Science.gov

Sample records for lande factor

  1. Inquiry, Land Snails, and Environmental Factors.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2002-01-01

    Introduces land snails for use in inquiry-based science activities. Describes common characteristics and safety considerations while introducing students to land snails. Explains procedures for inquiry-based use of land snails in classrooms. (YDS)

  2. Influence of Land Related Factors on Sustainable Land Management in the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Teshome, Akalu; de Graaff, Jan; Ritsema, Coen

    2014-05-01

    Land is a scarce resource in the highlands of Ethiopia. Its sustainable use is highly affected among other factors by bio-physical and institutional aspects of land. The purpose of this research is to investigate the influence of land quality, land fragmentation and tenure systems on interrelated sustainable land management (SLM) investments in the North Western Ethiopian Highlands. A multivariate probit regression model is used to analyse interdependent investment decisions of SLM practices using a multiple parcel-level observations. The analysis indicates that farmers invest a combination of practices at parcels levels by considering substitution and complementarity effects of the practices. The results also reveal that land quality (e.g. slope and soil fertility status), land fragmentation (parcel size and distance of parcel from homestead) and tenure arrangements influence farmers' investments in SLM practices. The overall results indicate that farm land attributes promote or hinder investments, and tenure systems regulate the decisions about investments. Policy makers should take into consideration these various land related factors in designing and implementing SLM policies and programmes. Key words: Land quality, land fragmentation, tenure arrangements, sustainable land management, multivariate probit

  3. Inquiry, Land Snails, and Environmental Factors

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2005-01-01

    Land snails are common invertebrates that fascinate children. Unfortunately, they are seldom used for activities in the science classroom. Snails are inexpensive, take up little space in the classroom, and require only low maintenance, and their learning dividends can be enormous. For example, students can use them in inquiry-based activities that…

  4. Safer approaches and landings: A multivariate analysis of critical factors

    NASA Astrophysics Data System (ADS)

    Heinrich, Durwood J.

    The approach-and-landing phases of flight represent 27% of mission time while resulting in 61 of the accidents and 39% of the fatalities. The landing phase itself represents only 1% of flight time but claims 45% of the accidents. Inadequate crew situation awareness (SA), crew resource management (CRM), and crew decision-making (DM) have been implicated in 51%, 63%, and 73% respectively of these accidents. The human factors constructs of SA, CRM, and DM were explored; a comprehensive definition of SA was proposed; and a "proactive defense" safety strategy was recommended. Data from a 1997 analysis of worldwide fatal accidents by the Flight Safety Foundation (FSF) Approach-and-Landing Accident Reduction (ALAR) Task Force was used to isolate crew- and weather-related causal factors that lead to approach-and-landing accidents (ALAs). Logistic regression and decision tree analysis were used on samplings of NASA's Aviation Safety Reporting System (ASRS) incident records ("near misses") and the National Transportation Safety Board's (NTSB) accident reports to examine hypotheses regarding factors and factor combinations that can dramatically increase the opportunity for accidents. An effective scale of risk factors was introduced for use by crews to proactively counter safety-related error-chain situations.

  5. Land management versus natural factors in land instability: some examples in northern Spain.

    PubMed

    Bruschi, Viola Maria; Bonachea, Jaime; Remondo, Juan; Gómez-Arozamena, Jose; Rivas, Victoria; Barbieri, Matteo; Capocchi, Stefano; Soldati, Mauro; Cendrero, Antonio

    2013-08-01

    The objective of this work is to test a hypothesis formulated on the basis of former results which considers that there might be a ‘‘global geomorphic change,’’ due to activities related to land management and not determined by climate change, which could be causing an acceleration of geomorphic processes. Possible relationships between some geomorphic processes related to land instability (landslides or sediment generation) and potential triggering factors are analyzed in study areas in northern Spain. The analysis is based on landslide inventories covering different periods, as well as the determination of sedimentation rates. Temporal landslide and sedimentation rate trends are compared with different indicators of human activities (land-use change, logging, forest fires) and with potential natural triggers (rainfall, seismicity). The possible influence of the road network in the distribution of landslides is also analyzed. Results obtained show that there is a general increase of both landslide and sedimentation rates with time that cannot be explained satisfactorily by observed rainfall trends and even less by seismicity. Land use change appears to be by far the main factor leading to land instability, with some changes producing up to a 12-fold increase of landslide rate. A relationship between road network and the spatial distribution of landslides has also been observed. These results do confirm the existence of an acceleration of geomorphic processes in the region, and also suggest that climate-related factors play a limited role in the changes observed. PMID:23797484

  6. RESUSPENSION OF PLUTONIUM FROM CONTAMINATED LAND SURFACES: METEOROLOGICAL FACTORS

    EPA Science Inventory

    A literature review is presented in a discussion of the relevance of meteorological factors on the resuspension of plutonium from contaminated land surfaces. The physical processes of resuspension based on soil erosion work are described. Some of the models developed to simulate ...

  7. Two Empirical Models for Land-falling Hurricane Gust Factors

    NASA Technical Reports Server (NTRS)

    Merceret, Franics J.

    2008-01-01

    Gaussian and lognormal models for gust factors as a function of height and mean windspeed in land-falling hurricanes are presented. The models were empirically derived using data from 2004 hurricanes Frances and Jeanne and independently verified using data from 2005 hurricane Wilma. The data were collected from three wind towers at Kennedy Space Center and Cape Canaveral Air Force Station with instrumentation at multiple levels from 12 to 500 feet above ground level. An additional 200-foot tower was available for the verification. Mean wind speeds from 15 to 60 knots were included in the data. The models provide formulas for the mean and standard deviation of the gust factor given the mean windspeed and height above ground. These statistics may then be used to assess the probability of exceeding a specified peak wind threshold of operational significance given a specified mean wind speed.

  8. Land use pattern at Alacam mountainous range land (submediterranean-Turkey) due to edaphic and physiographical factors.

    PubMed

    Yilmaz, Osman Yalcin; Sevgi, Orhan; Tecimen, Huseyin Baris; Carus, Serdar; Kavgaci, Ali

    2012-04-01

    Soil degradation is perceived as a major threat in the Mediterranean region due to land use pattern and projected climate change. As the high altitudinal mountainous lands are sensitive lands, the land use patterns atAlaçam mountains were investigated in this study. The assessment of land use distribution is arranged with the altitude, exposure, slope and bedrock parameters. The spatial database of project was created using GRASS GIS open source software (GRASS Development Team, 2008). The scanned land use and main rock map of the project area rectified, digitized, and attributes of land use and bedrocks were entered into the database tables. Also raster SRTM3 data were imported into these databases for making physiographical factor (elevation, slope, aspect) maps. Our findings illustrated thatthe whole area of Alaçam mountains is 282 480 ha where most of the area of the mass is located between 700-1300 m asl with 200 585 ha corresponding to 71% of the whole area. We detected two kinds of mis-land use; (1) agricultural activities applied at the slopes above 17% (representing 35 220 ha) and agricultural activities applied on metamorphic rocks (representing 872 ha). Total misuse of lands reached 36 092 ha comprised 12.77% of the whole area. PMID:23424838

  9. [Dynamics of recent cultivated land in Zhejiang Province and relevant driving factors].

    PubMed

    Zhang, Hai-dong; Yu, Dong-sheng; Shi, Xue-zheng; Liu, Ying-an; Wang, Shi-hang; Zhang, Guang-xing; Liu, Yang

    2010-12-01

    Through the human-computer interactive interpretation of the 2000, 2005, and 2008 remote sensing images of Zhejiang Province with the help of RS and GIS techniques, the dynamic database of cultivated land change in the province in, 2000-2008 was established, and the driving factors of the cultivated land change were analyzed by ridge regression analysis. There was a notable cultivated land change in the province in 2000-2008. In 2000-2005 and 2005-2008, the annual cultivated land change in the province arrived -1.42% and -1.46%, respectively, and most of the cultivated land was changed into residential and industrial land. Non-agricultural population rate, real estate investment, urban green area, and orchard area were thought to be the main driving factors of the cultivated land change in Zhejiang Province, and even, in the developed areas of east China. PMID:21442998

  10. Factors influencing tolerance to wind shears in landing approach

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1976-01-01

    Flight simulator studies were conducted to examine the piloting problems resulting from encounters with unusual atmospheric disturbances late in landing approach. Simulated encounters with disturbances, including examples derived from accident data, provided the opportunity to study aircraft and pilot performance. It was observed that substantial delays in pilot response to shear-induced departures from glide slope often seriously amplified the consequences of the encounter. In preliminary assessments, an integrated flight instrument display featuring flight path as the primary controlled element appeared to provide the means to minimize such delays by improving tolerance to disturbances in landing approaches.

  11. Land cover as an important factor for landslide risk assessment

    NASA Astrophysics Data System (ADS)

    Promper, C.; Glade, T.; Puissant, A.; Malet, J.-P.

    2012-04-01

    Landcover change is a crucial component of hazard and vulnerability in terms of quantification of possible future landslide risk, and the importance for spatial planners but also individuals is obvious. Damage of property, losses of agricultural land, loss of production but also damaged infrastructures and fatalities may be the result of landslide hazards. To avoid these economic damages as well as possible fatalities in the future, a method of assessing spatial but also temporal patterns of landslides is necessary. This study represents results of landcover modeling as a first step to the proposition of scenario of landslide risk for the future. The method used for future land cover analysis is the CLUE modeling framework combining past and actual observed landcover conditions. The model is based on a statistical relationship between the actual land cover and driving forces. The allocation of landcover pixel is modified by possible autonomous developments and competition between land use types. (Verburg et al. 1999) The study area is located in a district in the alpine foreland of Lower Austria: Waidhofen/Ybbs, of about 130km2. The topography is characterized by narrow valleys, flat plateau and steep slopes. The landcover is characterized by region of densely populated areas in the valley bottom along the Ybbs River, and a series of separated farm houses on the top of the plateau. Population density is about 90 persons / km2 which represent the observed population density of Austria. The initial landcover includes forest, grassland, culture, built-up areas and individual farms. Most of the observed developments are controlled by the topography (along the valleys) and the actual road network. The results of the landcover model show different scenarios of changes in the landslide prone landcover types. These maps will be implemented into hazard analysis but also into vulnerability assessment regarding elements at risk. Verburg, P.H., de Koning, G.H.J., Kok, K

  12. Radar PAPIs: human factor issues of EVS landing aids

    NASA Astrophysics Data System (ADS)

    Korn, Bernd R.; Lorenz, Bernd; Toebben, Helmut H.; Doehler, Hans-Ullrich; Hecker, Peter

    2004-08-01

    Up to now most Enhanced Vision Systems have been based on IR-sensors. Although the penetration of bad weather (dense fog and light rain) by MMW-radar is remarkably better than in the infrared spectrum MMW sensors still have the disadvantage that radar data are often difficult to interpret. Therefore, it's not always possible for the pilot to obtain a reliable detection of runway structures within the radar images. However, prior field tests have shown that the installation of two different types of radar retro-reflectors along the runway can ease the image analysis task significantly and can provide the visual cues necessary to perform precision straight-in landings. A set of corner reflectors has proven suitable to mark the runway edges needed to adjust for lateral deviations and a set of diplane reflectors provided cues to maintain a 3-degree glide path descend. The present study obtains first objective human performance data to examine the question how efficient pilots are in utilizing these visual cues. The study tested seven VFR and seven IFR-rated pilots and used a low-fidelity human-in-the-loop visual tracking task to simulate a straight-in landing. Pilots were required to detect the lateral and vertical tracking error based on the intensity-coded visual cues provided by the simulated radar images. The study compares two display conditions derived from different spatial arrangements of the diplane reflectors that signal the glide path angles. The first, the so-called "Radar-PAPI", was a horizontal row arrangement of four diplanes, and the second, the "Radar VASI", was a two-over-two arrangement of four diplanes. A third condition simulated the existing visual color coded PAPI landing aid and served as a baseline reference. Performance evaluation was based on the calculation of the root-mean-square error for both axis and subjective preference statements of the pilots.

  13. Factors Influencing Farmers' Expectations to Sell Agricultural Land for Non-Agricultural Uses

    ERIC Educational Resources Information Center

    Zollinger, Brett; Krannich, Richard S.

    2002-01-01

    In this study we identify factors that influence farmers' expectations to sell some or all of their farming operation in areas where the increase in the conversion of agricultural land has been relatively rapid. Findings indicate that the following factors increase farmers' propensity to sell some or all of the agricultural operation for…

  14. Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees.

    PubMed

    Cheong, Yoon Ling; Leitão, Pedro J; Lakes, Tobia

    2014-07-01

    The transmission of dengue disease is influenced by complex interactions among vector, host and virus. Land use such as water bodies or certain agricultural practices have been identified as likely risk factors for dengue because of the provision of suitable habitats for the vector. Many studies have focused on the land use factors of dengue vector abundance in small areas but have not yet studied the relationship between land use factors and dengue cases for large regions. This study aims to clarify if land use factors other than human settlements, e.g. different types of agricultural land use, water bodies and forest are associated with reported dengue cases from 2008 to 2010 in the state of Selangor, Malaysia. From the correlative relationship, we aim to generate a prediction risk map. We used Boosted Regression Trees (BRT) to account for nonlinearities and interactions between the factors with high predictive accuracies. Our model with a cross-validated performance score (Area Under the Receiver Operator Characteristic Curve, ROC AUC) of 0.81 showed that the most important land use factors are human settlements (model importance of 39.2%), followed by water bodies (16.1%), mixed horticulture (8.7%), open land (7.5%) and neglected grassland (6.7%). A risk map after 100 model runs with a cross-validated ROC AUC mean of 0.81 (±0.001 s.d.) is presented. Our findings may be an important asset for improving surveillance and control interventions for dengue. PMID:25113593

  15. Broad Perspectives on Mars Landing Site Selection: Geological Factors from Centimeter to Kilometer Scales

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Golombek, M. P.

    2001-01-01

    Selection of a landing site for the '03 and later Mars surface missions represents a balance between potential science results and landing site safety. Although safety has to be the prime consideration, it is the melding together of spacecraft hazard analysis with science analysis that provides the key to understanding the nature of the surface for determining both its safety for landing and its scientific potential. Our goal here is to discuss the geological factors that go into a determination of site safety, at scales from centimeters up to kilometers, and to understand the implications for the resulting scientific return that can be expected.

  16. Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model

    SciTech Connect

    Shi, Xiaoying; Mao, Jiafu; Thornton, Peter E; Huang, Maoyi; Hoffman, Forrest

    2013-01-01

    In this study, spatial and temporal patterns of evapotranspiration (ET) over the period of 1982-2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates derived from the FLUXNET network of eddy covariance towers using the model tree ensembles (MTE) approach. We find that climate trends and variability dominate predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, and functions as the dominant factor controlling ET changes over North America, South America and Asia regions. Compared to the effect of climate change and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. For example, the aerosol deposition contribution is the third-most important factor for trends of ET over Europe, while it has the smallest impact on ET trend over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use and land cover change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.

  17. Spatiotemporal Patterns of Evapotranspiration in Response to Multiple Environmental Factors Simulated by the Community Land Model

    SciTech Connect

    Shi, Xiaoying; Mao, Jiafu; Thornton, P.; Huang, Maoyi

    2013-04-25

    Spatiotemporal patterns of evapotranspiration (ET) over the period from 1982 to 2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates. We find that climate dominates the predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, and replaces climate to function as the dominant factor controlling ET changes over the North America, South America and Asia regions. Compared to the effect of climate and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. The aerosol deposition contribution is the third most important factor for trends of ET over Europe, while it has the smallest impact over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.

  18. Modeling Occurrence of Urban Mosquitos Based on Land Use Types and Meteorological Factors in Korea

    PubMed Central

    Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Lee, Yeo-Rang; Hwang, Suntae; Kim, Sang-Ae; Choi, Young Jean; Park, Young-Seuk

    2015-01-01

    Mosquitoes are a public health concern because they are vectors of pathogen, which cause human-related diseases. It is well known that the occurrence of mosquitoes is highly influenced by meteorological conditions (e.g., temperature and precipitation) and land use, but there are insufficient studies quantifying their impacts. Therefore, three analytical methods were applied to determine the relationships between urban mosquito occurrence, land use type, and meteorological factors: cluster analysis based on land use types; principal component analysis (PCA) based on mosquito occurrence; and three prediction models, support vector machine (SVM), classification and regression tree (CART), and random forest (RF). We used mosquito data collected at 12 sites from 2011 to 2012. Mosquito abundance was highest from August to September in both years. The monitoring sites were differentiated into three clusters based on differences in land use type such as culture and sport areas, inland water, artificial grasslands, and traffic areas. These clusters were well reflected in PCA ordinations, indicating that mosquito occurrence was highly influenced by land use types. Lastly, the RF represented the highest predictive power for mosquito occurrence and temperature-related factors were the most influential. Our study will contribute to effective control and management of mosquito occurrences. PMID:26492260

  19. Modeling Occurrence of Urban Mosquitos Based on Land Use Types and Meteorological Factors in Korea.

    PubMed

    Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Lee, Yeo-Rang; Hwang, Suntae; Kim, Sang-Ae; Choi, Young Jean; Park, Young-Seuk

    2015-10-01

    Mosquitoes are a public health concern because they are vectors of pathogen, which cause human-related diseases. It is well known that the occurrence of mosquitoes is highly influenced by meteorological conditions (e.g., temperature and precipitation) and land use, but there are insufficient studies quantifying their impacts. Therefore, three analytical methods were applied to determine the relationships between urban mosquito occurrence, land use type, and meteorological factors: cluster analysis based on land use types; principal component analysis (PCA) based on mosquito occurrence; and three prediction models, support vector machine (SVM), classification and regression tree (CART), and random forest (RF). We used mosquito data collected at 12 sites from 2011 to 2012. Mosquito abundance was highest from August to September in both years. The monitoring sites were differentiated into three clusters based on differences in land use type such as culture and sport areas, inland water, artificial grasslands, and traffic areas. These clusters were well reflected in PCA ordinations, indicating that mosquito occurrence was highly influenced by land use types. Lastly, the RF represented the highest predictive power for mosquito occurrence and temperature-related factors were the most influential. Our study will contribute to effective control and management of mosquito occurrences. PMID:26492260

  20. [N2O flux in winter and its affecting factors under different land use patterns].

    PubMed

    Wu, Yan-Zheng; Zhang, Miao-Miao; Qin, Hong-Ling; Hou, Hai-Jun; Chen, Chun-Lan; Wei, Wen-Xue

    2013-08-01

    Due to the low temperature in winter, the emissions of greenhouse gas are often neglected. And the latest research results showed that there is continuous N2O emission in winter, therefore, research on understanding the No2O flux regulation is important for evaluating agricultural soil N2O emission. By using static chamber techniques, the N2O emission from soils under different land use patterns including fallow paddy field, rape cropping, honey pomelo orchard and abandon land in Taoyuan agricultural ecological experimental station of Chinese Academy of Sciences was measured. The results showed that fallow paddy field and rape cropping N2O emissions were obviously higher than those of the honey pomelo orchard and abandon land, and the total N2O flux in winter decreased in the order of rape cropping > fallow paddy field > honey pomelo orchard > abandon land. Cumulative N2O emission was 0.502, 0.392, 0.162 and 0.075 kg x hm(-2), respectively. Fallow paddy field and rape cropping N2O emissions accounted for large proportions of the annual N2O emissions, while honey pomelo orchard and abandon land had small contribution to the annual N2O emissions. The correlation analysis results showed that for different land use patterns, when the soil temperature > 5 degrees C, N2O emissions in winter and soil temperature had significant positive exponential correlation, and had little to do with moisture. This research showed that: when the soil temperature > 5 degrees C, the soil temperature was the leading factor in N2O emissions in winter under different land patterns; When the soil temperature < 5 degrees C, other environmental factors had comprehensive influences on the N2O emissions. PMID:24191537

  1. Multiple Landscape Factors Affect the Resilience of a Mixed Land Cover Watershed

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Lane, C.; Prues, A. G.; D'Amico, E.

    2015-12-01

    Human activities can stimulate the physical and chemical properties of streams to move beyond their background conditions, thereby facilitating the transition of these factors to stressors that affect watershed resilience. This is particularly true in mixed land cover watersheds. We quantify and explore the statistical nonlinear relationships between watershed and buffer-scale factors and nutrient (nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen (TKN), total phosphorus (TP)) concentrations, in addition to a multi-metric Index of Biotic Integrity (IBI), in a mesoscale mixed land cover watershed. Our goal is to contribute to a better understanding of the potentially numerous landscape and near-stream hydrological and biogeochemical factors that affect watershed resiliency - as inferred from in-stream nutrient levels and biological condition. We used a boosted regression tree approach, which quantifies nonlinear relationships and variable interactions, to develop watershed and 200 m buffer scale models for each chemical constituent and the annual IBI score. We developed nutrient models for the spring and summer seasons. Two primary factors - location within the watershed and percentage of urban land cover in the watershed or buffer - emerged as important explanatory variables in most nutrient and IBI models. Geographic location (i.e., latitude and longitude) interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores and suggested that location might be associated with indicators of sources (e.g., land cover) and runoff potential (e.g., soil and topographic factors). Runoff indicators (e.g., Hydrologic Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. Our overall approach confirms that it is important to consider multiple and often interacting factors when managing for watershed resilience.

  2. Remote Sensing of the Surface Urban Heat Island and Land Architecture in Phoenix, Arizona: Combined Effects of Land Composition and Configuration and Cadastral-Demographic-Economic Factors

    NASA Astrophysics Data System (ADS)

    Middel, A. C.; LI, X.

    2015-12-01

    This study seeks to determine the role of land architecture—the composition and configuration of land cover—as well as cadastral-demographic-economic factors on land surface temperature (LST) and the surface urban heat island (SUHI) effect of Phoenix, Arizona. It employs 1 m National Agricultural Imagery Program data of land-cover with 120 m Landsat-derived land surface temperature decomposed to 30m, a new measure of configuration, the normalized moment of inertia, and U.S. Census data to address the question for two randomly selected samples comprising 523 and 545 residential neighborhoods (census blocks) in the city. The results indicate that, contrary to most other studies, land configuration maintains as strong a role in LST as does land composition. In addition, land architecture combined with cadastral, demographic and economic data, captures a significant amount of explained variance in LST. The results indicate that attention to land architecture in the development of or reshaping of neighborhoods may ameliorate the summer extremes in LST.

  3. The effects of environmental and socioeconomic factors on land-use changes: a study of Alberta, Canada.

    PubMed

    Ruan, Xiaofeng; Qiu, Feng; Dyck, Miles

    2016-08-01

    Various environmental and socioeconomic issues have been attributed to land-use changes, and therefore, the underlying mechanisms merit investigation and quantification. This study assesses a comprehensive series of land-use conversions that were implemented over a recent 12-year period in the province of Alberta, Canada, where rapid economic and population growth has occurred. Spatial autocorrelation models are applied to identify the comprehensive effects of environmental and socioeconomic factors in each conversion case. The empirical results show that the impacts of key environmental and socioeconomic factors varied in intensity depending on the type of land-use conversion involved. Overall, land suitability for agricultural uses, road density, elevation, and population growth were found to be significant predictors of land-use changes. High land suitability, low elevation, and moderate road density were associated with land conversion for agricultural purposes. PMID:27376846

  4. [Factors influencing the spatial variability in soil respiration under different land use regimes].

    PubMed

    Chen, Shu-Tao; Liu, Qiao-Hui; Hu, Zheng-Hua; Liu, Yan; Ren, Jing-Quan; Xie, Wei

    2013-03-01

    In order to investigate the factors influencing the spatial variability in soil respiration under different land use regimes, field experiments were performed. Soil respiration and relevant environment, vegetation and soil factors were measured. The spatial variability in soil respiration and the relationship between soil respiration and these measured factors were investigated. Results indicated that land use regimes had significant effects on soil respiration. Soil respiration varied significantly (P < 0.001) among different land use regimes. Soil respiration rates ranged from 1.82 to 7.46 micromol x (m2 x s)(-1), with a difference of 5.62 micromol x (m2 x s)(-1) between the highest and lowest respiration rates. Soil organic carbon was a key factor controlling the spatial variability in soil respiration. In all, ecosystems studied, the relationship between soil respiration and soil organic carbon content can be described by a power function. Soil respiration increased with the increase of soil organic carbon. In forest ecosystem, the relationship between soil respiration and diameter at breast height (DBH) of trees can be explained by a natural logarithmic function. A model composed of soil organic carbon (C, %), available phosphorous (AP, g x kg(-1)) and diameter at breast height (DBH, cm) explained 92.8% spatial variability in soil respiration for forest ecosystems. PMID:23745410

  5. Land use and climatic factors structure regional patterns in soil microbial communities

    PubMed Central

    Drenovsky, Rebecca E.; Steenwerth, Kerri L.; Jackson, Louise E.; Scow, Kate M.

    2013-01-01

    Aim Although patterns are emerging for macroorganisms, we have limited understanding of the factors determining soil microbial community composition and productivity at large spatial extents. The overall objective of this study was to discern the drivers of microbial community composition at the extent of biogeographical provinces and regions. We hypothesized that factors associated with land use and climate would drive soil microbial community composition and biomass. Location Great Basin Province, Desert Province and California Floristic Province, California, USA. Methods Using phospholipid fatty acid analysis, we compared microbial communities across eight land-use types sampled throughout the State of California, USA (n = 1117). Results The main factor driving composition and microbial biomass was land-use type, especially as related to water availability and disturbance. Dry soils were more enriched in Gram-negative bacteria and fungi, and wetter soils were more enriched in Gram-positive, anaerobic and sulphate-reducing bacteria. Microbial biomass was lowest in ecosystems with the wettest and driest soils. Disturbed soils had less fungal and more Gram-positive bacterial biomass than wildland soils. However, some factors known to influence microbial communities, such as soil pH and specific plant taxa, were not important here. Main conclusions Distinct microbial communities were associated with land-use types and disturbance at the regional extent. Overall, soil water availability was an important determinant of soil microbial community composition. However, because of the inclusion of managed and irrigated agricultural ecosystems, the effect of precipitation was not significant. Effects of environmental and management factors, such as flooding, tillage and irrigation, suggest that agricultural management can have larger effects on soil microbial communities than elevation and precipitation gradients. PMID:24443643

  6. Visual factors affecting pilots' judgments of the distance to the touchdown point during emergency landings

    NASA Astrophysics Data System (ADS)

    Mayer, Celeste Marie

    The purpose of this research was to determine whether identifiable visual factors contribute to misperceptions which may occur when a pilot judges the distance to a selected touchdown point during an emergency landing. The importance of two particular visual experiences, which most pilots do not encounter during routine flight operations, was evaluated: (1) the view of the world seen from the unusually steep bank angle in which the pilot may place the airplane while maneuvering at a low altitude, and (2) the added visual distraction of a "windmilling" propeller. The influence of environmental structure was also considered. Studies of these factors were conducted using a visually realistic cockpit mounted within a VisionDomeRTM virtual-reality environment. Behavioral responses were collected from both naive participants and experienced pilots under conditions which represented emergencies initiated at a variety of altitudes and positions with respect to the landing field. The findings indicated that judgments of the distance to the touchdown point made while the airplane is banked and turning are underestimated, whereas judgments made while the airplane is on an unbanked and straight approach to the touchdown point are overestimated. Additionally, pilot experience was associated with improved judgment accuracy during the banked flights, but decreased accuracy on the unbanked flights. In most cases, the windmilling propeller decreased touchdown point judgment accuracy. Consistent visual misperceptions do occur during simulated emergency landings. Incorporating exposure to these misperceptions into the required flight-training curriculum may decrease the accident rate associated with off-airport emergency landings.

