These are representative sample records from related to your search topic.
For comprehensive and current results, perform a real-time search at

Hydrologic modeling of soil water storage in landfill cover systems  

SciTech Connect

The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Soil profiles that more closely resembled natural agricultural soils were more accurately modeled than highly artificial layered soil profiles. Precautions for determining parameter values for model input and for interpreting simulation results are discussed.

Barnes, F.J.; Rodgers, J.C.



Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems.  


Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (?14-15 years) compared to the other two sites (?6-11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7gm(-2)d(-1), respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R=0.827, P<0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils. PMID:24332193

Su, Yao; Zhang, Xuan; Xia, Fang-Fang; Zhang, Qi-Qi; Kong, Jiao-Yan; Wang, Jing; He, Ruo



[Culturable psychrotolerant methanotrophic bacteria in landfill cover soil].  


Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10@C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20 degrees C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40 degrees C from a sample collected in May (the temperature of the cover soil was 11.5-12.5 degrees C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S r-RNA genes with the type strain SV96(T)) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15 degrees C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96. PMID:25513020



[Culturable psychrotolerant methanotrophic bacteria in landfill cover soil].  


Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10@C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20 degrees C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40 degrees C from a sample collected in May (the temperature of the cover soil was 11.5-12.5 degrees C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S r-RNA genes with the type strain SV96(T)) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15 degrees C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96. PMID:25436252

Kallistova, A Iu; Montonen, L; Jurgens, G; Munster, U; Kevbrina, M V; Nozhevnikova, A N



Temporal variability of soil gas composition in landfill covers.  


In order to assess the temporal variability of the conditions for the microbial oxidation of methane in landfill cover soils and their driving variables, gas composition at non-emissive and strongly emissive locations (hotspots) was monitored on a seasonal, daily and hourly time scale on an old, unlined landfill in northern Germany. Our study showed that the impact of the various environmental factors varied with the mode of gas transport and with the time scale considered. At non-emissive sites, governed by diffusive gas transport, soil gas composition was subject to a pronounced seasonal variation. A high extent of aeration, low methane concentrations and a high ratio of CO(2) to CH(4) were found across the entire depth of the soil cover during the warm and dry period, whereas in the cool and moist period aeration was less and landfill gas migrated further upward. Statistically, variation in soil gas composition was best explained by the variation in soil temperature. At locations dominated by advective gas transport and showing considerable emissions of methane, this pattern was far less pronounced with only little increase in the extent of aeration during drier periods. Here, the change of barometric pressure was found to impact soil gas composition. On a daily scale under constant conditions of temperature, gas transport at both types of locations was strongly impacted by the change in soil moisture. On an hourly scale, under constant conditions of temperature and moisture, gas migration was impacted most by the change in barometric pressure. It was shown that at diffusion-dominated sites complete methane oxidation was achieved even under adverse wintry conditions, whereas at hotspots, even under favorable dry and warm conditions, aerobic biological activity can be limited to the upper crust of the soil. PMID:21074982

Gebert, Julia; Rachor, Ingke; Gröngröft, Alexander; Pfeiffer, Eva-Maria



Rapid Methane Oxidation in a Landfill Cover Soil †  

PubMed Central

Methane oxidation rates observed in a topsoil covering a retired landfill are the highest reported (45 g m?2 day?1) for any environment. This microbial community had the capacity to rapidly oxidize CH4 at concentrations ranging from <1 ppm (microliters per liter) (first-order rate constant [k] = ?0.54 h?1) to >104 ppm (k = ?2.37 h?1). The physiological characteristics of a methanotroph isolated from the soil (characteristics determined in aqueous medium) and the natural population, however, were similar to those of other natural populations and cultures: the Q10 and optimum temperature were 1.9 and 31°C, respectively, the apparent half-saturation constant was 2.5 to 9.3 ?M, and 19 to 69% of oxidized CH4 was assimilated into biomass. The CH4 oxidation rate of this soil under waterlogged (41% [wt/vol] H2O) conditions, 6.1 mg liter?1 day?1, was near rates reported for lake sediment and much lower than the rate of 116 mg liter?1 day?1 in the same soil under moist (11% H2O) conditions. Since there are no large physiological differences between this microbial community and other CH4 oxidizers, we attribute the high CH4 oxidation rate in moist soil to enhanced CH4 transport to the microorganisms; gas-phase molecular diffusion is 104-fold faster than aqueous diffusion. These high CH4 oxidation rates in moist soil have implications that are important in global climate change. Soil CH4 oxidation could become a negative feedback to atmospheric CH4 increases (and warming) in areas that are presently waterlogged but are projected to undergo a reduction in summer soil moisture. PMID:16348346

Whalen, S. C.; Reeburgh, W. S.; Sandbeck, K. A.



Mechanism of H2S removal during landfill stabilization in waste biocover soil, an alterative landfill cover.  


Hydrogen sulfide (H(2)S) is one of the primary contributors to odors at landfills. The mechanism of waste biocover soil (WBS) for H(2)S removal was investigated in simulated landfill systems with the contrast experiment of a landfill cover soil (LCS). The H(2)S removal efficiency was higher than 90% regardless of the WBS or LCS covers. The input of landfill gas (LFG) could stimulate the growth of aerobic heterotrophic bacteria, actinomycete, sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) in the WBS cover, while that caused a decrease of 1-2 orders of magnitude in the populations of actinomycete and fungi in the bottom layer of the LCS cover. As H(2)S inputted, the sulfide content in the WBS cover increased and reached the maximum on day 30. In the LCS cover, the highest soil sulfide content was exhibited in the bottom layer during the whole experiment. After exposure to LFG, the lower pH value and higher sulfate content were observed in the top layer of the WBS cover, while there was not a significant difference in different layers of the LCS cover. The results indicated a more rapid biotransformation between sulfide and sulfate occurred in the WBS cover compared to the LCS. PMID:22459970

He, Ruo; Xia, Fang-Fang; Bai, Yun; Wang, Jing; Shen, Dong-Sheng



Modeling of methane oxidation in landfill cover soil using an artificial neural network.  


Knowing the fraction of methane (CH4) oxidized in landfill cover soils is an important step in estimating the total CH4 emissions from any landfill. Predicting CH4 oxidation in landfill cover soils is a difficult task because it is controlled by a number of biological and environmental factors. This study proposes an artificial neural network (ANN) approach using feedforward backpropagation to predict CH4 oxidation in landfill cover soil in relation to air temperature, soil moisture content, oxygen (O2) concentration at a depth of 10 cm in cover soil, and CH4 concentration at the bottom of cover soil. The optimum ANN model giving the lowest mean square error (MSE) was configured from three layers, with 12 and 9 neurons at the first and the second hidden layers, respectively, log-sigmoid (logsig) transfer function at the hidden and output layers, and the Levenberg-Marquardt training algorithm. This study revealed that the ANN oxidation model can predict CH4 oxidation with a MSE of 0.0082, a coefficient of determination (R2) between the measured and predicted outputs of up to 0.937, and a model efficiency (E) of 0.8978. To conclude, further developments of the proposed ANN model are required to generalize and apply the model to other landfills with different cover soil properties. PMID:24654384

Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah; Younes, Mohammad K; Irwan, Dani



Methane emissions from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation  

NASA Astrophysics Data System (ADS)

