Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Brauner, N.; Rovinsky, J.; Maron, D.M.
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
Thermal Vibrational Convection in a Two-phase Stratified Liquid
NASA Technical Reports Server (NTRS)
Chang, Qingming; Alexander, J. Iwan D.
2007-01-01
The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.
Stability of stratified two-phase flows in horizontal channels
NASA Astrophysics Data System (ADS)
Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.
2016-04-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.
STUDIES OF TWO-PHASE PLUMES IN STRATIFIED ENVIRONMENTS
Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams
1998-11-18
Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of
Stability of stratified two-phase flows in inclined channels
NASA Astrophysics Data System (ADS)
Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.
2016-08-01
Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.
Two-phase air-water stratified flow measurement using ultrasonic techniques
Fan, Shiwei; Yan, Tinghu; Yeung, Hoi
2014-04-11
In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.
Hydrodynamics of two phase flow through homogeneous and stratified porous layers
Chu, W; Lee, H; Dhir, V K; Catton, I
1984-01-01
An experimental investigation of two-phase flow through porous layers formed of nonheated glass particles has been made. The effect of particle size, particle size distribution, bed porosity and bed stratification on void fraction and pressure drop through particulate beds formed in a cylindrical and rectangular test section has been investigated. A model based on drift flux approach has been developed for the void fraction in homogeneous beds. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two-phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined. The observations in stratified beds indicate depletion or build up of voids at the interface between high and low permeability regions. Blocking of the flow into one of the layers of laterally stratified beds caused the pressures at different horizontal locations at the same bed height to be different from each other.
Stability analysis of two phase stratified flow in a rectangular channel
NASA Astrophysics Data System (ADS)
Bhagavatula, Dinesh; S, Pushpavanam
2015-11-01
Two phase stratified flows arise in extraction operations in microfluidic systems. It is well established that stratified flows in between two infinite plates is always unstable. However such flows are experimentally observed in micro channels. To understand this paradox we perform a linear stability analysis of stratified two phase Poiseuille flow in a rectangular duct. A two-dimensional fully developed flow through the rectangular channel is considered. The linearized equations along with the boundary conditions in primitive variable formulation are numerically solved using Chebyshev collocation method. All the primitive variables, which are the velocity and pressure fields, are retained in the linearised governing equations. Since boundary conditions for disturbance pressure do not exist, the corresponding compatibility conditions derived from the Navier-Stokes equations are collocated both at the walls and the interface. The resulting eigen-value problem is solved using a shift and invert Arnoldi algorithm. The role of different parameters such as Aspect ratio, density ratio, viscosity ratio on the stability characteristics is analyzed. The stability results are validated in the limit of large Aspect Ratios. The flow fields are sought as a combination of Chebyshev polynomials in both y and z directions. Ministry of Human Resource and Development (MHDR).
Garg, P.; Picardo, J. R.; Pushpavanam, S.
2014-07-15
In this work, we investigate the fully developed flow field of two vertically stratified fluids (one phase flowing above the other) in a curved channel of rectangular cross section. The domain perturbation technique is applied to obtain an analytical solution in the asymptotic limit of low Reynolds numbers and small curvature ratios (the ratio of the width of the channel to its radius of curvature). The accuracy of this solution is verified by comparison with numerical simulations of the nonlinear equations. The flow is characterized by helical vortices within each fluid, which are driven by centrifugal forces. The number of vortices and their direction of circulation varies with the parameters of the system (the volume fraction, viscosity ratio, and Reynolds numbers). We identify nine distinct flow patterns and organize the parameter space into corresponding flow regimes. We show that the fully developed interface between the fluids is not horizontal, in general, but is deformed by normal stresses associated with the circulatory flow. The results are especially significant for flows in microchannels, where the Reynolds numbers are small. The mathematical results in this paper include an analytical solution to two coupled biharmonic partial differential equations; these equations arise in two-phase, two-dimensional Stokes flows.
NASA Astrophysics Data System (ADS)
Hudaya, Akhmad Zidni; Kuntoro, Hadiyan Yusuf; Dinaryanto, Okto; Deendarlianto, Indarto
2016-06-01
The interfacial wave characteristics of stratified air-water two-phase flow in a horizontal pipe were experimentally investigated by using the flush-mounted constant electric current method (CECM) sensors. The experiments were conducted in a horizontal two-phase flow loop 9.5 m long (L) consisting of transparent acrylic pipe of 26 mm i.d. (D). To obtain the stratified flow pattern, the superficial gas and liquid velocities were set to 1.02 - 3.77 m/s and 0.016 - 0.92 m/s, respectively. Several interfacial wave patterns as described by several investigators were identified. The common parameters such as liquid hold-up, probability distribution function, wave velocity and wave frequency were investigated as the function of the liquid and gas flow rates. The interfacial curvature was calculated on the basis of the liquid hold-up data from the CECM sensors and the liquid film thickness data from the image processing technique in the previous work. As a result, it was found that the mean liquid hold-up decreases with the increase of the superficial gas velocity. In the same sub flow pattern, the wave velocity increases as the superficial gas velocity increases. On the other hand, in the two-dimensional wave region, the dominant frequency decreases with the increase of the superficial liquid velocity.
Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon
2016-01-01
A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567
Lim, Lam Ghai; Pao, William K S; Hamid, Nor Hisham; Tang, Tong Boon
2016-01-01
A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a 'sine-like' function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567
NASA Astrophysics Data System (ADS)
Kuntoro, Hadiyan Yusuf; Hudaya, Akhmad Zidni; Dinaryanto, Okto; Majid, Akmal Irfan; Deendarlianto
2016-06-01
Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (hL) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.
Schrock, V E; Revankar, S T; Mannheimer, R; Wang, C H
1986-12-01
The main objective of this research program was to perform an experimental investigation on the phenomena of two-phase critical flow through small break from a horizontal pipe which contained a stratified two phase flow. Stagnation conditions investigated were saturated steam-water, and air-cold water at pressures ranging from 0.37 MPa to 1.07 MPa. The small breaks employed were cylindrical tubes of diameters 3.96 mm, 6.32 mm, and 10.1 mm with sharp-edged entrance. For breaks resulting from a small hole in a primary coolant pipe or in a small pipe, a sharp-edged orifice or a sharp-edged tube can be the approximation.
Dynamic simulation of wavy-stratified two-phase flow with the one-dimensional two-fluid model
NASA Astrophysics Data System (ADS)
Fullmer, William D.
The one-dimensional two-fluid model is the basis for the description of the transport of mass, momentum and energy in the thermal-hydraulic codes used for nuclear reactor safety analysis. Unlike other physical transport models, the one-dimensional two-fluid model suffers from the possibility of being ill-posed as an initial-boundary value problem depending on the flow conditions and the relevant physical closure laws. Typically, the ill-posedness is dealt with through either excessive numerical damping or the addition of unphysical closure laws designed for the sole purpose of hyperbolization. Unfortunately both methods eliminate the instability along with the problem of ill-posedness causing the model to undoubtedly lose some of its inherent dynamic capability. In this work, a one-dimensional two-fluid model for horizontal or slightly inclined stratified flow is developed. Higher order physical models that are often neglected, such as surface tension and axial viscous stress, are retained for their short-wavelength stability properties. Characteristic, dispersion and nonlinear analyses are performed to demonstrate that the resulting model is linearly well-posed and nonlinearly well-behaved. While it has been known that higher-order differential terms are able to regularize the short-wavelength problem of ill-posedness without removing the long-wavelength instability, the literature is relatively silent on the consequences of using a model under linearly unstable conditions. Using carefully selected conditions in an idealized infinite domain, it is demonstrated for the first time that the one-dimensional two-fluid model exhibits chaotic behavior in addition to limit cycles and asymptotic stability. The chaotic behavior is a consequence of the long-wavelength linear instability (energy source) the nonlinearity (energy transfer) and the short-wavelength dissipation (energy sink). Since the model is chaotic, solutions exhibit a sensitive dependence on initial
George, Steven Z.
2015-01-01
Background The effectiveness of risk stratification for low back pain (LBP) management has not been demonstrated in outpatient physical therapy settings. Objective The purposes of this study were: (1) to assess implementation of a stratified care approach for LBP management by evaluating short-term treatment effects and (2) to determine feasibility of conducting a larger-scale study. Design This was a 2-phase, preliminary study. Methods In phase 1, clinicians were randomly assigned to receive standard (n=6) or stratified care (n=6) training. Stratified care training included 8 hours of content focusing on psychologically informed practice. Changes in LBP attitudes and beliefs were assessed using the Pain Attitudes and Beliefs Scale for Physiotherapists (PABS-PT) and the Health Care Providers Pain and Impairment Relationship Scale (HC-PAIRS). In phase 2, clinicians receiving the stratified care training were instructed to incorporate those strategies in their practice and 4-week patient outcomes were collected using a numerical pain rating scale (NPRS), and the Oswestry Disability Index (ODI). Study feasibility was assessed to identify potential barriers for completion of a larger-scale study. Results In phase 1, minimal changes were observed for PABS-PT and HC-PAIRS scores for standard care clinicians (Cohen d=0.00–0.28). Decreased biomedical (−4.5±2.5 points, d=1.08) and increased biopsychosocial (+5.5±2.0 points, d=2.86) treatment orientations were observed for stratified care clinicians, with these changes sustained 6 months later on the PABS-PT. In phase 2, patients receiving stratified care (n=67) had greater between-group improvements in NPRS (0.8 points; 95% confidence interval=0.1, 1.5; d=0.40) and ODI (8.9% points; 95% confidence interval=4.1, 13.6; d=0.76) scores compared with patients receiving standard physical therapy care (n=33). Limitations In phase 2, treatment was not randomly assigned, and therapist adherence to treatment recommendations was
NASA Technical Reports Server (NTRS)
Tacina, Robert R.
1986-01-01
An experimental program to characterize the spray from candidate nozzles for icing-cloud simulation is discussed. One canidate nozzle, which is currently used for icing research, has been characterized for flow and drop size. The median-volume diameter (MVD) from this air-assist nozzle is compared with correlations in the literature. The new experimental spray facility is discussed, and the drop-size instruments are discussed in detail. Since there is no absolute standard for drop-size measurements and there are other limitations, such as drop -size range and velocity range, several instruments are used and results are compared. A two-phase model was developed at Pennsylvania State University. The model uses the k-epsilon model of turbulence in the continous phase. Three methods for treating the discrete phase are used: (1) a locally homogeneous flow (LHF) model, (2) a deterministic separated flow (DSF) model, and (3) a stochastic separated flow (SSF) model. In the LHF model both phases have the same velocity and temperature at each point. The DSF model provides interphase transport but ignores the effects of turbulent fluctuations. In the SSF model the drops interact with turbulent eddies whose properties are determined by the k-epsilon turbulence model. The two-phase flow model has been extended to include the effects of evaporation and combustion.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Two-phase/two-phase heat exchanger analysis
NASA Technical Reports Server (NTRS)
Kim, Rhyn H.
1992-01-01
A capillary pumped loop (CPL) system with a condenser linked to a double two-phase heat exchanger is analyzed numerically to simulate the performance of the system from different starting conditions to a steady state condition based on a simplified model. Results of the investigation are compared with those of similar apparatus available in the Space Station applications of the CPL system with a double two-phase heat exchanger.
NASA Technical Reports Server (NTRS)
Witte, Larry C.
1994-01-01
The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.
NASA Technical Reports Server (NTRS)
Khadkikar, P. S.; Vedula, K.; Shabel, B. S.
1987-01-01
The as-extruded microstructures of two alloys in the two phase field consisting of Ni3Al and NiAl in the Ni-Al phase diagram exhibit fibrous morphology and consist of Ll(2) Ni3Al and B2 NiAl. These as-extruded microstructures can be modified dramatically by suitable heat treatments. Martensite plus NiAl or martensite plus Ni3Al microstructures are obtained upon quenching from 1523 K. Aging of martensite at 873 K results in the recently identified phase Ni5Al, whereas aging at 1123 K reverts the microstructures to Ni3Al plus NiAl. The microstructures with predominantly martensite of Ni5Al3 phases are brittle in tension at room temperature. The latter microstructure does not deform plastically even in compression at room temperature. However, some promise of room temperature tensile ductility is indicated by the Ni3Al plus NiAl phase mixtures.
Two phase titanium aluminide alloy
Deevi, Seetharama C.; Liu, C. T.
2001-01-01
A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.
NASA Technical Reports Server (NTRS)
Wallis, Graham B.
1989-01-01
Some features of two recent approaches of two-phase potential flow are presented. The first approach is based on a set of progressive examples that can be analyzed using common techniques, such as conservation laws, and taken together appear to lead in the direction of a general theory. The second approach is based on variational methods, a classical approach to conservative mechanical systems that has a respectable history of application to single phase flows. This latter approach, exemplified by several recent papers by Geurst, appears generally to be consistent with the former approach, at least in those cases for which it is possible to obtain comparable results. Each approach has a justifiable theoretical base and is self-consistent. Moreover, both approaches appear to give the right prediction for several well-defined situations.
Two-phase viscoelastic jetting
Yu, J-D; Sakai, S.; Sethian, J.A.
2008-12-10
A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.
Definition of two-phase flow behaviors for spacecraft design
NASA Technical Reports Server (NTRS)
Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.
1991-01-01
Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.
Two-phase computational fluid dynamics
Rothe, P.H.
1991-07-26
The results of the project illustrate the feasibility of multiphase computerized fluid dynamics (CFD) software. Existing CFD software is capable of simulating particle fields, certain droplet fields, and certain free surface flows, and does so routinely in engineering applications. Stratified flows can be addressed by a multiphase CFD code, once one is developed with suitable capabilities. The groundwork for such a code has been laid. Calculations performed for stratified flows demonstrate the accuracy achievable and the convergence of the methodology. Extension of the stratified flow methodology to other segregated flows such as slug or annular faces no inherent limits. The research has commercial application in the development of multiphase CFD computer programs.
Two-Phase Flow Separator Investigation
The goal of the Two-Phase Flow Separator investigation is to help increase understanding of how to separate gases and liquids in microgravity. Many systems on the space station contain both liquids...
One- and two-phase nozzle flows
Chang, I.S.
1980-01-01
A time-dependent technique, in conjunction with the boundary-fitted coordinates system, is applied to solve a gas-only one-phase flow and a fully-coupled, gas-particle two-phase flow inside nozzles with small throat radii of curvature, steep wall gradients, and submerged configurations. The emphasis of the study has been placed on one- and two-phase flow in the transonic region. Various particle sizes and particle mass fractions have been investigated in the two-phase flow. The salient features associated with the two-phase nozzle flow compared with those of the one-phase flow are illustrated through the calculations of the JPL nozzle, the Titan III solid rocket motor, and the submerged nozzle configuration found in the Inertial Upper Stage (IUS) solid rocket motor.
Two-phase flow studies. Final report
Kestin, J.; Maeder, P.F.
1980-08-01
Progress on the following is reported: literature survey, design of two-phase flow testing facility, design of nozzle loop, thermophysical properties, design manual, and advanced energy conversion systems. (MHR)
Two-Phase Potential Flow. Final report
Wallis, G.B.
1999-06-11
The objective of this work was to devise essentially exact solutions to a set of well-defined basic problems of inviscid fluid flow with particulate inclusions. This would help to establish a sound basis for fundamental theoretical developments in the field of two-phase flow. The results of this effort have ranged from basic theorems and the formulation of conservation laws for two-phase mixtures, to detailed predictions for specific geometrical patterns and experimental confirmation of these results.
Performance tests of a two phase ejector
Harrell, G.S.; Kornhauser, A.A.
1995-12-31
The ejector expansion refrigeration cycle is a modified vapor compression cycle in which a two phase ejector is used to recover a portion of the work otherwise lost in the expansion valve. The ejector improves cycle performance by increasing compressor inlet pressure and by lowering the quality of liquid entering the evaporator. Theoretically, a cooling COP improvement of approximately 23% is achievable for a typical refrigerating cycle and an ideal ejector. If the ejector performed as well as typical single phase ejectors an improvement of 12% could be achieved. Previous tests have demonstrated a smaller 3.7% improvement; the difference is in the poor performance of the two phase ejector. The purpose of this research is to understand the operating characteristics of the two phase ejector and to devise design improvements. A two phase ejector test rig has been constructed and tested. Preliminary data show performance superior to previously tested two phase ejectors, but still inferior to single phase ejectors. Ejector performance corresponds to refrigeration cycle COP improvements ranging from 3.9% to 7.6%.
Two phase detonation studies conducted in 1971
NASA Technical Reports Server (NTRS)
Nicholls, J. A.
1972-01-01
A report is presented describing the research conducted on five phases: (1) ignition of fuel drops by a shock wave and passage of a shock wave over a burning drop, (2) the energy release pattern of a two-phase detonation with controlled drop sizes, (3) the attenuation of shock and detonation waves passing over an acoustic liner, (4) experimental and theoretical studies of film detonations, and (5) a simplified analytical model of a rotating two-phase detonation wave in a rocket motor.
Dynamic characteristics of two-phase media
Fedotovskiy, V.S.; Sinyavskiy, V.F.; Terenik, L.V.; Spirov, V.S.
1990-01-01
This paper presents the results of investigations into the effective dynamic properties of heterogeneous media formed by a liquid and rigid spherical or cylindrical inclusions contained in it. Oscillations of a pipeline with a two-phase mixture in the general case having a non-uniform distribution of phases over the cross section are considered. Relations are obtained for the effective mass and hydrodynamic damping that determine the frequencies and dynamic-response factors. Oscillations of the bundles of elastic rods in a liquid are considered as in a two-phase mixture formed by a liquid and cylindrical inclusions and which has equivalent inertia and viscous properties.
Improved Two-Phase Switching Regulator
NASA Technical Reports Server (NTRS)
Rippel, W. E.
1984-01-01
Coupled-inductor polyphase regulator has better efficiency and lower inductor losses. Improved two-phase switching regulator employs negative coupling between inductors to achieve better power-to-weight ratio while reducing peak switching currents and inductor losses. Improvement of about 35 percent using new technique.
Two-phase flow in fractured rock
Davies, P.; Long, J.; Zuidema, P.
1993-11-01
This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify research needs. The participants were divided into four subgroups. Each group was asked to address a series of two-phase flow processes. The following groups were defined to address these processes: basic flow processes; fracture/matrix interactions; complex flow processes; and coupled processes. For each process, the groups were asked to address these four issues: (1) describe the two-phase flow processes that are important with respect to repository performance; (2) describe how this process relates to the specific driving programmatic issues given above for nuclear waste storage; (3) evaluate the state of understanding for these processes; and (4) suggest additional research to address poorly understood processes relevant to repository performance. The reports from each of the four working groups are given here.
Condensing, Two-Phase, Contact Heat Exchanger
NASA Technical Reports Server (NTRS)
Cox, R. L.; Oren, J. A.; Sauer, L. W.
1988-01-01
Two-phase heat exchanger continuously separates liquid and vapor phases of working fluid and positions liquid phase for efficient heat transfer. Designed for zero gravity. Principle is adapted to other phase-separation applications; for example, in thermodynamic cycles for solar-energy conversion.
Dynamic failure in two-phase materials
Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.
2015-12-21
Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.
Apparatus for monitoring two-phase flow
Sheppard, John D.; Tong, Long S.
1977-03-01
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred (Inventor)
1987-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Two-phase charge-coupled device
NASA Technical Reports Server (NTRS)
Kosonocky, W. F.; Carnes, J. E.
1973-01-01
A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.
Two-phase flow centrifugal pump performance
NASA Astrophysics Data System (ADS)
Chisely, Eugene Andras
The performance of centrifugal pumps subjected to a liquid-gas-mixture flow is a significant concern to manufacturers and to some users such as Chemical, Nuclear Power Plants, and Gas-Oil Industries. Particularly in the nuclear power industry, the prediction of performance degradation under the two-phase flow conditions occurring in a Loss of Coolant Accident (LOCA) is a significant part of the overall analysis of that accident. In this experimental work, the pressure distribution was measured in a rotating, partially shrouded, open, radial impeller and volute under a wide range of air-water two-phase flow conditions. To obtain these pressure measurements, small-diameter pressure-tap holes were drilled through the casing of the radial pump. High speed photography was used to determine the flow regime of the air-water mixture through the vane and in the volute. An analytical model was developed to predict the radial pump single- and two-phase flow pressure distribution. This distribution was compared with the test data for different suction void fractions. The physical mechanism responsible for pump performance degradation was also investigated.
The rheology of two-phase magmas
NASA Astrophysics Data System (ADS)
Llewellin, E. W.; Mader, H. M.; Mueller, S.
2012-12-01
Great advances in our understanding of the rheology of two-phase magmatic suspensions (magma with either bubbles or crystals in it) have been made in recent years. These advances are based on laboratory experiments with both magma and analogue materials, and on analytical and numerical modelling. The current state-of-the-art is the culmination of scores of studies undertaken by scores of research groups and presented in scores of publications. Consequently, whilst it is possible to construct a sophisticated rheological description of a two-phase magma based on a few easily-measured properties (melt composition, crystal/vesicle volume fraction, CSD/VSD, etc.) the task of determining how best to do this is daunting to the non-specialist. We present a straightforward, practical, algorithmic approach to determining the rheology of two-phase magma to the degree of sophistication appropriate to most modelling applications. The approach is based on a broad synthesis of the literature, on new experimental data, and on new theoretical analysis.
Tracking Interfaces in Vertical Two-Phase Flows
Aktas, Birol
2002-07-01
The presence of stratified liquid-gas interfaces in vertical flows poses difficulties to most classes of solution methods for two-phase flows of practical interest in the field of reactor safety and thermal-hydraulics. These difficulties can plague the reactor simulations unless handled with proper care. To illustrate these difficulties, the US NRC Consolidated Thermal-hydraulics Code (TRAC-M) was exercised with selected numerical bench-mark problems. These numerical benchmarks demonstrate that the use of an average void fraction for computational volumes simulating vertical flows is inadequate when these volumes consist of stratified liquid-gas interfaces. In these computational volumes, there are really two regions separated by the liquid-gas interface and each region has a distinct flow topology. An accurate description of these divided computational volumes require that separate void fractions be assigned to each region. This strategy requires that the liquid-gas interfaces be tracked in order to determine their location, the volumes of regions separated by the interface, and the void fractions in these regions. The idea of tracking stratified liquid-gas interfaces is not new. There are examples of tracking methods that were developed for reactor safety codes and applied to reactor simulations in the past with some limited success. The users of these safety codes were warned against potential flow oscillations, conflicting water levels, and pressure disturbances which could be caused by the tracking methods themselves. An example of these methods is the level tracking method of TRAC-M. A review of this method is given here to explore the reasons behind its failures. The review shows that modifications to the field equations are mostly responsible for these failures. Following the review, a systematic approach to incorporate interface tracking methods is outlined. This approach is applicable to most classes of solution methods. For demonstration, the approach to
Dynamic failure in two-phase materials
Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.
2015-12-21
Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial resultsmore » suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.« less
Numerical Simulation of Two Phase Flows
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2001-01-01
Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.
Dynamic failure in two-phase materials
NASA Astrophysics Data System (ADS)
Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.
2015-12-01
Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as void nucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parent materials. In this work, we present results on three different polycrystalline materials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces on void nucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the "weaker" material that dictates the dynamic spall strength of the overall two-phase material.
Nodal analysis of two-phase instabilities
Lahey, R.T. Jr.; Garea, V.P.
1995-10-01
Nodal models having moving nodal boundaries have been developed for the analysis of two-phase flow instabilities in a boiling channel. The first model, which was based on a Galerkin method for the discretization, has been found to be accurate in the prediction of the onset of instabilities as well as the frequency of oscillations. This model however, had some problems with the prediction of chaotic phenomena and did not allow for flow reversal in the channel. A second nodal model, based on a finite difference approach, has been found to perform better for the prediction of non-linear response and it also allows for flow reversal. Both models are numerically more efficient than the existing fixed grid models for instabilities analysis.
Stability of oscillatory two phase Couette flow
NASA Technical Reports Server (NTRS)
Coward, Adrian V.; Papageorgiou, Demetrios T.
1993-01-01
We investigate the stability of two phase Couette flow of different liquids bounded between plane parallel plates. One of the plates has a time dependent velocity in its own plane, which is composed of a constant steady part and a time harmonic component. In the absence of time harmonic modulations, the flow can be unstable to an interfacial instability if the viscosities are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet theory, we show analytically in the limit of long waves, that time periodic modulations in the basic flow can have a significant influence on flow stability. In particular, flows which are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely by the inclusion of background modulations, a finding that can have useful consequences in many practical applications.
Tracer Partitioning in Two-Phase Flow
NASA Astrophysics Data System (ADS)
Sathaye, K.; Hesse, M. A.
2012-12-01
The concentration distributions of geochemical tracers in a subsurface reservoir can be used as an indication of the reservoir flow paths and constituent fluid origin. In this case, we are motivated by the origin of marked geochemical gradients in the Bravo Dome natural CO2 reservoir in northeastern New Mexico. This reservoir contains 99% CO2 with various trace noble gas components and overlies the formation brine in a sloping aquifer. It is thought that magmatic CO2 entered the reservoir, and displaced the brine. This displacement created gradients in the concentrations of the noble gases. Two models to explain noble gas partitioning in two-phase flow are presented here. The first model assumes that the noble gases act as tracers and uses a first order non-linear partial differential equation to compute the volume fraction of each phase along the displament path. A one-way coupled partial differential equation determines the tracer concentration, which has no effect on the overall flow or phase saturations. The second model treats each noble gas as a regular component resulting in a three-component, two-phase system. As the noble gas injection concentration goes to zero, we see the three-component system behave like the one-way coupled system of the first model. Both the analytical and numerical solutions are presented for these models. For the process of a gas displacing a liquid, we see that a noble gas tracer with greater preference for the gas phase, such as Helium, will move more quickly along the flowpath than a heavier tracer that will more easily enter the liquid phase, such as Argon. When we include partial miscibility of both the major and trace components, these differences in speed are shown in a bank of the tracer at the saturation front. In the three component model, the noble gas bank has finite width and concentration. In the limit where the noble gas is treated as a tracer, the width of the bank is zero and the concentration increases linearly
NASA Technical Reports Server (NTRS)
Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)
1999-01-01
A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.
Keratocytes generate traction forces in two phases.
Burton, K; Park, J H; Taylor, D L
1999-11-01
Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement. PMID:10564269
Condensation in a two-phase pool
Duffey, R.B.; Hughes, E.D.
1991-12-31
We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.
Condensation in a two-phase pool
Duffey, R.B. ); Hughes, E.D. )
1991-01-01
We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.
Stably stratified building wakes
Kothari, K.M.; Peterka, J.A.; Meroney, R.N.
1980-01-01
The velocity and temperature wake behind an isolated building placed in a stably stratified turbulent boundary layer has been investigated utilizing wind tunnel tests and mathematical analysis. The mean velocity and mean temperature decrease but turbulence intensity and temperature fluctuation intensity increase as a result of the momentum wake. However, the vortex wake increases mean velocity and mean temperature, and decreases turbulence intensity and temperature fluctuation intensity along the centerline of the wake.
THE TWO PHASES OF GALAXY FORMATION
Oser, Ludwig; Naab, Thorsten; Johansson, Peter H.; Burkert, Andreas; Ostriker, Jeremiah P.
2010-12-20
Cosmological simulations of galaxy formation appear to show a 'two-phase' character with a rapid early phase at z {approx}> 2 during which 'in situ' stars are formed within the galaxy from infalling cold gas followed by an extended phase since z {approx}< 3 during which 'ex situ' stars are primarily accreted. In the latter phase, massive systems grow considerably in mass and radius by accretion of smaller satellite stellar systems formed at quite early times (z>3) outside of the virial radius of the forming central galaxy. These tentative conclusions are obtained from high-resolution re-simulations of 39 individual galaxies in a full cosmological context with present-day virial halo masses ranging from 7 x 10{sup 11} M{sub sun} h {sup -1} {approx}
Two-phase phenomena, minority games, and herding models
NASA Astrophysics Data System (ADS)
Zheng, B.; Qiu, T.; Ren, F.
2004-04-01
The recently discovered two-phase phenomenon in financial markets [Nature 421, 130 (2003)] is examined with the German financial index DAX, minority games, and dynamic herding models. It is observed that the two-phase phenomenon is an important characteristic of financial dynamics, independent of volatility clustering. An interacting herding model correctly produces the two-phase phenomenon.
European Xfel-Linac Two-Phase he II Flow Simulations
NASA Astrophysics Data System (ADS)
Gubarev, V.; Petersen, B.; Sellmann, D.; Xiang, Y.
2008-03-01
The superconducting 1.3-GHz niobium cavities of the XFEL linear accelerator will be cooled in a bath of saturated liquid He II at a temperature of 2 K. The liquid He II supply of the 1.7-km long linac is subdivided in sections of about 150 m length. In these sections a two-phase flow of He II liquid and corresponding vapor occurs. A stable stratified smooth helium flow has to be maintained for the RF operation of the cavities, to avoid any vibrations or microphonic effects. A computer code has been developed to simulate the two-phase flow patterns in the XFEL-linac, based on an existing model. The flow characteristics at different cryogenic loads and helium temperatures have been calculated. The results are shown and the consequences for the design of the XFEL-linac cryogenic system are discussed.
Bharathan, Desikan; Hassani, Vahab
2008-05-20
A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).
Cryogenic Boiling and Two-Phase Flow during Pipe Chilldown in Earth and Reduced Gravity
NASA Astrophysics Data System (ADS)
Yuan, Kun; Ji, Yan; Chung, J. N.; Shyy, Wei
2008-01-01
For many industrial, medical and space technologies, cryogenic fluids play indispensable roles. An integral part of the cryogenic transport processes is the chilldown of the system components during initial applications. In this paper, we report experimental results for a chilldown process that is involved with the unsteady two-phase vapor-liquid flow and boiling heat transfer of the cryogen coupled with the transient heat conduction inside pipe walls. We have provided fundamental understanding on the physics of the two-phase flow and boiling heat transfer during cryogenic quenching through experimental observation, measurement and analysis. Based on the temperature measurement of the tube wall, the terrestrial cryogenic chilldown process is divided into three stages of film boiling, nucleate boiling and single-phase convection that bears a close similarity to the conventional pool boiling process. In earth gravity, cooling rate is non-uniform circumferentially due to a stratified flow pattern that gives rise to more cooling on the bottom wall by liquid filaments. In microgravity, there is no stratified flow and the absence of the gravitational force sends liquid filaments to the central core and replaces them by low thermal conductivity vapor that significantly reduces the heat transfer from the wall. Thus, the chilldown process is axisymmetric, but longer in microgravity.
A bi-directional two-phase/two-phase heat exchanger
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura
1993-01-01
This paper describes the design and test of a heat exchanger that transfers heat from one two-phase thermal loop to another with very small drops in temperature and pressure. The heat exchanger condenses the vapor in one loop while evaporating the liquid in the other without mixing of the condensing and evaporating fluids. The heat exchanger is bidirectional in that it can transfer heat in reverse, condensing on the normally evaporating side and vice versa. It is fully compatible with capillary pumped loops and mechanically pumped loops. Test results verified that performance of the heat exchanger met the design requirements. It demonstrated a heat transfer rate of 6800 watts in the normal mode of operation and 1000 watts in the reverse mode with temperature drops of less than 5 C between two thermal loops.
Two-phase flow measurements with advanced instrumented spool pieces
Turnage, K.C.
1980-09-01
A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.
Deshpande, S.D.
1985-01-01
Non-Newtonian liquid-gas stratified flow data in 0.026- and 0.052-m-diameter pipes were obtained. Interfacial level gradients between the two phases were observed. The Heywood-Charles model is found to be valid for pseudoplastic liquid-gas uniform stratified flow. Two-phase drag reduction in non-Newtonian systems was not achieved as the transition to semi-slug flow occurred before the model criteria were reached. Interfacial liquid and gas shear stresses were compared. A new parameter ..sigma../sup 2/ is introduced which is a numerical indication of the interfacial level gradient. Two-phase drag reduction was experimentally observed in polymer solution-air plug-slug flow in 0.026- and 0.052-m-diameter pipes. The Hubbard-Dukler pressure drop model was extended to non-Newtonian systems. Reasonable agreement between the experiment and the model predictions is obtained. However, more work needs to be done in order to better understand the two-phase drag reduction phenomena. Liquid holdup correlations were developed for both Newtonian and non-Newtonian systems which successfully correlate the holdup over a wide range of parameters. The Petukhov correlation is found to be better than the Dittus-Boelter correlation in predicting the single-phase water heat-transfer coefficients.
Tan, Chao; Zhao, Jia; Dong, Feng
2015-03-01
Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. PMID:25304040
Magnetohydrodynamic generators using two-phase liquid-metal flows
NASA Technical Reports Server (NTRS)
Petrick, M.
1969-01-01
Two-phase flow generator cycle of a magnetohydrodynamic /MHD/ generator uses a working fluid which is compressible and treated as an expanding gas. The two-phase mixture passes from the heat source through the MHD generator, where the expansion process takes place and the electrical energy is extracted.
Effective property models for homogeneous two-phase flows
Awad, M.M.; Muzychka, Y.S.
2008-10-15
Using an analogy between thermal conductivity of porous media and viscosity in two-phase flow, new definitions for two-phase viscosity are proposed. These new definitions satisfy the following two conditions: namely (i) the two-phase viscosity is equal to the liquid viscosity at the mass quality = 0% and (ii) the two-phase viscosity is equal to the gas viscosity at the mass quality = 100%. These new definitions can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach. These new models are assessed using published experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels in the form of Fanning friction factor (f{sub m}) versus Reynolds number (Re{sub m}). The published data include different working fluids such as R-12, R-22, argon (R740), R717, R134a, R410A and propane (R290) at different diameters and different saturation temperatures. Models are assessed on the basis minimizing the root mean square error (e{sub RMS}). It is shown that these new definitions of two-phase viscosity can be used to analyze the experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels using simple friction models. (author)
Response of two-phase droplets to intense electromagnetic radiation
NASA Technical Reports Server (NTRS)
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-01-01
The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.
Two-phase flow research. Phase I. Two-phase nozzle research. Final report
Toner, S.J.
1981-07-01
An investigation of energy transfer in two-phase nozzles was conducted. Experimental performance of converging-diverging nozzles operating on air-water mixtures is presented for a wide range of parameters. Thrust measurements characterized the performance and photographic documentation was used to visually observe the off-design regimes. Thirty-six nozzle configurations were tested to determine the effects of convergence angle, area ratio, and nozzle length. In addition, the pressure ratio and mass flowrate ratio were varied to experimentally map off-design performance. The test results indicate the effects of wall friction and infer temperature and velocity differences between phases and the effect on nozzle performance. The major conclusions reached were: the slip ratio between the phases, gas velocity to liquid velocity, is shown to be below about 4 or 5, and, in most of the test cases run, was estimated to between about 1-1/2 to 2-1/2; in all cases except the free-jet the mass )
Two-phase flows within systems with ambient pressure
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.
1985-01-01
In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.
What types of investors generate the two-phase phenomenon?
NASA Astrophysics Data System (ADS)
Ryu, Doojin
2013-12-01
We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.
Void fraction correlations in two-phase horizontal flow
Papathanassiou, G.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.
1983-05-01
This study examines some physical mechanisms which impose limits on the possible existence of two-phase flow in a horizontal pipe. With the aid of this analysis and the use of the Martinelli variable, X, a method is developed which determines the range of possible void fractions for a given two-phase flow. This method affords a means of direct comparison among void fraction correlations, as well as between correlation predictions and experimental results. In this respect, four well-known void fraction correlations are compared against each other and with experimental results obtained in the Brown University Two-Phase Flow Research Facility.
KC-135 zero-gravity two phase flow pressure drop: Experiments and modeling
NASA Astrophysics Data System (ADS)
Lambert, Anne; Reinarts, Thomas R.; Best, Frederick R.; Hill, Wayne S.
1991-01-01
Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow pressure drop experiments. The data are those of a recent experiment (Hill and Best 1990) funded by the U.S. Air Force and conducted by Foster-Miller in conjunction with Texas A&M University. A boiling and condensing experiment was built in which R-12 was used as the working fluid. A Foster-Miller two phase pump was used to circulate a freon mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown five times aboard the NASA KC-135 aircraft which simulates 0-``g'' conditions by its parabolic flight trajectory. Test conditions included stratified and annual flow regimes in 1-``g'' which became bubbly, slug or annular flow regimes in 0-``g''. A portion of the current work outlines a methodology to analyze data for two-phase, 0-g experimental studies. A technique for correcting the raw pressure drop data collected from the test package is given. The Corrected pressure drop measurements are compared with predictive model. The corrected pressure drop measurements show no statistically significant difference between the 1-``g'' and 0-``g'' tests for mass flow rates between 0.00653 and 0.0544 kg/s in an 8 mm ID tube. An annular flow model gave the best overall predictions of pressure drop. The homogeneous, and Beattle and Whalley (1982) models showed good agreement with the pressure drops measured for the slug and bubbly/slug flow conditions. The two-phase multiplier deduced from the data appeared to follow the Martinelli-Nelson trend but at lower values than for
Transient two-phase performance of LOFT reactor coolant pumps
Chen, T.H.; Modro, S.M.
1983-01-01
Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.