  7. A Flight Evaluation of the Factors which Influence the Selection of Landing Approach Speeds

    NASA Technical Reports Server (NTRS)

    Drinkwater, Fred J., III; Cooper, George E.

    1958-01-01

    The factors which influence the selection of landing approach speeds are discussed from the pilot's point of view. Concepts were developed and data were obtained during a landing approach flight investigation of a large number of jet airplane configurations which included straight-wing, swept-wing, and delta-wing airplanes as well as several applications of boundary-layer control. Since the fundamental limitation to further reductions in approach speed on most configurations appeared to be associated with the reduction in the pilot's ability to control flight path angle and airspeed, this problem forms the basis of the report. A simplified equation is presented showing the basic parameters which govern the flight path angle and airspeed changes, and pilot control techniques are discussed in relation to this equation. Attention is given to several independent aerodynamic characteristics which do not affect the flight path angle or airspeed directly but which determine to a large extent the effort and attention required of the pilot in controlling these factors during the approach. These include stall characteristics, stability about all axes, and changes in trim due to thrust adjustments. The report considers the relationship between piloting technique and all of the factors previously mentioned. A piloting technique which was found to be highly desirable for control of high-performance airplanes is described and the pilot's attitudes toward low-speed flight which bear heavily on the selection of landing approach speeds under operational conditions are discussed.

  8. Simultaneous Magnetic Field Measurements in Sunspots Using Spectral Lines with Different Lande Factors

    NASA Astrophysics Data System (ADS)

    Osipov, S. N.; Lozitsky, V. G.

    We present magnetic field measurements in several sunspots observed in June-July 2015 on Horizontal Solar Telescope ATsU-5 of Main Astronomical Observatory of National Academy of Sciences of Ukraine. The Zeeman splittings were measured using I ± V profiles of about ten spectral lines of Mn I, Fe I and Ni I including three lines with negative Lande factors, namely Fe I 5434.527 Å, Fe I 6094.419 Å and Fe I 4995.411 Å (geff = -0.014, -0.218, and -0.25, respectively). Our main conclusions are the following: a) as rule, spectral lines with largest Lande factors give the strongest measured magnetic fields Bobs in sunspot umbra that can be interpreted as a result of blending the Zeeman π- and σ-components in case of non-longitudinal magnetic field. b) in some places of sunspots, Bobs differs also for lines with close Lande factors, e.g. by Fe I 5432.950 and Ni I 5435.871 (geff = 0.67 and 0.5, respectively). c) lines Fe I 6094.419 Å and Fe I 4995.411 Å with geff < 0 have in sunspots signs of splitting which corresponds to geff > 0. The possible causes of named effects are discussed in short form.

  9. Temperature dependence of the electron Landé g-factor in cubic GaN

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Schupp, T.; As, D. J.; Hägele, D.; Rudolph, J.

    2015-12-01

    The temperature dependence of the electron Landé g-factor in bulk cubic GaN is investigated over an extremely broad temperature range from 15 K up to 500 K by time-resolved Kerr-rotation spectroscopy. The g-factor is found to be approximately constant over the full investigated temperature range. Calculations by k .p -theory predict a negligible temperature dependence g(T) in complete agreement with the experiment as a consequence of the large band-gap and small spin orbit splitting in cubic GaN.

  10. Land factors affecting soil erosion during snow melting: a case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Darwich, Talal

    2014-05-01

    Soil erosion is one of the major problems facing the mountainous agricultural lands in Lebanon. In order to assess the land factors acting on soil erosion; a study was conducted in the upper watershed of Ibrahim River in the spring months of April, May and June. Water and bed load sediments from six locations alimented by six sub-basins were sampled. Four sub-basins (1, 2, 3 and 6) were dominated by agricultural lands while lands in sub-basins 4 and 7 were occupied by grassland and bare soils. The highest quantities of suspended sediments were found in waters originating from watersheds dominated by agricultural lands, such as Location 2 (713.72 mg L-1 in April 2012). Low clay content and the combination of land occupation (orchards = 71%) and slope (20.7 degrees) caused this ecosystem disturbance. Locations 1, 2, 3 and 6 were alimented by runoff water due to the melting of the snow. For this, the concentrations of sediments decreased by 4 fold between April and May in sub-basin 1 and by 11-14 fold in sub-basins 2, 3 and 6. Globally, some 1669.4 tons of sediments were delivered in the upper river during April. Bed load sediments were separated into 4 classes according to their size. The size of the particles found in the bed load reflected to a large extent the type of soils surrounding the watershed. The range of sand in the regions surrounding locations 6 and 7 was 64% and 82%, while the average in the bed load was 80.9% and 78.25% respectively. The silt content in locations 2, 3 and 5 was well reflected in the concentrations of silt in the bed load. In bed load samples, the exchangeable potassium ranged from 70-250 mg kg-1 in sub-basins dominated by agricultural lands against 20-50 mg kg-1 in sub-basins dominated by grassland and bare rocks. Further quantitative studies need to be conducted especially during the first rains to fully estimate the water load sediments after a prolonged dry season, characterizing the east Mediterranean. Action must be taken for

  11. Impacts of anthropogenic factors on land degradation during the anthropocene in Turkey.

    PubMed

    Curebal, Isa; Efe, Recep; Soykan, Abdullah; Sonmez, Suleyman

    2015-01-01

    The aim of the present study was to determine the factors that effected the beginning of the Anthropogenic Era (human age) in Turkey and formation of biomes. Destruction of vegetation, soil erosion and land degradation are the most important factors in the formation of anthropogenic biomes in Turkey. For this reason, first of all, a literature review about land degradation, which has been going on for past 300 years in Turkey, and about its causes was made. Changes that have occurred over the last 70 years were studied with the help of aerial photos and satellite images. In addition, studies we have conducted in the last 35 years have contributed substantially to the determination of the extent of the destruction of vegetation and land degradation in Turkey. As a result of research based on literature reviews and fieldwork, the impact of humans on the natural habitat were identified, and the current situation was studied. The findings about the current situation that emerged due to human impact were then transferred to an electronic environment, and a map of anthropogenic biomes was produced with the help of ArcGIS Desktop software. Based on the results obtained, one can say that the natural habitat has considerably changed over the last 200 years; vegetation has been damaged, and land degradation has become faster because of human activities. These results indicate that 97% of natural biomes have become anthropogenic biomes, and this change has become more obvious during 20h century in Turkey. The results also show that the change has been more influential after 1950. PMID:26591882

  12. Identifying relationships between baseflow geochemistry and land use with synoptic sampling and R-mode factor analysis.

    PubMed

    Wayland, Karen G; Long, David T; Hyndman, David W; Pijanowski, Bryan C; Woodhams, Sarah M; Haack, Sheridan K

    2003-01-01

    The relationship between land use and stream chemistry is often explored through synoptic sampling of rivers at baseflow conditions. However, baseflow chemistry is likely to vary temporally and spatially with land use. The purpose of our study is to examine the usefulness of the synoptic sampling approach for identifying the relationship between complex land use configurations and stream water quality. This study compares biogeochemical data from three synoptic sampling events representing the temporal variability of baseflow chemistry and land use using R-mode factor analysis. Separate R-mode factor analyses of the data from individual sampling events yielded only two consistent factors. Agricultural activity was associated with elevated levels of Ca2+, Mg2+, alkalinity, and frequently K+, SO4(2-), and NO3-. Urban areas were associated with higher concentrations of Na+, K+, and Cl-. Other retained factors were not consistent among sampling events, and some factors were difficult to interpret in the context of biogeochemical sources and processes. When all data were combined, further associations were revealed such as an inverse relationship between the proportion of wetlands and stream nitrate concentrations. We also found that barren lands were associated with elevated sulfate levels. This research suggests that an individual sampling event is unlikely to characterize adequately the complex processes controlling interactions between land use and stream chemistry. Combining data collected over two years during three synoptic sampling events appears to enhance our ability to understand processes linking stream chemistry and land use. PMID:12549557

  13. [Distribution of 137Cs and relative influencing factors on typical karst sloping land].

    PubMed

    Zhang, Xiao-Nan; Wang, Ke-Lin; Zhang, Wei; Chen, Hong-Song; He, Xun-Yang; Zhang, Xin-Bao

    2009-11-01

    Based on the field survey and the analysis of a large number of soil samples, the distribution of 137 Cs and its influencing factors were studied using 137 Cs tracer technology on typical karst sloping land. The results indicate that the distribution of 137 Cs in soil profile in karst areas show the similar characteristics as that in non-karst areas, fitted an exponential pattern in forest soils and a uniform pattern in cultivated soils. In the sinkhole points in karst areas, 137 Cs exists in deep soil layers and its specific activity vary from 1.7 to 3.3 Bq/kg in soil layers above 45cm, suggesting the existing soil around karst sinkhole is mainly formed by the accumulation of erosion materials. The 137 Cs specific activity in the soil from two rock cracks are 16.8 Bq/kg and 37.6 Bq/kg respectively, which are much higher than that in the soil around the rock, this phenomenon indicates that bare rock is an important influencing factor for 137 Cs spatial movement. With the increment of altitude, the 137 Cs area activity exhibits an irregular fluctuation and evident spatial heterogeneity. On the forest land, the 137 Cs area activities which range from 299.4 to 1 592.6 Bq/m2 are highly positively correlated with the slope gradient and positively correlated with the altitude; while on the cultivated land, the 137 Cs area activities which range from 115.8 to 1478.6 Bq/m2 are negatively correlated with the slope gradient but negatively correlated with the altitude. Topography, geomorphology and human disturbance intensity are the key factors influencing 137 Cs spatial distribution. PMID:20063722

  14. Quantifying the influences of various ecological factors on land surface temperature of urban forests.

    PubMed

    Ren, Yin; Deng, Lu-Ying; Zuo, Shu-Di; Song, Xiao-Dong; Liao, Yi-Lan; Xu, Cheng-Dong; Chen, Qi; Hua, Li-Zhong; Li, Zheng-Wei

    2016-09-01

    Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST. PMID:27321883

  15. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China

    PubMed Central

    Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai

    2016-01-01

    Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21st century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change. PMID:26867481

  16. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China.

    PubMed

    Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai

    2016-01-01

    Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21(st) century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change. PMID:26867481

  17. Projecting Future Land Use Changes in West Africa Driven by Climate and Socioeconomic Factors: Uncertainties and Implications for Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Land use changes constitute an important regional climate change forcing in West Africa, a region of strong land-atmosphere coupling. At the same time, climate change can be an important driver for land use, although its importance relative to the impact of socio-economic factors may vary significant from region to region. This study compares the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa and examines various sources of uncertainty using a land use projection model (LandPro) that accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. Future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. The impact of human decision-making on land use was explicitly considered through multiple "what-if" scenarios to examine the range of uncertainties in projecting future land use. Without agricultural intensification, the climate-induced decrease of crop yield together with increase of food demand are found to cause a significant increase in agricultural land use at the expense of forest and grassland by the mid-century, and the resulting land use land cover changes are found to feed back to the regional climate in a way that exacerbates the negative impact of climate on crop yield. Analysis of results from multiple decision-making scenarios suggests that human adaptation characterized by science-informed decision making to minimize land use could be very effective in many parts of the region.

  18. Zeeman spectroscopy of NiH: Landé factors of three Ω = 3/2 excited electronic states

    NASA Astrophysics Data System (ADS)

    Harker, H.; Richard, C.; Tourasse, G.; Crozet, P.; Ross, A. J.

    2013-10-01

    We report molecular Landé factors for three Ω‧ = 3/2 vibronic levels of NiH: E[17.8], D[17.6], and I[17.2], lying 17 000-18 000 cm-1 above the ground electronic state. The molecular Landé factors of these three states exhibit unusual variations with J and with parity. Also, molecular Landé factors of the D[17.6] excited electronic state are unexpectedly sensitive to Ni isotope substitution at low J. These observations provide evidence for extensive mixing among electronic states, deviation from Hund's case (a) coupling, and the existence of a local perturbing state. We also report polarization-dependent discrepancies between experimental and theoretical spectral intensities [1] for transitions involving the I[17.2] excited electronic state.

  19. Post-disturbance dust emissions in dry lands: the role of anthropogenic and climatic factors

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Zobeck, T. M.; Sankey, J. B.

    2012-12-01

    Disturbances, which cause a temporary reduction in vegetation cover, can greatly accelerate soil erosion by wind and subsequent dust emissions from desert grasslands and shrublands. These ecosystems worldwide are threatened by contemporary shifts in vegetation composition (e.g. encroachment by shrubs, invasion by exotic grasses) and climatic changes (e.g. increase in aridity, droughts), which alter the frequency and intensity of disturbances and dust emissions. Considering the deleterious impact of dust-borne contaminants on regional air quality and human health, accelerated post-disturbance aeolian transport is an increasingly serious concern for ecosystem management and risk assessment. Here, using extensive wind tunnel studies, field experiments (in grasslands and shrublands of North America) and modeling, we investigated the role of disturbances (fires, grazing) and changes in hydroclimatic factors (air humidity, soil moisture) in altering aeolian processes in desert grassland and shrublands. Our results indicate that the degree of post-disturbance aeolian transport and its attenuation with time was found to be strongly affected by the antecedent vegetation type and post-disturbance climatic conditions. The interactions among sediment transport processes, disturbances and hydroclimatic factors are explored from patch to landscape scales and their roles in dust emissions and land degradation are discussed.

  20. Demographic factors and land-use planning in the small islands of Southern Europe

    NASA Astrophysics Data System (ADS)

    Soliani, Lamberto; Rossi, Orazio

    1992-09-01

    Since the end of the 1970s, the southern European countries have shown an exceptional reduction in fertility rate. From the highest levels among the developed nations, these countries dropped beneath the substitution rate level: in Greece there is an average of about 1.5 children per woman, and Italy (starting three to four years ago), with 1.3 children per woman, is now the country with the lowest fecundity rate in the world. Land-use planning in southern European small islands therefore requires substantial revision. In the areas where western civilization began, which are highly populated and have a long history, cultural and ethnic aspects of tradition are fundamental to environmental management and to the defense of historical heritage. They also place a strong value on sustaining tourism, the most relevant economic activity, that allows them to survive and maintain a high welfare level. For some decades they have had populations with a marked presence of young people and high emigration rates, but now they are fast becoming dominated by the elderly and must prepare for a period of fast reduction in youth of the workforce, while the peripheral areas of Asia and Africa are entering a sudden demographic growth phase. The demographic structure has also been deeply altered both by previous migrations and by random variations, as usually happens in all small communities. Social services for younger and older people have had to be adapted rapidly, reorganizing high-school management, hospital and health-care structures, in-house assistance, and so on. There is a need to rethink the job market and favor the immigration of highly specialized workers, which is a necessity for technical evolution. Sustainable development is constrained nowadays not only by the scarcity of natural resources, but also by the quality and quantity of human resources. Proper policies for population and land-use planning are highly correlated factors; they have to be considered with respect

  1. Geologic, hydrologic, and cultural factors in the selection of sites for the land disposal of wastes in Washington

    USGS Publications Warehouse

    Dion, N.P.; Alvord, R.C.; Olson, T.D.

    1986-01-01

    As part of a program to deal with the problems of waste disposal in Washington, the Department of Ecology (WDOE), in cooperation with the U.S. Geological Survey, completed a study designed to provide the geologic, hydrologic, and cultural data needed to evaluate the suitability of State land areas for the disposal of wastes. Data portraying the distribution of factors that could affect the suitability of areas in Washington for waste disposal were presented in a series of 18 maps (overlays). The factors selected include major geologic units; natural hazards from earthquakes, faulting, and volcanoes; climate; locations of major surface-water and groundwater bodies; population density; and land and water uses. Within each factor (map) the data were grouped into class intervals and the intervals for most factors ranked according to their relative suitability/unsuitability for land disposal of wastes following criteria supplied by WDOE. Areas of the State considered completely unsuitable (as determined by WDOE personnel) for waste disposal because of current or proposed land uses were excluded from ranking. (USGS)

  2. The role of land use and environmental factors on microbial pollution of mountainous limestone aquifers

    NASA Astrophysics Data System (ADS)

    Allocca, V.; Celico, F.; Petrella, E.; Marzullo, G.; Naclerio, G.

    2008-07-01

    Limestone aquifers in Southern Italy are often affected by bacterial contamination produced by pasture and agriculture. The main goals of this study were (1) to analyze the role of land use and environmental factors on microbial contamination and, (2) to identify, at field scale, the most suitable indicator of fecal pollution, by comparing fecal coliforms and fecal enterococci. Analyzing surface and spring water, it was noted that both fecal indicators showed a significant decrease during the period characterized by freezing and/or freeze-thaw intervals. The data analysis shows that fecal coliforms are characterized by a significant decrease in population (3 orders of magnitude, at least) during the freezing period, while fecal enterococci are temporarily inhibited. A taxonomic classification of fecal enterococci detected in spring water samples was performed by the API 20 Strep system and by sequencing of the ribosomal 16S DNA genes. The results showed that freezing conditions did not cause any significant change on the set of enterococcal species.

  3. Linking Land Surface Phenology and Growth Limiting Factor Shifts over the Past 30 Years

    NASA Astrophysics Data System (ADS)

    Garonna, I.; Schenkel, D.; de Jong, R.; Schaepman, M. E.

    2015-12-01

    The study of global vegetation dynamics contributes to a better understanding of global change drivers and how these affect ecosystems and ecological diversity. Land-surface phenology (LSP) is a key response and feedback of vegetation to the climate system, and hence a parameter that needs to be accurately represented in terrestrial biosphere models [1]. However, the effects of climatic changes on LSP depend on the relative importance of climatic constraints in specific regions - which are not well understood at global scale. In this study, we analyzed a Phenology Reanalysis dataset [2] to evaluate shifts in three climatic drivers of phenology at global scale and over the last 30 years (1982-2012): incoming radiation, evaporative demand and minimum temperature. As a first step, we compared LAI as modeled from these three factors (LAIre) to remotely sensed observations of LSP (LAI3g, [3]) over the same time period. As a second step, we examined temporal trends in the climatic constraints at Start- and End- of the Growing Season. There was good agreement between phenology metrics as derived form LAI3g and LAIre over the last 30 years - thus providing confidence in the climatic constraints underlying the modeled data. Our analysis reveals inter-annual variation in the relative importance of the three climatic factors in limiting vegetation growth at Start- and End- of the Growing Season over the last 30 years. High northern latitudes, as well as northern Europe and central Asia, appear to have undergone significant changes in dominance between the three controls. We also find that evaporative demand has become increasingly limiting for growth in many parts of the world, in particular in South America and eastern Asia. [1] Richardson, A.D. et al. Global Change Biology 18, 566-584 (2012). [2] Stöckli, R. et al. J. Geophys. Res 116, G03020 (2011). [3] Zhu, Z. et al. Remote Sensing 5, 927-948 (2013).

  4. ACCOUNTING FOR BIOLOGICAL AND ANTHROPOGENIC FACTORS IN NATIONAL LAND-BASED CARBON BUDGETS

    EPA Science Inventory

    Efforts to quantify net greenhouse gas emissions at the national scale, as required by the United Nations Framework Convention on Climate Change, must include both industrial emissions and the net flux associated with the land base. In this study, data on current land use, rates ...

  5. Cutaneous leishmaniasis prevalence and morbidity based on environmental factors in Ilam, Iran: Spatial analysis and land use regression models.

    PubMed

    Mokhtari, Mehdi; Miri, Mohammad; Nikoonahad, Ali; Jalilian, Ali; Naserifar, Razi; Ghaffari, Hamid Reza; Kazembeigi, Farogh

    2016-11-01

    The aim of this study was to investigate the impact of the environmental factors on cutaneous leishmaniasis (CL) prevalence and morbidity in Ilam province, western Iran, as a known endemic area for this disease. Accurate locations of 3237 CL patients diagnosed from 2013 to 2015, their demographic information, and data of 17 potentially predictive environmental variables (PPEVs) were prepared to be used in Geographic Information System (GIS) and Land-Use Regression (LUR) analysis. The prevalence, risk, and predictive risk maps were provided using Inverse Distance Weighting (IDW) model in GIS software. Regression analysis was used to determine how environmental variables affect on CL prevalence. All maps and regression models were developed based on the annual and three-year average of the CL prevalence. The results showed that there was statistically significant relationship (P value≤0.05) between CL prevalence and 11 (64%) PPEVs which were elevation, population, rainfall, temperature, urban land use, poorland, dry farming, inceptisol and aridisol soils, and forest and irrigated lands. The highest probability of the CL prevalence was predicted in the west of the study area and frontier with Iraq. An inverse relationship was found between CL prevalence and environmental factors, including elevation, covering soil, rainfall, agricultural irrigation, and elevation while this relation was positive for temperature, urban land use, and population density. Environmental factors were found to be an important predictive variables for CL prevalence and should be considered in management strategies for CL control. PMID:27496622

  6. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors.

    PubMed

    Zak, Marcelo R; Cabido, Marcelo; Cáceres, Daniel; Díaz, Sandra

    2008-08-01

    Synergistic combinations of climatic and land use changes have the potential to produce the most dramatic impacts on land cover. Although this is widely accepted, empirical examples, particularly involving deforestation in Latin America, are still very few. The geographic extent and causes of deforestation in subtropical seasonally dry forests of the world have received very little attention. This is especially true for the Chaco forests in South America, which are being lost at an alarming rate, sometimes higher than those reported for tropical forests. On this basis, the aims of this study were to analyze the changes in land cover that have occurred during the last three decades of the 20th century in the Chaco forests of central Argentina, and to explain the factors that have driven those changes. Results show major land cover changes. Approximately 80% of the area that was originally undisturbed forest is now occupied by crops, pastures, and secondary scrub. The main proximate cause of deforestation has been agricultural expansion, soybean cultivation in particular. This appears as the result of the synergistic convergence of climatic, technological, and socioeconomic factors, supporting the hypothesis of a multiple-factor explanation for forest loss, while providing one of the very few existing analyses of changes in subtropical forests of the world. PMID:18427886

  7. Effects of endogenous factors on regional land-use carbon emissions based on the Grossman decomposition model: a case study of Zhejiang Province, China.

    PubMed

    Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

    2015-02-01

    The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15%. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86%. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management. PMID:25421995

  8. Effects of Endogenous Factors on Regional Land-Use Carbon Emissions Based on the Grossman Decomposition Model: A Case Study of Zhejiang Province, China

    NASA Astrophysics Data System (ADS)

    Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

    2015-02-01

    The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15 %. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86 %. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.

  9. Factors Related to Spatial Patterns of Rural Land Fragmentation in Texas

    NASA Astrophysics Data System (ADS)

    Kjelland, Michael E.; Kreuter, Urs P.; Clendenin, George A.; Wilkins, R. Neal; Wu, X. Ben; Afanador, Edith Gonzalez; Grant, William E.

    2007-08-01

    Fragmentation of family-owned farms and ranches has been identified as the greatest single threat to wildlife habitat, water supply, and the long-term viability of agriculture in Texas. However, an integrative framework for insights into the pathways of land use change has been lacking. The specific objectives of the study are to test the hypotheses that the nonagricultural value (NAV) of rural land is a reliable indicator of trends in land fragmentation and that NAV in Texas is spatially correlated with population density, and to explore the idea that recent changes in property size patterns are better represented by a categorical model than by one that reflects incremental changes. We propose that the State-and-Transition model, developed to describe the dynamics of semi-arid ecosystems, provides an appropriate conceptual framework for characterizing categorical shifts in rural property patterns. Results suggest that changes in population density are spatially correlated with NAV and farm size, and that rural property size is spatially correlated with changes in NAV. With increasing NAV, the proportion of large properties tends to decrease while the area represented by small properties tends to increase. Although a correlation exists between NAV and population density, it is the trend in NAV that appears to be a stronger predictor of land fragmentation. The empirical relationships established herein, viewed within the conceptual framework of the State-and-Transition model, can provide a useful tool for evaluating land use policies for maintaining critical ecosystem services delivered from privately owned land in private land states, such as Texas.