CH 4 emissions and leachate disposal are recognized as the two major concerns in municipal solid waste (MSW) landfills. Recently, leachate recirculation was attempted to accelerate land-filled waste biodegradation and thus enhanced landfill gas generation. Leachate irrigation was also conducted for volume reduction effectively. Nevertheless, the impacts of leachate recirculation and irrigation on landfill CH 4 emissions have not been previously reported. A field investigation of landfill CH 4 emissions was conducted on selected sandy soil cover with leachate recirculation and subsurface irrigation based on whole year around measurement. The average CH 4 fluxes were 311±903, 207±516, and 565±1460 CH 4 m -2 h -1 from site A without leachate recirculation and subsurface irrigation, lift B2 with leachate subsurface irrigation, and lift B1 with both leachate recirculation and subsurface irrigation, respectively. Both gas recovery and cover soil oxidation minimized CH 4 emissions efficiently, while the later might be more pronounced when the location was more than 5 m away from gas recovery well. After covered by additional clay soil layer, CH 4 fluxes dropped by approximately 35 times in the following three seasons compared to the previous three seasons in lift B2. The diurnal peaks of CH 4 fluxes occurred mostly followed with air or soil temperature in the daytimes. The measured CH 4 fluxes were much lower than those of documented data from the landfills, indicating that the influences of leachate recirculation and subsurface irrigation on landfill CH 4 emissions might be minimized with the help of a well-designed sandy soil cover. Landfill cover composed of two soil layers (clay soil underneath and sandy soil above) is suggested as a low-cost and effective alternative to minimize CH 4 emissions.

Zhang, Houhu; He, Pinjing; Shao, Liming


Gas Transport Parameters for Landfill Final Cover Soil: Measurements and Model Modification by Dry Bulk Density  

NASA Astrophysics Data System (ADS)

Landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric methane (CH4). Until recently, landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest sources of anthropogenic CH4 emission, the final cover system should also be designed for minimizing the greenhouse gases migration into the atmosphere or the areas surrounding the landfill while securing the hydraulic performance. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil, few studies about gas transport characteristics of landfill cover soils have been done. However, recent soil-gas studies implied that the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size are key parameters to understand landfill gaseous performance. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport. In this study, the effects of compaction level and particle size fraction effects on ka and Dp for landfill final cover soil was investigated. The disturbed soil samples were taken from landfill final cover in Japan. A compaction tests were performed for the soil samples with two different size fractions (< 35 mm and < 2.0 mm). In the compaction tests at field water content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm, 2120 cm3) at two different compaction levels [(MP):2700 kN/m2 and (SP):600 kN/m2]. After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential of 0.98, 2.94, 9.81, 1235 kPa and with air-dried and oven-dried conditions. Results showed that measured Dp and ka values for the coarser (< 35 mm) fraction became larger than finer (< 2 mm) for the given soil-air content. Further, compaction effort was much significant for ka than Dp for both fractions. We suggest this is because of compaction effects caused to create well-aligned macropore networks that are available for gas transport through the porous material. Then, the famous predictive models, the water induced linear reduction (WLR) model for Dp and the reference point law (RPL) model for ka were modified with reference point measurements (dry conditions) and model parameters and they correlated linearly to dry bulk density values for both fractions of landfill final cover soil.

Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.



Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills.  


Hydrogen sulfide (H(2)S) generated from C&D debris landfills has emerged as a major environmental concern due to odor problems and possible health impacts to landfill employees and surrounding residents. Research was performed to evaluate the performance of various cover materials as control measures for H(2)S emissions from C&D debris landfills. Twelve laboratory-scale simulated landfill columns containing gypsum drywall were operated under anaerobic conditions to promote H(2)S production. Five different cover materials were placed on top of the waste inside duplicate columns: (1) sandy soil, (2) sandy soil amended with lime, (3) clayey soil, (4) fine concrete (particle size less than 2.5 cm), and (5) coarse concrete (particle size greater than 2.5 cm). No cover was placed on two of the columns, which were used as controls. H(2)S concentrations measured from the middle of the waste layer ranged from 50,000 to 150,000 ppm. The different cover materials demonstrated varying H(2)S removal efficiencies. The sandy soil amended with lime and the fine concrete were the most effective for the control of H(2)S emissions. Both materials exhibited reduction efficiencies greater than 99%. The clayey and sandy soils exhibited lower reduction efficiencies, with average removal efficiencies of 65% and 30%, respectively. The coarse concrete was found to be the least efficient material as a result of its large particle size. PMID:16890345

Plaza, Cristine; Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel; Booth, Matthew



Infiltration, soil moisture, and related measurements at a landfill with a fractured cover, Illinois  

NASA Astrophysics Data System (ADS)

The cover of the Mallard North landfill in northeastern Illinois, completed in 1974, is transected by numerous fractures and locally contains subsidence depressions in which intermittent ponds form. Field measurements using tensiometers and soil-moisture blocks showed that the upper 0.3 m of the cover in the non-fractured sites dries readily and is responsive to climatic events, whereas the fractures and, locally, the deeper cover retain moisture and respond only slightly to climatic events. Experiments with sprinkler and ring infiltrometers showed that infiltration rates are generally high, of the order of 1-10 cm h -1 in most tests, 0.1-1.0 cm h -1 locally, and above 100 cm h -1 into open fractures. Runoff from natural rainstorms, estimated from runoff-plot measurements and pond changes, is low across the landfill. Laboratory studies of bulk density and hydraulic conductivity suggest that the cover is composed of an upper, more permeable topsoil and a lower compacted layer. The study results suggest a hypothetical model in which most rainfall falling onto the landfill infiltrates readily into the upper cover layer, than travels laterally along the top of the compacted layer until it reaches a fracture, whereupon it percolates deeper into the landfill. Percolation also occurs from runoff and interflow collected in subsidence ponds. The fractures and subsidence thus considerably increase the total percolation into the landfill compared with estimates from standard models which assume an unfractured cover and tabulated runoff and soil-moisture conditions.

Booth, Colin J.; Price, Bethany C.


Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials.  


The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm(-3), reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100g CH(4)m(-2)d(-1), covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH(4)m(-2)d(-1) and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material. PMID:21067907

Rachor, Ingke; Gebert, Julia; Gröngröft, Alexander; Pfeiffer, Eva-Maria



Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover.  


The aim of the study was to determine if an As-contaminated soil, stabilized using zerovalent iron (Fe(0)) and its combination with gypsum waste, coal fly ash, peat, or sewage sludge, could be used as a construction material at the top layer of the landfill cover. A reproduction of 2 m thick protection/vegetation layer of a landfill cover using a column setup was used to determine the ability of the amendments to reduce As solubility and stimulate soil functionality along the soil profile. Soil amendment with Fe(0) was highly efficient in reducing As in soil porewater reaching 99 % reduction, but only at the soil surface. In the deeper soil layers (below 0.5 m), the Fe treatment had a reverse effect, As solubility increased dramatically exceeding that of the untreated soil or any other treatment by one to two orders of magnitude. A slight bioluminescence inhibition of Vibrio fischeri was detected in the Fe(0) treatment. Soil amendment with iron and peat showed no toxicity to bacteria and was the most efficient in reducing dissolved As in soil porewater throughout the 2 m soil profile followed by iron and gypsum treatment, most likely resulting from a low soil density and a good air diffusion to the soil. The least suitable combination of soil amendments for As immobilization was a mixture of iron with coal fly ash. An increase in all measured enzyme activities was observed in all treatments, particularly those receiving organic matter. For As to be stable in soil, a combination of amendments that can keep the soil porous and ensure the air diffusion through the entire soil layer of the landfill cover is required. PMID:23709267

Kumpiene, Jurate; Desogus, Paolo; Schulenburg, Sven; Arenella, Mariarita; Renella, Giancarlo; Brännvall, Evelina; Lagerkvist, Anders; Andreas, Lale; Sjöblom, Rolf



Characterization of adsorption removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover.  


