30

    Laminar electrical cells and batteries of the Leclanche type are disclosed that are especially adapted for service at high drain rates with variable duty cycles by the inclusion of cathodes formed as slurries of MnO/sub 2/ and carbon particles in an electrolyte comprising, by weight, about 2% of NH/sub 4/Cl, about 25% ZnCl/sub 2/, and the balance water with a minor amount of mercuric chloride.

  8. Theory of laminar viscous jets

    NASA Astrophysics Data System (ADS)

    Martynenko, O. G.; Korovkin, V. N.; Sokovishin, Iu. A.

    Results of recent theoretical studies of laminar jet flows of a viscous incompressible fluid are reviewed. In particular, attention is given to plane, fan-shaped, axisymmetric, and swirling jet flows; jet flows behind bodies; and slipstream jet flows. The discussion also covers dissipation of mechanical energy in jet flows, jet flows with a zero excess momentum, and asymptotic series expansions in the theory of jet flows.

  9. Airflow limitation is accompanied by diaphragm dysfunction.

    PubMed

    Hellebrandová, L; Chlumský, J; Vostatek, P; Novák, D; Rýznarová, Z; Bunc, V

    2016-07-18

    Chronic airflow limitation, caused by chronic obstructive pulmonary disease (COPD) or by asthma, is believed to change the shape and the position of the diaphragm due to an increase in lung volume. We have made a comparison of magnetic resonance imaging (MRI) of diaphragm in supine position with pulmonary functions, respiratory muscle function and exercise tolerance. We have studied the differences between patients with COPD, patients with asthma, and healthy subjects. Most interestingly we found the lung hyperinflation leads to the changes in diaphragmatic excursions during the breathing cycle, seen in the differences between the maximal expiratory diaphragm position (DPex) in patients with COPD and control group (p=0.0016). The magnitude of the diaphragmatic dysfunction was significantly related to the airflow limitation expressed by the ratio of forced expiratory volume in 1 s to slow vital capacity (FEV(1)/SVC), (%, p=0.0007); to the lung hyperinflation expressed as the ratio of the residual volume to total lung capacity (RV/TLC), (%, p=0.0018) and the extent of tidal volume constrain expressed as maximal tidal volume (V(Tmax)), ([l], p=0.0002); and the ratio of tidal volume to slow vital capacity (V(T)/SVC), (p=0.0038) during submaximal exercise. These results suggest that diaphragmatic movement fails to contribute sufficiently to the change in lung volume in emphysema. Tests of respiratory muscle function were related to the position of the diaphragm in deep expiration, e.g. neuromuscular coupling (P(0.1)/V(T)) (p=0.0232). The results have shown that the lung volumes determine the position of the diaphragm and function of the respiratory muscles. Chronic airflow limitation seems to change the position of the diaphragm, which thereafter influences inspiratory muscle function and exercise tolerance. There is an apparent relationship between the position of the diaphragm and the pulmonary functions and exercise tolerance. PMID:27070746

  10. Incidence of airflow limitation among employees in Norwegian smelters.

    PubMed

    Søyseth, Vidar; Johnsen, Helle Laier; Bugge, Merete Drevvatne; Hetland, Siri Merete; Kongerud, Johny

    2011-09-01

    We have investigated the association between the incidence of airflow limitation and occupational exposure. The employees (n = 3,924) were investigated annually during five years (n = 16,570) using spirometry. Exposure was classified using job category and a job exposure matrix. Airflow limitation was expressed using two indices: (i) as forced expiratory volume in one second/force vital capacity (FEV(1) /FVC) <0.7 and (ii) lower limit of normal (LLN). The incidence of airflow limitation was 21.2/1000 years(-1) and 15.1/1000 years(-1) using the fixed limit (0.7) and the LLN criterion, respectively. We found a dose-response relationship between the incidence of airflow limitation and tobacco consumption and with job-category in non-smokers. The associations between airflow limitation and covariates were independent of how airflow limitation was defined. The incidence of airflow limitation defined as FEV(l) /FVC <0.7 yielded higher incidence rates of airflow limitation than LLN. We found a significant association between the incidence of airflow limitation and occupational exposure in non-smokers. PMID:21360726

  11. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly

    PubMed Central

    Klopsch, Christian; Kuhlmann, Hendrik C.; Barth, Friedrich G.

    2012-01-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I–III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s−1) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s−1 s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s−1 with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s−1). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16–79 s−1) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  12. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly.

    PubMed

    Klopsch, Christian; Kuhlmann, Hendrik C; Barth, Friedrich G

    2012-10-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I-III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s(-1)) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s(-1) s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s(-1) with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s(-1)). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16-79 s(-1)) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  13. Analysis of the laminar flamelet concept for nonpremixed laminar flames

    SciTech Connect

    Claramunt, K.; Consul, R.; Carbonell, D.; Perez-Segarra, C.D.

    2006-06-15

    The goal of this paper is to investigate the application of the laminar flamelet concept to the multidimensional numerical simulation of nonpremixed laminar flames. The performance of steady and unsteady flamelets is analyzed. The deduction of the mathematical formulation of flamelet modeling is exposed and some commonly used simplifications are examined. Different models for the scalar dissipation rate dependence on the mixture fraction variable are analyzed. Moreover, different criteria to evaluate the Lagrangian-type flamelet lifetime for unsteady flamelets are investigated. Inclusion of phenomena such as differential diffusion with constant Lewis number for each species and radiation heat transfer are also studied. A confined co-flow axisymmetric nonpremixed methane/air laminar flame experimentally investigated by McEnally and Pfefferle (Combust. Sci. Technol. 116-117 (1996) 183-209) and numerically investigated by Bennett, McEnally, Pfefferle, and Smooke (Combust. Flame 123 (2000) 522-546), Consul, Perez-Segarra, Claramunt, Cadafalch, and Oliva (Combust. Theory Modelling 7 (3) (2003) 525-544), and Claramunt, Consul, Perez-Segarra, and Oliva (Combust. Flame 137 (2004) 444-457) has been used as a test case. Results obtained using the flamelet concept have been compared to data obtained from the full resolution of the complete transport equations using primitive variables. Finite-volume techniques over staggered grids are used to discretize the governing equations. A parallel multiblock algorithm based on domain decomposition techniques running with loosely coupled computers has been used. To assess the quality of the numerical solutions presented in this paper, a verification process based on the generalized Richardson extrapolation technique and on the grid convergence index (GCI) has been applied. (author)

  14. Lithium batteries with laminar anodes

    SciTech Connect

    Bruder, A.H.

    1986-11-04

    This patent describes a laminar electrical cell, comprising an anode, a cathode, and an electrolyte permeable separator between the anode and the cathode. The anode consists essentially of a layer of lithium having at least one surface of unreacted lithium metal in direct contact with and adhered to a layer of conductive plastic with no intermediate adhesive promoting adjuncts. The cathode comprises a slurry of MnO/sub 2/ and carbon particles in a solution of a lithium salt in an organic solvent, the solution permeating the separator and being in contact with the lithium.

  15. On laminar and turbulent friction

    NASA Technical Reports Server (NTRS)

    Von Karman, TH

    1946-01-01

    Report deals, first with the theory of the laminar friction flow, where the basic concepts of Prandtl's boundary layer theory are represented from mathematical and physical points of view, and a method is indicated by means of which even more complicated cases can be treated with simple mathematical means, at least approximately. An attempt is also made to secure a basis for the computation of the turbulent friction by means of formulas through which the empirical laws of the turbulent pipe resistance can be applied to other problems on friction drag. (author)

  16. Burning Laminar Jet Diffusion Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (518KB, 20-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300182.html.

  17. Laminar Jet Diffusion Flame Burning

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (983KB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300184.html.

  18. Chevrons formation in laminar erosion

    NASA Astrophysics Data System (ADS)

    Devauchelle, Olivier; Josserand, Christophe; Lagree, Pierre-Yves; Zaleski, Stephane; Nguyen, Khanh-Dang; Malverti, Luce; Lajeunesse, Eric

    2007-11-01

    When eroded by laminar free-surface flows, granular substrates may generate a rich variety of natural patterns. Among them are dunes, similar to the ones observed by Charru and Hinch in a Couette cell (Charru F, Hinch EJ ; Ripple formation on a particle bed sheared by a viscous liquid. Part 1. Steady flow ; JOURNAL OF FLUID MECHANICS 550: 111-121 MAR 10 2006). Chevron-shaped instabilities as those found on the sea-shore, can also be observed, sometimes in competition against dunes formation. These were first pointed out by Daerr et al. when pulling a plate covered with granular material out of a bath of water (Daerr A, Lee P, Lanuza J, et al. ; Erosion patterns in a sediment layer ; PHYSICAL REVIEW E 67 (6): Art. No. 065201 Part 2 JUN 2003). Both instabilities can grow in laminar open-channel flows, an experimental set-up which is more easily controlled. The mechanisms leading to the formation of these patterns are investigated and compared. Whereas dunes formation requires vertical inertia effects, we show that chevrons may result from the non-linear evolution of bars instability, which may grow even in purely viscous flows.

  19. NASA Flight Tests Explore Supersonic Laminar Flow

    NASA Video Gallery

    In partnership with Aerion Corporation of Reno, Nevada, NASA's Dryden Flight Research Center’s tested supersonic airflow over a small experimental airfoil design on its F-15B Test Bed aircraft du...

  20. Laminar-flow wind tunnel experiments

    NASA Technical Reports Server (NTRS)

    Harvey, William D.; Harris, Charles D.; Sewall, William G.; Stack, John P.

    1989-01-01

    Although most of the laminar flow airfoils recently developed at the NASA Langley Research Center were intended for general aviation applications, low-drag airfoils were designed for transonic speeds and wind tunnel performance tested. The objective was to extend the technology of laminar flow to higher Mach and Reynolds numbers and to swept leading edge wings representative of transport aircraft to achieve lower drag and significantly improved operation costs. This research involves stabilizing the laminar boundary layer through geometric shaping (Natural Laminar Flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (Laminar-Flow Control, LFC), either through discrete slots or perforated surface. Results show that extensive regions of laminar flow with large reductions in skin friction drag can be maintained through the application of passive NLF boundary-layer control technologies to unswept transonic wings. At even greater extent of laminar flow and reduction in the total drag level can be obtained on a swept supercritical airfoil with active boundary layer-control.

  1. Laminar and Turbulent Flow in Water

    ERIC Educational Resources Information Center

    Riveros, H. G.; Riveros-Rosas, D.

    2010-01-01

    There are many ways to visualize flow, either for laminar or turbulent flows. A very convincing way to show laminar and turbulent flows is by the perturbations on the surface of a beam of water coming out of a cylindrical tube. Photographs, taken with a flash, show the nature of the flow of water in pipes. They clearly show the difference between…

  2. F-16XL Ship #2 during last flight viewed from tanker showing titanium laminar flow glove on left win

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dryden research pilot Dana Purifoy drops NASA F-16XL #848 away from the tanker in the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew turbulent boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' fitted to the upper left wing. About 90 hours of flight time were logged by the unique aircraft during the 13-month flight research program, much of it at speeds of Mach 2. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  3. Exact averaging of laminar dispersion

    NASA Astrophysics Data System (ADS)

    Ratnakar, Ram R.; Balakotaiah, Vemuri

    2011-02-01

    We use the Liapunov-Schmidt (LS) technique of bifurcation theory to derive a low-dimensional model for laminar dispersion of a nonreactive solute in a tube. The LS formalism leads to an exact averaged model, consisting of the governing equation for the cross-section averaged concentration, along with the initial and inlet conditions, to all orders in the transverse diffusion time. We use the averaged model to analyze the temporal evolution of the spatial moments of the solute and show that they do not have the centroid displacement or variance deficit predicted by the coarse-grained models derived by other methods. We also present a detailed analysis of the first three spatial moments for short and long times as a function of the radial Peclet number and identify three clearly defined time intervals for the evolution of the solute concentration profile. By examining the skewness in some detail, we show that the skewness increases initially, attains a maximum for time scales of the order of transverse diffusion time, and the solute concentration profile never attains the Gaussian shape at any finite time. Finally, we reason that there is a fundamental physical inconsistency in representing laminar (Taylor) dispersion phenomena using truncated averaged models in terms of a single cross-section averaged concentration and its large scale gradient. Our approach evaluates the dispersion flux using a local gradient between the dominant diffusive and convective modes. We present and analyze a truncated regularized hyperbolic model in terms of the cup-mixing concentration for the classical Taylor-Aris dispersion that has a larger domain of validity compared to the traditional parabolic model. By analyzing the temporal moments, we show that the hyperbolic model has no physical inconsistencies that are associated with the parabolic model and can describe the dispersion process to first order accuracy in the transverse diffusion time.

  4. Experimental evidence of condensation-driven airflow

    NASA Astrophysics Data System (ADS)

    Bunyard, P.; Hodnett, M.; Poveda, G.; Burgos Salcedo, J. D.; Peña, C.

    2015-10-01

    The dominant "convection" model of atmospheric circulation is based on the premise that hot air expands and rises, to be replaced by colder air, thereby creating horizontal surface winds. A recent theory put forward by Makarieva and Gorshkov (2007, 2013) maintains that the primary motive force of atmospheric circulation derives from the intense condensation and sharp pressure reduction that is associated with regions where a high rate of evapotranspiration from natural closed-canopy forests provides the "fuel" for cloud formation. The net result of the "biotic pump" theory is that moist air flows from ocean to land, drawn in by the pressure changes associated with a high rate of condensation. To test the physics underpinning the biotic pump theory, namely that condensation of water vapour, at a sufficiently high rate, results in an uni-directional airflow, a 5 m tall experimental apparatus was designed and built, in which a 20 m3 body of atmospheric air is enclosed inside an annular 14 m long space (a "square donut") around which it can circulate freely, allowing for rotary air flows. One vertical side of the apparatus contains some 17 m of copper refrigeration coils, which cause condensation. The apparatus contains a series of sensors measuring temperature, humidity and barometric pressure every five seconds, and air flow every second. The laws of Newtonian physics are used in calculating the rate of condensation inside the apparatus. The results of more than one hundred experiments show a highly significant correlation, with r2 > 0.9, of airflow and the rate of condensation. The rotary air flows created appear to be consistent both in direction and velocity with the biotic pump hypothesis, the critical factor being the rate change in the partial pressure of water vapour in the enclosed body of atmospheric air. Air density changes, in terms of kinetic energy, are found to be orders of magnitude smaller than the kinetic energy of partial pressure change. The

  5. The Evolution of Unidirectional Pulmonary Airflow.

    PubMed

    Farmer, C G

    2015-07-01

    Conventional wisdom holds that the avian respiratory system is unique because air flows in the same direction through most of the gas-exchange tubules during both phases of ventilation. However, recent studies showing that unidirectional airflow also exists in crocodilians and lizards raise questions about the true phylogenetic distribution of unidirectional airflow, the selective drivers of the trait, the date of origin, and the functional consequences of this phenomenon. These discoveries suggest unidirectional flow was present in the common diapsid ancestor and are inconsistent with the traditional paradigm that unidirectional flow is an adaptation for supporting high rates of gas exchange. Instead, these discoveries suggest it may serve functions such as decreasing the work of breathing, decreasing evaporative respiratory water loss, reducing rates of heat loss, and facilitating crypsis. The divergence in the design of the respiratory system between unidirectionally ventilated lungs and tidally ventilated lungs, such as those found in mammals, is very old, with a minimum date for the divergence in the Permian Period. From this foundation, the avian and mammalian lineages evolved very different respiratory systems. I suggest the difference in design is due to the same selective pressure, expanded aerobic capacity, acting under different environmental conditions. High levels of atmospheric oxygen of the Permian Period relaxed selection for a thin blood-gas barrier and may have resulted in the homogeneous, broncho-alveolar design, whereas the reduced oxygen of the Mesozoic selected for a heterogeneous lung with an extremely thin blood-gas barrier. These differences in lung design may explain the puzzling pattern of ecomorphological diversification of Mesozoic mammals: all were small animals that did not occupy niches requiring a great aerobic capacity. The broncho-alveolar lung and the hypoxia of the Mesozoic may have restricted these mammals from exploiting

  6. Numerical simulation of laboratory fume hood airflow performance

    SciTech Connect

    Kirkpatrick, A.T.; Reither, R.

    1998-12-31

    A three-dimensional computational fluid dynamics (CFD) analysis has been used to predict airflow patterns in laboratory fume hoods. The simulation includes bypass fume hood primary operational features including the top and bottom bypasses, front airfoils, and rear-slotted baffles. All results were validated experimentally, and the simulation was found to adequately predict fume hood airflow patterns. The results indicate that fume hood flow patterns are highly dependent on inlet flow boundary conditions so that the computation must include the near field room airflow. Additionally, the study included the effects on the fume hood airflow of sash height changes, an operator positioned outside the fume hood, and equipment within the main fume hood chamber. It was shown that for conditions of a fully open sash height, a person in front of the fume hood, and an object inside the fume hood, the fume hood experiences a loss of containment of the flow.

  7. Conditions for laminar flow in geophysical vortices

    NASA Astrophysics Data System (ADS)

    Fiedler, Brian H.

    1989-01-01

    The sufficient condition for inviscid, helical instability at large wavenumbers is applied to solutions for columnar vortices arising from the vortical flow of an end-wall boundary layer. The end-wall vortex arising from the laminar boundary layer under a potential vortex will be unstable at sufficiently high Reynolds number. Hoewever, if the end-wall boundary layer is turbulent, the end-wall vortex can be stable and laminar even at very high Reynolds number; therefore, stable, laminar tornadoes and waterspouts are suggested as theoretical possibilities.