Dynamical mechanism of two-phase phenomena in financial markets
NASA Astrophysics Data System (ADS)
Lim, Gyuchang; Yong Kim, Soo; Kim, Kyungsik; Lee, Dong-In; Park, Sang-Bum
2007-12-01
Two-phase behavior of the Korean treasury bond (KTB) futures in the Korean exchange market is investigated in this study. To show that the two-phase phenomena are due to heavy-tailed behavior of distribution of price returns, actual data from the KTB futures market with shuffled data and a generated time series are examined according to the Brownian process. In addition, we study the correlation inherent in the KTB futures and its Brownian walk, describing the extent to which the volatility clustering plays a crucial role in equilibrium and nonequilibrium states of financial markets. It is shown that the two-phase behavior essentially results from heavy-tailed behavior of the distribution of price returns. This two-phase behavior does not appear to be relevant to volatility clustering.
Turbulent vortices in stratified fluids
NASA Technical Reports Server (NTRS)
Hecht, A. M.; Bilanin, A. J.; Hirsh, J. E.; Snedeker, R. S.
1979-01-01
In the present paper, calculations, made with the finite difference axisymmetric WAKE computer code, of the influence of turbulence and stratification on the behavior of vortex rings are compared with experimental data. Calculations, made with the two-dimensional version of the code, are used to study the behavior of vortex pairs in stably stratified atmospheres for a range of Froude numbers. Stratification is shown to have a profound effect on the radius of a vortex ring descending into a stably stratified fluid. The separation of the vortices of a vortex pair remains nearly constant or decreases monotonically with increasing penetration of a stably stratified fluid, depending on whether the stratification is discontinuous or linear. An analysis based on an energy balance is used to assess the maximum descent of a vortex pair in a stably stratified fluid.
A jet polishing technique for thinning two phase materials
Witcomb, M.J. ); Dahmen, U. )
1990-11-01
A common problem in the preparation of thin foils for transmission electron microscopy is the different thinning rate in two-phase materials. Often this leads to foils in which the majority, or matrix, phase is evenly polished while the minority, or precipitate, phase is either etched out or stands proud of the surrounding material. In the present report we describe a two-stage jet polishing technique that has been used successfully on different relatively coarse two-phase structures. 3 figs.
Momentum flux in two phase two component low quality flow
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Graham, R. W.; Henry, R. E.
1972-01-01
In two phase flow systems line losses comprise frictional and momentum pressure drops. For design purposes, it would be desirable to estimate the line losses employing a one-dimensional calculation. Two methods for computing one-dimensional momentum flux at a test section discharge station are compared to the experimental value for a range of two-phase flow conditions. The one-dimensional homogeneous model appears to be more accurate generally in predicting the momentum than the variable slip model.
Channel orientation and geometry influence on heat transfer with two-phase forced flow of nitrogen
NASA Astrophysics Data System (ADS)
Klimenko, V. V.; Fyodorov, M. V.; Fomichyov, Yu. A.
The results of an investigation of tube diameter and orientation influence on two-phase forced flow heat transfer of nitrogen are presented. In vertical channels a diameter effect is revealed in a transition from convective to less intensive nucleate boiling when the Froude number of a mixture, Fr m = w m(gd) - 1/2 decreases from 40 to 10. On the contrary, in horizontal non-stratified flow, the reduction of the Frm number is accompanied by heat transfer enhancement in the upper part of the channel because of the formation of a thin liquid film there. This leads to a notable increase (20-30%), averaged over the cross-section, of heat transfer coefficient in the nucleate boiling region. If Frm ≳ 40 then geometry and orientation do not affect the heat transfer coefficient which can be calculated using the Klimenko correlation.
Study of two-phase flows in reduced gravity
NASA Astrophysics Data System (ADS)
Roy, Tirthankar
Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies
Microgravity fluid management in two-phase thermal systems
NASA Technical Reports Server (NTRS)
Parish, Richard C.
1987-01-01
Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.
Effect of Drag Reducing Polymers on Stratified and Stratified/Annular Flow in a Horizontal Duct
NASA Astrophysics Data System (ADS)
Pernica, Patricia; Fleck, Brian; Heidrick, Ted
2006-11-01
An investigation was carried out to determine the effects of a drag reducing additive (DRA) on two phase flow in horizontal stratified and stratified/annular flow patterns. Experiments were conducted in an air-water flow in a transparent rectangular channel of cross-section 25.4 mm x 50.8 mm and 2.5 m in length. Pressure drop measurements, wave characteristics and observations of entrainment with and without DRA are presented. A non-contact measurement technique using laser induced fluorescence and high speed videography was used to measure span-wise liquid wave heights and to characterize the air-water interface. Pressure drop was measured at the centerline of the duct over a one meter distance. The onset of entrainment was observed visually. Effects of DRA were observed even at a low concentration of 5ppm. This concentration yielded pressure drop reductions of 10-15% which correlate with previous experiments done in horizontal pipelines. Observations also show dampening of roll waves and the suppression of atomization. Al-Sarkhi, A., Hanratty, T.J., Int J. Multiphase Flow, 27, 1151 (2001)
Two-Phase flow instrumentation for nuclear accidents simulation
NASA Astrophysics Data System (ADS)
Monni, G.; De Salve, M.; Panella, B.
2014-11-01
The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.
Transient well testing in two-phase geothermal reservoirs
Aydelotte, S.R.
1980-03-01
A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.
Hyperbolic models for two-phase (or two-material) flow
Hicks, D.L.
1981-08-01
For some time it has been known that many of the two-phase flow models lead to ill-posed problems unless viscous stresses are included. The inclusion of viscous stresses changes the character of the equations from hyperbolic to parabolic. A continuing problem has been to find a well-posed hyperbolic system of equations which provide a reasonable model for two-phase flow, or to show that no such model exists. Another outstanding problem has been to understand why the derivation procedures for microstructural models produce models with the peculiar defect of being unstable. A careful investigation of the derivation procedures for the simple case of stratified flow suggests that the equal-pressures assumption is most likely the assumption leading to instability. Consideration of the alternative assumption suggests a model, namely the Unequal-Pressures Model, which is expressed by a first order system of partial differential equations with real characteristics. Thus the problem of complex characteristics (or sound speeds) which lead to the instability in the equal-pressures models is obviated. The form that the analysis takes suggests a technique for categorizing models according to the evolution equations for their internal state variables in order to aid model builders in quickly determining which models will lead to complex characteristics. Also a model with real characteristics for the two-phase flow of a bubbly liquid arises from an extension of the Unequal-Pressures model for single-layered flow to multi-layered flow. This Unequal-Pressures model has real characteristics fo all physically acceptable states and has a complete set of eigenvectors except for a set of measure zero in state space and therefore is hyperbolic in state space. Also this Unequal-Pressures model is stable in the sense of von Neumann a.e. in state space.
Microgravity experiments with a simple two-phase thermal system
Crowley, C.J.; Sam, R.G. )
1991-01-10
Microgravity experiments with a simple two-phase thermal system are described. Microgravity experiments aboard the NASA KC-135 aircraft provide variable acceleration 0.01g to 2g, with low gravity for 20 to 25 seconds. The two-phase loop allows the vapor and liquid phases to flow together between the evaporator and the condenser. It incorporates and evaporator where heat transfer is controlled by forced convection, an adiabatic transport section where transparent piping provides visualization of the flow regime, and a condenser where heat transfer is controlled by the shear between the gas and liquid phases. Stable operation of the system is observed during the variable accleration.
Momentum flux in two phase two component low quality flow.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Graham, R. W.; Henry, R. E.
1972-01-01
Values of a one-dimensional momentum flux at a test section discharge station of a two-phase two-component low quality flow computed by two methods, one based on a one-dimensional homogeneous model and the other on a variable slip model, are compared to experimental values for a range of two-phase flow conditions. The comparison seems to indicate the superior accuracy in momentum flux predictions to be on the side of the one-dimensional homogeneous model.
Two Phase Flow and Space-Based Applications
NASA Technical Reports Server (NTRS)
McQuillen, John
1999-01-01
A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.
Two-Phase Model of Combustion in Explosions
Kuhl, A L; Khasainov, B; Bell, J
2006-06-19
A two-phase model for Aluminum particle combustion in explosions is proposed. It combines the gas-dynamic conservation laws for the gas phase with the continuum mechanics laws of multi-phase media, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by the Khasainov model. Combustion is specified as material transformations in the Le Chatelier diagram which depicts the locus of thermodynamic states in the internal energy-temperature plane according to Kuhl. Numerical simulations are used to show the evolution of two-phase combustion fields generated by the explosive dissemination of a powdered Al fuel.
Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.
Wu, Qihua; Ok, Jeong Tae; Sun, Yongpeng; Retterer, S T; Neeves, Keith B; Yin, Xiaolong; Bai, Baojun; Ma, Yinfa
2013-03-21
Microfluidic and nanofluidic devices have undergone rapid development in recent years. Functions integrated onto such devices provide lab-on-a-chip solutions for many biomedical, chemical, and engineering applications. In this paper, a lab-on-a-chip technique for direct visualization of the single- and two-phase pressure-driven flows in nano-scale channels was developed. The nanofluidic chip was designed and fabricated; concentration dependent fluorescence signal correlation was developed for the determination of flow rate. Experiments of single and two-phase flow in nano-scale channels with 100 nm depth were conducted. The linearity correlation between flow rate and pressure drop in nanochannels was obtained and fit closely into Poiseuille's Law. Meanwhile, three different flow patterns, single, annular, and stratified, were observed from the two-phase flow in the nanochannel experiments and their special features were described. A two-phase flow regime map for nanochannels is presented. Results are of critical importance to both fundamental study and many applications. PMID:23370894
Low gravity two-phase flow with heat transfer
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1991-01-01
A realistic model for the transfer line chilldown operation under low-gravity conditions is developed to provide a comprehensive predictive capability on the behavior of liquid vapor, two-phase diabatic flows in pipes. The tasks described involve the development of numerical code and the establishment of the necessary experimental data base for low-gravity simulation.
Coal-Face Fracture With A Two-Phase Liquid
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr.
1985-01-01
In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.
Diffusion-controlled grain growth in two-phase solids
Fan, D.; Chen, L.Q.
1997-08-01
Microstructural evolution and the kinetics of grain growth in volume-conserved two-phase solids were investigated using two-dimensional (2-D) computer simulations based on a diffuse-interface field model. In this model, a two-phase microstructure is described by non-conserved field variables which represent crystallographic orientations of grains in each phase and by a conserved composition field variable which distinguishes the compositional difference between the two phases. The temporal and spatial evolution of these field variables were obtained through a numerical solution to the time-dependent Ginzburg-Landau (TDGL) equations. The effect of the ratios of grain boundary energies to interfacial energy on the microstructure features was systematically studied. It was found that grain growth in a volume-conserved two-phase solid is controlled by long-range diffusion and follows the power growth law, R{sup m} {minus} R{sup m}{sub o} = kt with m = 3 in the scaling regime for all cases studied, including the microstructures containing only quadrijunctions. The effects of volume fractions and initial microstructures are discussed.
Power production with two-phase expansion through vapor dome
Amend, W.E.; Toner, S.J.
1984-08-07
In a system wherein a fluid exhibits a regressive vapor dome in a T-S diagram, the following are provided: a two-phase nozzle receiving the fluid in pressurized and heated liquid state and expanding the received liquid into saturated or superheated vapor state, and apparatus receiving the saturated or superheated vapor to convert the kinetic energy thereof into power.
Two-phase alkali-metal experiments in reduced gravity
Antoniak, Z.I.
1986-06-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.
Numerical studies of gravity effects in two-phase reservoirs
Bodvarsson, G.S.; Cox, B.L.
1986-06-01
Numerical studies are performed to investigate the effects of localized feed zones on the pressure transients in two-phase reservoirs. It is shown that gravity effects can significantly affect the pressure transients, because of the large difference in the density of liquid water and vapor. Pressure transients for shallow and deep feed zones and the resulting fluid flow patterns are discussed.
Two-phase flow in helical and spiral coils
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Bush, Mia L.; Omrani, Adel; Yan, An
1995-01-01
Coiled tube heat exchangers involving two-phase flows are used in a variety of application areas, extending from the aerospace industry to petrochemical, refrigeration land power generation industries. The optimal design in each situation requires a fundamental understanding of the heat, mass and momentum transfer characteristic of the flowing two-phase mixture. However, two-phase flows in lengths of horizontal or vertical straight channels with heat transfer are often quite difficult in themselves to understand sufficiently well to permit accurate system designs. The present study has the following general objectives: (1) Observe two-phase flow patterns of air-water and R-113 working fluids over a range of flow conditions, for helical and spiral coil geometries, of circular and rectangular cross-section; (2) Compare observed flow patterns with predictions of existing flow maps; (3) Study criteria for flow regime transitions for possible modifications of existing flow pattern maps; and (4) Measure associated pressure drops across the coiled test sections over the rage of flow conditions specified.
Two-phase convective CO2 dissolution in saline aquifers
Martinez, M. J.; Hesse, M. A.
2016-01-30
Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less
Two-phase convective CO2 dissolution in saline aquifers
Martinez, Mario J.; Hesse, Marc A.
2016-01-01
Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less
Flow Pattern Phenomena in Two-Phase Flow in Microchannels
NASA Astrophysics Data System (ADS)
Keska, Jerry K.; Simon, William E.
2004-02-01
Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results
By-pass pigs for two-phase flow pipelines
Wu, H.L.; Spronsen, G. van; Klaus, E.H.; Stewart, D.M.
1996-12-31
Pigging two-phase pipelines normally leads to the generation of large liquid slug volumes in front of the pig requiring excessively large separators or slug catchers. The concept of using a high by-pass pig to disperse the liquid and reduce the maximum liquid production rate prior to pig arrival is under investigation by Shell Exploration and Production companies. A simulation model of the dynamics of the pig and related two-phase flow behavior in the pipeline was used to predict the performance of by-pass pigs. Field trials in a dry gas pipeline were carried out to provide friction data and to validate the model. It was then used to explore operating possibilities in a two-phase lie which led to the follow-up trial in a 15.6 km, 20 inch OD two-phase offshore interfield pipeline with risers. Whereas the volume of liquid swept in front of the pig would be 179 m{sup 3} if the by-pass fraction were zero, a reduction of 70% to 53m{sup 3} was achieved in the field with a by-pass fraction of 10%. The predicted mobility of the high by-pass pig in the pipeline and risers was verified and the beneficial effects due to the by-pass concept exceeded the prediction of the simplified model. The significant gains of using a by-pass pig in modifying gas and liquid production rates during pigging operation have been demonstrated. The method can widen the possibility of applying two-phase flow pipeline transportation to cases where separator or slug catcher capacity are limited for reasons of practicality or cost.
Two-phase convective CO2 dissolution in saline aquifers
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Hesse, M. A.
2016-01-01
Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. This removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.
Investigations of two-phase flame propagation under microgravity conditions
NASA Astrophysics Data System (ADS)
Gokalp, Iskender
2016-07-01
Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets
Spacecraft heat transfer by two-phase flow method
NASA Technical Reports Server (NTRS)
Hye, A.
1985-01-01
A refrigerator/freezer has been designed with an oil-free compressor to provide an economical two-phase flow system for heat transfer. A computer simulation has been done for the condenser and evaporator to determine the design parameters, such as length, diameter, and flow regimes, for different refrigerants and load requirements. A large Reynolds number was considered to ensure annular flow (in order to maximize heat transfer coefficients) and large Froude number. The simulation was correlated with the test data of a vapor compression refrigerator/freezer flown on STS-4 (which provided information on vapor compression in a zero-gravity environment). The two-phase system will be used for the Spacelab mission SLS-1 and can be used in future spacecraft and high-speed aircraft, where weight, volume, and power requirements are critical.
Gelfand-type problem for two-phase porous media
Gordon, Peter V.; Moroz, Vitaly
2014-01-01
We consider a generalization of the Gelfand problem arising in Frank-Kamenetskii theory of thermal explosion. This generalization is a natural extension of the Gelfand problem to two-phase materials, where, in contrast to the classical Gelfand problem which uses a single temperature approach, the state of the system is described by two different temperatures. We show that similar to the classical Gelfand problem the thermal explosion occurs exclusively owing to the absence of stationary temperature distribution. We also show that the presence of interphase heat exchange delays a thermal explosion. Moreover, we prove that in the limit of infinite heat exchange between phases the problem of thermal explosion in two-phase porous media reduces to the classical Gelfand problem with renormalized constants. PMID:24611025
Method and apparatus for monitoring two-phase flow. [PWR
Sheppard, J.D.; Tong, L.S.
1975-12-19
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Melt-band instabilities with two-phase damage
NASA Astrophysics Data System (ADS)
Rudge, John F.; Bercovici, David
2015-05-01
Deformation experiments on partially molten rocks in simple shear form melt bands at 20° to the shear plane instead of at the expected 45° principal compressive stress direction. These melt bands may play an important role in melt focusing in mid-ocean ridges. Such shallow bands are known to form for two-phase media under shear if strongly non-Newtonian power-law creep is employed for the solid phase, or anisotropy imposed. However laboratory experiments show that shallow bands occur regardless of creep mechanism, even in diffusion creep, which is nominally Newtonian. Here we propose that a couple of forms of two-phase damage allow for shallow melt bands even in diffusion creep.
Computer simulation of two-phase flow in nuclear reactors
Wulff, W.
1992-09-01
Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.
A review of two-phase flow-induced vibration
NASA Astrophysics Data System (ADS)
Chen, S. S.
1987-08-01
Two-phase flow exists in many shell-and-tube heat exchangers and power generation components. The flowing fluid is a source of energy that can induce small-amplitude subcritical oscillations and large-amplitude dynamic instabilities. In fact, many practical system components have experienced excessive flow-induced vibrations. To prevent unacceptable flow-induced vibration, we must understand excitation mechanisms, develop analytical and experimental techniques, and provide reliable design guidelines. Thus, we are conducting a comprehensive program to study structural vibration in components subjected to two-phase flow. This report reviews the current understanding of vibration of circular cylinders in quiescent fluid, crossflow, and axial flow, with emphasis on excitation mechanisms, mathematical models, and available experimental data. A unified theory is presented for cylinders oscillating under different flow conditions. Based on the theory, future research needs are outlined.
A pumped two-phase cooling system for spacecraft
NASA Technical Reports Server (NTRS)
Ollendorf, S.; Costello, F. A.
1983-01-01
A pumped, two-phase heat-transport system is being developed for possible use for temperature control of scientific instruments on future NASA missions. As compared to a single-phase system, this two-phase system can maintain tighter temperature control with less pumping power. A laboratory model of the system has been built and tested. The measured heat transfer coefficients were approximately the same as in heat pipes, 220 Btu/hr-sq ft-F, as compared to 25 Btu/hr-sq ft-F for single-phase liquid flow. Heat shearing between experiments has been demonstrated wherein vapor generated in the cold plate of an active experiment was condensed in a cold, unheated experiment. System stability has been observed. However, additional development is needed. The use of non-azeotropic mixtures of coolants appears especially promising as a simple way to determine exit quality and thus control the flow rates to prevent dryout.
A Two-Phase Metaheuristic for Farm Workscheduling
NASA Astrophysics Data System (ADS)
Guan, Senlin; Nakamura, Morikazu; Shikanai, Takeshi; Okazaki, Takeo
This paper proposes a two-phase metaheuristic approach to planning daily farm work for agriculture production corporations. The two-phase metaheuristic contains the optimization of resources assignment and searching schedule based on Genetic Algorithm and hybrid Petri nets model. In the experiment, the effect on optimizing the resource assignment and priority list, initializing population of GA with sorted chromosomes by waiting time, inheriting priority list from tasks in the previous resources assignment enhanced the evolutionary speed and solution quality. The computational experiment revealed high effectiveness for constructing farm work schedule with high ratio of resource utilization. The proposed approach also contributes a referential scheme for combining metaheuristic to solve scheduling problem under constraints.
A study of two phase flow in fracture networks
Karasaki, K.; Pruess, K.; Vomvoris, S.; Segan, S.
1994-12-31
Accurate characterization of the two-phase flow behavior of the fractured rock mass is vital to the safety of a potential high level nuclear waste repository in the unsaturated, fractured welded tuff at Yucca Mountain, NV. A tool for studying the two-phase flow properties of a fracture networks was developed. It is based on a simple mechanistic model in which the capillary pressure of a fracture is a unique function of the aperture. Whether a particular fracture element is occupied by wetting fluid or non-wetting fluid is determined by allowability and accessibility criteria. Relative permeability characteristics of a simulated fracture network were investigated using the model. Different assumptions are examined regarding the interactions between phases. In all cases, strong phase interference was observed. Hysteresis effects and irreducible saturation were also explained based on the model.
Cascade modeling of single and two-phase turbulence
NASA Astrophysics Data System (ADS)
Bolotnov, Igor A.
The analysis of turbulent two-phase flows requires closure models in order to perform reliable computational multiphase fluid dynamics (CFMD) analyses. A turbulence cascade model, which tracks the evolution of the turbulent kinetic energy between the various eddy sizes, has been developed for the analysis of the single and bubbly two-phase turbulence. Various flows are considered including the decay of isotropic grid-induced turbulence, uniform shear flow and turbulent channel flow. The model has been developed using a "building block" approach by moving from modeling of simpler turbulent flows (i.e., homogeneous, isotropic decay) to more involved turbulent flows (i.e., non-homogeneous channel flow). The spectral cascade-transport model's performance has been assessed against a number of experimental and direct numerical simulation (DNS) results.
Theory and Tests of Two-Phase Turbines
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1986-01-01
New turbines open possibility of new types of power cycles. Report describes theoretical analysis and experimental testing of two-phase impulse turbines. Such turbines open possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation, and engine-bottoming cycles.
Two-fluid model for two-phase flow
NASA Astrophysics Data System (ADS)
Ishii, M.
1987-06-01
The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research.
Recent advances in two-phase flow numerics
Mahaffy, J.H.; Macian, R.
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Two-phase, gas-liquid flows in static mixers
Shah, N.F.; Kale, D.D. )
1992-02-01
This paper reports that static mixers are used for many gas-liquid two-phase operations. some of the typical applications are processing of natural gas to remove hydrogen sulfide or carbon dioxide, waste water treatment, dissolution of gases, hydrogenation, chlorination, and so on. They have experimentally studied the pressure drop for oxygen-water system in a bubble column packed with Sulzer-Koch-type mixing elements. They observed that the ratio of pressure drop through the packed bubble column to that through the unpacked one was slightly greater than one. The suitability of static mixers to mix fluids of very widely different viscosities has been demonstrated. Two-phase operations in polymer industry involve very viscous fluids. Due to the high viscosity of these fluids, the flow will be predominantly in laminar region for both fluids. There are no data on gas-liquid two-phase systems incorporating viscous Newtonian and non-Newtonian fluids where flows are predominantly in laminar region.
An experimental investigation of two-phase liquid oxygen pumping
NASA Technical Reports Server (NTRS)
Gross, L. A.
1973-01-01
The results of an experimental program to explore the feasibility of pumping two-phase oxygen (liquid and gas) at the pump inlet are reported. Twenty-one cavitation tests were run on a standard J-2 oxygen pump at the MSFC Components Test Laboratory. All tests were run with liquid oxygen 5 to 10 K above the normal boiling point temperature. During ten tests run at approximately at the pump inlet were noted before complete pump performance 50 percent of the nominal operating speed, two phase conditions were achieved. Vapor volumes of 40 to 50 percent at the pump inlet were noted before complete pump performance loss. The experimental results compared to predictions. Nine cavitation tests run at the nominal pump speed over a 5 K temperature range showed progressively lower net positive suction head (NPSH) requirements as temperature was increased. Two-phase operation was not achieved. The temperature varying NPSH data were used to calculate thermodynamic effects on NPSH, and the results were compared to existing data.
Two-phase gravity currents in geological CO2 storage
NASA Astrophysics Data System (ADS)
Neufeld, J. A.; Golding, M.; Hesse, M. A.; Huppert, H. E.
2010-12-01
Geological carbon capture and storage, in which compressed CO2 is injected into deep saline aquifers for permanent storage, forms an integral part of CO2 mitigation strategies. At representative reservoir conditions CO2 is buoyant and may therefore leak into surface waters or the atmosphere. The leakage of CO2 back into the atmosphere may be prevented by the formation of disconnected immobile residual CO2 in the wake of the migrating plume. Here we constrain the magnitude of residual trapping by considering a two-phase model of the buoyancy driven propagation of a plume of injected CO2 within a saline aquifer. The buoyant rise of CO2 within saline aquifers is the principal mechanism through which CO2 contacts the host reservoir. Most simplified models of CO2 migration have assumed that the capillary transition zone is negligible relative to the current thickness and that the fluids are separated by a sharp interface. The results anticipate that such currents quickly become highly localized at the top boundary of reservoirs resulting in a concomitant reduction in residual trapping. However, such single-phase models neglect both the interfacial tension and large viscosity difference between the injected CO2 and the ambient pore fluid. The key challenge in two-phase gravity currents is the modeling of the variation in CO2 saturation with depth within the current. Here we use a standard model that considers the functional dependence of the relative permeability and capillary pressure on saturation to describe the two-phase flow. We anticipate that, after an initial transient, the extent of the current is much greater than its depth and that the capillary pressures within the current are balanced by gravity in this limit. This balance, called gravity-capillary equilibrium, and the fact that flow is predominantly horizontal within the current determine the saturation profile. Realizing that flow is driven primarily by gradients in the hydrostatic pressure, as in single
Two-phase gravity currents in CO2 sequestration
NASA Astrophysics Data System (ADS)
Neufeld, Jerome; Golding, Madeleine; Hesse, Marc
2010-05-01
Geological carbon capture and storage (CCS), in which compressed CO2 is injected into deep saline aquifers for permanent storage, forms an integral part of CO2 mitigation strategies. At representative reservoir conditions CO2 is buoyant and may therefore leak into surface waters or the atmosphere. The leakage of CO2 back into the atmosphere may be prevented by the formation of disconnected immobile residual CO2 in the wake of the migrating plume. Here we constrain the magnitude of residual trapping by considering a two-phase model of the buoyancy driven propagation of a plume of injected CO2 within a saline aquifer. The buoyant rise of CO2 within saline aquifers is the principal mechanism through which CO2 contacts the host reservoir. Most simplified models of CO2 migration have assumed that the capillary transition zone is negligible relative to the current thickness and that the fluids are separated by a sharp interface. The results anticipate that such currents quickly become highly localized at the top boundary of reservoirs resulting in a concomitant reduction in residual trapping. However, such single-phase models neglect both the interfacial tension and large viscosity difference between the injected CO2 and the ambient pore fluid. The key challenge in two-phase gravity currents is the modeling of the variation in CO2 saturation with depth within the current. Here we use a standard model that considers the functional dependence of the relative permeability and capillary pressure on saturation to describe the two-phase flow. We anticipate that, after an initial transient, the extent of the current is much greater than its depth and that the capillary pressures within the current are balanced by gravity in this limit. This balance, called gravity-capillary equilibrium, and the fact that flow is predominantly horizontal within the current determine the saturation profile. Realizing that flow is driven primarily by gradients in the hydrostatic pressure, as in
Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.
Calculation of two-phase flow in gas turbine combustors
Tolpadi, A.K.
1995-10-01
A method is presented for computing steady two-phase turbulent combusting flow in a gas turbine combustor. The gas phase equations are solved in an Eulerian frame of reference. The two-phase calculations are performed by using a liquid droplet spray combustion a model and treating the motion of the evaporating fuel droplets in a Lagrangian frame of reference. The numerical algorithm employs nonorthogonal curvilinear coordinates, a multigrid iterative solution procedure, the standard k-{epsilon} turbulence model, and a combustion model comprising an assumed shape probability density function and the conserved scalar formulation. The trajectory computation of the fuel provides the source terms for all the gas phase equations. This two-phase model was applied to a real piece of combustion hardware in the form of a modern GE/SNECMA single annular CFM56 turbofan engine combustor. For the purposes of comparison, calculations were also performed by treating the fuel as a single gaseous phase. The effect on the solution of two extreme situations of the fuel as a gas and initially as a liquid was examined. The distribution of the velocity field and the conserved scalar within the combustor, as well as the distribution of the temperature field in the reaction zone and in the exhaust, were all predicted with the combustor operating both at high-power and low-power (ground idle) conditions. The calculated exit gas temperature was compared with test rig measurements. Under both low and high-power conditions, the temperature appeared to show an improved agreement with the measured data when the calculations were performed with the spray model as compared to a single-phase calculation.
Two-phase damage models of magma-fracturing
NASA Astrophysics Data System (ADS)
Cai, Zhengyu; Bercovici, David
2013-04-01
Damage and fracturing in two-phase and porous flows are relevant for geological process such as magma-fracturing during melt migration, which is associated with the propagation of a pore-generating damage front ahead of high-pressure fluid injection. We therefore examine the propagation of porous flow in a damageable matrix by applying the two-phase theory for compaction and damage proposed by Bercovici et al. (2001a) and Bercovici and Ricard (2003). The movement of the fluid and the solid is governed by the two-phase flow laws, while damage (void generation and microcracking) is treated by considering the generation of interfacial surface energy by deformational work. Calculations of one-dimensional (1-D) flow of fluid migrating buoyantly through compacting and damageable matrix show that damage is mitigated in steady-state largely because of the loss of the velocity gradient at the fluid front. However, in time-dependent flows, linear stability analysis shows that the propagation velocity of porosity waves is strongly dependent on damage. In the damage-free case porosity waves are dispersive in that wave-speed decreases with wavenumber (inverse wavelength); however with damage the dispersion flattens and beyond a critical damage reverses (the wave speed increases with wavenumber). Since normal dispersive behavior balances breaking in the nonlinear wave case, such reversed dispersion implies that damage has a profound effect in the nonlinear limit by facilitating wave front steepening and higher wave velocities. Nonlinear solitary wave solutions are obtained numerically and show that the transmission of porosity waves induces high stress and damage that can push the damage front forward. With damage the porosity waves sharpen and calculations suggest that they can transform from shape-conserving solitary waves into faster high amplitude waves, which is also predicted by the linear theory. Such pulse-like sharper waves may prove effective at promoting fluid
Liquid jet pumps for two-phase flows
Cunningham, R.G.
1995-06-01
Isothermal compression of a bubbly secondary fluid in a mixing-throat and diffuser is described by a one-dimensional flow model of a liquid-jet pump. Friction-loss coefficients used in the four equations may be determined experimentally, or taken from the literature. The model reduces to the liquid-jet gas compressor case if the secondary liquid is zero. Conversely, a zero secondary-gas flow reduces the liquid-jet gas and liquid (LJGL) model to that of the familiar liquid-jet liquid pump. A ``jet loss`` occurs in liquid-jet pumps if the nozzle tip is withdrawn from the entrance plane of the throat, and jet loss is included in the efficiency equations. Comparisons are made with published test data for liquid-jet liquid pumps and for liquid-jet gas compressors. The LJGL model is used to explore jet pump responses to two-phase secondary flows, nozzle-to-throat area ratio, and primary-jet velocity. The results are shown in terms of performance curves versus flow ratios. Predicted peak efficiencies are approximately 50 percent. Under sever operating conditions, LJGL pump performance curves exhibit maximum-flow ratios or cut-offs. Cut-offs occurs when two-phase secondary-flow steams attain sonic values at the entry of the mixing throat. A dimensionless number correlates flow-ratio cut-offs with pump geometry and operating conditions. Throat-entry choking of the secondary flow can be predicted, hence avoided, in designing jet pumps to hand two-phase fluids.
Experimental study of a two-phase surface jet
NASA Astrophysics Data System (ADS)
Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.
2013-04-01
Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses < {u^' } w^' } } rangle decrease when bubbles are injected, indicating turbulence attenuation, and are negative at deeper locations, as turbulent eddies shed downward carry high axial momentum deeper into the flow. Flow visualization reveals that the two-phase jet is lifted with the presence of bubbles and reaches the free surface sooner. Significant bubble coalescence is observed, leading to an increase in mean bubble size as the jet develops. The coalescence near the free surface is particularly strong, due to the time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.
Two-phase methane fermentation of municipal-industrial sludge
Ghosh, S.; Sajjad, A.
1984-01-01
This paper presents the development of an innovative two-phase methane fermentation process that provided a mesophilic methane yield of about 0.5 SCM/kg VS (8 SCF/lb VS) added from digestion of a municipal-industrial sludge at a system hydraulic residence time (HRT) of about 6 days compared with a yield of 0.22 to 0.31 SCM/kg VS (3.5 to 5.0 SCF/lb VS) added obtained from single-stage conventional high-rate digesters operated at HRT's of 10 to 20 days. This innovative process has substantive beneficial impact on the production of net energy and availability of surplus digester methane for sale or conversion to such other energy forms as substitute natural gas, electric power, hot water, or low-pressure steam. The research was conducted with a high-metal-content and difficult-to-treat primary sludge from the South Essex Sewerage District (SESD) water pollution control plant, Salem, Massachusetts. Wastewaters received at the plant include 40 to 60 vol % industrial wastes, the remainder being residential liquid wastes. Incineration, which was the sludge disposal process at the plant, is now unacceptable because it leads to the production of hexavalent chromium and other oxidized metals, and the incinerator ash containing these materials cannot be landfilled. The two-phase process does not generate oxidized species such as Cr/sup 6 +/, produces renewable energy and a highly stabilized residue, and could be an answer to the sludge disposal problems of SESD or other sewage districts. Results of bench-scale process development work are presented here. Design and operation of a 7500 L/day (2000 gal/day) two-phase pilot plant will be started this year with support from the above industrial sponsors and other governmental and public agencies. 6 references, 1 figure, 5 tables.
Investigation of two phase (oil, tensid) flow in capillaries
NASA Astrophysics Data System (ADS)
Szekely, G.
1980-07-01
Capillary flow phenomena were studied. The feasibility of a crude extraction method which can increase the eventual output of existing oil wells is discussed. A gas/water solution together with other additives is pumped into the well. This solution acts on the crude trapped in permeable stone formations. The state of the trapped oil is similar to oil in a capillary tube. Using laboratory apparatus, the characteristic two phase flow resulting when the tensid solution forces the oil out of the capillary was demonstrated.
Modeling of density loaded two-phase flows
Mostafa, A.A. )
1991-01-01
In this paper a mathematical model for densely loaded particle-laden flows is proposed to account for particle collisions and particle-turbulence interaction. The coupled conservation equations are based on a Eulerian scheme for the gas and a stochastic Lagrangian technique for the particles. The model was validated against the experimental data of densely loaded particle-laden jet flows. The comparison between the computational results and measurements suggested that both turbulence modulation and particle collisions are important and should be considered in an accurate analysis of dense two-phase flows.
Radiation heat transfer in two-phase media
Adzerikho, K.S.
1988-05-01
The state of the art of approximate and numerical methods of the theory of radiation heat transfer is analyzed. The principles for producing engineering methods of computing the radiation heat-transfer characteristics in power plants are examined. These principles include: the integration of the transport equation, computing the radiation heat transfer in nonisothermal two-phase media bounded by emitting and reflecting surfaces, the thermal efficiency of screens as a function of the optical properties of the boundary surfaces and the furnace medium, the scattering processes, temperature distribution, and a program NOTAK in the FORTRAN-IV language.
Synthesis of Galacto-oligosaccharide in Two-phase System.
Gui, Li-Qiong; Wei, Dong-Zhi; Cui, Yu-Min; Yu, Jun-Tang
1999-01-01
35 of the total products of galacto-oligosaccharide (GOS) could be obtained from the two-phase system with cyclohexane and ethyl acetate as bulk organic phases and 15% phosphate buffer as aqueous phase. The effects of temperature pH of buffer lactose concentration galactose and glucose and the immobilization of enzyme on the synthesis of GOS were studied. It was found that the reaction temperature and initial lactose concentration didn'thave obvious effects while the addition of glucose and galactose somewhat affected the GOS yield and the GOS yields could reach 64.78% with lactase immobilized on resin D345. PMID:12136210
TOPLOSS - A thermal analyzer for two-phase loops
NASA Astrophysics Data System (ADS)
Schwarzott, Walter; Faust, Thomas; Rothmeyer, Markus
Two phase flow cooling loops are an answer to the new thermal requirements established by future space missions which tend to larger size and higher power demand. The software package TOPLOSS simulates the thermal, fluid- and thermodynamic behavior of two and single phase cooling loops of arbitrary geometry including all relevant components. TOPLOSS structure is modular, the different loop components are modeled in separate adaptable subroutines. The fluid properties module is an improved version of GASP, a NASA-developed fluid property program. TOPLOSS is linked to the thermal network analyzer SINDA which is used to manage the thermal boundaries for the loop. An example illustrates TOPLOSS performance.
Centrifugal inertia effects in two-phase face seal films
NASA Technical Reports Server (NTRS)
Basu, P.; Hughes, W. F.; Beeler, R. M.
1987-01-01
A simplified, semianalytical model has been developed to analyze the effect of centrifugal inertia in two-phase face seals. The model is based on the assumption of isothermal flow through the seal, but at an elevated temperature, and takes into account heat transfer and boiling. Using this model, seal performance curves are obtained with water as the working fluid. It is shown that the centrifugal inertia of the fluid reduces the load-carrying capacity dramatically at high speeds and that operational instability exists under certain conditions. While an all-liquid seal may be starved at speeds higher than a 'critical' value, leakage always occurs under boiling conditions.