Landfill is an important anthropogenic source of odorous gases. In this work, the adsorption characteristics of H(2)S on waste biocover soil, an alternative landfill cover, were investigated. The results showed that the adsorption capacity of H(2)S increased with the reduction of particle size, the increase of pH value and water content of waste biocover soil. The optimal composition of waste biocover soil, in regard to operation cost and H(2)S removal performance, was original pH value, water content of 40% (w/w) and particle size of ?4 mm. A net increase was observed in the adsorption capacity of H(2)S with temperatures in the range of 4-35°C. The adsorption capacity of H(2)S on waste biocover soil with optimal composition reached the maximum value of 60±1 mg/kg at oxygen concentration of 10% (v/v). When H(2)S concentration was about 5% (v/v), the adsorption capacity was near saturation, maintaining at 383±40 mg/kg. Among the four experimental soils, the highest adsorption capacity of H(2)S was observed on waste biocover soil, followed by landfill cover soil, mulberry soil, and sand soil, which was only 9.8% of that of waste biocover soil. PMID:21146927

He, Ruo; Xia, Fang-Fang; Wang, Jing; Pan, Chang-Liang; Fang, Cheng-Ran



Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils  

SciTech Connect

The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona



Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers.  


In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH(4)m(-2)h(-1)(.) Considering the current gas production rate of 0.03 g CH(4)m(-2)h(-1), the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level. PMID:20943363

Röwer, Inga Ute; Geck, Christoph; Gebert, Julia; Pfeiffer, Eva-Maria



N 2O emissions at municipal solid waste landfill sites: Effects of CH 4 emissions and cover soil  

NASA Astrophysics Data System (ADS)

Municipal solid waste landfills are the significant anthropogenic sources of N 2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH 4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N 2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 ( p < 0.01), 3.56 ( p < 0.01), and 2.12 ( p < 0.01) from the soil samples preincubated with 5% CH 4 for three months when compared with the control, respectively. Among the three selected landfill sites, N 2O fluxes in two landfill sites were significantly correlated with the variations of the CH 4 emissions without landfill gas recovery ( p < 0.001). N 2O fluxes were also elevated by the increase of the CH 4 emissions with landfill gas recovery in another landfill site ( p > 0.05). The annual average N 2O flux was 176 ± 566 ?g N 2O-N m -2 h -1 ( p < 0.01) from sandy soil-covered landfill site, which was 72% ( p < 0.05) and 173% ( p < 0.01) lower than the other two clay soil covered landfill sites, respectively. The magnitude order of N 2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N 2O emissions.

Zhang, Houhu; He, Pinjing; Shao, Liming


An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation.  


Landfill is an important source of atmospheric methane (CH4). In this study, the development and partial validation are presented for an analytical model for predicting the reduction of CH4 emission in landfill cover soils by CH4 oxidation. The model combines an analytic solution of a coupled oxygen (O2) and CH4 soil gas transport in landfill covers with a piecewise first-order aerobic biodegradation, including the influences of environmental factors such as cover soil thickness, CH4 oxidation and CH4 production rate. Comparison of soil gas concentration profiles with a soil column experiment is provided for a partial validation, and then this model is applied to predict the reduction of CH4 emission through landfill covers in several other cases. A discussion is provided to illustrate the roles of soil layer thickness, reaction rate constant for CH4 oxidation and CH4 production rate in determining CH4 emissions. The results suggest that the increase of cover soil thickness cannot always increase CH4 oxidation rates or removal efficiency, which becomes constant if the thickness of landfill cover soil is larger than a limit. PMID:25464331

Yao, Yijun; Su, Yao; Wu, Yun; Liu, Weiping; He, Ruo



Methane oxidation activity and bacterial community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L  

Microsoft Academic Search

Oxygen availability in landfill cover soil is a major limitation to the growth and activity of methanotrophs as methane oxidation is an aerobic microbial process. Plants tolerant to high concentrations of landfill gas (LFG) may play an important role in improving methane oxidation within landfill cover soil and reducing emission of methane, a greenhouse gas, from it. In this study,

Yunlong Wang; Weixiang Wu; Ying Ding; Wei Liu; Anton Perera; Yingxu Chen; Medha Devare



Structure and function of methanotrophic communities in a landfill-cover soil.  


In landfill-cover soils, aerobic methane-oxidizing bacteria (MOB) convert CH(4) to CO(2), mitigating emissions of the greenhouse gas CH(4) to the atmosphere. We investigated overall MOB community structure and assessed spatial differences in MOB diversity, abundance and activity in a Swiss landfill-cover soil. Molecular cloning, terminal restriction-fragment length polymorphism (T-RFLP) and quantitative PCR of pmoA genes were applied to soil collected from 16 locations at three different depths to study MOB community structure, diversity and abundance; MOB activity was measured in the field using gas push-pull tests. The MOB community was highly diverse but dominated by Type Ia MOB, with novel pmoA sequences present. Type II MOB were detected mainly in deeper soil with lower nutrient and higher CH(4) concentrations. Substantial differences in MOB community structure were observed between one high- and one low-activity location. MOB abundance was highly variable across the site [4.0 × 10(4) to 1.1 × 10(7) (g soil dry weight)(-1)]. Potential CH(4) oxidation rates were high [1.8-58.2 mmol CH(4) (L soil air)(-1) day(-1) ] but showed significant lateral variation and were positively correlated with mean CH(4) concentrations (P < 0.01), MOB abundance (P < 0.05) and MOB diversity (weak correlation, P < 0.17). Our findings indicate that Methylosarcina and closely related MOB are key players and that MOB abundance and community structure are driving factors in CH(4) oxidation at this landfill. PMID:22172054

Henneberger, Ruth; Lüke, Claudia; Mosberger, Lona; Schroth, Martin H




EPA Science Inventory

Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...


Landfill covers for dry environments  

SciTech Connect

A large-scale landfill cover field test is currently underway at Sandia National Laboratories in Albuquerque, New Mexico. It is intended to compare and document the performance of alternative landfill cover technologies of various costs and complexities for interim stabilization and/or final closure of landfills in arid and semi-arid environments. Test plots of traditional designs recommended by the US Environmental Protection Agency for both RCRA Subtitle {open_quote}C{close_quote} and {open_quote}D{close_quote} regulated facilities have been constructed side-by-side with the alternative covers and will serve as baselines for comparison to these alternative covers. The alternative covers were designed specifically for dry environments. The covers will be tested under both ambient and stressed conditions. All covers have been instrumented to measure water balance variables and soil temperature. An on-site weather station records all pertinent climatological data. A key to acceptance of an alternative environmental technology is seeking regulatory acceptance and eventual permitting. The lack of acceptance by regulatory agencies is a significant barrier to development and implementation of innovative cover technologies. Much of the effort on this demonstration has been toward gaining regulatory and public acceptance.

Dwyer, S.F. [Sandia National Labs., Albuquerque, NM (United States)



Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, South Korea.  