  8. Airflows generated by an impacting drop.

    PubMed

    Bischofberger, Irmgard; Ray, Bahni; Morris, Jeffrey F; Lee, Taehun; Nagel, Sidney R

    2016-03-28

    A drop impacting a solid surface with sufficient velocity will splash and emit many small droplets. However, lowering the ambient air pressure suppresses splashing completely. This effect, robustly found for different liquid and substrate properties, raises the fundamental question of how air affects a spreading drop. In a combined experimental and numerical study we characterize the flow of air induced by the drop after it hits the substrate, using a modified Schlieren optics technique combined with high-speed video imaging and Lattice-Boltzmann simulations. Our experiments reveal the emergence of air structures on different length scales. On large scales, the airflow induced in the drop's wake leads to vortex structures due to interaction with the substrate. On smaller scales, we visualize a ring structure above the outer edge of the spreading liquid generated by the spreading of the drop. Our simulations reveal the interaction between the wake vorticity and the flows originating from the rapidly escaping air from below the impacting drop. We show that the vorticity is governed by a balance between inertial and viscous forces in the air, and is unrelated to the splashing threshold. PMID:26809314

  9. Dynamics of airflow in a short inhalation

    PubMed Central

    Bates, A. J.; Doorly, D. J.; Cetto, R.; Calmet, H.; Gambaruto, A. M.; Tolley, N. S.; Houzeaux, G.; Schroter, R. C.

    2015-01-01

    During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s−1 peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions. PMID:25551147

  10. Measuring rates of outdoor airflow into HVAC systems

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.; Delp, Woody

    2002-10-01

    During the last few years, new technologies have been introduced for measuring the flow rates of outside air into HVAC systems. This document describes one particular technology for measuring these airflows, a system and a related protocol developed to evaluate this and similar measurement technologies under conditions without wind, and the results of our evaluations. We conclude that the measurement technology evaluated can provide a reasonably accurate measurement of OA flow rate over a broad range of flow, without significantly increasing airflow resistance.

  11. Development of an ultrasonic airflow measurement device for ducted air.

    PubMed

    Raine, Andrew B; Aslam, Nauman; Underwood, Christopher P; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a "V" shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  12. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  13. Research in Natural Laminar Flow and Laminar-Flow Control, part 3

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 3 of the Symposium proceedings contains papers addressing advanced airfoil development, flight research experiments, and supersonic transition/laminar flow control research. Specific topics include the design and testing of natural laminar flow (NLF) airfoils, NLF wing gloves, and NLF nacelles; laminar boundary-layer stability over fuselage forebodies; the design of low noise supersonic/hypersonic wind tunnels; and boundary layer instability mechanisms on swept leading edges at supersonic speeds.

  14. Soot Formation in Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Krishnan, S. S.; Faeth, G. M.

    1999-01-01

    Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.

  15. Process for making laminar batteries

    SciTech Connect

    Plasse, P.A.

    1986-09-30

    This patent describes the process of making laminar cells, which consists of perforating a first elongated web of liquid impervious, electrically nonconducting thermoplastic material with a spaced rectangular array of apertures arranged in rows across the direction of elongation of the web and in columns parallel to the direction of elongation of the web adding patches of electrically conductive material. Each patch comprises a sheet of conductive plastic adhered to a coterminous layer of electrode particles in a binder to a first side of the first web with the conductive plastic side of each patch in contact with the borders of a different one of the apertures to form a spaced rectangular array of the patches on the firs web. A piece of separator material is adhered to the first web over each of the patches on the first side of the first web, placing spaced elongated strips of metal on the first web on a second side of the first web opposite the first side, the metal strips being aligned with and each overlying a different one of the columns.

  16. Airflow analysis in mechanically ventilated obstructed rooms

    NASA Astrophysics Data System (ADS)

    Priest, John Brian

    1999-11-01

    Local and mean air velocities and standard deviations were measured in realistic rooms. Obstructions represented occupants and equipment in the rooms, internal heat loads varied and supply air temperature differed from room averages. Experimental setups differed for the isothermal and nonisothermal tests. Room dimensions for isothermal tests were 2.44 m high by 4.88 x 4.88 m. Ten different obstruction ratios using three different inlet types were analyzed. Obstructions covered 0 to 30% floor area and from 0 to 75% of room height. Air was supplied at ventilation rates ranging between 0.8 and 1.1 m 3/s. Room dimensions for the nonisothermal tests were 2.44 m high by 3.66 x 7.32 m. Obstruction differences between solid versus open partitions for farrowing crates were investigated for three commercially available inlets using two ventilation loads. Ventilation rates were 0.11 to 1.18 m 3/s, simulating cold and warm weather ventilation conditions, respectively. Based on these data and theoretical calculations, a kinetic energy model that predicts average room air velocity and energy level was developed as a practical room air flow design and analysis tool. It was recommended that designers interested in using CFD as a tool should use a three dimensional laminar model for acceptable qualitative flow results. It was concluded that for typical room flowrates and inlet types the room air distribution system is obstruction ratio independent. Local velocities and standard deviations varied with each obstruction setup and inlet combination. However, average air velocities and turbulence intensities were not influenced by obstruction setups or inlet configurations. The decay rate of mean velocity kinetic energy in the bulk flow region was independent of obstructions and inlets. Room average kinetic energy was a function of the supplied kinetic energy within the supply jet plus internal kinetic energy resulting from internal heat load (convective energy).

  17. Importance of Airflow for Physiologic and Ergogenic Effects of Precooling

    PubMed Central

    Morrison, Shawnda A.; Cheung, Stephen; Cotter, James D.

    2014-01-01

    Context: Cooling the body before exercise (precooling) has been studied as an ergogenic aid for many thermal conditions; however, airflow accompanying exercise is seldom reported. Objective: To determine whether the physiologic and ergogenic benefits of precooling before endurance exercise may be negated with semirealistic airflow in hot conditions. Design: Crossover study. Setting: Climate-controlled chamber in a research laboratory. Patients or Other Participants: Ten fit, healthy cyclists. Intervention(s): After a familiarization trial, participants completed 4 randomized, counterbalanced sessions consisting of no precooling versus precooling and no fan airflow versus airflow (~4.8 m/s) during exercise. Precooling was via chest-deep immersion (~24°C) for 1 hour or until core temperature dropped 0.5°C. Participants then cycled at 95% ventilatory threshold in a hot environment (temperature = 30°C, relative humidity = 50%) until volitional exhaustion, core temperature reached >39.5°C, or heart rate reached >95% of maximum. Main Outcome Measure(s): Thermal strain was assessed via core temperature (esophageal and rectal thermistors) and mean skin temperature (thermistors at 10 sites) and cardiovascular strain via heart rate and ratings of perceived exertion. Results: Endurance time (28 ± 12 minutes without precooling or airflow) increased by 30 ± 23 minutes with airflow (~109%; 95% confidence interval = 12, 45 minutes; P < .001) and by 16 ± 15 minutes with precooling (~61%; 95% confidence interval = 4, 25 minutes; P = .013), but it was not further extended when the strategies were combined (29 ± 21 minutes longer than control). During cycling without precooling or airflow, mean core and skin temperatures were higher than in all other trials. Precooling reduced heart rate by 7–11 beats/min during the first 5 minutes of exercise, but this attenuation ended by 15 minutes. Conclusions: Most laboratory-based precooling studies have (inadvertently) overestimated

  18. Minimum airflow reset of single-duct VAV terminal boxes

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  19. Evaluation of airflow patterns following procedures established by NUREG-1400.

    PubMed

    Fritz, Brad G; Khan, Fenton; Mendoza, Donaldo P

    2006-08-01

    The U.S. Nuclear Regulatory Commission's guide, NUREG-1400, addresses many aspects of air sampling in the work place. Here, we present detailed examples of the methodology used to conduct two qualitative airflow studies at different sites. In one test, smoke was used to evaluate the airflow patterns within a high-bay building for the purpose of determining appropriate locations for air monitoring equipment. The study revealed a stagnant layer of the air within the transfer area that made predicting movement of contamination within the transfer area difficult. Without conducting an airflow study, the stagnant layer may not have been identified and could have resulted in placement of samplers at inappropriate locations. In a second test, smoke was used to verify the effectiveness of an air space barrier curtain. The results showed that the curtain adequately separated the two air spaces. The methodology employed in each test provided sound, easy to interpret information that satisfied the requirements of each test. The methods described in this article can be applied at most facilities where determination of airflow patterns or the verification of suspected airflow patterns is required. PMID:16823267

  20. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. PMID:25536861

  1. Effect of Airflows on Repetitive Nanosecond Volume Discharges

    NASA Astrophysics Data System (ADS)

    Tang, Jingfeng; Wei, Liqiu; Huo, Yuxin; Song, Jian; Yu, Daren; Zhang, Chaohai

    2016-03-01

    Atmospheric pressure discharges excited by repetitive nanosecond pulses have attracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse currents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images. supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035)

  2. Airflow studies in a forced ventilated chamber with low partitions

    SciTech Connect

    Chow, W.K.; Tsui, K.F.

    1995-12-31

    A climate chamber was used to study experimentally the airflow characteristics in a ventilated space with low partitions. Two types of commonly used air distribution devices were selected for the study--a ceiling diffuser and side grille systems. A total of 16 tests were performed using the two diffusers with partition heights varying up to 1.8 m (5.91 ft) above floor level. From the measured results, the thermal comfort indices were assessed. A stabilization effect of airflow was found when the partition height reached 1.8 m (5.91 ft). Local draft risk was located in the occupied zone. Also, the modified Archimedes number proposed by Jackman (1990) was used to describe the indoor airflow in the absence of a workable design guide for partitioned spaces.

  3. Parallel Computation of Airflow in the Human Lung Model

    NASA Astrophysics Data System (ADS)

    Lee, Taehun; Tawhai, Merryn; Hoffman, Eric. A.

    2005-11-01

    Parallel computations of airflow in the human lung based on domain decomposition are performed. The realistic lung model is segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-04368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. Because of the large number of the airway generation and the sheer complexity of the geometry, massively parallel computation of pulmonary airflow is carried out. We present the parallel algorithm implemented in the custom-developed characteristic-Galerkin finite element method, evaluate the speed-up and scalability of the scheme, and estimate the computing resources needed to simulate the airflow in the conducting airways of the human lungs. It is found that the special tree-like geometry enables the inter-processor communications to occur among only three or four processors for optimal parallelization irrespective of the number of processors involved in the computation.

  4. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  5. Unidirectional pulmonary airflow patterns in the savannah monitor lizard.

    PubMed

    Schachner, Emma R; Cieri, Robert L; Butler, James P; Farmer, C G

    2014-02-20

    The unidirectional airflow patterns in the lungs of birds have long been considered a unique and specialized trait associated with the oxygen demands of flying, their endothermic metabolism and unusual pulmonary architecture. However, the discovery of similar flow patterns in the lungs of crocodilians indicates that this character is probably ancestral for all archosaurs--the group that includes extant birds and crocodilians as well as their extinct relatives, such as pterosaurs and dinosaurs. Unidirectional flow in birds results from aerodynamic valves, rather than from sphincters or other physical mechanisms, and similar aerodynamic valves seem to be present in crocodilians. The anatomical and developmental similarities in the primary and secondary bronchi of birds and crocodilians suggest that these structures and airflow patterns may be homologous. The origin of this pattern is at least as old as the split between crocodilians and birds, which occurred in the Triassic period. Alternatively, this pattern of flow may be even older; this hypothesis can be tested by investigating patterns of airflow in members of the outgroup to birds and crocodilians, the Lepidosauromorpha (tuatara, lizards and snakes). Here we demonstrate region-specific unidirectional airflow in the lungs of the savannah monitor lizard (Varanus exanthematicus). The presence of unidirectional flow in the lungs of V. exanthematicus thus gives rise to two possible evolutionary scenarios: either unidirectional airflow evolved independently in archosaurs and monitor lizards, or these flow patterns are homologous in archosaurs and V. exanthematicus, having evolved only once in ancestral diapsids (the clade encompassing snakes, lizards, crocodilians and birds). If unidirectional airflow is plesiomorphic for Diapsida, this respiratory character can be reconstructed for extinct diapsids, and evolved in a small ectothermic tetrapod during the Palaeozoic era at least a hundred million years before the

  6. Laminar and turbulent flow in water

    NASA Astrophysics Data System (ADS)

    Riveros, H. G.; Riveros-Rosas, D.

    2010-05-01

    There are many ways to visualize flow, either for laminar or turbulent flows. A very convincing way to show laminar and turbulent flows is by the perturbations on the surface of a beam of water coming out of a cylindrical tube. Photographs, taken with a flash, show the nature of the flow of water in pipes. They clearly show the difference between turbulent and laminar flow, and let, in an accessible way, data be taken to analyse the conditions under which both flows are present. We found research articles about turbulence measurements, using sophisticated equipment, but they do not use the perturbation of the free surface of the flowing liquid to show or measure the turbulence.

  7. Laminar Heating Validation of the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Lillard, Randolph P.; Dries, Kevin M.

    2005-01-01

    OVERFLOW, a structured finite difference code, was applied to the solution of hypersonic laminar flow over several configurations assuming perfect gas chemistry. By testing OVERFLOW's capabilities over several configurations encompassing a variety of flow physics a validated laminar heating was produced. Configurations tested were a flat plate at 0 degrees incidence, a sphere, a compression ramp, and the X-38 re-entry vehicle. This variety of test cases shows the ability of the code to predict boundary layer flow, stagnation heating, laminar separation with re-attachment heating, and complex flow over a three-dimensional body. In addition, grid resolutions studies were done to give recommendations for the correct number of off-body points to be applied to generic problems and for wall-spacing values to capture heat transfer and skin friction. Numerical results show good comparison to the test data for all the configurations.

  8. Wing Leading Edge Joint Laminar Flow Tests

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.

    1996-01-01

    An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.

  9. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  10. Study of Airflow Out of the Mouth During Speech.

    ERIC Educational Resources Information Center

    Catford, J.C.; And Others

    Airflow outside the mouth is diagnostic of articulatory activities in the vocal tract, both total volume-velocity and the distribution of particle velocities over the flow-front being useful for this purpose. A system for recording and displaying both these types of information is described. This consists of a matrix of l6 hot-wire anemometer flow…

  11. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  12. Smoothed Two-Dimensional Edges for Laminar Flow

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Liu, C. H.; Martin, G. L.; Domack, C. S.; Obara, C. J.; Hassan, A.; Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    New concept allows passive method for installing flaps, slats, iceprotection equipment, and other leading-edge devices on natural-laminar-flow (NLF) wings without causing loss of laminar flow. Two-dimensional roughness elements in laminar boundary layers strategically shaped to increase critical (allowable) height of roughness. Facilitates installation of leading-edge devices by practical manufacturing methods.

  13. Research in natural laminar flow and laminar-flow control, part 1

    SciTech Connect

    Hefner, J.N.; Sabo, F.E.

    1987-12-01

    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  14. Research in Natural Laminar Flow and Laminar-Flow Control, part 1

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  15. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  16. Volume average technique for turbulent flow simulation and its application to room airflow prediction

    NASA Astrophysics Data System (ADS)

    Huang, Xianmin

    Fluid motion turbulence is one of the most important transport phenomena occurring in engineering applications. Although turbulent flow is governed by a set of conservation equations for momentum, mass, and energy, a Direct Numerical Simulation (DNS) of the flow by solving these equations to include the finest scale motions is impossible due to the extremely large computer resources required. On the other hand, the Reynolds Averaged Modelling (RAM) method has many limitations which hinder its applications to turbulent flows of practical significance. Room airflow featuring co- existence of laminar and turbulence regimes is a typical example of a flow which is difficult to handle with the RAM method. A promising way to avoid the difficulty of the DNS method and the limitation of the RAM method is to use the Large Eddy Simulation (LES) method. In the present thesis, the drawbacks of previously developed techniques for the LES method, particularly those associated with the SGS modelling, are identified. Then a new so called Volume Average Technique (VAT) for turbulent flow simulation is proposed. The main features of the VAT are as follows: (1) The volume averaging approach instead of the more common filtering approach is employed to define solvable scale fields, so that coarse- graining in the LES and space discretization of the numerical scheme are achieved in a single procedure. (2) All components of the SGS Reynolds stress and SGS turbulent heat flux are modelled dynamically using the newly proposed Functional Scale Similarity (FSS) SGS model. The model is superior to many previously developed SGS models in that it can be applied to highly inhomogeneous and/or anisotropic, weak or multi-regime turbulent flows using a relatively coarse grid. (3) The so called SGS turbulent diffusion is identified and modelled as a separate mechanism to that of the SGS turbulent flux represented by the SGS Reynolds stress and SGS turbulent heat flux. The SGS turbulent diffusion is

  17. Airflow and Particle Transport in the Human Respiratory System

    NASA Astrophysics Data System (ADS)

    Kleinstreuer, C.; Zhang, Z.

    2010-01-01

    Airflows in the nasal cavities and oral airways are rather complex, possibly featuring a transition to turbulent jet-like flow, recirculating flow, Dean's flow, vortical flows, large pressure drops, prevailing secondary flows, and merging streams in the case of exhalation. Such complex flows propagate subsequently into the tracheobronchial airways. The underlying assumptions for particle transport and deposition are that the aerosols are spherical, noninteracting, and monodisperse and deposit upon contact with the airway surface. Such dilute particle suspensions are typically modeled with the Euler-Lagrange approach for micron particles and in the Euler-Euler framework for nanoparticles. Micron particles deposit nonuniformly with very high concentrations at some local sites (e.g., carinal ridges of large bronchial airways). In contrast, nanomaterial almost coats the airway surfaces, which has implications of detrimental health effects in the case of inhaled toxic nanoparticles. Geometric airway features, as well as histories of airflow fields and particle distributions, may significantly affect particle deposition.