  10. An assessment of land use and other factors affecting sediment loads in the Rio Puerco watershed, New Mexico

    NASA Astrophysics Data System (ADS)

    Phippen, Stephanie J.; Wohl, Ellen

    2003-06-01

    Rapid channel erosion in the Rio Puerco watershed of northwest New Mexico has been attributed to land use, climate changes, and internal channel adjustments. The objectives of this study were to assess (1) the impacts of land uses on sediment load, (2) the quantitative relationships between land use and sediment load, and (3) the effectiveness of different erosion control methods. The impacts of land uses on sediment load were assessed via hypotheses that, holding other erosion-related variables constant, sediment load correlates positively with grazing intensity and with density of unpaved roads, and correlates negatively with the number of erosion control treatments. We calculated the average annual sediment load for 17 subbasins of 0.67-17.97 km 2 by comparing sediment accumulation at two points in time (mid-1960s and 1999) behind intact sediment retention structures. We assessed land use via grazing records and measurements of unpaved roads generated from aerial photographs. Soil characteristics, vegetation, and physical factors were quantified for each subbasin. Using 18 variables for each subbasin, we employed Mallow's Cp as a selection criterion. We used six statistical models, including multiple regression and principal components analysis, to determine inherent mathematical relationships between significant independent variables and sediment load. The results indicate that sediment load does not correlate with grazing intensity except in small, relatively low-relief basins with fewer bedrock exposures. However, this interpretation may be compromised by the low quality of data available to quantify grazing. Sediment load is highly sensitive to the presence of unpaved roads, which serve as high gradient, channelized conduits of water and sediment during storms. Sediment load does not correlate with erosion control except in the subset of small, relatively low-relief subbasins that also proved sensitive to grazing intensity. Overall, the statistical analyses

  11. The Classical Assumption Test to Driving Factors of Land Cover Change in the Development Region of Northern Part of West Java

    NASA Astrophysics Data System (ADS)

    Ainiyah, Nur; Deliar, Albertus; Virtriana, Riantini

    2016-06-01

    Land cover changes continuously change by the time. Many kind of phenomena is a simple of important factors that affect the environment change, both locally and also globally. To determine the existence of the phenomenon of land cover change in a region, it is necessary to identify the driving factors that can cause land cover change. The relation between driving factors and response variables can be evaluated by using regression analysis techniques. In this case, land cover change is a dichotomous phenomenon (binary). The BLR's model (Binary Logistic Regression) is the one of kind regression analysis which can be used to describe the nature of dichotomy. Before performing regression analysis, correlation analysis is carried it the first. Both correlation test and regression tests are part of a statistical test or known classical assumption test. From result of classical assumption test, then can be seen that the data used to perform analysis from driving factors of the land cover changes is proper with used by BLR's method. Therefore, the objective of this research is to evaluate the effectiveness of methods in assessing the relation between driving factors of land cover change that assumed can affect to land cover change phenomena. This research will use the classical assumed test of multiple regression linear analysis, showing that BLR method is efficiency and effectiveness solution for researching or studying in phenomenon of land cover changes. So it will to provide certainty that the regression equation obtained has accuracy in estimation, unbiased and consistent.

  12. Ammonia emissions factors from broiler litter in barns, storage, and after land application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia (NH3) emissions from poultry litter can cause high levels of NH3 in poultry rearing facilities, as well as atmospheric pollution. The objectives of this study were to: (1) measure NH3 emissions from litter in broiler houses, during storage and following land application, and (2) conduct a m...

  13. Transconductance and effective Landé factors for quantum point contacts: Spin-orbit coupling and interaction effects

    NASA Astrophysics Data System (ADS)

    Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B.

    2016-01-01

    We analyze the effective Landé factor g* and its dependence on the orientation of the external magnetic field for a quantum point contact defined in the two-dimensional electron gas. The paper simulates the experimental procedure for evaluation of the effective Landé factors from the transconductance of a biased device in an external magnetic field. The contributions of the orbital effects of the magnetic field, the electron-electron interaction, and spin-orbit (SO) coupling are studied in low-temperature conditions (0.5 K). The anisotropy of the g* factors for the in-plane magnetic field orientation, which seems counterintuitive from the perspective of the effective SO magnetic field, is explained in an analytical model of the constriction as due to the SO-induced subband mixing. The asymmetry of the transconductance as a function of the gate voltage is obtained in agreement with the experimental data and the results are explained as due to depletion of the electron gas within the quantum point contact constriction and the related reduction of the screening as described within the DFT approach. The results for transconductance and the g* factors obtained are in a good agreement with the experimental data [Martin et al., Phys. Rev. B 81, 041303 (2010), 10.1103/PhysRevB.81.041303].

  14. Considering the spatial-scale factor when modelling sustainable land management.

    NASA Astrophysics Data System (ADS)

    Bouma, Johan

    2015-04-01

    Considering the spatial-scale factor when modelling sustainable land management. J.Bouma Em.prof. soil science, Wageningen University, Netherlands. Modelling soil-plant processes is a necessity when exploring future effects of climate change and innovative soil management on agricultural productivity. Soil data are needed to run models and traditional soil maps and the associated databases (based on various soil Taxonomies ), have widely been applied to provide such data obtained at "representative" points in the field. Pedotransferfunctions (PTF)are used to feed simulation models, statistically relating soil survey data ( obtained at a given point in the landscape) to physical parameters for simulation, thus providing a link with soil functionality. Soil science has a basic problem: their object of study is invisible. Only point data are obtained by augering or in pits. Only occasionally roadcuts provide a better view. Extrapolating point to area data is essential for all applications and presents a basic problem for soil science, because mapping units on soil maps, named for a given soil type,may also contain other soil types and quantitative information about the composition of soil map units is usually not available. For detailed work at farm level ( 1:5000-1:10000), an alternative procedure is proposed. Based on a geostatistical analysis, onsite soil observations are made in a grid pattern with spacings based on a geostatistical analysis. Multi-year simulations are made for each point of the functional properties that are relevant for the case being studied, such as the moisture supply capacity, nitrate leaching etc. under standardized boundary conditions to allow comparisons. Functional spatial units are derived next by aggregating functional point data. These units, which have successfully functioned as the basis for precision agriculture, do not necessarily correspond with Taxonomic units but when they do the Taxonomic names should be noted . At lower

  15. Climatic factors related to land-use planning in the Puget Sound basin, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.; Richardson, Donald

    1973-01-01

    The purpose of this study is to review available data related to the climate of the Puget Sound basin and to present selected climatic information along with an evaluation of its significance and general adequacy for planning purposes. This is part of continuing efforts aimed at imporving the accessibility and usefulness of environmental and other data needed for land-use planning, resource development, and environmental protection. 

  16. Changes in land use as a possible factor in Mourning Dove population decline in Central Utah

    USGS Publications Warehouse

    Ostrand, W.D.; Meyers, P.M.; Bissonette, J.A.; Conover, M.R.

    1998-01-01

    Mourning Dove (Zenaida macroura) population indices for the western United States have declined significantly since 1966. Based on data collected in 1951-1952, in Fillmore, Utah, we examined whether there had been a local decline in the dove population index since the original data were collected. We then determined whether habitat had been altered, identified which foraging habitats doves preferred, and assessed whether changes in land use could be responsible, in part, for a decline in the local population index. We found that dove population indices declined 72% and 82% from 1952-1992 and 1952-1993, respectively. The most dramatic change in habitat was an 82% decline in land devoted to dry land winter wheat production and a decline in livestock feed pens. Doves foraged primarily in harvested wheat fields, feed pens, and weedy patches. We hypothesize that a decrease in wheat availability during the spring and the consolidation of the livestock industry have contributed to a population decline of Mourning Doves in central Utah.

  17. Tuning the electrically evaluated electron Landé g factor in GaAs quantum dots and quantum wells of different well widths

    NASA Astrophysics Data System (ADS)

    Allison, G.; Fujita, T.; Morimoto, K.; Teraoka, S.; Larsson, M.; Kiyama, H.; Oiwa, A.; Haffouz, S.; Austing, D. G.; Ludwig, A.; Wieck, A. D.; Tarucha, S.

    2014-12-01

    We evaluate the Landé g factor of electrons in quantum dots (QDs) fabricated from GaAs quantum well (QW) structures of different well width. We first determine the Landé electron g factor of the QWs through resistive detection of electron spin resonance and compare it to the enhanced electron g factor determined from analysis of the magnetotransport. Next, we form laterally defined quantum dots using these quantum wells and extract the electron g factor from analysis of the cotunneling and Kondo effect within the quantum dots. We conclude that the Landé electron g factor of the quantum dot is primarily governed by the electron g factor of the quantum well suggesting that well width is an ideal design parameter for g -factor engineering QDs.

  18. [Spatial-temporal pattern and obstacle factors of cultivated land ecological security in major grain producing areas of northeast China: a case study in Jilin Province].

    PubMed

    Zhao, Hong-Bo; Ma, Yan-Ji

    2014-02-01

    According to the cultivated land ecological security in major grain production areas of Northeast China, this paper selected 48 counties of Jilin Province as the research object. Based on the PSR-EES conceptual framework model, an evaluation index system of cultivated land ecological security was built. By using the improved TOPSIS, Markov chains, GIS spatial analysis and obstacle degree models, the spatial-temporal pattern of cultivated land ecological security and the obstacle factors were analyzed from 1995 to 2011 in Jilin Province. The results indicated that, the composite index of cultivated land ecological security appeared in a rising trend in Jilin Province from 1995 to 2011, and the cultivated land ecological security level changed from being sensitive to being general. There was a pattern of 'Club Convergence' in cultivated land ecological security level in each county and the spatial discrepancy tended to become larger. The 'Polarization' trend of cultivated land ecological security level was obvious. The distributions of sensitive level and critical security level with ribbon patterns tended to be dispersed, the general security level and relative security levels concentrated, and the distributions of security level scattered. The unstable trend of cultivated land ecological security level was more and more obvious. The main obstacle factors that affected the cultivated land ecological security level in Jilin Province were rural net income per capita, economic density, the proportion of environmental protection investment in GDP, degree of machinery cultivation and the comprehensive utilization rate of industrial solid wastes. PMID:24830253

  19. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    USGS Publications Warehouse

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  20. Effective mass and Landé g-factor in Si-MOSFETs near the critical density

    NASA Astrophysics Data System (ADS)

    Limouny, Lhoussine; El Kaaouachi, Abdelhamid; Liang, Chi-Te

    2014-02-01

    We analyze the electrical resistivity and conductivity of a dilute two-dimensional electron gas (2DEG) in a Si metal-oxide-semiconductor field-effect transistor. When a magnetic field is applied parallel to the plane of the 2DEG, a signature of complete spin polarization, as evidenced by the saturation of the resistivity, is observed. We measured the effective mass and the Landé g-factor near the metal-insulator transition (MIT) and found that the Landé g-factor remained almost constant and close to its value in bulk silicon. In contrast, we have observed a sharp increase in the effective mass near the critical density of the MIT. Our new results suggest that the sharp increase in the previously-observed spin susceptibility is mainly due to the enhanced effective mass. Therefore, renormalization of the effective mass could play an important role in a dilute spinpolarized 2DEG. The data indicate that electron-electron interactions strongly modify the effective mass but only weakly affect the g-factor in a dilute 2DEG. Moreover, our results indicate that B c , which corresponds to the magnetic field at which the magnetoresistivity reaches saturation, vanishes at a characteristic density n χ higher than the critical density n c of the MIT. This is in contrast to the existing experimental results, and further studies are required if this discrepancy is to be understood.

  1. Goldilocks and three factors that make mercury in fish more than just mercury deposition: sulfur, land use and climate (Invited)

    NASA Astrophysics Data System (ADS)

    Bishop, K. H.; Eklöf, K.; Nilsson, M. B.; Osterwalder, S.; Åkerblom, S.

    2013-12-01

    The problem of mercury in fish is often framed as a problem created by anthropogenic emissions of mercury increasing the levels of mercury in the environment. But the methylation step that is crucial to making mercury available for bioaccumulation in the aquatic food web is influenced by more than just the concentration of mercury in the environment. Redox conditions, the quality of organic matter, and, in the case of methylation by sulfur reducing bacteria, the availability of sulfur, have all been shown to influence methylmercury concentrations in surface waters and/or mercury in the biota. This creates many possibilities for human influence on mercury bioaccumulation in freshwater fish. But it also creates possibilities for mitigating those human influences, if we can understand them. Forest harvest is one type of land use with a documented human influence on mercury levels in fish. Atmospheric deposition of sulfur is another potential influence on the mercury cycle, as is warming of the climate. Some for the possibilities for controlling the mercury problem may be overlooked by too much focus on mercury deposition and concentrations of total mercury in the landscape relative to these other factors. A range of field studies in FennoScandia published over the last 15 years were analyzed to explore the relative contribution of these different anthropogenic factors on the cycling of mercury. The studies included synoptic surveys across gradients of atmospheric deposition and land use (clear felling, site preparation and stump harvest) in relation to either fish mercury, sediment mercury, peat methylation potential or methylmercury concentrations in water. Long-term field manipulations (6-15 years) of land use (forest harvest) or combinations of sulphur deposition, nitrogen deposition and well greenhouse warming on peatland were also studied. The results suggest that the variation of total mercury in soils or water is less important than several of the other factors

  2. Malaria entomological risk factors in relation to land cover in the Lower Caura River Basin, Venezuela

    PubMed Central

    Rubio-Palis, Yasmin; Bevilacqua, Mariapia; Medina, Domingo Alberto; Moreno, Jorge Ernesto; Cárdenas, Lya; Sánchez, Víctor; Estrada, Yarys; Anaya, William; Martínez, Ángela

    2013-01-01

    To explore the effects of deforestation and resulting differences in vegetation and land cover on entomological parameters, such as anopheline species composition, abundance, biting rate, parity and entomological inoculation rate (EIR), three villages were selected in the Lower Caura River Basin, state of Bolívar, Venezuela. All-night mosquito collections were conducted between March 2008-January 2009 using CDC light traps and Mosquito Magnet(r) Liberty Plus. Human landing catches were performed between 06:00 pm-10:00 pm, when anophelines were most active. Four types of vegetation were identified. The Annual Parasite Index was not correlated with the type of vegetation. The least abundantly forested village had the highest anopheline abundance, biting rate and species diversity. Anopheles darlingi and Anopheles nuneztovari were the most abundant species and were collected in all three villages. Both species showed unique biting cycles. The more abundantly forested village of El Palmar reported the highest EIR. The results confirmed previous observations that the impacts of deforestation and resulting changes in vegetation cover on malaria transmission are complex and vary locally. PMID:23579803

  3. Malaria entomological risk factors in relation to land cover in the Lower Caura River Basin, Venezuela.

    PubMed

    Rubio-Palis, Yasmin; Bevilacqua, Mariapia; Medina, Domingo Alberto; Moreno, Jorge Ernesto; Cárdenas, Lya; Sánchez, Víctor; Estrada, Yarys; Anaya, William; Martínez, Ángela

    2013-04-01

    To explore the effects of deforestation and resulting differences in vegetation and land cover on entomological parameters, such as anopheline species composition, abundance, biting rate, parity and entomological inoculation rate (EIR), three villages were selected in the Lower Caura River Basin, state of Bolívar, Venezuela. All-night mosquito collections were conducted between March 2008-January 2009 using CDC light traps and Mosquito Magnet® Liberty Plus. Human landing catches were performed between 06:00 pm-10:00 pm, when anophelines were most active. Four types of vegetation were identified. The Annual Parasite Index was not correlated with the type of vegetation. The least abundantly forested village had the highest anopheline abundance, biting rate and species diversity. Anopheles darlingi and Anopheles nuneztovari were the most abundant species and were collected in all three villages. Both species showed unique biting cycles. The more abundantly forested village of El Palmar reported the highest EIR. The results confirmed previous observations that the impacts of deforestation and resulting changes in vegetation cover on malaria transmission are complex and vary locally. PMID:23579803

  4. Studies of Landé gJ-factors of singly ionized lanthanum by laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Werbowy, S.; Güney, C.; Windholz, L.

    2016-08-01

    Laser-induced fluorescence spectroscopy, using a cooled hollow cathode discharge lamp as source of ions, was used to observe the Zeeman splitting of 18 lines of La II in the wavelength range 629.6-680.9 nm, in external intermediate magnetic fields up to 800 G. The recorded hyperfine-Zeeman patterns were analyzed in detail using already known accurate hyperfine structure A- and B-constants. From the recordings the Landé gJ-factors for some levels belonging to the 5d2, 5d6s, 5d6p, 4f5d, 4f6s and 4f6p configurations of La II were determined. The obtained experimental gJ-factors are compared with earlier measurements and theoretical calculations.

  5. Stability and Control Harmony in Approach and Landing. [analysis of factors affecting flight characteristics at low airspeeds

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.

    1975-01-01

    A review of the factors which affect stability and control harmony in approach and landing is made to obtain a clearer understanding of the proper relationship, the trade-offs involved, and to show how limits in stability and control harmony are established for advanced aircraft. Factors which influence stability and control harmony include the longitudinal short period response of the aircraft and the level of several pitch control characteristics including control power, control sensitivity, and control feel. At low stability levels for advanced aircraft, less conventional control techniques such as DLC are needed to improve harmony and some form of stability augmentation must be provided to improve precession of flight path control and reduce pilot work load.

  6. Factors controlling carbon isotopic composition of land snail shells estimated from lab culturing experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Naizhong; Yamada, Keita; Yoshida, Naohiro

    2014-05-01

    Carbon isotopic composition (δ13C) of land snail shell carbonate is widely applied in reconstructing the C3/C4 vegetation distribution of paleo-environment, which is considered to reflect variations of some environmental parameters [1][2][3]. Land snail shell carbon has three potential sources: diet, atmospheric CO2 and ingested carbonate (limestone) [4]. However, their relative contributions to shell carbonate have not been understood well yet [4][5][6][7][8]. More researches are necessary before we could apply this tool in paleo-environment reconstruction, especially inter-lab culturing experiment. A kind of land snail species, Acusta despecta sieboldiana, was collected at Yokohama, Japan and cultured under suitable environment to lay eggs. The second generations were growing up from eggs to adults around 6-12 months at the temperature of 20°, 25° and 30°, respectively. All of the snails at 25° and 30° and most of those at 20° were fed by cabbage (C3 plant) during their life span while others were fed by corn (C4 plant). To investigate the effect of ingested carbonate, some of them were fed by Ca3(PO4)2 powder while others were fed by CaCO3 powder. δ13C of shells were analyzed by an Isotope Ratio Mass Spectrometry (Thermo Finnigan MAT 253); δ13C of food and snail tissue were measured by a Cavity Ring-Down Spectroscopy (Picarro G1121-i). At the same time, δ13C of eggshell and new born snails were analyzed by a Continuous Flow Isotope Ratio Mass Spectrometry (GasBench II). We confirmed that diet, atmospheric CO2 and ingested limestone could be important sources controlling shell δ13C values. And the temperature could affect shell carbonate δ13C values, too. A simple but credible frame was raised to discuss the mechanism of how each possible source and environmental parameter could affect shell carbonate δ13C values based on previous works [4][6][8] and this study. According to this frame and some reasonable assumptions, we have estimated the

  7. The global impact factors of net primary production in different land cover types from 2005 to 2011.

    PubMed

    Yu, Bo; Chen, Fang

    2016-01-01

    With the seriously polluted environment due to social development, the sustainability of net primary production (NPP), which is used to feed most lives on the earth, has become one of the biggest concerns that we have to consider for the sake of food shortage. There have been many researches analyzing one or two potential impact factors of NPP based on field observation data, which brings about many uncertainties for further calculation. Moreover, the frequently used process-based models heavily depend on the understandings of researchers about the NPP process. The premises of such models hinder the impact factor analysis from being objective and confident. To overcome such shortages, we collected 27 potential impact factors of global NPP in terms of eight land cover types. The feature variables include atmosphere, biosphere, anthroposphere and lithosphere parameters, which can be obtained from public available remote sensed products. The experiment shows that latitude, irradiance ultraviolet and normalized difference vegetation index are dominant factors impacting global NPP. Anthropogenic activities, precipitation and surface emissivity are influencing NPP calculation largely. However, some commonly used biosphere parameters in process-based models are actually not playing that important roles in NPP estimation. This work provides a new insight in analyzing NPP impact factors, being more objective and comprehensive compared with frequently used process-based models. PMID:27536518

  8. Correlation of Spatio-Temporal Contaminant Distribution, Land Use, and Hydrogeological Factors in the Karst Aquifers of Northern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Padilla, I. Y.

    2015-12-01

    Karst aquifers are characterized by caves, springs, and sinkholes, and typified by interconnected fissures, fractures and conduits. These characteristics make these aquifers highly productive, and vulnerable to contamination. Previous studies in the northern karst aquifers of Puerto Rico have shown significant distribution of contaminants, including volatile organic compounds, phthalates and other contaminants of emerging concern, beyond demarked sources of contamination. This study develops spatial-temporal distributions of phthalate contaminants in the karst system of northern Puerto Rico and assesses statistical correlations between hydrogeologic factors and groundwater contamination with phthalates. Geographic Information Systems (GIS) tools and technologies, and statistical models are applied to attain these objectives. Results show that there is an extensive contamination with phthalates that varies with time. Contamination is present in the confined and shallow aquifers. Di-(2-ethylhexyl) phthalate (DEHP) is the most detected contaminant (20.6% of the sites). Diethyl phthalate and and dibutyl phthalate are also detected in 6.7% and 8.24% of the sites, respectively. Phthalates detected as mixtures components are significantly detected in areas of high urban and industrial development. They are also detected in areas within 5 miles of superfund sites and landfills. The results indicate that phthalate contamination is highly related to land use. Statistical models show that the hydraulic conductivity of the aquifers, sinkholes density, and time are significantly related to the presence of phthalates in groundwater. The extensive spatio-temporal contamination suggests that contaminants can persist in the environment for long periods of time, and that land use and hydrogeological factors are important factors contributing to the presence of emerging contaminants in karst systems.

  9. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes

    PubMed Central

    Schallenberg-Rüdinger, Mareike; Lenz, Henning; Polsakiewicz, Monika; Gott, Jonatha M; Knoop, Volker

    2013-01-01

    The pentatricopeptide repeat modules of PPR proteins are key to their sequence-specific binding to RNAs. Gene families encoding PPR proteins are greatly expanded in land plants where hundreds of them participate in RNA maturation, mainly in mitochondria and chloroplasts. Many plant PPR proteins contain additional carboxyterminal domains and have been identified as essential factors for specific events of C-to-U RNA editing, which is abundant in the two endosymbiotic plant organelles. Among those carboxyterminal domain additions to plant PPR proteins, the so-called DYW domain is particularly interesting given its similarity to cytidine deaminases. The frequency of organelle C-to-U RNA editing and the diversity of DYW-type PPR proteins correlate well in plants and both were recently identified outside of land plants, in the protist Naegleria gruberi. Here we present a systematic survey of PPR protein genes and report on the identification of additional DYW-type PPR proteins in the protists Acanthamoeba castellanii, Malawimonas jakobiformis, and Physarum polycephalum. Moreover, DYW domains were also found in basal branches of multi-cellular lineages outside of land plants, including the alga Nitella flexilis and the rotifers Adineta ricciae and Philodina roseola. Intriguingly, the well-characterized and curious patterns of mitochondrial RNA editing in the slime mold Physarum also include examples of C-to-U changes. Finally, we identify candidate sites for mitochondrial RNA editing in Malawimonas, further supporting a link between DYW-type PPR proteins and C-to-U editing, which may have remained hitherto unnoticed in additional eukaryote lineages. PMID:23899506

  10. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes.

    PubMed

    Schallenberg-Rüdinger, Mareike; Lenz, Henning; Polsakiewicz, Monika; Gott, Jonatha M; Knoop, Volker

    2013-01-01

    The pentatricopeptide repeat modules of PPR proteins are key to their sequence-specific binding to RNAs. Gene families encoding PPR proteins are greatly expanded in land plants where hundreds of them participate in RNA maturation, mainly in mitochondria and chloroplasts. Many plant PPR proteins contain additional carboxyterminal domains and have been identified as essential factors for specific events of C-to-U RNA editing, which is abundant in the two endosymbiotic plant organelles. Among those carboxyterminal domain additions to plant PPR proteins, the so-called DYW domain is particularly interesting given its similarity to cytidine deaminases. The frequency of organelle C-to-U RNA editing and the diversity of DYW-type PPR proteins correlate well in plants and both were recently identified outside of land plants, in the protist Naegleria gruberi. Here we present a systematic survey of PPR protein genes and report on the identification of additional DYW-type PPR proteins in the protists Acanthamoeba castellanii, Malawimonas jakobiformis, and Physarum polycephalum. Moreover, DYW domains were also found in basal branches of multi-cellular lineages outside of land plants, including the alga Nitella flexilis and the rotifers Adineta ricciae and Philodina roseola. Intriguingly, the well-characterized and curious patterns of mitochondrial RNA editing in the slime mold Physarum also include examples of C-to-U changes. Finally, we identify candidate sites for mitochondrial RNA editing in Malawimonas, further supporting a link between DYW-type PPR proteins and C-to-U editing, which may have remained hitherto unnoticed in additional eukaryote lineages. PMID:23899506

  11. Mercury, Autoimmunity, and Environmental Factors on Cheyenne River Sioux Tribal Lands

    PubMed Central

    Ong, Jennifer; Erdei, Esther; Rubin, Robert L.; Miller, Curtis; Ducheneaux, Carlyle; O'Leary, Marcia; Pacheco, Bernadette; Henderson, Patricia Nez; Pollard, K. Michael; Lewis, Johnnye L.

    2014-01-01

    Mercury (Hg), shown to induce autoimmune disease in rodents, is a ubiquitous toxicant throughout Cheyenne River Sioux Tribe (CRST) lands. CRST members may be exposed to Hg through fish consumption (FC), an important component of native culture that may supplement household subsistence. Our goals were to ascertain whether total blood Hg levels (THg) reflect Hg exposure through FC and smoking, and determine whether THg is associated with the presence of anti-nuclear antibody (ANA) and specific autoantibodies (sAuAb). We recruited 75 participants who regularly consume fish from CRST waters. Hg exposure through FC and smoking were assessed via questionnaires. Whole blood samples were collected from participants, and THg was measured using ICP-MS. ANA and sAuAb in serum were modeled using demographic and exposure information as predictors. Female gender, age, and FC were significant predictors of THg and sAuAb; self-reported smoking was not. 31% of participants tested positive for ANA ≥ 2+. Although ANA was not significantly associated with Hg, the interactions of gender with Hg and proximity to arsenic deposits were statistically significant (P < 0.05). FC resulted in a detectable body burden of Hg, but THg alone did not correlate with the presence of ANA or sAuAb in this population. PMID:24864198

  12. Temperature and donor concentration dependence of the conduction electron Lande g-factor in silicon

    NASA Astrophysics Data System (ADS)

    Konakov, Anton A.; Ezhevskii, Alexander A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Popkov, Sergey A.; Burdov, Vladimir A.

    2013-12-01

    Temperature and donor concentration dependence of the conduction electron g-factor in silicon has been investigated both experimentally and theoretically. We performed electron spin resonance experiments on Si samples doped with different densities of phosphorus and lithium. Theoretical consideration is based on the renormalization of the electron energy in a weak magnetic field by the interaction with possible perturbing agents, such as phonons and impurity centers. In the second-order perturbation theory interaction of the electron subsystem with the lattice vibrations as well as ionized donors results in decreasing the conduction electron g-factor, which becomes almost linear function both of temperature and impurity concentration.