A methane-oxidizing bacterium was isolated from the enriched culture of a landfill cover soil. The closest relative of the isolate, designated M6, is Methylocystis sp. Based on a kinetic analysis, the maximum specific methane oxidation rate and saturation constant were 4.93 mmol·g--dry cell weight--1·h?¹ and 23 microM, respectively. This was the first time a kinetic analysis was performed using pure methanotrophic culture. The methane oxidation by M6 was investigated in the presence of aromatic (m- and p-xylene and ethylbenzene) or sulfur (hydrogen sulfide, dimethyl sulfide, methanthiol) compounds. The methane oxidation was inhibited by the presence of aromatic or sulfur compounds. PMID:21791963

Lee, Eun-Hee; Yi, Taewoo; Moon, Kyung-Eun; Park, Hyunjung; Ryu, Hee Wook; Cho, Kyung-Suk



CH4/CO2 ratios indicate highly efficient methane oxidation by a pumice landfill cover-soil.  


Landfills that generate too little biogas for economic energy recovery can potentially offset methane (CH(4)) emissions through biological oxidation by methanotrophic bacteria in cover soils. This study reports on the CH(4) oxidation efficiency of a 10-year old landfill cap comprising a volcanic pumice soil. Surface CH(4) and CO(2) fluxes were measured using field chambers during three sampling intervals over winter and summer. Methane fluxes were temporally and spatially variable (-0.36 to 3044 mgCH(4)m(-2)h(-1)); but were at least 15 times lower than typical literature CH(4) fluxes reported for older landfills in 45 of the 46 chambers tested. Exposure of soil from this landfill cover to variable CH(4) fluxes in laboratory microcosms revealed a very strong correlation between CH(4) oxidation efficiency and CH(4)/CO(2) ratios, confirming the utility of this relationship for approximating CH(4) oxidation efficiency. CH(4)/CO(2) ratios were applied to gas concentrations from the surface flux chambers and indicated a mean CH(4) oxidation efficiency of 72%. To examine CH(4) oxidation with soil depth, we collected 10 soil depth profiles at random locations across the landfill. Seven profiles exhibited CH(4) removal rates of 70-100% at depths <60 cm, supporting the high oxidation rates observed in the chambers. Based on a conservative 70% CH(4) oxidation efficiency occurring at the site, this cover soil is clearly offsetting far greater CH(4) quantities than the 10% default value currently adopted by the IPCC. PMID:23186636

Pratt, Chris; Walcroft, Adrian S; Deslippe, Julie; Tate, Kevin R



Selenium in tissues of rats fed rutabagas grown on soil covering a coal fly ash landfill  

Microsoft Academic Search

Approximately 80 million tons of fly ash are produced by coalburning power plants in the United States each year. Most is disposed in landfills which are capped with a layer of soil from about 0.5 toi meter thick. There has been concern that crops planted or voluntarily growing over such areas may absorb toxic elements which could be ingested by

Gilbert S. Stoewsand; Judy L. Anderson; Leonard H. Weinstein; Joseph F. Osmeloski; Walter H. Gutenmann; Donald J. Lisk



Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates.  


Plant roots are reported to enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil as well as the supply of methane to bacteria. Therefore, methane oxidation can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This study consisted of using a numerical model that combines flow of water and heat with gas transport and oxidation in soils, to simulate methane emission and oxidation through simulated vegetated and non-vegetated landfill covers under different climatic conditions. Different simulations were performed using different methane loading flux (5-200gm(-2)d(-1)) as the bottom boundary. The lowest modeled surface emissions were always obtained with vegetated soil covers for all simulated climates. The largest differences in simulated surface emissions between the vegetated and non-vegetated scenarios occur during the growing season. Higher average yearly percent oxidation was obtained in simulations with vegetated soil covers as compared to non-vegetated scenario. The modeled effects of vegetation on methane surface emissions and percent oxidation were attributed to two separate mechanisms: (1) increase in methane oxidation associated with the change of the physical properties of the upper vegetative layer and (2) increase in organic matter associated with vegetated soil layers. Finally, correlations between percent oxidation and methane loading into simulated vegetated and non-vegetated covers were proposed to allow decision makers to compare vegetated versus non-vegetated soil landfill covers. These results were obtained using a modeling study with several simplifying assumptions that do not capture the complexities of vegetated soils under field conditions. PMID:25475118

Abichou, Tarek; Kormi, Tarek; Yuan, Lei; Johnson, Terry; Francisco, Escobar



Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.  


Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers. PMID:21546687

Bogner, Jean E; Spokas, Kurt A; Chanton, Jeffrey P



Estimation of mass transport parameters of gases for quantifying CH{sub 4} oxidation in landfill soil covers  

SciTech Connect

Methane (CH{sub 4}), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH{sub 4} is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH{sub 4} oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH{sub 4} (V{sub max}) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O{sub 2} from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O{sub 2} and CH{sub 4} in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH{sub 4} slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O{sub 2} decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N{sub 2} and CO{sub 2}, may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O{sub 2} under the natural condition may overestimate the penetration of O{sub 2} into the soil cover layer and consequently overestimate the oxidation of CH{sub 4}.

Im, J.; Moon, S.; Nam, K.; Kim, Y.-J. [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, J.Y. [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of)], E-mail:



Capacity for Methane Oxidation in Landfill Cover Soils Measured in Laboratory-Scale Soil Microcosms  

PubMed Central

Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+). PMID:16534930

Kightley, D.; Nedwell, D. B.; Cooper, M.



Methane oxidation in a neutral landfill cover soil: Influence of moisture content, temperature, and nitrogen-turnover  

SciTech Connect

Well-managed, aerated cover soils can have a mitigating effect on methane emission from landfills. The influence of moisture content, soil temperature, and N on the methane uptake capacity of a neutral landfill cover soil was examined. A soil moisture content of 15% w/w gave the maximum CH{sub 4} oxidation rate (2.36 ng CH{sub 4}{sup -1}g{sup -1} soil). When wetter, CH{sub 4} consumption was slower (e.g., 1.6 ng CH{sub 4} h{sup -1} g {sup -1} at 30% w/w) because of a limited gas diffusion. At lower soil moisture, microbial activity was reduced and consequently the oxidation capacity decreased (e.g., 0.84 ng CH{sub 4} {sup -1} g{sup -1} at 5% w/w). Optimum temperature was between 25 and 30{degrees}C. The calculated activation energy of the CH{sub 4} oxidation was 56.5 kj K{sup -1} mol{sup -1}. After NH4{sub 4}{sup +} addition, a negative linear correlation was found between the methane oxidation rate and the nitrous oxide flux (R{sup 2} = 0.96 Y1 = 2.7 - 0.44 x Y2). Addition of NO{sub 3}{sup -} had no significant effect on CH{sub 4} oxidation. The effect of organic residue amendments depended on their C/N ratios. Crop residues with a high C/N ratio (wheat [Triticum sativum L.] and maize [Zea mays L.] straw) stimulated N-immobilization and did not affect the methane-oxidizing capacity. On the other hand, addition of crop residues with low C/N ratios (potato [Solanum tuberosum L.] and sugar beet [Beta vulgaris cv. Altissima] leaves) stimulated N-mineralization, resulting in a strong inhibition of the methane oxidation. 38 refs., 4 figs., 2 tabs.

Boeckx, P.; Van Cleemput, O. [Univ. of Ghent (Belgium)



Field-scale labelling and activity quantification of methane-oxidizing bacteria in a landfill-cover soil.  