  18. Computational Investigation of Dynamic Glottal Aperture Effects on Respiratory Airflow

    NASA Astrophysics Data System (ADS)

    Xi, Jinxiang; Yan, Hong; Dong, Haibo

    2008-11-01

    The periodic movement of the glottal aperture (vocal folds) during tidal breathing has been long recognized as a factor in altering the airflow dynamics in the tracheobrnchial region. The potential influence from these altered flow structures on the transport and deposition of inhaled particles is not known. However, studies devoted to this dynamic physiological feature are scarce due to the complex anatomy in of the larynx and numerical challenges in simulating dynamic geometries. In this study, a high-fidelity immersed boundary solver is used to investigate this problem. A 3D human oral-larynx-lung model is firstly reconstructed from MRI data. The role of the vocal fold movement and associated airflow characteristics such as vortex shedding, Coanda effect etc. during inhalation and exhalation are then numerically studied.

  19. Efficient airflow design for cleanrooms improves business bottom lines

    SciTech Connect

    Xu, Tengfang

    2003-01-05

    Based on a review of airflow design factors and in-situ energy measurements in ISO Cleanliness Class-5 cleanrooms, this paper addresses the importance of energy efficiency in airflow design and opportunities of cost savings in cleanroom practices. The paper discusses design factors that can long lastingly affect cleanroom system performance, and demonstrates benefits of energy efficient cleanroom design from viewpoints of environmental control and business operations. The paper suggests that a high performance cleanroom should not only be effective in contamination control, but also be efficient in energy and environmental performance. The paper also suggests that energy efficient design practice stands to bring in immediate capital cost savings and operation cost savings, and should be regarded by management as a strategy to improve business bottom lines.

  20. Natural laminar flow hits smoother air

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1985-01-01

    Natural laminar flow (NLF) may be attained in aircraft with lower cost, weight, and maintenance penalties than active flow laminarization by means of a slot suction system. A high performance general aviation jet aircraft possessing a moderate degree of NLF over wing, fuselage, empennage and engine nacelles will accrue a 24 percent reduction in total aircraft drag in the cruise regime. NASA-Langley has conducted NLF research centered on the use of novel airfoil profiles as well as composite and milled aluminum alloy construction methods which minimize three-dimensional aerodynamic surface roughness and waviness. It is noted that higher flight altitudes intrinsically reduce unit Reynolds numbers, thereby minimizing turbulence for a given cruise speed.

  1. Laminar flow instability in nuclear rockets

    SciTech Connect

    Black, D.L. )

    1993-01-20

    Laminar flow instability (LFI) is a rarely encountered phenomenon, occurring in gaseous heated channels with high exit-to-inlet temperature ratios and a laminar Reynolds Number at the channel exit, as may be experienced in a nuclear rocket. Analytical techniques were developed and programmed for parametric evaluation that had been previously validated by comparison with available experimental data. The four types of transients associated with LFI are described in terms of the governing equations. Parametric evaluations of solid core prismatic and particle bed fuel configurations were made to determine their sensitivities to LFI from temperature ratio, flow rate, orificing, transition Reynolds Number, pressure level, presence of an exit sonic nozzle, power density and heat flux shape. The flow rate at the point of neutral stability and the growth rate of the excursive transient are calculated. The full power design point and the cooldown phases of operation were both evaluated.

  2. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  3. Numerical calculations of strained premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Darabiha, N.; Candel, S.; Marble, F. E.

    The structure of a strained laminar flame in the vicinity of a stagnation point is examined numerically. The stagnation point is established by the counterflow of fresh mixture and hot products. This situation is described by standard reactive boundary layer equations. The numerical scheme used to solve the similar boundary layer equations put in F-V form (block-implicit) is an adaptation of the schemes proposed by Blottner (1979). The calculations are performed first on an uniform grid and then confirmed with an adaptive grid method due to Smooke (1982). Numerical calculations allow an exact description of the flame structure in physical and also reduced coordinates. Predictions of Libby and Williams (1982) for high and intermediate values of the strain rate based on activation energy asymptotics are confirmed. For low strain rates (ordinary unstrained laminar flame) the mass rate of reaction per unit flame area differs from that obtained by activation energy asymptotics.

  4. Coupling of wrinkled laminar flames with gravity

    NASA Technical Reports Server (NTRS)

    Bedat, Benoit; Kostiuk, Larry W.; Cheng, Robert K.

    1995-01-01

    The overall objective of our research is to understand flame-gravity coupling processes in laminar and low turbulent Reynolds number, Re(sub l), premixed flames (i.e. wrinkled- laminar flames). The approach we have developed is to compare the flowfields and mean flame properties under different gravitational orientations. Key to our study is the investigation of microgravity (mu g) flames. These mu g experiments provide vital information to reconcile the differences between flames in normal gravity (+g, flame pointing upward) and reverse gravity (-g, flame pointing downwards). Traditionally, gravity effects are assumed to be insignificant or circumvented in the laboratory, therefore, not much is available in the literature on the behavior of -g flames.

  5. The Structure and Stability of Laminar Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, John

    1993-01-01

    This review paper on the structure and stability of laminar flames considers such phenomena as heterogeneous mixtures, acoustic instabilities, flame balls and related phenomena, radiation effects, the iodate oxidation of arsenous acid and 'liquid flame fronts', approximate kinetic mechanisms and asymptotic approximations, and tribrachial or triple flames. The topics examined here indicate three themes that may play an important role in laminar flame theory in the coming years: microgravity experiments, kinetic modeling, and turbulence modeling. In the discussion of microgravity experiments it is pointed out that access to drop towers, the Space Shuttle and, in due course, the Space Station Freedom will encourage the development of experiments well designed to isolate the fundamental physics of combustion.

  6. Morphodynamic modeling of erodible laminar channels

    NASA Astrophysics Data System (ADS)

    Devauchelle, Olivier; Josserand, Christophe; Lagrée, Pierre-Yves; Zaleski, Stéphane

    2007-11-01

    A two-dimensional model for the erosion generated by viscous free-surface flows, based on the shallow-water equations and the lubrication approximation, is presented. It has a family of self-similar solutions for straight erodible channels, with an aspect ratio that increases in time. It is also shown, through a simplified stability analysis, that a laminar river can generate various bar instabilities very similar to those observed in natural rivers. This theoretical similarity reflects the meandering and braiding tendencies of laminar rivers indicated by F. Métivier and P. Meunier [J. Hydrol. 27, 22 (2003)]. Finally, we propose a simple scenario for the transition between patterns observed in experimental erodible channels.

  7. A model for simulating airflow and pollutant dispersion around buildings

    SciTech Connect

    Chan, S T; Lee, R L

    1999-02-24

    A three-dimensional, numerical mode1 for simulating airflow and pollutant dispersion around buildings is described. The model is based on an innovative finite element approach and fully implicit time integration techniques. Linear and nonlinear eddy viscosity/diffusivity submodels are provided for turbulence parameterization. Mode1 predictions for the flow-field and dispersion patterns around a surface-mounted cube are compared with measured data from laboratory experiments.

  8. Airflow pattern complexity and airway obstruction in asthma.

    PubMed

    Veiga, Juliana; Lopes, Agnaldo J; Jansen, José M; Melo, Pedro L

    2011-08-01

    The scientific and clinical value of a measure of complexity is potentially enormous because complexity appears to be lost in the presence of illness. The authors examined the effect of elevated airway obstruction on the complexity of the airflow (Q) pattern of asthmatic patients analyzing the airflow approximate entropy (ApEnQ). This study involved 11 healthy controls, 11 asthmatics with normal spirometric exams, and 40 asthmatics with mild (14), moderate (14), and severe (12) airway obstructions. A significant (P < 0.02) reduction in the ApEnQ was observed in the asthmatic patients. This reduction was significantly correlated with spirometric indexes of airway obstruction [FEV(1) (%): R = 0.31, P = 0.013] and the total respiratory impedance (R = -0.39; P < 0.002). These results are in close agreement with pathophysiological fundamentals and suggest that the airflow pattern becomes less complex in asthmatic patients, which may reduce the adaptability of the respiratory system to perform the exercise that is associated with daily life activities. This analysis was able to identify respiratory changes in patients with mild obstruction with an adequate accuracy (83%). Higher accuracies were obtained in patients with moderate and severe obstructions. The analysis of airflow pattern complexity by the ApEnQ was able to provide new information concerning the changes associated with asthma. In addition, this analysis was also able to contribute to the detection of the adverse effects of asthma. Because these measurements are easy to perform, such a technique may represent an alternative and/or a complement to other conventional exams to help the clinical evaluations of asthmatic patients. PMID:21565988

  9. Air Trapping and Airflow Obstruction in Newborn Cystic Fibrosis Piglets

    PubMed Central

    Adam, Ryan J.; Michalski, Andrew S.; Bauer, Christian; Abou Alaiwa, Mahmoud H.; Gross, Thomas J.; Awadalla, Maged S.; Bouzek, Drake C.; Gansemer, Nicholas D.; Taft, Peter J.; Hoegger, Mark J.; Diwakar, Amit; Ochs, Matthias; Reinhardt, Joseph M.; Hoffman, Eric A.; Beichel, Reinhard R.; Meyerholz, David K.

    2013-01-01

    Rationale: Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. Objectives: To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. Methods: On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro–computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. Measurements and Main Results: On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. Conclusions: The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities. PMID:24168209

  10. Trans-Laminar-Reinforced (TLR) Composites

    NASA Technical Reports Server (NTRS)

    Hinders, Mark; Dickinson, Larry

    1997-01-01

    A Trans-Laminar-Reinforced (TLR) composite is defined as composite laminate with up to five percent volume of fibrous reinforcement oriented in a 'trans-laminar' fashion in the through-thickness direction. The TLR can be continuous threads as in 'stitched laminates', or it can be discontinuous rods or pins as in 'Z-Fiber(TM) materials. It has been repeatedly documented in the literature that adding TLR to an otherwise two dimensional laminate results in the following advantages: substantially improved compression-after-impact response; considerably increased fracture toughness in mode 1 (double cantilever beam) and mode 2 (end notch flexure); and severely restricted size and growth of impact damage and edge delamination. TLR has also been used to eliminate catastrophic stiffener disbonding in stiffened structures. TLR directly supports the 'Achilles heel' of laminated composites, that is delamination. As little as one percent volume of TLR significantly alters the mechanical response of laminates. The objective of this work was to characterize the effects of TLR on the in-plane and inter-laminar mechanical response of undamaged composite laminates. Detailed finite element models of 'unit cells', or representative volumes, were used to study the effects of adding TLR on the elastic constants; the in-plane strength; and the initiation of delamination. Parameters investigated included TLR material, TLR volume fraction, TLR diameter, TLR through-thickness angle, ply stacking sequence, and the microstructural features of pure resin regions and curved in-plane fibers. The work was limited to the linear response of undamaged material with at least one ply interface. An inter-laminar dominated problem of practical interest, a flanged skin in bending, was also modeled.

  11. Laminar Flow in the Ocean Ekman Layer

    NASA Astrophysics Data System (ADS)

    Woods, J. T. H.

    INTRODUCTION THE EFFECT OF A STABLE DENSITY GRADIENT THE FATAL FLAW FLOW VISUALIZATION THE DISCOVERY OF LAMINAR FLOW FINE STRUCTURE WAVE-INDUCED SHEAR INSTABILITY BILLOW TURBULENCE REVERSE TRANSITION REVISED PARADIGM ONE-DIMENSIONAL MODELLING OF THE UPPER OCEAN DIURNAL VARIATION BUOYANT CONVECTION BILLOW TURBULENCE IN THE DIURNAL THERMOCLINE CONSEQUENCES FOR THE EKMAN CURRENT PROFILE SOLAR RADIATION APPLICATIONS Slippery Seas of Acapulco Pollution Afternoon Effect in Sonar Patchiness Fisheries Climate DISCUSSION CONCLUSION REFERENCES

  12. Field measurement of uncontrolled airflow and depressurization in restaurants

    SciTech Connect

    Cummings, J.B.; Fairey, P.W.; Withers, C.R. Jr.; McKendry, B.B.; Moyer, N.A.

    1996-11-01

    Field investigations were done in seven restaurants (subsample of a study of 63 commercial buildings) to identify uncontrolled airflows and pressure imbalances. Testing included building airtightness tests, identification of building air barrier locations, duct system airtightness, characterization of pressure differentials, building airflow balance, and infiltration/ventilation rates. All restaurants were found to operate at negative pressures that ranged from {minus}0.003 in. w.c. ({minus}0.8 Pa) to {minus}0.173 in. w.c. ({minus}43 Pa) and averaged {minus}0.051 in. w.c. ({minus}12.7 Pa) under normal operation. The variables that affect depressurization are large exhaust fans, missing or undersized make up air, intermittent outdoor air caused by the cycling of air handlers, dirty outdoor air and make up air filters, and building airtightness. These uncontrolled airflows and pressure imbalances impact energy use, ventilation rates, sizing of heating and air-conditioning systems, indoor comfort, relative humidity, moisture damage to building materials, mold and mildew growth, operation of combustion equipment, and indoor air quality.

  13. Airflow Simulations around OA Intake Louver with Electronic Velocity Sensors

    SciTech Connect

    Han, Hwataik; Sullivan, Douglas P.; Fisk, William J.

    2009-04-01

    It is important to control outdoor airflow rates into HVAC systems in terms of energy conservation and healthy indoor environment. Technologies are being developed to measure outdoor air (OA) flow rates through OA intake louvers on a real time basis. The purpose of this paper is to investigate the airflow characteristics through an OA intake louver numerically in order to provide suggestions for sensor installations. Airflow patterns are simulated with and without electronic air velocity sensors within cylindrical probes installed between louver blades or at the downstream face of the louver. Numerical results show quite good agreements with experimental data, and provide insights regarding measurement system design. The simulations indicate that velocity profiles are more spatially uniform at the louver outlet relative to between louver blades, that pressure drops imposed by the sensor bars are smaller with sensor bars at the louver outlet, and that placement of the sensor bars between louver blades substantially increases air velocities inside the louver. These findings suggest there is an advantage to placing the sensor bars at the louver outlet face.

  14. Energy Harvesting from Human Motion Using Footstep-Induced Airflow

    NASA Astrophysics Data System (ADS)

    Fu, H.; Xu, R.; Seto, K.; Yeatman, E. M.; Kim, S. G.

    2015-12-01

    This paper presents an unobtrusive in-shoe energy harvester converting foot-strike energy into electricity to power wearable or portable devices. An air-pumped turbine system is developed to address the issues of the limited vertical deformation of shoes and the low frequency of human motion that impede harvesting energy from this source. The air pump is employed to convert the vertical foot-strike motion into airflow. The generated airflow passes through the miniaturized wind turbine whose transduction is realized by an electromagnetic generator. Energy is extracted from the generator with a higher frequency than that of footsteps, boosting the output power of the device. The turbine casing is specifically designed to enable the device to operate continuously with airflow in both directions. A prototype was fabricated and then tested under different situations. A 6 mW peak power output was obtained with a 4.9 Ω load. The achievable power from this design was estimated theoretically for understanding and further improvement.

  15. Realistic glottal motion and airflow rate during human breathing.

    PubMed

    Scheinherr, Adam; Bailly, Lucie; Boiron, Olivier; Lagier, Aude; Legou, Thierry; Pichelin, Marine; Caillibotte, Georges; Giovanni, Antoine

    2015-09-01

    The glottal geometry is a key factor in the aerosol delivery efficiency for treatment of lung diseases. However, while glottal vibrations were extensively studied during human phonation, the realistic glottal motion during breathing is poorly understood. Therefore, most current studies assume an idealized steady glottis in the context of respiratory dynamics, and thus neglect the flow unsteadiness related to this motion. This is particularly important to assess the aerosol transport mechanisms in upper airways. This article presents a clinical study conducted on 20 volunteers, to examine the realistic glottal motion during several breathing tasks. Nasofibroscopy was used to investigate the glottal geometrical variations simultaneously with accurate airflow rate measurements. In total, 144 breathing sequences of 30s were recorded. Regarding the whole database, two cases of glottal time-variations were found: "static" or "dynamic" ones. Typically, the peak value of glottal area during slow breathing narrowed from 217 ± 54 mm(2) (mean ± STD) during inspiration, to 178 ± 35 mm(2) during expiration. Considering flow unsteadiness, it is shown that the harmonic approximation of the airflow rate underevaluates the inertial effects as compared to realistic patterns, especially at the onset of the breathing cycle. These measurements provide input data to conduct realistic numerical simulations of laryngeal airflow and particle deposition. PMID:26159687

  16. Airflow calibration of a bellmouth inlet for measurement of compressor airflow in turbine-powered propulsion simulators

    NASA Technical Reports Server (NTRS)

    Smith, S. C.

    1985-01-01

    The development of turbine-powered propulsion simulators for high-speed wind tunnel models requires a bellmouth inlet which can accurately measure compressor-inlet airflow. A bellmouth inlet was instrumented with total pressure probes, static pressure probes, and thermocouples for airflow measurement. The bellmouth flowmeter against a critical venturi flowmeter was calibrated. The calibration was done at four inlet pressures ranging from 58 to 114 kPa. The bellmouth discharge coefficient varied as a function of bellmouth-throat Mach number. Over the range of Reynolds number and Mach number tested the Reynolds number was not a significant influence on the discharge coefficient. The overall accuracy of the bellmouth inlet as a flowmeter was estimated to be + or - 0.5% of the flowmeter reading.

  17. Flame Structure and Scalar Properties in Microgravity Laminar Fires

    NASA Technical Reports Server (NTRS)

    Feikema, D. A.; Lim, J.; Sivathanu, Y.