  13. LAND USE AND CLIMATIC FACTORS STRUCTURE REGIONAL PATTERNS IN SOIL MICROBIAL COMMUNITIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim Understanding the drivers of community composition across spatial scales is of keen interest to ecologists. Although patterns are emerging for macroorganisms, we only have a basic understanding of the factors determining soil microbial community composition, diversity, and productivity at larg...

  14. Factors associated with hunter success for ducks on state-owned lands in Illinios

    USGS Publications Warehouse

    Stafford, Joshua D.; Pearse, Aaron T.; Hine, Christopher S.; Yetter, Aaron P.; Horath, Michelle M.

    2010-01-01

    Factors that influence hunter success for waterfowl are subject to varying levels of control by managers. The relative influence of these factors is poorly understood, but such information may be valuable to guide management actions intended to promote successful hunting and communicate management decisions to constituents. We used bag-check data to investigate factors influencing hunter success for mallards Anas platyrhynchos and other dabbling ducks (tribe Anatini) during the period 1981-2000 and 2002 at Illinois public waterfowl areas. Competing models of hunter success for mallards and other dabbling ducks included a negative association with average low temperature during the duck season (uncontrollable by managers) and positive associations with estimates of local and continental duck abundance, factors which we considered partially controllable by managers. Although a certain proportion of variation in hunter success for ducks cannot be directly influenced by managers, we suggest that programs and management efforts, which promote larger continental duck populations (e.g. Conservation Reserve Program) and local duck abundance (e.g. provide quality wetland foraging habitats), may positively influence hunter success.

  15. Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle

    SciTech Connect

    Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

    2013-08-01

    The Department of Energy Office of Nuclear Energy’s Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. • land use • water use • CO2 emissions • radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

  16. Land use as an explanatory factor for potential phosphorus loss risk, assessed by P indices and their governing parameters.

    PubMed

    Zhou, Bin; Vogt, Rolf D; Lu, Xueqiang; Yang, Xiaoguang; Lü, Changwei; Mohr, Christian W; Zhu, Liang

    2015-08-01

    The total level of phosphorus (P) and the distribution of P pools in the topsoil are significantly affected by the excessive application of mineral and organic fertilizers connected with intensive agriculture. This leads to an increased potential risk for P loss, and then contributes to freshwater eutrophication. Soil test P (STP), P sorption index (PSI) and degree of P saturation (DPS) are commonly applied as proxies for assessing the risk of P loss. Although conceptually based, the empirical relationships between these operationally defined proxies and the actual P flux exhibit large spatial variations. Herein, a comprehensive synoptic study and monitoring of soil has been conducted in a watershed in north-eastern China. A set of conventional indicators for soil P loss risk were measured along with the main P pools, P sorption indices, texture, organic matter, as well as Fe and Al oxides and other mineral compositions. Moreover, detailed soil P speciation was conducted using phosphorus nuclear magnetic resonance ((31)P NMR) spectroscopy. In addition, phosphatase activities in the soils were determined for each land use soil category. The results reflected that the soil content of total P, total inorganic P and STP increased significantly following the order of increasing management intensity. STP, being strongly coupled to the application of P fertilizers, was a strong explanatory factor for the spatial differences in DPS - both between and within different land uses. The dominant inorganic and organic P species in the soils were orthophosphate and monoester-P, respectively. Their contents were oppositely correlated with the degree of management influence, with the amount of orthophosphate positively related. Alkaline phosphomonoesterase (AlP) represented the highest activities among the four representative phosphatases, i.e. enzymes that hydrolyze organic P - releasing labile orthophosphate. Orchard soils were found to contain the highest levels of monoester P

  17. Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover

    NASA Astrophysics Data System (ADS)

    Lamer, Katia; Kollias, Pavlos

    2015-10-01

    Comprehensive observations of shallow convection at the Atmospheric Radiation Measurement Southern Great Plains site are carefully analyzed to study the macrophysical and dynamical properties of active and forced cumuli separately and investigate their relationship to the subcloud layer turbulent structure. Clearly, active clouds possess stronger dynamics and greater horizontal extent than their forced counterpart. As previously reported, upper level stability and relative humidity do control the predominance of active clouds. While cloud cover remains difficult to associate to mixed-layer parameters (small correlation coefficients), mixed-layer top vertical velocity skewness, and coherent updraft fraction most significantly correlate to cumulus cloud cover and especially the portion attributed to active clouds; both of which are not currently considered in shallow cloudiness parameterizations. This study also points to several factors that continue to limit our ability to adequately sample shallow cumuli and suggests that forward models will be necessary to bridge observations and model outputs.

  18. Perpetual factors involved in performance of air traffic controllers using a microwave landing system

    NASA Technical Reports Server (NTRS)

    Gershzohn, G.

    1978-01-01

    The task involved the control of two simulated aircraft targets per trial, in a 37.0 -km radius terminal area, by means of conventional radar vectoring and/or speed control. The goal was to insure that the two targets crossed the Missed Approach Point (MAP) at the runway threshold exactly 60 sec apart. The effects on controller performance of the MLS configuration under wind and no-wind conditions were examined. The data for mean separation time between targets at the MAP and the range about that mean were analyzed by appropriate analyses of variance. Significant effects were found for mean separation times as a result of the configuration of the MLS and for interaction between the configuration and wind conditions. The analysis of variance for range indicated significantly poorer performance under the wind condition. These findings are believed to be a result of certain perceptual factors involved in radar air traffic control (ATC) using the MLS with separation of targets in time.

  19. Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land.

    PubMed

    Metslaid, Sandra; Stanturf, John A; Hordo, Maris; Korjus, Henn; Laarmann, Diana; Kiviste, Andres

    2016-07-01

    Afforestation on reclaimed mining areas has high ecological and economic importance. However, ecosystems established on post-mining substrate can become vulnerable due to climate variability. We used tree-ring data and dendrochronological techniques to study the relationship between climate variables and annual growth of Scots pine (Pinus sylvestris L.) growing on reclaimed open cast oil shale mining areas in Northeast Estonia. Chronologies for trees of different age classes (50, 40, 30) were developed. Pearson's correlation analysis between radial growth indices and monthly climate variables revealed that precipitation in June-July and higher mean temperatures in spring season enhanced radial growth of pine plantations, while higher than average temperatures in summer months inhibited wood production. Sensitivity of radial increment to climatic factors on post-mining soils was not homogenous among the studied populations. Older trees growing on more developed soils were more sensitive to precipitation deficit in summer, while growth indices of two other stand groups (young and middle-aged) were highly correlated to temperature. High mean temperatures in August were negatively related to annual wood production in all trees, while trees in the youngest stands benefited from warmer temperatures in January. As a response to thinning, mean annual basal area increment increased up to 50 %. By managing tree competition in the closed-canopy stands, through the thinning activities, tree sensitivity and response to climate could be manipulated. PMID:26573311

  20. A Prescribed Fire Emission Factors Database for Land Management and Air Quality Applications

    NASA Astrophysics Data System (ADS)

    Lincoln, E.; Hao, W.; Baker, S.; Yokelson, R. J.; Burling, I. R.; Urbanski, S. P.; Miller, W.; Weise, D. R.; Johnson, T. J.

    2010-12-01

    Prescribed fire is a significant emissions source in the U.S. and that needs to be adequately characterized in atmospheric transport/chemistry models. In addition, the Clean Air Act, its amendments, and air quality regulations require that prescribed fire managers estimate the quantity of emissions that a prescribed fire will produce. Several published papers contain a few emission factors for prescribed fire and additional results are found in unpublished documents whose quality has to be assessed. In conjunction with three research projects developing detailed new emissions data and meteorological tools to assist prescribed fire managers, the Strategic Environmental Research and Development Program (SERDP) is supporting development of a database that contains emissions information related to prescribed burning. Ultimately, this database will be available on the Internet and will contain older emissions information that has been assessed and newer emissions information that has been developed from both laboratory-scale and field measurements. The database currently contains emissions information from over 300 burns of different wildland vegetation types, including grasslands, shrublands, woodlands, forests, and tundra over much of North America. A summary of the compiled data will be presented, along with suggestions for additional categories.

  1. Factors Influencing College Choice for Students in Agriculture Programs: A Comparative Study of Community College and Land-Grant University Students

    ERIC Educational Resources Information Center

    Cunningham, Shannon Kaye

    2013-01-01

    The purpose of this study was to identify factors that influenced college choice of students who recently enrolled (current freshmen and sophomores) in agriculture programs at Oklahoma's land-grant university, as compared to recently enrolled students (current freshmen and sophomores) in selected agriculture programs at public community colleges…

  2. Determination of Landé factors in the F4Δ5/2,7/2 state of 56FeH by laser excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Crozet, Patrick; Dobrev, Georgi; Richard, Cyril; Ross, Amanda J.

    2014-09-01

    This paper provides a set of effective Landé factors gJ for the first rotational levels of vibrational levels 0 and 1 of the F4Δ state of FeH, obtained from analysis of partially-resolved Zeeman patterns recorded in laser excitation, working at magnetic fields between 2000 and 5000 Gauss.

  3. Land cover or climate? In search of dominant factors inducing groundwater recharge and fen hydrology in European scale

    NASA Astrophysics Data System (ADS)

    Grygoruk, Mateusz; Kotowski, Wiktor

    2016-04-01

    Groundwater recharge plays the crucial role in development and stability of fens. It was hypothesized that the mid- and late-Holocene acceleration of fens' development in Europe could have been induced by changes in land cover: decreasing areas of forests resulting from the expanding agriculture have enhanced groundwater recharge by decreasing evapotranspiration and interception and promoting infiltration. However, regardless human-related changes of the landscape, recorded climatic fluctuations could also be considered as drivers of changing groundwater recharge that affects fen stability and development. Nowadays, when up to 90% of European wetlands is considered degraded, assessing vulnerability of groundwater recharge to changing landscape and climate is of the crucial importance for setting fen restoration and management strategies. Main goal of our study was to assess the magnitude of changes in groundwater recharge estimation resulting from modelled changes of the landscape and climatic features in >300 fens located in Poland, Germany, The Netherlands, Sweden, UK and Norway. In our approach we (1) delineated the most probable extents of catchments of particular fens analysed, (2) assumed hypothetical and the most probable changes of land cover within these catchments, (3) assumed the most probable ranges of climatic changes in each of the catchments including historical reconstructions (Holocene) and future projections (A1B scenario, CSIRO:MK3 and UKMO:HADCM3 GCM-RCM ensembles), (4) developed, tested and calibrated automatic, GIS-based groundwater recharge calculation algorithm to be applied in the study, (5) calculated groundwater recharge in multiple probable combinations of landscape and climatic conditions and (6) performed statistical analysis in order to reveal whether the climate or landscape changes were the dominant factors that could have probably influenced groundwater recharge in catchments of fens analysed. We revealed that in the case of 80% of

  4. The influence of environmental factors on protistan microorganisms in grassland soils along a land-use gradient.

    PubMed

    Glaser, Karin; Kuppardt, Anke; Boenigk, Jens; Harms, Hauke; Fetzer, Ingo; Chatzinotas, Antonis

    2015-12-15

    In this study, we investigated the effect of land use intensity, soil parameters and vegetation on protistan communities in grassland soils. We performed qualitative (T-RFLP) and quantitative (qPCR) analyses using primers specifically targeting the 18S rRNA gene for all Eukarya and for two common flagellate groups, i.e. the Chrysophyceae and the Kinetoplastea. Both approaches were applied to extracted soil DNA and RNA, in order to distinguish between the potentially active protists (i.e. RNA pool) and the total protistan communities, including potentially inactive and encysted cells (i.e. DNA pool). Several environmental determinants such as site, soil parameters and vegetation had an impact on the T-RFLP community profiles and the abundance of the quantified 18S rRNA genes. Correlating factors often differed between quantitative (qPCR) and qualitative (T-RFLP) approaches. For instance the Chrysophyceae/Eukarya 18S rDNA ratio as determined by qPCR correlated with the C/N ratio, whereas the community composition based on T-RLFP analysis was not affected indicating that both methods taken together provide a more complete picture of the parameters driving protist diversity. Moreover, distinct T-RFs were obtained, which could serve as potential indicators for either active organisms or environmental conditions like water content. While site was the main determinant across all investigated exploratories, land use seemed to be of minor importance for structuring protist communities. The impact of other parameters differed between the target groups, e.g. Kinetoplastea reacted on changes to water content on all sites, whereas Chrysophyceae were only affected in the Schorfheide. Finally, in most cases different responses were observed on RNA- and DNA-level, respectively. Vegetation for instance influenced the two flagellate groups only at the DNA-level across all sites. Future studies should thus include different protistan groups and also distinguish between active and

  5. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.

    PubMed

    Levy, Jonathan I; Clougherty, Jane E; Baxter, Lisa K; Houseman, E Andres; Paciorek, Christopher J

    2010-12-01

    Previous studies have identified associations between traffic exposures and a variety of adverse health effects, but many of these studies relied on proximity measures rather than measured or modeled concentrations of specific air pollutants, complicating interpretability of the findings. An increasing number of studies have used land-use regression (LUR) or other techniques to model small-scale variability in concentrations of specific air pollutants. However, these studies have generally considered a limited number of pollutants, focused on outdoor concentrations (or indoor concentrations of ambient origin) when indoor concentrations are better proxies for personal exposures, and have not taken full advantage of statistical methods for source apportionment that may have provided insight about the structure of the LUR models and the interpretability of model results. Given these issues, the primary objective of our study was to determine predictors of indoor and outdoor residential concentrations of multiple traffic-related air pollutants within an urban area, based on a combination of central site monitoring data; geographic information system (GIS) covariates reflecting traffic and other outdoor sources; questionnaire data reflecting indoor sources and activities that affect ventilation rates; and factor-analytic methods to better infer source contributions. As part of a prospective birth cohort study assessing asthma etiology in urban Boston, we collected indoor and/or outdoor 3-to-4 day samples of nitrogen dioxide (NO2) and fine particulate matter with an aerodynamic diameter or = 2.5 pm (PM2.5) at 44 residences during multiple seasons of the year from 2003 through 2005. We performed reflectance analysis, x-ray fluorescence spectroscopy (XRF), and high-resolution inductively coupled plasma-mass spectrometry (ICP-MS) on particle filters to estimate the concentrations of elemental carbon (EC), trace elements, and water-soluble metals, respectively. We derived

  6. Hyperfine structures and Landé gJ-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Nazé, C.; Jönsson, P.; Rynkun, P.; Godefroid, M.; Gaigalas, G.

    2014-09-01

    Energy levels, hyperfine interaction constants, and Landé gJ-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core-valence, and core-core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  7. Environmental factors affecting the distribution of land snails in the Atlantic Rain Forest of Ilha Grande, Angra dos Reis, RJ, Brazil.

    PubMed

    Nunes, G K M; Santos, S B

    2012-02-01

    The distribution and abundance of terrestrial molluscs are affected by environmental factors, but data are lacking for Brazilian land snails. The aim of this study was to understand the relationship between measured environmental factors and the land-snail species composition of two hillsides covered with Atlantic Rain Forest on Ilha Grande. On each hillside, five plots located at 100 m intervals between 100 to 500 m asl were chosen. Each plot was sampled by carrying out timed searches and collecting and sorting litter samples from ten quadrats of 25 × 75 cm. A range of environmental data was measured for each of the quadrats in a plot. A Cluster Analysis was carried out for the richness and abundance data. The environmental variables were analysed using a Pearson Correlation Matrix and Discriminant Analysis. Our results show that the two mountains are similar in species richness, but species composition and abundance are different, probably reflecting observed differences in environmental conditions. The environmental factors associated with compositional variation between the two mountains were: atmospheric temperature, soil temperature, litter depth, and relative air humidity. Distinct luminosity and canopy closure conditions were related to the composition of the land-snail community of one hillside. PMID:22437388

  8. Fine scale spatial urban land cover factors associated with adult mosquito abundance and risk in Tucson, Arizona.

    PubMed

    Landau, Katheryn I; van Leeuwen, Willem J D

    2012-12-01

    It is currently unclear what role microhabitat land cover plays in determining the seasonal spatial distribution of Aedes aegypti and Culex quinquefasciatus, disease vectors of dengue and West Nile Virus, respectively, in Tucson, AZ. We compared mosquito abundance to sixteen land cover variables derived from 2010 NAIP multispectral data and 2008 LiDAR height data. Mosquitoes were trapped with 30-9 traps from May to October of 2010 and 2011. Variables were extracted for five buffer zones (10-50 m radii at 10 m intervals) around trapping sites. Stepwise regression was performed to determine the best scale for observation and the influential land cover variables. The 30 m radius buffer was determined to be the best for observing the land cover-mosquito abundance relationship. Ae. aegypti presence was positively associated with structure and medium height trees and negatively associated with bare earth; Cx. quinquefasciatus presence was positively associated with pavement and medium height trees and negatively associated with shrubs. These findings emphasize vegetation, impervious surfaces, and soil influences on mosquito presence in an urban setting. Lastly, the land cover-mosquito abundance relationships were used to produce risk maps of seasonal presence that highlight high risk areas in Tucson, which may be useful for focusing mosquito control program actions. PMID:23181866

  9. Use of Persistent Scatterer Interferometry to Assess Land Deformation in the Nile Delta and its Controlling Factors

    NASA Astrophysics Data System (ADS)

    Gebremichael, E.; Sultan, M.; Becker, R.; Emil, M.; Ahmed, M.; Chouinard, K.

    2015-12-01

    We applied Persistent scatterer interferometry (PSInSAR) to assess land deformation (subsidence and uplift) across the entire Nile delta and its surroundings and to identify possible causes of the observed deformation. For the purpose of the present study, 100 Envisat Advanced Synthetic Aperture Radar (ASAR; level 0) scenes that were acquired along four tracks and covering a time span of seven years (2004 to 2010) were used. The scenes extend from the Mediterranean coast in the north to Cairo city in the south. These scenes were focused using Repeat Orbit Interferometry PACkage (ROI_PAC) software and the subsequent PSI processing was done using the Stanford Method for Persistent Scatterers (StaMPS) method. A low coherence threshold (0.2) was used to decrease the impact of vegetation-related poor coherence and decorrelation of the scenes over the investigated time span. Subsidence was observed over: (1) the Demietta Nile River branch (3 to 14 mm/yr) where it intersects the Mediterranean coastline, (2) thick (~ 40 m) Holocene sediments in lake Manzala (up to 9 mm/yr), (3) reclaimed desert areas (west of Nile Delta; up to 12 mm/yr) of high groundwater extraction, (4) along parts of a previously proposed flexure line (up to 10 mm/yr), and (5) along the eastern sections of the Mediterranean coastline (up to 15.7 mm/yr). The city of Alexandria (underlain by carbonate platform) and the terminus of the Rosetta branch of the Nile River seem to experience almost no ground movement (mean subsidence of 0.28 mm/yr and 0.74 mm/yr respectively) while the cities of Ras Elbar and Port Said (underlain by thick Holocene sediment) exhibit the highest subsidence values (up to 14 mm/yr and 8.5 mm/yr respectively). The city of Cairo has also experienced subsidence in limited areas of up to 7.8 mm/yr. High spatial correlation was also observed between the subsiding areas and the Abu Madi incised valley; the largest gas field in the Nile Delta. Most of the area undergoing subsidence in the

  10. Subfunctionalization of Sigma Factors during the Evolution of Land Plants Based on Mutant Analysis of Liverwort (Marchantia polymorpha L.) MpSIG1

    PubMed Central

    Ueda, Minoru; Takami, Tsuneaki; Peng, Lianwei; Ishizaki, Kimitsune; Kohchi, Takayuki; Shikanai, Toshiharu; Nishimura, Yoshiki

    2013-01-01

    Sigma factor is a subunit of plastid-encoded RNA polymerase that regulates the transcription of plastid-encoded genes by recognizing a set of promoters. Sigma factors have increased in copy number and have diversified during the evolution of land plants, but details of this process remain unknown. Liverworts represent the basal group of embryophytes and are expected to retain the ancestral features of land plants. In liverwort (Marchantia polymorpha L.), we isolated and characterized a T-DNA-tagged mutant (Mpsig1) of sigma factor 1 (MpSIG1). The mutant did not show any visible phenotypes, implying that MpSIG1 function is redundant with that of other sigma factors. However, quantitative reverse-transcription polymerase chain reaction and RNA gel blot analysis revealed that genes related to photosynthesis were downregulated, resulting in the minor reduction of some protein complexes. The transcript levels of genes clustered in the petL, psaA, psbB, psbK, and psbE operons of liverwort were lower than those in the wild type, a result similar to that in the SIG1 defective mutant in rice (Oryza sativa). Overexpression analysis revealed primitive functional divergence between the SIG1 and SIG2 proteins in bryophytes, whereas these proteins still retain functional redundancy. We also discovered that the predominant sigma factor for ndhF mRNA expression has been diversified in liverwort, Arabidopsis (Arabidopsis thaliana), and rice. Our study shows the ancestral function of SIG1 and the process of functional partitioning (subfunctionalization) of sigma factors during the evolution of land plants. PMID:24025801

  11. On the Main Factors Controlling Anthropogenic Land Subsidence in the Northern Plain of the Chaobai River, North Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Teatini, P.; Gong, H.; Ke, Y.; Pan, Y.

    2014-12-01

    Anthropogenic land subsidence is a widespread phenomenon threatening several cities in China. One major area of land subsidence is the Beijing city. The city continues to grow and unofficial estimates put the population at around 21-22 million in 2013, with an increase by 40% from 2000 to 2010. Along with the increasing urbanization, demands for water resources become larger. Approximately 2/3 of the water need is supplied by groundwater. To cope with the pressure for water supply, a first "over-sized emergency groundwater resource region (EGRR)" was built in 2003 at the Huairou district, where is the upper and middle plain of the Chaobai River, few tens km to the north of the metropolitan center. Other four EGRRwell-fields have been established in different districts surrounding the city in the next years. The long-time over-exploitation of groundwater resulted in water level fall and land subsidence. Persistent Scatterer Interferometry (PSI) on ENVISAT images has been used to detect land subsidence in the northern Beijing plain from 2003 to 2010. The PSI outcome, which was calibrated using ground-based measurements including levelling and extensometers, reveals that the largest subsidence rate reached 52 mm/yr, with a cumulative maximum sinking equal to 342 mm, in the Houshayu city at the southwestern part of the study area where the capital international airport is situated. Land subsidence in the northern zones, where the main well-fields are located, was much smaller in the order of 60 mm. Hydro-geologic investigations have showed that the distribution of groundwater depression cones only partially resembles the land subsidence pattern. The subsidence rates are strongly correlated with the distribution of compressible clay units. In the south-westernmost zone, at the bound of the metropolitan area, the cumulative thickness of cohesive soils amounts to 250 m in the upper 390 m sedimentary sequence. Conversely, sands and gravels prevail in the northern portion

  12. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping

    PubMed Central

    2012-01-01

    Background Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions and is now extending its range to temperate regions. The spread of the dengue viruses mainly depends on vector population (Aedes aegypti and Aedes albopictus), which is influenced by changing climatic conditions and various land-use/land-cover types. Spatial display of the relationship between dengue vector density and land-cover types is required to describe a near-future viral outbreak scenario. This study is aimed at exploring how land-cover types are linked to the behavior of dengue-transmitting mosquitoes. Methods Surveys were conducted in 92 villages of Phitsanulok Province Thailand. The sampling was conducted on three separate occasions in the months of March, May and July. Dengue indices, i.e. container index (C.I.), house index (H.I.) and Breteau index (B.I.) were used to map habitats conducible to dengue vector growth. Spatial epidemiological analysis using Bivariate Pearson’s correlation was conducted to evaluate the level of interdependence between larval density and land-use types. Factor analysis using principal component analysis (PCA) with varimax rotation was performed to ascertain the variance among land-use types. Furthermore, spatial ring method was used as to visualize spatially referenced, multivariate and temporal data in single information graphic. Results Results of dengue indices showed that the settlements around gasoline stations/workshops, in the vicinity of marsh/swamp and rice paddy appeared to be favorable habitat for dengue vector propagation at highly significant and positive correlation (p = 0.001) in the month of May. Settlements around the institutional areas were highly significant and positively correlated (p = 0.01) with H.I. in the month of March. Moreover, dengue indices in the month of March showed a significant and positive correlation (p <= 0.05) with deciduous forest. The H.I. of people living around horticulture

  13. Effects of land use and geological factors on the spatial variability of soil carbon and nitrogen in the Konya Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Clayton, M.

    2012-12-01

    factors and human activities on the spatial variability of soil properties, can inform development of landscape-scale soil sampling schemes for soil carbon and nitrogen accounting so that they are representative of soils at landscape scales in dryland environments. They suggest that in drylands, land management strategies to increase carbon stocks in soils differ based on soil type. Further, they will contribute understanding to what processes varying across spatial scales may be driving soil heterogeneity.

  14. EVALUATING HETEROGENEITY IN INDOOR AND OUTDOOR AIR POLLUTION USING LAND-USE REGRESSION AND CONSTRAINED FACTOR ANALYSIS

    EPA Science Inventory

    Investigators will explore how land-use regression and source-apportionment techniques can be used to characterize individual-level exposure to both indoor and outdoor air pollution sources. Investigators will utilize health and air monitoring data from an ongoing prospecti...

  15. Modelling of INTER-Linkages Between LAND Cover Pattern and Socio-Economic Factors in the Idemili River Basin of South Eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Maduekwe, N. I.; Adesina, F. A.