Aerobic methane-oxidizing bacteria (MOB) play an important role in soils, mitigating emissions of the greenhouse gas methane (CH(4)) to the atmosphere. Here, we combined stable isotope probing on MOB-specific phospholipid fatty acids (PLFA-SIP) with field-based gas push-pull tests (GPPTs). This novel approach (SIP-GPPT) was tested in a landfill-cover soil at four locations with different MOB activity. Potential oxidation rates derived from regular- and SIP-GPPTs agreed well and ranged from 0.2 to 52.8 mmol CH(4) (L soil air)(-1) day(-1). PLFA profiles of soil extracts mainly contained C(14) to C(18) fatty acids (FAs), with a dominance of C(16) FAs. Uptake of (13) C into MOB biomass during SIP-GPPTs was clearly indicated by increased ?(13)C values (up to c. 1500‰) of MOB-characteristic FAs. In addition, (13)C incorporation increased with CH(4) oxidation rates. In general, FAs C(14:0) , C(16:1?8), C(16:1?7) and C(16:1?6) (type I MOB) showed highest (13)C incorporation, while substantial (13)C incorporation into FAs C(18:1?8) and C(18:1?7) (type II MOB) was only observed at high-activity locations. Our findings demonstrate the applicability of the SIP-GPPT approach for in situ quantification of potential CH(4) oxidation rates and simultaneous labelling of active MOB, suggesting a dominance of type I MOB over type II MOB in the CH(4)-oxidizing community in this landfill-cover soil. PMID:22928887

Henneberger, Ruth; Chiri, Eleonora; Blees, Jan; Niemann, Helge; Lehmann, Moritz F; Schroth, Martin H



Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil.  


Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, ?(b), and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D(p)/D(o), ratio of gas diffusion coefficients in soil and free air) and air permeability (k(a)) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting ?(b) values ranging from 1.40 to 2.10 g cm(-3). Results showed that D(p) and k(a) values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2mm) under variably-saturated conditions for a given soil-air content (?), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D(p) and k(a) was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D(p)/D(f), the ratio of measured D(p) to D(p) in total porosity (f), (ii) for air permeability k(a)/k(a)(,pF4.1), the ratio of measured k(a) to k(a) at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content (?) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D(p)(?/f) and k(a)(?/f) models were developed based on a single parameter (water blockage factor M for D(p) and P for k(a)). The water blockage factors, M and P, were found to be linearly correlated to ?(b) values, and the effects of dry bulk density on D(p) and k(a) for both '+gravel' and '-gravel' fractions were well accounted for by the new models. PMID:21813272

Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko



Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.  


Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ?CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body. PMID:25186436

Henneberger, Ruth; Chiri, Eleonora; Bodelier, Paul E L; Frenzel, Peter; Lüke, Claudia; Schroth, Martin H



Filth flies associated with municipal solid waste and impact of delay in cover soil application on adult filth fly emergence in a sanitary landfill in Pulau Pinang, Malaysia.  


Two types of municipal solid waste (MSW), newly arrived and 2 weeks old, were sampled from a sanitary landfill in Pulau Pinang, Malaysia at a fortnightly interval and kept under field conditions for 2 weeks. A total of 480 kg of each type of MSW was sampled to study species composition and impact of delays in cover soil applications on filth fly emergence. Out of 960 kg of MSW sampled, 9.2 ± 0.5 flies emerged per kilogram. Weekly adult fly emergence rates of newly arrived and 2-week-old waste did not differ significantly and MSW remained suitable for fly breeding for up to 1 month. Eight species of flies emerged from the MSW: namely, Musca domestica, Musca sorbens, Synthesiomyia nudiseta, Hydrotaea chalcogaster, Chrysomya megacephala, Lucilia cuprina, Hemipyrellia ligurriens and Sarcophaga sp. Newly arrived waste was determined to be the main source for M. domestica, C. megacephala and L. cuprina in the landfill owing to significantly higher mean emergence compared with 2-week-old waste. Musca sorbens was found in newly arrived waste but not in 2-week-old waste, suggesting that the species was able to survive transportation to landfill but unable to survive landfill conditions. Hemipyrellia ligurriens, H. chalcogaster and S. nudiseta were not imported into the landfill with MSW and pre-existing flies in and around the landfill itself may be their source. The results show that landfills can be a major source of fly breeding if cover soil or temporary cover is not applied daily or on a regular schedule. PMID:23302698

Nurita, A T; Hassan, A Abu



Mitigating CH? emissions in semi-aerobic landfills: impacts of operating conditions on abundance and community structure of methanotrophs in cover soils.  


Methanotrophs are the most important sink of CH?, which is a more highly potent greenhouse gas than CO?. Methanotrophic abundance and community diversity in cover soils from two typical semi-aerobic landfills (SALs) in China were detected using real-time polymerase chain reaction (real-time-PCR) and denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA genes, respectively. Real time-PCR showed that Type I methanotrophs ranged from 1.07 × 10? to 2.34 × 10? copies/g soil and that of Type II methanotrophs from 1.51 × 10? to 1.83 × 10? copies/g soil. The ratio of Type II to Type I methanotrophic copy numbers ranged from 5.61 to 21.89, indicating that Type II methanotrophs dominated in SAL. DGGE revealed that Type I methanotrophs responded more sensitively to the environment, changing as the community structure varied with different soil types and locations. Methylobacter, Methylosarcina, and Methylomicrobium for Type I, and Methylocystis for Type II were most prevalent in the SAL cover layer. Abundant interflow O? with high CH? concentration in SALs is the reason for the higher population density of methanotrophs and the higher enrichment of Type II methanotrophs compared with anaerobic landfills and other ecosystems, which proved a conclusion that increasing the oxygen supply in a landfill cover layer would greatly improve CH? mitigation. PMID:23711522

Li, Huai; Chi, Zi-Fang; Lu, Wen-Jing; Wang, Hong-Tao



Phyto-Cover of Landfill Sites; a Sustainable Alternative to Conventional Clay Cover  

Microsoft Academic Search

A large scale field research was carried out in five active landfill locations across Australia to investigate the viability and sustainability of a new phyto-capping system of landfill final cover as a replacement for the conventional clay cover which is expensive to build and maintain. Phytocovers consists of a deep layer of lightly compacted soil on top of the waste

Hossein Ghadiri; Pia Benaud; Margaret Greenway; Sam Yuen; Grant Zhu



Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy  

E-print Network

, drainage, hydraulic conductivity, landfill, recycling, tires #12;3 Introduction Over 280 million used1 Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy of shredded scrap tire drainage layers in landfill covers. Laboratory clogging tests were conducted using soil


TDR calibration for the alternative landfill cover demonstration (ALCD)  

SciTech Connect

The Alternative Landfill Cover Demonstration is a large scale field test that compares the performance of various landfill cover designs in dry environments. An important component of the comparison is the change in the moisture content of the soils throughout the different cover test plots. Time Domain Reflectometry (TDR) is the primary method for the measurement of the volumetric moisture content. Each of the covers is composed of layers of varying types and densities of soils. The probes are therefore calibrated to calculate the volumetric moisture content in each of the different soils in order to gain the optimum performance of the TDR system. The demonstration plots are constructed in two phases; a different probe is used in each phase. The probe that is used in Phase 1 is calibrated for the following soils: compacted native soil, uncompacted native soil, compacted native soil mixed with 6% sodium bentonite by weight, and sand. The probe that is used in Phase 2 is calibrated for the following soils: compacted native soil, uncompacted native soil, and sand. In addition, the probes are calibrated for the varying cable lengths of the TDR probes. The resulting empirically derived equations allow for the calculation of in-situ volumetric moisture content of all of the varying soils throughout the cover test plots in the demonstration.

Lopez, J.; Dwyer, S.F.; Swanson, J.N. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies Dept.