    2006-01-01

    Recent results from microgravity combustion experiments conducted in the Zero Gravity Facility (ZGF) 5.18 second drop tower are reported. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in a microgravity laminar ethylene/air flame. The ethylene/air laminar flame conditions are similar to previously reported experiments including the Flight Project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long duration microgravity laminar diffusion flames as demonstrated in this paper.

  18. Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.

  19. Velocity profiles in laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Margle, Janice M.

    1986-01-01

    Velocity profiles in vertical laminar diffusion flames were measured by using laser Doppler velocimetry (LDV). Four fuels were used: n-heptane, iso-octane, cyclohexane, and ethyl alcohol. The velocity profiles were similar for all the fuels, although there were some differences in the peak velocities. The data compared favorably with the theoretical velocity predictions. The differences could be attributed to errors in experimental positioning and in the prediction of temperature profiles. Error in the predicted temperature profiles are probably due to the difficulty in predicting the radiative heat losses from the flame.

  20. Large eddy simulations of laminar separation bubble

    NASA Astrophysics Data System (ADS)

    Cadieux, Francois

    The flow over blades and airfoils at moderate angles of attack and Reynolds numbers ranging from ten thousand to a few hundred thousands undergoes separation due to the adverse pressure gradient generated by surface curvature. In many cases, the separated shear layer then transitions to turbulence and reattaches, closing off a recirculation region -- the laminar separation bubble. To avoid body-fitted mesh generation problems and numerical issues, an equivalent problem for flow over a flat plate is formulated by imposing boundary conditions that lead to a pressure distribution and Reynolds number that are similar to those on airfoils. Spalart & Strelet (2000) tested a number of Reynolds-averaged Navier-Stokes (RANS) turbulence models for a laminar separation bubble flow over a flat plate. Although results with the Spalart-Allmaras turbulence model were encouraging, none of the turbulence models tested reliably recovered time-averaged direct numerical simulation (DNS) results. The purpose of this work is to assess whether large eddy simulation (LES) can more accurately and reliably recover DNS results using drastically reduced resolution -- on the order of 1% of DNS resolution which is commonly achievable for LES of turbulent channel flows. LES of a laminar separation bubble flow over a flat plate are performed using a compressible sixth-order finite-difference code and two incompressible pseudo-spectral Navier-Stokes solvers at resolutions corresponding to approximately 3% and 1% of the chosen DNS benchmark by Spalart & Strelet (2000). The finite-difference solver is found to be dissipative due to the use of a stability-enhancing filter. Its numerical dissipation is quantified and found to be comparable to the average eddy viscosity of the dynamic Smagorinsky model, making it difficult to separate the effects of filtering versus those of explicit subgrid-scale modeling. The negligible numerical dissipation of the pseudo-spectral solvers allows an unambiguous

  1. Subsonic natural-laminar-flow airfoils

    NASA Technical Reports Server (NTRS)

    Somers, Dan M.

    1992-01-01

    An account is given of the development history of natural laminar-flow (NLF) airfoil profiles under guidance of an experimentally well-verified theoretical method for the design of airfoils suited to virtually all subcritical applications. This method, the Eppler Airfoil Design and Analysis Program, contains a conformal-mapping method for airfoils having prescribed velocity-distribution characteristics, as well as a panel method for the analysis of potential flow about given airfoils and a boundary-layer method. Several of the NLF airfoils thus obtained are discussed.

  2. Thermal laminarization of a stratified pipe flow

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    The present work constitutes a new program that grew out of a scoping assessment by ANL to determine the propensity for pipe stratification to occur in the reactor outlet nozzles and hot-leg piping of a generic LMFBR during events producing reverse pipe flow. This paper focuses on the role that thermal buoyancy plays relative to being able to laminarize a turbulent stratified shear zone in a horizontal pipe. The preceeding can influence the behavior of a pipe stratified-backflow-recirculation zone (cold plenum water down into the hot pipe flow) which developes as the result of a temperature difference between the pipe flow and the plenum.

  3. Laminar natural convection under nonuniform gravity.

    NASA Technical Reports Server (NTRS)

    Lienhard, J.; Eichhorn, R.; Dhir, V.

    1972-01-01

    Laminar natural convection is analyzed for cases in which gravity varies with the distance from the leading edge of an isothermal plate. The study includes situations in which gravity varies by virtue of the varying slope of a surface. A general integral solution method which includes certain known integral solutions as special cases is developed to account for arbitrary position-dependence of gravity. A series method of solution is also developed for the full equations. Although it is more cumbersome it provides verification of the integral method.

  4. Design Considerations for Laminar Flow Control Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.

    1976-01-01

    A study was conducted to investigate major design considerations involved in the application of laminar flow control to the wings and empennage of long range subsonic transport aircraft compatible with initial operation in 1985. For commercial transports with a design mission range of 10,186 km (5500 n mil) and a payload of 200 passengers, parametric configuration analyses were conducted to evaluate the effect of aircraft performance, operational, and geometric parameters on fuel efficiency. Study results indicate that major design goals for aircraft optimization include maximization of aspect ratio and wing loading and minimization of wing sweep consistent with wing volume and airport performance requirements.

  5. Integrative pathway genomics of lung function and airflow obstruction.

    PubMed

    Gharib, Sina A; Loth, Daan W; Soler Artigas, María; Birkland, Timothy P; Wilk, Jemma B; Wain, Louise V; Brody, Jennifer A; Obeidat, Ma'en; Hancock, Dana B; Tang, Wenbo; Rawal, Rajesh; Boezen, H Marike; Imboden, Medea; Huffman, Jennifer E; Lahousse, Lies; Alves, Alexessander C; Manichaikul, Ani; Hui, Jennie; Morrison, Alanna C; Ramasamy, Adaikalavan; Smith, Albert Vernon; Gudnason, Vilmundur; Surakka, Ida; Vitart, Veronique; Evans, David M; Strachan, David P; Deary, Ian J; Hofman, Albert; Gläser, Sven; Wilson, James F; North, Kari E; Zhao, Jing Hua; Heckbert, Susan R; Jarvis, Deborah L; Probst-Hensch, Nicole; Schulz, Holger; Barr, R Graham; Jarvelin, Marjo-Riitta; O'Connor, George T; Kähönen, Mika; Cassano, Patricia A; Hysi, Pirro G; Dupuis, Josée; Hayward, Caroline; Psaty, Bruce M; Hall, Ian P; Parks, William C; Tobin, Martin D; London, Stephanie J

    2015-12-01

    Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We identified several biologic modules that functionally overlapped with those associated with pulmonary function. However, differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative disease target. We used a knockout mouse model to functionally validate MMP10's role in influencing lung's susceptibility to cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease. PMID:26395457

  6. Evaluation of different airflow sensors at the WIPP facility

    SciTech Connect

    McDaniel, K.; Duckworth, I.J.; Prosser, B.S.

    1999-07-01

    The Waste Isolation Pilot Plant (WIPP) is an US Department of Energy underground disposal facility designed to permanently and safely isolate US defense-generated transuranic radioactive waste. The underground ventilation system is engineered to minimize the release of radioactive contamination to the environment in the event of an accident. During 1994 an extensive ventilation remote monitoring and control system was installed. It consists of fifteen air velocity sensors, eight differential pressure stations, automated control features on key underground air regulators, and eight psychrometric stations. The airflow monitoring component of the system has been a problem since the original installation. Due to the WIPP's variable airflow capabilities, the air velocity sensors required extensive and time-consuming re-calibration to make the sensors read out volumetric flow, rather than the point or line values, which they were factory calibrated for. Problems with the hardware made the process difficult. Furthermore, once re-calibrated the durability and reliability of the units were inconsistent, and often unacceptable. Two new types of airflow sensors were tested; one or both of which will ultimately replace the old units. The tested sensors were an ultrasonic-type device (FloSonic), and a warm body, mass flow unit (Airboss*200W) (a re-engineered version of the previous units). Recommendations were made regarding which type of sensor to install at specific locations. These decisions were based on the conditions at each sensor location and the relative strengths of the two sensor types. Installation, field calibration methodology, test procedures, main results and recommendations are discussed.

  7. Airflow, gas deposition, and lesion distribution in the nasal passages

    SciTech Connect

    Morgan, K.T.; Monticello, T.M. )

    1990-04-01

    The nasal passages of laboratory animals and man are complex, and lesions induced in the delicate nasal lining by inhaled air pollutants vary considerably in location and nature. The distribution of nasal lesions is generally a consequence of regional deposition of the inhaled material, local tissue susceptibility, or a combination of these factors. Nasal uptake and regional deposition are are influenced by numerous factors including the physical and chemical properties of the inhaled material, such as water solubility and reactivity; airborne concentration and length of exposure; the presence of other air contaminants such as particulate matter; nasal metabolism, and blood and mucus flow. For certain highly water-soluble or reactive gases, nasal airflow patterns play a major role in determining lesion distribution. Studies of nasal airflow in rats and monkeys, using casting and molding techniques combined with a water-dye model, indicate that nasal airflow patterns are responsible for characteristic differences in the distribution of nasal lesions induced by formaldehyde in these species. Local tissue susceptibility is also a complex issue that may be a consequence of many factors, including physiologic and metabolic characteristics of the diverse cell populations that comprise each of the major epithelial types lining the airways. Identification of the principal factors that influence the distribution and nature of nasal lesions is important when attempting the difficult process of determining potential human risks using data derived from laboratory animals. Toxicologic pathologists can contribute to this process by carefully identifying the site and nature of nasal lesions induced by inhaled materials. 61 references.

  8. Real-time visualization and analysis of airflow field by use of digital holography

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Wu, Bingjing; Chen, Xin; Liu, Junjiang; Wang, Jun; Zhao, Jianlin

    2013-04-01

    The measurement and analysis of airflow field is very important in fluid dynamics. For airflow, smoke particles can be added to visually observe the turbulence phenomena by particle tracking technology, but the effect of smoke particles to follow the high speed airflow will reduce the measurement accuracy. In recent years, with the advantage of non-contact, nondestructive, fast and full-field measurement, digital holography has been widely applied in many fields, such as deformation and vibration analysis, particle characterization, refractive index measurement, and so on. In this paper, we present a method to measure the airflow field by use of digital holography. A small wind tunnel model made of acrylic glass is built to control the velocity and direction of airflow. Different shapes of samples such as aircraft wing and cylinder are placed in the wind tunnel model to produce different forms of flow field. With a Mach-Zehnder interferometer setup, a series of digital holograms carrying the information of airflow filed distributions in different states are recorded by CCD camera and corresponding holographic images are numerically reconstructed from the holograms by computer. Then we can conveniently obtain the velocity or pressure information of the airflow deduced from the quantitative phase information of holographic images and visually display the airflow filed and its evolution in the form of a movie. The theory and experiment results show that digital holography is a robust and feasible approach for real-time visualization and analysis of airflow field.

  9. EFFECT OF AIRFLOW AND HEAT INPUT RATES ON DUCT EFFICIENCY.

    SciTech Connect

    ANDREWS,J.W.

    2003-05-28

    Reducing the airflow and heat input rates of a furnace that is connected to a duct system in thermal contact with unconditioned spaces can significantly reduce thermal distribution efficiency. This is a straightforward theoretical calculation based on the increased residence time of the air in the duct at the lower flow rate, which results in greater conduction losses. Experimental tests in an instrumented residential-size duct system have confirmed this prediction. Results are compared with the heat-loss algorithm in ASHRAE Standid 152P. The paper concludes with a discussion of possible remedies for this loss of efficiency in existing systems and optional design strategies in new construction.

  10. Vapor-Generator Wand Helps To Reveal Airflow Patterns

    NASA Technical Reports Server (NTRS)

    Robelen, David B.

    1993-01-01

    In vapor-generator wand, liquid propylene glycol flows into electrically heated stainless-steel tube. Liquid boils in heated tube, and emerging vapor forms dense, smoke-like fog used to make airflow patterns visible. Built in variety of sizes, suitable for uses ranging from tabletop demonstrations to research in wind tunnels. For best viewing, plume illuminated by bright, focused incandescent spotlight at right angle to viewing direction. Viewing further enhanced by coating walls of test chamber with flat, dark color to minimize reflections and increase contrast.

  11. Evaluation of airflow patterns in 2706-T and 2706-TA

    SciTech Connect

    DEROSA, D.C.

    1999-08-26

    The purpose of this study was to evaluate the adequacy of the current placement of fixed head air samplers and continuous air monitors (CAMs) in the 2706-T and 2706-TA Complex. The airflow study consisted of 6 configurations of facility HVAC and HEPA filtration equipment to determine impacts on CAM location. The results of this study provide recommendations based on guidance in DOE G 411.1-8 and NUREG-1400 for placement of fixed head air samplers or CAMS within 2706-T and 2706-TA.

  12. CFD modeling of pharmaceutical isolators with experimental verification of airflow.

    PubMed

    Nayan, N; Akay, H U; Walsh, M R; Bell, W V; Troyer, G L; Dukes, R E; Mohan, P

    2007-01-01

    Computational fluid dynamics (CFD) models have been developed to predict the airflow in a transfer isolator using a commercial CFD code. In order to assess the ability of the CFD approach in predicting the flow inside an isolator, hot wire anemometry measurements and a novel experimental flow visualization technique consisting of helium-filled glycerin bubbles were used. The results obtained have been shown to agree well with the experiments and show that CFD can be used to model barrier systems and isolators with practical fidelity. This indicates that CFD can and should be used to support the design, testing, and operation of barrier systems and isolators. PMID:17933207

  13. Three-Dimensional Engineered High Fidelity Normal Human Lung Tissue-Like Assemblies (TLA) as Targets for Human Respiratory Virus Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Deatly, A. M.; Suderman, M. T.; Lin, Y.-H.; Chen, W.; Gupta, C. K.; Randolph, V. B.; Udem, S. A.

    2003-01-01

    Unlike traditional two-dimensional (2D) cell cultures, three-dimensional (3D) tissue-like assemblies (TLA) (Goodwin et aI, 1992, 1993, 2000 and Nickerson et aI. , 2001,2002) offer high organ fidelity with the potential to emulate the infective dynamics of viruses and bacteria in vivo. Thus, utilizing NASA micro gravity Rotating Wall Vessel (RWV) technology, in vitro human broncho-epithelial (HBE) TLAs were engineered to mimic in vivo tissue for study of human respiratory viruses. These 3D HBE TLAs were propagated from a human broncho-tracheal cell line with a mesenchymal component (HBTC) as the foundation matrix and either an adult human broncho-epithelial cell (BEAS-2B) or human neonatal epithelial cell (16HBE140-) as the overlying element. Resulting TLAs share several characteristic features with in vivo human respiratory epithelium including tight junctions, desmosomes and cilia (SEM, TEM). The presence of epithelium and specific lung epithelium markers furthers the contention that these HBE cells differentiate into TLAs paralleling in vivo tissues. A time course of infection of these 3D HBE TLAs with human respiratory syncytial virus (hRSV) wild type A2 strain, indicates that virus replication and virus budding are supported and manifested by increasing virus titer and detection of membrane-bound F and G glycoproteins. Infected 3D HBE TLAs remain intact for up to 12 days compared to infected 2D cultures that are destroyed in 2-3 days. Infected cells show an increased vacuolation and cellular destruction (by transmission electron microscopy) by day 9; whereas, uninfected cells remain robust and morphologically intact. Therefore, the 3D HBE TLAs mimic aspects of human respiratory epithelium providing a unique opportunity to analyze, for the first time, simulated in vivo viral infection independent of host immune response.

  14. Series of Laminar Soot Processes Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (189KB JPEG, 1350 x 1517 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300183.html.

  15. A Series of Laminar Jet Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (249KB JPEG, 1350 x 1524 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300185.html.

  16. Gliding Swifts Attain Laminar Flow over Rough Wings

    PubMed Central

    Lentink, David; de Kat, Roeland

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration—similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089

  17. Gliding swifts attain laminar flow over rough wings.

    PubMed

    Lentink, David; de Kat, Roeland

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089

  18. Mechanism of bronchodilator effect in chronic airflow limitation.

    PubMed Central

    Jaeschke, R; Guyatt, G H; Singer, J; Keller, J; Newhouse, M T

    1991-01-01

    OBJECTIVE: To examine the mechanisms through which two bronchodilators (theophylline and salbutamol) influence dyspnea during daily activities. METHODS: Twenty-four patients with chronic airflow limitation participated in a multiple crossover, randomized, placebo-controlled trial. The effect of theophylline and salbutamol, alone or combined, on pulmonary function and dyspnea during daily activities was examined. Correlations of changes in forced expiratory volume in 1 second (FEV1) and maximum expiratory pressures (MIPs) (independent variables) and changes in dyspnea score during daily activities (dependent variable) were also examined. RESULTS: The two drugs proved to be beneficial the effects in general were additive rather than synergistic. The drugs improved the FEV1; theophylline significantly improved the MIPs. The correlation between the changes in FEV1 and those in dyspnea score, after adjustment for the changes in MIPs, was 0.55 (p less than 0.001). The correlation between the changes in MIPs and those in dyspnea score, after adjustment for the changes in FEV1, was 0.39 (p less than 0.001). CONCLUSIONS: Changes in airway calibre and in respiratory muscle strength play an independent and important role in dyspnea during daily activities in patients with chronic airflow limitation. Changes in airway calibre may be of greater importance. PMID:1984814

  19. Forced-air patient warming blankets disrupt unidirectional airflow.

    PubMed

    Legg, A J; Hamer, A J

    2013-03-01

    We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10. PMID:23450029

  20. Inspirational airflow patterns in deviated noses: a numerical study.

    PubMed

    Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Lee, Shu Jin; San, Lynette Teo Li; Wang, De Yun

    2013-01-01

    This study attempts to evaluate the effects of deviation of external nose to nasal airflow patterns. Four typical subjects were chosen for model reconstruction based on computed tomography images of undeviated, S-shaped deviated, C-shaped deviated and slanted deviated noses. To study the hypothetical influence of deviation of external nasal wall on nasal airflow (without internal blockage), the collapsed region along the turbinate was artificially reopened in all the three cases with deviated noses. Computational fluid dynamics simulations were carried out in models of undeviated, original deviated and reopened nasal cavities at both flow rates of 167 and 500 ml/s. The shape of the anterior nasal roof was found to be collapsed on one side of the nasal airways in all the deviated noses. High wall shear stress region was found around the collapsed anterior nasal roof. The nasal resistances in cavities with deviated noses were considerably larger than healthy nasal cavity. Patterns of path-line distribution and wall shear stress distribution were similar between original deviated and reopened models. In conclusion, the deviation of an external nose is associated with the collapse of one anterior nasal roof. The crooked external nose induced a larger nasal resistance compared to the undeviated case, while the internal blockage of the airway along the turbinates further increased it. PMID:22515677

  1. IEA BESTEST Multi-Zone Non-Airflow In-Depth Diagnostic Cases: Preprint

    SciTech Connect

    Neymark, J.; Judkoff, R.; Alexander, D.; Felsmann, C.; Strachan, P.; Wijsman, A.