Modulating patterns of two-phase flow with electric fields
Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K.; Turecek, Frantisek; Chiu, Daniel T.
2014-01-01
This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior. PMID:25379091
Two-phase flow measurement based on oblique laser scattering
NASA Astrophysics Data System (ADS)
Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cícero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.
2015-07-01
Multiphase flow measurements play a crucial role in monitoring productions processes in many industries. To guarantee the safety of processes involving multiphase flows, it is important to detect changes in the flow conditions before they can cause damage, often in fractions of seconds. Here we demonstrate how the scattering pattern of a laser beam passing a two-phase flow under an oblique angle to the flow direction can be used to detect derivations from the desired flow conditions in microseconds. Applying machine-learning techniques to signals obtained from three photo-detectors we achieve a compact, versatile, low-cost sensor design for safety applications.
A real two-phase submarine debris flow and tsunami
Pudasaini, Shiva P.; Miller, Stephen A.
2012-09-26
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Neutron Imaging of a Two-Phase Refrigerant Flow
Geoghegan, Patrick J
2015-01-01
Void fraction remains a crucial parameter in understanding and characterizing two-phase flow. It appears as a key variable in both heat transfer and pressure drop correlations of two-phase flows, from the macro to micro- channel scale. Void fraction estimation dictates the sizing of both evaporating and condensing phase change heat exchangers, for example. In order to measure void fraction some invasive approach is necessary. Typically, visualization is achieved either downstream of the test section or on top by machining to expose the channel. Both approaches can lead to inaccuracies. The former assumes the flow will not be affected moving from the heat exchanger surface to the transparent section. The latter distorts the heat flow path. Neutron Imaging can provide a non-invasive measurement because metals such as Aluminum are essentially transparent to neutrons. Hence, if a refrigerant is selected that provides suitable neutron attenuation; steady-state void fraction measurements in two-phase flow are attainable in-situ without disturbing the fluid flow or heat flow path. Neutron Imaging has been used in the past to qualitatively describe the flow in heat exchangers in terms of maldistributions without providing void fraction data. This work is distinguished from previous efforts because the heat exchanger has been designed and the refrigerant selected to avail of neutron imaging. This work describes the experimental flow loop that enables a boiling two-phase flow; the heat exchanger test section and downstream transparent section are described. The flow loop controls the degree of subcooling and the refrigerant flowrate. Heating cartridges embedded in the test section are employed to control the heat input. Neutron-imaged steady-state void fraction measurements are captured and compared to representative high-speed videography captured at the visualization section. This allows a qualitative comparison between neutron imaged and traditional techniques. The
A real two-phase submarine debris flow and tsunami
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.; Miller, Stephen A.
2012-09-01
The general two-phase debris flow model proposed by Pudasaini [1] is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Separation of aqueous two-phase polymer systems in microgravity
NASA Technical Reports Server (NTRS)
Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.
1984-01-01
Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.
Theory and tests of two-phase turbines
Elliot, D.G.
1982-03-15
Two-phase turbines open the possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation turbine engines, and engine bottoming cycles. A theoretical model for two-phase impulse turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water-and-nitrogen mixtures and Refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water-and-nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for Refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water-and-nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for Refrigerant 22 with a single-stage turbine, and 0.70 (measured) and 0.85 (theoretical) for water-and-nitrogen mixtures with a two-stage turbine.
Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles
NASA Astrophysics Data System (ADS)
Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai
2016-06-01
Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.
Droplets formation and merging in two-phase flow microfluidics.
Gu, Hao; Duits, Michel H G; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459
Numerical calculation of two-phase turbulent jets
Saif, A.A.
1995-05-01
Two-phase turbulent round jets were numerically simulated using a multidimensional two-phase CFD code based on the two-fluid model. The turbulence phenomena were treated with the standard k-{epsilon} model. It was modified to take into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-fluid model it is more appropriate and physically justified to treat the diffusion by an interfacial force in the momentum equation. In this work, the diffusion force and the additional dissipation effect by the dispersed phase were modeled starting from the classical turbulent energy spectrum analysis. A cut-off frequency was proposed to decrease the dissipation effect by the dispersed phase when large size particles are introduced in the flow. The cut-off frequency combined with the bubble-induced turbulence effect allows for an increase in turbulence for large particles. Additional care was taken in choosing the right kind of experimental data from the literature so that a good separate effect test was possible for their models. The models predicted the experimental data very closely and they were general enough to predict extreme limit cases: water-bubble and air-droplet jets.
Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles.
Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai
2016-01-01
Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329
Ultrasonic wave propagation in two-phase media: Spherical inclusions
NASA Technical Reports Server (NTRS)
Fu, L. S.; Sheu, Y. C.
1983-01-01
The scattering theory, recently developed via the extended method of equivalent inclusion, is used to study the propagation of time-harmonic waves in two-phase media of elastic matrix with randomly distributed elastic spherical inclusion materials. The elastic moduli and mass density of the composite medium are determined as functions of frequencies when given properties and concentration of the spheres and the matrix. Velocity and attenuation of ultrasonic waves in two-phase media are determined for cases of distributed spheres and localized damage. An averaging theorem that requires the equivalence of the strain energy and the kinetic energy between the effective medium and the original matrix with spherical inhomogeneities is employed to derive the effective moduli and mass density. The functional dependency of these quantities upon frequencies and concentration provides a method of data analysis in ultrasonic evaluation of material properties. Numerical results or moduli, velocity and/or attenuation as functions of concentration of inclusion material, or porosity, are graphically displayed.
Investigation of single-substance horizontal two-phase flow
Dickinson, D.A.; Maeder, P.F.
1984-03-01
Despite the abundance of work in the field of two-phase flow, it seems as though a consensus has not been reached on some of the fundamental points. Although exceptions exist, adequate physical interpretation of the flow seems to be hindered either by complexity of analysis or, in the opposite extreme, the trend toward limited-range analysis and correlations. The dissertation presents the derivation of basic conservation equations for the phases. The combined equations are used to examine the phenomenon of slip and its practical limitations, the Fanno line for single-substance flow and the effect of slip on choking. Equations for critical mass flux in the presence of slip are derived. The Mach, Reynolds and Froude numbers based on conditions at flashing are introduced as the characteristic parameters, and the importance of compressibility in single-substance two-phase flow is discussed. Experimental measurements of pressure change and void fraction for flow in the highly compressible range (.5 < Ma < 1) are presented. The working fluid is Refrigerant R-114, at room temperature, in a test section of diameter 5 cm and length 8 m. The effect of the Froude and Mach numbers is examined. The experimental facility is operated intermittently with running times of approximately two minutes and is instrumented for rapid measurements using a computer data acquisition and control system. A description of the facility and procedure is provided.
Rapid mixing using two-phase hydraulic focusing in microchannels.
Wu, Zhigang; Nguyen, Nam-Trung
2005-03-01
Rapid mixing is important in biomedical analysis. In this study, rapid mixing is obtained through two-phase hydraulic focusing in microchannels. Two mixing streams are focused by two sheath streams. Assuming a laminar flow in the channel, the spreading behavior of the two immiscible fluids is modeled and solved analytically. The results show that both viscosity ratio and flow rate ratio between the sheath flow and the sample flow can affect the focusing ratio. Thus, the mixing path of the sample flows can be adjusted by either viscosity ratio or flow rate ratio. Furthermore, an analytical model was proposed and solved for convective/diffusive mixing between the sample streams. According to this model, the focusing ratio is a key parameter for rapid mixing. A fully polymeric micro mixer was fabricated and tested for verification of the presented analytical models. The micromixer was fabricated by laser micromachining and adhesive bonding. The characterization results show the promising potential of mixing in microscale using two-phase hydraulic focusing. PMID:15834516
Two-Phase Mass Flow Measurement Using Noise Analysis
Evans, Robert Pugmire; Keller, Joseph George; Stephens, A. G.; Blotter, J.
1999-05-01
The purpose of this work is to develop a low cost, non-intrusive, mass flow measurement sensor for two-phase flow conditions in geothermal applications. The emphasis of the work to date has been on a device that will monitor two-phase flow in the above-ground piping systems. The flashing brines have the potential for excessive scaling and corrosion of exposed surfaces, which can reduce the effectiveness of any measurement device. A major objective in the work has been the development of an instrument that is less susceptible to the scaling and corrosion effects. The focus of the project efforts has been on transducer noise analysis, a technology initiated at the INEEL. A transducer sensing a process condition will have, in addition to its usual signal, various noise components superimposed upon the primary signal that can be related to flow. Investigators have proposed that this technique be applied to steam and liquid water flow mixtures where the signal from an accelerometer mounted on an external pipe surface is evaluated to determine flow rate.
Ultrasonic wave propagation in two-phase media - Spherical inclusions
NASA Technical Reports Server (NTRS)
Fu, L. S.; Sheu, Y. C.
1984-01-01
The scattering theory, recently developed via the extended method of equivalent inclusion, is used to study the propagation of time-harmonic waves in two-phase media of elastic matrix with randomly distributed elastic spherical inclusion materials. The elastic moduli and mass density of the composite medium are determined as functions of frequencies when given properties and concentration of the spheres and the matrix. Velocity and attenuation of ultrasonic waves in two-phase media are determined for cases of distributed spheres and localized damage. An averaging theorem that requires the equivalence of the strain energy and the kinetic energy between the effective medium and the original matrix with spherical inhomogeneities is employed to derive the effective moduli and mass density. The functional dependency of these quantities upon frequencies and concentration provides a method of data analysis in ultrasonic evaluation of material properties. Numerical results or moduli, velocity and/or attenuation as functions of concentration of inclusion material, or porosity, are graphically displayed.
Droplets Formation and Merging in Two-Phase Flow Microfluidics
Gu, Hao; Duits, Michel H. G.; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459
A Two-Phase Model for Shocked Porous Explosive
NASA Astrophysics Data System (ADS)
Lambourn, Brian; Handley, Caroline
2015-06-01
Mesoscale calculations of hotspots created by a shock wave in a porous explosive show that the hotspots do not cool in times of order at least a microsecond. This suggests that single phase models of porosity like the snowplough model, which assume that a shocked porous explosive jumps to a point on the Hugoniot that is instantaneously in thermodynamic equilibrium, are not correct. A two-phased model of shocked porous explosive has been developed in which a small fraction of the material, representing the hotspots, has a high temperature but the bulk of the material is cooler than the temperature calculated by, for example, the snowplough model. In terms of the mean state of the material, it is shown that the two-phase model only minimally affects the pressure - volume and shock velocity - particle velocity plot of the Hugoniot, but that the mean state lies slightly off the equation of state surface. The results of the model will be compared with two dimensional mesoscale calculations.
Experimental study of phase separation in dividing two phase flow
Qian Yong; Yang Zhilin; Xu Jijun
1996-12-31
Experimental study of phase separation of air-water two phase bubbly, slug flow in the horizontal T-junction is carried out. The influences of the inlet mass quality X1, mass extraction rate G3/G1, and fraction of extracted liquid QL3/QL1 on phase separation characteristics are analyzed. For the first time, the authors have found and defined pulsating run effect by the visual experiments, which show that under certain conditions, the down stream flow of the T-junction has strangely affected the phase redistribution of the junction, and firstly point out that the downstream geometric condition is very important to the study of phase separation phenomenon of two-phase flow in a T-junction. This kind of phenomenon has many applications in the field of energy, power, petroleum and chemical industries, such as the loss of coolant accident (LOCA) caused by a small break in a horizontal coolant pipe in nuclear reactor, and the flip-flop effect in the natural gas transportation pipeline system, etc.
Nondestructive ultrasonic characterization of two-phase materials. Final report
Salama, K.
1987-01-01
The development of ultrasonic methods for the nondestructive characterization of mechanical properties of two phase engineering materials are described. The primary goal was to establish relationships between the nonlinearity parameter and the percentage of solid solution phase in two phase systems such as heat treatable aluminum alloys. The acoustoelastic constant was also measured on these alloys. A major advantage of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes the method more applicable to inservice nondestructive characterization. The results obtained on the heat treatable 7075 and the work hardenable 5086 and 5456 aluminum alloys show that both the acoustoelastic constant and the acoustic nonlinearity parameter change considerable with the volume fraction of second phase precipitates in these aluminum alloys. A mathematical model was also developed to relate the effective acoustic nonlinearity parameter to volume fraction of second phase precipitates in an alloy. The equation is approximated to within experimental error by a linear expression for volume fractions up to approx. 10%.
Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles
Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai
2016-01-01
Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329
Two-phase flow effect on hybrid rocket combustion
NASA Astrophysics Data System (ADS)
Lin, Jih Lung
2009-10-01
This study numerically explores the aerodynamic and combustion processes in a hybrid rocket combustor, under a two-phase turbulent flow environment, considering the evaporation, combustion and drag of droplet and droplet ignition criterion. The predictions of temperature, reaction mode, reactant mass fraction, velocity, oxidizer consumption, fuel regression and droplet number distribution enhance understanding of the two-phase combustion aerodynamics inside the combustor. A parametric study of the inlet spray pattern, including spray cone angle, spray injection velocity and droplet size, is performed to improve the operation of reactant mixing and higher fuel regression rate. Analytical results indicate that both the oxidizer consumption and the fuel regression increase with increasing spray cone angle and spray injection velocity in the practical range of operation. However, for stoichiometric operation, the superior spray cone angle is within 20-60°, and spray injection velocity within 20-40 m/s, under a volume-mean droplet radius of 50 μm. The power dependence of solid-fuel regression on total mass flux is found to decrease with rising of droplet mean size.
Smart microgels for controlling two-phase fluid structure in porous media
NASA Astrophysics Data System (ADS)
Fan, Jing; Weitz, David
Understanding the transport of microgels in porous media directly benefits the conformance improvement technique using preformed gels in the oil industry. We develop a new type of microgels that can swell in response to specific stimuli in an aqueous environment. From a practical point of view, this enables us to deliver the microgels to the deep reservoir formation and control the permeability profile more effectively. With confocal microscopy imaging, we show that we can deliver such smart microgels to the high-permeability region in a stratified porous medium, which subsequently changes the two-phase fluid structure in the medium. From a scientific point of view, this allows for characterizing the permeability change due to homogeneous pore-clogging by soft particles instead of surface clogging; using the typical microgels this can hardly be done because we cannot place gel particles with comparable size to the pore uniformly into a porous medium. This study may shed light on understanding many other processes involving the transport of soft particles in porous structures. The authors acknowledge the financial support from Advanced Energy Consortium, BEG08-27.
Sharma, Abhinav; Tiwari, Vijeet; Kumar, Vineet; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar
2014-10-01
Strategic application of external electrostatic field on a pressure-driven two-phase flow inside a microchannel can transform the stratified or slug flow patterns into droplets. The localized electrohydrodynamic stress at the interface of the immiscible liquids can engender a liquid-dielectrophoretic deformation, which disrupts the balance of the viscous, capillary, and inertial forces of a pressure-driven flow to engender such flow morphologies. Interestingly, the size, shape, and frequency of the droplets can be tuned by varying the field intensity, location of the electric field, surface properties of the channel or fluids, viscosity ratio of the fluids, and the flow ratio of the phases. Higher field intensity with lower interfacial tension is found to facilitate the oil droplet formation with a higher throughput inside the hydrophilic microchannels. The method is successful in breaking down the regular pressure-driven flow patterns even when the fluid inlets are exchanged in the microchannel. The simulations identify the conditions to develop interesting flow morphologies, such as (i) an array of miniaturized spherical or hemispherical or elongated oil drops in continuous water phase, (ii) "oil-in-water" microemulsion with varying size and shape of oil droplets. The results reported can be of significance in improving the efficiency of multiphase microreactors where the flow patterns composed of droplets are preferred because of the availability of higher interfacial area for reactions or heat and mass exchange. PMID:25044128
Stratified medicine for mental disorders.
Schumann, Gunter; Binder, Elisabeth B; Holte, Arne; de Kloet, E Ronald; Oedegaard, Ketil J; Robbins, Trevor W; Walker-Tilley, Tom R; Bitter, Istvan; Brown, Verity J; Buitelaar, Jan; Ciccocioppo, Roberto; Cools, Roshan; Escera, Carles; Fleischhacker, Wolfgang; Flor, Herta; Frith, Chris D; Heinz, Andreas; Johnsen, Erik; Kirschbaum, Clemens; Klingberg, Torkel; Lesch, Klaus-Peter; Lewis, Shon; Maier, Wolfgang; Mann, Karl; Martinot, Jean-Luc; Meyer-Lindenberg, Andreas; Müller, Christian P; Müller, Walter E; Nutt, David J; Persico, Antonio; Perugi, Giulio; Pessiglione, Mathias; Preuss, Ulrich W; Roiser, Jonathan P; Rossini, Paolo M; Rybakowski, Janusz K; Sandi, Carmen; Stephan, Klaas E; Undurraga, Juan; Vieta, Eduard; van der Wee, Nic; Wykes, Til; Haro, Josep Maria; Wittchen, Hans Ulrich
2014-01-01
There is recognition that biomedical research into the causes of mental disorders and their treatment needs to adopt new approaches to research. Novel biomedical techniques have advanced our understanding of how the brain develops and is shaped by behaviour and environment. This has led to the advent of stratified medicine, which translates advances in basic research by targeting aetiological mechanisms underlying mental disorder. The resulting increase in diagnostic precision and targeted treatments may provide a window of opportunity to address the large public health burden, and individual suffering associated with mental disorders. While mental health and mental disorders have significant representation in the "health, demographic change and wellbeing" challenge identified in Horizon 2020, the framework programme for research and innovation of the European Commission (2014-2020), and in national funding agencies, clear advice on a potential strategy for mental health research investment is needed. The development of such a strategy is supported by the EC-funded "Roadmap for Mental Health Research" (ROAMER) which will provide recommendations for a European mental health research strategy integrating the areas of biomedicine, psychology, public health well being, research integration and structuring, and stakeholder participation. Leading experts on biomedical research on mental disorders have provided an assessment of the state of the art in core psychopathological domains, including arousal and stress regulation, affect, cognition social processes, comorbidity and pharmacotherapy. They have identified major advances and promising methods and pointed out gaps to be addressed in order to achieve the promise of a stratified medicine for mental disorders. PMID:24176673
Stratified Medicine and Reimbursement Issues
Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten
2012-01-01
Stratified Medicine (SM) has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to strengthen the value proposition to pricing and reimbursement (P&R) authorities. However, the introduction of SM challenges current reimbursement schemes in many EU countries and the US as different P&R policies have been adopted for drugs and diagnostics. Also, there is a lack of a consistent process for value assessment of more complex diagnostics in these markets. New, innovative approaches and more flexible P&R systems are needed to reflect the added value of diagnostic tests and to stimulate investments in new technologies. Yet, the framework for access of diagnostic-based therapies still requires further development while setting the right incentives and appropriate align stakeholders interests when realizing long-term patient benefits. This article addresses the reimbursement challenges of SM approaches in several EU countries and the US outlining some options to overcome existing reimbursement barriers for stratified medicine. PMID:23087645
Two-phase Damage Models of Magma Fracturing
NASA Astrophysics Data System (ADS)
Cai, Z.; Bercovici, D.
2011-12-01
Damage and fracturing in two-phase and porous flows are relevant for geological process such as magma-fracturing during melt migration and hydro-fracturing of crustal rocks for carbon sequestration and shale-gas recovery. These fracturing processes are associated with the propagation of a pore-generating damage front ahead of high-pressure fluid injection. We therefore examine the propagation of porous flow in a damageable matrix by applying the two-phase theory for compaction and damage proposed by Bercovici et al. [2001]; Bercovici and Ricard [2003]. The movement of the fluid and the solid is governed by the two phase flow laws, while damage (void generation and microcracking) is treated by considering the generation of interfacial surface energy by deformational work. Calculations of one dimensional (1-D) flow of fluid migrating buoyantly through compacting and damageable matrix show that damage is mitigated in steady-state largely because of pressure loss at the fluid front. However, in time-dependent flows, linear stability analysis shows that the propagation velocity of porosity waves is strongly dependent on damage. In the damage-free case porosity waves are dispersive in that wave-speed decreases with wavenumber (inverse wavelength); however with damage the dispersion flattens and beyond a critical damage reverses (the wave speed increases with wave number). Since normal dispersive behavior balances breaking in the nonlinear wave case, such reversed dispersion implies that damage has a profound effect in the nonlinear limit by facilitating wave front steepening and high-speed shocks. Nonlinear solitary wave solutions are obtained numerically and show that the transmission of porosity waves induce high stress and damage that can push the damage front forward. With damage the porosity waves sharpen and calculations suggest that they can transform from shape-conserving solitary waves into faster shock waves, which is also predicted by the linear theory. Such
Thermoseparating aqueous two-phase systems: Recent trends and mechanisms.
Leong, Yoong Kit; Lan, John Chi-Wei; Loh, Hwei-San; Ling, Tau Chuan; Ooi, Chien Wei; Show, Pau Loke
2016-02-01
Having the benefits of being environmentally friendly, providing a mild environment for bioseparation, and scalability, aqueous two-phase systems (ATPSs) have increasingly caught the attention of industry and researchers for their application in the isolation and recovery of bioproducts. The limitations of conventional ATPSs give rise to the development of temperature-induced ATPSs that have distinctive thermoseparating properties and easy recyclability. This review starts with a brief introduction to thermoseparating ATPSs, including its history, unique characteristics and advantages, and lastly, key factors that influence partitioning. The underlying mechanism of temperature-induced ATPSs is covered together with a summary of recent applications. Thermoseparating ATPSs have been proven as a solution to the demand for economically favorable and environmentally friendly industrial-scale bioextraction and purification techniques. PMID:26447739
Human interaction recognition through two-phase sparse coding
NASA Astrophysics Data System (ADS)
Zhang, B.; Conci, N.; De Natale, Francesco G. B.
2014-03-01
In this paper, we propose a novel method to recognize two-person interactions through a two-phase sparse coding approach. In the first phase, we adopt the non-negative sparse coding on the spatio-temporal interest points (STIPs) extracted from videos, and then construct the feature vector for each video by sum-pooling and l2-normalization. At the second stage, we apply the label-consistent KSVD (LC-KSVD) algorithm on the video feature vectors to train a new dictionary. The algorithm has been validated on the TV human interaction dataset, and the experimental results show that the classification performance is considerably improved compared with the standard bag-of-words approach and the single layer non-negative sparse coding.
Advanced investigation of two-phase charge-coupled devices
NASA Technical Reports Server (NTRS)
Kosonocky, W. F.; Carnes, J. E.
1973-01-01
The performance of experimental two phase, charge-coupled shift registers constructed using polysilicon gates overlapped by aluminum gates was studied. Shift registers with 64, 128, and 500 stages were built and operated. Devices were operated at the maximum clock frequency of 20 MHz. Loss per transfer of less than .0001 was demonstrated for fat zero operation. The effect upon transfer efficiency of various structural and materials parameters was investigated including substrate orientation, resistivity, and conductivity type; channel width and channel length; and method of channel confinement. Operation of the devices with and without fat zero was studied as well as operation in the complete charge transfer mode and the bias charge, or bucket brigade mode.
Dynamics Coefficient for Two-Phase Soil Model
NASA Astrophysics Data System (ADS)
Wrana, Bogumił
2015-02-01
The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping. Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper derives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period, maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows amplification or attenuation of dynamic response is considered.
Vapor core turbulence in annular two-phase flow
Trabold, T.A.; Kumar, R.
1998-06-01
This paper reports a new technique to measure vapor turbulence in two-phase flows using hot-film anemometry. Continuous vapor turbulence measurements along with local void fraction, droplet frequency, droplet velocity and droplet diameter were measured in a thin, vertical duct. By first eliminating the portion of the output voltage signal resulting from the interaction of dispersed liquid droplets with the HFA sensor, the discrete voltage samples associated with the vapor phase were separately analyzed. The data revealed that, over the range of liquid droplet sizes and concentrations encountered, the presence of the droplet field acts to enhance vapor turbulence. In addition, there is evidence that vapor turbulence is significantly influenced by the wall-bounded liquid film. The present results are qualitatively consistent with the limited data available in the open literature.
Application of two-phase thermosiphons in tube furnaces
Kazhdan, A.Z.; Bezrodnyi, M.K.; Baklashov, V.E.
1987-01-01
Two-phase (vaporizing) thermosiphons (TTS) are used in various types of heating units, including vessels used in processing hydrocarbon media. A thermosiphon is a heat transfer device and is illustrated here. In many cases, the use of TTSs can increase the level of reliability and heat capacity of a particular process unit and savings of electric energy can be achieved as is shown by the authors. It has been proposed that TTSs should be used to increase the heat capacity of tube furnaces, where the principal element is the tube coil. The authors show distribution of heat flux density around the circumference of the tube coil. Designs of tube furnaces are shown with a TTS as the shield of the product coil. Calculations show that when the TTS is used, the heat capacity of two furnaces may be increased by a factor of 1.4-1.6.
A simplified model for two phase face seal design
NASA Technical Reports Server (NTRS)
Lau, S. Y.; Hughes, W. F.; Basu, P.; Beatty, P. A.
1990-01-01
A simplified quasi-isothermal low-leakage laminar model for analyzing the stiffness and the stability characteristics of two-phase face seals with real fluids is developed. Sample calculations with this model for low-leakage operations are compared with calculations for high-leakage operations, performed using the adiabatic turbulent model of Beatty and Hughes (1987). It was found that the seal characteristics predicted using the two extreme models tend to overlap with each other, indicating that the simplified laminar model may be a useful tool for seal design. The effect of coning was investigated using the simplified model. The results show that, for the same balance, a coned seal has a higher leakage rate than a parallel face seal.
Emerging Two-Phase Cooling Technologies for Power Electronic Inverters
Hsu, J.S.
2005-08-17
In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge
Particle-fluid two-phase flow modeling
NASA Astrophysics Data System (ADS)
Mortensen, G. A.; Trapp, J. A.
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles, thus, avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Two-phase flow and heat transfer under low gravity
NASA Astrophysics Data System (ADS)
Frost, W.
1981-11-01
Spacelab experiment to investigate two-phase flow patterns under gravity uses a water-air mixture experiment. Air and water are circulated through the system. The quality or the mixture or air-water is controlled. Photographs of the test section are made and at the same time pressure drop across the test section is measured. The data establishes a flow regime map under reduced gravity conditions with corresponding pressure drop correlations. The test section is also equipped with an electrical resistance heater in order to allow a flow boiling experiment to be carried out using Freon II. High-speed photographs of the test section are used to determine flow patterns. The temperature gradient and pressure drop along the duct can be measured. Thus, quality change can be measured, and heat transfer calculated.
Two-phase flow and heat transfer under low gravity
NASA Technical Reports Server (NTRS)
Frost, W.
1981-01-01
Spacelab experiment to investigate two-phase flow patterns under gravity uses a water-air mixture experiment. Air and water are circulated through the system. The quality or the mixture or air-water is controlled. Photographs of the test section are made and at the same time pressure drop across the test section is measured. The data establishes a flow regime map under reduced gravity conditions with corresponding pressure drop correlations. The test section is also equipped with an electrical resistance heater in order to allow a flow boiling experiment to be carried out using Freon II. High-speed photographs of the test section are used to determine flow patterns. The temperature gradient and pressure drop along the duct can be measured. Thus, quality change can be measured, and heat transfer calculated.
Response of two-phase droplets to intense electromagnetic radiation.
Spann, J F; Maloney, D J; Lawson, W F; Casleton, K H
1993-04-20
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 microm) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid. PMID:20820360
Interfacial shear modeling in two-phase annular flow
Kumar, R.; Edwards, D.P.
1996-07-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.
Flooding in counter-current two-phase flow
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.
Design of an advanced two-phase capillary cold plate
NASA Technical Reports Server (NTRS)
Chalmers, D. R.; Kroliczek, E. J.; Ku, J.
1986-01-01
The functional principles and implementation of capillary pumped loop (CPL) two phase heat transport system for various elements of the Space Station program are described. Circulation of the working fluid by the surface-tension forces in a fine-pore capillary wick is the core principle of CPL systems. The liquid, usually NH3 at the moment, is changed into a vapor by heat absorption at one end of the loop, and the vapor is carrried back along the wick by the surface tension within the wick. NASA specifications and the results of mechanical and thermal tests for prototype cold plate and the capillary pump designs are outlined. The CPL is targeted for installation on free-flying platforms, attached payloads, and power subsystem thermal control systems.
Particle-fluid two-phase flow modeling
Mortensen, G.A. ); Trapp, J.A. Idaho National Engineering Lab., Idaho Falls, ID )
1992-01-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
On drag reduction in a two-phase flow
NASA Astrophysics Data System (ADS)
Gatapova, E. Ya.; Ajaev, V. S.; Kabov, O. A.
2015-02-01
Bubbles collected on a local hydrophobic surface with nanocoating in a two-phase flow in a minichannel have been detected experimentally. It has been proposed to use the effect of concentration of gas bubbles on hydrophobic segments of the surface of the channel with contrast wettability for ensuring drag reduction. A two-dimensional flow model with the Navier slip condition in the region of the bubble layer gives criteria of drag reduction, depending on the slip length, dimension of bubbles, and dimension of the segment with nanocoating. The presence of the bubble layer on half of the surface of the channel can increase the flow rate of a liquid flowing through the channel by 40% at a fixed pressure gradient.
Two-phase flow instabilities in a vertical annular channel
Babelli, I.; Nair, S.; Ishii, M.
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Conceptual design for spacelab two-phase flow experiments
NASA Technical Reports Server (NTRS)
Bradshaw, R. D.; King, C. D.
1977-01-01
KC-135 aircraft tests confirmed the gravity sensitivity of two phase flow correlations. The prime component of the apparatus is a 1.5 cm dia by 90 cm fused quartz tube test section selected for visual observation. The water-cabin air system with water recycle was a clear choice for a flow regime-pressure drop test since it was used satisfactorily on KC-135 tests. Freon-11 with either overboard dump or with liquid-recycle will be used for the heat transfer test. The two experiments use common hardware. The experimental plan covers 120 data points in six hours with mass velocities from 10 to 640 kg/sec-sq m and qualities 0.01 to 0.64. The apparatus with pump, separator, storage tank and controls is mounted in a double spacelab rack. Supporting hardware, procedures, measured variables and program costs are defined.
Particle-fluid two-phase flow modeling
Mortensen, G.A.; Trapp, J.A. |
1992-09-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Two-phase flow cell for chemiluminescence and bioluminescence measurements
Mullin, J.L.; Seitz, W.R.
1984-01-01
A new approach to two-phase CL (chemiluminescence) measurements is reported. A magnetically stirred reagent phase is separated from the analyte phase by a dialysis membrane so that only smaller molecules can go from one phase to the other. The system is designed so that the analyte phase flows through a spiral groove on an aluminum block that is flush against the dialysis membrane. As solution flows through the spiral grove, analyte diffuses into the reagent phase where it reacts to produce light. A simple model is developed to predict how this system will behave. Experimentally, the system is evaluated by using the luminol reaction catalyzed by peroxidase, the firefly reaction, and the bacterial bioluminescence reaction. 10 references, 4 tables, 6 figures.
Aligned two-phase magnets: Permanent magnetism of the future?
NASA Astrophysics Data System (ADS)
Skomski, R.
1994-11-01
Micromagnetic calculations are used to investigate coercivity and energy products of magnets consisting of an aligned hard-magnetic skeleton phase and a soft-magnetic phase with high saturation magnetization. Compared to the present-day theoretical limit of 516 kJ/cu m for single-phase Nd2Fe14B, the energy product in suitable nanostructured Sm2Fe17N3/Fe65Co35 composites is predicted to be as high as 1090 kJ/cu m. The influence of the skeleton's texture and shape is discussed, and aligned nanocrystalline two-phase magnets are compared with remanence-enhanced isotropic magnets. In particular, it is shown how the nucleation-based analytical approach breaks down in the isotropic limit. Finally, we outline conceivable processing methods and discuss potential applications of 'megajoule' magnets.
Measurement of two-phase flow momentum with force transducers
Hardy, J.E.; Smith, J.E.
1990-01-01
Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs.
Tsunami Generated by a Two-Phase Submarine Debris Flow
NASA Astrophysics Data System (ADS)
Pudasaini, S. P.
2012-04-01
The general two-phase debris flow model proposed by Pudasaini (2011) is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model includes several essential physical aspects, including Mohr-Coulomb plasticity for the solid stress, while the fluid stress is modelled as a solid volume fraction gradient enhanced non-Newtonian viscous stress. The generalized interfacial momentum transfer includes the viscous drag, buoyancy, and the virtual mass. The generalized drag covers both the solid-like and fluid-like contributions, and can be applied to linear to quadratic drags. Strong couplings exist between the solid and the fluid momentum transfer. The advantage of the real two-phase debris flow model over classical single-phase or quasi-two-phase models is that by considering the solid (and/or the fluid) volume fraction appropriately, the initial mass can be divided into several (even mutually disjoint) parts; a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This offers a unique and innovative opportunity within a single framework to simultaneously simulate (a) the sliding debris (or landslide), (b) the water lake or ocean, (c) the debris impact at the lake or ocean, (d) tsunami generation and propagation, (e) mixing and separation between the solid and the fluid phases, and (f) sediment transport and deposition process in the bathymetric surface. The new model is applied to two-phase subaerial and submarine debris flows. Benchmark numerical simulations reveal that the dynamics of the debris impact induced tsunamis are fundamentally different than the tsunami generated by pure rock avalanche and landslides. Special attention is paid to study the basic features of the debris impact to the mountain lakes or oceans. This includes the generation, amplification and propagation of the multiple
Theory and tests of two-phase turbines
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1982-01-01
A theoretical model for two-phase turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water and nitrogen mixtures and refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water and nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water and nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for refrigerant 22 with a single stage turbine, and 0,70 (measured) and 0.85 (theoretical) for water and nitrogen mixtures with a two-stage turbine.
Response of two-phase droplets to intense electromagnetic radiation
NASA Technical Reports Server (NTRS)
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-01-01
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.
Rationale for two phase polymer system microgravity separation experiments
NASA Technical Reports Server (NTRS)
Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.
1984-01-01
The two-phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) are mixed at concentrations above a few percent are discussed. They provide useful media for the partition and isolation of macromolecules and cell subpopulations. By manipulating their composition, separations based on a variety of molecular and surface properties are achieved, including membrane hydrophobic properties, cell surface charge, and membrane antigenicity. Work on the mechanism of cell partition shows there is a randomizing, nonthermal energy present which reduces separation resolution. This stochastic energy is probably associated with hydrodynamic interactions present during separation. Because such factors should be markedly reduced in microgravity, a series of shuttle experiments to indicate approaches to increasing the resolution of the procedure are planned.
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-01
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-01
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works. PMID:26828488
A Two Phase Treatment of an Infected Hip Endoprosthesis.
Ciriviri, Jasmin; Talevski, Darko; Nestorovski, Zoran; Vraniskoski, Tode; Mishevska-Perchinkova, Snežana
2015-01-01
The revision of the two phase treatment represents a golden standard in the treatment of infected endoprosthesis. Throughout this study, the results of 21 patients with an infected hip endoprosthesis treated in two phases have been processed, with the use of an antibiotic spacer, within the period of 2009 and 2012. Thereby, a unique protocol for diagnosis and treatment of infections has been applied to all the patients, which entails a preoperational x-ray image, laboratory findings (Se, CRP), as well as a puncture aspiration with a microbiological and biochemical examination of the aspirated fragments. The operational treatment consists of: taking a sample for microbiological and histopathological diagnosis, removal of the implanted endoprosthesis, excision of the avascular and necrotic tissue and installing an antibiotic spacer. Postoperatively, the patients are treated with a parenteral application of an antibiotics based on an antibiogram, throughout a period of two weeks, and later on an oral treatment, a combination of two antibiotics, depending on the antibiogram, within the following four to six weeks. After the appeasement of the local findings and the laboratory results, a revision with a removal of the antibiotic spacer and reimplantation of an endoprosthesis - revisional or primary has been conducted on the patients, depending on the bone deficit. The functionality of the joint is graded based on the Haris Hip Score. The patients are being observed postoperatively for a period of 12 to 36 months. A definite reimplantation has been applied to 20 patients, while one patient has been treated with a resection method. The Haris Hip Score was 45 preoperatively, and 80 postoperatively. The applied protocol of the treatment of infected endoprosthesis is effective in the eradication of the infection and the final reimplantation. PMID:27442385
Interfacial characteristic measurements in horizontal bubbly two-phase flow
NASA Astrophysics Data System (ADS)
Wang, Z.; Huang, W. D.; Srinivasmurthy, S.; Kocamustafaogullari, G.
1990-10-01
Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5 percent. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 approximately 1000 sq m/cu m, and the bubble frequency can reach a value of 2200 per s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.
Correct numerical simulation of a two-phase coolant
NASA Astrophysics Data System (ADS)
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
Supporting Universal Prevention Programs: A Two-Phased Coaching Model
Becker, Kimberly D.; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S.