The estimation of methane emissions from landfills with different cover systems  

NASA Astrophysics Data System (ADS)

Methane is a very potent greenhouse gas, second only to CO2 as an anthropogenic contributor to global warming. Landfills are important anthropogenic source in the CH4 emissions. Microbially mediated CH4 oxidation in landfills with conventional soil covers can serve as an efficient biological sink. Methane from modern sanitary landfills equipped with composite covers and gas collection system is vented directly to the atmosphere, except for some of the largest landfills at which it is collected and burned. However, previous laboratory research has shown that biofilters have the potential to reduce CH4 emissions from landfills with modern composite covers. In this study a CH4 emission model was developed. The model used the calculated CH4 oxidation rates to estimate CH4 emissions from landfills constructed with conventional soil covers, modern composite covers, and modern composite covers plus biofilters. According to the CH4 emission rates predicted by CH4 emission model, it was estimated that 90% of the generated CH4 was emitted to the atmosphere for landfills with modern composite cover. For landfills with modern composite cover plus biofilters, an average of only 9% of the generated CH4 was estimated to be emitted. For landfills with conventional covers, an average of 83% of the generated CH4 was estimated to be emitted. By comparing the CH4 emission rates from three different landfill types, the use of a properly managed biofilter should be an effective technique to reduce CH4 emissions from landfills.

Park, S.; Lee, K.; Sung, K.



Modeling of H2S migration through landfill cover materials.  


The emission of H2S from landfills in the United States is an emergent problem because measured concentrations within the waste mass and in ambient air have been observed at potentially unsafe levels for on-site workers and at levels that can cause a nuisance and potentially deleterious health impacts to surrounding communities. Though recent research has provided data on H2S concentrations that may be observed at landfills, facility operators and landfill engineers have limited predictive tools to anticipate and plan for potentially harmful H2S emissions. A one-dimensional gas migration model was developed to assist engineers and practitioners better evaluate and predict potential emission levels of H2S based on four factors: concentration of H2S below the landfill surface (C0), advection velocity (v), H2S effective diffusion coefficient (D), and H2S adsorption coefficient of landfill cover soil (?). Model simulations indicated that H2S migration into the atmosphere can be mitigated by reducing H2S diffusion and advection or using alternative cover soils with a high H2S adsorption coefficient. Laboratory column experiments were conducted to investigate the effects of the four parameters on H2S migration in cover soils and to calculate the adsorption coefficient of different cover materials. The model was validated by comparing results with laboratory column experiments. Based on the results, the laboratory column provides an effective way to estimate the H2S adsorption coefficient, which can then be incorporated into the developed model to predict the depth of cover soil required to reduce emitted H2S concentrations below a desired level. PMID:24316799

Xu, Qiyong; Powell, Jon; Jain, Pradeep; Townsend, Timothy




EPA Science Inventory

Low permeability, compacted clay linters are commonly required as a barrier to water infiltration in landfill covers. elatively new material, known as geosynthetic clay liner (GCL), has been proposed as an alternative to a compacted clay liner. CL has the practical advantages of ...


Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost.  


Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal Facility Criteria, commonly referred to as Subtitle D, became effective on October 9, 1993. It establishes minimum criteria for solid waste disposal facility siting, design, operations, groundwater monitoring and corrective action, and closure and postclosure maintenance, while providing EPA-approved state solid waste regulatory programs flexibility in implementing the criteria. Section 258.21(a) [40 CFR 258.21(a)] requires owners or operators of municipal solid waste landfill (MSWLF) units to cover disposed solid waste with 30cm of earthen material at the end of the operating day, or at more frequent intervals, if necessary, to control disease vectors, fires, odours, blowing litter, and scavenging. This requirement is consistent with already existing solid waste facility regulations in many states. For many MSWLFs, applying daily cover requires the importation of soil which increases landfill operating costs. Daily cover also uses valuable landfill air space, reducing potential operating revenue and the landfill's operating life. 40 CFR 258.21 (b) allows the director of an approved state to approve alternative materials of an alternative thickness if the owner or operator demonstrates that the alternative material and thickness will control disease vectors, fires, odours, blowing litter, and scavenging without presenting a threat to human health and the environment. Many different types of alternative daily cover (ADC) are currently being used, including geosynthetic tarps, foams, garden waste, and auto shredder fluff. These materials use less air space than soil and can reduce operating costs. This paper discusses the variety of ADCs currently being used around the country and their applicability to different climates and operating conditions, highlighting the more unusual types of ADC, the types of demonstrations necessary to obtain approval of ADC, and the impact on landfill air space and operating costs of ADC use. PMID:11525478

Haughey, R D



Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill  

E-print Network

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M:6 427 CE Database subject headings: Evapotranspiration; Coating; Landfills; Hazardous waste; Design. Federal- and state-mandated cover systems for municipal and hazardous waste landfills in the United States

Zornberg, Jorge G.


Field application of nitrogen and phenylacetylene to mitigate greenhouse gas emissions from landfill cover soils: effects on microbial community structure.  


Landfills are large sources of CH(4), but a considerable amount of CH(4) can be removed in situ by methanotrophs if their activity can be stimulated through the addition of nitrogen. Nitrogen can, however, lead to increased N(2)O production. To examine the effects of nitrogen and a selective inhibitor on CH(4) oxidation and N(2)O production in situ, 0.5 M of NH(4)Cl and 0.25 M of KNO(3), with and without 0.01% (w/v) phenylacetylene, were applied to test plots at a landfill in Kalamazoo, MI from 2007 November to 2009 July. Nitrogen amendments stimulated N(2)O production but had no effect on CH(4) oxidation. The addition of phenylacetylene stimulated CH(4) oxidation while reducing N(2)O production. Methanotrophs possessing particulate methane monooxygenase and archaeal ammonia-oxidizers (AOAs) were abundant. The addition of nitrogen reduced methanotrophic diversity, particularly for type I methanotrophs. The simultaneous addition of phenylacetylene increased methanotrophic diversity and the presence of type I methanotrophs. Clone libraries of the archaeal amoA gene showed that the addition of nitrogen increased AOAs affiliated with Crenarchaeal group 1.1b, while they decreased with the simultaneous addition of phenylacetylene. These results suggest that the addition of phenylacetylene with nitrogen reduces N(2)O production by selectively inhibiting AOAs and/or type II methanotrophs. PMID:20809077

Im, Jeongdae; Lee, Sung-Woo; Bodrossy, Levente; Barcelona, Michael J; Semrau, Jeremy D



Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.  


Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 ?M of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n?=?6, p?

Han, Ji-Sun; Ahn, Chang-Min; Mahanty, Biswanath; Kim, Chang-Gyun




EPA Science Inventory

The HELP (Hydrologic Evaluation of Landfill Performance) Model was used to evaluate the hydrologic behavior of a series of one-, two-, and three-layer cover designs for municipal solid waste landfill cover designs were chosen to isolate the effects of features such as surface veg...



EPA Science Inventory

Numerical models using equations for linearly elastic deformation were developed to predict the maximum expected amount of settlement and cover subsidence and potential cracking of the cover by differential settlement in uniformly, horizontally layered hazardous waste landfills. ...


Field measurements of frost penetration into a landfill cover that uses a paper sludge barrier  

SciTech Connect

Frost penetration is a major environmental concern in landfill design. Freezing and thawing cycles may deteriorate the permeability of the liner or cap. In this study, the depth of frost penetration into a landfill cover that uses paper sludge as the impermeable barrier (the Hubbardston landfill in Massachusetts) was measured using a frost measurement system. A thermistor probe measured the temperature at various depths. Although temperature measurements are important, soil resistivity measurements are required to accurately predict the freezing level, since soil resistivity increases greatly upon freezing. A conductivity probe measured the half-bridge voltage between conductivity rings and a ground rod. Data were collected in data loggers. The data collected from 1992--1996 showed that the frost level did not penetrate the paper sludge capping layer. Heavy snow cover throughout the winters decreased the depth of frost penetration by insulating the landfill. The high water content in the sludge also contributed to the lack of freezing.