    2011-11-01

    This paper documents a set of in-depth diagnostic test cases for multi-zone heat transfer models that do not include the heat and mass transfer effects of airflow between zones. The multi-zone non-airflow test cases represent an extension to IEA BESTEST (Judkoff and Neymark 1995a).

  2. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance tests; all dust, fume, and mist... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and...

  3. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Steenken, W. G.; Yuhas, A. J.

    1996-01-01

    The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.

  4. Systemic leukopenia, evaluation of laminar leukocyte infiltration and laminar lesions in horses with naturally occurring colic syndrome.

    PubMed

    Laskoski, Luciane Maria; Locatelli-Dittrich, Rosangela; Valadão, Carlos Augusto Araújo; Deconto, Ivan; Gonçalves, Kamila Alcala; Montiani-Ferreira, Fabiano; Brum, Juliana Sperotto; de Brito, Harald Fernando Vicente; de Sousa, Renato Silva

    2015-08-01

    The present study was aimed at identifying laminar lesions and leukocyte infiltration in hoof laminar tissue of horses with colic syndrome and its correlation with the total leukocyte count before death. Six healthy horses were used as control group (CG), and eighteen horses with lethal gastrointestinal disease were divided into two groups: leukopenic group (LG) with seven leukopenic horses, and non-leukopenic group (NLG) with 11 horses with total leukocyte count within reference range for the species. Leukocyte infiltration was examined by immunohistochemistry. Laminar lesions were observed in both LG and NLG, with no differences in severity between them. LG showed increase of the leukocyte infiltration in the hoof laminar tissue, when compared to CG and NLG. Horses with severe colic syndrome (LG and NLG) developed intense laminar lesions without clinical signs of laminitis, with increased leukocyte infiltration. However, the LG demonstrated an even higher increase of leukocyte infiltration compared to both CG and NLG. PMID:26267083

  5. Possible coseismic laminar and non-laminar flow along subduction megathrusts

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Noguchi, K.; Saito, T.; Tsutsumi, A.

    2014-12-01

    Coseismic deformation mechanisms during subduction earthquakes remained unclear other than frictional melting recorded in pseudotachylytes. However, the recent mineralogical studies in the shallow plate-boundary thrust in the Nankai subduction zone and the underplating-related duplex-fault zone in the Shimanto accretionary complex exhumed from 4-6 km depth have identified increased heating along the 2 mm-thick, clay-rich fault gouge and the few-centimeters-thick, basalt-derived ultracataclasite, respectively. The microstructures of the fault gouge are characterized by strong preferred orientation of clay particles along the gouge, while those of the ultracataclasite show the random fabric. High-velocity friction experiments were conducted on the disaggregated fault rocks under wet (water-saturated) conditions at different normal stresses, using the rotary shear frictional testing apparatus. The results show the rapid slip weakening with low peak and steady-state shear stress, and a very small slip weakening distance and fracture energy, suggesting the ease of earthquake rupture propagation through the fault materials. The steady-state shear stress is almost independent of normal stress, indicating that the gouge behaved like a fluid during high-velocity shearing. The microstructures after the experiments are marked by the development of foliated zone in the gouge layer, but the random fabric develops in the outermost region of the circular gouge layer. Given the nearly independence of steady-state shear stress on normal stress and the increase in the rotation velocity from the center of the rotation axis during the rotary shear, the change from foliated zone to non-foliated, random fabric in the circular gouge layer could represent the change from laminar to non-laminar (or turbulent) flow associated with the increase in the Reynolds number. The implications for the fault rocks are that the development of foliated and non-foliated zones may represent coseismic

  6. Energy savings from repair of uncontrolled airflow in 18 small commercial buildings

    SciTech Connect

    Withers, C.R. Jr.; Cummings, J.B.; Fairey, P.W.; McKendry, B.B.; Moyer, N.A.

    1996-12-31

    Uncontrolled airflow, including duct leakage, pressure imbalances caused by closed interior doors, and exhaust/intake airflow imbalance, was characterized in 70 commercial buildings. In 18 of these buildings, uncontrolled airflows were repaired and energy savings from these repairs were monitored. In most buildings, the retrofit was duct repair. In other cases, outdoor airflow was reduced and return air transfers were provided. Cooling energy use was reduced by an average 15.1% in these 18 buildings. With an average repair cost of $455 and average cooling energy savings of $195 per year, uncontrolled airflow retrofits proved to be very cost-effective. Various factors indicate that greater energy savings could be achieved in the future.

  7. A Theoretical Study on Airflow Motive Force and Heat Transfer by the Water Spray

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuyuki

    On assuming the abscissa moving uniformly with the horizontal airflow in disregard of gravity, airflow motive force and heat transfer by the water spray have been easily analyzed theoretically. Here main results are as follows. The theoretical maximum airflow motive pressure is proportional to both the initial relative velocity of waterdrop and the relative water flow per unit cross-sectional area of the apparatus to the airflow or the moving abscissa but unrelated to the size of waterdrop. The airflow motive pressure approaches to the above maximum with an increase in the length of the apparatus. Making the waterdrop size smaller has an effect on the aparatus to get longer virtually. The initial velocity of waterdrop or the spraying nozzle pressure has little effect on the heat transfer between the air and the water.

  8. Differently patterned airflows induced by 1-kHz femtosecond laser filaments in a cloud chamber

    NASA Astrophysics Data System (ADS)

    Sun, Haiyi; Liang, Hong; Liu, Yonghong; Ju, Jingjing; Wei, Yingxia; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-11-01

    Airflow induced by femtosecond laser (800 nm/1 kHz/25 fs) filamentation with different lengths was investigated in a laboratory cloud chamber. Various filament lengths were generated by adjusting laser energy and lens focal length. It was found that airflow patterns are closely related to filament intensity and length. Intense and long filaments are beneficial in updraft generation with large vortices above the filament, while intense and short filaments tend to promote the formation of well-contacted vortices below the filament. Differently patterned airflows induced elliptical snow piles with different masses. We simulated airflow in a cloud chamber numerically taking laser filaments as heat sources. The mechanisms of differently patterned airflow and snow formation induced by filaments were discussed.

  9. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  10. On the combustion of a laminar spray

    NASA Technical Reports Server (NTRS)

    Levy, Yeshayahou; Bulzan, Daniel L.

    1993-01-01

    A spray combustor, with flow velocities in the laminar range, exhibits a unique operating mode where large amplitude, self-induced oscillations of the flame shape occur. The phenomenon, not previously encountered, only occurs when fuel is supplied in the form of fine liquid droplets and does not occur when fuel is supplied in gaseous form. Several flow mechanisms are coupled in such a fashion as to trigger and maintain the oscillatory motion of the flame. These mechanisms include heat transfer and evaporation processes, dynamics of two-phase flows, and effects of gravity (buoyancy forces). An interface volume, lying above the fuel nozzle and below the flame was found to be the most susceptible to gravity effects and postulated to be responsible for inducing the oscillatory motion. Heptane fuel was used in the majority of the tests. Tests performed with iso-octane also showed similar results.

  11. Laminar superlayer at the turbulence boundary.

    PubMed

    Holzner, M; Lüthi, B

    2011-04-01

    In this Letter we present results from particle tracking velocimetry and direct numerical simulation that are congruent with the existence of a laminar superlayer, as proposed in the pioneering work of Corrsin and Kistler (NACA, Technical Report No. 1244, 1955). We find that the local superlayer velocity is dominated by a viscous component and its magnitude is comparable to the characteristic velocity of the smallest scales of motion. This slow viscous process involves a large surface area so that the global rate of turbulence spreading is set by the largest scales of motion. These findings are important for a better understanding of mixing of mass and momentum in a variety of flows where thin layers of shear exist. Examples are boundary layers, clouds, planetary atmospheres, and oceans. PMID:21517388

  12. Flight research on natural laminar flow applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.

    1992-01-01

    Natural laminar flow (NLF) is clearly one of the most potentially attractive drag reduction technologies by virtue of its relative simplicity. NLF is achieved passively, that is, by design of surface shapes to produce favorable pressure gradients. However, it is not without its challenges and limitations. This chapter describes the significant challenges to achieving and maintaining NLF and documents certain of the limitations for practical applications. A brief review of the history and of more recent NLF flight experiments is given, followed by a summary of lessons learned which are pertinent to future applications. The chapter also summarizes important progress in test techniques, particularly in flow visualization and hot-film techniques for boundary-layer measurements in flight.

  13. Base pressure in laminar supersonic flow.

    NASA Technical Reports Server (NTRS)

    Messiter, A. F.; Hough, G. R.; Feo, A.

    1973-01-01

    An asymptotic description is proposed for supersonic laminar flow over a wedge or a backward-facing step, for large Reynolds number and for a base or step height which is small compared with the boundary-layer length. The analysis is carried out for adiabatic wall conditions and a viscosity coefficient proportional to temperature. In a particular limit corresponding to a very thick boundary layer, a similarity law is obtained for the base pressure. For a thinner boundary layer an asymptotic form for the base pressure is obtained which shows the dependence on the parameters explicitly and which permits good agreement with experiment. This latter result is based on an inviscid-flow approximation for the corner expansion and for reattachment with viscous forces important primarily in a thin sublayer about the dividing streamline. A prediction of the pressure distribution at reattachment is given and the result is compared with experimental pressure distributions.

  14. Cortical laminar necrosis following myocardial infarction.

    PubMed

    Lattanzi, Simona; Silvestrini, Mauro; Provinciali, Leandro

    2016-01-01

    The cortical laminar necrosis (CLN) is a permanent injury characterized by the selective delayed necrosis of the cerebral cortex, mainly of the third layer, and usually greater in the depths and sides of the sulci than over the crest of the gyri. The damage involves all cellular components - either neurons, glia cells and blood vessels - and results in a focal cortical band of pan-necrosis detectable in late sub-acute or chronic stages of reduced energy supply to the brain. The CLN has been described in different conditions as hypoxia, hypoglycemia and status epilepticus. At brain CT or MR scans it appears with pathognomonic highly hyperdense or T1-hyperintense lesions following the gyral anatomy of the cerebral cortex. We reported a case of CLN associated to myocardial infarct and discussed the underlying mechanisms. PMID:27375142

  15. A laminar solid core photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Willig, R. L.

    2005-11-01

    A one-dimensional model is presented to explain the physics of solid core photonic crystal fibers. The model provides a clear way to demonstrate many of the interesting characteristics of these fibers: variation of cladding index with wavelength, endlessly single-mode operation, short wavelength index limit, long wavelength index limit, and variation of these properties with the air/silica fraction. The effective index is calculated for a laminar cladding consisting of periodic layers of alternating high and low index dielectrics. The waveguide model consists of the same periodic layers surrounding a high-index core through which most of the light propagates. The light is confined by total internal reflection. The model is shown to be an accurate analogue for a more complicated two-dimensional finned dielectric waveguide.

  16. Thermohydrodynamic analysis for laminar lubricating films

    NASA Technical Reports Server (NTRS)

    Elrod, H. G.; Brewe, D. E.

    1986-01-01

    A Galerkin-type analysis to include thermal effects in laminar lubricating films was performed. The lubricant properties were assumed constant except for a temperature-dependent Newtonian viscosity. The cross-film temperature profile is established by collocation at the film boundaries and two interior Lobatto points. The interior temperatures are determined by requiring that the zeroth and first moment of the energy equation be satisfied across the film. The fluidity is forced to conform to a third--degree polynomial appropriate to the Lobatto-point temperatures. Preliminary indications are that the use of just two such sampling points enables satisfactory prediction of bearing performance even in the presence of substantial viscosity variation.

  17. Laminar flow control SPF/08 feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Ecklund, R. C.; Williams, N. R.

    1981-01-01

    The feasibility of applying superplastic forming/diffusion bonding (SPF/DB) technology to laminar flow control (LFC) system concepts was demonstrated. Procedures were developed to produce smooth, flat titanium panels, using thin -0.016 inch sheets, meeting LFC surface smoothness requirements. Two large panels 28 x 28 inches were fabricated as final demonstration articles. The first was flat on the top and bottom sides demonstrating the capability of the tooling and the forming and diffusion bonding procedures to produce flat, defect free surfaces. The second panel was configurated for LFC porous panel treatment by forming channels with dimpled projections on the top side. The projections were machined away leaving holes extending into the panel. A perforated titanium sheet was adhesively bonded over this surface to complete the LFC demonstration panel. The final surface was considered flat enough to meet LFC requirements for a jet transport aircraft in cruising flight.

  18. Toward a laminar-flow-control transport

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    Analyses were conducted to define a practical design for an advanced technology laminar flow control (LRC) transport for initial passenger operation in the early 1990's. Mission requirements, appropriate design criteria, and level of technology for the study aircraft were defined. The characteristics of the selected configuration were established, aircraft and LFC subsystems compatible with the mission requirements were defined, and the aircraft was evaluated in terms of fuel efficiency. A wing design integrating the LFC ducting and metering system into advanced composite wing structure was developed, manufacturing procedures for the surface panel design were established, and environmental and structural testing of surface panel components were conducted. Test results revealed a requirement for relatively minor changes in the manufacturing procedures employed, but have shown the general compatibility of both the selected design and the use of composite materials with the requirements of LFC wing surface panels.

  19. Laminar flow control perforated wing panel development

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.

    1986-01-01

    Many structural concepts for a wing leading edge laminar flow control hybrid panel were analytically investigated. After many small, medium, and large tests, the selected design was verified. New analytic methods were developed to combine porous titanium sheet bonded to a substructure of fiberglass and carbon/epoxy cloth. At -65 and +160 F test conditions, the critical bond of the porous titanium to the composite failed at lower than anticipated test loads. New cure cycles, design improvements, and test improvements significantly improved the strength and reduced the deflections from thermal and lateral loadings. The wave tolerance limits for turbulence were not exceeded. Consideration of the beam column midbay deflections from the combinations of the axial and lateral loadings and thermal bowing at -65 F, room temperature, and +160 F were included. Many lap shear tests were performed at several cure cycles. Results indicate that sufficient verification was obtained to fabricate a demonstration vehicle.

  20. Compressible laminar streaks with wall suction

    NASA Astrophysics Data System (ADS)

    Ricco, Pierre; Shah, Daniel; Hicks, Peter D.

    2013-05-01

    The response of a compressible laminar boundary layer subject to free-stream vortical disturbances and steady mean-flow wall suction is studied. The theoretical frameworks of Leib et al. [J. Fluid Mech. 380, 169-203 (1999), 10.1017/S0022112098003504] and Ricco and Wu [J. Fluid Mech. 587, 97-138 (2007), 10.1017/S0022112007007070], based on the linearized unsteady boundary-region equations, are adopted to study the influence of suction on the kinematic and thermal streaks arising through the interaction between the free-stream vortical perturbations and the boundary layer. In the asymptotic limit of small spanwise wavelength compared with the boundary layer thickness, i.e., when the disturbance flow is conveniently described by the steady compressible boundary region equations, the effect of suction is mild on the velocity fluctuations and negligible on the temperature fluctuations. When the spanwise wavelength is comparable with the boundary layer thickness, small suction values intensify the supersonic streaks, while higher transpiration levels always stabilize the disturbances at all Mach numbers. At larger spanwise wavelengths, very small amplitudes of wall transpiration have a dramatic stabilizing effect on all boundary layer fluctuations, which can take the form of transiently growing thermal streaks, large amplitude streamwise oscillations, or oblique exponentially growing Tollmien-Schlichting waves, depending on the Mach number and the wavelengths. The range of wavenumbers for which the exponential growth occurs becomes narrower and the location of instability is significantly shifted downstream by mild suction, indicating that wall transpiration can be a suitable vehicle for delaying transition when the laminar breakdown is promoted by these unstable disturbances. The typical streamwise wavelength of these disturbances is instead not influenced by suction, and asymptotic triple deck theory predicts the strong changes in growth rate and the very mild

  1. F-111 TACT natural laminar flow glove flight results

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Steers, L. L.; Trujillo, B.