2013-01-01
Schools are adopting evidence-based programs designed to enhance students’ emotional and behavioral competencies at increasing rates (Hemmeter, Snyder, & Artman, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter & Van Norman, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al., 2005; Stormont, Reinke, Newcomer, Darney, & Lewis, 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker, Bradshaw, Domitrovich, & Ialongo, 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS® curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs. PMID:23660973
A digital physics method for two-phase flow
NASA Astrophysics Data System (ADS)
Freed, David M.
1997-10-01
Digital Physics refers to a fully discrete, microdynamieal system whose mean behavior recovers real continuum physics. The purpose of this project is to develop a Digital Physics method by which to model the flow of single-component fluids with a non-ideal-gas equation of state, such as liquids and two-phase mixtures. The new system, called the multiphase system, is built upon the framework of a previously developed Digital Physics system. This original Digital Physics system, the standard system, is used to simulate low Mach number flow of an ideal gas. Previously, substantial performance improvements (compared to CFD numerical solvers) have been achieved with the standard system for hydrodynamic simulations of ideal gas flows. Hence the underlying motivation of this work is the development of a more efficient simulation tool for detailed two phase flow investigation as compared to current numerical methods. Specifically, the multiphase system simulates the local instantaneous flow field including explicit representation of the interfaces. The multiphase system contains significant extensions of the standard system, particularly a non-local operation allowing microscopic interactions at a distance, loosely mimicking a real liquid, while preserving exact (global) conservation of mass, momentum, and energy. It retains the advantages of Digital Physics compared to other lattice gas methods for flow modeling, such as Galilean invariance, elimination of the dynamic pressure anomaly, and a meaningful energy transport equation. In the multiphase system the energy degree of freedom has been extended to allow a consistent empirical thermodynamics suitable for a system with liquid-vapor coexistence. Thus in addition to correct hydrodynamic transport, the multiphase system achieves appropriate equations of state for the liquid and vapor phases; the current implementation employs a van der Waals thermodynamical system. The multiphase system does not model heat transfer
Field evidence of two-phase abrasion process
NASA Astrophysics Data System (ADS)
Miller, K. L.; Szabo, T.; Jerolmack, D. J.; Domokos, G.
2013-12-01
The rounded shape of river rocks is clear evidence that abrasion due to bed load transport is a significant agent for mass loss. Its contribution to downstream fining, however, is typically assumed to be negligible - as diminution trends may be explained solely by size-selective transport. A recent theory has predicted that pebble abrasion occurs in two well separated phases: in Phase 1, an intially-polyhedral pebble rounds to the shape of an inscribed ellipsoid without any change in axis dimensions; in Phase II, axis dimensions are slowly reduced. Importantly, Phase I abrasion means that an initially-blocky pebble may lose up to half its mass without any apparent change in 'size', which is only measured as the length of a single pebble axis by most field researchers. We hypothesize that field studies have significantly underestimated the importance of abrasion because they do not quantify pebble shape, and we set out to demonstrate that two-phase abrasion occurs in a natural stream. Our study examines downstream trends in pebble size and shape along a 10-km stretch of the Rio Mameyes within the Luquillo Critical Zone observatory, where volcaniclastic cobbles and boulders are transported by bed load at slopes up to 10%. The upper reaches of the stream consist of alluviated bedrock valleys that preclude sediment storage and thus minimize size-selective transport, which allows us to isolate the effects of abrasion. The lower 5 km is an alluvial river in which size-selective transport becomes operative. We quantified the shape and size of thousands of pebbles along the profile using hand and image-based techniques. The data provide the first field validation of two-phase abrasion; in the bedrock reaches, pebbles clearly evolve toward ellipsoids without any significant change in axis dimensions (rounding), while in the lower reaches pebbles slowly reduce their axis dimensions with little or no change in roundness. Results also show that shape metrics determined from
[Two-phase Interfaces in Weak External Fields
NASA Technical Reports Server (NTRS)
Percus, J. K.
1996-01-01
Our aim has been that of understanding from first principles the behavior of two-phase interfaces in the absence of gravitational constraints. This is fundamental to our ability to deal with the fluid structures that abound in the real biological, chemical, and physical world. A substantial effort was mounted to determine how familiar hydrodynamic concepts have to be modified and interpreted to make them appropriate to the multi-level structure alluded to above. This was primarily in the context of the microscopic symmetric pressure tensor, which was, for the first time, expressed in the invaluable density functional format, and the used to follow the predictions of popular microscopic models of the energetics of interfacial systems. In the course of these investigations, the previous murky relation between pressure tensor and thermodynamics was completely clarified. The process of extending thermodynamic information to interfacial dynamics was initiated along two paths. One was from the viewpoint of an inertialess lattice gas, resulting in the surprising conclusion that at this level, all transport is governed by precisely the thermodynamic free energy, albeit with a non-trivial effective particle mobility. The other aimed at understanding the fashion in which slow macroscopic motions, accounted for by a time-varying microscopic energy, generate effective hydrodynamic parameters. By examining a solvable model system, it was found that all current procedures for doing so are deficient, and suitable alleviation suggested. The major effect of this project was to set the stage for the analysis of the substantial dynamical regimes in which extensive equilibrium information provides the dominant background. This produces a smooth junction to the models of Araki and Munakata, Giacomin and Lebowitz, and Oxtoby. It is also crucial to our understanding of the complex interfacial equilibrium configurations required for intermediate stages of two-phase separation, for which
A two-phase mixture model of avascular tumor growth
NASA Astrophysics Data System (ADS)
Ozturk, Deniz; Burcin Unlu, M.; Yonucu, Sirin; Cetiner, Ugur
2012-02-01
Interactions with biological environment surrounding a growing tumor have major influence on tumor invasion. By recognizing that mechanical behavior of tumor cells could be described by biophysical laws, the research on physical oncology aims to investigate the inner workings of cancer invasion. In this study, we introduce a mathematical model of avascular tumor growth using the continuum theory of mixtures. Mechanical behavior of the tumor and physical interactions between the tumor and host tissue are represented by biophysically founded relationships. In this model, a solid tumor is embedded in inviscid interstitial fluid. The tumor has viscous mechanical properties. Interstitial fluid exhibits properties of flow through porous medium. Associated with the mixture saturation constraint, we introduce a Lagrange multiplier which represents hydrostatic pressure of the interstitial fluid. We solved the equations using Finite Element Method in two-dimensions. As a result, we have introduced a two-phase mixture model of avascular tumor growth that provided a flexible mathematical framework to include cells' response to mechanical aspects of the tumor microenvironment. The model could be extended to capture tumor-ECM interactions which would have profound influence on tumor invasion.
Diffusion path representation for two-phase ternary diffusion couples
Dayananda, M A; Venkatasubramanian, R
1986-01-01
Several two-phase, solid-solid diffusion couples from diffusion studies in the ternary Cu-Ni-Zn, Fe-Ni-Al and Cu-Ag-Au systems were investigated for their analytical representation on the basis of characteristic path parameters. The concentration profiles were examined in terms of relative concentration variables for cross-over compositions and internal consistency. The diffusion paths delineated single or double S-shaped curves crossing the straight line joining the terminal alloy compositions once or thrice. Cross-over compositions were identified in the individual phase regions or at an interface. Based on the symmetry between the path segments on either side of cross-over compositions, the paths were analytically represented with the aid of cross-over compositions and path slopes at these compositions, considered as path parameters. Exprestion for the ratios of diffusion depth on the two sides of the Matano plane were derived in terms of cross-over compositions and the estimated ratios of diffusion depths were found to be consistent with those observed from the concentration profiles.
Development of a two-phase cold plate
NASA Astrophysics Data System (ADS)
Miyazaki, Y.; Furukawa, M.; Ishii, Y.; Shigehara, M.; Komori, M.; Mimura, K.; Oshima, S.
1990-03-01
A two-phase cold plate using evaporators of grooved double-pipe type was tested in order to examine its heat transfer and hydrodynamic characteristics under practical operating conditions. Under a uniform heat load, excellent temperature uniformity of the cold plate was obtained. Under an uneven heat load, however, the temperature distributions were not uniform; they were high in active areas and low in inactive areas. It seems to be due to ineffective liquid flow through inactive pipes, which causes liquid shortage in active tubes and over-cooling by sub-cooled liquid in inactive tubes. Parallel operations with two cold plates were performed successfully, demonstrating that both temperatures were kept at the same level even under different heat loads. In a certain operating condition, the individual flow rate of the two cold plates was observed to oscillate symmetrically to each other, while total flow rate was kept constant and no anomalous behavior on heat transfer was induced. Through the tests, a design approach for the cold plate from the viewpoint of a loop control technology was obtained.
Particle migration in two-phase, viscoelastic flows
NASA Astrophysics Data System (ADS)
Jaensson, Nick; Hulsen, Martien; Anderson, Patrick
2014-11-01
Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
Cryogenic Two-Phase Flight Experiment: Results overview
NASA Technical Reports Server (NTRS)
Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.
1995-01-01
This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.
Modeling of crude oil biodegradation using two phase partitioning bioreactor.
Fakhru'l-Razi, A; Peyda, Mazyar; Ab Karim Ghani, Wan Azlina Wan; Abidin, Zurina Zainal; Zakaria, Mohamad Pauzi; Moeini, Hassan
2014-01-01
In this work, crude oil biodegradation has been optimized in a solid-liquid two phase partitioning bioreactor (TPPB) by applying a response surface methodology based d-optimal design. Three key factors including phase ratio, substrate concentration in solid organic phase, and sodium chloride concentration in aqueous phase were taken as independent variables, while the efficiency of the biodegradation of absorbed crude oil on polymer beads was considered to be the dependent variable. Commercial thermoplastic polyurethane (Desmopan®) was used as the solid phase in the TPPB. The designed experiments were carried out batch wise using a mixed acclimatized bacterial consortium. Optimum combinations of key factors with a statistically significant cubic model were used to maximize biodegradation in the TPPB. The validity of the model was successfully verified by the good agreement between the model-predicted and experimental results. When applying the optimum parameters, gas chromatography-mass spectrometry showed a significant reduction in n-alkanes and low molecular weight polycyclic aromatic hydrocarbons. This consequently highlights the practical applicability of TPPB in crude oil biodegradation. PMID:24692323
Cytoplasm dynamics and cell motion: two-phase flow models.
Alt, W; Dembo, M
1999-03-01
The motion of amoeboid cells is characterized by cytoplasmic streaming and by membrane protrusions and retractions which occur even in the absence of interactions with a substratum. Cell translocation requires, in addition, a transmission mechanism wherein the power produced by the cytoplasmic engine is applied to the substratum in a highly controlled fashion through specific adhesion proteins. Here we present a simple mechano-chemical model that tries to capture the physical essence of these complex biomolecular processes. Our model is based on the continuum equations for a viscous and reactive two-phase fluid model with moving boundaries, and on force balance equations that average the stochastic interactions between actin polymers and membrane proteins. In this paper we present a new derivation and analysis of these equations based on minimization of a power functional. This derivation also leads to a clear formulation and classification of the kinds of boundary conditions that should be specified at free surfaces and at the sites of interaction of the cell and the substratum. Numerical simulations of a one-dimensional lamella reveal that even this extremely simplified model is capable of producing several typical features of cell motility. These include periodic 'ruffle' formation, protrusion-retraction cycles, centripetal flow and cell-substratum traction forces. PMID:10204394
Microgravity Two-phase Flow and Heat Transfer
NASA Astrophysics Data System (ADS)
Gabriel, Kamiel
2006-12-01
Multiphase thermal systems (involving more than one phase or one component) have numerous applications in aerospace, heat-exchanger, transport of contaminants in environmental systems, and energy transport and energy conversion systems. Advances in understanding the behaviour of multiphase thermal systems could lead to higher efficiency energy production systems, improved heat-exchanger design, and safer and enhanced treatment of hazardous waste. But such advances have been greatly hindered by the strong effect of gravitational acceleration on the flow. Depending on the flow orientation and the phase velocities, gravitational forces could significantly alter the flow regime, and hence the pressure-drop and heat-transfer coefficients associated with the flow. A reduced gravity environment (or "microgravity"), provides an excellent tool to study the flow without the masking effects of gravity. This book presents for the first time a comprehensive coverage of all aspects of two-phase flow behaviour in the virtual absence of gravity. Link: http://www.springer.com/east/home?SGWID=5-102-22-173662745-0&changeHeader=true
Unsteady flow analysis of a two-phase hydraulic coupling
NASA Astrophysics Data System (ADS)
Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.
2016-06-01
Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.
Screw dislocation in a two-phase isotropic thin film
NASA Astrophysics Data System (ADS)
Chu, S. N. G.
1982-04-01
By using the complex potential and conformal mapping techniques, the stress field of a straight screw dislocation lying parallel to the surface of a two-phase isotropic thin film of equal thickness in each phase and a welded interface is analyzed. The solution, when reduced to a single-phase thin film, is in agreement with that derived by Liebfried and Dietze using an infinite array of image dislocations. The presence of a second phase is found to increase the magnitude of the stress components for the screw dislocation except for τxz near the interface where the effect is the reverse. The image force on the dislocation near the interface can be attractive or repulsive depending upon whether the dislocation is situated in the hard or soft phase. In the case where the dislocation is situated in the soft phase, the total image force tends to drive the screw dislocation to the surface. Furthermore, the screw dislocation is found to be unstable at the interface. The elastic solution for an interfacial dislocation becomes a special case.
Passive Two-Phase Cooling of Automotive Power Electronics: Preprint
Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.
2014-08-01
Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.
Transient boiling in two-phase helium natural circulation loops
NASA Astrophysics Data System (ADS)
Furci, H.; Baudouy, B.; Four, A.; Meuris, C.
2014-01-01
Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.
Particle Rotation Effects in Rarefied Two-Phase Plume Flows
NASA Astrophysics Data System (ADS)
Burt, Jonathan M.; Boyd, Iain D.
2005-05-01
We evaluate the effects of solid particle rotation in high-altitude solid rocket exhaust plume flows, through the development and application of methods for the simulation of two phase flows involving small rotating particles and a nonequilibrium gas. Green's functions are derived for the force, moment, and heat transfer rate to a rotating solid sphere within a locally free-molecular gas, and integration over a Maxwellian gas velocity distribution is used to determine the influence of particle rotation on the heat transfer rate at the equilibrium limit. The use of these Green's functions for the determination of particle phase properties through the Direct Simulation Monte Carlo method is discussed, and a procedure is outlined for the stochastic modeling of interphase collisions. As a test case, we consider the nearfield plume flow for a Star-27 solid rocket motor exhausting into a vacuum, and vary particle angular velocities at the nozzle exit plane in order to evaluate the influence of particle rotation on various flow properties. Simulation results show that rotation may lead to slightly higher particle temperatures near the central axis, but for the case considered the effects of particle rotation are generally found to be negligible.
PHOTOSPHERIC EMISSION FROM STRATIFIED JETS
Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji
2013-11-01
We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E{sub p}-L{sub p} relation can be explained by differences in the outflow properties of individual sources.
Photospheric Emission from Stratified Jets
NASA Astrophysics Data System (ADS)
Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji
2013-11-01
We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E p-L p relation can be explained by differences in the outflow properties of individual sources.
Experimental and Theoretical Studies on Two-Phase Flows.
NASA Astrophysics Data System (ADS)
Koh, Christopher James
This thesis, comprised of two parts, deals with the flow of suspensions. Part I concerns specifically with the stability of a single drop translating through a quiescent, unbounded suspending fluid at low Reynolds number. The evolution of the shape of an initially nonspherical drop as it translates is studied numerically and experimentally. For finite capillary numbers, it is shown that the drop reverts to a sphere provided that the initial deformation is small enough. However, beyond certain critical initial deformation, the drop deforms continuously. For initially prolate shapes, the drop elongates with the formation of a tail; for initially oblate shapes, the drop flattens with the formation of a cavity at its rear. Experiments extend the numerical results. It is found that initially unstable prolate drops break up into multiple droplets, while initially unstable oblate drops deform in double-emulsion drops. Part II of this thesis considers the flow of high concentration solid suspensions through a rectangular channel. By adapting the well-known Laser Doppler Anemometry, an experimental technique is developed to measure the velocity as well as particle volume fraction of the suspension. A crucial element in these experiments is the reduction of the optical turbidity of the suspension. To accomplish this goal, a systematic method based on refractive-index-matching of the two phases is employed. Experimental results show that the velocity profile is blunted while the concentration profile has a maximum near the center. The qualitative features of the experimental data compare reasonably well with theoretical predictions based on the shear-induced particle migration theory.
Two Phase Flow Mapping and Transition Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Parang, Masood; Chao, David F.
1998-01-01
In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.
High Pressure Deformation in Two-Phase Aggregates
Li,L.; Addad, A.; Weidner, D.; Long, H.; Chen, J.
2007-01-01
We investigate the rheological behavior of multi-phase aggregates at high pressure and high temperature. Using synchrotron X-ray radiation as the probing tool, we are able to quantify the stress state of individual phases within the aggregates. This method provides fundamental information in interpreting the behavior of two phase/multi-phase mixtures, which contribute to our understanding of the deformation process at deep earth conditions. We choose MgAl{sub 2}O{sub 4} spinel and MgO periclase as our model materials. Mixtures of various volume proportions were deformed in a multi-anvil high pressure deformation apparatus at pressure of 5 GPa and elevated temperatures. Stress is determined from X-ray diffraction, providing a measure of stress in each individual phase of the mixture in situ during the deformation. Macroscopic strain is determined from X-ray imaging. We compare the steady state strength of various mixtures at 1000 {sup o}C and 800 {sup o}C and at the strain rate in the range of 1.8 to 8.8 x 10{sup -5} s{sup -1}. Our data indicate that the weak phase (MgO) is responsible for most of the accumulated strains while the strong phase (spinel) is supporting most of the stress when the volume proportion is 75% spinel and 25% MgO. The intermediate compositions (40/60) are much weaker than either of the end members, while the grain sizes for the intermediate compositions (submicrons) are much smaller than the end members (5-10 {mu}m). We conclude that a change in flow mechanism resulting from these smaller grains is responsible for the low strength of the intermediate composition mixtures. This study demonstrates an approach of using synchrotron X-rays to study the deformation behaviors of multi-phase aggregates at high pressure and high temperature.
Dense Heterogeneous Continuum Model of Two-Phase Explosion Fields
Kuhl, A L; Bell, J B
2010-04-07
A heterogeneous continuum model is proposed to describe the dispersion of a dense Aluminum particle cloud in an explosion. Let {alpha}{sub 1} denote the volume fraction occupied by the gas and {alpha}{sub 2} the fraction occupied by the solid, satisfying the volume conservation relation: {alpha}{sub 1} + {alpha}{sub 2} = 1. When the particle phase occupies a non-negligible volume fraction (i.e., {alpha}{sub 2} > 0), additional terms, proportional to {alpha}{sub 2}, appear in the conservation laws for two-phase flows. These include: (i) a particle pressure (due to particle collisions), (ii) a corresponding sound speed (which produces real eigenvalues for the particle phase system), (iii) an Archimedes force induced on the particle phase (by the gas pressure gradient), and (iv) multi-particle drag effects (which enhance the momentum coupling between phases). These effects modify the accelerations and energy distributions in the phases; we call this the Dense Heterogeneous Continuum Model. A characteristics analysis of the Model equations indicates that the system is hyperbolic with real eigenvalues for the gas phase: {l_brace}v{sub 1}, v{sub 1} {+-} {alpha}{sub 1}{r_brace} and for the 'particle gas' phase: {l_brace}v{sub 2}, v{sub 2} {+-}{alpha}{sub 2}{r_brace} and the particles: {l_brace}v{sub 2}{r_brace}, where v{sub i} and {alpha}{sub i} denote the velocity vector and sound speed of phase i. These can be used to construct a high-order Godunov scheme to integrate the conservation laws of a dense heterogeneous continuum.
Investigation of two-phase flow processes in coal slurry/hydrogen heaters. Final report
Sam, R.G.; Crowley, C.J.
1986-08-01
Experimental and analytical results are presented for two-phase slug flow in a horizontal, transparent pipe at large diameter (6.75 in.) at high gas density (20 times the density of air at atmospheric pressure) and at liquid viscosities ranging from 1 to 1000 centipoise. The test section replicates 1 1/2 rectangular coils (40 ft by 10 ft) of a fired heater in a coal liquefaction plant. Regime transtion, pressure drop, void fraction, and slug characteristic data have been obtained for liquid superficial velocities ranging from 0.2 to 6 ft/s and gas superficial velocities ranging from 0.2 to 12 ft/s. Regime transition results have been compared with the Taitel-Dukler analytical flow regime map. The transition from stratified to slug flow, which is underpredicted by the original analysis, has been studied in particular. Comparison with the dimensionless transition criterion (gas Froude number) shows that increased liquid viscosity increases the liquid level at which the transition occurs. Pressure drop data at the transition have been used to evaluate the interfacial shear and to show that it is greater than is assumed in the Taitel-Dukler analysis. Sensitivity studies for the transition criterion and interfacial shear illustrate exactly why the transition is underpredicted on the flow regime map and how the predictions can be improved. Photos of the flow patterns illustrate the mechanism of slug formation at high viscosity compared with low viscosity. Pressure drop, void fraction, and slug characteristic results are compared with an analysis for pressure drop in slug flow, demonstrating better predictive capability of this model at large pipe size, high gas density, and high viscosity, compared with correlations from the literature. The pressure drop model is also shown to be in excellent agreement with coal liquefaction pilot plant data. 34 refs.
NASA Astrophysics Data System (ADS)
Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan
2016-03-01
A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.
Study of flow regimes in two-phase pipeline flow using computer-based digital-image processing
Bowers, C.B.
1986-01-01
A new unobtrusive method for liquid-liquid two-phase flow data collection was proven reliable in this research. Drop-size distributions and concentration profiles were determined for a dilute water-in-kerosene system under horizontal straight pipe flow using this technique. The drop-size distributions were found to follow a Rosin-Rammler function for a limited droplet-diameter range, and the average value of the exponent in the Rosin-Rammler equation was determined to be 2.0. The velocity where the flow-regime transitions from stratified to adequately dispersed was found to be between 6.6 and 7.3 ft/s. Concentration profiles predicted by the Segev model were in general agreement with the profiles determined in this work. Using the experimentally determined Rosin-Rammler exponent value of 2.0 and using the proper choice of the dimensionless lateral diffusivity, the Segev model predicts very well the profiles found in this work. The new experimental method developed in this work will be useful to future researchers in two-phase flow. The data generated is useful both for theoretical modeling efforts and for application to industry sampling problems.
24 CFR 115.201 - The two phases of substantial equivalency certification.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false The two phases of substantial... ENFORCEMENT AGENCIES Certification of Substantially Equivalent Agencies § 115.201 The two phases of.... The Department has developed a two-phase process of substantial equivalency certification....
48 CFR 36.301 - Use of two-phase design-build selection procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of two-phase design... ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures....
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... for Leasehold Interests in Real Property 570.305 Two-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if you use the two-phase...
23 CFR 636.202 - When are two-phase design-build selection procedures appropriate?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false When are two-phase design-build selection procedures... When are two-phase design-build selection procedures appropriate? You may consider the following criteria in deciding whether two-phase selection procedures are appropriate. A negative response...
48 CFR 3415.302-70 - Two-phase source selection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Two-phase source selection... ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Source Selection 3415.302-70 Two-phase source selection. (a) FSA—May utilize a two-phase process to solicit offers...
Waves in Turbulent Stably Stratified Shear Flow
NASA Technical Reports Server (NTRS)
Jacobitz, F. G.; Rogers, M. M.; Ferziger, J. H.; Parks, John W. (Technical Monitor)
2002-01-01
Two approaches for the identification of internal gravity waves in sheared and unsheared homogeneous stratified turbulence are investigated. First, the phase angle between the vertical velocity and density fluctuations is considered. It was found, however, that a continuous distribution of the phase angle is present in weakly and strongly stratified flow. Second, a projection onto the solution of the linearized inviscid equations of motion of unsheared stratified flow is investigated. It was found that a solution of the fully nonlinear viscous Navier-Stokes equations can be represented by the linearized inviscid solution. The projection yields a decomposition into vertical wave modes and horizontal vortical modes.
Photoinduced spinodal decomposition in stratifying solutions
NASA Astrophysics Data System (ADS)
Bunkin, F. V.; Podgaetskii, V. I.; Semin, V. N.
1988-01-01
The effect of photoinduced spinodal decomposition in stratifying solutions is examined with particular reference to experimental results obtained for an aqueous solution of butyl Cellosolve of critical concentration (30.14 percent by mass). At the late stages of spinodal decomposition, the coalescence of similar microheterophase inhomogeneities leads to the formation of small-scale (up to 5 microns) grains of each of the phases, which are then grouped into larger-scale (up to 100 microns) segregations. Such multilevel self-organization of the stratifying phases leads to the formation of a granular-cellular structure. This effect can be used for the quick interruption of chemical reactions in a stratifying solution.
How stratified is mantle convection?
NASA Astrophysics Data System (ADS)
Puster, Peter; Jordan, Thomas H.
1997-04-01
due to slabs alone. A stratification index, Sƒ≲0.2, is sufficient to exclude many stratified convection models still under active consideration, including most forms of chemical layering between the upper and lower mantle, as well as the more extreme versions of avalanching convection governed by a strong endothermic phase change.
UPSTREAM MOTIONS IN STRATIFIED FLOW (JOURNAL VERSION)
In the paper experimental measurements of the time-dependent velocity and density perturbations upstream of obstacles in linearly stratified flow are presented. Attention is concentrated on obstacles which generate turbulent separated wakes at Froude numbers, based on velocity an...
Magnetized stratified rotating shear waves
NASA Astrophysics Data System (ADS)
Salhi, A.; Lehner, T.; Godeferd, F.; Cambon, C.
2012-02-01
solution at infinite vertical wavelength (k3=0): There is an oscillatory behavior for τ>1+|K2/k1|, where τ=St is a dimensionless time and K2 is the radial component of the wave vector at τ=0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k3=0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K2/k1≫1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like Kh/kh where kh(τ)=[k12+(K2-k1τ)2]1/2 and Kh=kh(0). After the leading phase (τ>K2/k1≫1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k1=0 and k3=0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k1=0. The limit at k1=0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement.
Magnetized stratified rotating shear waves.
Salhi, A; Lehner, T; Godeferd, F; Cambon, C
2012-02-01
stability of the solution at infinite vertical wavelength (k(3) = 0): There is an oscillatory behavior for τ > 1+|K(2)/k(1)|, where τ = St is a dimensionless time and K(2) is the radial component of the wave vector at τ = 0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k(3) = 0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K(2)/k(1)>1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like K(h)/k(h) where k(h)(τ)=[k(1)(2) + (K(2) - k(1)τ)(2)](1/2) and K(h) =k(h)(0). After the leading phase (τ > K(2)/k(1)>1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k(1) = 0 and k(3) = 0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k(1) = 0. The limit at k(1) = 0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement. PMID:22463311
Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Lin, Chin S.
1996-01-01
A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.
Development of a semi-parabolic two-fluid model for two-phase ejectors
Menegay, P.; Kornhauser, A.A.
1995-12-31
A semi-parabolic computer code for two-phase flows, currently under development, is presented. When complete, the code will simulate two-phase non-equilibrium flow within an ejector being used as a refrigerant expansion engine. Current two-phase ejector design has been hampered by the inadequacy of available analytical techniques. The code addresses this problem. The applicable two-phase flow conservation equations are presented. Also shown are the interfacial interaction terms, important in modelling the non-equilibrium effects. A stepwise development program has been established where the simplest case is solved first followed by complicating features.
Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua
2016-02-01
Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells. PMID:26447826
NASA Astrophysics Data System (ADS)
Miyoshi, Koji; Nakamura, Akira; Takenaka, Nobuyuki; Oumaya, Toru
In a PWR plant, a steam-water two-phase flow may possibly exist in the pressurizer spray pipe under a normal operating condition since the flow rate of the spray water is not sufficient to fill the horizontal section of the pipe completely. Initiation of high cycle fatigue cracks is suspected to occur under such thermally stratified two phase flow conditions due to cyclic thermal stress fluctuations caused by oscillations of the water surface. Such oscillations cannot be detected by the measurement of temperature on outer surface of the pipe. In order to clarify the flow and thermal conditions in the pressurizer spray pipe and assess their impact on the pipe structure, an experiment was conducted for a steam-water flow at a low flow rate using a mock-up pressurizer spray pipe. The maximum temperature fluctuation of about 0.2 times of the steam-water temperature difference was observed at the inner wall around water surface in the test section. Visualization tests were conducted to investigate the temperature fluctuation phenomena. It was shown that the fluid temperature fluctuations were not caused by the waves on the water surface, but were caused by liquid temperature fluctuations in water layer below the interface. The influence of small amount of non-condensable gas dissolved in the reactor coolant on the liquid temperature fluctuation phenomena was investigated by injecting air into the experimental loop. The air injection attenuated the liquid temperature fluctuations in the water layer since the condensation was suppressed by the non- condensable gas. It is not expected that wall temperature fluctuation in the actual PWR plant may exceed the temperature equivalent to the fatigue limit stress amplitude when it is assumed to be proportional to the steam-water temperature difference.
Stratified charge rotary engine for general aviation
NASA Technical Reports Server (NTRS)
Mount, R. E.; Parente, A. M.; Hady, W. F.
1986-01-01
A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.
Thermal laminarization of a stratified pipe flow
Oras, J.J.; Kasza, K.E.
1984-01-01
The present work constitutes a new program that grew out of a scoping assessment by ANL to determine the propensity for pipe stratification to occur in the reactor outlet nozzles and hot-leg piping of a generic LMFBR during events producing reverse pipe flow. This paper focuses on the role that thermal buoyancy plays relative to being able to laminarize a turbulent stratified shear zone in a horizontal pipe. The preceeding can influence the behavior of a pipe stratified-backflow-recirculation zone (cold plenum water down into the hot pipe flow) which developes as the result of a temperature difference between the pipe flow and the plenum.
Mixing in thermally stratified energy stores
Berkle, J. van
1996-10-01
Two important aspects of short-term thermally stratified energy storage, thermocline mixing and thermocline thickness, are studied analytically, experimentally and numerically. The storage detrimental aspects are investigated for a simplified configuration, i.e., an adiabatic box containing a quasi-stationary thermocline. Numerical finite difference/volume simulations agree well with experiments. The dissipation-free 1D analytical model shows a large discrepancy. It appears that mixing inside thermally stratified stores is a two-state process. First fluid is withdrawn from the thermocline by viscous drag. Subsequent mixing takes place by stretching and folding of fluid particles, thereby enabling diffusion to become active. 17 refs., 10 figs., 2 tabs.
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
48 CFR 570.105-2 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... ADMINISTRATION SPECIAL CONTRACTING PROGRAMS ACQUIRING LEASEHOLD INTERESTS IN REAL PROPERTY General 570.105-2 Two..., you must use the two-phase design-build selection procedures in section 303M of the Federal...
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Two-phase design-build...-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if the contracting officer uses the two-phase design-build selection procedures authorized by...
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Two-phase design-build...-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if the contracting officer uses the two-phase design-build selection procedures authorized by...
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Two-phase design-build...-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if the contracting officer uses the two-phase design-build selection procedures authorized by...
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Two-phase design-build...-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if the contracting officer uses the two-phase design-build selection procedures authorized by...
23 CFR 636.202 - When are two-phase design-build selection procedures appropriate?
Code of Federal Regulations, 2011 CFR
2011-04-01
... ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.202 When are two-phase design-build selection procedures appropriate? You may consider the following... 23 Highways 1 2011-04-01 2011-04-01 false When are two-phase design-build selection...
The potential of cloud point system as a novel two-phase partitioning system for biotransformation.
Wang, Zhilong
2007-05-01
Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed. PMID:17318534
On-demand generation of aqueous two-phase microdroplets with reversible phase transitions
NASA Astrophysics Data System (ADS)
Collier, Charles
2013-03-01
Aqueous two-phase systems contained within microdroplets enable a bottom-up approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Here, we demonstrate the on-demand generation of femtolitre aqueous two-phase droplets within a microfluidic oil channel. Gated pressure pulses were used to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states were obtained via evaporation-induced dehydration and on-demand water rehydration. In contrast to other microfluidic aqueous two-phase droplets, which require continuous flows and high-frequency droplet formation, our system enables the controlled isolation and reversible transformation of a single microdroplet and is expected to be useful for future studies in dynamic microcompartmentation and affinity partitioning.
A two phase Mach number description of the equilibrium flow of nitrogen in ducts
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.; Adcock, J. B.
1979-01-01
Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.
On-demand generation of aqueous two-phase microdroplets with reversible phase transitions
Boreyko, Jonathan B; Mruetusatorn, Prachya; Retterer, Scott T; Collier, Pat
2013-01-01
Aqueous two-phase systems contained entirely within microdroplets enable a bottom-up approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Here, we demonstrate the on-demand generation of femtolitre aqueous two-phase droplets within a microfluidic oil channel. Gated pressure pulses were used to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microgel states were obtained via evaporation-induced dehydration and on-demand water rehydration. In contrast to other microfluidic aqueous two-phase droplets, which require continuous flows and high-frequency droplet formation, our system enables the controlled isolation and reversible transformation of a single microdroplet and is expected to be useful for future studies in dynamic microcompartmentation and affinity partitioning.
Characteristics of Stratified Bedded Pack Dairy Manure
Technology Transfer Automated Retrieval System (TEKTRAN)
"Compost" dairy barns are a relatively new housing system that generates a deep (0.9 to 1.5 m), stratified bedded pack (SBP) manure source. Bedding composed of sawdust, wood chips, or crop residues accumulates as additions are made to maintain a dry surface. Surface drying is promoted by a combinati...
A chemically stratified lake in alaska.
Likens, G E; Johnson, P L
1966-08-19
A meromictic (chemically stratified) lake occupies a thawed depression in a pingo in interior Alaska, near Circle City. Increased salt concentration and anaerobic conditions characterize the zone extending from a maximum depth of 3 to 8.8 meters. The concentration of strontium and lithium is unusually high for lake water. PMID:17780648
MERGING BUOYANT JETS IN A STRATIFIED CROSSFLOW
Some of the results of an extensive series of experiments to study the characteristics of merging, horizontally discharged buoyant jets in a linearly density stratified current are summarized. The experiments were conducted in a towing tank to simulate conditions typical of ocean...
Oscillations in a Linearly Stratified Salt Solution
ERIC Educational Resources Information Center
Heavers, Richard M.
2007-01-01
Our physics students like to watch a ball bouncing underwater. They do this by dropping a weighted plastic ball into a 1000-ml cylinder filled with a linearly stratified salt-water solution at room temperature. The ball oscillates and comes to rest at about mid-depth. Its motion is analogous to the damped vertical oscillations of a mass hanging…
Broadband acoustic quantification of stratified turbulence.
Lavery, Andone C; Geyer, W Rockwell; Scully, Malcolm E
2013-07-01
High-frequency broadband acoustic scattering techniques have enabled the remote, high-resolution imaging and quantification of highly salt-stratified turbulence in an estuary. Turbulent salinity spectra in the stratified shear layer have been measured acoustically and by in situ turbulence sensors. The acoustic frequencies used span 120-600 kHz, which, for the highly stratified and dynamic estuarine environment, correspond to wavenumbers in the viscous-convective subrange (500-2500 m(-1)). The acoustically measured spectral levels are in close agreement with spectral levels measured with closely co-located micro-conductivity probes. The acoustically measured spectral shapes allow discrimination between scattering dominated by turbulent salinity microstructure and suspended sediments or swim-bladdered fish, the two primary sources of scattering observed in the estuary in addition to turbulent salinity microstructure. The direct comparison of salinity spectra inferred acoustically and by the in situ turbulence sensors provides a test of both the acoustic scattering model and the quantitative skill of acoustical remote sensing of turbulence dissipation in a strongly sheared and salt-stratified estuary. PMID:23862783
Two-Dimensional Numerical Simulation of Boiling Two-Phase Flow of Liquid Nitrogen
NASA Astrophysics Data System (ADS)
Ishimoto, Jun; Oike, Mamoru; Kamijo, Kenjiro
Two-dimensional characteristics of the boiling two-phase flow of liquid nitrogen in a duct flow are numerically investigated to contribute to the further development of new high-performance cryogenic engineering applications. First, the governing equations of the boiling two-phase flow of liquid nitrogen based on the unsteady drift-flux model are presented and several flow characteristics are numerically calculated taking account the effect of cryogenic flow states. Based on the numerical results, a two-dimensional structure of the boiling two-phase flow of liquid nitrogen is shown in detail, and it is found that the phase change of liquid nitrogen occurs in quite a short time interval compared with that of two-phase pressurized water at high temperature. Next, it is clarified that the distributions of pressure and the void fraction in a two-phase flow show a tendency different from those of fluids at room temperature because of the decrease in sound velocity due to large compressibility and the rapid phase change velocity in a cryogenic two-phase mixture flow. According to these numerical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained will contribute to advanced cryogenic industrial applications.
Analytical solution for two-phase flow in a wellbore using the drift-flux model
Pan, L.; Webb, S.W.; Oldenburg, C.M.
2011-11-01
This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.
Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells
WANG,Z.H.; WANG,C.Y.; CHEN,KEN S.
2000-03-20
Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.