Moo-Young, H.K.; LaPlante, C.; Zimmie, T.F.; Quiroz, J.



On the performance of capillary barriers as landfill cover  

NASA Astrophysics Data System (ADS)

Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

Kämpf, M.; Montenegro, H.


Long-term performance of landfill covers - results of lysimeter test fields in Bavaria (Germany).  


A comprehensive study was conducted to examine the performance and possible changes in the effectiveness of landfill surface covers. Three different profiles of mineral landfill caps were examined. The results of precipitation and flow measurements show distinct seasonal differences which are typical for middle-European climatic conditions. In the case of the simple landfill cap design consisting of a thick layer of loamy sand, approximately 100-200 L m(-2) of annual seepage into the landfill body occurs during winter season. The three-layer systems of the two other test fields performed much better. Most of the water which percolated through the top soil profile drained sideways in the drainage layer. Only 1-3% of precipitation percolated through the sealing layer. The long-term effectiveness of the mineral sealing layer depended on the ability of the top soil layer to protect it from critical loss of soil water/critical increase of suction. In dry summers there was even a loss in soil water content at the base of the 2.0 m thick soil cover. The results of this study demonstrate the importance of the long-term aspect when assessing the effectiveness of landfill covers: The hydraulic conductivity at the time of construction gives only an initial (minimum) value. The hydraulic conductivity of the compacted clay layer or of the geosynthetic clay liner may increase substantially, if there is no long-lasting protection against desiccation (by a thick soil cover or by a geomembrane). This has to be taken into account in landfill cover design. PMID:20937619

Henken-Mellies, Wolf-Ulrich; Schweizer, Andreas



Hydrologic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico  

SciTech Connect

The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15 and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated waterflow datalogging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system.

Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.



Characterization of Aspen ASH, Sand and Log-Yard Waste Mixtures from an Aspen-Based Oriented Strand Board Mill for Use as an Intermediate Landfill Cover  

Microsoft Academic Search

Wood ash has a variety of uses including land application, geotechnical construction and daily and final covers for landfills. The objective of this study was to determine the relevant chemical and physical properties of selected mixtures of aspen burner-ash, log-yard waste scrapings (sandy soil plus wood waste) and a sandy soil as an intermediate landfill cover. The treatment mixtures, per

R. M. A. Block; K. C. J. van Rees



Analysis of Vegetative on Six Different Landfill Cover Profiles in an Arid Environment.  

SciTech Connect

A large-scale field demonstration comparing final landfill cover designs was constructed and monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle 'D' Soil Cover and a RCRA Subtitle 'C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for arid environments. The demonstration was intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. A portion of this project involves the characterization of vegetation establishment and growth on the landfill covers. The various prototype landfill covers were expected to have varying flux rates (Dwyer et al 2000). The landfill covers were further expected to influence vegetation establishment and growth, which may impact site erosion potential and long-term site integrity. Objectives of this phase were to quantify the types of plants occupying each site, the percentage of ground covered by these plants, the density (number of plants per unit area) of plants, and the plant biomass production. The results of this vegetation analysis are presented in this report.3 DRAFT07/06/14AcknowledgementsWe would like to thank all technical and support staff from Sandia and the USDA Forest Service's Rocky Mountain Station not included in the authors' list of this document for their valuable contributions to this research. We would also like to acknowledge the Department of Energy's Subsurface Contaminants Focus Area for funding this work.4

Dwyer, Stephen F.; McClellan, Yvonne; Reavis, Bruce A.; Dwyer, Brian P.; Newman, Gretchen; Wolters, Gale



Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill.  


According to the European Landfill Directive 1999/31/EC and the related Italian Legislation ("D. Lgs. No. 36/2003"), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO(2), CH(4) emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the "Fano" town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO(2), CH(4) emission rates varied on the whole up to about 13,100g CO(2) m(-2)d(-1) and 3800 g CH(4) m(-2)d(-1), respectively. The elaboration of these landfill gas emission data collected at the "Fano" case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH(4) emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site. PMID:21051216

Capaccioni, Bruno; Caramiello, Cristina; Tatàno, Fabio; Viscione, Alessandro



The Soil Cover  

Microsoft Academic Search

\\u000a We review the features of the soil cover that determine its biological productivity, its resilience in the face of disturbances\\u000a and its agricultural utilization – especially by ecological agriculture. We focus on the black earth, or chernozem, drawing\\u000a upon an extensive literature and recent approaches to the understanding of the soil as the Earth’s living skin. Worldwide,\\u000a chernozem soils comprise

Igori Arcadie Krupenikov; Boris P. Boincean; David Dent


Field Performance Of Three Compacted Clay Landfill Covers  

EPA Science Inventory

A study was conducted at sites in subtropical Georgia, seasonal and humid Iowa, and arid southeastern California to evaluate the field hydrology of compacted clay covers for final closure of landfills. Water balance of the covers was monitored with large (10 by 20 m ), instrumen...


Large-Scale Field Study of Landfill Covers at Sandia National Laboratories  

SciTech Connect

A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

Dwyer, S.F.



Geosynthetics International, 2010, 17, No.3 Design of a landfill final cover system  

E-print Network

cover systems. The case history involves an unlined landfill located on the east coast of the U11ited site consists of about 113 300 m2 2with a closed landfill area of about 89300 m The landfill siteGeosynthetics International, 2010, 17, No.3 Design of a landfill final cover system T. D. Stark


Impact of different plants on the gas profile of a landfill cover  

SciTech Connect

Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

Reichenauer, Thomas G., E-mail: [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Watzinger, Andrea; Riesing, Johann [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Gerzabek, Martin H. [Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, 1190 Vienna (Austria)



Identity of active methanotrophs in land¢ll cover soil as revealed by DNA-stable isotope probing  

Microsoft Academic Search

Aconsiderable amount ofmethane produced during decomposition of landfillwaste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with 13C-labelled methane and under

Levente Bodrossy; Yin Chen; Andrew C. Singer; Ian P. Thompson; James I. Prosser; J. Colin Murrell


Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.  


Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. PMID:22776254

He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng




EPA Science Inventory

The primary leachate collection system of most solid waste landfills contains a filter layer which has historically been a granular soil. ecently, however, various types of geotextile filters have been used to replace the natural soil filters. roject using six different landfill ...


Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills  

E-print Network

Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills in cover systems for abandoned landfills. The research study included extensive laboratory testing and field demonstration at an abandoned landfill in Carlinville, Ill. Laboratory testing was conducted using



EPA Science Inventory

The study evaluates the utility of two hydrologic models in designing stable landfill cover systems. The models evaluated were HELP (Hydrologic Evaluation of Landfill Performance) and CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems). Studies of paramet...


Keep your soil covered  

Technology Transfer Automated Retrieval System (TEKTRAN)

Corn residue is being considered as a possible feedstock for biofuels production. The long-term impacts on soil health of removing this residue are not well understood. Plant material is one of the soil’s main sources of organic materials. Organic matter is a very important component of soil. It su...


Assessing the performance of a cold region evapotranspiration landfill cover using lysimetry and electrical resistivity tomography.  