    1981-01-01

    Improvements in cruise efficiency on the order of 15 to 40% are obtained by increasing the extent of laminar flow over lifting surfaces. Two methods of achieving laminar flow are being considered, natural laminar flow and laminar flow control. Natural laminar flow (NLF) relies primarily on airfoil shape while laminar flow control involves boundary layer suction or blowing with mechanical devices. The extent of natural laminar flow that could be achieved with consistency in a real flight environment at chord Reynolds numbers in the range of 30 x 10(6) power was evaluated. Nineteen flights were conducted on the F-111 TACT airplane having a NLF airfoil glove section. The section consists of a supercritical airfoil providing favorable pressure gradients over extensive portions of the upper and lower surfaces of the wing. Boundary layer measurements were obtained over a range of wing leading edge sweep angles at Mach numbers from 0.80 to 0.85. Data were obtained for natural transition and for a range of forced transition locations over the test airfoil.

  2. Mushrooms use convectively created airflows to disperse their spores.

    PubMed

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-03-15

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal--that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  3. Airflow and optic flow mediate antennal positioning in flying honeybees.

    PubMed

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. PMID:27097104

  4. Airflow and optic flow mediate antennal positioning in flying honeybees

    PubMed Central

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104

  5. Indirect evaporative cooler with condensation of primary airflow

    SciTech Connect

    Vollebregt, H.J.M.; Jong, T. de

    1994-12-31

    In this paper a new application for indirect evaporative cooling is introduced. This cooling principle may be used to cool and dehumidify closed greenhouses. A prototype indirect evaporative cooler with a crossflow configuration was built and its performance was determined in an experimental facility. During tests under Dutch design conditions of the greenhouse and outside air, the plate temperature was less than the dew point of the greenhouse air, so condensation occurred. The rates of sensible and latent heat transferred from the greenhouse air by the prototype cooler were determined. Also, the influence of greenhouse and outside air conditions and airflow rates in the cooler on the enthalpy efficiency was studied. Although the amount of condensation in the prototype indirect evaporative cooler was large, the resulting climate in a closed greenhouse may be more humid than that in a conventional one.

  6. Effect of airflow on biodrying of gardening wastes in reactors.

    PubMed

    Colomer-Mendoza, F J; Herrera-Prats, L; Robles-Martínez, F; Gallardo-Izquierdo, A; Piña-Guzmán, A B

    2013-05-01

    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation. The parameters that control the process are: aeration, temperature during the process, initial moisture of biowaste, and temperature and relative humidity of the input air. Lawn mowing and garden waste from the gardens of the University Jaume I, Castellón (Spain) were used as a substrate. Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min x kg dry weight). To promote aeration, 5 of the reactors had 15% of a bulking agent added. The experiment lasted 20 days. After the experiments it was found that the bulking agent led to greater weight loss. However, the increased airflow rate was not linearly proportional to the weight loss. PMID:24218815

  7. The role of the olfactory recess in olfactory airflow.

    PubMed

    Eiting, Thomas P; Smith, Timothy D; Perot, J Blair; Dumont, Elizabeth R

    2014-05-15

    The olfactory recess - a blind pocket at the back of the nasal airway - is thought to play an important role in mammalian olfaction by sequestering air outside of the main airstream, thus giving odorants time to re-circulate. Several studies have shown that species with large olfactory recesses tend to have a well-developed sense of smell. However, no study has investigated how the size of the olfactory recess relates to air circulation near the olfactory epithelium. Here we used a computer model of the nasal cavity from a bat (Carollia perspicillata) to test the hypothesis that a larger olfactory recess improves olfactory airflow. We predicted that during inhalation, models with an enlarged olfactory recess would have slower rates of flow through the olfactory region (i.e. the olfactory recess plus airspace around the olfactory epithelium), while during exhalation these models would have little to no flow through the olfactory recess. To test these predictions, we experimentally modified the size of the olfactory recess while holding the rest of the morphology constant. During inhalation, we found that an enlarged olfactory recess resulted in lower rates of flow in the olfactory region. Upon exhalation, air flowed through the olfactory recess at a lower rate in the model with an enlarged olfactory recess. Taken together, these results indicate that an enlarged olfactory recess improves olfactory airflow during both inhalation and exhalation. These findings add to our growing understanding of how the morphology of the nasal cavity may relate to function in this understudied region of the skull. PMID:24577441

  8. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    SciTech Connect

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  9. Numerical simulation of airflow in the human nose.

    PubMed

    Weinhold, Ivo; Mlynski, Gunter

    2004-09-01

    Unobstructed air passageways as well as sufficient contact of the air stream with the mucous membrane are essential for the correct function of the nose. For that, local flow phenomena, which often cannot be captured by standard diagnostic methods, are important. We developed and validated a method for the numerical simulation of the nasal airflow. Two anatomically correct, transparent resin models of human nasal cavities, manufactured by a special casting technology, and the nasal cavities of two patients were reconstructed as Computer Aided Design models based on computed tomography (CT) scans. One of the nasal models and one clinical case represented a normal nasal anatomy, while the others were examples of pathological alterations. The velocity and pressure fields in these reconstructed cavities were calculated for the entire range of physiological nasal inspiration using commercially available computational fluid dynamics software. To validate the results rhinoresistometric data were measured and characteristic streamlines were videotaped for the resin models. The numerical results were in good agreement with the experimental data for the investigated cases. An example of a complex clinical case demonstrates the potential benefit of the developed simulation method for rhinosurgical planning. The results support the assumption that even under the specific conditions of the clinical practice the application of numerical simulation of nasal airflow phenomena may become realistic in the near future. However, important technical issues such as a completely automated reconstruction of the nasal cavity still need to be resolved before such simulations are efficient and cost effective enough to become a standard tool for the rhinologist. PMID:14652769

  10. Asthma, airflow limitation, and mortality risk in the general population

    PubMed Central

    Huang, Shuang; Vasquez, Monica M; Halonen, Marilyn; Martinez, Fernando D; Guerra, Stefano

    2015-01-01

    Asthma and chronic obstructive pulmonary disease co-exist in a significant proportion of patients. Whether asthma increases mortality risk among subjects with airflow limitation remains controversial. We used data from 2121 adult participants in the population-based TESAOD cohort. At enrollment (1972–73), participants completed questionnaires and lung function tests. Participants were categorized into four groups based on the combination of airflow limitation (AL: FEV1/FVC<70%) and physician-confirmed asthma at baseline. Vital status as of January 2011 was assessed through the National Death Index. Cox proportional hazards models were used to test differences in mortality risk across the four AL/Asthma groups. In multivariate Cox models, the AL+/Asthma+ group had a 114% increased mortality risk over the follow-up as compared with the AL-/Asthma- group (adjHR: 2.14, 1.64–2.79). The corresponding Hazard Ratios were 1.09 (0.89–1.34) and 1.34 (1.14–1.57) for the AL-/Asthma+ and AL+/Asthma- groups, respectively. Among subjects with AL, asthma was associated with increased mortality risk (1.58, 1.17–2.12). However, this increased risk was substantially reduced and no longer significant after further adjustment for baseline FEV1 levels. Similar results were obtained when AL was defined as FEV1/FVC

  11. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  12. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  13. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  14. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  15. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  16. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  17. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  18. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  19. The NASA Langley laminar flow control airfoil experiment

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Pride, J. D.

    1982-01-01

    A large chord swept supercritical LFC airfoil has been constructed for NASA-Langley's research program to determine the compatibility of supercritical airfoils with suction laminarization and to establish a technology base for future transport designs. Features include a high design Mach number and shock-free flow, as well as the minimization of the laminarization suction through a choice of airfoil geometry and pressure distribution. Two suction surface concepts and a variety of hybrid suction concepts involving combinations of natural and forced laminar flow are to be investigated. The test facility has been modified to insure achievement of required flow quality and transonic interference-free flow over the yawed LFC airfoil.

  20. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  1. Inductively coupled plasma torch with laminar flow cooling

    DOEpatents

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  2. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-01-01

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands. PMID:25405953

  3. The Impact of Smoking on Airflow Limitation in Subjects with History of Asthma and Inactive Tuberculosis

    PubMed Central

    Kim, Hyun Jung; Baek, Seunghee; Kim, Hee Jin; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2015-01-01

    Background Although smoking is the most important and modifiable cause of chronic obstructive pulmonary disease (COPD), other risk factors including asthma and tuberculosis (TB) are also associated. It is common for COPD patients to have more than one of these risk factors. The aims of this study were to determine the prevalence of airflow limitation (FEV1/FVC<0.7) according to the risk factors and to investigate their impact and interaction in airflow limitation. Methods From the Korean National Health and Nutrition Examination Survey between 2008 and 2012, we analyzed participants over 40 years of age by spirometry, chest radiograph and questionnaire about asthma and smoking history. Results Of 12,631 participants, 1,548 (12.3%) had airflow limitation. The prevalence of airflow limitation in smokers (≥10 pack-year), asthmatics, and those with inactive TB was 23.9%, 32.1%, and 33.6%. The prevalence increased with the number of risk factors: 86.1% had airflow limitation if they had all three risk factors. Impacts of inactive TB and asthma on airflow limitation were equivalent to 47 and 69 pack-years of smoking, respectively. Airflow limitation resulted from lower levels of smoking in those with inactive TB and asthma. A potential interaction between smoking and inactive tuberculosis in the development of airflow limitation was identified (p = 0.054). Conclusions Asthma and inactive TB lesions increase susceptibility to smoking in the development of airflow limitation. People with these risk factors should be seen as a major target population for anti-smoking campaigns to prevent COPD. PMID:25915938

  4. Ignition in laminar and turbulent nonpremixed counterflow

    NASA Astrophysics Data System (ADS)

    Blouch, John Dewey

    2002-01-01

    Investigations into nonpremixed ignition were conducted to examine the influence of complex chemistry and flow turbulence as found in practical combustion systems. The counterflow configuration, where a hot air jet ignited a cold (298K) fuel jet, was adopted in experiments and calculations. The study of the ignition of large alkane hydrocarbons focused on the effects of fuel structure by investigating the reference fuels n-heptane and iso-octane. The ignition response of these fuels was similar to smaller fuels with similar molecular structures. This conclusion was reinforced by showing that the ignition temperature became nearly insensitive to fuel molecule size above C4, but continued to depend on whether the structure was linear or branched. The effects of turbulence were studied by adding perforated plates to the burner to generate controlled levels of turbulence. This configuration was examined in detail experimentally and computationally without reaction, and subsequently the effects of turbulence on ignition were studied with hydrogen as the fuel. The results indicated that at low turbulence intensities, ignition is enhanced relative to laminar ignition, but as the turbulence intensity increases the ignition temperature also increases, demonstrating that optimal conditions for ignition exist at low turbulence intensities. At high pressures, where HO2 chemistry is important, all turbulent ignition temperatures were higher than laminar ones, and the increasing temperature trend with turbulence intensity was still observed. At low fuel concentrations, a different ignition mode was observed where the transition from a weakly reacting state to a flame occurred over a range of temperatures where the flame was repeatedly ignited and extinguished. Turbulent ignition was modeled by solving a joint scalar PDF equation using a Monte Carlo technique. The absence of significant heat release prior to ignition enabled the use of a frozen flow solution, solved separately

  5. Assessment of the National Transonic Facility for Laminar Flow Testing

    NASA Technical Reports Server (NTRS)

    Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.

    2010-01-01

    A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.

  6. Design of fuselage shapes for natural laminar flow

    NASA Technical Reports Server (NTRS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-01-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  7. Design of fuselage shapes for natural laminar flow

    NASA Astrophysics Data System (ADS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-03-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  8. Studies of premixed laminar and turbulent flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    A two and one-half year experimental and theoretical research program on the properties of laminar and turbulent premixed gas flames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  9. Selected experiments in laminar flow: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Kennelly, Robert A., Jr.

    1992-01-01

    Since the 1930s, there have been attempts to reduce drag on airplanes by delaying laminar to turbulent boundary layer transition. Experiments conducted during the 1940's, while successful in delaying transition, were discouraging because of the careful surface preparation necessary to meet roughness and waviness requirements. The resulting lull in research lasted nearly 30 years. By the late 1970s, airframe construction techniques had advanced sufficiently that the high surface quality required for natural laminar flow (NLF) and laminar flow control (LFC) appeared possible on production aircraft. As a result, NLF and LFC research became widespread. This report is an overview of that research. The experiments summarized herein were selected for their applicability to small transonic aircraft. Both flight and wind tunnel tests are included. The description of each experiment is followed by corresponding references. Part One summarizes NLF experiments; Part Two deals with LFC and hybrid laminar flow control (HLFC) experiments.

  10. Advanced stability theory analyses for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1980-01-01

    Recent developments of the SALLY computer code for stability analysis of laminar flow control wings are summarized. Extensions of SALLY to study three dimensional compressible flows, nonparallel and nonlinear effects are discussed.

  11. Natural laminar flow airfoil analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.

  12. Care For Patients With Severe Chronic Airflow Obstruction And Respiratory Failure

    PubMed Central

    Pugsley, S. O.; Robinson, L. A.

    1979-01-01

    The successful care of patients with disorders causing chronic airflow obstruction (CAO) and potential chronic respiratory failure and pulmonary heart disease (cor pulmonale) requires the following: 1. Recognize CAO as the cause of a patient's problem. 2. Describe and measure airflow obstruction and the individual's response to it. 3. Undertake therapeutic trials to maximize airflow. 4. Teach patients monitoring skills and interventions in order to prevent acute respiratory failure and hospital admission. 5. Maintain optimism and interest in the patient's chronic illness, appreciating its impact on the total person and his daily life. PMID:21297794

  13. Data Visualization of Invisible Airflow Hazards During Helicopter Takeoff and Landing Operations

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2004-01-01

    Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground such as vortices, downdrafts, wind shear, microbursts, or other turbulence. While such hazards frequently pose problems to fixed-wing airplanes, they are especially dangerous to helicopters, which often have to operate in confined spaces and under operationally stressful conditions. We are developing flight-deck visualizations of airflow hazards during helicopter takeoff and landing operations, and are evaluating their effectiveness with usability studies. Our hope is.that this work will lead to the production of an airflow hazard detection system for pilots that will save lives.

  14. Application of natural laminar flow to a supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Henri D.

    1993-01-01

    Results are presented of a preliminary investigation into an application of supersonic natural laminar flow (NLF) technology for a high speed civil transport (HSCT) configuration. This study focuses on natural laminar flow without regard to suction devices which are required for laminar flow control (LFC) or hybrid laminar flow control (HLFC). An HSCT design is presented with a 70 deg inboard leading-edge sweep and a 20 deg leading-edge outboard crank to obtain NLF over the outboard crank section. This configuration takes advantage of improved subsonic performance and NLF on the low-sweep portion of the wing while minimizing the wave drag and induced drag penalties associated with low-sweep supersonic cruise aircraft. In order to assess the benefits of increasing natural laminar flow wetted area, the outboard low-sweep wing area is parametrically increased. Using a range of supersonic natural laminar flow transition Reynolds numbers, these aircraft are then optimized and sized for minimum take-off gross weight (TOGW) subject to mission constraints. Results from this study indicate reductions in TOGW for the NLF concepts, due mainly to reductions in wing area and total wing weight. Furthermore, significant reductions in block fuel are calculated throughout the range of transition Reynolds numbers considered. Observations are made on the benefits of unsweeping the wingtips with all turbulent flow.

  15. Particle-Image Velocimetry in Microgravity Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Greenberg, P. S.; Urban, D. L.; Wernet, M. P.; Yanis, W.

    1999-01-01

    This paper discusses planned velocity measurements in microgravity laminar jet diffusion flames. These measurements will be conducted using Particle-Image Velocimetry (PIV) in the NASA Glenn 2.2-second drop tower. The observations are of fundamental interest and may ultimately lead to improved efficiency and decreased emissions from practical combustors. The velocity measurements will support the evaluation of analytical and numerical combustion models. There is strong motivation for the proposed microgravity flame configuration. Laminar jet flames are fundamental to combustion and their study has contributed to myriad advances in combustion science, including the development of theoretical, computational and diagnostic combustion tools. Nonbuoyant laminar jet flames are pertinent to the turbulent flames of more practical interest via the laminar flamelet concept. The influence of gravity on these flames is deleterious: it complicates theoretical and numerical modeling, introduces hydrodynamic instabilities, decreases length scales and spatial resolution, and limits the variability of residence time. Whereas many normal-gravity laminar jet diffusion flames have been thoroughly examined (including measurements of velocities, temperatures, compositions, sooting behavior and emissive and absorptive properties), measurements in microgravity gas-jet flames have been less complete and, notably, have included only cursory velocity measurements. It is envisioned that our velocity measurements will fill an important gap in the understanding of nonbuoyant laminar jet flames.

  16. Radiative interactions in laminar duct flows

    NASA Technical Reports Server (NTRS)

    Trivedi, P. A.; Tiwari, S. N.

    1990-01-01

    Analyses and numerical procedures are presented for infrared radiative energy transfer in gases when other modes of energy transfer occur simultaneously. Two types of geometries are considered, a parallel plate duct and a circular duct. Fully developed laminar incompressible flows of absorbing-emitting species in black surfaced ducts are considered under the conditions of uniform wall heat flux. The participating species considered are OH, CO, CO2, and H2O. Nongray as well as gray formulations are developed for both geometries. Appropriate limiting solutions of the governing equations are obtained and conduction-radiation interaction parameters are evaluated. Tien and Lowder's wide band model correlation was used in nongray formulation. Numerical procedures are presented to solve the integro-differential equations for both geometries. The range of physical variables considered are 300 to 2000 K for temperature, 0.1 to 100.0 atm for pressure, and 0.1 to 100 cm spacings between plates/radius of the tube. An extensive parametric study based on nongray formulation is presented. Results obtained for different flow conditions indicate that the radiative interactions can be quite significant in fully developed incompressible flows.