    2014-12-01

    This study explores the inter-relationships between socio-economic factors and land cover pattern in the Idemili River Basin of South Eastern Nigeria. It is based on the concept of coupled human environment systems and focuses on the modelling of community scale relationships between critical land cover parameter and socio-demographic, economic and cultural factors in the basin. The modelling was implemented with pixel level NDVI indicators of vegetation cover density developed from NigeriaSat image with 32m resolution linked to eight indicators of socio-economic factors developed from a household survey of the basin. NDVI and socio-economic data were matched for 25 sampled localities in the basin and their relationships modelled with correlation, regression and Principal Component Analysis statistics. NDVI based image analysis showed a high level of human impact on vegetation. The Model output shows that bivariate relationships between vegetation cover dynamics and socio-demographic variables were the most significant, with R Square values > 0.60 for linear and non linear models. Vegetation cover density has high inverse correlations with population, urbanization levels and number of households in localities. Population/urbanization status of localities was also the most significant Principal Component or underlying dimension linked to spatial dynamics of vegetation cover in the basin accounting for 50% of factor variations. Relationships between vegetation cover densities and economic factors (occupational and household energy patterns) and socio-cultural factors (environmental knowledge, values and governance) were weaker and less significant. The study captured the linkages between landcover- represented by vegetation cover- and socio-economic parameters. It demonstrates that socio-economic factors are major drivers of change in the basin. Key Words: Socio-economic factors, Vegetation Cover, NDVI, Socio-ecological Systems, State Variables, South Eastern Nigeria

  16. This Land is Your Land. The Problem of Land Utilization. Environmental Ecological Education Project.

    ERIC Educational Resources Information Center

    Helfrich, Carl; And Others

    This unit, written for seventh-grade school children, focuses on the variety of factors that are involved in land utilization. It specifically examines land use in St. Louis County, Missouri, and discusses such concepts as the variety of ways man has used this land, the influence surface features have on land use, the influence of socio-cultural…

  17. Factors associated with succession of abandoned agricultural lands along the Lower Missouri River, U.S.A

    USGS Publications Warehouse

    Thogmartin, W.E.; Gallagher, M.; Young, N.; Rohweder, J.J.; Knutson, M.G.

    2009-01-01

    The 1993 flood of the Missouri River led to the abandonment of agriculture on considerable land in the floodplain. This abandonment led to a restoration opportunity for the U.S. Federal Government, purchasing those lands being sold by farmers. Restoration of this floodplain is complicated, however, by an imperfect understanding of its past environmental and vegetative conditions. We examined environmental conditions associated with the current placement of young forests and wet prairies as a guide to the potential successional trajectory for abandoned agricultural land subject to flooding. We used Bayesian mixed-effects logistic regression to examine the effects of flood frequency, soil drainage, distance from the main channel, and elevation on whether a site was in wet prairie or in forest. Study site was included as a random effect, controlling for site-specific differences not measured in our study. We found, after controlling for the effect of site, that early-successional forest sites were closer to the river and at a lower elevation but occurred on drier soils than wet prairie. In a regulated river such as the lower Missouri River, wet prairie sites are relatively isolated from the main channel compared to early-successional forest, despite occurring on relatively moister soils. The modeled results from this study may be used to predict the potential successional fate of the acquired agricultural lands, and along with information on wildlife assemblages associated with wet prairie and forest can be used to predict potential benefit of these acquisitions to wildlife conservation. ?? 2009 Society for Ecological Restoration International.

  18. Analysis of the Vertical Ground Reaction Forces and Temporal Factors in the Landing Phase of a Countermovement Jump

    PubMed Central

    Ortega, Daniel Rojano; Rodríguez Bíes, Elisabeth C.; Berral de la Rosa, Francisco J.

    2010-01-01

    In most common bilateral landings of vertical jumps, there are two peak forces (F1 and F2) in the force-time curve. The combination of these peak forces and the high frequency of jumps during sports produce a large amount of stress in the joints of the lower limbs which can be determinant of injury. The aim of this study was to find possible relationships between the jump height and F1 and F2, between F1 and F2 themselves, and between F1, F2, the time they appear (T1 and T2, respectively) and the length of the impact absorption phase (T). Thirty semi-professional football players made five countermovement jumps and the highest jump of each player was analyzed. They were instructed to perform the jumps with maximum effort and to land first with the balls of their feet and then with their heels. All the data were collected using a Kistler Quattro Jump force plate with a sample rate of 500 Hz. Quattro Jump Software, v.1.0.9.0., was used. There was neither significant correlation between T1 and F1 nor between T1 and F2. There was a significant positive correlation between flight height (FH) and F1 (r = 0.584, p = 0.01) but no significant correlation between FH and F2. A significant positive correlation between F1 and T2 (r = 0.418, p < 0.05) and a significant negative correlation between F2 and T2 (r = -0.406, p < 0.05) were also found. There is a significant negative correlation between T2 and T (r = -0. 443, p < 0.05). T1 has a little effect in the impact absorption process. F1 increases with increasing T2 but F2 decreases with increasing T2. Besides, increasing T2, with the objective of decreasing F2, makes the whole impact absorption shorter and the jump landing faster. Key points In the landing phase of a jump there are always sev-eral peak forces. The combination of these peaks forces and the high frequency of jumps during sports produces a large amount of stress in the joints of the lower limbs which can be determinant of injury. In the most common two

  19. [Nitrogen and phosphorus loss in different land use types and its response to environmental factors in the Three Gorges Reservoir area].

    PubMed

    Zeng, Li-Xiong; Huang, Zhi-Lin; Xiao, Wen-Fa; Tian, Yao-Wu

    2012-10-01

    The control of agricultural non-point source pollution (AGNPS) is an urgent problem to be solved for the ecological environment construction in the Three Gorges Reservoir Area. We analyzed the nitrogen (N) and phosphorus (P) loss and its response to environmental factors through monitoring the nutrient loss in different land use types after returning farmland to forest. The results showed that: 1) The variability of nutrient concentration loss was strong in different land use types under different rainfall conditions, and the variability in the concentration of available nutrient was much higher than that of total nutrient; 2) Compared to farmland, the annual phosphorus loss of different land use types was reduced by 84.53% - 91.61% after returning farmland to forest; the reduction of annual nitrogen loss was not significant except Chinese chestnut forest (Castanea mollissima) and arbor forest, and the nitrogen loss was much higher than the phosphorus loss in all land use types; 3) The particle phosphorus and nitrate nitrogen (NO3(-)-N) were the main forms of the phosphorus and nitrogen loss, respectively; 4) The nutrient loss of tea garden (Camellia sinensis) and bamboo forest (Phyllostachys pubescens) showed a good correlation with precipitation, and the correlation of phosphorus was better than that of nitrogen, but there was no significant relation with the rainfall intensity; 5) The coverage of vegetation, tree layer and litter had a great influence on the loss of total nitrogen (TN). NO3(-)-N loss was highly influenced by the ammonium nitrogen (NH4(+)-N) content in the surface soil, and P loss mainly by the total phosphorus (TP) and sand content in the soil. PMID:23233964

  20. Effects of Land Use, Topography and Socio-Economic Factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China

    PubMed Central

    Chen, Jiabo; Lu, Jun

    2014-01-01

    Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA), Principal component analysis (PCA), Pearson correlations, Multiple regression analysis (MRA) and Redundancy analysis (RDA) were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3−-N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA) can assist in quantitatively identifying the primary factors that control pollution at the watershed scale. PMID:25090375

  1. Departmental Factors Affecting Time-to-Degree and Completion Rates of Doctoral Students at One Land-Grant Research Institution.

    ERIC Educational Resources Information Center

    de Valero, Yaritza Ferrer

    2001-01-01

    Interviewed graduate students writing their dissertations and faculty members about factors influencing time-to-degree and completion rates in their departments. Complex findings indicated that factors related to financial support, degree requirements, departmental policies and practices, advising, and department climate affected these outcomes.…

  2. Investigation of connections among physical, social and economic factors in case of optimal Land Use System Planning in the Egri-Bükkalja Foothill Area of North Hungary

    NASA Astrophysics Data System (ADS)

    Dobos, Anna; Utasi, Zoltán; Tóth, Antal; Csabai Kitti, Edina; Laborczi, Annamária; Takács, Katalin; Hegyi, Balázs; Tamás Hegyi, Péter; Pásztor, László; Mika, János

    2016-04-01

    Nowadays, detailed knowledge of landscape elements and their capabilties, furthermore the probable tendency of climate change play important role in spatial planning of optimal land use system and solving agricultural and social challeges. During our research work, we have investigated three settlements (Cserépfalu, Egerszólát, Kerecsend) based on different landscape factors in the Egri-Bükkalja Fothill Areas of North Hungary. Our aim was to point out the landscape differences along north - south direction inside this microlandscape unit and their effects on land use system, economic developments, social challenges and their changeable tendency in the future We have investigated quantitative and qualitative connections among different landscape factors in suitable GIS environment. Based on the identified relationships thematic maps were compiled. The elaborated GIS integrates digitally processed legacy data, properly selected spatial data infrastructure elements and recently collected field data originating from our geomopholgical and pedological investigations carried out in last three years. We discribed soil features in soil profiles using methods according to FAO (2006) and Novák (2013). Soils were featured by soil type, the thickness of A horizon and the rate of soil erosion. Projected climate changes have also been considered for the region. Besides collection of the available recent OAGCM outputs and outputs by four RCM run in Hungary, an empirical approach has been also included. This is based on empirical regression relationship between relevant grid-point values of the CarpatClim data base and the temperature of the Northern Hemisphere. Land use maps were created based on the 1st, 2nd, 3rd, 4th Military Survey Maps and aerial photographs covering a relatively long period from the 18th century till nowadays. Main social and economic factors and processes were characterized using data of the Hungarian Central Statistical Office, population census and

  3. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from laboratory culturing experiment

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Yamada, K.; Suzuki, N.; Yoshida, N.

    2014-10-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail subspecies, Acusta despecta sieboldiana, collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on results obtained from previous works and this study, a simple but credible framework is presented to illustrate how each source and environmental parameter affects shell carbonate δ13C values. According to this framework and some reasonable assumptions, we estimated the contributions of different carbon sources for each snail individual: for cabbage-fed (C3 plant) groups, the contributions of diet, atmospheric CO2, and ingested limestone vary in the ranges of 66-80, 16-24, and 0-13%, respectively. For corn-fed (C4 plant) groups, because of the possible food stress (less ability to consume C4 plants), the values vary in the ranges of 56-64, 18-20, and 16-26%, respectively. Moreover, according to the literature and our observations, the subspecies we cultured in this study show preferences towards different plant species for food. Therefore, we suggest that the potential food preference should be considered adequately for some species in paleoenvironment studies. Finally, we inferred that only the isotopic exchange of the calcite-HCO3--aragonite equilibrium during egg laying and hatching of our cultured snails controls carbon isotope fractionation.

  4. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Yamada, K.; Suzuki, N.; Yoshida, N.

    2014-05-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on previous works and on results obtained in this study, a simple but credible framework is presented for discussion of how each source and environmental parameter can affect shell carbonate δ13C values. According to this framework and some reasonable assumptions, we have estimated the contributions of different carbon sources for each snail individual: for cabbage (C3 plant) fed groups, the contributions of diet, atmospheric CO2 and ingested limestone respectively vary as 66-80%, 16-24%, and 0-13%. For corn (C4 plant) fed groups, because of the possible food stress (lower consumption ability of C4 plant), the values vary respectively as 56-64%, 18-20%, and 16-26%. Moreover, we present new evidence that snails have discrimination to choose C3 and C4 plants as food. Therefore, we suggest that food preferences must be considered adequately when applying δ13C in paleo-environment studies. Finally, we inferred that, during egg laying and hatching of our cultured snails, carbon isotope fractionation is controlled only by the isotopic exchange of the calcite-HCO3--aragonite equilibrium.

  5. Associations among pathogenic bacteria, parasites, and environmental and land use factors in multiple mixed-use watersheds.

    PubMed

    Wilkes, G; Edge, T A; Gannon, V P J; Jokinen, C; Lyautey, E; Neumann, N F; Ruecker, N; Scott, A; Sunohara, M; Topp, E; Lapen, D R

    2011-11-15

    Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall

  6. Land management as a factor controlling dissolved organic carbon release from upland peat soils 2: changes in DOC productivity over four decades.

    PubMed

    Clutterbuck, B; Yallop, A R

    2010-11-15

    Increasing DOC concentrations in surface waters have been observed across parts of Europe and North America over the past few decades. Most proposed explanations for these widespread trends invoke climate change or reductions in sulphate deposition. However, these factors do not seem apposite to explain either the fine-scale (within kilometres) or regional-scale spatial variation in DOC concentrations observed across the UK. We have reconstructed DOC concentrations and land use for one North Pennine and five South Pennine catchments (UK), located in three discrete areas, over the last four decades. Rainfall, temperature and sulphate deposition data, where available, were also collated and the potential influence of these factors on surface water DOC concentrations was assessed. Four of the six catchments examined showed highly significant (p<0.001) increases (53-92%) in humic coloured DOC (hDOC) concentrations in drainage waters over the period 1990-2005. Changes in temperature and sulphate deposition may explain 20-30% of this trend in these four catchments. However, the rapid expansion of new moorland burn on blanket peat can explain a far greater degree (>80%) of the change in hDOC. Far smaller increases in hDOC (10-18%) were identified for the two remaining catchments. These two sites experienced similar changes in sulphur deposition and temperature to those that had seen largest increases in DOC, but contained little or no moorland burn management on blanket peat. This study shows that regional-scale factors undoubtedly underlie some of the recent observed increases in drainage humic coloured DOC. However, changes in land management, in this case the extensive use of fire management on blanket peat, are a far more important driver of increased hDOC release from upland catchments in some parts of the UK. It suggests that the recent rapid increase in the use of burning on blanket peat moorland has implications for ecosystem services and carbon budgets. PMID

  7. Environmental factors and public health policy associated with human and rodent infection by leptospirosis: a land cover-based study in Nan province, Thailand.

    PubMed

    Della Rossa, P; Tantrakarnapa, K; Sutdan, D; Kasetsinsombat, K; Cosson, J-F; Supputamongkol, Y; Chaisiri, K; Tran, A; Supputamongkol, S; Binot, A; Lajaunie, C; Morand, S

    2016-05-01

    Leptospirosis incidence has increased markedly since 1995 in Thailand, with the eastern and northern parts being the most affected regions, particularly during flooding events. Here, we attempt to overview the evolution of human prevalence during the past decade and identify the environmental factors that correlate with the incidence of leptospirosis and the clinical incidence in humans. We used an extensive survey of Leptospira infection in rodents conducted in 2008 and 2009 and the human incidence of the disease from 2003 to 2012 in 168 villages of two districts of Nan province in Northern Thailand. Using an ad-hoc developed land-use cover implemented in a geographical information system we showed that humans and rodents were not infected in the same environment/habitat in the land-use cover. High village prevalence was observed in open habitat near rivers for the whole decade, or in 2008-2009 mostly in rice fields prone to flooding, whereas infected rodents (2008-2009) were observed in patchy habitat with high forest cover, mostly situated on sloping ground areas. We also investigated the potential effects of public health campaigns conducted after the dramatic flood event of 2006. We showed that, before 2006, human incidence in villages was explained by the population size of the village according to the environmental source of infection of this disease, while as a result of the campaigns, human incidence in villages after 2006 appeared independent of their population size. This study confirms the role of the environment and particularly land use, in the transmission of bacteria, emphasized by the effects of the provincial public health campaigns on the epidemiological pattern of incidence, and questions the role of rodents as reservoirs. PMID:26607833

  8. Mapping the anisotropic Lande g-factor tensor of 1D GaAs holes in all 3 spatial directions

    NASA Astrophysics Data System (ADS)

    Hudson, Karina; Srinivasan, Ashwin; Wang, Qingwen; Yeoh, Lareine; Klochan, Oleh; Farrer, Ian; Ritchie, David; Hamilton, Alex

    2014-03-01

    We have studied the Zeeman splitting of 1D holes formed on a (100) GaAs/AlGaAs heterostructure on a single cooldown. The strong spin orbit coupling and 1D confinment give rise to a highly anisotropic spin splitting. By use of the high-symmetry (100) crystal, we eliminate the effects of crystal anisotropy on our measurements. In measuring the spin splitting as a function of angle between the wire and the applied magnetic field, we are able to identify the principle axes of the g-tensor. We show that the principle axes are defined by the potential confining the 1D holes, and are not affected by the crystal axes. We find that g∥⊥ factors parallel and perpendicular to the wire, and g⊥ refers to the g-factor perpendicular to the 2D well.

  9. Investigations on Landé factor in a strained GaxIn1-xAs/GaAs quantum dot

    NASA Astrophysics Data System (ADS)

    Kumar, N. R. Senthil; Peter, A. John

    2014-04-01

    The effective excitonic g-factor as functions of dot radius and the Ga alloy content, in a strained GaxIn1-xAs/GaAs quantum dot, is numerically measured. The heavy hole excitonic states are studied for various Ga alloy content taking into account the anisotropy, non-parabolicity of the conduction band and the geometrical confinement effects. The quantum dot is considered as spherical dot of InAs surrounded by a GaAs barrier material.

  10. Emerging factors associated with the decline of a gray fox population and multi-scale land cover associations of mesopredators in the Chicago metropolitan area.

    SciTech Connect

    Willingham, Alison N.; /Ohio State U.

    2008-01-01

    mortality due to coyote predation was documented and disease was a major mortality source for foxes. The declining relative abundance of gray fox in Illinois is likely a result of a combination of factors. Assessment of habitat associations indicated that urban mesopredators, particularly coyotes and foxes, perceived the landscape as relatively homogeneous and that urban mesopredators interacted with the environment at scales larger than that accommodated by remnant habitat patches. Coyote and fox presence was found to be associated with a high degree of urban development at large and intermediate spatial scales. However, at a small spatial scale fox presence was associated with high density urban land cover whereas coyote presence was associated with urban development with increased forest cover. Urban habitats can offer a diversity of prey items and anthropogenic resources and natural land cover could offer coyotes daytime resting opportunities in urban areas where they may not be as tolerated as smaller foxes. Raccoons and opossums were found to utilize moderately developed landscapes with interspersed natural and semi-natural land covers at a large spatial scale, which may facilitate dispersal movements. At intermediate and small spatial scales, both species were found to utilize areas that were moderately developed and included forested land cover. These results indicated that raccoons and opossums used natural areas in proximity to anthropogenic resources. At a large spatial scale, skunk presence was associated with highly developed landscapes with interspersed natural and semi-natural land covers. This may indicate that skunks perceived the urban matrix as more homogeneous than raccoons or opossums. At an intermediate spatial scale skunks were associated with moderate levels of development and increased forest cover, which indicated that they might utilize natural land cover in proximity to human-dominated land cover. At the smallest spatial scale skunk presence was

  11. Site Selection for Mars Surveyor Landing Sites: Some Key Factors for 2001 and Relation to Long-Term Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Head, James W.

    1999-01-01

    The Site Selection Process: Site selection as a process can be subdivided into several main elements and these can be represented as the corners of a tetrahedron. Successful site selection outcome requires the interactions between these elements or corners, and should also take into account several other external factors or considerations. In principle, elements should be defined in approximately the following order: (1) major scientific and programmatic goals and objectives: What are the major questions that are being asked, goals that should be achieved, and objectives that must be accomplished. Do programmatic goals (e.g., sample return) differ from mission goals (e.g., precursor to sample return)? It is most helpful if these questions can be placed in the context of site characterization and hypothesis testing (e.g., Was Mars warm and wet in the Noachian? Land at a Noachian-aged site that shows evidence of surface water and characterize it specifically to address this question). Goals and objectives, then, help define important engineering factors such as type of payload, landing regions of interest (highlands, lowlands, smooth, rough, etc.), mobility, mission duration, etc. Goals and objectives then lead to: (2) spacecraft design and engineering landing site constraints: the spacecraft is designed to optimize the areas that will meet the goals and objectives, but this in turn introduces constraints that must be met in the selection of a landing site. Scientific and programmatic goals and objectives also help to define (3), the specific lander scientific payload requirements and capabilities. For example, what observations and experiments are required to address the major questions? How do we characterize the site in reference to the specific questions? Is mobility required and if so, how much? Which experiments are on the spacecraft, which on the rover? The results of these deliberations should lead to a surface exploration strategy, in which the goals and

  12. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    PubMed

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. PMID:26950615

  13. Developing Street-Level PM2.5 and PM10 Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors.

    PubMed

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2016-08-01

    Monitoring street-level particulates is essential to air quality management but challenging in high-density Hong Kong due to limitations in local monitoring network and the complexities of street environment. By employing vehicle-based mobile measurements, land use regression (LUR) models were developed to estimate the spatial variation of PM2.5 and PM10 in the downtown area of Hong Kong. Sampling runs were conducted along routes measuring a total of 30 km during a selected measurement period of total 14 days. In total, 321 independent variables were examined to develop LUR models by using stepwise regression with PM2.5 and PM10 as dependent variables. Approximately, 10% increases in the model adjusted R(2) were achieved by integrating urban/building morphology as independent variables into the LUR models. Resultant LUR models show that the most decisive factors on street-level air quality in Hong Kong are frontal area index, an urban/building morphological parameter, and road network line density and traffic volume, two parameters of road traffic. The adjusted R(2) of the final LUR models of PM2.5 and PM10 are 0.633 and 0.707, respectively. These results indicate that urban morphology is more decisive to the street-level air quality in high-density cities than other cities. Air pollution hotspots were also identified based on the LUR mapping. PMID:27381187

  14. Calculations with spectroscopic accuracy: energies, transition rates, and Landé gJ-factors in the carbon isoelectronic sequence from Ar XIII to Zn XXV

    NASA Astrophysics Data System (ADS)

    Ekman, J.; Jönsson, P.; Gustafsson, S.; Hartman, H.; Gaigalas, G.; Godefroid, M. R.; Froese Fischer, C.

    2014-04-01

    Extensive self-consistent multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations and subsequent relativistic configuration interaction calculations are performed for 262 states belonging to the 15 configurations 2s22p2, 2s2p3, 2p4, 2s22p3l, 2s2p23l, 2p33l and 2s22p4l(l = 0,1,2) in selected carbon-like ions from Ar XIII to Zn XXV. Electron correlation effects are accounted for through large configuration state function expansions. Calculated energy levels are compared with existing theoretical calculations and data from the Chianti and NIST databases. In addition, Landé gJ-factors and radiative electric dipole transition rates are given for all ions. The accuracy of the calculations are high enough to facilitate the identification of observed spectral lines. Research supported in part by the Swedish Research council, Swedish Institute and by the IUAP-Belgian State Science Policy (BriX network P7/12).Tables of energy levels and transition rates (Tables 3-22) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A24

  15. LANDING QUALITY IN ARTISTIC GYMNASTICS IS RELATED TO LANDING SYMMETRY

    PubMed Central

    Marinšek, M.

    2013-01-01

    In gymnastics every exercise finishes with a landing. The quality of landing depends on subjective (e.g. biomechanical) and objective (e.g. mechanical characteristics of landing area) factors. The aim of our research was to determine which biomechanical (temporal, kinematic and dynamic) characteristics of landing best predict the quality of landing. Twelve male gymnasts performed a stretched forward and backward salto; also with 1/2, 1/1 and 3/2 turns. Stepwise multiple regression extracted five predictors which explained 51.5% of landing quality variance. All predictors were defining asymmetries between legs (velocities, angles). To avoid asymmetric landings, gymnasts need to develop enough height; they need higher angular momentum around the transverse and longitudinal axis and they need to better control angular velocity in the longitudinal axis. PMID:24744462

  16. Landing quality in artistic gymnastics is related to landing symmetry.

    PubMed

    Cuk, I; Marinšek, M

    2013-03-01

    In gymnastics every exercise finishes with a landing. The quality of landing depends on subjective (e.g. biomechanical) and objective (e.g. mechanical characteristics of landing area) factors. The aim of our research was to determine which biomechanical (temporal, kinematic and dynamic) characteristics of landing best predict the quality of landing. Twelve male gymnasts performed a stretched forward and backward salto; also with 1/2, 1/1 and 3/2 turns. Stepwise multiple regression extracted five predictors which explained 51.5% of landing quality variance. All predictors were defining asymmetries between legs (velocities, angles). To avoid asymmetric landings, gymnasts need to develop enough height; they need higher angular momentum around the transverse and longitudinal axis and they need to better control angular velocity in the longitudinal axis. PMID:24744462

  17. The future of land warfare

    SciTech Connect

    Bellamy, C.

    1987-01-01

    Sophisticated new technology and vastly increased firepower mean that future land battles are likely to be very different to those of the past. The Iran-Iraq war and the British experience in the Falklands have shown, however, that factors such as terrain, morale and surprise continue to be of vital importance. This book is a consideration of the likely nature of (and possibilities for) land warfare during the next twenty-five years. It discusses the elements of modern warfare including weapons developments, intelligence, logistics and tactics. The book concludes with speculative predictions of future conflicts. Topics covered include hell on earth: war in the 1970s and 1980s; factors affecting air-land warfare; geography, demography and the major land powers; nuclear; biological; chemical or conventional; operational art of major land powers; weapons platforms, protection, electronic warfare (including laser and charged particle beam weapons); command, control, communications and intelligence; and the nature of future land warfare.

  18. Apollo Lunar Module Landing Gear

    NASA Technical Reports Server (NTRS)

    Rogers, W. F.

    1972-01-01

    The Apollo lunar module landing-gear flight-performance results and three principal gear development problems are discussed. In evaluating the lunar module touchdown performance, strut stroking and toppling stability are the prime factors and are governed primarily by touchdown velocity and surface slope at the touchdown point. Flight results are shown to be well within design values, and the landing-gear has performed successfully in all landings.

  19. Trends in the Global Net Land Sink and Their Sensitivity to Environmental Forcing Factors: Results From the Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP)

    NASA Astrophysics Data System (ADS)

    Huntzinger, D. N.; Schwalm, C. R.; Michalak, A. M.; Wei, Y.; Cook, R. B.; Schaefer, K. M.; Jacobson, A. R.; Arain, M. A.; Ciais, P.; Fisher, J. B.; Hayes, D. J.; Huang, M.; Huang, S.; Ito, A.; Jain, A.; Lei, H.; Lu, C.; Maignan, F.; Mao, J.; Parazoo, N.; Peng, S.; Peng, C.; Poulter, B.; Ricciuto, D. M.; Shi, X.; Tian, H.; Zeng, N.; Zhao, F.; Zhu, Q.; Wang, W.