The measurement of thermodynamic performance in cryogenic two-phase turbo-expander
NASA Astrophysics Data System (ADS)
Niu, Lu; Hou, Yu; Sun, Wan; Chen, Shuangtao
2015-09-01
Liquid fraction measurement in cryogenic two-phase flow is a complex issue, especially for an industrial cryogenic system. In this paper, a simple thermal method is proposed for measuring the liquid fraction in cryogenic two-phase turbo-expander by an electric heating unit in experimental study. The liquid fraction of the cryogenic two-phase flow is determined through the heat balance built at the outlet of the turbo-expander (inlet of heating unit) and the outlet of the heating unit. Liquid fractions from 1.16% to 5.02% are obtained from five two-phase expansion cases. Under the same turbo-expander inlet pressure and rotating speed, five superheated expansion cases are tested to evaluate the wetness loss in two-phase expansion. The results show that the proposed method is successful in measuring the liquid fraction of cryogenic two-phase expansion for turbo-expander in an industrial air separation plant. The experimental isentropic efficiency ratio and the tested Baumann factor decrease with the increasing mean wetness. Based on prediction of Baumann rule, the cryogenic turbo-expander with low liquid fraction in two-phase expansion cases suffers from more severe wetness loss than that with the higher liquid fraction.
Roberge, Cornelia; Wulff, Sören; Reese, Heather; Ståhl, Göran
2016-04-01
Many countries have a national forest inventory (NFI) designed to produce statistically sound estimates of forest parameters. However, this type of inventory may not provide reliable results for forest damage which usually affects only small parts of the forest in a country. For this reason, specially designed forest damage inventories are performed in many countries, sometimes in coordination with the NFIs. In this study, we evaluated a new approach for damage inventory where existing NFI data form the basis for two-phase sampling for stratification and remotely sensed auxiliary data are applied for further improvement of precision through post-stratification. We applied Monte Carlo sampling simulation to evaluate different sampling strategies linked to different damage scenarios. The use of existing NFI data in a two-phase sampling for stratification design resulted in a relative efficiency of 50 % or lower, i.e., the variance was at least halved compared to a simple random sample of the same size. With post-stratification based on simulated remotely sensed auxiliary data, there was additional improvement, which depended on the accuracy of the auxiliary data and the properties of the forest damage. In many cases, the relative efficiency was further reduced by as much as one-half. In conclusion, the results show that substantial gains in precision can be obtained by utilizing auxiliary information in forest damage surveys, through two-phase sampling, through post-stratification, and through the combination of these two approaches, i.e., post-stratified two-phase sampling for stratification. PMID:26956011
Single and two-phase flow fluid dynamics in parallel helical coils
NASA Astrophysics Data System (ADS)
De Salve, M.; Orio, M.; Panella, B.
2014-04-01
The design of helical coiled steam generators requires the knowledge of the single and two-phase fluid dynamics. The present work reports the results of an experimental campaign on single-phase and two phase pressure drops and void fraction in three parallel helicoidal pipes, in which the total water flow rate is splitted by means of a branch. With this test configuration the distribution of the water flow rate in the helicoidal pipes and the phenomena of the instability of the two-phase flow have been experimentally investigated.
Development of Numerical Simulation Method for Compressible Gas-Liquid Two-Phase Flows
NASA Astrophysics Data System (ADS)
Tamura, Y.
2015-12-01
A numerical simulation method of compressible gas-liquid two-phase flow is developed for analyses of a cavitation bubble. Thermodynamic state of both phases is described with stiffened gas equation of state. Interface of two phases is captured by Level-Set method. As internal energy jump between two phases is critical for the stability of computation, total energy equation is modified so that inviscid flux of energy is smoothly connected across the interface. Detail of governing equations as well as their discretization is described followed by the result of one-dimensional simple example computation.
Application of neutron radiography to visualization of cryogenic fluid boiling two-phase flows
NASA Astrophysics Data System (ADS)
Takenaka, Nobuyuki; Asano, Hitoshi; Fujii, Terushige; Ushiro, Toshihiko; Iwatani, Junji; Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira; Matsubayashi, Masahito; Tsuruno, Akira
1996-02-01
Liquid nitrogen boiling two-phase flows in a metallic container and in a heat exchanger were visualized by real-time thermal neutron radiography at JRR-3M at the Japan Atomic Energy Research Institute and image processed by the Musashi dynamic image processing system. Boiling phenomena in a pool and boiling two-phase flow in an aluminum plate fin type heat exchanger were visualized. It was shown that neutron radiography was applicable to visualization of cryogenic boiling two-phase flow and the designs of cryogenic heat exchangers.
Wakes of Maneuvering Bodies in Stratified Fluids
NASA Astrophysics Data System (ADS)
Voropayev, S. I.; Fernando, H. J.
2007-05-01
We present the results of experimental/theoretical studies on large momentum eddies generated in late wakes of unsteady moving self-propelled bodies in stratified fluids. The experiments were conducted with scaled submarine model at high Reynolds numbers (50,000), corresponding to the fully turbulent flow regime. Dye visualization and PIV were used for flow diagnostics. When a self-propelled body makes a maneuver, e.g. accelerates, it imparts net momentum on the surrounding fluid. We show that in a stratified fluid this leads to impulsive momentum wakes with large, long-lived coherent vortices in the late flows, which may be used as a signature for identification of submarine wakes in oceanic thermocline. First, we consider dynamics and properties of such wakes in a linearly stratified fluid and present a model that permits to predict the main flow characteristics. Second, we consider wakes in a two layer stratified fluid (analog of the upper ocean) and show that such wakes may penetrate to the water surface; we present a model for this phenomenon and propose criteria for the penetration of wake signatures to the water surface in terms of main governing parameters (signature contrast versus confinement number). Finally, we consider the evolution of such momentum wake eddies in the field of decaying background turbulence, which mimics the oceanic thermocline, and show that for the flow configuration studied the contrast number remains sufficiently large and detectable wake imprints survive for a long period of time. Some pertinent estimates for submarines cruising in the upper ocean are also given. For more details see [1-3]. This study was supported by grant from the Office of Naval Research. 1. Voropayev S.I., Fernando H.J.S., Smirnov S.A. & Morrison R.J. 2006. On surface signatures generated by submersed momentum sources. Phys. Fluids, under revision. 2. Voropayev S.I., Fernando H.J.S. & Morrison R.J. 2006. Dipolar eddies in a stratified turbulent flow. J. Fluid
NASA Astrophysics Data System (ADS)
Musa Abbagoni, Baba; Yeung, Hoi
2016-08-01
The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the
Two-phase turbine engines. [using gas-liquid mixture accelerated in nozzles
NASA Technical Reports Server (NTRS)
Elliott, D. G.; Hays, L. G.
1976-01-01
A description is given of a two-phase turbine which utilizes a uniform mixture of gas and liquid accelerated in nozzles of the types reported by Elliott and Weinberg (1968). The mixture acts directly on an axial flow or tangential impulse turbine or is separated into gas and liquid streams which operate separately on a gas turbine and a hydraulic turbine. The basic two-phase cycles are examined, taking into account working fluids, aspects of nozzle expansion, details of turbine cycle operation, and the effect of mixture ratio variation. Attention is also given to two-phase nozzle efficiency, two-phase turbine operating characteristics and efficiencies, separator turbines, and impulse turbine experiments.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow
NASA Astrophysics Data System (ADS)
Wu, Hao; Dong, Feng
2014-04-01
Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.
Two-phase flow bubbly mixing for liquid metal magnetohydrodynamic energy conversion
NASA Astrophysics Data System (ADS)
Fabris, G.; Kwack, E.; Harstad, K.; Back, L. H.
Experiments aimed at improving mixer design and investigating the effects of surfactants on the two-phase mixture in two-phase liquid metal MHD (LMMHD) energy conversion systems are described. In addition to conventional photography, flash X-ray imaging was used as a diagnostic tool. It was demonstrated that a high void fraction (0.8) and low velocity slip ratio (1.2) two-phase homogeneous bubbly mixture can be created. It is expected that such a two-phase mixture can be further expanded in a LMMHD generator while maintaining low velocity slip. In such a way, high generator and overall system efficiency would be achieved, making LMMHD systems competitive for a number of commercial applications.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.
Dong, S; Wang, X
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow
Wu, Hao; Dong, Feng
2014-04-11
Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.
Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary
2014-06-10
A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.
Future directions in two-phase flow and heat transfer in space
NASA Technical Reports Server (NTRS)
Bankoff, S. George
1994-01-01
Some areas of opportunity for future research in microgravity two-phase flow and heat transfer are pointed out. These satisfy the dual requirements of relevance to current and future needs, and scientific/engineering interest.
Li, Mian; Peeples, Tonya L
2004-07-25
Purification of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii, was investigated in the ethylene oxide-propylene oxide random copolymer (PEO-PPO)/(NH(4))(2)SO(4), and poly(ethylene glycol) (PEG)/(NH(4))(2)SO(4) aqueous two-phase systems. MJA1 partitioned in the top polymer-rich phase, while the remainder of proteins partitioned in the bottom salt-rich phase. It was found that enzyme recovery of up to 90% with a purification factor of 3.31 was achieved using a single aqueous two-phase extraction step. In addition, the partition behavior of pure amyloglucosidase in polymer/salt aqueous two-phase systems was also evaluated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. This work is the first reported application of thermoseparating polymer aqueous two-phase systems for the purification of extremophile enzymes. PMID:15177162
Irreversible entropy production in two-phase flows with evaporating drops
NASA Technical Reports Server (NTRS)
Bellan, J.; Okong'o, N. A.
2002-01-01
A derivation of the irreversible entropy production, that is the dissipation, in two-phase flows is presented for the purpose of examining the effect of evaporative-drop modulation of flows having turbulent features.
A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance
NASA Technical Reports Server (NTRS)
Mueller, Donn C.; Turns, Stephen R.
1993-01-01
A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Staedtke, H.; Franchello, G.; Worth, B.
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
Study of two-phase flow and heat transfer in reduced gravities
NASA Technical Reports Server (NTRS)
Abdollahian, Davood; Barez, Fred
1994-01-01
Design of the two-phase systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer parameters in reduced gravities. A program has been initiated by NASA to design a two-phase test loop and perform a series of experiments to generate the data for the Critical Heat Flux (CHF) and onset of instability under reduced gravities. In addition to low gravity airplane trajectory testing, the experimental program consists of a set of laboratory tests with vertical upflow and downflow configurations. Modularity is considered in the design of this experiment and the test loop in instrumented to provide data for two-phase pressure drop and flow regime behavior. Since the program is in the final stages of the design and construction task, this article is intended to discuss the phenomena, design approach, and the description of the test loop.
Two-phase flow bubbly mixing for liquid metal magnetohydrodynamic energy conversion
NASA Technical Reports Server (NTRS)
Fabris, G.; Kwack, E.; Harstad, K.; Back, L. H.
1990-01-01
Experiments aimed at improving mixer design and investigating the effects of surfactants on the two-phase mixture in two-phase liquid metal MHD (LMMHD) energy conversion systems are described. In addition to conventional photography, flash X-ray imaging was used as a diagnostic tool. It was demonstrated that a high void fraction (0.8) and low velocity slip ratio (1.2) two-phase homogeneous bubbly mixture can be created. It is expected that such a two-phase mixture can be further expanded in a LMMHD generator while maintaining low velocity slip. In such a way, high generator and overall system efficiency would be achieved, making LMMHD systems competitive for a number of commercial applications.
Stably Stratified Flow in a Shallow Valley
NASA Astrophysics Data System (ADS)
Mahrt, L.
2016-07-01
Stratified nocturnal flow above and within a small valley of approximately 12-m depth and a few hundred metres width is examined as a case study, based on a network of 20 sonic anemometers and a central 20-m tower with eight levels of sonic anemometers. Several regimes of stratified flow over gentle topography are conceptually defined for organizing the data analysis and comparing with the existing literature. In our case study, a marginal cold pool forms within the shallow valley in the early evening but yields to larger ambient wind speeds after a few hours, corresponding to stratified terrain-following flow where the flow outside the valley descends to the valley floor. The terrain-following flow lasts about 10 h and then undergoes transition to an intermittent marginal cold pool towards the end of the night when the larger-scale flow collapses. During this 10-h period, the stratified terrain-following flow is characterized by a three-layer structure, consisting of a thin surface boundary layer of a few metres depth on the valley floor, a deeper boundary layer corresponding to the larger-scale flow, and an intermediate transition layer with significant wind-directional shear and possible advection of lee turbulence that is generated even for the gentle topography of our study. The flow in the valley is often modulated by oscillations with a typical period of 10 min. Cold events with smaller turbulent intensity and duration of tens of minutes move through the observational domain throughout the terrain-following period. One of these events is examined in detail.
Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code
Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.
1992-01-01
FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.
Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code
Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.
1992-12-31
FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.
In-step Two-phase Flow (TPF) Thermal Control Experiment
NASA Technical Reports Server (NTRS)
1992-01-01
The Two-Phase Flow Thermal Control Experiment is part of the NASA/OAST In-Space Technology Experiments (In-STEP) Program. The experiment is configured for the Hitchhiker Shuttle payload system and consists of a capillary pumped loop, heatpipe radiator, and two-phase flow heat exchanger. The flight experiment design approach, test plan, payload design, and test components are described in outline and graphic form.
Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.
1982-01-01
A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
Temperature-time relationships from lunar two phase metallic particles /14310, 14163, 14003/.
NASA Technical Reports Server (NTRS)
Axon, H. J.; Goldstein, J. I.
1972-01-01
Electron-microprobe and metallographic techniques are applied in an analysis of individual phases in two-phase metallic alpha + gamma particles and phosphide-metal particles separated magnetically or mechanically from three lunar soil samples. The interface equilibrium temperatures of the two-phase particles during their lunar residence are inferred from experimental Fe-Ni and Fe-Ni-P equilibrium diagrams. Times of equilibration are determined in some cases.
Evolution of a forced stratified mixing layer
NASA Astrophysics Data System (ADS)
Rotter, J.; Fernando, H. J. S.; Kit, E.
2007-06-01
Laboratory measurements were carried out in a spatially developing stably stratified shear layer generated downstream of a splitter plate. The instabilities were controlled using a flapper spanning the entire shear layer, with the flapper forced at the fastest growing frequency of the primary [Kelvin-Helmholtz (KH)] instability. The measurements were taken as the KH instabilities roll up, break down, and degenerate into stratified turbulence. Both stratified and homogeneous shear layers were considered, the latter acting as the "baseline" case. The measurements included the streamwise and vertical velocities (made using X-wire hot film probes), which allowed calculation of the mean and rms velocities, turbulent kinetic energy (TKE) dissipation, and TKE production. The density and its gradients were measured using miniature conductivity probes. The measurements and flow visualization elicited interesting features of KH evolution, namely that KH billows may be turbulent from the onset, the TKE dissipation is largest at early stages of evolution, the production of TKE is a maximum at the breakdown of billows, the decay of turbulence to fossilized motions and concomitant formation of fine (layered) structure occur rapidly after the breakdown of billows, and episodic rebirth of (zombie) turbulence develops before a final permanently fossilized state is achieved.
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe
2011-01-01
A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer. PMID:21711823
A study of two-phase flow in a reduced gravity environment
NASA Technical Reports Server (NTRS)
Hill, D.; Downing, Robert S.
1987-01-01
A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.
Two-Phase Abrasion in Eolian Transport of Gypsum Sand, White Sands NM
NASA Astrophysics Data System (ADS)
Shaw, S.; Jerolmack, D. J.; Miller, K. L.
2014-12-01
Downstream rounding of grains is consistently observed in natural sediment transport settings. A recent theory put forth by Domokos et al. (2014) attributes particle rounding and size reduction to a geometric curvature-driven abrasion process. This process occurs in two phases, in which irregularly shaped or angular particles round to convex shapes with negligible change in axis dimension, then slowly reduce in particle diameter. Miller et al (in review) establish the existence of two-phase abrasion in the natural setting of a fluvial gravel stream. This study examines field samples from White Sands, NM to investigate the presence of two-phase abrasion in a different, non-idealized natural environment - a high-energy, eolian gypsum dunefield. Analysis of grain shapes from White Sands confirms the two-phase abrasion process, dependent upon mode of sediment transport. We find that large sand grains carried in saltation bed load transport exhibit shape change indicative of two-phase abrasion, while smaller particles carried in suspension do not. We observe rapid shape change in bed load particles approaching a convex shape, followed by slower reduction in grain axis dimensions. Confirmation of this process in a natural, non-idealized setting establishes two-phase abrasion as a general application for bed load transport.
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe
NASA Astrophysics Data System (ADS)
Park, Yu Sun; Chang, Soon Heung
2011-12-01
A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.
Gravity-driven intrusions in stratified fluids
NASA Astrophysics Data System (ADS)
Maurer, Benjamin Dudley
All natural fluids stratify. Stable stratifications, in which isobars and isopycnals are parallel, are capable of supporting internal wave motion. Unstable stratification, in which density and pressure gradients are not aligned, results in gravity-driven flow. Gravity currents are a subset of these flows in which horizontal density gradients sharpen and propagate horizontally, transporting mass, momentum, and energy. If the density of the gravity current is within the density extrema of the stably stratified ambient fluid, it propagates as an intrusion at an intermediate height. Through laboratory experiments and numerical simulations, this dissertation explores the influence of stratification on the dynamics of gravity-driven intrusions. Intrusions require stable stratification in the ambient fluid, which is capable of transporting momentum and energy away from the current in the form of internal waves. We investigate the constant velocity propagation of well-mixed intrusions propagating into a linearly stratified ambient fluid. Varying the level of neutral buoyancy, we quantify the corresponding variation in structure, momentum, and energy of the upstream wave field. Adjacent stable stratifications of differing vertical density structure necessarily entail horizontal density gradients. These gradients determine the hydrostatic pressure differences driving the ensuing gravity current. We examine the mid-depth, constant velocity propagation of one linearly stratified fluid into another more strongly linearly stratified fluid. Working from the available potential energy of the system and measurements of the intrusion thickness, we develop an energy model to describe the speed of the intrusion in terms of the ratio of the two buoyancy frequencies. Distinct from adjacent linear stratifications, adjacent discrete stratifications may create flow consisting of interleaving intrusions. Single intrusions into a two-layer ambient fluid are well understood. Limiting our
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
X. Wang; X. Sun; H. Zhao
2011-09-01
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in
Experimental Studies on the Measurement of Oil-water Two-phase Flow
NASA Astrophysics Data System (ADS)
Ma, Longbo; Zhang, Hongjian; Hua, Yuefang; Zhou, Hongliang
2007-06-01
Oil-water two-phase flow measurement was investigated with a Venturi meter and double-U Coriolis meter in this work. Based on the Venturi differential pressure and the quality of two-phase flow, a model for measuring oil-water mass flow rate was developed, in which fluid asymmetry of oil-water two-phase flow was considered. However, measuring the quality of two-phase flow on-line is rather difficult at present. Though double-U Coriolis meter can provide accurate measurement of two-phase flow, it can not provide desired respective mass flow rate. Therefore, a double-parameter measurement method with Venturi meter and double-U Coriolis meter is proposed. According to the flow rate requirement of Venturi, a new flow regime identification method based on Support Vector Machine (SVM) has been developed for the separated flow and the dispersed flow. With the Venturi model developed in this paper and mass flow rate of oil-water mixture measured with double-U Coriolis meter, mixture mass flow rate, oil mass flow rate and water mass flow rate could be obtained by the correlation. Experiments of flow rate measurement of oil-water two-phase flow were carried out in the horizontal tube with 25mm inner diameter. The water fraction range is from 5% to 95%. Experimental results showed that the flow regime could be identified well with SVM, and the relative error of the total mass flow rate and respective mass flow rate of oil-water two-phase flow was less than ±1.5% and ±10%, respectively.
A Simplified Approach to Modeling Two-phase Flow of Seawater Near a Dike
NASA Astrophysics Data System (ADS)
Lewis, K.; Lowell, R. P.
2001-12-01
Magmatic dikes represent the fundamental unit of mass accretion and heat input into the oceanic crust. Dikes also drive hydrothermal circulation that may result in event plumes, but in any case the circulation will carry a pulse of mineral-laden hydrothermal fluids and heat to the seafloor. Two-phase flow and phase segregation are important aspects of hydrothermal circulation following dike emplacement. These processes are confined to narrow regions near the dike margins, and the duration of two-phase flow is brief. Nevertheless, sampling of hydrothermal fluids following dike emplacement has shown the early appearance of low chlorinity vapor phase fluids followed, in some cases (e.g., "F" vent at EPR 9° N), by the appearance of brines. We provide a simplified treatment of two-phase flow of seawater near a dike in an effort to quantify the thickness and duration of the two-phase zone, the amount of brine formed, and its distribution in the subsurface. We first estimate these parameters by considering simple conductive cooling of the dike. This approach shows that for a two-meter wide dike, the width of the two-phase zone is approximately 15 cm and that a zone of halite is deposited near the dike wall. After 10 days, the two-phase zone has disappeared at the base of the dike, and disappears everywhere else after about 15 days. We then use a simplified buoyancy driven convection model to quantify the degree of phase segregation and the distribution of brine. The results of this simplified model are compared with data from "F" vent. This approach provides semi-quantitative and conceptual constraints on numerical models for two-phase convection in NaCl-H2O fluids.
Leonardo, Lydia; Rivera, Pilarita; Saniel, Ofelia; Villacorte, Elena; Lebanan, May Antonnette; Crisostomo, Bobby; Hernandez, Leda; Baquilod, Mario; Erce, Edgardo; Martinez, Ruth; Velayudhan, Raman
2012-01-01
For the first time in the country, a national baseline prevalence survey using a well-defined sampling design such as a stratified two-step systematic cluster sampling was conducted in 2005 to 2008. The purpose of the survey was to stratify the provinces according to prevalence of schistosomiasis such as high, moderate, and low prevalence which in turn would be used as basis for the intervention program to be implemented. The national survey was divided into four phases. Results of the first two phases conducted in Mindanao and the Visayas were published in 2008. Data from the last two phases showed three provinces with prevalence rates higher than endemic provinces surveyed in the first two phases thus changing the overall ranking of endemic provinces at the national level. Age and sex distribution of schistosomiasis remained the same in Luzon and Maguindanao. Soil-transmitted and food-borne helminthes were also recorded in these surveys. This paper deals with the results of the last 2 phases done in Luzon and Maguindanao and integrates all four phases in the discussion. PMID:22518170
Waves in stratified geomaterials with sliding layers
NASA Astrophysics Data System (ADS)
Pasternak, Elena; Dyskin, Arcady
2016-04-01
Wave propagation in stratified geomaterials with sliding layers is strongly anisotropic. The simplest representation of this behaviour is an elastic transverse-isotropic (orthotropic in 2D) continuum. Such a model is however only applicable when loading that is sufficiently uniform or when the wavelength is much larger than the layer thickness. In this case the stress non-uniformity over the layer thickness and the associated layer bending can be neglected. In an intermediate case when the wavelength is still higher than the layer thickness but not as high to neglect the stress non-uniformity at least bending moments and layer bending need to be taken into account. This is equivalent to retaining only the linear term of the normal stress variation over the layer thickness. The layer bending creates additional, rotational degrees of freedom. In 2D only one rotational degree of freedom exists, which considerably simplifies the modelling. The corresponding rotation is represented by the average gradient of layer deflection. The presence of rotations makes the stress tensor non-symmetrical. On top of that the rotation gradient creates moment stresses, which represent bending moments over the unit area in the layer cross-section. This requires the use of a 2D orthotropic Cosserat continuum to model the dynamics of such a stratified geomaterial. We show that in the stratified geomaterial shear-bending waves propagate. We determine the wave velocities and demonstrate that as the resistance to sliding reduces, the waves tend to localise over a line normal to the layering.
Stably stratified canopy flow in complex terrain
NASA Astrophysics Data System (ADS)
Xu, X.; Yi, C.; Kutter, E.
2015-07-01
Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.
DSMC simulation of two-phase plume flow with UV radiation
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling
2014-12-01
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Experimental and Analytical Study of Two-Phase Flow in Microgravity
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Abdollahian, Davood; Quintal, J.; Zahm, J.
1996-01-01
Design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer parameters in reduced gravities. A program has been initiated by NASA to design a two-phase test loop and to perform a series of experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop is also instrumented to generate data for two-phase pressure drop. In addition to low gravity airplane trajectory testing, the experimental program consisted of a set of laboratory tests which were intended to generate data under the bounding conditions (+1 g and -1 g) in order to plan the test matrix. One set of airplane trajectory tests has been performed and several modifications to the test set-up have been identified. Preliminary test results have been used to demonstrate the applicability of the earth gravity models for prediction of the two-phase friction pressure drop.
Gas-liquid two-phase flow across a bank of micropillars
NASA Astrophysics Data System (ADS)
Krishnamurthy, Santosh; Peles, Yoav
2007-04-01
Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.
A new two-phase erosion-deposition model for mass flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.; Fischer, Jan-Thomas
2016-04-01
Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Two-phase performance of scale models of a primary coolant pump. Final report
Kamath, P.S.; Swift, W.L.
1982-09-01
Scale models of PWR primary coolant pumps were tested in steady and transient two-phase flows in order to generate a data base to aid in the development and assessment of pump performance models for use in computer codes for the analysis of postulated Loss-of-Coolant Accidents (LOCA). This report summarizes and unifies the single and two-phase air/water and steam/water performance data on the relatively high specific speed pumps (4200 rpm (US gpm) /sup 1/2//ft /sup 3/4/) tested in these programs. These data are compared with those acquired from tests on the lower specific speed Semiscale pump (926 rpm (US gpm)/sup 1/2//ft/sup 3/4/) to better understand the mechanism of performance degradation with increasing void fraction. The study revealed that scaling down the size of the pump while maintaining the same design specific speed produces very similar performance characteristics both in single and two-phase flows. Effects due to size and operating speed were not discernible within the range of test conditions and within experimental uncertainties. System pressure appears to affect the rate of degradation as a function of void fraction. The report includes a survey of the existing two-phase pump performance correlations. A correlation synthesized from the B and W, C-E and Creare two-phase data is also presented.
Rheology of two-phase systems: A microphysical and observational approach
NASA Astrophysics Data System (ADS)
Platt, John P.
2015-08-01
Ductile shear zones commonly contain distinctive bands of high strain rock characterized by intimately mixed fine-grained two-phase or polyphase material. These ultramylonite bands are weaker than the surrounding material, and may play a critical role in strain localization. How such zones develop, how the phases become evenly dispersed, the bulk rheology, and the controls on grain size, are all unclear. The following generic scenario may resolve some of these questions. 1) Dislocation creep and dynamic recrystallization cause grain-size reduction: commonly, the recrystallized grain sizes of the two phases differ. 2) Grain size reduction causes a switch to grain-boundary diffusion creep, which requires grain-boundary sliding. Diffusion allows one phase to fill spaces that open between grains of the other: this will happen most rapidly in the finer-grained phase. The grain size of the resulting mixture is therefore controlled by that of the finer-grained phase. This leads to mixing and dispersion of the two phases, producing a fine-grained, evenly dispersed two-phase aggregate. 3) The bulk rheology will be controlled by grain-boundary diffusion creep of the two phases, with the grain size controlled by the finer-grained phase. Bulk flow laws can be developed for quartz-feldspar and olivine-orthopyroxene ultramylonites based on these concepts, using appropriate mixing laws.
Zero-G two phase flow regime modeling in adiabatic flow
NASA Astrophysics Data System (ADS)
Reinarts, Thomas R.; Best, Frederick R.; Wheeler, Montgomery; Miller, Katheryn M.
1993-01-01
Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow regime analysis. The data come from a recent sets of experiments. The experiments were funded by NASA Johnson Space Center (JSC) and conducted by NASA JSC with Texas A&M University. The experiment was on loan to NASA JSC from Foster-Miller, Inc., who constructed it with funding from the Air Force Phillips Laboratory. The experiment used R12 as the working fluid. A Foster-Miller two phase pump was used to circulate the two phase mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown 19 times for 577 parabolas aboard the NASA KC-135 aircraft which simulates zero-G conditions by its parabolic flight trajectory. Test conditions included bubbly, slug and annular flow regimes in 0-G. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes and several flow regime transition predictions. None of the predictions completely describe the transitions as indicated by the data.
DSMC simulation of two-phase plume flow with UV radiation
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling
2014-12-09
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Multi-needle capacitance probe for non-conductive two-phase flows
NASA Astrophysics Data System (ADS)
Monrós-Andreu, G.; Martinez-Cuenca, R.; Torró, S.; Escrig, J.; Hewakandamby, B.; Chiva, S.
2016-07-01
Despite its variable degree of application, intrusive instrumentation is the most accurate way to obtain local information in a two-phase flow system, especially local interfacial velocity and local interfacial area parameters. In this way, multi-needle probes, based on conductivity or optical principles, have been extensively used in the past few decades by many researchers in two-phase flow investigations. Moreover, the signal processing methods used to obtain the time-averaged two-phase flow parameters in this type of sensor have been thoroughly discussed and validated by many experiments. The objective of the present study is to develop a miniaturized multi-needle probe, based on capacitance measurements applicable to a wide range of non-conductive two-phase flows and, thus, to extend the applicability of multi-needle sensor whilst also maintaining a signal processing methodology provided in the literature for conductivity probes. Results from the experiments performed assess the applicability of the proposed sensor measurement principle and signal processing method for the bubbly flow regime. These results also provide an insight into the sensor application for more complex two-phase flow regimes.
New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions
NASA Astrophysics Data System (ADS)
Braisted, Jon; Kurwitz, Cable; Best, Frederick
2004-02-01
The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.
Deledicque, Vincent; Papalexandris, Miltiadis V.
2008-11-10
In this article, we present and analyze a conservative approximation to reduced one-pressure one-velocity models for compressible two-phase flows that contain non-conservative products. This approximation is valid when certain material properties of the two phases are considerably different from each other. Although it cannot be applied to arbitrary mixtures, it is applicable to many heterogeneous mixtures of technological interest. Herein, we derive the Rankine-Hugoniot relations and Riemann invariants for the homogeneous part of the proposed model and develop an exact Riemann solver for it. Further, we investigate the structure of the steady two-phase detonation waves, with inert or reactive solid particles, admitted by the proposed model. Comparisons with the corresponding gaseous detonations are also made. Moreover, we derive a lower limit for the propagation speed of steady two-phase detonations in the case of reactive particles. At the limiting case of very dilute mixtures, this minimum speed tends to the Chapman-Jouguet velocity of gaseous detonations. Finally, we report on numerical simulations of the transmission of a purely gaseous detonation to heterogeneous mixtures containing inert or reactive solid particles. The effect of the solid particles on the structure of the resulting two-phase detonation is discussed in detail.
Scaling of Two-Phase Flows to Partial-Earth Gravity
NASA Technical Reports Server (NTRS)
Hurlbert, Kathryn M.; Witte, Larry C.
2003-01-01
A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.
White dwarf stars with chemically stratified atmospheres
NASA Technical Reports Server (NTRS)
Muchmore, D.
1982-01-01
Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.
A Filtering Method For Gravitationally Stratified Flows
Gatti-Bono, Caroline; Colella, Phillip
2005-04-25
Gravity waves arise in gravitationally stratified compressible flows at low Mach and Froude numbers. These waves can have a negligible influence on the overall dynamics of the fluid but, for numerical methods where the acoustic waves are treated implicitly, they impose a significant restriction on the time step. A way to alleviate this restriction is to filter out the modes corresponding to the fastest gravity waves so that a larger time step can be used. This paper presents a filtering strategy of the fully compressible equations based on normal mode analysis that is used throughout the simulation to compute the fast dynamics and that is able to damp only fast gravity modes.
Diffuse reflection coefficient of a stratified sea.
Haltrin, V I
1999-02-20
A differential equation of a Riccati type for the diffuse reflection coefficient of a stratified sea is proposed. For a homogeneous sea with arbitrary inherent optical properties this equation is solved analytically. For an inhomogeneous sea it is solved approximately for any arbitrary stratification. The resulting equation expresses the diffuse reflection coefficient of the sea through vertical profiles of absorption and backscattering coefficients, bottom albedo, and sea depth. The results of calculations with this equation are compared with Monte Carlo computations. It was found that the precision of this approach is in the range of 15%. PMID:18305694
Internal wave solitons. [in stratified fluids
NASA Technical Reports Server (NTRS)
Meiss, J. D.; Pereira, N. R.
1978-01-01
Attention is given to the Benjamin-Ono equation for waves within a stratified fluid, i.e., internal waves. Numerical computations indicate soliton-like behavior since solitary waves pass through each other upon collision. In addition, two and three Lorentzian solitons are noted to pass through one another. An initial Lorentzian having an amplitude larger than soliton amplitude is observed to decay into solitons. The velocities of these solitons may be predicted by conservation laws. Future work will be directed toward determining exact solutions.
Huang, Ying
2016-07-01
Two-phase sampling design, where biomarkers are subsampled from a phase-one cohort sample representative of the target population, has become the gold standard in biomarker evaluation. Many two-phase case-control studies involve biased sampling of cases and/or controls in the second phase. For example, controls are often frequency-matched to cases with respect to other covariates. Ignoring biased sampling of cases and/or controls can lead to biased inference regarding biomarkers' classification accuracy. Considering the problems of estimating and comparing the area under the receiver operating characteristics curve (AUC) for a binary disease outcome, the impact of biased sampling of cases and/or controls on inference and the strategy to efficiently account for the sampling scheme have not been well studied. In this project, we investigate the inverse-probability-weighted method to adjust for biased sampling in estimating and comparing AUC. Asymptotic properties of the estimator and its inference procedure are developed for both Bernoulli sampling and finite-population stratified sampling. In simulation studies, the weighted estimators provide valid inference for estimation and hypothesis testing, while the standard empirical estimators can generate invalid inference. We demonstrate the use of the analytical variance formula for optimizing sampling schemes in biomarker study design and the application of the proposed AUC estimators to examples in HIV vaccine research and prostate cancer research. PMID:26883772
Huang, Ying
2016-01-01
Two-phase sampling design, where biomarkers are subsampled from a phase-one cohort sample representative of the target population, has become the gold standard in biomarker evaluation. Many two-phase case–control studies involve biased sampling of cases and/or controls in the second phase. For example, controls are often frequency-matched to cases with respect to other covariates. Ignoring biased sampling of cases and/or controls can lead to biased inference regarding biomarkers' classification accuracy. Considering the problems of estimating and comparing the area under the receiver operating characteristics curve (AUC) for a binary disease outcome, the impact of biased sampling of cases and/or controls on inference and the strategy to efficiently account for the sampling scheme have not been well studied. In this project, we investigate the inverse-probability-weighted method to adjust for biased sampling in estimating and comparing AUC. Asymptotic properties of the estimator and its inference procedure are developed for both Bernoulli sampling and finite-population stratified sampling. In simulation studies, the weighted estimators provide valid inference for estimation and hypothesis testing, while the standard empirical estimators can generate invalid inference. We demonstrate the use of the analytical variance formula for optimizing sampling schemes in biomarker study design and the application of the proposed AUC estimators to examples in HIV vaccine research and prostate cancer research. PMID:26883772
Ong, C.L.; Thome, J.R.
2011-01-15
The classification of macroscale, mesoscale and microscale channels with respect to two-phase processes is still an open question. The main objective of this study focuses on investigating the macro-to-microscale transition during flow boiling in small scale channels of three different sizes with three different refrigerants over a range of saturation conditions to investigate the effects of channel confinement on two-phase flow patterns and liquid film stratification in a single circular horizontal channel (Part 2 covers the flow boiling heat transfer and critical heat flux). This paper presents the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness comparison for refrigerants R134a, R236fa and R245fa during flow boiling in small channels of 1.03, 2.20 and 3.04 mm diameter. Based on this work, an improved flow pattern map has been proposed by determining the flow patterns transitions existing under different conditions including the transition to macroscale slug/plug flow at a confinement number of Co {approx} 0.3-0.4. From the top/bottom liquid film thickness comparison results, it was observed that the gravity forces are fully suppressed and overcome by the surface tension and shear forces when the confinement number approaches 1, Co {approx} 1. Thus, as a new approximate rule, the lower threshold of macroscale flow is Co = 0.3-0.4 while the upper threshold of symmetric microscale flow is Co {approx} 1 with a transition (or mesoscale) region in-between. (author)
A numerical study of two-phase flow in gas turbine combustors
NASA Astrophysics Data System (ADS)
Tolpadi, A. K.
1992-07-01
A method is presented for computing steady two-phase turbulent combusting flow in a gas turbine combustor. The gas phase equations are solved in an Eulerian frame of reference. The two-phase calculations are performed by using a liquid droplet spray combustion model and treating the motion of the evaporating fuel droplets in a Lagrangian frame of reference. The numerical algorithm employs nonorthogonal curvilinear coordinates, a multigrid iterative solution procedure, the standard k-epsilon turbulence model, and a combustion model made up of an assumed shape probability density function and the conserved scalar formulation. The trajectory computation of the fuel provides the source terms for all the gas phase equations. Results of the application of the two-phase model to a modern GE/SNECMA single annular CFM56 turbofan engine combustor are reported.
Reduced-gravity two-phase flow experiments in the NASA KC-135
NASA Technical Reports Server (NTRS)
Cuta, Judith M.; Michener, Thomas E.; Best, Frederick R.; Kachnik, Leo J.