  17. Laminar Tendon Composites with Enhanced Mechanical Properties

    PubMed Central

    Alberti, Kyle A.; Sun, Jeong-Yun; Illeperuma, Widusha R.; Suo, Zhigang; Xu, Qiaobing

    2015-01-01

    Purpose A strong isotropic material that is both biocompatible and biodegradable is desired for many biomedical applications, including rotator cuff repair, tendon and ligament repair, vascular grafting, among others. Recently, we developed a technique, called “bioskiving” to create novel 2D and 3D constructs from decellularized tendon, using a combination of mechanical sectioning, and layered stacking and rolling. The unidirectionally aligned collagen nanofibers (derived from sections of decellularized tendon) offer good mechanical properties to the constructs compared with those fabricated from reconstituted collagen. Methods In this paper, we studied the effect that several variables have on the mechanical properties of structures fabricated from tendon slices, including crosslinking density and the orientation in which the fibers are stacked. Results We observed that following stacking and crosslinking, the strength of the constructs is significantly improved, with crosslinked sections having an ultimate tens ile strength over 20 times greater than non-crosslinked samples, and a modulus nearly 50 times higher. The mechanism of the mechanical failure mode of the tendon constructs with or without crosslinking was also investigated. Conclusions The strength and fiber organization, combined with the ability to introduce transversely isotropic mechanical properties makes the laminar tendon composites a biocompatiable material that may find future use in a number of biomedical and tissue engineering applications. PMID:25691802

  18. A New Approach to Laminar Flowmeters

    PubMed Central

    Pena, Fernando Lopez; Diaz, Alvaro Deibe; Lema, Marcos Rodriguez; Rodriguez, Santiago Vazquez

    2010-01-01

    After studying the performance and characteristics of actual laminar flowmeters a new disposition for this type of sensors is proposed in such a way that the measurement errors introduced by the intrinsic nature of the device can be minimized. The preliminary study shows that the developing entry region introduces non-linearity effects in all these devices. These effects bring about not only errors, but also a change in the slope of the linear calibration respect of the Poiseuille relation. After a subsequent analysis on how these non-linearity errors can be reduced, a new disposition of this type of flowmeters is introduced. This device makes used of flow elements having pressure taps at three locations along its length and connected to three isolated chambers. In this way, the static pressure can be measured at three locations and contributed to by the pressure taps at the level of each chamber. Thus the linearization error is reduced with an additional advantage of producing a reduced pressure drop. PMID:22163486

  19. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model

    EPA Science Inventory

    In order to achieve both manageable simulation and local accuracy of airflow and nanoparticle deposition in a representative human tracheobronchial (TB) region, the complex airway network was decomposed into adjustable triple-bifurcation units, spreading axially and laterally. Gi...

  20. Evaluation of circumferential airflow uniformity entering combustors from compressors. Volume 1: Discussion of data and results

    NASA Technical Reports Server (NTRS)

    Shadowen, J. H.; Egan, W. J., Jr.

    1972-01-01

    The compressor discharge airflow uniformity of two compressors from advanced engines, the J58 and F100/F401, was studied. Compressor discharge pressures and temperatures at up to 33 circumferential rake locations allowed the airflow distribution to be ascertained and computer plotted. Several flight conditions and compressor variables, i.e., inlet distortion, modified seals, etc., were analyzed. An unexpectedly high nonuniform airflow was found for both compressors. Circumferential airflow deviation differences of up to 52% from maximum to minimum were found for the J58, and up to 40% for the F100/F401. The effects of aerodynamic and thermal distortion were found to be additive. The data were analyzed for influence of exit guide vane wakes and found free of any effect. Data system errors were small in relation to the measured pressure and temperature variations.

  1. Modeling Airflow Using Subject-Specific 4DCT-Based Deformable Volumetric Lung Models.

    PubMed

    Ilegbusi, Olusegun J; Li, Zhiliang; Seyfi, Behnaz; Min, Yugang; Meeks, Sanford; Kupelian, Patrick; Santhanam, Anand P

    2012-01-01

    Lung radiotherapy is greatly benefitted when the tumor motion caused by breathing can be modeled. The aim of this paper is to present the importance of using anisotropic and subject-specific tissue elasticity for simulating the airflow inside the lungs. A computational-fluid-dynamics (CFD) based approach is presented to simulate airflow inside a subject-specific deformable lung for modeling lung tumor motion and the motion of the surrounding tissues during radiotherapy. A flow-structure interaction technique is employed that simultaneously models airflow and lung deformation. The lung is modeled as a poroelastic medium with subject-specific anisotropic poroelastic properties on a geometry, which was reconstructed from four-dimensional computed tomography (4DCT) scan datasets of humans with lung cancer. The results include the 3D anisotropic lung deformation for known airflow pattern inside the lungs. The effects of anisotropy are also presented on both the spatiotemporal volumetric lung displacement and the regional lung hysteresis. PMID:23365554

  2. Modeling Airflow Using Subject-Specific 4DCT-Based Deformable Volumetric Lung Models

    PubMed Central

    Ilegbusi, Olusegun J.; Li, Zhiliang; Seyfi, Behnaz; Min, Yugang; Meeks, Sanford; Kupelian, Patrick; Santhanam, Anand P.

    2012-01-01

    Lung radiotherapy is greatly benefitted when the tumor motion caused by breathing can be modeled. The aim of this paper is to present the importance of using anisotropic and subject-specific tissue elasticity for simulating the airflow inside the lungs. A computational-fluid-dynamics (CFD) based approach is presented to simulate airflow inside a subject-specific deformable lung for modeling lung tumor motion and the motion of the surrounding tissues during radiotherapy. A flow-structure interaction technique is employed that simultaneously models airflow and lung deformation. The lung is modeled as a poroelastic medium with subject-specific anisotropic poroelastic properties on a geometry, which was reconstructed from four-dimensional computed tomography (4DCT) scan datasets of humans with lung cancer. The results include the 3D anisotropic lung deformation for known airflow pattern inside the lungs. The effects of anisotropy are also presented on both the spatiotemporal volumetric lung displacement and the regional lung hysteresis. PMID:23365554

  3. Evaluation of airflow patterns following procedures established by NUREG-1400

    SciTech Connect

    Fritz, Brad G.; Khan, Fenton; Mendoza, Donaldo P.

    2006-07-26

    The U.S. Nuclear Regulatory Commission's NUREG-1400 addresses many aspects of air sampling in the work place. Here, we present two detailed examples of the implementation of qualitative air flow studies at different scales using guidelines established by NUREG-1400. In one test, smoke was used to evaluate the airflow patterns within the transfer area of the 105 KE Basin, located on the Hanford Site, Richland, Washington. The purpose of the study was to determine appropriate locations for air monitoring equipment in support of sludge water pumping activities. The study revealed a stagnant layer of the air within the transfer area that made predicting movement of contamination within the transfer area difficult. Without conducting an air flow study, the stagnant layer would not have been identified, and could have resulted in locating samplers at inappropriate locations. In a second test, smoke was used to verify the effectiveness of an air space barrier curtain. The results showed that the curtain adequately separated the two air spaces. The methodology employed in each test provided sound, easy to interpret information that satisfied the requirements of each test.

  4. Air-flow separation over unsteady breaking wind waves

    NASA Astrophysics Data System (ADS)

    Saxena, Gaurav

    2005-11-01

    In air-sea interaction processes, when considering wind stress over small-scale breaking waves, there are few direct quantitative experimental investigations into the role of air-flow separation on the interfacial momentum flux. Reul et. al, (1999), found multiple coherent patches of vorticity downwind of the crest that were strongly influenced by the geometric characteristics of the breaker. However, their breakers were generated by dispersive focusing techniques and, therefore, independent of the wind stress. We present experimental results obtained with particle image velocimetry (PIV) where moderate to strong winds directly generate unsteady small-scale breaking waves, a scenario commonly found in the open ocean. Particular attention has been devoted to capturing the spatio-temporal evolution of the air-water interface. Specifically, texture segmentation algorithms typically used for face recognition (Grey Level Co-occurrence Matrix (GLCM) and the Cross-Diagonal Texture Matrix (CDTM)) have been combined to yield robust and accurate estimates of the instantaneous breaker geometry.

  5. Cigarette smoke potentiates asbestos-induced airflow abnormalities

    SciTech Connect

    Wright, J.L.; Tron, V.; Wiggs, B.; Churg, A.

    1988-01-01

    It has been suggested that exposure to both asbestos and cigarette smoke can produce worse parenchymal lung disease than exposure to asbestos alone. Using a guinea pig model of asbestos administration that produces primarily airway disease and associated airflow abnormalities, we showed previously that the combination of asbestos and smoke acts synergistically to produce more marked increases in tissue collagen, fibrosis of airway walls, and early interstitial fibrosis than are seen with asbestos alone. To investigate the functional effects of these morphological and biochemical abnormalities, pulmonary function tests for volumes and flows, including lung volumes, pressure-volume curves, and flow-volume curves, were performed. By themselves, both smoke and asbestos produced increases in total lung capacity (TLC), residual volume (RV), and functional residual capacity (FRC); the two agents together made all these changes worse than either one alone. Both smoking and asbestos moved the pressure-volume curve upward, and the effects of the two agents together were again greater than either alone. Similarly, both smoke and asbestos decreased flows, and the two agents produced more severe impairment than either one by itself. The changes in volumes, pressure-volume curve, and flows correlated with both increased thickness of small airway walls and increases in airspace size. These observations indicate that, at least in this guinea pig model, cigarette smoke can potentiate the functional consequences of asbestos exposure.

  6. Behavior of submicrometer particles in periodic alveolar airflows.

    PubMed

    Balik, G; Reis, A H; Aydin, M; Miguel, A F

    2008-04-01

    Here, we report a numerical experiment in which submicrometer particle entrainment in a periodic flow that matches those existing in the alveolus in the human lung was simulated for both sedentary and light activity. A spherical cavity with a prescribed velocity profile at the inlet was used to simulate the time-dependent periodical flow of air in the alveolus. Expansion and contraction of the alveolus were simulated by setting a conceptual permeable wall as the outer surface of the model and adjusting the boundary conditions in order to match the continuity of the flow. The simulations were conducted for breathing periods of 5 and 3 s, which match sedentary and light activity conditions, respectively, and the results were extrapolated to the real lung. It was found that, most of the particles mainly followed a straightforward path and reached the opposite side of the alveolar wall in both breathing conditions. The concentration patterns obtained are consistent with the fact that the flow within the alveolus is mainly diffusive and does not greatly depend on the flow velocity. It was found that the particles which are heavier than air move out of phase with the periodic airflow that crosses the alveolus entrance, and that these particles are significantly caught within the alveolus. Particle entrapment increases with breathing rate in accordance with experimental values and indicates that increase in breathing frequency in environments with high concentration of submicrometer particles has the consequence of increasing particle entrapment by several times with respect to normal breathing rate. PMID:18075755

  7. Oscillating and star-shaped drops levitated by an airflow.

    PubMed

    Bouwhuis, Wilco; Winkels, Koen G; Peters, Ivo R; Brunet, Philippe; van der Meer, Devaraj; Snoeijer, Jacco H

    2013-08-01

    We investigate the spontaneous oscillations of drops levitated above an air cushion, eventually inducing a breaking of axisymmetry and the appearance of "star drops". This is strongly reminiscent of the Leidenfrost stars that are observed for drops floating above a hot substrate. The key advantage of this work is that we inject the airflow at a constant rate below the drop, thus eliminating thermal effects and allowing for a better control of the flow rate. We perform experiments with drops of different viscosities and observe stable states, oscillations, and chimney instabilities. We find that for a given drop size the instability appears above a critical flow rate, where the latter is largest for small drops. All these observations are reproduced by numerical simulations, where we treat the drop using potential flow and the gas as a viscous lubrication layer. Qualitatively, the onset of instability agrees with the experimental results, although the typical flow rates are too large by a factor 10. Our results demonstrate that thermal effects are not important for the formation of star drops and strongly suggest a purely hydrodynamic mechanism for the formation of Leidenfrost stars. PMID:24032934

  8. A miniature airflow energy harvester from piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Sun, H.; Zhu, D.; White, N. M.; Beeby, S. P.

    2013-12-01

    This paper describes design, simulation, fabrication, and testing of a miniature wind energy harvester based on a flapping cantilevered piezoelectric beam. The wind generator is based on oscillations of a cantilever that faces the direction of the airflow. The oscillation is amplified by interactions between an aerofoil attached on the cantilever and a bluff body placed in front of the aerofoil. A piezoelectric transducer with screen printed PZT materials is used to extract electrical energy. To achieve the optimum design of the harvester, both computational simulations and experiments have been carried out to investigate the structure. A prototype of the wind harvester, with the volume of 37.5 cm3 in total, was fabricated by thick-film screen printing technique. Wind tunnel test results are presented to determine the optimum structure and to characterize the performance of the harvester. The optimized device finally achieved a working wind speed range from 1.5 m/s to 8 m/s. The power output was ranging from 0.1 to 0.86 μW and the open-circuit output voltage was from 0.5 V to 1.32 V.

  9. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Laminar diffusion flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than more practical turbulent diffusion flames. Certainly, understanding flame processes within laminar diffusion flames must precede understanding these processes in more complex turbulent diffusion flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar jet diffusion flame shapes (luminous flame boundaries) have been of particular interest since the classical study of Burke and Schumann because they are a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Thus, consideration of laminar flame shapes is undertaken in the following, emphasizing conditions where effects of gravity are small, due to the importance of such conditions to practical applications. Another class of interesting properties of laminar diffusion flames are their laminar soot and smoke point properties (i.e., the flame length, fuel flow rate, characteristic residence time, etc., at the onset of soot appearance in the flame (the soot point) and the onset of soot emissions from the flame (the smoke point)). These are useful observable soot properties of nonpremixed flames because they provide a convenient means to rate several aspects of flame sooting properties: the relative propensity of various fuels to produce soot in flames; the relative effects of fuel structure, fuel dilution, flame temperature and ambient pressure on the soot appearance and emission properties of flames; the relative levels of continuum radiation from soot in flames; and effects of the intrusion of gravity (or buoyant motion) on emissions of soot from flames. An important motivation to define conditions for soot emissions is that observations of laminar jet diffusion flames in critical environments, e.g., space shuttle and space station

  10. Evaluation of circumferential airflow uniformity entering combustors from compressors. Volume 2: Data supplement

    NASA Technical Reports Server (NTRS)

    Shadowen, J. H.; Egan, W. J., Jr.

    1972-01-01

    A study of the airflow uniformity leaving compressors and entering combustors was made using compressors from two advanced engines, the J58 and F100/F401. The data used in the analysis of each case is presented in tabular form and computer-generated profile plots. A plot of the square root of the dynamic pressure ratio, which is similar to airflow deviation, is also presented.

  11. Endoscopic inter laminar management of lumbar disease

    PubMed Central

    Yadav, Yad Ram; Parihar, Vijay; Kher, Yatin; Bhatele, Pushp Raj

    2016-01-01

    Discectomy for lumbar disc provides faster relief in acute attack than does conservative management. Long-term results of open, microscopy-, and endoscopy-assisted discectomy are same. Early results of endoscopy-assisted surgery are better as compared to that of open surgery in terms of better visualization, smaller incision, reduced hospital stay, better education, lower cost, less pain, early return to work, and rehabilitation. Although microscopic discectomy also has comparable advantages, endoscopic-assisted technique better addresses opposite side pathology. Inter laminar technique (ILT) and trans foraminal technique (TFT) are two main endoscopic approaches for lumbar pathologies. Endoscopy-assisted ILT can be performed in recurrent, migrated, and calcified discs. All lumbar levels including L5-S1 level, intracanalicular, foraminal disc, lumbar canal and lateral recess stenosis, multiple levels, and bilateral lesions can be managed by ILT. Migrated, calcified discs, L5-S1 pathology, lumbar canal, and lateral recess stenosis can be better approached by ILT than by TFT. Most spinal surgeons are familiar with anatomy of ILT. It can be safely performed in foramen stenosis and in uncooperative and anxious patients. There is less risk of exiting nerve root damage, especially in short pedicles and in presence of facet osteophytes as compared to TFT. On the other hand, ILT is more invasive than TFT with more chances of perforations of the dura matter, pseudomeningocele formation, and cerebrospinal fluid fistula in early learning curve. Obtaining microsurgical experience, attending workshops, and suitable patient selection can help shorten the learning curve. Once adequate skill is acquired, this procedure is safe and effective. The surgeon must be prepared to convert to an open procedure, especially in early learning curve. Spinal endoscopy is likely to achieve more roles in future. Endoscopy-assisted ILT is a safer alternative to the microscopic technique. PMID

  12. Acoustics of laminar boundary layers breakdown

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1994-01-01

    Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.

  13. Airflow in the Human Nasal Passage and Sinuses of Chronic Rhinosinusitis Subjects

    PubMed Central

    Kumar, Haribalan; Jain, Ravi; Douglas, Richard G.; Tawhai, Merryn H.