    2014-12-01

    Predictions of future climate depend strongly on trends in net uptake or release of carbon by the land biosphere. However, model estimates of the strength of the net global land sink during the Industrial Era vary widely. Here we evaluate results from an ensemble of uncoupled models taken from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and forced by the same input fields. When compared to estimates inferred from atmospheric CO2 observations (i.e., fossil fuel emission + net land use change - atmospheric increase - ocean uptake), MsTMIP models estimate, on average, a stronger global net land uptake of carbon (e.g., -0.3 to 8.7 Pg C/yr from 2000 to 2010, where a negative flux represents a net release to the atmosphere). Some models consistently show the land surface as a net source of carbon to the atmosphere, which is inconsistent with the other terms in the global anthropogenic CO2 budget. In addition, regional differences in land carbon exchange are compared across models and to estimates derived from atmospheric inversions and inventory based approaches. Using the semi-factorial simulations of the MsTMIP activity, we examine how model estimates of the cumulative global net land sink diverge over the period 1900 to 2010, and the degree to which model sensitivity to forcing factors contribute to this divergence. We link differences in estimates of the cumulative land sink back to each model's sensitivity to climate variability, CO2 fertilization, nitrogen limitation, and net land-use change. Throughout the 110-year time period, the strength of carbon uptake in most models appears to be strongly sensitive to atmospheric CO2 concentrations (CO2 fertilization effect). The strength of this relationship, however, varies across models depending on model structure (e.g., stronger CO2 fertilization effect in models without an interactive nitrogen cycle with N limitations) and across decades (e.g., strong sensitivity of net flux to

  20. Measurements of the spin-orbit interaction and Landé g factor in a pure-phase InAs nanowire double quantum dot in the Pauli spin-blockade regime

    NASA Astrophysics Data System (ADS)

    Wang, Jiyin; Huang, Shaoyun; Lei, Zijin; Pan, Dong; Zhao, Jianhua; Xu, H. Q.

    2016-08-01

    We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO2 substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of ΔST ˜ 2.3 meV, a strong spin-orbit interaction of ΔSO ˜ 140 μeV, and a large and strongly level-dependent Landé g factor of ˜12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductor nanostructures for applications in quantum information technologies.

  1. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Verdebout, S.; Nazé, C.; Rynkun, P.; Godefroid, M.

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  2. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study

    NASA Astrophysics Data System (ADS)

    Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L.

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  3. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study.

    PubMed

    Bajocco, S; De Angelis, A; Perini, L; Ferrara, A; Salvati, L

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas. PMID:22419398

  4. Mars Exploration Rovers Landing Dispersion Analysis

    NASA Technical Reports Server (NTRS)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  5. Lunar Polar Landing Sites

    NASA Astrophysics Data System (ADS)

    Kamps, Oscar; Foing, Bernard H.; Flahaut, Jessica

    2016-07-01

    site to a PSR was chosen and used to do an automatic calculation for a rover traverse where the slope was assumed to be the limiting factor. Between the landing site and PSR a site of interest was chosen where temperature differences (Tmax-Tmin) is higher than 150K to study volatile migration processes. Eventually it is concluded that Amundsen is preferred above Rozhdestvesnkiy West because its flatter crater ground makes it easier to select landing sites. It contains more areas where volatile migration processes can studied and it is easier to rove.

  6. [Impacts of cultivated land conversion on cultivated land productivity in China: prediction and analysis].

    PubMed

    Jiang, Qun-ou; Deng, Xiang-zheng; Lin, Ying-zhi; Cui, Yong-wei

    2010-12-01

    This paper simulated the spatial patterns of cultivated land in China under the future scenario by using the Dynamics of Land System (DLS) model, and then estimated the cultivated land productivity at the grid pixel dimensions based on the Estimation System of Land Production (ESLP). In addition, the spatial patterns of cultivated land productivity in each of China agro-ecological zones were analyzed. On this basis, this paper predicted the impacts of cultivated land conversion on the cultivated land production in China in 2000-2020, and identified the major affecting factors on the cultivated land production. The research results indicated that the impact of improving the cultivated land productivity on the cultivated land production would be wunch more remarkable than that from the magnitude of cultivated land conversion in regions where there were high potential to imrprove the cultivated land productivity. However, in the regions with nearly no room to improve the productivity, cultivated land conversion would produce more apparent impacts on the total cultivated land production. In this sense, it was of significance for the national food security in China to adjust the cultivated land conversion to ensure the 0.12 billion hm2 of cultivated land, and to increase investment and improve management level to increase per unit grain yield. PMID:21442997

  7. Relation of periphyton and benthic invertebrate communities to environmental factors and land use at selected sites in part of the upper Mississippi River basin, 1996-98

    USGS Publications Warehouse

    ZumBerge, Jeremy Ryan; Lee, Kathy E.; Goldstein, Robert M.

    2003-01-01

    Biological communities in the Mississippi River reflected changes in water quality and physical habitat as the Minnesota and St. Croix Rivers join the Mississippi River. Periphyton density and biovolume, and the relative abundance of blue-green algae density increased in the Mississippi River at the confluence compared to the Minnesota and St. Croix Rivers. Relative abundance of benthic invertebrate taxa richness and diversity generally decreased downstream in the large rivers as urban and agricultural land use become more prevalent. Impoundments and dredging of the Mississippi River in and downstream from the TCMA exacerbate effects of increasing river size to produce a more lake-like system.

  8. Analyzing simulated patterns of land use change

    SciTech Connect

    Dale, V.H.; O'Neill, R.V.; Southworth, F. ); Loureiro, F. )

    1992-01-01

    Land use change is one of major factors affecting global environmental conditions. Modeling land use change requires combining spatially-explicit ecological information with socioeconomic factors. A modeling system is being developed that integrates sub-models of human colonization with submodels of ecological interactions to estimate patterns and rates of deforestation under different immigration and land management scenarios. The model projects maps of land use change that can be compared to remote sensing measures using spatial statistics. The simulation modeling system is being applied to the Brazilian state of Rondonia where deforestation has increased at a faster rate over the past two decades than anywhere else in the world. The model projections suggest that land management can both reduce carbon release and improve the length of time farmers are able to remain on the land. The model provides a tool to evaluate the spatial and temporal implications of various land management options.

  9. Analyzing simulated patterns of land use change

    SciTech Connect

    Dale, V.H.; O`Neill, R.V.; Southworth, F.; Loureiro, F.

    1992-07-01

    Land use change is one of major factors affecting global environmental conditions. Modeling land use change requires combining spatially-explicit ecological information with socioeconomic factors. A modeling system is being developed that integrates sub-models of human colonization with submodels of ecological interactions to estimate patterns and rates of deforestation under different immigration and land management scenarios. The model projects maps of land use change that can be compared to remote sensing measures using spatial statistics. The simulation modeling system is being applied to the Brazilian state of Rondonia where deforestation has increased at a faster rate over the past two decades than anywhere else in the world. The model projections suggest that land management can both reduce carbon release and improve the length of time farmers are able to remain on the land. The model provides a tool to evaluate the spatial and temporal implications of various land management options.

  10. Land Use and Land Cover Change

    SciTech Connect

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  11. 14 CFR 25.487 - Rebound landing condition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (a) The landing gear and its supporting structure must be investigated for the loads occurring during rebound of the airplane from the landing surface. (b) With the landing gear fully extended and not in contact with the ground, a load factor of 20.0 must act on the unsprung weights of the landing gear....

  12. Analytical display design for flight tasks conducted under instrument meteorological conditions. [human factors engineering of pilot performance for display device design in instrument landing systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1976-01-01

    Paramount to proper utilization of electronic displays is a method for determining pilot-centered display requirements. Display design should be viewed fundamentally as a guidance and control problem which has interactions with the designer's knowledge of human psychomotor activity. From this standpoint, reliable analytical models of human pilots as information processors and controllers can provide valuable insight into the display design process. A relatively straightforward, nearly algorithmic procedure for deriving model-based, pilot-centered display requirements was developed and is presented. The optimal or control theoretic pilot model serves as the backbone of the design methodology, which is specifically directed toward the synthesis of head-down, electronic, cockpit display formats. Some novel applications of the optimal pilot model are discussed. An analytical design example is offered which defines a format for the electronic display to be used in a UH-1H helicopter in a landing approach task involving longitudinal and lateral degrees of freedom.

  13. Astronaut Risk Levels During Crew Module (CM) Land Landing

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly S.; Littell, Justin

    2007-01-01

    The NASA Engineering Safety Center (NESC) is investigating the merits of water and land landings for the crew exploration vehicle (CEV). The merits of these two options are being studied in terms of cost and risk to the astronauts, vehicle, support personnel, and general public. The objective of the present work is to determine the astronaut dynamic response index (DRI), which measures injury risks. Risks are determined for a range of vertical and horizontal landing velocities. A structural model of the crew module (CM) is developed and computational simulations are performed using a transient dynamic simulation analysis code (LS-DYNA) to determine acceleration profiles. Landing acceleration profiles are input in a human factors model that determines astronaut risk levels. Details of the modeling approach, the resulting accelerations, and astronaut risk levels are provided.

  14. Linking spatio-temporal patterns in land cover dynamics with regional climate factors and recent weather: Application to the Flint Hills of Kansas and Oklahoma

    SciTech Connect

    Henebry, G.M.; Goodin, D.G.; Su, H.

    1995-06-01

    A key obstacle to developing regional models of ecosystem dynamics is representation of spatio-temporal variation in constituent patterns and processes. Simple resealing of site-specific ecological data or simulations to broader spatial scales is unlikely to capture regional spatio-temporal dynamics. Yet logistical constraints usually require synoptic weather data to be synthesized from sparse data networks. We seek a simple top-down model that links remotely-sensed vegetation cover with antecedent meteorological forcings to generate boundary conditions for site-specific fine-resolution data and simulations of tallgrass prairie. We developed several candidate models using AVHRR NDVI maximum biweekly composites of the Flint Hills from 1990-1993 and data from a network of more than 60 weather stations across the 40,000 km2 region. Models combined parameters derived from exemplary land cover trajectories, spatial structure (lacunarity and correlation length), and running weighted sums of weather data. Spectral-temporal models were easier to fit; lacunarity was more sensitive than correlation length; compositing effects were strong.

  15. On Landing Gear Stresses

    NASA Technical Reports Server (NTRS)

    Gentric, A.

    1956-01-01

    Information on landing gear stresses is presented on the following: vibratory phenomena, tangential forces applied to landing gear, fore and aft oscillations of landing gears, examples of fatigue failures, vibration calculations, and improvement of existing test equipment.

  16. The use of Alpert-Stein Factor Separation Methodology for climate variable interaction studies in hydrological land surface models and crop yield models. In:Factor Separation in the Atmosphere:Application and future prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Factor Separation Method (FacSep) is a modeling application that has been utilized in the study of biophysical responses to changes in the environment to assess the relative contribution of different atmospheric factors on a biological system. In this chapter we will discuss crop simulation and...

  17. A Land Plant-Specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-Dependent RNA Polymerase II[OPEN

    PubMed Central

    Qu, Jie; Ji, Shaoyi; Wallace, Andrew J.; Wu, Jian; Li, Yi; Gopalan, Venkat; Ding, Biao

    2016-01-01

    Some DNA-dependent RNA polymerases (DdRPs) possess RNA-dependent RNA polymerase activity, as was first discovered in the replication of Potato spindle tuber viroid (PSTVd) RNA genome in tomato (Solanum lycopersicum). Recent studies revealed that this activity in bacteria and mammals is important for transcriptional and posttranscriptional regulatory mechanisms. Here, we used PSTVd as a model to uncover auxiliary factors essential for RNA-templated transcription by DdRP. PSTVd replication in the nucleoplasm generates (−)-PSTVd intermediates and (+)-PSTVd copies. We found that the Nicotiana benthamiana canonical 9-zinc finger (ZF) Transcription Factor IIIA (TFIIIA-9ZF) as well as its variant TFIIIA-7ZF interacted with (+)-PSTVd, but only TFIIIA-7ZF interacted with (−)-PSTVd. Suppression of TFIIIA-7ZF reduced PSTVd replication, and overexpression of TFIIIA-7ZF enhanced PSTVd replication in planta. Consistent with the locale of PSTVd replication, TFIIIA-7ZF was found in the nucleoplasm and nucleolus, in contrast to the strictly nucleolar localization of TFIIIA-9ZF. Footprinting assays revealed that only TFIIIA-7ZF bound to a region of PSTVd critical for initiating transcription. Furthermore, TFIIIA-7ZF strongly enhanced the in vitro transcription of circular (+)-PSTVd by partially purified Pol II. Together, our results identify TFIIIA-7ZF as a dedicated cellular transcription factor that acts in DdRP-catalyzed RNA-templated transcription, highlighting both the extraordinary evolutionary adaptation of viroids and the potential of DdRPs for a broader role in cellular processes. PMID:27113774

  18. A Land Plant-Specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-Dependent RNA Polymerase II.

    PubMed

    Wang, Ying; Qu, Jie; Ji, Shaoyi; Wallace, Andrew J; Wu, Jian; Li, Yi; Gopalan, Venkat; Ding, Biao

    2016-05-01

    Some DNA-dependent RNA polymerases (DdRPs) possess RNA-dependent RNA polymerase activity, as was first discovered in the replication of Potato spindle tuber viroid (PSTVd) RNA genome in tomato (Solanum lycopersicum). Recent studies revealed that this activity in bacteria and mammals is important for transcriptional and posttranscriptional regulatory mechanisms. Here, we used PSTVd as a model to uncover auxiliary factors essential for RNA-templated transcription by DdRP PSTVd replication in the nucleoplasm generates (-)-PSTVd intermediates and (+)-PSTVd copies. We found that the Nicotiana benthamiana canonical 9-zinc finger (ZF) Transcription Factor IIIA (TFIIIA-9ZF) as well as its variant TFIIIA-7ZF interacted with (+)-PSTVd, but only TFIIIA-7ZF interacted with (-)-PSTVd. Suppression of TFIIIA-7ZF reduced PSTVd replication, and overexpression of TFIIIA-7ZF enhanced PSTVd replication in planta. Consistent with the locale of PSTVd replication, TFIIIA-7ZF was found in the nucleoplasm and nucleolus, in contrast to the strictly nucleolar localization of TFIIIA-9ZF. Footprinting assays revealed that only TFIIIA-7ZF bound to a region of PSTVd critical for initiating transcription. Furthermore, TFIIIA-7ZF strongly enhanced the in vitro transcription of circular (+)-PSTVd by partially purified Pol II. Together, our results identify TFIIIA-7ZF as a dedicated cellular transcription factor that acts in DdRP-catalyzed RNA-templated transcription, highlighting both the extraordinary evolutionary adaptation of viroids and the potential of DdRPs for a broader role in cellular processes. PMID:27113774

  19. Land Reform and Social Change in Colombia.

    ERIC Educational Resources Information Center

    Hirschman, Albert O.; And Others

    This conference report focuses on three major areas of interest: (1) land reform in Colombia, (2) social change in Popayan, and (3) implications for research in agrarian structure in Colombia. A case study dealing with Colombia's sequence of moves toward land reform over the last 40 years is reviewed. The impact of political factors and social…

  20. Theory of the Landing Impact of Seaplanes

    NASA Technical Reports Server (NTRS)

    Pabst, Wilhelm

    1930-01-01

    The present investigation is an endeavor to express the jolting stresses, designated as landing impacts, undergone by seaplanes in landing and taking off from rough water, as functions of specific factors, in order to enable the evaluation of empirically obtained results and thus acquire theoretical data for the construction of seaplane floats and hulls.

  1. Roles of mechanistic target of rapamycin and transforming growth factor-β signaling in the molting gland (Y-organ) of the blackback land crab, Gecarcinus lateralis.

    PubMed

    Abuhagr, Ali M; MacLea, Kyle S; Mudron, Megan R; Chang, Sharon A; Chang, Ernest S; Mykles, Donald L

    2016-08-01

    Molting in decapod crustaceans is controlled by molt-inhibiting hormone (MIH), an eyestalk neuropeptide that suppresses production of ecdysteroids by a pair of molting glands (Y-organs or YOs). Eyestalk ablation (ESA) activates the YOs, which hypertrophy and increase ecdysteroid secretion. At mid premolt, which occurs 7-14days post-ESA, the YO transitions to the committed state; hemolymph ecdysteroid titers increase further and the animal reaches ecdysis ~3weeks post-ESA. Two conserved signaling pathways, mechanistic target of rapamycin (mTOR) and transforming growth factor-β (TGF-β), are expressed in the Gecarcinus lateralis YO. Rapamycin, an mTOR antagonist, inhibits YO ecdysteroidogenesis in vitro. In this study, rapamycin lowered hemolymph ecdysteroid titer in ESA G. lateralis in vivo; levels were significantly lower than in control animals at all intervals (1-14days post-ESA). Injection of SB431542, an activin TGF-β receptor antagonist, lowered hemolymph ecdysteroid titers 7 and 14days post-ESA, but had no effect on ecdysteroid titers at 1 and 3days post-ESA. mRNA levels of mTOR signaling genes Gl-mTOR, Gl-Akt, and Gl-S6k were increased by 3days post-ESA; the increases in Gl-mTOR and Gl-Akt mRNA levels were blocked by SB431542. Gl-elongation factor 2 and Gl-Rheb mRNA levels were not affected by ESA, but SB431542 lowered mRNA levels at Days 3 and 7 post-ESA. The mRNA level of an activin TGF-β peptide, Gl-myostatin-like factor (Mstn), increased 5.5-fold from 0 to 3days post-ESA, followed by a 50-fold decrease from 3 to 7days post-ESA. These data suggest that (1) YO activation involves an up regulation of the mTOR signaling pathway; (2) mTOR is required for YO commitment; and (3) a Mstn-like factor mediates the transition of the YO from the activated to the committed state. PMID:27040186

  2. Investigations on Landé factor in a strained Ga{sub x}In{sub 1−x}As/GaAs quantum dot

    SciTech Connect

    Kumar, N. R. Senthil; Peter, A. John

    2014-04-24

    The effective excitonic g-factor as functions of dot radius and the Ga alloy content, in a strained Ga{sub x}In{sub 1−x}As/GaAs quantum dot, is numerically measured. The heavy hole excitonic states are studied for various Ga alloy content taking into account the anisotropy, non-parabolicity of the conduction band and the geometrical confinement effects. The quantum dot is considered as spherical dot of InAs surrounded by a GaAs barrier material.

  3. Effective Landé factor in a GaMnAs quantum dot; with the effects of sp-d exchange on a bound polaron

    SciTech Connect

    Lalitha, D. Peter, A. John

    2014-04-24

    The effective g-factor of conduction (valence) band electron (hole) is obtained in the GaMnAs quantum dot. Magneto bound polaron in a GaMnAs/Ga{sub 0.6}Al{sub 0.4}As quantum dot is investigated with the inclusion of exchange interaction effects due to Mn alloy content and the geometrical confinement. The spin polaronic energy of the heavy hole exciton is studied with the spatial confinement using a mean field theory in the presence of magnetic field strength.

  4. Effective Landé factor in a GaMnAs quantum dot; with the effects of sp-d exchange on a bound polaron

    NASA Astrophysics Data System (ADS)

    Lalitha, D.; Peter, A. John

    2014-04-01

    The effective g-factor of conduction (valence) band electron (hole) is obtained in the GaMnAs quantum dot. Magneto bound polaron in a GaMnAs/Ga0.6Al0.4As quantum dot is investigated with the inclusion of exchange interaction effects due to Mn alloy content and the geometrical confinement. The spin polaronic energy of the heavy hole exciton is studied with the spatial confinement using a mean field theory in the presence of magnetic field strength.

  5. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya

    NASA Astrophysics Data System (ADS)

    Mganga, K. Z.; Musimba, N. K. R.; Nyariki, D. M.

    2015-12-01

    Drylands occupy more than 80 % of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  6. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya.

    PubMed

    Mganga, K Z; Musimba, N K R; Nyariki, D M

    2015-12-01

    Drylands occupy more than 80% of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems. PMID:26178534

  7. Potential climate forcing of land use and land cover change

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Pressure on land resources is expected to increase as global population continues to climb and the world becomes more affluent, swelling the demand for food. Changing climate may exert additional pressures on natural lands as present-day productive regions may shift, or soil quality may degrade, and the recent rise in demand for biofuels increases competition with edible crops for arable land. Given these projected trends there is a need to understand the global climate impacts of land use and land cover change (LULCC). Here we quantify the climate impacts of global LULCC in terms of modifications to the balance between incoming and outgoing radiation at the top of the atmosphere (radiative forcing, RF) that are caused by changes in long-lived and short-lived greenhouse gas concentrations, aerosol effects, and land surface albedo. We attribute historical changes in terrestrial carbon storage, global fire emissions, secondary organic aerosol emissions, and surface albedo to LULCC using simulations with the Community Land Model version 3.5. These LULCC emissions are combined with estimates of agricultural emissions of important trace gases and mineral dust in two sets of Community Atmosphere Model simulations to calculate the RF of changes in atmospheric chemistry and aerosol concentrations attributed to LULCC. With all forcing agents considered together, we show that 40% (±16%) of the present-day anthropogenic RF can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC RF by a factor of 2 to 3 with respect to the LULCC RF from CO2 alone. This enhancement factor also applies to projected LULCC RF, which we compute for four future scenarios associated with the Representative Concentration Pathways. We attribute total RFs between 0.9 and 1.9 W m-2 to LULCC for the year 2100 (relative to a pre-industrial state). To place an upper bound on the potential of LULCC to alter the global radiation budget

  8. Potential climate forcing of land use and land cover change

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-05-01

    Pressure on land resources is expected to increase as global population continues to climb and the world becomes more affluent, swelling the demand for food. Changing climate may exert additional pressures on natural lands as present day productive regions may shift, or soil quality may degrade, and the recent rise in demand for biofuels increases competition with edible crops for arable land. Given these projected trends there is a need to understand the global climate impacts of land use and land cover change (LULCC). Here we quantify the climate impacts of global LULCC in terms of modifications to the balance between incoming and outgoing radiation at the top of the atmosphere (radiative forcing; RF) that are caused by changes in long-lived and short-lived greenhouse gas concentrations, aerosol effects and land surface albedo. We simulate historical changes to terrestrial carbon storage, global fire emissions, secondary organic aerosol emissions, and surface albedo from LULCC using the Community Land Model version 3.5. These LULCC emissions are combined with estimates of agricultural emissions of important trace gases and mineral dust in two sets of Community Atmosphere Model simulations to calculate the RF from LULCC impacts on atmospheric chemistry and changes in aerosol concentrations. With all forcing agents considered together, we show that 45% (+30%, -20%) of the present-day anthropogenic RF can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC RF by a factor of 2 to 3 with respect to the LULCC RF from CO2 alone. This enhancement factor also applies to projected LULCC RF, which we compute for four future scenarios associated with the Representative Concentration Pathways. We calculate total RFs between 1 to 2 W m-2 from LULCC for the year 2100 (relative to a preindustrial state). To place an upper bound on the potential of LULCC to alter the global radiation budget we include a fifth

  9. Land use and land cover digital data

    USGS Publications Warehouse

    U.S. Geological Survey

    1994-01-01

    Computer tapes derived from land use and land cover (LULC) data and associated maps at scales of 1 :250,000 and 1: 100,000 are available from the U.S. Geological Survey. This data can be used alone or combined with a base map or other supplemental data for a variety of applications, using commercially available software. You can produce area summary statistics, select specific portions of a map to study or display single classifications, such as bodies of water. LULC and associated digital data offer convenient, accurate, flexible, and cost-effective access to users who are involved in environmental studies, land use planning, land management, or resource planning.

  10. Landing spot selection for UAV emergency landing

    NASA Astrophysics Data System (ADS)

    Eendebak, P. T.; van Eekeren, A. W. M.; den Hollander, R. J. M.

    2013-05-01

    We present a robust method for landing zone selection using obstacle detection to be used for UAV emergency landings. The method is simple enough to allow real-time implementation on a UAV system. The method is able to detect objects in the presence of camera movement and motion parallax. Using the detected obstacles we select a safe landing zone for the UAV. The motion and structure detection uses background estimation of stabilized video. The background variation is measured and used to enhance the moving objects if necessary. In the motion and structure map a distance transform is calculated to find a suitable location for landing.

  11. Assessment of Physical, Chemical, and Hydrologic Factors Affecting the Infiltration of Treated Wastewater in theNew Jersey Coastal Plain, with Emphasis on theHammonton Land Application Facility

    USGS Publications Warehouse

    Reilly, Timothy J.; Romanok, Kristin M.; Tessler, Steven; Fischer, Jeffrey M.

    2010-01-01

    A hydrogeologic and water-quality investigation of the Hammonton Land Application Facility (Hammonton LAF) in Hammonton, New Jersey, was conducted to determine the factors that impede the infiltration of treated wastewater and to assess the potential for similar conditions to exist elsewhere in the Coastal Plain of New Jersey (particularly within the Pinelands National Reserve). Gamma logs, sediment cores, and hydraulic-profile testing indicate that extensive fine-grained strata and iron-cemented sands underlying the Hammonton LAF may impede infiltration and lead to the perching of diluted treated wastewater. Perched water was observed in augured holes adjacent to infiltration trenches, and analysis of wastewater loading and infiltration data indicates that infiltration trenches may receive lateral flow from multiple perched-water sources. Analysis of water-quality properties characteristic of treated wastewater show that although infiltrated wastewater is reaching the underlying aquifer, lengthy holding times and a long recharge pathway greatly reduce the concentrations of nitrate, boron, and many organic compounds typical of wastewater. Conditions at two currently operating facilities and one potential future facility in the New Jersey Coastal Plain were compared to those at the Hammonton Land Application Facility (LAF). Facilities operating as designed are not underlain by the restrictive strata that exist at the Hammonton LAF. Careful characterization of the geology and hydrology of the unsaturated zone underlying infiltration structures of future facilities in the New Jersey Coastal Plain and similar hydrogeologic settings will help to avoid constructing infiltration structures over or within low-hydraulic-conductivity strata that will decrease infiltration rates.

  12. How landscape scale changes affect ecological processes in conservation areas: external factors influence land use by zebra (Equus burchelli) in the Okavango Delta.