1988-01-01
An adequate understanding is sought of flow and heat transfer behavior in reduced and zero gravity conditions. Microgravity thermal-hydraulic analysis capabilities were developed for application to space nuclear power systems. A series of reduced gravity two phase flow experiments using the NASA KC-135 were performed. The objective was to supply basic thermal hydraulic information that could be used in development of analytical tools for design of space power systems. The experiments are described. Two main conclusions were drawn. First, the tests demonstrate that the KC-135 is a suitable test environment for obtaining two phase flow and heat transfer data in reduced gravity conditions. Second, the behavior of two phase flow in low gravity is sufficiently different from that obtained in 1 g to warrant intensive investigation of the phenomenon if adequate analytical tools are to be developed for microgravity conditions.
Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants
NASA Astrophysics Data System (ADS)
Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon
2014-11-01
Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.
Adaptive sampling in two-phase designs: a biomarker study for progression in arthritis
McIsaac, Michael A; Cook, Richard J
2015-01-01
Response-dependent two-phase designs are used increasingly often in epidemiological studies to ensure sampling strategies offer good statistical efficiency while working within resource constraints. Optimal response-dependent two-phase designs are difficult to implement, however, as they require specification of unknown parameters. We propose adaptive two-phase designs that exploit information from an internal pilot study to approximate the optimal sampling scheme for an analysis based on mean score estimating equations. The frequency properties of estimators arising from this design are assessed through simulation, and they are shown to be similar to those from optimal designs. The design procedure is then illustrated through application to a motivating biomarker study in an ongoing rheumatology research program. Copyright © 2015 © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25951124
Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model
NASA Astrophysics Data System (ADS)
Luo, Y.; Zuo, Z. G.; Liu, S. H.; Fan, H. G.; Zhuge, W. L.
2013-12-01
The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k-ɛ turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling.
Dynamics of face and annular seals with two-phase flow
NASA Technical Reports Server (NTRS)
Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen
1988-01-01
A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized.
Numerical analysis of critical two-phase flow in a convergent-divergent nozzle
Romstedt, P.; Werner, W.
1986-01-01
The numerical calculation of critical two-phase flow in a convergent-divergent nozzle is complicated by a singularity of the fluid flow equations at the unknown critical point. A method of calculating critical state and its location without any additional assumptions is described. The critical state is identified by its mathematical properties: characteristics and solvability of linear systems with a singular matrix. Because the numerically estimable mathematical properties are the only necessary conditions for the existence of critical flow, some physical ''compatibility criteria'' (flow velocity equals model-consistent two-phase sonic velocity; critical flow is independent of downstream flow state variations) are used as substitutes for mathematically sufficient conditions. Numerical results are shown for the critical flow through LOBI nozzles and for the Super Moby Dick experiment. The two-phase flow is described by a model with equal phase velocities and thermodynamic nonequilibrium.
Film boiling from spheres in single- and two-phase flow
Liu, C.; Theofanous, T.G.; Yuen, W.W.
1992-01-01
Experimental data on film boiling heat transfer from single, inductively heated, spheres in single- and two-phase flow (saturated water and steam, respectively) are presented. In the single-phase-flow experiments water velocities ranged from 0.1 to 2.0 m/s; in the two-phase-flow experiments superficial water and steam velocities covered 0.1 to 0.6 m/s and 4 to 10 m/s, respectively. All experiments were run at atmospheric pressure and with sphere temperatures from 900C down to quenching. Limited interpretations of the single-phase- flow data are possible, but the two-phase-flow data are new and unique.
Film boiling from spheres in single- and two-phase flow
Liu, C.; Theofanous, T.G.; Yuen, W.W.
1992-10-01
Experimental data on film boiling heat transfer from single, inductively heated, spheres in single- and two-phase flow (saturated water and steam, respectively) are presented. In the single-phase-flow experiments water velocities ranged from 0.1 to 2.0 m/s; in the two-phase-flow experiments superficial water and steam velocities covered 0.1 to 0.6 m/s and 4 to 10 m/s, respectively. All experiments were run at atmospheric pressure and with sphere temperatures from 900C down to quenching. Limited interpretations of the single-phase- flow data are possible, but the two-phase-flow data are new and unique.
NASA Astrophysics Data System (ADS)
Cheng, Y.; Pothos, S.; Diez, F. J.
2010-12-01
A phase discrimination method for two-phase PIV is presented that is capable of simultaneously separating the two phases from time-resolved stereoscopic PIV images taken in a particle-laden jet. The technique developed expands on previous work done by Khalitov and Longmire (Exp Fluids 32:252-268, 2002), where by means of image processing techniques, a raw two-phase PIV image can be separated into two single-phase images according to particle size and intensity distributions. The technique is expanded through the use of three new image processing algorithms to separate particles of similar size (up to an order of magnitude better than published work) for fields of view much larger than previously considered. It also addresses the known problem of noisy background images produced by high-speed CMOS cameras, which makes the particle detection and separation from the noisy background difficult, through the use of a novel fast Fourier transform background filter.
Device for measuring the fluid density of a two-phase mixture
Cole, Jack H.
1980-01-01
A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.
Chirality Separation of Single-Wall Carbon Nanotubes using Aqueous Two-Phase Extraction
NASA Astrophysics Data System (ADS)
Fagan, Jeffrey
2014-03-01
Aqueous two-phase extraction (ATPE) was recently demonstrated to enable the separation of individual species of single-wall carbon nanotubes (SWCNTs) across the separated phases. In this presentation I will describe the use of a dextran - polyethylene glycol aqueous two-phase system along with a separation scheme of varying surfactant concentrations to enable isolation at high purity of specific small diameter SWCNT species. Separation by ATPE is rapid and robust, with a remarkable tunability that allows isolation of most single nanotube chiralities at high purity. Choice of surfactant(s), temperature, polymer concentrations, and the addition of small molecule salts can all be used to tune the exact partitioning of single SWCNT species between the two phases.
Entropy analysis on non-equilibrium two-phase flow models
Karwat, H.; Ruan, Y.Q.
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
The Two-Phase Hell-Shaw Flow: Construction of an Exact Solution
NASA Astrophysics Data System (ADS)
Malaikah, K. R.
2013-03-01
We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem
Two-phase flow characterization for fluid components and variable gravity conditions
NASA Technical Reports Server (NTRS)
Dzenitis, John M.; Miller, Kathryn M.
1992-01-01
This paper describes a program initiated by the NASA Johnson Space Center to investigate vapor-liquid flow regimes and pressure drops in pipe components and variable gravity conditions. This program supports the Space Station Freedom External Active Thermal Control System design and future space missions, including the Space Exploration Initiative activities. The objectives for this program include studying two-phase flow behavior in fluid components (smooth pipes, bellows lines, quick-disconnect fittings), expanding the two-phase database for zero-g conditions, developing a database for low-g conditions (for example, Moon-g, Mars-g), and validating models for two-phase flow analyses. Zero-g and low-g data will be gathered using a Freon-12 flow loop during four test series on the KC-135 aircraft beginning in August 1991.
Transition phenomena in unstably stratified turbulent flows.
Bukai, M; Eidelman, A; Elperin, T; Kleeorin, N; Rogachevskii, I; Sapir-Katiraie, I
2011-03-01
We study experimentally and theoretically the transition phenomena caused by external forcing from Rayleigh-Bénard convection with large-scale circulation (LSC) to the limiting regime of unstably stratified turbulent flow without LSC, where the temperature field behaves like a passive scalar. In the experiments we use the Rayleigh-Bénard apparatus with an additional source of turbulence produced by two oscillating grids located near the sidewalls of the chamber. When the frequency of the grid oscillations is larger than 2 Hz, the LSC in turbulent convection is destroyed, and the destruction of the LSC is accompanied by a strong change of the mean temperature distribution. However, in all regimes of the unstably stratified turbulent flow the ratio [(ℓ{x}∇{x}T)²+(ℓ{y}∇{y}T)² + (ℓ{z}∇{z}T)²]/<θ²> varies slightly (even in the range of parameters where the behavior of the temperature field is different from that of the passive scalar). Here ℓ{i} are the integral scales of turbulence along the x,y,z directions, and T and θ are the mean and fluctuating parts of the fluid temperature. At all frequencies of the grid oscillations we have detected long-term nonlinear oscillations of the mean temperature. The theoretical predictions based on the budget equations for turbulent kinetic energy, turbulent temperature fluctuations, and turbulent heat flux, are in agreement with the experimental results. PMID:21517582
Stratified coastal ocean interactions with tropical cyclones.
Glenn, S M; Miles, T N; Seroka, G N; Xu, Y; Forney, R K; Yu, F; Roarty, H; Schofield, O; Kohut, J
2016-01-01
Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963
SNOHATS: Stratified atmospheric turbulence over snow surfaces
NASA Astrophysics Data System (ADS)
Parlange, M. B.; Bou-Zeid, E.; Huwald, H.; Chamecki, M.; Meneveau, C.
2006-12-01
Stably stratified flows present particular challenges for both experimental and numerical studies of the atmosphere and its interaction with the underlying surfaces. Turbulence damping and gravity waves are just two examples of stable flow features that complicate the application of turbulence similarity theories and the formulation of effective turbulence models for subgrid-scales in Large Eddy Simulation (LES). To address these concerns, a field study (SNOHATS) was held at the extensive "Plaine-Morte" glacier in the Swiss Alps (3000 m) from February to April 2006. The snow covered surface is constantly colder than the air guaranteeing stable conditions over long periods. Two horizontal arrays of vertically separated 3D sonic anemometers were deployed. This setup was specifically designed to measure subgrid scale fluxes (upwind uninterrupted fetch of 2 km) and then to assess the success of various models in reproducing these fluxes. We first study the influence of stratification on the spectra and co-spectra of velocity and temperature. Then, we compare dissipation computed using the second order and third order structure functions to the SGS dissipation. Subsequently, the eddy viscosity subgrid scale model is assessed for LES of stably stratified atmospheric flows. Specifically, we measure the Smagorinsky coefficient and the SGS turbulent Prandtl number by matching measured and modeled dissipation rates. Finally, we present the dependence of these coefficients on stability, height above the ground, filter size, and strain rates. Results are compared to previously reported data for stable flows over soil surfaces (HATS, Kleissl et al., 2004; Horst et al., 2004).
Jet-mixing of initially stratified flows
NASA Astrophysics Data System (ADS)
Wright, Stuart; Markides, Christos; Matar, Omar
2015-11-01
Low pipeline velocities in the oil-and-gas industry generally lead to liquid-liquid flows stratifying due to density differences. Pipeline stratified flows inherently have no single point for sub-sampling and phase slip leads to in situ phase fractions differing from input volume fractions. Establishing representative or average properties and phase fractions is therefore difficult for industry. This leads to sampling errors through measurement uncertainty. In-line mixing overcomes liquid-liquid stratification, establishing a liquid-liquid dispersion that minimises slip between phases. Here, we use jets-in-crossflow (JICF) as a means of mixing. We present results of CFD simulations using the volume-of- fluid method that demonstrate the breakup of stratification as a result of the application of JICF. A number of simple jet configurations are described, and their effectiveness in generating dispersions is compared. We also present preliminary experimental results based on the use of a matched-refractive-index method, laser-induced fluorescence, particle-tracking- and particle-image-velocimetry. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.
Stratified coastal ocean interactions with tropical cyclones
NASA Astrophysics Data System (ADS)
Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.
2016-03-01
Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward.
High frequency scattering from corrugated stratified cylinders
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Ulaby, Fawwaz T.
1991-01-01
Interest in applying radar remote sensing for the study of forested areas led to the development of a model for scattering from corrugated stratified dielectric cylinders. The model is used to investigate the effect of bark and its roughness on scattering from tree trunks and branches. The outer layer of the cylinder (bark) is assumed to be a low-loss dielectric material and to have a regular (periodic) corrugation pattern. The inner layers are treated as lossy dielectrics with smooth boundaries. A hybrid solution based on the moment method and the physical optics approximation is obtained. In the solution, the corrugations are replaced with polarization currents that are identical to those of the local tangential periodic corrugated surface, and the stratified cylinder is replaced with equivalent surface currents. New expressions for the equivalent physical-optics currents are used which are more convenient than the standard ones. It is shown that the bark layer and its roughness both reduce the radar cross-section. It is also demonstrated that the corrugations can be replaced by an equivalent anisotropic layer.
Stratified coastal ocean interactions with tropical cyclones
Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.
2016-01-01
Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963
Energy transfer in stably stratified turbulence
NASA Astrophysics Data System (ADS)
Kimura, Yoshifumi; Herring, Jackson
2015-11-01
Energy transfer in forced stable stratified turbulence is investigated using pseudo-spectral DNS of the Navier-Stokes equations under the Boussinesq approximation with 10243 grid points. Making use of the Craya-Herring decomposition, the velocity field is decomposed into vortex (Φ1) and wave (Φ2) modes. To understand the anisotropy of stably stratified turbulence, the energy flues in terms of the spherical, the horizontal and the vertical wave numbers, are investigated for the total kinetic, Φ1, Φ2 energies, respectively. Among the three fluxes, the spherical and the horizontal look similar for strong stratification, and Φ1 flux shows a wave number region of constant value, which implies Kolmogorov's inertial range. The corresponding spectral power are, however, k - 5 / 2 for the spherical and k⊥- 5 / 3 for the horizontal cases. In contrast to these, the vertical energy fluxes show completely different features. We have observed the saturation spectrum E (kz) ~ CN2kz-3 for strong stratification as before, but the mechanism to produce this spectrum seems different from the Kolmogorov picture.
Stochastic Discrete Equation Method (sDEM) for two-phase flows
Abgrall, R.; Congedo, P.M.; Geraci, G.; Rodio, M.G.
2015-10-15
A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.
Interfacial area transport across vertical elbows in air-water two-phase flow
NASA Astrophysics Data System (ADS)
Yadav, Mohan Singh
The accurate prediction of two-phase flow using the two-fluid model requires closure relations for the interfacial area concentration ( ai), which can be provided by the interfacial area transport equation (IATE). Models have been developed for the IATE in straight pipe geometries. However, to analyze practical systems, it is important that the IATE accounts for flows in pipes with varying orientation that are interconnected via different flow restrictions. In view of this, the current study performs experiments to investigate the geometric effects of 90- degree vertical elbows in air-water two-phase flows and develops a one-group IATE applicable to vertical-upward-to-horizontal two-phase flows. The experimental facility consists of both vertical and horizontal sections constructed from 50.8 mm inner diameter acrylic pipes that are interconnected via 90-degree glass elbows. The elbows have a radius of curvature of Rc/D = 3 and are installed at L/D = 63 and 244.7 from the inlet. Experiments are performed to characterize the elbow-effect on both global and local two-phase flow parameters. A four-sensor conductivity probe is used to acquire detailed measurements of local two-phase flow parameters at thirteen axial locations along the test section in eight flow conditions that are within the bubbly flow regime at inlet. The measurements show that in bubbly flow conditions, the vertical-upward elbow causes a characteristic bimodal-type bubble distribution and the change in this distribution farther downstream of the elbow corresponds to the dissipation of the elbow-effects. In view of developing the IATE for vertical-upward to horizontal two-phase flows, predictive models for the dissipation length of the elbow-effect and closure relations for advection of gas-phase, pressure loss, and covariance of bubble interactions are developed. The new models are evaluated against the current experimental database. Overall, the model predictions agree with the data within +/-7
Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab
NASA Technical Reports Server (NTRS)
North, B. F.; Hill, M. E.
1980-01-01
Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.
Conduction in a two-phase plane with diamond-shaped tiling
NASA Astrophysics Data System (ADS)
Helsing, Johan; Grimvall, Göran; Bao, Ke-da
1991-07-01
The effective conductivity of a two-phase two-dimensional composite with diamond-shaped tiling is considered. This analysis, based on a projection of the boundary conditions on linear combinations of solutions to the electrostatic equation that are orthonormal on the boundary, generalizes results by Keller [J. Math. Phys. 28, 2516 (1987)] and others. Numerical results are given for several conductivity ratios of the two phases and for varying obtuse angles of the tiles. Special emphasis is given to very large and very small conductivity differences, and very elongated tiles.
Characterization of annular two-phase gas-liquid flows in microgravity
NASA Technical Reports Server (NTRS)
Bousman, W. Scott; Mcquillen, John B.
1994-01-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
Modeling of two-phase flow in manifolds under microgravity conditions
NASA Astrophysics Data System (ADS)
Young, Cale; Best, Frederick; Kurwitz, Cable
1999-01-01
The distribution of a microgravity two-phase flow throughout a manifold system consisting of two parallel flow headers joined by branching conduits was modeled. Adiabatic conditions were assumed. The two-phase flow was modeled using the homogeneous equilibrium model for pressure changes, along with a previously developed phase separation equation, which describes the phase redistribution at a dividing T-junction. An iterative numerical method for calculating the mass flow rate, flow quality, and pressure associated with the flow throughout a manifold was developed.
Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code
Ortiz-Ramirez, Jaime
1983-06-01
A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.
Dynamics of face and annular seals with two-phase flow
NASA Technical Reports Server (NTRS)
Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen
1989-01-01
A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the
Two-phase flow stability structure in a natural circulation system
Zhou, Zhiwei
1995-09-01
The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.
Hierarchy of two-phase flow models for autonomous control of cryogenic loading operation
NASA Astrophysics Data System (ADS)
Luchinskiy, Dmitry G.; Ponizovskaya-Devine, Ekaterina; Hafiychuk, Vasyl; Kashani, Ali; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara
2015-12-01
We report on the development of a hierarchy of models of cryogenic two-phase flow motivated by NASA plans to develop and maturate technology of cryogenic propellant loading on the ground and in space. The solution of this problem requires models that are fast and accurate enough to identify flow conditions, detect faults, and to propose optimal recovery strategy. The hierarchy of models described in this presentation is ranging from homogeneous moving- front approximation to separated non-equilibrium two-phase cryogenic flow. We compare model predictions with experimental data and discuss possible application of these models to on-line integrated health management and control of cryogenic loading operation.
Two phase flow in geothermal systems. Final report, April 1, 1984-March 31, 1985
Maeder, P.F.; Kestin, J.
1985-04-01
Studies were performed to better understand the physical mechanisms involved in two-phase, single substance flow and their thermodynamic and fluid-dynamic implications. Flow properties were measured over a wide range of flow conditions from low-flash Mach number to high-flash Mach numbers to simulate actual two-phase flow over the full length of a geothermal well from the flash horizon to the choked wellhead. Void fraction, friction factors and entropy production were calculated. 2 refs., 12 figs. (ACR)
Film boiling on spheres in single- and two-phase flows.
Liu, C.; Theofanous, T. G.
2000-08-29
Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.
NASA Astrophysics Data System (ADS)
Wijethunga, Pavithra A. L.; Moon, Hyejin
2015-09-01
Aqueous two-phase systems (ATPSs) allow an advantageous aqueous two-phase extraction process (ATPE), a special type of liquid-liquid extraction. Compared with conventional liquid-liquid extraction using aqueous/organic extraction media, ATPE is known to provide relatively easy mass transfer and a gentle environment for biological separation applications. Considering the recent interest in microscale ATPE, we aimed to study (i) the potential of preparing ATPS droplets on a digital microfluidic device, and (ii) the influence of the fluidic dynamics created during the formation of ATPS, with the goal of enhancing on-chip ATPE process. On-chip ATPS formation was evaluated by preparing a series of ATPSs on electrowetting on dielectric digital microfluidic chips and comparing their characteristics with the same ATPSs prepared at macroscale using conventional procedures. An enhanced on-chip drop-to-drop ATPE process was achieved by incorporating a self-mixing condition created during ATPSformation. Results indicate a successful on-chip ATPS preparation as well as enhanced extraction performance by self-mixing in the absence of forced mixing. Findings of this research suggest an alternative, simple, yet adequate technique to provide mixing for on-chip applications, such as sample preparation in portable microfluidics, for which it is unfavorable to implement complicated mixing sequences or complex device geometries.
Rank 0 invariant solutions of dynamics of two-phase medium
NASA Astrophysics Data System (ADS)
Panov, Alexandr
2016-08-01
A system of partial differential equations which describes dynamics of two-phase medium is considered. Lie algebra of symmetry group of this system was found. For some 4-dimensional subalgebras of invariant solutions is found. All other 4-dimensional subalgebras will give only partial invariant solutions of this system.
Generating a Two-Phase Lesson for Guiding Beginners to Learn Basic Dance Movements
ERIC Educational Resources Information Center
Yang, Yang; Leung, Howard; Yue, Lihua; Deng, Liqun
2013-01-01
In this paper, an automated lesson generation system for guiding beginners to learn basic dance movements is proposed. It analyzes the dance to generate a two-phase lesson which can provide a suitable cognitive load thus offering an efficient learning experience. In the first phase, the dance is divided into small pieces which are patterns, and…
Conservative model and numerical simulations of compressible two-phase pipe flows
NASA Astrophysics Data System (ADS)
Belozerov, A.; Romenski, E.; Lebedeva, N.
2016-06-01
The two-phase two-pressure model for transient one-dimensional compressible pipe flow is considered. Governing equations of the model form a hyperbolic system of conservation laws. The Runge-Kutta-WENO method providing accuracy of the 3rd order in time and 5th order in space is implemented. Numerical results for several test problems are presented.
Calculating the hydraulic characteristics of two-phase-helium circulation systems
NASA Astrophysics Data System (ADS)
Gorbachev, S. P.
1981-09-01
An approximate analytical solution is obtained for calculating the pressure drop in the flows of a boiling two-phase liquid in a heated channel. The dependence of the maximum temperature in the channel on the rate of flow of the cryogenic fluid is determined.
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
NASA Astrophysics Data System (ADS)
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop
NASA Technical Reports Server (NTRS)
Jain, K. C.
1969-01-01
Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.
An analytic study of a two-phase laminar airfoil in simulated heavy rain
NASA Technical Reports Server (NTRS)
Hsu, Yu-Kao
1993-01-01
A mathematical model for a two-phase flow laminar airfoil in simulated heavy rain has been established. The set of non-linear partial differential equations has been converted into a set of finite difference equations; appropriate initial and boundary conditions are provided. The numerical results are compared with the experimental measurements. They show good agreement in quality.
Forced two-phase helium cooling scheme for the Mu2e transport solenoid
NASA Astrophysics Data System (ADS)
Tatkowski, G.; Cheban, S.; Dhanaraj, N.; Evbota, D.; Lopes, M.; Nicol, T.; Sanders, R.; Schmitt, R.; Voirin, E.
2015-12-01
The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids.
MONA: An accurate two-phase well flow model based on phase slippage
Asheim, H.
1984-10-01
In two phase flow, holdup and pressure loss are related to interfacial slippage. A model based on the slippage concept has been developed and tested using production well data from Forties, the Ekofisk area, and flowline data from Prudhoe Bay. The model developed turned out considerably more accurate than the standard models used for comparison.
Joint X-Ray and Holographic Diagnostics of Heterogeneous Two-Phase Fluxes
NASA Astrophysics Data System (ADS)
Zakharov, V. M.; Polyakov, S. N.
2016-07-01
Probability of identification of materials of the particles in a two-phase flux is estimated theoretically on the base of their specific x-ray attenuation and efficiency of the identification is estimated for randomly oriented particles of two-component dispersed phases depending on their composition, as well as sizes and shapes of the particles.
Approaches to myosin modelling in a two-phase flow model for cell motility
NASA Astrophysics Data System (ADS)
Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.
2016-04-01
A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.
RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation
Ransom, V.H.; Wagner, R.J.; Trapp, J.A.
1981-01-01
The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given.
A Dual-Stage Two-Phase Model of Selective Attention
ERIC Educational Resources Information Center
Hubner, Ronald; Steinhauser, Marco; Lehle, Carola
2010-01-01
The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…
Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid
Tatkowski, G.; Cheban, S.; Dhanaraj, N.; Evbota, D.; Lopes, M.; Nicol, T.; Sanders, R.; Schmitt, R.; Voirin, E.
2015-01-01
The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids
Tensile properties and deformation mechanisms in two-phase titanium aluminide sheet material
Appel, F.; Wagner, R.; Clemens, H.; Glatz, W.
1997-12-31
The mechanical properties of two-phase TiAl sheets with different compositions and microstructures were investigated over the temperature range 25--1,000 C. The microprocesses of plasticity were characterized by electron microscope observations. Particular emphasis has been paid to the mechanisms governing the deformation behavior at elevated temperatures which are relevant for the fabrication and engineering applications of structural components.
Two parametric flow measurement in gas-liquid two-phase flow
NASA Astrophysics Data System (ADS)
Chen, Z.; Chen, C.; Xu, Y.; Zhao, Z.
The importance and current development of two parametric measurement during two-phase flow are briefly reviewed in this paper. Gas-liquid two-phase two parametric metering experiments were conducted by using an oval gear meter and a sharp edged orifice mounted in series in a horizontal pipe. Compressed air and water were used as gas and liquid phases respectively. The correlations, which can be used to predict the total flow rate and volumetric quality of two-phase flow or volumetric flow rate of each phase, have also been proposed in this paper. Comparison of the calculated values of flow rate of each phase from the correlations with the test data showed that the root mean square fractional deviation for gas flow rate is 2.9 percent and for liquid flow rate 4.4 percent. The method proposed in this paper can be used to measure the gas and liquid flow rate in two-phase flow region without having to separate the phases.
COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA
A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...
Toward the use of similarity theory in two-phase choked flows
NASA Technical Reports Server (NTRS)
Hendericks, R. C.; Sengers, J. V.; Simoneau, R. J.
1980-01-01
Comparison of two phase choked flows in normalized coordinates were made between pure components and available data using a reference fluid to compute the thermophysical properties. The results are favorable. Solution of the governing equations for two LNG mixtures show some possible similarities between the normalized choked flows of the two mixtures, but the departures from the pure component loci are significant.
Numerical modeling of the evolution of two-phase zone under fissured caprock
Yano, Y.; Ishido, T.
1993-01-28
A vapor-dominated two-phase zone would be formed in a geothermal reservoir under fissured caprock, if the permeability of the fissure is much smaller than a critical permeability which is estimated by an energy balance. If the permeability of the fissure is large, then the rule of minimum mass input would be applied.
The two-phase extended evaluation in microgravity (TEEM) flight experiment: Description and overview
NASA Astrophysics Data System (ADS)
Hurlbert, Kathryn Miller
1997-01-01
The future missions of the National Aeronautics and Space Administration (NASA) may include orbiting satellites, orbiting platforms or stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Current thermal control technology, using single-phase liquid coolant loops, is not a viable option for some of these future missions due to the associated power system weight and size penalty. Two-phase (liquid-vapor) flow thermal control systems can offer significant advantages over single-phase thermal systems in reducing the required power system mass and size. The Two-Phase Extended Evaluation in Microgravity (TEEM) Flight Experiment is currently being developed by NASA, and the Department of Defense (DOD) Space Test Program (STP) and the United States Air Force (USAF) Phillips Laboratory, with the cooperation of university researchers, to demonstrate operations of a closed-loop, two-phase system in a relevant mission environment. TEEM will also provide fully developed, two-phase flow data for zero-g conditions. This paper presents a description of the flight experiment, and a summary of the science of interest to the NASA Johnson Space Center (JSC).
Flow field simulation of gas-water two phase flow in annular channel
NASA Astrophysics Data System (ADS)
Ji, Pengcheng; Dong, Feng
2014-04-01
The gas-water two-phase flow is very common in the industrial processes. the deep understanding of the two-phase flow state is to achieve the production equipment design and safe operation. In the measurement of gas-water two-phase flow, the differential pressure sensor is widely used, and some measurement model of multiphase flow have been concluded. The differential pressure is generated when fluid flowing through the throttling components to calculate flow rate. This paper mainly focuses on two points: 1. The change rule of the parameters include velocity, pressure, phase fraction as the change of time, when the phase inlet velocity is given. 2. Analysis the distribution of the parameters above-mentioned at a certain moment under the condition of different water inlet velocity. Three-dimensional computational fluid dynamics (CFD) approach was used to simulate gas-water two-phase flow fluid in the annular channel, which is composed of horizontal pipe and long- waist cone sensor. The simulation results were obtained from FLUENT software.
Separation of gas from liquid in a two-phase flow system
NASA Technical Reports Server (NTRS)
Hayes, L. G.; Elliott, D. G.
1973-01-01
Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved.
Implementation of the interfacial area transport equation in trace for boiling two-phase flows
NASA Astrophysics Data System (ADS)
Bernard, Matthew S.
Correctly predicting the interfacial area concentration (a i) is vital to the overall accuracy of the two-fluid model because ai describes the amount of surface area that exists between the two-phases, and is therefore directly related to interfacial mass, momentum and energy transfer. The conventional method for specifying ai in the two-fluid model is through flow regime-based empirical correlations coupled with regime transition criteria. However, a more physically consistent approach to predicting ai is through the interfacial area transport equation (IATE), which can address the deficiencies of the flow regime-based approach. Some previous studies have been performed to demonstrate the feasibility of IATE in developmental versions of the nuclear reactor systems analysis code, TRACE. However, a full TRACE version capable of predicting boiling two-phase flows with the IATE has not been established. Therefore, the current work develops a version of TRACE that is capable of predicting boiling two-phase flows using the IATE. The development is carried out in stages. First, a version of TRACE which employs the two-group IATE for adiabatic, vertical upward, air-water conditions is developed. An in-depth assessment on the existing experimental database is performed to select reliable experimental data for code assessment. Then, the implementation is assessed against the qualified air-water two-phase flow experimental data. Good agreement is observed between the experimental data for ai and the TRACE code with an average error of +/-9% for all conditions. Following the initial development, one-group IATE models for vertical downward and horizontal two-phase flows are implemented and assessed against qualified data. Finally, IATE models capable of predicting subcooled boiling two-phase flows are implemented. An assessment of the models shows that TRACE is capable of generating ai in subcooled boiling two-phase flows with the IATE and that heat transfer effects dominate
Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity
NASA Technical Reports Server (NTRS)
Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor
1996-01-01
The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a
Direct multiangle solution for poorly stratified atmospheres.
Kovalev, Vladimir; Wold, Cyle; Petkov, Alexander; Hao, Wei Min
2012-09-01
The direct multiangle solution is considered, which allows improving the scanning lidar-data-inversion accuracy when the requirement of the horizontally stratified atmosphere is poorly met. The signal measured at zenith or close to zenith is used as a core source for extracting optical characteristics of the atmospheric aerosol loading. The multiangle signals are used as auxiliary data to extract the vertical transmittance profile from the zenith signal. Details of the retrieval methodology are considered that eliminate, or at least soften, some specific ambiguities in the multiangle measurements in horizontally heterogeneous atmospheres. Simulated and experimental elastic lidar data are presented that illustrate the essentials of the data-processing technique. Finally, the prospects of the utilization of high-spectral-resolution lidar in the multiangle mode are discussed. PMID:22945162
Tomographic reconstruction of stratified fluid flow.
Winters, K B; Rouseff, D
1993-01-01
A method for imaging a moving fluid is proposed and evaluated by numerical simulation. A cross-section of a three-dimensional fluid is probed by high-frequency acoustic waves from several different directions. Assuming straight-ray geometric acoustics, the time of flight depends on both the scaler sound speed and the vector fluid velocity. By appropriately combining travel times, projections of both the sound speed and the velocity are isolated. The sound speed is reconstructed using the standard filtered backprojection algorithm. Though complete inversion of velocity is not possible, sufficient information is available to recover the component of fluid vorticity transverse to the plane of insonification. A new filtered backprojection algorithm for vorticity is developed and implemented. To demonstrate the inversion procedure, a 3-D stratified fluid is simulated and travel time data are calculated by path integration. These data are then inverted to recover both the scaler sound speed and the vorticity of the evolving flow. PMID:18263153
Plasmonics of graphene laced stratified media
NASA Astrophysics Data System (ADS)
Aparajita, Upali; Roslyak, Oleksiy
Strong overlap of fields of graphene physics and photonics drawn a lot of attention recently. Not only graphene possesses intrinsic highly tunable plasmons but a combination of grapheme with noble metal nano structures promises a variety of existing applications for conventional plasmonics , such as novel optical devices working in a broad range from THz to visible spectra. We report simulations of those devices using combination of discrete dipole approximation (DDA) and boundary element methods (BEM). While DDA is an essential tool for modeling large molecule polarizabilities and scattering the BEM provides necessary Green's function tensors when those molecules are in close proximity to the nano-structures. As an example of that technique we study electron energy loss and Raman spectra for complex molecules in presence of metal plasmon active nano particles embedded into a stratified graphene laced medium.
Emergence of helicity in rotating stratified turbulence
NASA Astrophysics Data System (ADS)
Marino, Raffaele; Mininni, Pablo D.; Rosenberg, Duane; Pouquet, Annick
2013-03-01
We perform numerical simulations of decaying rotating stratified turbulence and show, in the Boussinesq framework, that helicity (velocity-vorticity correlation), as observed in supercell storms and hurricanes, is spontaneously created due to an interplay between buoyancy and rotation common to large-scale atmospheric and oceanic flows. Helicity emerges from the joint action of eddies and of inertia-gravity waves (with inertia and gravity with respective associated frequencies f and N), and it occurs when the waves are sufficiently strong. For N/f<3 the amount of helicity produced is correctly predicted by a quasilinear balance equation. Outside this regime, and up to the highest Reynolds number obtained in this study, namely Re≈10000, helicity production is found to be persistent for N/f as large as ≈17, and for ReFr2 and ReRo2, respectively, as large as ≈100 and ≈24000.
Domain Growth Kinetics in Stratifying Foam Films
NASA Astrophysics Data System (ADS)
Zhang, Yiran; Sharma, Vivek
2015-03-01
Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are μ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, for certain low molecular weight surfactants, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification. We experimentally elucidate the influence of these different driving forces, and confinement on drainage kinetics of horizontal stratifying foam films. Thinner, darker domains spontaneously grow within foam films. Quantitative characterization of domain growth visualized in a using Scheludko-type thin film cell and a theoretical model based on lubrication analysis, provide critical insights into hydrodynamics of thin foam films, and the strength and nature of surface forces, including supramolecular oscillatory structural forces.
Stably stratified canopy flow in complex terrain
NASA Astrophysics Data System (ADS)
Xu, X.; Yi, C.; Kutter, E.
2014-11-01
The characteristics of stably stratified canopy flows in complex terrain are investigated by employing the Renormalized Group (RNG) k-ɛ turbulence model. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by a few multi-tower advection experiments can be produced by this numerical simulation, such as: (1) unstable layer in the canopy, (2) super-stable layer associated with flow decoupling in deep canopy and near the top of canopy, (3) upward momentum transfer in canopy, and (4) large buoyancy suppression and weak shear production in strong stability.
Mudie, Deanna M.; Shi, Yi; Ping, Haili; Gao, Ping; Amidon, Gordon L.; Amidon, Gregory E.
2015-01-01
In vitro dissolution methodologies that adequately capture the oral bioperformance of solid dosage forms are critical tools needed to aid formulation development. Such methodologies must encompass important physiological parameters and be designed with drug properties in mind. Two-phase dissolution apparatuses, which contain an aqueous phase in which the drug dissolves (representing the dissolution/solubility component) and an organic phase into which the drug partitions (representing the absorption component), have the potential to provide meaningful predictions of in vivo oral bioperformance for some BCS II, and possibly some BCS IV drug products. Before such an apparatus can be evaluated properly, it is important to understand the kinetics of drug substance partitioning from the aqueous to the organic medium. A mass transport analysis was performed of the kinetics of partitioning of drug substance solutions from the aqueous to the organic phase of a two-phase dissolution apparatus. Major assumptions include pseudo-steady-state conditions, a dilute aqueous solution and diffusion-controlled transport. Input parameters can be measured or estimated a priori. This paper presents the theory and derivation of our analysis, compares it with a recent kinetic approach, and demonstrates its effectiveness in predicting in vitro partitioning profiles of three BCS II weak acids in four different in vitro two-phase dissolution apparatuses. Very importantly, the paper discusses how a two-phase apparatus can be scaled to reflect in vivo absorption kinetics and for which drug substances the two-phase dissolution systems may be appropriate tools for measuring oral bioperformance. PMID:22847296
Two-phase convective CO_{2} dissolution in saline aquifers
Martinez, Mario J.; Hesse, Marc A.
2016-01-01
Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO_{2} into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO_{2} in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO_{2} saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO_{2} into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO_{2} more than 3 times above the rate assuming single-phase conditions.