    2016-01-01

    Endoscopic surgery is performed on patients with chronic inflammatory disease of the paranasal sinuses to improve sinus ventilation. Little is known about how sinus surgery affects sinonasal airflow. In this study nasal passage geometry was reconstructed from computed tomographic imaging from healthy normal, pre-operative, and post-operative subjects. Transient air flow through the nasal passage during calm breathing was simulated. Subject-specific differences in ventilation of the nasal passage were observed. Velocity magnitude at ostium was different between left and right airway. In FESS, airflow in post-surgical subjects, airflow at the maxillary sinus ostium was upto ten times higher during inspiration. In a Lothrop procedure, airflow at the frontal sinus ostium can be upto four times higher during inspiration. In both post-operative subjects, airflow at ostium was not quasi-steady. The subject-specific effect (of surgery) on sinonasal interaction evaluated through airflow simulations may have important consequences for pre- and post-surgical assessment and surgical planning, and design for improvement of the delivery efficiency of nasal therapeutics. PMID:27249219

  14. Investigation on side-spray fluidized bed granulation with swirling airflow.

    PubMed

    Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia

    2013-03-01

    Top-spray fluidized bed granulation with axial fluidization airflow from the bottom of the granulator is well-established in the pharmaceutical industry. The application of swirling airflow for fluidized bed granulation was more recently introduced. This study examined the effects of various process parameters on the granules produced by side-spray fluidized bed with swirling airflow using the central composite and Box-Behnken design of experiment. Influence of the amount of binder solution, spray rate, and distance between spray nozzle and powder bed were initially studied to establish operationally viable values for these parameters. This was followed by an in-depth investigation on the effects of inlet airflow rate, atomizing air pressure and distance between spray nozzle and powder bed on granule properties. It was found that the amount of binder solution had a positive correlation with granule size and percentage of lumps but a negative correlation with size distribution and Hausner ratio of the granules. Binder solution spray rate was also found to affect the granules size. High drug content uniformity was observed in all the batches of granules produced. Both inlet airflow rate and atomizing air pressure were found to correlate negatively with granule size and percentage of lumps but correlate positively with the size distribution of the granule produced. Percentage of fines was found to be significantly affected by inlet airflow rate. Distance between spray nozzle and powder bed generally affected the percentage of lumps. PMID:23263750

  15. The influence of nasal airflow on respiratory and olfactory epithelial distribution in felids.

    PubMed

    Pang, Benison; Yee, Karen K; Lischka, Fritz W; Rawson, Nancy E; Haskins, Mark E; Wysocki, Charles J; Craven, Brent A; Van Valkenburgh, Blaire

    2016-06-15

    The surface area of the maxilloturbinals and fronto-ethmoturbinals is commonly used as an osteological proxy for the respiratory and the olfactory epithelium, respectively. However, this assumption does not fully account for animals with short snouts in which these two turbinal structures significantly overlap, potentially placing fronto-ethmoturbinals in the path of respiratory airflow. In these species, it is possible that anterior fronto-ethmoturbinals are covered with non-sensory (respiratory) epithelium instead of olfactory epithelium. In this study, we analyzed the distribution of olfactory and non-sensory, respiratory epithelia on the turbinals of two domestic cats (Felis catus) and a bobcat (Lynx rufus). We also conducted a computational fluid dynamics simulation of nasal airflow in the bobcat to explore the relationship between epithelial distribution and airflow patterns. The results showed that a substantial amount of respiratory airflow passes over the anterior fronto-ethmoturbinals, and that contrary to what has been observed in caniform carnivorans, much of the anterior ethmoturbinals are covered by non-sensory epithelium. This confirms that in short-snouted felids, portions of the fronto-ethmoturbinals have been recruited for respiration, and that estimates of olfactory epithelial coverage based purely on fronto-ethmoturbinal surface area will be exaggerated. The correlation between the shape of the anterior fronto-ethmoturbinals and the direction of respiratory airflow suggests that in short-snouted species, CT data alone are useful in assessing airflow patterns and epithelium distribution on the turbinals. PMID:27045093

  16. Unidirectional pulmonary airflow in vertebrates: a review of structure, function, and evolution.

    PubMed

    Cieri, Robert L; Farmer, C G

    2016-07-01

    Mechanisms explaining unidirectional pulmonary airflow in birds, a condition where lung gases flow in a consistent direction during both inspiration and expiration in some parts of the lung, were suggested as early as the first part of the twentieth century and unidirectional pulmonary airflow has been discovered recently in crocodilians and squamates. Our knowledge of the functional anatomy, fluid dynamics, and significance of this trait is reviewed. The preponderance of the data indicates that unidirectional airflow is maintained by means of convective inertia in inspiratory and expiratory aerodynamic valves in birds. The study of flow patterns in non-avian reptiles is just beginning, but inspiratory aerodynamic valving likely also plays an important role in controlling flow direction in these lungs. Although highly efficient counter and cross-current blood-gas exchange arrangements are possible in lungs with unidirectional airflow, very few experiments have investigated blood-gas exchange mechanisms in the bird lung and blood-gas arrangements in the lungs of non-avian reptiles are completely unknown. The presence of unidirectional airflow in non-volant ectotherms voids the traditional hypothesis that this trait evolved to supply the high aerobic demands of flight and endothermy, and there is a need for new scenarios in our understanding of lung evolution. The potential value of unidirectional pulmonary airflow for allowing economic lung gas mixing, facilitating lung gas washout, and providing for adequate gas exchange during hypoxic conditions is discussed. PMID:27062030

  17. Airflow resistance of heat and moisture exchange filters with and without a tracheostoma valve.

    PubMed

    Verkerke, Gijsbertus Jacob; Geertsema, Albert Anne; Schutte, Harm K

    2002-04-01

    Rehabilitation of laryngectomees has been furthered by the introduction of heat and moisture exchange (HME) filters, placed over a tracheostoma or on a tracheostoma valve (TSV). The airflow resistance of HME filters is an important factor with regard to the comfort of the patient. The goal of this study was to determine the airflow resistance (defined as the pressure drop over the device divided by the squared airflow through the device) of 4 commercially available HME filters with and without a TSV. The pressure drop over and the airflow through the devices were measured in vitro. Distinct differences among the devices were found. The mean airflow resistance of the HME filters ranged from 135 to 346 Pa x s2/L2, that of TSVs was between 66 and 297 Pa x s2/L2, and that of the combination was between 263 and 454 Pa x s2/L2. The Stom-Vent 2 HME filter and the Adeva Window TSV with an Adeva filter had the lowest airflow resistance of the devices measured in this study. PMID:11991585

  18. An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV

    NASA Astrophysics Data System (ADS)

    Kim, S. K.; Chung, S. K.

    2004-06-01

    Knowledge of airflow characteristics in nasal cavities is essential to understand the physiology and pathology aspects of nasal breathing. Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. Since the final goal of these works is their contribution to the diagnosis and treatment of nasal diseases, therefore, the next step in this topic must be followed by the studies for disordered nasal cavities. In this paper, airflows in normal and abnormal nasal cavities and surgically created models, which simulate surgical treatment, are investigated experimentally by PIV. High-resolution computerized tomogram data and careful manipulation of the model surface by the ear, nose and throat doctor provide more sophisticated nasal cavity models. The correlation based correction PIV algorithm with window offset is used for PIV flow analysis. Average and RMS distributions in sagittal and coronal sections are obtained for inspiratory and expiratory nasal airflows. Comparisons in nasal airflows for both normal and abnormal cases are also examined. Airflow characteristics that are related to the abnormalities in the nasal cavity are proposed. In the case of simulations of surgical operations, velocity and RMS distributions in coronal section change locally, this may cause some difficulties in physiologic functions of noses and may hurt mucosal surface.

  19. Airflow regulation in variable-speed systems for residential HVAC applications

    SciTech Connect

    Becerra, R.C.; Beifus, B.L.

    1996-11-01

    In the majority of heating, ventilating, and air-conditioning (HVAC) systems, air is the final medium for adding or extracting heat from or to the space to be air conditioned. Air is heated by passing it over a heat transfer device called a coil, which is a heat exchanger with air on the outside and the primary heating/cooling medium (water, steam, electricity, refrigerant, etc.) on the inside. One of the major factors determining heat transfer is the airflow rate, which can be controlled by mechanical means or by controlling the speed of the fan. Centrifugal fans driven by single-speed induction motors traditionally have been used in the JVAC industry but have an airflow characteristic that depends on the static pressure seen by the system. Variable-speed systems are starting to emerge as a strong alternative to traditional systems because of their ability to match the demand of the air-conditioned space, resulting in higher efficiencies and higher comfort. System efficiency can be improved by constraining the range of airflows provided by the fan or blower system in response to system pressure, that is, by controlling the airflow over the heat exchanger. This paper presents a method to regulate airflow independent of the static pressure and without the need for airflow sensors.

  20. Laminarization of Turbulent Boundary Layer on Flexible and Rigid Surfaces

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2001-01-01

    An investigation of the control of turbulent boundary layer flow over flexible and rigid surfaces downstream of a concave-convex geometry has been made. The concave-convex curvature induces centrifugal forces and a pressure gradient on the growth of the turbulent boundary layer. The favorable gradient is not sufficient to overcome the unfavorable; thus, the net effect is a destabilizing, of the flow into Gortler instabilities. This study shows that control of the turbulent boundary layer and structural loading can be successfully achieved by using localized surface heating because the subsequent cooling and geometrical shaping downstream over a favorable pressure gradient is effective in laminarization of the turbulence. Wires embedded in a thermally insulated substrate provide surface heating. The laminarized velocity profile adjusts to a lower Reynolds number, and the structure responds to a lower loading. In the laminarization, the turbulent energy is dissipated by molecular transport by both viscous and conductivity mechanisms. Laminarization reduces spanwise vorticity because of the longitudinal cooling gradient of the sublayer profile. The results demonstrate that the curvature-induced mean pressure gradient enhances the receptivity of the flow to localized surface heating, a potentially viable mechanism to laminarize turbulent boundary layer flow; thus, the flow reduces the response of the flexible structure and the resultant sound radiation.

  1. Laminar Soot Processes (LSP) Experiment: Findings From Space Flight Measurements

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Urban, D. L.; Yuan, Z. G.; Aalburg, C.; Diez, F. J.; Faeth, G. M.

    2003-01-01

    The present experimental study of soot processes in hydrocarbon-fueled laminar nonbuoyant and nonpremixed (diffusion) flames at microgravity within a spacecraft was motivated by the relevance of soot to the performance of power and propulsion systems, to the hazards of unwanted fires, and to the emission of combustion-generated pollutants. Soot processes in turbulent flames are of greatest practical interest, however, direct study of turbulent flames is not tractable because the unsteadiness and distortion of turbulent flames limit available residence times and spatial resolution within regions where soot processes are important. Thus, laminar diffusion flames are generally used to provide more tractable model flame systems to study processes relevant to turbulent diffusion flames, justified by the known similarities of gas-phase processes in laminar and turbulent diffusion flames, based on the widely-accepted laminar flamelet concept of turbulent flames. Unfortunately, laminar diffusion flames at normal gravity are affected by buoyancy due to their relatively small flow velocities and, as discussed next, they do not have the same utility for simulating the soot processes as they do for simulating the gas phase processes of turbulent flames.

  2. Assessment of LAURA for Laminar Supersonic Shallow Cavities

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Pulsonetti, Maria V.; Everhart, Joel L.; Bey, Kim S.

    2004-01-01

    The ability of the Laura flow solver to predict local heating augmentation factors for shallow cavities is assessed. This assessment is part of a larger e ort within the Space Shuttle return-to-flight program to develop technologies to support on-orbit tile repair decisions. The comparison is made against global phosphor thermography images taken in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel. The cavities are rectangular in shape, with lengths L/H of 14 20 and depths H/ of 1.1 5.2. The fully laminar results, for Re = 300, show good agreement between the data sets. For Re = 503, the wind tunnel data indicates boundary layer transition with turbulent flow both within and downstream of the cavity. The turbulent flow structures are significantly di erent from the laminar predictions, with order of magnitude increases in the heating augmentations. Because of the di erent flow structures, no simple bump factor can be used to correct the laminar calculations to account for the turbulent heating levels. A fine gradation in wind tunnel cases will be required to clearly delineate the laminar-to-turbulent transition point, and hence the limits of applicability of the laminar numerical approach.

  3. The laminar structure of the common opossum masseter (Didelphis marsupialis).

    PubMed

    Deguchi, T; Takemura, A; Suwa, F

    2001-03-01

    Using three heads of the common opossum (Didelphis marsupialis), which may be considered to have a primitive mammalian form and therefore be appropriate for this study, the laminar structure of the masseter was investigated. We also attempted a comparative anatomical study of the relationships of food habits to the laminar structures of the masseter, zygomatic arch and mandibular ramus. In the common opossum masseter, a total of six layers, the primary and secondary sublayers of the superficial layer, the intermediate layer, and the primary, secondary and third sublayers of the deep layer as a proper masseter, were observed. These layers showed a typical reverse laminar structure, with the layers of tendons and muscles alternating. The maxillomandibularis and zygomaticomandibularis muscles were observed in one layer each, as an improper masseter. The laminar structure of the common opossum masseter was shown to be more similar to that of carnivorous placental animals than that of the herbivorous red kangaroo, a similar marsupial. In regard to the number of layers in the laminar structure of the masseter, the results of both this study and those of our predecessors' showed that differences in food habits affect the deep layer in the proper masseter of marsupials and placental mammals, and that of the maxillomandibularis muscle of placental mammals in the improper masseter. PMID:11392012

  4. Brief history of laminar flow clean room systems

    SciTech Connect

    Whitfield, W J

    1981-01-01

    This paper reviews the development and evolution of laminar flow clean rooms and hoods and describes the underlying principles and rationales associated with development of this type of clean room system and Federal Standard No. 209. By the mid 1970's, over a thousand hospitals in the US had installed laminar flow equipment in operating rooms. During the past several years a great deal of attention has been focused on conserving energy in clean rooms. Some gains in energy conservation have been achieved by improved design, off hours shutdown, and closer evaluation of requirements for clean rooms. By the early 1970's, the laminar flow principle had been carried from the Laboratory and applied to production hardware to create a mature industry producing and marketing a variety of laminar flow equipment in less than 10 years time. This achievement was made possible by literally dozens of persons in industry, government, military, and private individuals who developed hardware, added numerous innovations, and had the foresight to apply the technology to many fields other than industrial clean rooms. Now, with laminar flow devices available, class 100 levels are readily achievable and maintained, and at the same time require fewer operating restrictions than previously possible.

  5. Computational Analysis of the G-III Laminar Flow Glove

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

    2011-01-01

    Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

  6. Soot Formation in Freely-Propagating Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  7. Rain-induced subsurface airflow and Lisse effect

    USGS Publications Warehouse

    Guo, H.; Jiao, J.J.; Weeks, E.P.

    2008-01-01

    Water-level increase after rainfall is usually indicative of rainfall recharge to groundwater. This, however, may not be true if the Lisse effect occurs. This effect represents the water-level increase in a well driven by airflow induced by an advancing wetting front during highly intensive rains. The rainwater, which may behave like a low-permeability lid, seals the ground surface so that the air pressure beneath the wetting front is increased because of air compression due to downward movement of the wetting front. A rapid and substantial rise of the water level in the well screened below water table, which bears no relationship to groundwater recharge, can be induced when various factors such as soil properties and the rain-runoff condition combine favorably. A transient, three-dimensional and variably saturated flow model was employed to study the air and groundwater flows in the soil under rain conditions. The objectives of this paper are two-fold: to evaluate the reliability of the theory of the Lisse effect presented by Weeks to predict its magnitude in modeled situations that mimic the physical complexity of real aquifers, and to conduct parametric studies on the sensitivity of the water-level rise in the well to soil properties and the rain event. The simulation results reveal that the magnitude of the Lisse effect increases with the ponding depth. Soil permeability plays a key role in generating the Lisse effect. The water-level rise in the well is delayed relative to the air-pressure rise in the unsaturated zone when the soil permeability is low, and the maximum water-level rise is less than the maximum air pressure induced by rain infiltration. The simulation also explores the sensitivity of the Lisse effect to the van Genuchten parameters and the water table depth. Copyright 2008 by the American Geophysical Union.

  8. Intratracheal Bleomycin Causes Airway Remodeling and Airflow Obstruction in Mice

    PubMed Central

    Polosukhin, Vasiliy V.; Degryse, Amber L.; Newcomb, Dawn C.; Jones, Brittany R.; Ware, Lorraine B.; Lee, Jae Woo; Loyd, James E.; Blackwell, Timothy S.; Lawson, William E.

    2014-01-01

    Introduction In addition to parenchymal fibrosis, fibrotic remodeling of the distal airways has been reported in interstitial lung diseases. Mechanisms of airway wall remodeling, which occurs in a variety of chronic lung diseases, are not well defined and current animal models are limited. Methods We quantified airway remodeling in lung sections from subjects with idiopathic pulmonary fibrosis (IPF) and controls. To investigate intratracheal bleomycin as a potential animal model for fibrotic airway remodeling, we evaluated lungs from C57BL/6 mice after bleomycin treatment by histologic scoring for fibrosis and peribronchial inflammation, morphometric evaluation of subepithelial connective tissue volume density, TUNEL assay, and immunohistochemistry for transforming growth factor β1 (TGFβ1), TGFβ2, and the fibroblast marker S100A4. Lung mechanics were determined at 3 weeks post-bleomycin. Results IPF lungs had small airway remodeling with increased bronchial wall thickness compared to controls. Similarly, bleomycin treated mice developed dose-dependent airway wall inflammation and fibrosis and greater airflow resistance after high dose bleomycin. Increased TUNEL+ bronchial epithelial cells and peribronchial inflammation were noted by 1 week, and expression of TGFβ1 and TGFβ2 and accumulation of S100A4+ fibroblasts correlated with airway remodeling in a bleomycin dose-dependent fashion. Conclusions IPF is characterized by small airway remodeling in addition to parenchymal fibrosis, a pattern also seen with intratracheal bleomycin. Bronchial remodeling from intratracheal bleomycin follows a cascade of events including epithelial cell injury, airway inflammation, pro-fibrotic cytokine expression, fibroblast accumulation, and peribronchial fibrosis. Thus, this model can be utilized to investigate mechanisms of airway remodeling. PMID:22394287

  9. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    SciTech Connect

    Brauner, N.; Rovinsky, J.; Maron, D.M.

    1995-09-01

    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  10. Lockheed laminar-flow control systems development and applications

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1987-01-01

    Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.