    PubMed

    Bartlam-Brooks, Hattie L A; Bonyongo, Mpaphi C; Harris, Stephen

    2013-09-01

    Most large-bodied wildlife populations in sub-Saharan Africa only survive in conservation areas, but are continuing to decline because external changes influence ecological processes within reserves, leading to a lack of functionality. However, failure to understand how landscape scale changes influence ecological processes limits our ability to manage protected areas. We used GPS movement data to calculate dry season home ranges for 14 zebra mares in the Okavango Delta and investigated the effects of a range of landscape characteristics (number of habitat patches, mean patch shape, mean index of juxtaposition, and interspersion) on home range size. Resource utilization functions (RUF) were calculated to investigate how specific landscape characteristics affected space use. Space use by all zebra was clustered. In the wetter (Central) parts of the Delta home range size was negatively correlated with the density of habitat patches, more complex patch shapes, low juxtaposition of habitats and an increased availability of floodplain and grassland habitats. In the drier (Peripheral) parts of the Delta, higher use by zebra was also associated with a greater availability of floodplain and grassland habitats, but a lower density of patches and simpler patch shapes. The most important landscape characteristic was not consistent between zebra within the same area of the Delta, suggesting that no single foraging strategy is substantially superior to others, and so animals using different foraging strategies may all thrive. The distribution and complexity of habitat patches are crucial in determining space use by zebra. The extent and duration of seasonal flooding is the principal process affecting habitat patch characteristics in the Okavango Delta, particularly the availability of floodplains, which are the habitat at greatest risk from climate change and anthropogenic disturbance to the Okavango's catchment basin. Understanding how the factors that determine habitat

  13. Spatial modeling of agricultural land use change at global scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  14. Changes in Land Use and Land Cover

    NASA Astrophysics Data System (ADS)

    Meyer, William B.; Turner, B. L., II

    1994-10-01

    This book deals with the relationship between land use and land cover: between human activities and the transformation of the Earth's surface. It describes the recent changes in the world's farmland, forests, grasslands and settlements, and the impacts of these changes on soil, water resources and the atmosphere. It explores what is known about the importance of various underlying human sources of land transformation: population growth, technological change, political-economic institutions, political structure, and attitudes and beliefs. Three working group reports outline important avenues for future research: the construction of a global land model, the division of the world into regional situations of land transformation, and a wiring diagram to structure the division of research among fields of study.

  15. Lunar Landing Research Vehicle

    NASA Video Gallery

    The lunar lander, called a Lunar Excursion Module, or Lunar Module (LM), was designed for vertical landing and takeoff, and was able to briefly hover and fly horizontally before landing. At first g...

  16. Women, land, and trees.

    PubMed

    1999-07-01

    This article discusses women's land rights in the context of the findings of the paper, "Women's Land Rights in the Transition to Individualized Ownership: Implications for Tree Resource Management in Western Ghana." The study showed that customary land tenure institutions have evolved toward individualized systems, which provide incentives to invest in tree planting. In effect, individualization of land tenure had strengthened women's land rights through inter vivos gifts. However, transferring of land ownership to women is unlikely to raise productivity if access to and use of other inputs remains unequal. This suggests that attempts to equalize land rights of men and women are unlikely to lead to gender equity and improved efficiency and productivity of women farmers unless other constraints faced by women are also addressed. The article also documents comments, suggestions, and recommendations in response to the summary of the paper. In addition, the different practices of guaranteeing land ownership for women in some countries of Africa are presented. PMID:12295514

  17. Land Cover Characterization Program

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    (2) identify sources, develop procedures, and organize partners to deliver data and information to meet user requirements. The LCCP builds on the heritage and success of previous USGS land use and land cover programs and projects. It will be compatible with current concepts of government operations, the changing needs of the land use and land cover data users, and the technological tools with which the data are applied.

  18. Land and World Order.

    ERIC Educational Resources Information Center

    Mische, Patricia, Ed.; And Others

    1982-01-01

    The papers in this publication discuss the land and how what happens to the land affects us. The publication is one in a series of monographs that examine the linkages between local and global concerns and explore alternative world futures. Examples of topics discussed in the papers follow. The paper "Land and World Order" examines implications of…

  19. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  20. Literature and the Land.

    ERIC Educational Resources Information Center

    McKee, James W.

    1979-01-01

    Describes an interdisciplinary course which focuses on the grassland area of the central United States. Study of the land is approached through: (1) literature dealing directly with land; (2) novels about land-dependent people; and (3) formal lectures on geology and natural history of grassland. (Author/MA)

  1. Land surface interaction

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1992-01-01

    The topics covered include the following: land and climate modeling; sensitivity studies; the process of a land model; model-specific parameterizations; water stress; within-canopy resistances; partial vegetation; canopy temperature; and present experience with a land model coupled to a general circulation model.

  2. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  3. Land Treatment Digital Library

    USGS Publications Warehouse

    Pilliod, David S.; Welty, Justin L.

    2013-01-01

    The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey to catalog legacy land treatment information on Bureau of Land Management lands in the western United States. The LTDL can be used by federal managers and scientists for compiling information for data-calls, producing maps, generating reports, and conducting analyses at varying spatial and temporal scales. The LTDL currently houses thousands of treatments from BLM lands across 10 states. Users can browse a map to find information on individual treatments, perform more complex queries to identify a set of treatments, and view graphs of treatment summary statistics.

  4. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  5. Sensing land pollution.

    NASA Technical Reports Server (NTRS)

    Bowden, L. W.

    1971-01-01

    Land pollution is described in numerous ways by various societies. Pollutants of land are material by-products of human activity and range from environmentally ineffective to positively toxic. The pollution of land by man is centuries old and correlates directly with economy, technology and population. In order to remotely sense land pollution, standards or thresholds must be established. Examples of the potential for sensing land pollution and quality are presented. The technological capabilities for remotely sensed land quality is far advanced over the judgment on how to use the sensed data. Until authoritative and directive decisions on land pollution policy are made, sensing of pollutants will be a random, local and academic affair.

  6. A GIS-based hedonic price model for agricultural land

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris

    2015-06-01

    Land consolidation is a very effective land management planning approach that aims towards rural/agricultural sustainable development. Land reallocation which involves land tenure restructuring is the most important, complex and time consuming component of land consolidation. Land reallocation relies on land valuation since its fundamental principle provides that after consolidation, each landowner shall be granted a property of an aggregate value that is approximately the same as the value of the property owned prior to consolidation. Therefore, land value is the crucial factor for the land reallocation process and hence for the success and acceptance of the final land consolidation plan. Land valuation is a process of assigning values to all parcels (and its contents) and it is usually carried out by an ad-hoc committee. However, the process faces some problems such as it is time consuming hence costly, outcomes may present inconsistency since it is carried out manually and empirically without employing systematic analytical tools and in particular spatial analysis tools and techniques such as statistical/mathematical. A solution to these problems can be the employment of mass appraisal land valuation methods using automated valuation models (AVM) based on international standards. In this context, this paper presents a spatial based linear hedonic price model which has been developed and tested in a case study land consolidation area in Cyprus. Results showed that the AVM is capable to produce acceptable in terms of accuracy and reliability land values and to reduce time hence cost required by around 80%.

  7. Estimates of Geographically Explicit Future CO2 Emissions From Land Cover/ Land Use Changes

    NASA Astrophysics Data System (ADS)

    Richardson, T.; Yang, X.; Jain, A.; O'Neill, B.

    2007-12-01

    Land cover and land use change activities, such as deforestation, afforestation, and agriculture management, are important sources of not only CO2, but also non-CO2 GHGs and aerosols. The objective of this paper is to evaluate the potential contribution of future GHGs and reactive GHGs emissions via changes in regional land use-related activities at a 0.5 degree by 0.5 degree resolution. Regional land use is downscaled to the grid cell level based on socioeconomic, biophysical, and biogeochemical factors. Socio-economic factors include population density at the grid zone level. Land sustainability and attainable crop yields, as well as terrain conditions, are biophysical and biogeochemical factors that were also determined at each grid zone level. The productivity of land was determined by the length of growing period (LGP) using the biophysical and biochemical cycles of the Integrated Science Assessment Model (ISAM). Agro-ecological and economic indexes were constructed using historical and current-day cropping practices at the grid zone levels. In the future, the distribution of LGPs may be altered due to changes in carbon, nutrients, and climate. This paper uses two IPCC SRES (A2 and B1) emissions and land use scenarios during the time period 2000-2050 to evaluate the relative importance of land use emissions to future net terrestrial CO2 uptakes.

  8. Automatic detection of aircraft emergency landing sites

    NASA Astrophysics Data System (ADS)

    Shen, Yu-Fei; Rahman, Zia-ur; Krusienski, Dean; Li, Jiang

    2011-06-01

    An automatic landing site detection algorithm is proposed for aircraft emergency landing. Emergency landing is an unplanned event in response to emergency situations. If, as is unfortunately usually the case, there is no airstrip or airfield that can be reached by the un-powered aircraft, a crash landing or ditching has to be carried out. Identifying a safe landing site is critical to the survival of passengers and crew. Conventionally, the pilot chooses the landing site visually by looking at the terrain through the cockpit. The success of this vital decision greatly depends on the external environmental factors that can impair human vision, and on the pilot's flight experience that can vary significantly among pilots. Therefore, we propose a robust, reliable and efficient algorithm that is expected to alleviate the negative impact of these factors. We present only the detection mechanism of the proposed algorithm and assume that the image enhancement for increased visibility, and image stitching for a larger field-of-view have already been performed on the images acquired by aircraftmounted cameras. Specifically, we describe an elastic bound detection method which is designed to position the horizon. The terrain image is divided into non-overlapping blocks which are then clustered according to a "roughness" measure. Adjacent smooth blocks are merged to form potential landing sites whose dimensions are measured with principal component analysis and geometric transformations. If the dimensions of the candidate region exceed the minimum requirement for safe landing, the potential landing site is considered a safe candidate and highlighted on the human machine interface. At the end, the pilot makes the final decision by confirming one of the candidates, also considering other factors such as wind speed and wind direction, etc. Preliminary results show the feasibility of the proposed algorithm.

  9. [Spatial analysis on land use in Xishuangbanna].

    PubMed

    Song, Guobao; Li, Zhenghai; Gao, Jixi; Wang, Haimei

    2006-06-01

    Based on remote image and GIS technology, this paper analyzed the relationships between land use system and natural topographic factors such as elevation, slope, and river system in Xishuangbanna. The results showed that the land use system in the study region was dominated by forestland, cropland and grassland. The area of forestland was 13 420 km, accounting for 74% of the total, and that of cropland and grassland was 3 251 km2 and 2 332 km2, accounting for 13% and 18% of the total, respectively. The areas of these three land use types varied with elevation in single-peaked curve. Forestland mainly distributed around the elevation of 1 000 - 1 200 m, while cropland and grassland centralized at the elevation of 900 m. Urban land and cropland, which were greatly influenced by human activity, had lower slope index than forestland and grassland. Besides elevation and slope, river system in valley had effects on land use condition. With increasing buffer distance in valley, a strong spatial pattern of land use type was presented, i. e. , cropland, urban land and unused land concentrated greatly adjacent to water, while forestland and grassland were far away from valley. A landscape with relatively primary status, which was comprised of forestland as matrix, river as corridor, and cropland as patch, would come into being. PMID:16964932

  10. Hillslope stability and land use (1985). Volume II

    SciTech Connect

    Sidle, R.C.; Pearce, A.J.; O'Loughlin, C.L.

    1985-01-01

    This book emphasizes the natural factors affecting slope stability, including soils and geomorphic, hydrologic, vegetative, and seismic factors and provides information on landslide classification, global damage, and analytical methods. The effects of various extensive and intensive land management practices on slope stability are discussed together with methods for prediction, avoidance, and control. Examples of terrain evaluation procedures and land management practices are presented.

  11. Land use planning

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.

  12. Landing-gear impact

    NASA Technical Reports Server (NTRS)

    Flugge, W

    1952-01-01

    Report deals with the impact forces in landing gears. Both the landing impact and the taxiing impact have been considered, but drag forces have so far been excluded. The differential equations are developed and their numerical integration is shown, considering the nonlinear properties of the oleo shock strut. A way is shown for determining the dimensions of the metering pin from a given load-time diagram. A review of German literature on landing-gear impact is also presented.

  13. Land Treatment Digital Library

    USGS Publications Warehouse

    Pilliod, David S.

    2009-01-01

    Across the country, public land managers make hundreds of decisions each year that influence landscapes and ecosystems within the lands they manage. Many of these decisions involve vegetation manipulations known as land treatments. Land treatments include activities such as removal or alteration of plant biomass, seeding burned areas, and herbicide applications. Data on these land treatments are usually stored at local offices, and gathering information across large spatial areas can be difficult. There is a need to centralize and store treatment data for Federal agencies involved in land treatments because these data are useful to land managers for policy and management and to scientists for developing sampling designs and studies. The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey (USGS) to catalog information about land treatments on Federal lands in the western United States for all interested parties. The flexible framework of the library allows for the storage of a wide variety of data in different formats. The LTDL currently stores previously established land treatments or what often are called legacy data. The project was developed and has been refined based on feedback from partner agencies and stakeholders, with opportunity for the library holdings to expand as new information becomes available. The library contains data in text, tabular, spatial, and image formats. Specific examples include project plans and implementation reports, monitoring data, spatial data files from geographic information systems, digitized paper maps, and digital images of land treatments. The data are entered by USGS employees and are accessible through a searchable web site. The LTDL can be used to respond to information requests, conduct analyses and other forms of information syntheses, produce maps, and generate reports for DOI managers and scientists and other authorized users.

  14. 14 CFR 23.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those computed under § 23.527. In addition— (1) For symmetrical step landings, the resultant water load must be.... Unsymmetrical step, bow, and stern landing conditions must be investigated. In addition— (1) The loading...

  15. 14 CFR 23.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those computed under § 23.527. In addition— (1) For symmetrical step landings, the resultant water load must be.... Unsymmetrical step, bow, and stern landing conditions must be investigated. In addition— (1) The loading...

  16. 14 CFR 23.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those computed under § 23.527. In addition— (1) For symmetrical step landings, the resultant water load must be.... Unsymmetrical step, bow, and stern landing conditions must be investigated. In addition— (1) The loading...

  17. Land consolidation and GIS application in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Huang, Junfang; Wang, Ranghui; Zhang, Huizhi

    2006-12-01

    The growing concern about land resource management and the associated decline in land quality have led to the attention of land consolidation in many countries. Land consolidation is a tool for improving the effectiveness of land cultivation and may improve land productivity and possibly also the total factor productivity if it induces and enhances technical progress and increases scale economies. Land consolidation can also improve labor productivity to supporting rural development. Consolidation deals with a large number of phenomena, such as fields, roads, and land use, all of which exhibit characteristic forms and patterns which can be analyzed as to their existing spatial organization, or as to their changing spatial organization through time. This Paper put forward some approaches and advices about carrying out the principles of the agro-land consolidation, guiding the ideology, developing the strategy and tidying up the farmland. Firstly, the main conception and methodology of land consolidation are described. Then, the strengths and weaknesses of land consolidation in their process are discussed. Finally, as an example, through analyzing of the present condition and potential of land use and landscape in Beitun Oasis, China, a discussion and conclusions on land consolidation aided by GIS are presented. This will certainly play an exemplary role in the similar areas of north-west arid zone of China.

  18. The economic determinants of land degradation in developing countries

    PubMed Central

    Barbier, E. B.

    1997-01-01

    The following paper investigates the economic determinants of land degradation in developing countries. The main trends examined are rural households' decisions to degrade as opposed to conserve land resources, and the expansion of frontier agricultural activity that contributes to forest and marginal land conversion. These two phenomena appear often to be linked. In many developing areas, a poor rural household's decision whether to undertake long-term investment in improving existing agricultural land must be weighed against the decision to abandon this land and migrate to environmentally fragile areas. Economic factors play a critical role in determining these relationships. Poverty, imperfect capital markets and insecure land tenure may reinforce the tendency towards short-term time horizons in production decisions, and may bias land use decisions against long-term land management strategies. In periods of commodity booms and land speculation, wealthier households generally take advantage of their superior political and market power to ensure initial access to better quality resources, in order to capture a larger share of the resource rents. Poorer households are confined either to marginal environmental areas where resource rents are limited, or only have access to resources once they are degraded and rents dissipated.
    Overall trends in land degradation and deforestation are examined, followed by an overview of rural households' resource management decisions with respect to land management, frontier agricultural expansion, and migration from existing agricultural land to frontiers. Finally, the discussion focuses on the scope for policy improvements to reduce economic constraints to effective land management.

  19. Competition for land

    PubMed Central

    Smith, Pete; Gregory, Peter J.; van Vuuren, Detlef; Obersteiner, Michael; Havlík, Petr; Rounsevell, Mark; Woods, Jeremy; Stehfest, Elke; Bellarby, Jessica

    2010-01-01

    A key challenge for humanity is how a future global population of 9 billion can all be fed healthily and sustainably. Here, we review how competition for land is influenced by other drivers and pressures, examine land-use change over the past 20 years and consider future changes over the next 40 years. Competition for land, in itself, is not a driver affecting food and farming in the future, but is an emergent property of other drivers and pressures. Modelling studies suggest that future policy decisions in the agriculture, forestry, energy and conservation sectors could have profound effects, with different demands for land to supply multiple ecosystem services usually intensifying competition for land in the future. In addition to policies addressing agriculture and food production, further policies addressing the primary drivers of competition for land (population growth, dietary preference, protected areas, forest policy) could have significant impacts in reducing competition for land. Technologies for increasing per-area productivity of agricultural land will also be necessary. Key uncertainties in our projections of competition for land in the future relate predominantly to uncertainties in the drivers and pressures within the scenarios, in the models and data used in the projections and in the policy interventions assumed to affect the drivers and pressures in the future. PMID:20713395

  20. Data Acquisition for Land Subsidence Control

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Balke, K.

    2009-12-01

    For controlling land subsidence caused by groundwater over-exploitation, loading of engineered structures, mining and other anthropogenic activities in this fast changing world, a large variety of different data of various scales of concerning areas are needed for scientific study and administrative operational purposes. The economical, social and environmental impacts of anthropogenic land subsidence have long been recognized by many scientific institutions and management authorities based on results of monitoring and analysis at an interdisciplinary level. The land subsidence information systems composed of the surface and subsurface monitoring nets (monitoring and development wells, GPS stations and other facilities) and local data processing centers as a system management tool in Shanghai City was started with the use of GPS technology to monitor land subsidence in 1998. After years of experiences with a set of initiatives by adopting adequate countermeasures, the particular attention given to new improved methodologies to monitor and model the process of land subsidence in a simple and timely way, this is going to be promoted in the whole Yangtze River Delta region in China, where land subsidence expands in the entire region of urban cluster. The Delta land subsidence monitoring network construction aims to establish an efficient and coordinated water resource management system. The land subsidence monitoring network records "living history" of land subsidence, produces detailed scheduled reports and environmental impact statements. For the different areas with local factors and site characteristics, parallel packages need to be designed for predicting changes, land sensitivity and uncertainty analysis, especially for the risk analysis in the rapid growth of megacities and urban areas. In such cases, the new models with new types of local data and the new ways of data acquisition provide the best information for the decision makers for their mitigating

  1. 17 CFR 256.304 - Land and land rights.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Land and land rights. 256.304... COMPANY ACT OF 1935 Service Company Property Accounts § 256.304 Land and land rights. (a) This account shall include the cost of any right, title, or interest to land held by the service company,...

  2. Hierarchical Marginal Land Assessment for Land Use Planning

    SciTech Connect

    Kang, Shujiang; Post, Wilfred M; Wang, Dali; Nichols, Dr Jeff A; Bandaru, Vara Prasad

    2013-01-01

    Marginal land provides an alternative potential for food and bioenergy production in the face of limited land resources; however, effective assessment of marginal lands is not well addressed. Concerns over environmental risks, ecosystem services and sustainability for marginal land have been widely raised. The objective of this study was to develop a hierarchical marginal land assessment framework for land use planning and management. We first identified major land functions linking production, environment, ecosystem services and economics, and then classified land resources into four categories of marginal land using suitability and limitations associated with major management goals, including physically marginal land, biologically marginal land, environmental-ecological marginal land, and economically marginal land. We tested this assessment framework in south-western Michigan, USA. Our results indicated that this marginal land assessment framework can be potentially feasible on land use planning for food and bioenergy production, and balancing multiple goals of land use management. We also compared our results with marginal land assessment from the Conservation Reserve Program (CRP) and land capability classes (LCC) that are used in the US. The hierarchical assessment framework has advantages of quantitatively reflecting land functions and multiple concerns. This provides a foundation upon which focused studies can be identified in order to improve the assessment framework by quantifying high-resolution land functions associated with environment and ecosystem services as well as their criteria are needed to improve the assessment framework.

  3. Airplane landing gear

    NASA Technical Reports Server (NTRS)

    Maiorca, Salvatore

    1931-01-01

    This report presents an investigation of the design and construction of various types of landing gears. Some of the items discussed include: chassises, wheels, shock absorbers (rubber disk and rubber cord), as well as oleopneumatic shock absorbers. Various types of landing gears are also discussed such as the Messier, Bendix, Vickers, and Bleriot.

  4. Tales From Silver Lands.

    ERIC Educational Resources Information Center

    Finger, Charles J.

    In 1925, "Tales From Silver Lands" was awarded the Newbery medal as the most distinguished contribution to American children's literature for the year. The book contains a collection of 19 short stories learned from the Indians of South America as the author traveled to different lands. As described on the dust jacket, the tales are about "strange…

  5. All That Unplowed Land

    ERIC Educational Resources Information Center

    MOSAIC, 1975

    1975-01-01

    Potentially arable lands either do not yield well or are too expensive to farm. Aimed with a better knowledge of the ecologies involved plus fertilizer and water, some of the marginal lands can be forced to produce food, but not soon enough to alleviate food shortages in this decade. (BT)

  6. Seasat land experiments

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Barath, F.; Bryant, N.; Cannon, P. J.; Elachi, C.; Goetz, A.; Krishen, K.; Macdonald, H. C.; Marmelstein, A.; Miller, L. J.

    1978-01-01

    An overview of the Seasat land experiments is presented. The potential roles for active microwave imaging systems on board satellites were reviewed with particular emphasis on the Seasat Synthetic Aperture Radar (SAR). Recommendations were made concerning the type of experiments that could most profitably be conducted over land with the Seasat SAR system capabilities available.

  7. Land Remote Sensing Overview

    NASA Technical Reports Server (NTRS)

    Byrnes, Ray

    2007-01-01

    A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.

  8. Landing on Mars

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.; Adler, Mark

    2005-01-01

    here have been five fully successful robotic landings on Mars. The systems used to deliver these robots to the surface have shown large design diversity and continue to evolve. How will future Mars landing systems evolve to eventually deliver precious human cargo? We do not yet know the answers, but current trends tell us an interesting and daunting tale.

  9. A review and evaluation of alternatives for updating U.S. Geological Survey land use and land cover maps

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1980-01-01

    Since 1974, the U.S. Geological Survey has been engaged in a nationwide program of baseline mapping of land use and land cover and associated data at a scale of 1:250,000. As l:100,000-scale bases have become available, they have been used for mapping certain areas and for special applications. These two scales are appropriate for mapping land use and land cover data on a nationwide basis within a practical time frame, and with an acceptable degree of standardization, accuracy, and level of detail. An essential requisite to better use of the land is current information on land use and land cover conditions and on the rates and trends of changes with time. Thus, plans are underway to update these maps and data. The major considerations in planning a nationwide program for updating U.S. Geological Survey land use and land cover maps are as follows: (1) How often should maps be updated? (2) What remotely sensed source materials should be used for detecting and compiling changes in land use and land cover? (3) What base maps should be used for presenting data on land use and land cover changes? (4) What maps or portions of a map should be updated? (5) What methods should be used for identifying and mapping changes? (6) What procedures should be followed for updating maps and what formats should be used? These factors must be considered in developing a map update program that portrays an appropriate level of information, relates to and builds upon the existing U.S. Geological Survey land use and land cover digital and statistical data base, is timely, cost-effective and standardized, and meets the varying needs of land use and land cover data users.

  10. Land Cover Trends Project

    USGS Publications Warehouse

    Acevedo, William

    2006-01-01

    The Land Cover Trends Project is designed to document the types, rates, causes, and consequences of land cover change from 1973 to 2000 within each of the 84 U.S. Environmental Protection Agency (EPA) Level III ecoregions that span the conterminous United States. The project's objectives are to: * Develop a comprehensive methodology using probability sampling and change analysis techniques and Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper (ETM) data for estimating regional land cover change. * Characterize the spatial and temporal characteristics of conterminous U.S. land cover change for five periods from 1973 to 2000 (nominally 1973, 1980, 1986, 1992, and 2000). * Document the regional driving forces and consequences of change. * Prepare a national synthesis of land cover change.

  11. Analytic study of orbiter landing profiles

    NASA Technical Reports Server (NTRS)

    Walker, H. J.

    1981-01-01

    A broad survey of possible orbiter landing configurations was made with specific goals of defining boundaries for the landing task. The results suggest that the center of the corridors between marginal and routine represents a more or less optimal preflare condition for regular operations. Various constraints used to define the boundaries are based largely on qualitative judgements from earlier flight experience with the X-15 and lifting body research aircraft. The results should serve as useful background for expanding and validating landing simulation programs. The analytic approach offers a particular advantage in identifying trends due to the systematic variation of factors such as vehicle weight, load factor, approach speed, and aim point. Limitations such as a constant load factor during the flare and using a fixed gear deployment time interval, can be removed by increasing the flexibility of the computer program. This analytic definition of landing profiles of the orbiter may suggest additional studies, includin more configurations or more comparisons of landing profiles within and beyond the corridor boundaries.

  12. Algorithm for Autonomous Landing

    NASA Technical Reports Server (NTRS)

    Kuwata, Yoshiaki

    2011-01-01

    Because of their small size, high maneuverability, and easy deployment, micro aerial vehicles (MAVs) are used for a wide variety of both civilian and military missions. One of their current drawbacks is the vast array of sensors (such as GPS, altimeter, radar, and the like) required to make a landing. Due to the MAV s small payload size, this is a major concern. Replacing the imaging sensors with a single monocular camera is sufficient to land a MAV. By applying optical flow algorithms to images obtained from the camera, time-to-collision can be measured. This is a measurement of position and velocity (but not of absolute distance), and can avoid obstacles as well as facilitate a landing on a flat surface given a set of initial conditions. The key to this approach is to calculate time-to-collision based on some image on the ground. By holding the angular velocity constant, horizontal speed decreases linearly with the height, resulting in a smooth landing. Mathematical proofs show that even with actuator saturation or modeling/ measurement uncertainties, MAVs can land safely. Landings of this nature may have a higher velocity than is desirable, but this can be compensated for by a cushioning or dampening system, or by using a system of legs to grab onto a surface. Such a monocular camera system can increase vehicle payload size (or correspondingly reduce vehicle size), increase speed of descent, and guarantee a safe landing by directly correlating speed to height from the ground.