Evaluation of the Sensitivity of Two-Phase Flow Model for the Steam Separator Analysis
Michio Murase; Masao Chaki
2006-07-01
Reducing of the pressure losses of steam separator systems of boiling water reactor (BWR) plants is useful to reduce the required pump head and enhance core stability design margin. The need to reduce the pressure losses of steam separator systems is especially important in BWR plants that have high power density cores and natural circulation systems. The core flow rate of a BWR plant with a natural circulation system is affected by the pressure losses of steam separator systems. In BWR plants with high power density cores, the core stability design margin is affected by these pressure losses. Generally, reducing the pressure losses of the steam separator systems leads to increased carry-under and carryover. Reducing the pressure losses while keeping the characteristics of both carry-under and carryover is desired, so many studies have been done. The steam separator of a BWR plant consists of a standpipe section, a swirl vane section and three-barrel sections. Two-phase flow of steam and water enters the steam separator through the standpipe section and reaches the swirl vane section. In the swirl vane section, the two-phase flow is given centrifugal force and is basically separated into steam and water. Therefore investigating the two-phase flow characteristics of the swirl vane section is very important. After the swirl vane section, the two-phase flow enters the barrel sections. Each barrel has a pick-off ring. The water in the barrel section is mainly removed by these pick-off rings because the water mainly flows upward as a liquid film in the barrel section due to the centrifugal force given in the swirl vane section. We researched the effect of using the drag force model of the swirling two-phase flow in analyzing a steam separator and we found that the drag force model greatly affects the results of the analysis. (authors)
Stratified charge rotary engine combustion studies
NASA Technical Reports Server (NTRS)
Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.
1989-01-01
Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.
Stratified scaffold design for engineering composite tissues.
Mosher, Christopher Z; Spalazzi, Jeffrey P; Lu, Helen H
2015-08-01
A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers. PMID:25846397
Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays
NASA Astrophysics Data System (ADS)
Moran, Joaquin E.
An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The model tube bundle had 10 cantilevered tubes in a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of void fraction, density and velocity predictions. Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate. The methods were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The decay trace was obtained by "plucking" the monitored tube from outside the test section using a novel technique, in which a pair of electromagnets changed their polarity at the natural frequency of the tube to produce resonance. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods. The primary difference between the methods is caused by tube frequency shifting, triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. In order to examine the relationship between the damping ratio and mass flux, the former was plotted as a function of void fraction and pitch mass flux in an iso-contour plot. The results showed that damping is not independent of mass
A two-phase solid/fluid model for dense granular flows including dilatancy effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To
The effect of surfactant on stratified and stratifying gas-liquid flows
NASA Astrophysics Data System (ADS)
Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar
2013-11-01
We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.
Design and operation of a two-phase flow research facility
Maeder, P.F.; Kestin, J.; Dickinson, D.A.; DiPippo, R.; Olia, H.
1982-05-01
In this report we describe the new two-phase flow facility that has been constructed at Brown University. Included is the design philosophy that led us to select a blow-down, Freon tunnel as the means of studying the flow of a pure substance undergoing liquid-vapor phase changes. Each component is discussed from the initial design considerations, through sizing calculations, to actual system specifications. Special emphasis is placed on the instrumentation and automatic data acquisition and processing system. Finally a sampling of results obtained so far is presented. Section 1 gives the reasons for the construction of the facility and lists some of the uses and objectives of its operation. The reader can gain a good overview of the facility from Section 2 without a great deal of detail. In Section 3 we present the rationale for the particular design choices that were made and give details about the selection and sizing of all major components except the instrumentation. The latter subject is treated in Section 4 where we discuss the temperature and pressure probes, mass flow rate measurement, and other instrumentation. Section 5 is devoted to the test section proper where all the two-phase flow measurements and observations take place. The electronic data acquisition and facility control system is the subject of Section 6. Results on two-phase friction factors and flow pattern observations in a horizontal pipe are given in Section 7 along with the ranges of flow that have been covered so far. In capsule summary, the two-phase flow test facility is operational and has demonstrated a wide range of flow conditions from purely liquid to purely vapor through a variety of two-phase situations. Only horizontal flows have been studied so far, but the test section has been designed to operate in inclined positions up to fully vertical. The instrumentation performs very well as does the fully automatic control system. We believe the test facility is capable of yielding
Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps
NASA Technical Reports Server (NTRS)
Arauz, Grigory L.; SanAndres, Luis
1996-01-01
Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass
Conservative numerical schemes for unsteady one-dimensional two phase flow
NASA Astrophysics Data System (ADS)
Garcia Cascales, Jose Ramon
The thesis is devoted to the modelization of non steady two phase mixtures of liquid and vapour. It has been motivated by the great amount of industrial applications in which we find these phenomena. Transient two phase flow is a very important issue in nuclear, chemical and industrial applications. In the case of the nuclear industry due to the importance of preventing loss of coolant accidents (LOCA) and guaranteeing a good performance of the coolant system in power plants. We justify the present development by means of the introduction of the most important codes developed during the last two decades and their associated mesh techniques. It is basically focused on the extension of some conservative and explicit schemes to obtain approximate solutions of the system of equations in one dimensional one pressure two phase flow. They have been centred and upwind schemes to solve multiphase flow problems, most of them based on the exact or approximate solution of Riemann problems using Godunov's like methods such as Approximate Riemann solvers or Flux Splitting methods. We have studied mainly TVD schemes, Adapted TVD schemes (ATVD) and the AUSM family of schemes. Firstly we introduce the 1D two phase flow system of equations with which we will work. We consider the systems of equations more used depending on the model. Thus we introduce the homogeneous model, the isentropic model and the separated model will be treated in some detail. The evaluation of the eigenstructure of the homogeneous and the separated two phase flow is studied. Different methods to determine the eigenvalues are presented. A general method to determine the eigenvectors is studied as well. We extend different conservative schemes to two phase flow whose good behaviour in single phase has been well proved. They are basically TVD schemes, the Adapted TVD schemes developed by Gascon and Corberan and the AUSM family of schemes, firstly introduced by Steffen and Liou. Most of the extensions developed
Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)
Cady, C.M.; Chen, K.C.; Kotula, P.G.; Mauro, M.E.; Thoma, D.J.
1998-12-07
A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.
Use of two-phase flow heat transfer method in spacecraft thermal system
NASA Technical Reports Server (NTRS)
Hye, A.
1985-01-01
In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.
Targeted delivery by smart capsules for controlling two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Fan, Jing; Abbaspourrad, Alireza; Weitz, David; Harvard Weitzgroup Team
2015-11-01
Two-phase flow in porous media is significantly influenced by the physical properties of the fluids and the geometry of the medium. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for targeted surfactant delivery to the vicinity of oil-water interface and targeted microgel delivery for improving the homogeneity of the porous medium, respectively. We further prove the concept by monitoring the capsule location and the fluid structure in the porous media by micro-CT and confocal microscopy. This technique not only is of particular importance to the relevant industry applications especially in the oil industry but also opens a new window to study the mechanism of two-phase flow in porous media. Advanced Energy Consortium BEG08-027.
A gas kinetic scheme for the Baer-Nunziato two-phase flow model
Pan, Liang; Zhao, Guiping; Tian, Baolin; Wang, Shuanghu
2012-09-15
Numerical methods for the Baer-Nunziato (BN) two-phase flow model have attracted much attention in recent years. In this paper, we present a new gas kinetic scheme for the BN two-phase flow model containing non-conservative terms in the framework of finite volume method. In the view of microscopic aspect, a generalized Bhatnagar-Gross-Krook (BGK) model which matches with the BN model is constructed. Based on the integral solution of the generalized BGK model, we construct the distribution functions at the cell interface. Then numerical fluxes can be obtained by taking moments of the distribution functions, and non-conservative terms are explicitly introduced into the construction of numerical fluxes. In this method, not only the complex iterative process of exact solutions is avoided, but also the non-conservative terms included in the equation can be handled well.
Two-phase flow dynamics during boiling of R134a refrigerant in minichannels
NASA Astrophysics Data System (ADS)
Khovalyg, D. M.; Baranenko, A. V.
2015-03-01
This study is devoted to complex experimental investigation of two-phase flow boiling of R134a refrigerant in a minichannel having a hydraulic diameter of 540 μm at heat fluxes up to 70 kW/m2 and mass fluxes up to 700 kg/(m2 s). Flow regimes, pressure drop, heat transfer coefficient, and behavior of instabilities are analyzed as functions of vapor quality. On the basis of experimental data, the methods for calculating two-phase pressure drop in a minichannel with a diameter of about 500 μm are determined, and new correlation is proposed for estimating the heat-transfer coefficient; the region of stable boiling of the refrigerant is also determined.
Some issues in the simulation of two-phase flows: The relative velocity
NASA Astrophysics Data System (ADS)
Gräbel, J.; Hensel, S.; Ueberholz, P.; Zeidan, D.; Farber, P.
2016-06-01
In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.
Computer code for gas-liquid two-phase vortex motions: GLVM
NASA Technical Reports Server (NTRS)
Yeh, T. T.
1986-01-01
A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.
Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices
NASA Technical Reports Server (NTRS)
Faghri, Amir; Khrustalev, Dmitry
1996-01-01
Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.
Two-phase flow in porous media: power-law scaling of effective permeability
NASA Astrophysics Data System (ADS)
Grøva, Morten; Hansen, Alex
2011-09-01
A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.
Decay of the 3D inviscid liquid-gas two-phase flow model
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-06-01
We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.
NASA Astrophysics Data System (ADS)
Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau
2016-08-01
It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.
Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes
NASA Technical Reports Server (NTRS)
Carrigan, Charles R.; Schubert, Gerald; Eichelberger, John C.
1992-01-01
The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient.
Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes
Carrigan, C. .; Schubert, G.; Eichelberger, J.C. California Univ., Los Angeles Alaska Univ., Fairbanks )
1992-11-01
The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient. 56 refs.
Measurement of Two-Phase Flow Fields by Application of Dynamic Electrical Impedance Imaging
Kim, KyungYoun; Kang, Sook In; Kim, Ho Chan; Kim, Sin; Lee, Yoon Joon; Kim, Min Chan; Anghaie, Samim
2002-07-01
This study presents a visualization technique for the phase distribution in a two-phase flow field with an electrical impedance imaging technique, which reconstructs the resistivity distribution with electrical responses that are determined by corresponding excitations. Special emphasis is placed on the development of dynamic imaging technique for two-phase system undergoing a rapid transient, which could not be visualized with conventional static imaging techniques. The proposed algorithm treats the image reconstruction problem as a nonlinear state estimation problem and the unknown state (resistivity distribution, i.e. phase distribution) is estimated with the aid of a Kalman filter in a minimum mean square error sense. Several illustrative examples with computer simulations are successfully provided to verify the reconstruction performance of the proposed algorithm. (authors)
NASA Astrophysics Data System (ADS)
Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.
2016-06-01
In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.
Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube
NASA Astrophysics Data System (ADS)
Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo
Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.
Not Available
1991-07-01
The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.
A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows
NASA Astrophysics Data System (ADS)
Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.
2015-11-01
In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme
Static and dynamic strain aging in two-phase {gamma}-titanium aluminides
Christoph, U.; Appel, F.; Wagner, R.
1997-12-31
Deformation of two-phase titanium aluminides exhibits discontinuous yielding and a negative strain rate sensitivity over the temperature range 450--750 K. These phenomena are usually associated with the Portevin-LeChatelier effect which is due to the dynamic interaction of diffusing defects with the dislocations. The resulting glide resistance was investigated by static strain aging. The experiments involve the prestraining of samples followed by aging under a relaxing load for certain periods of time. Reloading of the samples resulted in distinct yield points. The investigations were performed on two-phase {gamma}-titanium aluminides having different compositions and microstructures which are currently being considered for technical applications. Accordingly, dislocation locking occurs with fast kinetics which is characterized by a low activation energy. The experimental results will be discussed with respect to the nature of the diffusional mechanism and possible implication on the mechanical properties of the materials.
Measurement of average density and relative volumes in a dispersed two-phase fluid
Sreepada, Sastry R.; Rippel, Robert R.
1992-01-01
An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.
Interfacial structures of confined air-water two-phase bubbly flow
Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.
2000-08-01
The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.
Two-phase velocity measurements around cylinders using particle image velocimetry
Hassan, Y.A.; Philip, O.G.; Schmidl, W.D.
1995-09-01
The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.
Two-phase flow in the cooling circuit of a cryogenic rocket engine
NASA Astrophysics Data System (ADS)
Preclik, D.
1992-07-01
Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.
Tang, Malcolm S Y; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Show, Pau Loke
2016-08-19
It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology. PMID:27396920
On the Shape Sensitivity of the First Dirichlet Eigenvalue for Two-Phase Problems
Dambrine, M.; Kateb, D.
2011-02-15
We consider a two-phase problem in thermal conductivity: inclusions filled with a material of conductivity {sigma}{sub 1} are layered in a body of conductivity {sigma}{sub 2}. We address the shape sensitivity of the first eigenvalue associated with Dirichlet boundary conditions when both the boundaries of the inclusions and the body can be modified. We prove a differentiability result and provide the expressions of the first and second order derivatives. We apply the results to the optimal design of an insulated body. We prove the stability of the optimal design thanks to a second order analysis. We also continue the study of an extremal eigenvalue problem for a two-phase conductor in a ball initiated by Conca et al. (Appl. Math. Optim. 60(2):173-184, 2009) and pursued in Conca et al. (CANUM 2008, ESAIM Proc., vol. 27, pp. 311-321, EDP Sci., Les Ulis, 2009).
Liquid film heat transfer in the evaporator of two-phase thermosyphons
El-Genk, M.S.; Saber, H.H.
1997-07-01
Closed, gravity assisted, two-phase thermosyphons (GATPTs) are being used in many industrial and energy applications owing to their design and fabrication simplicity and effectiveness as a light weight, passive, and self-contained high conductance thermal energy transport devices. A total of 503 heat transfer data points of ethanol, acetone, R-11, and R-113 for the liquid film region in the evaporator section of closed, gravity assisted two-phase thermosyphons were compiled and correlated in the appropriate heat transfer regimes, namely: (a) continuous liquid film laminar convection, at low heat fluxes, (b) nucleate boiling at high heat fluxes, and (c) combined convection, at intermediate heat fluxes. In the intermediate regime of combined convection, data were correlated by superimposing the correlations of laminar convection and nucleate boiling using a power law approach. All three correlations are within {+-}15% of experimental data.
Modeling of two-phase magnetic materials based on Jiles-Atherton theory of hysteresis
NASA Astrophysics Data System (ADS)
Raghunathan, A.; Melikhov, Y.; Snyder, J. E.; Jiles, D. C.
2012-01-01
The Jiles-Atherton (JA) theory of hysteresis has been extended in the present paper to model hysteresis in two-phase magnetic materials. Two-phase materials are those that exhibit two magnetic phases in one hysteresis cycle: one at lower fields and the other at higher fields. In magnetic hysteresis, the transition from one phase to the other i.e. low field phase to high field phase depends mainly on the exchange field. Hence, the material-dependent microstructural parameters of JA theory: spontaneous magnetization, MS, pinning factor, k, domain density, a, domain coupling, α, and reversibility factor, c, are represented as functions of the exchange field. Several cases based on this model have been discussed and compared with the measured data from existing literature. The shapes of the calculated and measured hysteresis loops are in excellent agreement.
Workshop on Two-Phase Fluid Behavior in a Space Environment
NASA Technical Reports Server (NTRS)
Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)
1989-01-01
The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.
Nonequilibrium hydrogen combustion in one- and two-phase supersonic flow
Chang, H.T.; Hourng, L.W.; Chien, L.C.
1997-05-01
A time-splitting method for the numerical simulation of stiff nonequilibrium combustion problem was developed. The algorithm has been applied to simulate the shock-induced combustion and to investigate a supersonic one-and two-phase flowfield. The results are physically reasonable and demonstrate that the presence of particles has a dramatic effect on the nozzle flowfield and the thrust. Supersonic combustion usually happens in high speed flying aerodynamic problems, such as supersonic combustion ramjet (scramjet) engine for hypersonic airbreathing vehicles. Particularly for the scramjet engine, due to short residence time in the combustion chamber, it still contains incomplete combustion fuel as it enters the nozzle. For solid propellant rocket motors, the exhaust stream contains particles of aluminum oxide. In these two-phase nozzle flows, transfer of momentum and heat between gas particles often result in a decrease of nozzle efficiency.
Two-phase power-law modeling of pipe flows displaying shear-thinning phenomena
Ding, Jianmin; Lyczkowski, R.W.; Sha, W.T.
1993-12-31
This paper describes work in modeling concentrated liquid-solids flows in pipes. COMMIX-M, a three-dimensional transient and steady-state computer program developed at Argonne National Laboratory, was used to compute velocities and concentrations. Based on the authors` previous analyses, some concentrated liquid-solids suspension flows display shear-thinning rather than Newtonian phenomena. Therefore, they developed a two-phase non-Newtonian power-law model that includes the effect of solids concentration on solids viscosity. With this new two-phase power-law solids-viscosity model, and with constitutive relationships for interfacial drag, virtual mass effect, shear lift force, and solids partial-slip boundary condition at the pipe walls, COMMIX-M is capable of analyzing concentrated three-dimensional liquid-solids flows.
Finite difference solution for a generalized Reynolds equation with homogeneous two-phase flow
NASA Technical Reports Server (NTRS)
Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.; Mullen, R. L.
1987-01-01
An attempt is made to relate elements of two-phase flow and kinetic theory to the modified generalized Reynolds equation and to the energy equation, in order to arrive at a unified model simulating the pressure and flows in journal bearings, hydrostatic journal bearings, or squeeze film dampers when a two-phase situation occurs due to sudden fluid depressurization and heat generation. The numerical examples presented furnish a test of the algorithm for constant properties, and give insight into the effect of the shaft fluid heat transfer coefficient on the temperature profiles. The different level of pressures achievable for a given angular velocity depends on whether the bearing is thermal or nonisothermal; upwind differencing is noted to be essential for the derivation of a realistic profile.
Two phase choke flow in tubes with very large L/D
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.
1977-01-01
Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low.
Two phase choke flow in tubes with very large L/D
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.
1977-01-01
Two phase and gaseous choked flow data for fluid nitrogen were obtained for a test section which was a long constant area duct of 16 200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two-phase homogeneous equilibrium choking flow model which includes wall fraction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data reasonably well, but about 15 percent low.
Performance of WPA Conductivity Sensor during Two-Phase Fluid Flow in Microgravity
NASA Technical Reports Server (NTRS)
Carter, Layne; O'Connor, Edward W.; Snowdon, Doug
2003-01-01
The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two-phase fluid flow (gadliquid) in microgravity. The source for this sensitivity is the fact that gas bubbles will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in l-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plan to measure the offset, which was determined to range between 0 and 50%. Based on these findings, a development program was initiated at the sensor s manufacturer to develop a sensor design fully compatible with two-phase fluid flow in microgravity.
Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows
Xia Wang; Xiaodong Sun; Benjamin Doup; Haihua Zhao
2012-12-01
In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.
Experimental study on exciting force by two-phase cross flow
Nakamura, T.; Fujita, K.; Shiraki, K.; Kanazawa, H.; Sakata, K.
1982-01-01
Buffeting forces acting on tube arrays and induced by air-water two-phase cross flow, in the range of bubble flow and slug flow (or froth flow), are experimentally examined. Experimental results are treated by statistical modal analysis for use in design calculation. Based on these results, a hypothesis, especially applicable in the region of slug flow, is proposed to explain the experimental results. 9 refs.
Modeling analysis of bubble flow regime in a closed two-phase thermosyphon
NASA Astrophysics Data System (ADS)
Tang, Zhi-Wei; Han, Ya-Fang; Liu, Ai-Jie; Song, Wei-Gang
2011-12-01
Predictions of the operating liquid level in the evaporator of a closed two-phase thermosyphon (gravity heat pipe) are given throughout a simplified analysis which takes the influence of the dimension and condensation heat transfer in the condenser of the heat pipe into account. In order to verify the accuracy of our model comparison of the present study with some published results is made by means of computational examples.
Hao, Li-Sheng; Gui, Yuan-Xiang; Chen, Yan-Mei; He, Shao-Qing; Nan, Yan-Qing; You, Yi-Lan
2012-08-30
Electrostatic interactions play an important role in setting the aqueous two-phase separation behaviors of mixtures of oppositely charged surfactants. The aqueous mixture of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (AS) is actually a five-component system, comprised of CTAB, AS, complex salt (cetyltrimethylammonium dodecylsulfonate, abbreviated as CTA(+)AS(-)), NaBr, and water. In the three-dimensional pyramid phase diagram, the aqueous two-phase region with excess AS or with excess CTAB extends successively from the region very near to the NaBr-H2O line through the CTAB-AS-H2O conventional mixing plane to the CTA(+)AS(-)-AS-H2O side plane or to the CTA(+)AS(-)-CTAB-H2O side plane, respectively. Large or small molar ratios between the counterions and their corresponding surfactant ions for oppositely charged surfactants located in the NaBr side or the CTA(+)AS(-) side of the pyramid imply strong or weak electrostatic screening. Electrostatic screening of counterions alters the electrostatic attractions between the oppositely charged head groups or the electrostatic repulsions between the like-charged head groups in excess, and the electrostatic free energy of aggregation thus affects the aqueous two-phase separation modes. Composition analysis, rheological property investigation, and TEM images suggest that there are two kinds of aqueous two-phase systems (ATPSs). On the basis of these experimental results and Kaler's cell model, two kinds of phase separation modes were proposed. Experimental results also indicate that all of the top phases are surfactant-rich, and all of the bottom phases are surfactant-poor; the density difference between the top phase and the bottom phase in one ATPS is very small; the interfacial tension (σ) of the ATPS is ultralow. PMID:22856887
Measurement of thickness of thin water film in two-phase flow by capacitance method
Sun, R.K.; Kolbe, W.F.; Leskovar, B.; Turko, B.
1981-09-01
A technique has been developed for measuring water film thickness in a two-phase annular flow system by the capacitance method. An experimental model of the flow system with two types of electrodes mounted on the inner wall of a cylindrical tube has been constructed and evaluated. The apparatus and its ability to observe fluctuations and wave motions of the water film passing over the electrodes is described in some detail.
Proportional electroluminescence in two-phase argon and its relevance to rare-event experiments
NASA Astrophysics Data System (ADS)
Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.
2015-10-01
Proportional electroluminescence (EL) in gaseous Ar has for the first time been systematically studied in the two-phase mode, at 87 K and 1.00 atm. Liquid argon had a minor (56 ppm) admixture of nitrogen, which allowed to understand, inter alia, the effect of N2 doping on the EL mechanism in rare-event experiments using two-phase Ar detectors. The measurements were performed in a two-phase cryogenic avalanche detector (CRAD) with EL gap located directly above the liquid-gas interface. The EL gap was optically read out in the vacuum ultraviolet (VUV), near 128 nm (Ar excimer emission), and in the near ultraviolet (UV), at 300-450 nm (N2 second positive system emission), via cryogenic photomultiplier tubes (PMTs) and a Geiger-mode APD (GAPD). Proportional electroluminescence was measured to have an amplification parameter of 109 ± 10 photons per drifting electron per kV overall in the VUV and UV, of which 51 ± 6% were emitted in the UV. The measured EL threshold, at an electric field of 3.7 ± 0.2 kV/cm, was in accordance with that predicted by the theory. The latter result is particularly relevant to DarkSide and SCENE dark matter search-related experiments, where the operation electric field was thereby on the verge of appearance of the S2 (ionization-induced) signal. The results obtained pave the way to the development of N2-doped two-phase Ar detectors with enhanced sensitivity to the S2 signal.
NASA Technical Reports Server (NTRS)
Vary, A.; Hull, D. R.
1982-01-01
The pivotal role of an alpha-beta phase microstructure in governing fracture toughness in a titanium alloy, Ti-662, is demonstrated. The interrelation of microstructure and fracture toughness is demonstrated using ultrasonic measurement techniques originally developed for nondestructive evaluation and material property characterization. It is shown that the findings determined from ultrasonic measurements agree with conclusions based on metallurgical, metallographic, and fractographic observations concerning the importance of alpha-beta morphology in controlling fracture toughness in two phase titanium alloys.
Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems
Uddin, Rizwan
2012-01-01
This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.
Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant
Howarth, S.M.
1993-07-01
The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.
Application of the principle of corresponding states to two phase choked flow
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.
1973-01-01
It is pointed out that several fluids including methane, oxygen, and nitrogen appear to form an average parametric plot which indicates that the isenthalpic Joule-Thomson coefficient must nearly obey the principle of corresponding states. With this as a basis, it was assumed that there could be several thermodynamic flow processes which nearly obey the principle. An examination was made to determine whether two-phase choked flow could be one of them. The analysis is described and the results are given.
The growth of vapor bubble and relaxation between two-phase bubble flow
NASA Astrophysics Data System (ADS)
Mohammadein, S. A.; Subba Reddy Gorla, Rama
2002-10-01
This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.
Interfacial Tension Effect on Cell Partition in Aqueous Two-Phase Systems.
Atefi, Ehsan; Joshi, Ramila; Mann, Jay Adin; Tavana, Hossein
2015-09-30
Aqueous two-phase systems (ATPS) provide a mild environment for the partition and separation of cells. We report a combined experimental and theoretical study on the effect of interfacial tension of polymeric ATPS on the partitioning of cells between two phases and their interface. Two-phase systems are generated using polyethylene glycol and dextran of specific properties as phase-forming polymers and culture media as the solvent component. Ultralow interfacial tensions of the solutions are precisely measured using an axisymmetric drop shape analysis method. Partition experiments show that two-phase systems with an interfacial tension of 30 μJ/m(2) result in distribution of majority of cells to the bottom dextran phase. An increase in the interfacial tension results in a distribution of cells toward the interface. An independent cancer cell spheroid formation assay confirms these observations: a drop of the dextran phase containing cancer cells is dispensed into the immersion polyethylene glycol phase to form a cell-containing drop. Only at very small interfacial tensions do cells remain within the drop to aggregate into a spheroid. We perform a thermodynamic modeling of cell partition to determine variations of free energy associated with displacement of cells in ATPS with respect to the ultralow interfacial tensions. This modeling corroborates with the experimental results and demonstrates that at the smallest interfacial tension of 30 μJ/m(2), the free energy is a minimum with cells in the bottom phase. Increasing the interfacial tension shifts the minimum energy and partition of cells toward the interfacial region of the two aqueous phases. Examining differences in the partition behavior and minimum free energy modeling of A431.H9 cancer cells and mouse embryonic stem cells shows that the surface properties of cells further modulate partition in ATPS. This combined approach provides a fundamental understanding of interfacial tension role on cell partition in
A SINDA modeling technique for pumped two-phase spacecraft cooling systems
NASA Technical Reports Server (NTRS)
Ollendorf, S.; Costello, F. A.
1984-01-01
The purpose of this paper is to present a modeling technique that has proven successful in simulating pumped, two-phase cooling systems. The technique uses the standard SINDA thermal-analysis program and thereby extends the capabilities of SINDA to complex, active spacecraft thermal-control systems. This paper provides sufficient detail that a current SINDA user will be able to apply the technique by reference to this paper alone.
NASA Astrophysics Data System (ADS)
Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan
2016-08-01
On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.
Two-Phase Working Fluids for the Temperature Range 50 to 350 C
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Owzarski, P. C.
1977-01-01
The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 C to 350 C have been identified, and reflux heat pipes tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.
Two-phase flow and heat transfer in porous beds under variable body forces, part 7
NASA Technical Reports Server (NTRS)
Henry, H. R.
1970-01-01
The design of an experiment to determine the behavior of two-phase vapor-liquid and gas-liquid flow through porous beds in low gravity environments is discussed. The selection of porous materials, liquids, and gases is described. The parameters necessary for the design and development of a flight experimental system are examined. The general specifications for system elements requiring additional development are identified.
Influence of two-phase flow characteristic on critical heat flux in low pressure
Inoue, Akira; Lee, Sangryoul
1996-08-01
Estimation of the critical heat flux (CHF) in a boiling two-phase flow is one of the important subjects for the safety of water-cooled reactors and other energy systems. In the case of a boiling two-phase flow at low pressure, flow pattern and void fraction are easy to change by the power input and the flow becomes more complex due to low density of gas phase. The CHF is affected by the flow pattern. In this study, the CHFs were measured over wide quality range from the subcooled boiling to the annular-mist flow. By using Pyrex glass tube as a test channel, the two-phase flow situation was observed. Graphite rod or stainless steel tube was used as a heater rod and installed at the center of the glass tube. Two-phase flow was formed by steam injection to circulating water at an upstream region of the test section. The flow pattern was kept nearly constant over the length of test section due to the low input power density into the fluid. Then, the characteristics of CHF could be investigated at each flow patterns of bubbly, slug, annular and annular-mist flow. In the subcooled boiling region of bubbly flow, the CHF decreased with increase of quality and was less sensitive to flow rate. In the slug flow region, the CHF showed a minimum value. With more increase of quality in the annular flow, the CHF increased and reached a peak value at a certain quality depending on a flow rate. The peak of CHF occurred almost at a constant vapor mass velocity. In the annular-mist flow region, the CHF decreased with increase of quality. In the region, the effect of heated length on the CHF was systematically measured and validity of an analytical model considering dryout of liquid film based on formation of a dry patch was investigated.
Particle Image Velocimetry Analysis in Micromodels to Investigate Two-Phase Flow Mechanisms
NASA Astrophysics Data System (ADS)
Roman, S.; Soulaine, C.; Kovscek, A. R.
2014-12-01
The inherent instabilities in two-phase displacements play a key role in the process of carbon dioxide sequestration. Thus, a fundamental understanding of two-phase unstable flows in porous media across a range of length and time scales is essential. However, the dynamics at the pore scale remains relatively unknown and influences macroscale behaviors. In that context, experiments in simplified porous media were performed in order to investigate pore scale mechanisms. The dynamics of fluid displacement in porous media were captured with Particle Image Velocimetry (PIV).The experimental apparatus includes 2D etched micromodels connected to a syringe pump and placed under a microscope for flow visualization. The micromodels contain an etched flow pattern composed of circular grains homogeneously distributed or composed of a sandstone replica pattern. The fluids under study are seeded with polymer microparticles and image sequences of the flow are recorded. The motion of the seeding particles is used to calculate the velocity field of the flow with PIV algortithms.The PIV measurements were first validated for single phase flow. For that purpose, experiments were performed where water and microparticles flowed through the micromodels. The PIV measurements were compared to 2D direct numerical simulations of the flow through the different geometries under consideration. Experiments and numerical simulations show a good agreement. PIV measurements are quantitatively validated to investigate flow mechanisms at the pore scale. Then, the feasibility of PIV measurements for two-phase flow in micromodels has been demonstrated and we can now use this technique with confidence to investigate multiphase flow dynamics. Experiments in micromodels will henceforth allow the validation of two-phase flow simulation, in fact no reliable numerical works have been published at this scale for multiphase flows.
Heat transfer characteristics of a two-phase closed thermosyphon using different working fluids
NASA Astrophysics Data System (ADS)
Ziapour, Behrooz Mirzaei; Shaker, Hadi
2010-03-01
In this paper, an enhanced FORTRAN code was combined with the EES software to predict the vapor flow thermal resistance effects on the heat transfer characteristics of a two- phase closed thermosyphon (TPCT). Different refrigerants such as water, ammonia, R-11, R-22 and R-134a were tested. Also an enhanced time integration scheme was recommended for solving the governing equations in FORTRAN code.
Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows
NASA Technical Reports Server (NTRS)
Rezkallah, Kamiel S.
1996-01-01
Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.
Numerical Simulation of Two-Phase Flow in Severely Damaged Core Geometries
Meekunnasombat, Phongsan; Fichot, Florian; Quintard, Michel
2006-07-01
In the event of a severe accident in a nuclear reactor, the oxidation, dissolution and collapse of fuel rods is likely to change dramatically the geometry of the core. A large part of the core would be damaged and would look like porous medium made of randomly distributed pellet fragments, broken claddings and relocated melts. Such a complex medium must be cooled in order to stop the accident progression. IRSN investigates the effectiveness of the water re-flooding mechanism in cooling this medium where complex two-phase flows are likely to exist. A macroscopic model for the prediction of the cooling sequence was developed for the ICARE/CATHARE code (IRSN mechanistic code for severe accidents). It still needs to be improved and assessed. It appears that a better understanding of the flow at the pore scale is necessary. As a result, a direct numerical simulation (DNS) code was developed to investigate the local features of a two-phase flow in complex geometries. In this paper, the Cahn-Hilliard model is used to simulate flows of two immiscible fluids in geometries representing a damaged core. These geometries are synthesized from experimental tomography images (PHEBUS-FP project) in order to study the effects of each degradation feature, such as displacement and fragmentation of the fuel rods and claddings, on the two-phase flow. For example, the presence of fragmented fuel claddings is likely to enhance the trapping of the residual phase (either steam or water) within the medium which leads to less flow fluctuations in the other phase. Such features are clearly shown by DNS calculations. From a series of calculations where the geometry of the porous medium is changed, conclusions are drawn for the impact of rods damage level on the characteristics of two-phase flow in the core. (authors)
A Heat Transfer Investigation of Liquid and Two-Phase Methane
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan
2010-01-01
A heat transfer investigation was conducted for liquid and two-phase methane. The tests were conducted at the NASA Glenn Research Center Heated Tube Facility (HTF) using resistively heated tube sections to simulate conditions encountered in regeneratively cooled rocket engines. This testing is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. Nontoxic propellants, such as liquid oxygen/liquid methane (LO2/LCH4), offer potential benefits in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications. Regeneratively cooled thrust chambers are one solution for high performance, robust LO2/LCH4 engines, but cooling data on methane is limited. Several test runs were conducted using three different diameter Inconel 600 tubes, with nominal inner diameters of 0.0225-, 0.054-, and 0.075-in. The mass flow rate was varied from 0.005 to 0.07 lbm/sec. As the current focus of the PCAD project is on pressure fed engines for LO2/LCH4, the average test section outlet pressures were targeted to be 200 psia or 500 psia. The heat flux was incrementally increased for each test condition while the test section wall temperatures were monitored. A maximum average heat flux of 6.2 Btu/in.2 sec was achieved and, at times, the temperatures of the test sections reached in excess of 1800 R. The primary objective of the tests was to produce heat transfer correlations for methane in the liquid and two-phase regime. For two-phase flow testing, the critical heat flux values were determined where the fluid transitions from nucleate boiling to film boiling. A secondary goal of the testing was to measure system pressure drops in the two-phase regime.
Two-phase Flow Ejector as Water Refrigerant by Using Waste Heat
NASA Astrophysics Data System (ADS)
Yamanaka, H.; Nakagawa, M.
2013-04-01
Energy saving and the use of clean energy sources have recently become significant issues. It is expected that clean energy sources such as solar panels and fuel cells will be installed in many private dwellings. However, when electrical power is generated, exhaust heat is simultaneously produced. Especially for the summer season, the development of refrigeration systems that can use this waste heat is highly desirable. One approach is an ejector that can reduce the mechanical compression work required in a normal refrigeration cycle. We focus on the use of water as a refrigerant, since this can be safely implemented in private dwellings. Although the energy conversion efficiency is low, it is promising because it can use heat that would otherwise be discarded. However, a steam ejector refrigeration cycle requires a large amount of energy to change saturated water into vapour. Thus, we propose a more efficient two-phase flow ejector cycle. Experiments were carried out in which the quality of the two-phase flow from a tank was varied, and the efficiency of the ejector and nozzle was determined. The results show that a vacuum state can be achieved and suction exerted with a two-phase flow state at the ejector nozzle inlet.
Impact of Gas-liquid Two-phase Flow on Fluid Borne Noise
NASA Astrophysics Data System (ADS)
Taniwaki, Mitsuhiro; Shimomura, Nobuo
In pipe lines such as those found in refrigeration cycle, a gas-liquid two-phase flow may occur because of a pressure change in the pipe. This flow causes noise. A vapor phase ratio in a fluid and the behavior of bubbles are related to the outbreak of noise. This experimental study investigated the fluid borne noise caused by gas-liquid two-phase flow passing through a contracted section in horizontal pipe. In the experiment, sound pressure was measured for two purposes: to see the influence of the air-water ratio on sound pressure and to see the change in sound pressure when a single bubble passed through a contracted section in horizontal pipe. The experiment showed that the fluid borne noise of gas-liquid two-phase flow grew louder than that of a liquid single-phase flow. As for the frequency distribution of the fluid borne noise, the sound pressure level was higher in the high frequency band. Furthermore, the fluid borne noise grew louder with increasing bubble diameter.
Aqueous Two-Phase Systems formed by Biocompatible and Biodegradable Polysaccharides and Acetonitrile
de Brito Cardoso, Gustavo; Souza, Isabela Nascimento; Pereira, Matheus M.; Freire, Mara G.; Soares, Cleide Mara Faria; Lima, Álvaro Silva
2015-01-01
In this work, it is shown that novel aqueous two-phase systems can be formed by the combination of acetonitrile and polysaccharides, namely dextran. Several ternary phase diagrams were determined at 25 °C for the systems composed of water + acetonitrile + dextran. The effect of the dextran molecular weight (6,000, 40,000 and 100,000 g.mol−1) was ascertained toward their ability to undergo liquid-liquid demixing. An increase in the dextran molecular weight favors the phase separation. Furthermore, the effect of temperature (25, 35 and 45 °C) was evaluated for the system constituted by the dextran of higher molecular weight. Lower temperatures are favorable for phase separation since lower amounts of dextran and acetonitrile are required for the creation of aqueous two-phase systems. In general, acetonitrile is enriched in the top phase while dextran is majorly concentrated in the bottom phase. The applicability of this new type of two-phase systems as liquid-liquid extraction approaches was also evaluated by the study of the partition behavior of a well-known antioxidant – vanillin - and used here as a model biomolecule. The optimized conditions led to an extraction efficiency of vanillin of 95% at the acetonitrile-rich phase. PMID:25729320
Internal structure and interfacial area in two-phase flow systems
Kojasoy, G.
1991-12-31
The interfacial transfer terms and the importance of the interfacial area concentration are reviewed first with respect to the two-fluid model formulation of two-phase flow systems. Then the available measurement techniques for interfacial area are reviewed. At present, it appears that various methods such as the chemical, light attenuation, photographic, ultrasound attenuation and probe techniques have a number of limitations. Among these measurement techniques, however, the local probe method using one or more double sensors seems to have the greatest potential in terns of accuracy and wider applicability in various two-phase flow patterns. From the brief review of existing interfacial area modeling methods, it is concluded that the conventional approaches might not be sufficient, and new directions are indicated. Recent experimental results on local interfacial structural characteristics of horizontal bubbly two-phase flow and internal flow structure development are presented. More specifically, experimental results on local void fraction, interfacial area concentration, bubble size, bubble interface velocity and bubble frequency are documented in detail. Finally, a theoretical model predicting the mean bubble size and interfacial area concentration is proposed. The theoretically predicted bubble size and interfacial area concentration are found to agree reasonably well with those measured by using a double-sensor resistivity technique.
Internal structure and interfacial area in two-phase flow systems
Kojasoy, G.
1991-01-01
The interfacial transfer terms and the importance of the interfacial area concentration are reviewed first with respect to the two-fluid model formulation of two-phase flow systems. Then the available measurement techniques for interfacial area are reviewed. At present, it appears that various methods such as the chemical, light attenuation, photographic, ultrasound attenuation and probe techniques have a number of limitations. Among these measurement techniques, however, the local probe method using one or more double sensors seems to have the greatest potential in terns of accuracy and wider applicability in various two-phase flow patterns. From the brief review of existing interfacial area modeling methods, it is concluded that the conventional approaches might not be sufficient, and new directions are indicated. Recent experimental results on local interfacial structural characteristics of horizontal bubbly two-phase flow and internal flow structure development are presented. More specifically, experimental results on local void fraction, interfacial area concentration, bubble size, bubble interface velocity and bubble frequency are documented in detail. Finally, a theoretical model predicting the mean bubble size and interfacial area concentration is proposed. The theoretically predicted bubble size and interfacial area concentration are found to agree reasonably well with those measured by using a double-sensor resistivity technique.
Influence of two-phase gas-liquid interaction on aerosol deposition in airways.
Kim, C S; Abraham, W M; Chapman, G A; Sackner, M A
1985-04-01
Many patients with chronic simple bronchitis, viz., chronic productive cough without major airway obstruction, frequently show enhanced aerosol deposition in the airways. We hypothesized that this phenomenon might relate in part to wave motion of an accumulated layer of mucus caused by dynamic, two-phase gas-liquid interactions. In the present investigation, two-phase gas-liquid interaction was demonstrated in vivo by observing wave motion during tidal breathing of radiopaque-labeled viscous and viscoelastic fluids that had been added to distal tracheas of conscious sheep. Total aerosol deposition in the lung and mean pulmonary resistance (RL) were measured after addition of 4 to 10 ml of viscoelastic or viscous fluids to the distal main bronchi of conscious sheep. Change in aerosol deposition over baseline after fluid addition was compared with change in RL. In 21 experiments, 5 for each of 3 viscoelastic fluids with varying characteristics and 6 for a viscous fluid, aerosol deposition was significantly enhanced in every experiment, irrespective of the type of fluid added. This increase in aerosol deposition ranged from 13 to 66% above baseline. The RL increased in 5 of the 6 experiments with viscous fluid and in 4 of the 15 experiments with viscoelastic fluids. There was less wavelike motion with viscous than with viscoelastic fluids. These results suggest that two-phase gas-liquid interaction in the airways can account for increased aerosol deposition with little alteration in airway resistance. PMID:3994158
Design manual for two-phase components of spacecraft thermal management systems
NASA Astrophysics Data System (ADS)
Crowley, Christopher J.; Izenson, Michael G.; Barry, James J.; Martin, Jerry L.; Ent, Rebecca S.
1992-09-01
This design manual presents methods to design and model the performance of key two-phase components in thermal management systems for spacecraft. Components for both capillary- and mechanically-pumped loops are modeled including: forced-convection evaporators; droplet evaporators; two-phase transport lines, fittings, and tees; shear condensers; capillary condensers; and mechanical pumps. Heat pipe condensers are also included. The methods can be used for component design and sizing, analysis of component performance in system or component development tests, development and evaluation of analytical models for key phenomena, and integration with transient codes for system analysis. This manual describes in detail the analysis methods which have been used to produce software for component design. The software and methods are validated against experimental data whenever such data are available. When possible, simple design maps are presented for initial scoping calculations for sizing two-phase components. The basic analytical approach for these design methods is mechanistic, so that the mathematical models for component behavior are based upon the fundamental physics. Thus, the methods include inherent scaling with gravity, physical size, and fluid properties. This approach allows the models to be easily upgraded as new experimental data become available and includes the ability to assess the analytical uncertainty in design calculations.
Flow pattern and heat transfer behavior of boiling two-phase flow in inclined pipes
NASA Astrophysics Data System (ADS)
Liu, Dezhang; Ning, Ouyang
1992-09-01
Movable Electrical Conducting Probe (MECP), a kind of simple and reliable measuring transducer, used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper. When the test pipe is set at different inclination angles, several kinds of flow patterns, such as bubble, slug, churn, intermittent, and annular flows, may be observed in accordance with the locations of MECP. By means of flow pattern analysis, flow field numerical calculations have been carried out, and heat transfer coefficient correlations along full-flow-path derived. The results show that heat transfer performance of boiling two-phase flow could be significantly augmented as expected in some flow pattern zones. The results of the investigation, measuring techniques and conclusions contained in this paper would be a useful reference in foundational research for prediction of flow pattern and heat transfer behavior in boiling two-phase flow, as well as for turbine vane liquid-cooling design.
Investigation of Two-Phase Flows in Piping Bends and Elbows
NASA Technical Reports Server (NTRS)
Duncan, Allen B.; Sciascia, Vincent M.
1996-01-01
An experimental investigation of the hydrodynamic characteristics of two-phase R-113 flow has been carried out. Straight tube pressure drop data, as a function of mass flow rate (mass flux) and flow quality has been obtained using the Two-Phase Flow Test Facility located in the Advanced Thermal Laboratories of the Crew and Thermal Systems Division at the Lyndon B. Johnson Space Center. Additionally, after successfully obtaining the straight tube pressure drop data, the test facility was modified in order to obtain pressure drop data for the flow of two-phase R-113 through 180 deg piping bends. Inherent instabilities of the test facility prevented the successful acquisition of pressure drop data through the piping bends. The experimental straight tube data will be presented and compared with existing predictive correlations in an attempt to gain insight into the utility of such correlations as the basis for developing design criteria. A discussion of the instabilities which rendered successful acquisition of the piping bend data will be presented and suggestions will be made for eliminating these system tendencies. Finally, recommendations for future investigations, based on successful reconfiguration of the test facility, will be made.
Two-phase PIV measurements of particle suspension in a forced impinging jet
NASA Astrophysics Data System (ADS)
Mulinti, Rahul; Kiger, Ken
2010-11-01
The condition of rotorcraft brownout is characterized by intense dust suspension that is uplifted during landing and takeoff operations in regions covered with loose sediment. To predict particle suspension and sedimentation within coupled particle-laden flows, detailed characterization of the micro-scale mechanics is needed within a prototypical flow that captures the essence of the rotorcraft/ground wake interactions. Two-phase PIV has been used to study the interaction of a sediment bed made of glass spheres with characteristic flow structures reminiscent from flow within a rotor wake. In order to make reliable simultaneous two-phase PIV measurements, a phase discrimination algorithm from a single two-phase image has been implemented. The validity of the separation is checked by processing images that consisted only of the very small tracer particles, or only the dispersed phase particles, and examining how much "cross-talk" was present between the phases. The mobilization and wall-normal flux of particulates by the vortex-wall interaction will be reported for several different operational conditions, and correlated to the local vortex conditions.
An experimental investigation of two-phase crossflow over rigidly and flexibly mounted tubes
Gerhart, S.M.
1991-12-31
Two-phase crossflow over heat exchanger tubes induces vibrations which contribute greatly to the wear on the tubes. Of the three mechanisms leading to two-phase flow-induced vibrations which have been identified, fluid-elastic instability has been recognized as that which leads to the vibrations with the largest amplitude. The mass damping parameter is used to predict the onset of fluid-elastic instability, and the mean drag coefficient is used to calculate the mass damping parameter. In this thesis, the drag coefficient measured over single tubes and tubes within array, in single-phase and two-phase flow at various Reynolds numbers, is discussed. The drag coefficient was measured by two methods. For flexibly mounted tubes, strain gages were mounted on cantilever beams which held the tube in place and allowed it to vibrate in the direction parallel to the flow only. For both rigidly and flexibly mounted tubes, pressure distributions were measured around the perimeter of the tube. Forces, and then the drag coefficient, could be calculated from this information. The drag coefficient was not found to depend upon the flexibility of the tube mounting. As the void fraction of the flow increases, the drag coefficient over the tube increases. This effect was found to be quite large at low Reynolds numbers, and weaker at higher Reynolds numbers, and a different effect was found at very high Reynolds numbers.
Two-phase flow in geothermal energy sources. Final technical report
Not Available
1981-07-01
A geothermal well consisting of single and two-phase flow sections was modeled in order to explore the variables important to the process. For this purpose a computer program was developed in a versatile form in order to be able to incorporate a variety of two phase flow void fraction and friction correlations. A parametric study indicated that the most significant variables controlling the production rate are: hydrostatic pressure drop or void fraction in the two-phase mixture; and, heat transfer from the wellbore to the surrounding earth. Downhole instrumentation was developed and applied in two flowing wells to provide experimental data for the computer program. The wells (East Mesa 8-1, and a private well) behaved differently. Well 8-1 did not flash and numerous shakedown problems in the probe were encountered. The private well did flash and the instrumentation detected the onset of flashing. A Users Manual was developed and presented in a workshop held in conjunction with the Geothermal Resources Council.
An analytical model for prediction of two-phase (noncondensable) flow pump performance
Furuya, O.
1985-03-01
During operational transients or a hypothetical LOCA (loss of coolant accident) condition, the recirculating coolant of PWR (pressurized water reactor) may flash into steam due to a loss of line pressure. Under such two-phase flow conditions, it is well known that the recirculation pump becomes unable to generate the same head as that of the single-phase flow case. Similar situations also exist in oil well submersible pumps where a fair amount of gas is contained in oil. Based on the one dimensional control volume method, an analytical method has been developed to determine the performance of pumps operating under two-phase flow conditions. The analytical method has incorporated pump geometry, void fraction, flow slippage and flow regime into the basic formula, but neglected the compressibility and condensation effects. During the course of model development, it has been found that the head degradation is mainly caused by higher acceleration on liquid phase and deceleration on gas phase than in the case of single-phase flows. The numerical results for head degradations and torques obtained with the model favorably compared with the air/water two-phase flow test data of Babcock and Wilcox (1/3 scale) and Creare (1/20 scale) pumps.
Central Upwind Scheme for a Compressible Two-Phase Flow Model
Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242
Two-Phase Flow Visualization of Refrigerant Fluid at Expansion Valve
NASA Astrophysics Data System (ADS)
Fujii, Yasuhiko; Kimura, Shigeo; Saito, Takayuki; Kiwata, Takahiro; Matsumura, Kazuhiko
Recently, the noise caused by the refrigerant fluid is spotlighted due to the demand of low noise home and office air conditioners. Especially, reduction of refrigerant fluid noise and vibration noise generated from throttle in the expansion valve is becoming important. Therefore in this study it is intended to resolve fluctuating phenomena of fluid, which may be the cause of noise, by flow visualization and measurement of fluid pressure and temperature at throttle valves, focusing on two-phase flow of refrigerant fluid. A test equipment suitable for flow visualization of R410a refrigerant was developed by epoch making design and manufacturing method. Visualization was realized by laser beam irradiated on the visualization equipment and by high-speed video camera. Test conditions are set of combinations of 4 different conditions of compressor revolution and 4 different conditions of valve opening of expansion valve. As results of the following conclusions are drawn. (1)A visualization technique of throttle of expansion valve has been developed by manufacturing visualization equipment, which is most suitable to the test. (2)It has been confirmed that refrigerants is liquid and two-phase condition in the upstream of throttle, where a needle is inserted and that refrigerant fluid flow in two-phase in the downstream of throttle.
Pore-scale investigation of two-phase flow using micro particle image velocimetry
NASA Astrophysics Data System (ADS)
Heshmati, M.; Piri, M.; Stegmeir, M.
2015-12-01
Utilizing a two phase, two fields of view (FOV) Micro Particle Image Velocimetry (uPIV) system, simultaneous flow of oil and water in PDMS and glass porous systems are studied. We use glass and PDMS micromodels that are water- and oil-wet, respectively. They allow the study the effect of wettability on the flow. The velocity field of each phase is resolved in real-time and space using two high speed 4 MP cameras and a high repetition dual-head laser for small FOV and two 29 MP cameras and a low repetition dual-head powerful laser for the large FOV. Small FOV part of the system is used to investigate details of the flow at the pore scale and the interactions between the fluids and the medium. The large FOV is used to resolve the velocity over the entire micromodel. High-resolution micro-CT images of Bentheimer sandstone are used to construct two-dimensional. Single- and two-phase flow experiments are performed in these models. In the two-phase flow tests, imbibition and drainage experiments are carried out to obtain capillary pressure-saturation curves for different flow combinations. The velocity fields are resolved during each imbibition and drainage test and the effect of saturation of each phase on the velocity field is shown.
Analysis of nanoscale two-phase flow of argon using molecular dynamics
Verma, Abhishek Kumar; Kumar, Rakesh
2014-12-09
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh
2011-10-01
We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receiving complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.
Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs
NASA Astrophysics Data System (ADS)
Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.
2014-02-01
This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.
Chromatographic sample collection from two-phase (gas+liquid) flows.
Bruno, Thomas J; Windom, Bret C
2011-12-01
A particularly challenging sample presentation in analytical chemistry is a flowing stream that consists of both a gas and liquid phase, combined with the common situation in which a reliable analysis is needed for both phases, separately. In these cases, the vapor and liquid must be physically separated (without change to either), before the individual phases can be collected and analyzed. It is not possible to analyze two-phase flows otherwise. Although the two phases are at equilibrium, it is imperative that no liquid contaminate the vapor, and no vapor be entrained in the liquid at a given temperature and pressure. In this paper, we describe a simple on-line device that can individually separate and collect the vapor and liquid phases of a two-phase flow. The apparatus, which we call P(2)SC, uses an adaptation of the branch point separator, with vapor collection done downstream in a metal bellows. The liquid collection is done in a length of Teflon tube. The separated vapor and liquid phases are then easily transferred into any desired analytical instrument with a syringe, although any sample introduction method, such as a valve, could be used as well. We discuss the application of this device with a stream of thermally stressed rocket kerosene. PMID:22036084
A theory of electrophoresis of emulsion drops in aqueous two-phase polymer systems
NASA Technical Reports Server (NTRS)
Levine, S.
1982-01-01
An electrophoresis study has been carried out in an emulsion formed from an electrically neutral aqueous mixture of dextran and polyethylene glycol equilibrated at sufficient concentrations in the presence of electrolytes. Electrophoresis of a drop of one phase suspended in the other is observed, and the direction of the drop's motion is reversed when the disperse phase and the continuous phase are interchanged. In the presence of sulfate, phosphate, or citrate ions, an electrostatic potential difference of the order of a few mV exists between the two phases. The potential implied by the direction of the electrophoretic motion is opposite to the Donnan potential observed between the two phases. The mobility of an emulsion drop increases with the drop radius and depends on ion concentration. These results are explained in terms of a model postulating an electric dipole layer associated with a mixture of oriented polymer molecules at the surface of a drop, with a potential difference between the interiors of the two phases resulting from the unequal ion distribution.
Two-phase gas-liquid flow characteristics inside a plate heat exchanger
Nilpueng, Kitti; Wongwises, Somchai
2010-11-15
In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)
NASA Astrophysics Data System (ADS)
Kakaç, S.; Pramuanjaroenkij, A.
2016-06-01
Nanofluids have been investigated regarding their advantages and potentialities for the purpose of increasing convective heat transfer rates inside thermal systems where they are used as working fluids. Researchers in thermophysics have investigated these fluids experimentally and numerically. This review provides extensive theoretical information concerning nanofluids in the single-phase and two-phase treatments. Important published works on nanofluid properties and correlations are summarized and reviewed in detail. Heat transfer enhancement by nanofluids is a challenging problem due to the difficulties inherent in the model of the physical mechanism of interaction between the paricles. Here the interaction between the phases is modeled by several two-phase models, and the results are given in graphical and tabular forms. Despite the advantages of the mixture model, such as imlementation of physical properties and less computational power requirements, some studies showed that the results of the single-phase and two-phase models are very similar. The main difference consists in the effect of the drift velocities of the phases relative to each other.
A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows
Ray A. Berry; Richard Saurel; Fabien Petitpas
2009-05-01
In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.
Two-phase distribution in the vertical flow line of a domestic wet central heating system
NASA Astrophysics Data System (ADS)
Fsadni, A.-M.; Ge, Y. T.
2013-04-01
The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.
Parallel numerical modeling of two-phase flow during CO2 storage in saline aquifers
NASA Astrophysics Data System (ADS)
Wang, Wenqing; Zehner, Björn; Böttcher, Norbert; Görke, Uwe-Jens; Kolditz, Olaf
2013-04-01
Numerical modeling of CO2 storage processes in saline aquifers is computationally expensive due to the complexity and nonlinearity of the observed physical processes (e.g., two-phase flow) , and the large size of real reservoir site that also exhibits a heterogeneous distribution of material properties. The modeling of the physical process in the storage sites with a high degree of accuracy requires a fine discretization of the considered domain. Naturally, this leads to the requirement of extremely high computational resources. This work focuses on the parallel simulation of the two-phase flow in CO2 storage sites. The Galerkin finite element method is used to solve the governing equations. Based on the overlapped domain decomposition approach, the PETSc package is employed to parallelize the global equation assembly and the linear solver, respectively. A numerical model based on the real test site Ketzin in Germany is adopted for parallel modeling. The model domain is discretized with more than four million tetrahedral elements. The parallel simulations are carried out on super computers with different number of cores. The obtained speedup shows a good scalability of the current parallel finite element approach of the two-phase flow modeling in geological CO2 storage applications.
Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows
NASA Astrophysics Data System (ADS)
Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael
Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.
NASA Astrophysics Data System (ADS)
Kakaç, S.; Pramuanjaroenkij, A.
2016-05-01
Nanofluids have been investigated regarding their advantages and potentialities for the purpose of increasing convective heat transfer rates inside thermal systems where they are used as working fluids. Researchers in thermophysics have investigated these fluids experimentally and numerically. This review provides extensive theoretical information concerning nanofluids in the single-phase and two-phase treatments. Important published works on nanofluid properties and correlations are summarized and reviewed in detail. Heat transfer enhancement by nanofluids is a challenging problem due to the difficulties inherent in the model of the physical mechanism of interaction between the paricles. Here the interaction between the phases is modeled by several two-phase models, and the results are given in graphical and tabular forms. Despite the advantages of the mixture model, such as imlementation of physical properties and less computational power requirements, some studies showed that the results of the single-phase and two-phase models are very similar. The main difference consists in the effect of the drift velocities of the phases relative to each other.
Gravitational instability in two-phase disks and the origin of the moon
NASA Technical Reports Server (NTRS)
Thompson, Christopher; Stevenson, David J.
1988-01-01
Two-phase disks may be gravitationally unstable at temperatures or surface densities at which a disk composed of either single phase would be highly stable. It is argued that two-phase disks can achieve a marginally unstable state (in addition to a highly unstable state that leads to fragmentation), limited by the ability of the photosphere to radiate the energy dissipated in the disk. A self-consistent prescription for the viscosity induced by the slow instabilities is provided. Two-phase disks are more centrally condensed than single-phase disks, and their secular cooling time may be comparable to their spreading time. A circumterrestrial disk of sufficient mass to form the moon provides a detailed example of all the preceding points. Its stability, structure, and dynamical evolution are investigated, and it is concluded that its spreading time is short (about 100 yr); the moon is formed molten, or partially molten; the moon's initial orbit lies in the earth's equatorial plane; and only a small fraction of the disk mass is lost in a wind, although this may represent a substantial fraction of volatiles. Most of these conclusions are independent of how the disk was formed, e.g., from a giant impact.
Blob population dynamics during immiscible two-phase flows in reconstructed porous media
NASA Astrophysics Data System (ADS)
Yiotis, A. G.; Talon, L.; Salin, D.
2013-03-01
We study the dynamics of nonwetting liquid blobs during immiscible two-phase flows in stochastically reconstructed porous domains predominantly saturated by a wetting fluid. The flow problem is solved explicitly using a Lattice-Boltzmann model that captures both the bulk phase and interfacial dynamics of the process. We show that the nonwetting blobs undergo a continuous life cycle of dynamic breaking up and coalescence producing two populations of blobs, a mobile and a stranded one, that exchange continuously mass between them. The process reaches a “steady state” when the rates of coalescence and breaking up become equal, and the macroscopic flow variables remain practically constant with time. At steady state, mass partitioning between mobile and immobile populations depends strongly on the applied Bond number Bo and the initial nonwetting phase distributions. Three flow regimes are identified: a single-phase flow Darcy-type regime at low Bo numbers, a non-Darcy two-phase flow regime at intermediate values of Bo, where the capillary number scales as Ca∝Bo2, and a Darcy-type two-phase flow regime at higher values of Bo. Our numerical results are found to be in good agreement with recent experimental and theoretical works.
NASA Technical Reports Server (NTRS)
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
NASA Astrophysics Data System (ADS)
Fakhari, Abbas; Geier, Martin; Lee, Taehun
2016-06-01
typical chaotic structure in the flow field is observed at a Reynolds number of 10000, which indicates that the proposed model is a promising tool for direct numerical simulation of two-phase flows.
STREAMLINES IN STRATIFIED FLOW OVER A THREE-DIMENSIONAL HILL
A fluid modeling study was performed in the EPA Fluid Modeling Facility's stratified towing tank to determine the effects of stratification on the flow field over a three-dimensional hill. Streamlines in the stratified flow over an axisymmetric hill were marked with a dye tracer ...
Thermally unstable perturbations in stratified conducting atmospheres
NASA Astrophysics Data System (ADS)
Reale, Fabio; Serio, Salvatore; Peres, Giovanni
1994-10-01
We investigate the thermal stability of isobaric perturbations in a stratified isothermal background atmosphere with solar abundances, as resulting from the competition of optically thin plasma radiative cooling and of heating conducted from the surrounding atmosphere. We have analyzed the threshold line between stable and unstable perturbations, in the plane of the two important control parameters: the initial size of the perturbation and the temperature of the unperturbed medium; this line changes with the pressure of the unperturbed atmosphere. We have extended the results of linear perturbation analysis by means of numerical calculations of the evolution of spherical isobaric perturbations, using a two-dimensional hydrodynamic code including Spitzer heat conduction. We explore a wide range of the parameters appropriate to the solar and stellar upper atmospheres: the background uniform temperature is between 105 K and 107 K, the initial pressure betweeen 0.1 and 10 dyn/sq cm, and the perturbation size between 105 and 1010 cm. The numerical results are in substantial agreement with the linear analysis. We discuss possible implications of our results also in terms of observable effects, especially concerning plasma downflows, and propose thermal instability as a possible candidate to explain the observed redshifts in solar and stellar transition region lines.
P450cam biocatalysis in surfactant-stabilized two-phase emulsions.
Ryan, Jessica D; Clark, Douglas S
2008-04-15
Cytochrome P450 monooxygenases (P450s) are powerful biocatalysts that have the ability to oxidize a broad range of substrates, often at non-reactive carbon centers. However, incorporation of P450s into synthetic schemes has so far been limited to a few whole-cell transformations. P450 substrates are often hydrophobic and have low water solubility, limiting the amount of product that can be produced. To help overcome this limitation, we have examined P450cam activity in two-phase hexane/water emulsions with and without the anionic surfactant, bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT). Hydroxylation of camphor to hydroxycamphor by the three- component P450cam system was chosen as the model reaction, and regeneration of NADH was accomplished with yeast alcohol dehydrogenase (YADH). P450cam was activated in the surfactant-free emulsions, and addition of AOT improved the activity even further, at least over the range of camphor concentrations for which initial rates were readily measurable in all media. The largest observed rate enhancement was 4.5-fold. Nearly 50-times more product was formed in the surfactant-stabilized emulsions than was achieved in aqueous buffer, with total turnover numbers reaching 28,900 for P450cam and 11,800 for YADH. In the absence of surfactant, the two-phase reaction appeared to be mass-transfer limited, while inclusion of AOT alleviated transport limitations and/or afforded a larger interfacial area for P450 activation. The oxidation of hydroxycamphor to 2,5-diketocamphane was also observed, owing to the large concentration of hydroxycamphor relative to camphor in the aqueous phase of the two-phase emulsion. This competing reaction was accompanied by the uncoupled oxidation of NADH (i.e., NADH oxidation without formation of 2,5-diketocamphane), which reduced the availability of NADH for camphor oxidation and further limited the yield of hydroxycamphor in the two-phase emulsions. These results indicate that a surfactant
Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant
2010-01-01
Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the
Aligning the Economic Value of Companion Diagnostics and Stratified Medicines
Blair, Edward D.; Stratton, Elyse K.; Kaufmann, Martina
2012-01-01
The twin forces of payors seeking fair pricing and the rising costs of developing new medicines has driven a closer relationship between pharmaceutical companies and diagnostics companies, because stratified medicines, guided by companion diagnostics, offer better commercial, as well as clinical, outcomes. Stratified medicines have created clinical success and provided rapid product approvals, particularly in oncology, and indeed have changed the dynamic between drug and diagnostic developers. The commercial payback for such partnerships offered by stratified medicines has been less well articulated, but this has shifted as the benefits in risk management, pricing and value creation for all stakeholders become clearer. In this larger healthcare setting, stratified medicine provides both physicians and patients with greater insight on the disease and provides rationale for providers to understand cost-effectiveness of treatment. This article considers how the economic value of stratified medicine relationships can be recognized and translated into better outcomes for all healthcare stakeholders. PMID:25562363
Aligning the economic value of companion diagnostics and stratified medicines.
Blair, Edward D; Stratton, Elyse K; Kaufmann, Martina
2012-01-01
The twin forces of payors seeking fair pricing and the rising costs of developing new medicines has driven a closer relationship between pharmaceutical companies and diagnostics companies, because stratified medicines, guided by companion diagnostics, offer better commercial, as well as clinical, outcomes. Stratified medicines have created clinical success and provided rapid product approvals, particularly in oncology, and indeed have changed the dynamic between drug and diagnostic developers. The commercial payback for such partnerships offered by stratified medicines has been less well articulated, but this has shifted as the benefits in risk management, pricing and value creation for all stakeholders become clearer. In this larger healthcare setting, stratified medicine provides both physicians and patients with greater insight on the disease and provides rationale for providers to understand cost-effectiveness of treatment. This article considers how the economic value of stratified medicine relationships can be recognized and translated into better outcomes for all healthcare stakeholders. PMID:25562363
Experimental study of seismic vibration effect on two-phase flow
NASA Astrophysics Data System (ADS)
Chen, Shao-Wen
This study is to investigate the seismic vibration effects on two-phase flow. Based on the seismic characteristics found in literature, the properties for designing a test facility to simulate vibration and the test conditions for adiabatic and diabatic (subcooled boiling) two-phase flows have been chosen. In order to perform this experiment, an annulus test section has been built and attached to a vibration module. For experimental investigation and visualization of two-phase flow, Pyrex-glass tubes have been utilized as a transparent test section and stainless steel instrumentation ports are designed to acquire experimental data. In the design process, calculations considering the resonance, natural frequency, structural deflection, material properties and vibration conditions for the vibration structure have been performed to choose a suitable vibration beam. The motion equations of the eccentric cam are also analyzed with respect to displacement (vibration amplitude), velocity and acceleration. Each design process is set for the goal of an economical, reliable and controllable vibration condition for the two-phase flow test section. In addition, the scaling laws for geometric similarity, hydrodynamic similarity and thermal similarity are taken into account for the annulus test section to simulate a fuel assembly sub-channel of a prototypic boiling water reactor (BWR). Potential hydrodynamic and thermal effects for two-phase flow under seismic vibration are broken down and analyzed in detail. Based on the 1-D drift-flux model, the hydrodynamics effects are discussed with respect to the possible variations of distribution parameters, C0, and drift velocity, <<νgj>>, caused by the changes of the void distribution, bubble diameter and flow regimes. Sensitivity studies are carried out for analyzing these potential hydrodynamic effects. In addition, the void generation relations in a diabatic (subcooled boiling) two-phase flow system are taken into account for
NASA Astrophysics Data System (ADS)
Burkholder, Michael B.; Litster, Shawn
2016-05-01
In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.
Magnetic flux concentrations from turbulent stratified convection
NASA Astrophysics Data System (ADS)
Käpylä, P. J.; Brandenburg, A.; Kleeorin, N.; Käpylä, M. J.; Rogachevskii, I.
2016-04-01
Context. The formation of magnetic flux concentrations within the solar convection zone leading to sunspot formation is unexplained. Aims: We study the self-organization of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains representing the uppermost 8.5-24 Mm of the solar convection zone with the horizontal size of the domain varying between 34 and 96 Mm. The density contrast in the 24 Mm deep models is more than 3 × 103 or eight density scale heights, corresponding to a little over 12 pressure scale heights. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow in set-ups where no small-scale dynamos are present. In the most highly stratified cases we employ the reduced sound speed method to relax the time step constraint arising from the high sound speed in the deep layers. We model radiation via the diffusion approximation and neglect detailed radiative transfer in order to concentrate on purely magnetohydrodynamic effects. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface in cases with moderate and high density stratification, corresponding to domain depths of 12.5 and 24 Mm. The size of the concentrations increases as the box size increases and the largest structures (20 Mm horizontally near the surface) are obtained in the models that are 24 Mm deep. The field strength in the concentrations is in the range of 3-5 kG, almost independent of the magnitude of the imposed field. The amplitude of the concentrations grows approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its derivative with respect to the mean magnetic field, however, is positive in most of the domain, which is unfavourable for the operation of the negative
STRATIFIED COMPOSITION EFFECTS ON PLANETARY NEUTRON FLUX
O. GASNAULT; ET AL
2001-01-01
All the bodies of the solar system that are directly irradiated by the galactic cosmic rays, emit enough neutrons to allow a measurement from space. These leakage neutron fluxes are indexes of the surface composition, depending on the energy of the neutrons [1]. Recent work propose geochemical interpretations of these fluxes: the thermal energy range is sensitive to iron, titanium, rare earth elements and thorium [2, 3], the epithermal energy range is sensitive to hydrogen, samarium and gadolinium [2] and the fast energy range is representative of the average soil atomic mass [4]. Nevertheless these studies make the hypothesis of a composition uniform within the footprint of the spectrometer and independent of depth. We show in this abstract that a stratified composition could change significantly the flux intensity and complicate the interpretation of the measurements. The neutron leakage flux is a competition between production effects (sensitive at high energy) and diffusion-capture effects (mostly sensitive at low energy). On one hand, it happens to be that the elements which produce the higher number of neutrons in typical lunar compositions are iron and titanium, which have also large cross section of absorption with the neutrons. On the other hand, the maximum of neutron intensity does not occur at the surface but at about 180 g cm{sup {minus}2} in depth. Therefore, if we have an iron- and/or titanium-rich soil (important production of neutrons) with a top layer having less iron and/or titanium (i.e. more transparent to the neutrons), we can expect an enhancement of the flux compared to a uniform composition.
Role of Nucleation and Growth in Two-Phase Microstructure Formation
Jong Ho Shin
2008-05-01
During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different
Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis
NASA Technical Reports Server (NTRS)
Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.
1996-01-01
Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.
NASA Astrophysics Data System (ADS)
Goto, H.; Aichi, M.; Tokunaga, T.; Yamamoto, H.; Ogawa, T.; Aoki, T.
2013-12-01
Coupled two-phase fluid flow and deformation of Berea sandstone was discussed through laboratory experiments and numerical simulation. In the experiment, a triaxial compression apparatus with flow pipes to pass fluids through a rock sample was used. The experimental procedures were as follows. Firstly, external stresses close to hydrostatic condition were applied to a water saturated cylindrical Berea sandstone sample. Then, compressed air was infiltrated from the bottom of the sample. During the experiment, both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were measured. Both strains showed sudden extensions after a few seconds, and monotonically extended thereafter. The volumetric discharge of water showed that air breakthrough occurred in around 100 seconds after the commencement of the air injection. Numerical simulations based on thermodynamically consistent constitutive equations were conducted in order to quantitatively analyze the experimental results. In a simulation in which the material was assumed to be homogeneous isotropic, the axial strain at half the height of the sample and the volumetric discharge of water at the outlet were reproduced well by using reasonable parameters, while that was not the case with the circumferential strain at half the height of the sample. On the other hand, in a simulation in which anisotropy of the material was introduced, all experimental data were reproduced well by using reasonable parameters. This result is reasonable because Berea sandstone is well known to be anisotropic under such Terzaghi effective stress condition as used in our experiment, i.e., 3.0 MPa (Hart and Wang, 1999; Hart, 2000). Our results indicate that the theory of poroelasticity for two-phase fluid system can explain the strain behavior of porous media for two-phase fluid flow observed in laboratory experiments.
Two-phase dynamics of volcanic eruptions: Particle size distribution and the conditions for choking
NASA Astrophysics Data System (ADS)
Yarushina, Viktoriya M.; Bercovici, David; Michaut, Chloé
2015-03-01
Explosive volcanic eruptions are studied using a two-phase model of polydisperse suspensions of solid particles in gas. Eruption velocities depend on choking conditions in the volcanic conduit, which depend on acoustic wave propagation that is, in turn, influenced by the particle size distribution in the two-phase mixture. The acoustic wave spectrum is divided into three regions of superfast short waves moving at the pure gas sound speed, purely attenuated domain at intermediate wavelengths, and slower long waves for a dusty pseudogas. The addition of solid phases with differing particle sizes qualitatively preserves the features of two-phase acoustic wave dispersion, although it narrows the regions of short-fast and intermediate-blocked waves. Choking conditions, however, strongly depend on the number and size distribution of solid phases. Changes in particle sizes lead to variations in the choking conditions, which determine the eruption velocities and the resulting height of the erupting column. Smaller particles always exit the choking point faster than big particles, as expected. Even though particle-particle interaction is neglected, the particle distributions influence each other by momentum exchange through the gas. Therefore, the structure of the dispersion relation as well as the eruption or choking velocities and subsequent column height and particle deposition bear information on how eruption dynamics are controlled by size distribution and relative volume fractions of small and big particles. We suggest that unimodal distributions, with one dominant small particle size, favor development of vertical plinian eruptions, while bimodal distributions, with a comparable mean size, lead to pyroclastic lateral flows.
Design and construction of an experiment for two-phase flow in fractured porous media
Ayala, R.E.G.; Aziz, K.
1993-08-01
In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.
Airlift bioreactors: Experimental and theoretical analysis or two-phase hydrodynamics
Young, M.A.
1989-01-01
Local two-phase flow measurements were obtained in a pilot-scale, external loop airlift bioreactor. The gas-liquid system was air and water; the gas phase was not recirculated. Sparging rates ranged from 1.0-8.0 cm/s, using a multiorifice, ring sparger. The axial dependence of the cross sectionally averaged gas volume fraction was determined using a track-mounted gamma densitometer. Hot-film anemometry was used to measure the radial and azimuthal dependence of the liquid velocity and turbulence for two axial riser locations. The same spatial dependence was ascertained for the gas velocity and volume fraction using resistivity probe techniques. The axial distribution of liquid phase pressure was measured with precision inclined manometers. The axial dependence of the void fraction was found to be modest. The radial dependence of the gas and liquid velocities and the void fraction was substantial, especially near the sparger. Local property changes with azimuthal position were small, and the flow may be characterized as being azimuthally symmetric. The developing flow effects were pronounced, as evidenced by the distinct changes in the radial profiles of fluid flow properties with axial position. Under certain operating conditions, liquid acceleration effects near the sparger resulted in greatly reduced slip velocities. For the two-phase riser flow, a model was developed directly from the point equations of continuity and motion, resulting in a differential, two-fluid form. Macroscopic mechanical energy balance equations were used to describe the flow in the gas-liquid separator and the downcomer. The model incorporates empirical parameters for the frictional effects only. The developing two-phase flow characteristic of airlift risers was observed to create large frictional effects at the wall.
Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe
NASA Astrophysics Data System (ADS)
Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy
2016-06-01
Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.
Research on soybean protein wastewater treatment by the integrated two-phase anaerobic reactor
Yu, Yaqin
2015-01-01
The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II. PMID:26288554
A study of nonlinear dynamics of single- and two-phase flow oscillations
NASA Astrophysics Data System (ADS)
Mawasha, Phetolo Ruby
The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.
Advanced numerical methods for three dimensional two-phase flow calculations
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.