  13. Land-Breeze Forecasting

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Wheeler, Mark M.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    The nocturnal land breeze at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) is both operationally significant and challenging to forecast. The occurrence and timing of land breezes impact low-level winds, atmospheric stability, low temperatures, and fog development. Accurate predictions of the land breeze are critical for toxic material dispersion forecasts associated with space launch missions, since wind direction and low-level stability can change noticeably with the onset of a land breeze. This report presents a seven-year observational study of land breezes over east-central Florida from 1995 to 2001. This comprehensive analysis was enabled by the high-resolution tower observations over KSC/CCAFS. Five-minute observations of winds, temperature, and moisture along with 9 15-MHz Doppler Radar Wind Profiler data were used to analyze specific land-breeze cases, while the tower data were used to construct a composite climatology. Utilities derived from this climatology were developed to assist forecasters in determining the land-breeze occurrence, timing, and movement based on predicted meteorological conditions.

  14. Effects of Land Use and Management on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Horel, Ágota; Tóth, Eszter; Gelybó, Györgyi; Kása, Ilona; Bakacsi, Zsófia; Farkas, Csilla

    2015-11-01

    Soil hydraulic properties are among the most important parameters that determine soil quality and its capability to serve the ecosystem. Land use can significantly influence soil properties, including its hydraulic conditions; however, additional factors, such as changes in climate (temperature and precipitation), can further influence the land use effects on soil hydraulic properties. In order to develop possible adaptation measures and mitigate any negative effects of land use and climatic changes, it is important to study the impact of land use and changes in land use on soil hydraulic properties. In this paper, we summarize recent studies examining the effect of land use/land cover and the associated changes in soil hydraulic properties, mainly focusing on agricultural scenarios of cultivated croplands and different tillage systems.

  15. The land and its people

    NASA Astrophysics Data System (ADS)

    D'Odorico, Paolo; Rulli, Maria Cristina

    2014-05-01

    Large tracts of agricultural land are being bought up by external investors. Turning the land into a commodity can have detrimental effects, for generations to come, on the local communities that sell or lease the land.

  16. Reframing the land-sparing/land-sharing debate for biodiversity conservation.

    PubMed

    Kremen, Claire

    2015-10-01

    Conservation biologists are devoting an increasing amount of energy to debating whether land sparing (high-yielding agriculture on a small land footprint) or land sharing (low-yielding, wildlife-friendly agriculture on a larger land footprint) will promote better outcomes for local and global biodiversity. In turn, concerns are mounting about how to feed the world, given increasing demands for food. In this review, I evaluate the land-sparing/land-sharing framework--does the framework stimulate research and policy that can reconcile agricultural land use with biodiversity conservation, or is a revised framing needed? I review (1) the ecological evidence in favor of sparing versus sharing; (2) the evidence from land-use change studies that assesses whether a relationship exists between agricultural intensification and land sparing; and (3) how that relationship may be affected by socioeconomic and political factors. To address the trade-off between biodiversity conservation and food production, I then ask which forms of agricultural intensification can best feed the world now and in the future. On the basis of my review, I suggest that the dichotomy of the land-sparing/land-sharing framework limits the realm of future possibilities to two, largely undesirable, options for conservation. Both large, protected regions and favorable surrounding matrices are needed to promote biodiversity conservation; they work synergistically and are not mutually exclusive. A "both-and" framing of large protected areas surrounded by a wildlife-friendly matrix suggests different research priorities from the "either-or" framing of sparing versus sharing. Furthermore, wildlife-friendly farming methods such as agroecology may be best adapted to provide food for the world's hungry people. PMID:26213864

  17. Using an Ecoregion Framework to Analyze Land-Cover and Land-Use Dynamics

    NASA Astrophysics Data System (ADS)

    Gallant, Alisa L.; Loveland, Thomas R.; Sohl, Terry L.; Napton, Darrell E.

    2004-04-01

    The United States has a highly varied landscape because of wide-ranging differences in combinations of climatic, geologic, edaphic, hydrologic, vegetative, and human management (land use) factors. Land uses are dynamic, with the types and rates of change dependent on a host of variables, including land accessibility, economic considerations, and the internal increase and movement of the human population. There is a convergence of evidence that ecoregions are very useful for organizing, interpreting, and reporting information about land-use dynamics. Ecoregion boundaries correspond well with patterns of land cover, urban settlement, agricultural variables, and resource-based industries. We implemented an ecoregion framework to document trends in contemporary land-cover and land-use dynamics over the conterminous United States from 1973 to 2000. Examples of results from six eastern ecoregions show that the relative abundance, grain of pattern, and human alteration of land-cover types organize well by ecoregion and that these characteristics of change, themselves, change through time.

  18. 14 CFR 25.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... stern landings, the limit water reaction load factors are those computed under § 25.527. In addition— (1... landing conditions must be investigated. In addition— (1) The loading for each condition consists of...

  19. 14 CFR 25.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stern landings, the limit water reaction load factors are those computed under § 25.527. In addition— (1... landing conditions must be investigated. In addition— (1) The loading for each condition consists of...

  20. 14 CFR 25.529 - Hull and main float landing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... stern landings, the limit water reaction load factors are those computed under § 25.527. In addition— (1... landing conditions must be investigated. In addition— (1) The loading for each condition consists of...

  1. The White Promised Land

    ERIC Educational Resources Information Center

    Lewis, Norman

    1978-01-01

    Describing Bolivia's interest in encouraging Caucasian immigrants from South Africa, for purposes of settling and developing traditionally Indian lands, this article details the miserable conditions of slavery and cultural/physical genocide currently operative in Bolivia. (JC)

  2. NASA's Mars Landings

    NASA Video Gallery

    This video shows the landing sites of all six NASA spacecraft to reachMars—Viking 1, Viking 2, Pathfinder, Spirit, Opportunity, Phoenix—and thetarget location where Curiosity will touch down ...

  3. Space Shuttle night landing

    NASA Technical Reports Server (NTRS)

    Brandenstein, D. C.

    1984-01-01

    The tracking and guidance requirements of the Indian National Satellite during its transition from the low-earth orbit to geosynchronous orbit dictated a night launch and subsequent night landing. The development of an Orbiter-independent external lighting system (ELS) that would work in conjunction with the Orbiter navigation, guidance, and control systems used for day approach and landing is described. The ELS includes the night landing visual aids; the heading alignment circle precision approach path indicator lights, as an aid for the outer glide slope; the runway floodlight, to accommodate for the transition area between preflare and intercepting inner glide slope (IGS) system; the ball/bar reference IGS system; and heads-up displays. The aspects of the lakebed dust problems are discussed. Diagrams illustrating the approach trajectory, final night-lighting configurations, and the approach and land symbology are included.

  4. Shuttle Landing Facility

    NASA Video Gallery

    The Shuttle Landing Facility at NASA's Kennedy Space Center in Florida marked the finish line for space shuttle missions since 1984. It is also staffed by a group of air traffic controllers who wor...

  5. Land Reuse Program

    SciTech Connect

    Rebekah Buckles

    1997-09-22

    The intent of this cooperative agreement was to establish a conduit and infrastructure that would allow for the transfer of DOE developed environmental technologies within land restoration activities first in the State of California and ultimately nationwide.

  6. KamLAND Zen

    NASA Astrophysics Data System (ADS)

    Ishidoshiro, Koji

    2014-09-01

    KamLAND-Zen is an experiment for neutrinoless double beta decay search with xenon 136 based on large liquid scintillator detector KamLAND. The first phase of the experiment was operated from Oct. 12, 2011 to June 14, 2012 and we set lower limit for the neutrino-less double beta decay half-life , T1 / 2 (0 ν) > 1 . 9 ×1025 yr. The combined result of KamLAND-Zen and EXO data give T1 / 2 (0 ν) > 3 . 4 ×1025 yr. At the first phase, we found problematic background, 110mAg. Then we purified liquid scintillator and xenon gas by distillation to remove the background. The purification campaign was started just after the first phase and ended at Dec. 2013. We present current status and latest results from KamLAND-Zen second phase, and discuss the future prospects.

  7. Land Product Validation (LPV)

    NASA Technical Reports Server (NTRS)

    Schaepman, Gabriela; Roman, Miguel O.

    2013-01-01

    This presentation will discuss Land Product Validation (LPV) objectives and goals, LPV structure update, interactions with other initiatives during report period, outreach to the science community, future meetings and next steps.

  8. Landing-shock Recorder

    NASA Technical Reports Server (NTRS)

    Brevoort, M J

    1934-01-01

    A description of a special type of seismograph, called a "landing-shock recorder," to be used for measuring the acceleration during impacts such as are experienced in airplane landings, is given . The theory, together with the assumptions made, is discussed in its relation to calculating the acceleration experienced in impact. Calculations are given from records obtained for two impacts of known acceleration. In one case the impact was very severe and in the other it was only moderately severe.

  9. Viking landing sites

    NASA Technical Reports Server (NTRS)

    Panagakos, N.

    1973-01-01

    A valley near the mouth of the 20,000-foot-deep Martian Grand Canyon has been chosen by NASA as the site of its first automated landing on the planet Mars. The landing site for the second mission of the 1975-76 Viking spacecraft will probably be an area about 1,000 miles northeast of the first site, where the likelihood of water increases the chances of finding evidence of life.

  10. Aircraft landing using GPS

    NASA Astrophysics Data System (ADS)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  11. Land Use Baseline Report Savannah River Site

    SciTech Connect

    Noah, J.C.

    1995-06-29

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  12. The University as a Land Developer.

    ERIC Educational Resources Information Center

    Fink, Ira

    1983-01-01

    To assist universities in developing or redeveloping surplus campus or endowment property, these factors in the process are outlined and discussed: development decisions, working with a developer, ground leasing, unrelated taxable income issues, creating a university land management office, some recent experiences, and research and development…

  13. LAND USE LAND COVER (LULC) - US GEOLOGICAL SURVEY

    EPA Science Inventory

    The National Mapping Program, a component of the U. S. Geological Survey (USGS), produces and distributes land use and land cover maps and digitized data for the conterminous U.S. and Hawaii. Land use refers to the human activities that are directly related to the land. The int...

  14. Clug; Community Land Use Game. Player's Manual with Selected Readings.

    ERIC Educational Resources Information Center

    Feldt, Allan G.

    CLUG (Community Land Use Game) is designed to provide players with an understanding of several underlying factors affecting the growth of an urban region. It has been used with players from junior high to graduate school and also with non-students. It unites concepts from sociology, economics, and geography. Players invest in land, construct…

  15. 14 CFR 29.521 - Float landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... factor is determined under § 29.473(b) or assumed to be equal to that determined for wheel landing gear... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Float landing conditions. 29.521 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Water Loads § 29.521 Float...

  16. Using Field Experiences to Study the Land-Use Legacy

    ERIC Educational Resources Information Center

    Brady, Joseph K.; Brady, Jody C.

    2009-01-01

    The current rapid decline of Earth's biodiversity represents an enormous crisis for humanity. Among the factors producing declines in biodiversity, changes in land use may have the greatest effect in the near term. It is well known that land-use history produces strong, lingering effects on biodiversity. This phenomenon has become known as the…

  17. 14 CFR 29.521 - Float landing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... factor is determined under § 29.473(b) or assumed to be equal to that determined for wheel landing gear... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Float landing conditions. 29.521 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Water Loads § 29.521 Float...

  18. 14 CFR 25.487 - Rebound landing condition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.487 Rebound landing condition. (a) The landing gear and its supporting structure must be investigated for the loads occurring during... load factor must act in the direction of motion of the unsprung weights as they reach their...

  19. 14 CFR 25.487 - Rebound landing condition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.487 Rebound landing condition. (a) The landing gear and its supporting structure must be investigated for the loads occurring during... load factor must act in the direction of motion of the unsprung weights as they reach their...

  20. 14 CFR 25.487 - Rebound landing condition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.487 Rebound landing condition. (a) The landing gear and its supporting structure must be investigated for the loads occurring during... load factor must act in the direction of motion of the unsprung weights as they reach their...

  1. 14 CFR 25.487 - Rebound landing condition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.487 Rebound landing condition. (a) The landing gear and its supporting structure must be investigated for the loads occurring during... load factor must act in the direction of motion of the unsprung weights as they reach their...

  2. Snowboard Jumping, Newton's Second Law and the Force on Landing

    ERIC Educational Resources Information Center

    O'Shea, Michael J.

    2004-01-01

    An application of Newton's second law to a snowboarder dropping off a vertical ledge shows that the average normal force during landing (force exerted by the ground on the snowboarder) is determined by four factors. It is shown that the flexing of the legs, the softness of the snow, the angle of the landing surface and the forward motion of the…

  3. Assessing the Availability of Private Lands for Recreation.

    ERIC Educational Resources Information Center

    Sampson, Neil

    1986-01-01

    In the most heavily populated regions of the United States, almost all land is privately owned. New ways for farmers, foresters, and other landowners to allow recreational use of lands must be created. Factors involved in creating recreation markets are discussed. (MT)

  4. Emergency Landing Planning for Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Plaunt, Christian John; Smith, David E.

    2008-01-01

    Considerable progress has been made over the last 15 years on building adaptive control systems to assist pilots in flying damaged aircraft. Once a pilot has regained control of a damaged aircraft, the next problem is to determine the best site for an emergency landing. In general, the decision depends on many factors including the actual control envelope of the aircraft, distance to the site, weather en route, characteristics of the approach path, characteristics of the runway or landing site, and emergency facilities at the site. All of these influence the risk to the aircraft, to the passengers and crew, and to people and property on the ground. We describe an ongoing project to build and demonstrate an emergency landing planner that takes these various factors into consideration and proposes possible routes and landing sites to the pilot, ordering them according to estimated risk. We give an overview of the system architecture and input data, describe our preliminary modeling of risk, and describe how we search the space of landing sites and routes.

  5. Incorporating JULES into NASA's Land Information System (LIS) and Investigations of Land-Atmosphere Coupling

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph

    2011-01-01

    NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  6. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  7. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for the new flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes

  8. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for new the flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes.

  9. Land-use Leakage

    SciTech Connect

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  10. Future land use plan

    SciTech Connect

    1995-08-31

    The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

  11. Energy and land use

    SciTech Connect

    Not Available

    1981-12-01

    This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

  12. Anticipating land surface change

    PubMed Central

    Streeter, Richard; Dugmore, Andrew J.

    2013-01-01

    The interplay of human actions and natural processes over varied spatial and temporal scales can result in abrupt transitions between contrasting land surface states. Understanding these transitions is a key goal of sustainability science because they can represent abrupt losses of natural capital. This paper recognizes flickering between alternate land surface states in advance of threshold change and critical slowing down in advance of both threshold changes and noncritical transformation. The early warning signals we observe are rises in autocorrelation, variance, and skewness within millimeter-resolution thickness measurements of tephra layers deposited in A.D. 2010 and A.D. 2011. These signals reflect changing patterns of surface vegetation, which are known to provide early warning signals of critical transformations. They were observed toward migrating soil erosion fronts, cryoturbation limits, and expanding deflation zones, thus providing potential early warning signals of land surface change. The record of the spatial patterning of vegetation contained in contemporary tephra layers shows how proximity to land surface change could be assessed in the widespread regions affected by shallow layers of volcanic fallout (those that can be subsumed within the existing vegetation cover). This insight shows how we could use tephra layers in the stratigraphic record to identify “near misses,” close encounters with thresholds that did not lead to tipping points, and thus provide additional tools for archaeology, sustainability science, and contemporary land management. PMID:23530230

  13. Land use and value after reclamation

    SciTech Connect

    Phelps, W.R.

    1998-12-31

    This presentation discusses the process of analyzing the size and condition of producing land parcels concerning management and income relationships, tract location, and soil and water conservation structures. It reviews production schemes for crops such as corn, soybeans, wheat, alfalfa hay, and warm season grasses, as well as use for recreation. Management of tenants and leases is discussed concerning evaluation of crop share leases, cash renting, custom farming, and tenant selection. Factors involving subsidence due to underground mining by longwall or room and pillar extraction are discussed. Issues related to planning for and management of taxes, long-term improvements, and other land costs are presented.

  14. Use of composts in revegetating arid lands

    SciTech Connect

    Brandt, C.A.; Hendrickson, P.L.

    1991-09-01

    Compost has been suggested as a soil amendment for arid lands at the US Department of Energy's Hanford Site in southeastern Washington State. The operating contractor of the site, Westinghouse Hanford Company, requested that the Pacific Northwest Laboratory conduct a literature review to compile additional information on the use of compost amendments and their benefits. This report provides background information on the factors needed for plant growth and the consequences of severe soil disturbance. This report also discussed the characteristics of composts relative to other amendments and how they each affect plant growth. Finally,regulatory requirements that could affect land application of sludge-based compost on the Hanford Site are reviewed.

  15. Global land use change, economic globalization, and the looming land scarcity.

    PubMed

    Lambin, Eric F; Meyfroidt, Patrick

    2011-03-01

    A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms-the displacement, rebound, cascade, and remittance effects-that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors. PMID:21321211

  16. Global land use change, economic globalization, and the looming land scarcity

    PubMed Central

    Lambin, Eric F.; Meyfroidt, Patrick

    2011-01-01

    A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms—the displacement, rebound, cascade, and remittance effects—that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors. PMID:21321211

  17. Land use and energy

    SciTech Connect

    Robeck, K.E.; Ballou, S.W.; South, D.W.; Davis, M.J.; Chiu, S.Y.; Baker, J.E.; Dauzvardis, P.A.; Garvey, D.B.; Torpy, M.F.

    1980-07-01

    This report provides estimates of the amount of land required by past and future energy development in the United States and examines major federal legislation that regulates the impact of energy facilities on land use. An example of one land use issue associated with energy development - the potential conflict between surface mining and agriculture - is illustrated by describing the actual and projected changes in land use caused by coal mining in western Indiana. Energy activities addressed in the report include extraction of coal, oil, natural gas, uranium, oil shale, and geothermal steam; uranium processing; preparation of synfuels from coal; oil refineries; fossil-fuel, nuclear, and hydro-electric power plants; biomass energy farms; and disposal of solid wastes generated during combustion of fossil fuels. Approximately 1.1 to 3.3 x 10/sup 6/ acres were devoted to these activities in the United States in 1975. As much as 1.8 to 2.0 x 10/sup 6/ additional acres could be required by 1990 for new, nonbiomass energy development. The production of grain for fuel ethanol could require an additional 16.9 to 55.7 x 10/sup 6/ acres by 1990. Federal laws that directly or indirectly regulate the land-use impacts of energy facilities include the National Environmental Protection Act, Clean Air Act, Federal Water Pollution Control Act, Surface Mining Control and Reclamation Act, and Coastal Zone Management Act. The major provisions of these acts, other relevant federal regulations, and similar state and local regulatons are described in this report. Federal legislation relating to air quality, water quality, and the management of public lands has the greatest potential to influence the location and timing of future energy development in the United States.

  18. Wind Development on Tribal Lands

    SciTech Connect

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  19. Hyperspectral remote sensing for land degradation mapping in China

    NASA Astrophysics Data System (ADS)

    Wang, Jing; He, Ting; Li, Yuhuan; Chen, Yongqi; Lv, Chunyan

    2009-06-01

    Land degradation is a major environmental problem internationally. Soil degradation is one of the key factors of land degradation, which is related to susceptibility to erosion, soil suitability, and soil characteristics especially at regional scale. It is important and meaningful to evaluate objectively land degradation at regional scale. The study is to present the classification approaches for land degradation by Degraded Soil Line Index (DSLI) and object-oriented method by determination of land degradation spectral response units (DSRU) compared to the spectral angle mapping (SAM) method using Hyperion image data for mapping land degradation. The method was tested in a study area located in Hengshan county in ShaanXi province, China, where is in the agriculture-pasture mixed area in Loess Plateau in China with complex physical geographical situation. The results showed that the three methods of SAM, DSLI and DSRU have the ability to map land degradation and degraded soil classes, and the performance of the methods of DSLI and SAM is different and DSLI is prior to SAM for land degradation mapping in the study area. Moreover, the results also showed that the object-oriented analysis method based on DSRU approach is valid for extraction of land degradation information and clearly shows the degraded land classes with an overall accuracy of 0.88 and Kappa coefficients of 0.86.

  20. Land Use and Change

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel E.

    2004-01-01

    The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.

  1. Namibian women and land.

    PubMed

    Andima, J J

    1994-03-01

    More than 50% of Namibia's 1.5 million inhabitants live in reserved communal areas; most of these are women who make up a third of the country's total population. Women are the main food producers, but access to land, livestock, water, and fuelwood is determined for women by marriage arrangements and settlements. In some parts of the country, women can obtain land in their own right, but they suffer from such subtle discouragements as receiving inferior land or having their stock mysteriously disappear. In some villages, a fee must be paid to a village head upon the allocation of land. This fee guarantees land tenure until the death or eviction of the person who paid the fee. In some areas, only men or widows (and sometimes divorced women) are eligible, and widows must reapply for permission to stay on their husband's land. Women also have a heavy labor burden. Since most of the men migrate to the urban areas for wage employment, the women must tend livestock and harvest and store the grain as well as run their households. Woman also may be evicted from commercial farms if their husbands die. In some areas, all property reverts to a husband's family upon his death, and the wife must return to her own relative. In some tribes, widows must leave their houses empty-handed; their sisters-in-law inherit any stored grain or clothing available. Other tribes are more liberal, and property remains with the widow. In this case, a male relative will be assigned to help the widow manage the property. Reform efforts which attempt to end such abuses by bringing common and customary law in compliance with the Namibian constitution are having an effect. The Women and Law Committee of the Law Reform and the Development Commission is working with the Customary Law Commission to involve traditional leaders in the adaptation of customary law to modern requirements which make discrimination against women unlawful. Until woman have security of land tenure, they are unwilling to invest

  2. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  3. Evaluating California local land use plan's environmental impact reports

    SciTech Connect

    Tang Zhenghong Bright, Elise; Brody, Samuel

    2009-02-15

    Local land use planning has profound impacts on environmental quality; however, few empirical studies have been conducted to systematically measure local land use plans' environmental assessment quality and to identify the factors influencing it. This paper analyzes the quality of 40 Environmental Impact Reports (EIRs) of local jurisdictions' land use plans in California. A plan evaluation protocol defined by five core components and sixty-three indicators is developed to measure the quality of local land use plans' EIRs. The descriptive results indicate that the local jurisdictions produce relatively good quality on its EIRs, but there is still much room for improvement. There are large variations in the quality of EIRs across local jurisdictions. The regression results further highlight three major factors that can significantly influence local land use plan's EIR quality: number of planners, plan updating ability, and development pressure.

  4. Land use changes and its driving forces in hilly ecological restoration area based on gis and rs of northern china

    PubMed Central

    Gao, Peng; Niu, Xiang; Wang, Bing; Zheng, Yunlong

    2015-01-01

    Land use change is one of the important aspects of the regional ecological restoration research. With remote sensing (RS) image in 2003, 2007 and 2012, using geographic information system (GIS) technologies, the land use pattern changes in Yimeng Mountain ecological restoration area in China and its driving force factors were studied. Results showed that: (1) Cultivated land constituted the largest area during 10 years, and followed by forest land and grass land; cultivated land and unused land were reduced by 28.43% and 44.32%, whereas forest land, water area and land for water facilities and others were increased. (2) During 2003–2007, forest land change showed the largest, followed by unused land and grass land; however, during 2008–2012, water area and land for water facilities change showed the largest, followed by grass land and unused land. (3) Land use degree was above the average level, it was in the developing period during 2003–2007 and in the degenerating period during 2008–2012. (4) Ecological Restoration Projects can greatly change the micro topography, increase vegetation coverage, and then induce significant changes in the land use distribution, which were the main driving force factors of the land use pattern change in the ecological restoration area. PMID:26047160

  5. Results from KamLAND-Zen

    DOE PAGESBeta

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; et al

    2015-07-15

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0νββ decay half-life of T0ν1/2 > 2.6×1025 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. As a result, prospects for further improvements with future KamLAND-Zen upgrades are alsomore » presented.« less

  6. Results from KamLAND-Zen

    SciTech Connect

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oki, Y.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshido, S.; Fushimi, K.; Banks, T. I.; Freedman, S. J.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Berger, B. E.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-07-15

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0νββ decay half-life of T1/2 > 2.6×1025 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. As a result, prospects for further improvements with future KamLAND-Zen upgrades are also presented.

  7. Results from KamLAND-Zen

    NASA Astrophysics Data System (ADS)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oki, Y.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Banks, T. I.; Freedman, S. J.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Berger, B. E.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-07-01

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with 136Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic 110mAg background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0νββ decay half-life of T1/2 0 ν>2.6 ×1025 yr at 90% C.L. The search sensitivity will be enhanced with additional low background data after the purification. Prospects for further improvements with future KamLAND-Zen upgrades are also presented.

  8. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  9. How Scientists Differentiate Between Land Cover Types

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Before scientists can transform raw satellite image data into land cover maps, they must decide on what categories of land cover they would like to use. Categories are simply the types of landscape that the scientists are trying to map and can vary greatly from map to map. For flood maps, there may be only two categories-dry land and wet land-while a standard global land cover map may have seventeen categories including closed shrub lands, savannas, evergreen needle leaf forest, urban areas, and ice/snow. The only requirement for any land cover category is that it have a distinct spectral signature that a satellite can record. As can be seen through a prism, many different colors (wavelengths) make up the spectra of sunlight. When sunlight strikes objects, certain wavelengths are absorbed and others are reflected or emitted. The unique way in which a given type of land cover reflects and absorbs light is known as its spectral signature. Anyone who has flown over the midwestern United States has seen evidence of this phenomenon. From an airplane window, the ground appears as a patchwork of different colors formed by the fields of crops planted there. The varying pigments of the leaves, the amount of foliage per square foot, the age of the plants, and many other factors create this tapestry. Most imaging satellites are sensitive to specific wavelengths of light, including infrared wavelengths that cannot be seen with the naked eye. Passive satellite remote sensors-such as those flown on Landsat 5, Landsat 7, and Terra-have a number of light detectors (photoreceptors) on board that measure the energy reflected or emitted by the Earth. One light detector records only the blue part of the spectrum coming off the Earth. Another observes all the yellow-green light and still another picks up on all the near-infrared light. The detectors scan the Earth's surface as the satellite travels in a circular orbit very nearly from pole-to-pole. To differentiate between types of

  10. Apollo Lunar Landing

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Artist rendering of the Lunar Orbiter, the most successful of the pre-Apollo probes, which mapped the equatorial regions of the moon and gave NASA the data it needed to pinpoint ideal landing spots. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 314.