In order to test the efficacy ofa cold-region evapotranspiration (ET) landfill cover against a conventional compacted clay (CCL) landfill cover, two pilot scale covers were constructed in side-by-side basin lysimeters (20m x 10m x 2m) at a site in Anchorage, Alaska. The primary basis of comparison between the two lysimeters was the percolation of moisture from the bottom of each lysimeter. Between 30 April 2005 and 16 May 2006, 51.5 mm of water percolated from the ET lysimeter, compared to 50.6 mm for the the CCL lysimeter. This difference was not found to be significant at the 95% confidence level. As part of the project, electrical resistivity tomography (ERT) was utilized to measure and map soil moisture in ET lysimeter cross sections. The ERT-generated cross sections were found to accurately predict the onset and duration of lysimeter percolation. Moreover, ERT-generated soil moisture values demonstrated a strong linear relationship to lysimeter percolation rates (R-Squared = 0.92). Consequently, ERT is proposed as a reliable tool for assessing the function of field scale ET covers in the absence of drainage measurement devices. PMID:22574381

Schnabel, William E; Munk, Jens; Abichou, Tarek; Barnes, David; Lee, William; Pape, Barbara



Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction.  


Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term. PMID:21232931

Chen, Zezhi; Gong, Huijuan; Zhang, Mengqun; Wu, Weili; Liu, Yu; Feng, Jin




Microsoft Academic Search

Landfill sites commonly use the space available in disused quarries or special purpose-built structures but not all past landfill\\u000a operations were adequately controlled or documented such that the site boundaries, and the type and volume of fill are unknown\\u000a in some old covered landfill sites. Even in controlled sites, the final form and depth extent of the landfill may not

Maxwell Meju


Attenuation of hydrogen sulfide at construction and demolition debris landfills using alternative cover materials.  


The attenuation of H(2)S emissions by various landfill cover materials was evaluated using both laboratory and field experiments. The results demonstrated that cover materials consisting of selected waste products (compost and yard trash) and soils amended with quicklime and calcium carbonate effectively attenuated H(2)S emissions and detectable H(2)S emissions were only encountered in a testing plot using a sandy soil cover (average emission rate was 4.67x10(-6)mgm(-2)s(-1)). H(2)S concentration profiles in the cover materials indicated that H(2)S was removed as it migrated through the cover materials. At the same depth in the testing area, the H(2)S concentration in the sandy soil field plot was always higher than that of other testing plots because the sand (a) demonstrated less ability to remove H(2)S and (b) exhibited a higher H(2)S concentration at the base of the cover. Laboratory experiments confirmed these observations, with a combination of physical adsorption, chemical reactions, and biological oxidation, accounting for the enhanced removal. In addition to removal, the results suggest that some of the cover materials reduced H(2)S generation by creating less favorable conditions for sulfate-reducing bacteria (e.g., high pH and temperature). PMID:20022738

Xu, Qiyong; Townsend, Timothy; Reinhart, Debra



Scaling methane oxidation: from laboratory incubation experiments to landfill cover field conditions.  


Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K(m), to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field. PMID:21196106

Abichou, Tarek; Mahieu, Koenraad; Chanton, Jeff; Romdhane, Mehrez; Mansouri, Imane



Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions  

SciTech Connect

Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

Abichou, Tarek, E-mail: [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)



Design of top covers supporting aerobic in situ stabilization of old landfills - An experimental simulation in lysimeters  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC. Methane emissions from the reference lysimeter with the smaller substrate cover (12-52 g CH{sub 4}/m{sup 2} d) were significantly higher than fluxes from the other lysimeters (0-19 g CH{sub 4}/m{sup 2} d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18-26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27-45% of the precipitation). On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH{sub 4} emissions, even beyond the time of active aeration.

Hrad, Marlies [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Wimmer, Bernhard; Reichenauer, Thomas G. [Health and Environment Department, Environmental Resources and Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)



Reevaluating the role of soil layers in landfill construction  

SciTech Connect

While most Subtitle D landfills are required to use a clay soil layer to protect the bottom liner or leachate collection system, many have begun experimenting- and succeeding-with use of ground tires, wood chips, sewage sludge, compost and other materials in place of the soil.

Roberts, M.; Larky, A. [Burns & McDonnell Waste Consultants Inc., Overland Park, KS (United States)



Cover Crops Soil Health Forum  

E-print Network

blinking light, onto Silk Farm Road. 4. Entrance to Center and Sanctuary is on the left. See sign. Cover Crops & Soil Health Forum February 18, 2014 NH Audubon Center 84 Silk Farm Road Concord, NH 03301

New Hampshire, University of


Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.  

SciTech Connect

An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM); McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James




EPA Science Inventory

The current (ca. 1992) applicability of alternative materials as daily cover at landfills was assessed from an operational, performance, environmental, and economic perspective. he types of products and materials considered included commercially available foams, spray-ons and geo...


Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill  

NASA Astrophysics Data System (ADS)

The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.

Pasko, O. A.; Mochalova, T. N.



Use of the time domain reflectrometry in hydraulic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico  

SciTech Connect

The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing hydraulic and capillary engineered barriers. Seepage is being evaluated as a function of slope length for each plot, as well as interflow, runoff, and precipitation, using an automated water flow datalogging system that routinely collects hourly data. Soil water content within these 16 field plots has been routinely monitored four times a day since November 1991 using time domain reflectrometry techniques with an automated and multiplexed measurement system. Volumetric water content is measured with a pair of 60-cm-long waveguides at each of 212 locations. One set of waveguides was emplaced vertically in four locations in every soil layer to determine soil water inventory in each field plot. A second set of waveguides was emplaced horizontally in several soil layers to provide a more detailed picture of soil water dynamics close to soil layer interfaces. Field data is presented showing pulses of soil water moving through the soil and engineered barriers with high temporal and spatial resolution.

Nyhan, J.W.; Schofield, T.G.; Martin, C.E.



Design Rationale for Construction and Monitoring of Unsaturated Soil Covers at the Rocky Mountain Arsenal  

E-print Network

) site, located 18.5 km northeast of Denver, Colorado, USA, is a hazardous waste facility regulated under in two regulated landfills constructed on-site; and (b) consolidating less- contaminated soil below, a high-profile hazardous waste facility located near Denver, Colorado, USA. The soil cover system has

Zornberg, Jorge G.


Producers seed cover crops to provide a soil cover or barrier against soil erosion.  

E-print Network

Producers seed cover crops to provide a soil cover or barrier against soil erosion. In addition Erosion occurs most rapidly on cropland where there is no soil cover. Cover crops can provide protection that otherwise would detach soil particles and make them prone to erosion. Surface runoff is slowed by the cover

Kaye, Jason P.


Steel slag used in landfill cover liners: laboratory and field tests.  


Stricter rules for landfilling within the EU have led to the closure of many landfills and a need for large amounts of cover liner materials. Therefore, the potential utilization of mixtures of electric arc furnace slag (EAFS) and ladle slag (LS), which are currently deposited in landfills, as a material for use as landfill liner was investigated. Laboratory analyses showed the mixtures to have similar compression strength to that of high-strength concrete and low hydraulic conductivity (< 10(-11) m s(-1) in some cases). However, both their hydraulic conductivity and compaction properties were strongly affected by the time between adding water to the mixtures and compacting them (tests showed that a delay of 24 h can lead to an increase in hydraulic conductivity, so it should be compacted as soon as possible after mixing the material with water). In addition, the performance of a cover liner constructed using EAFS and LS was studied in a 2-year field trial on a landfill for municipal solid waste, in which the average amount of leachate collected from ten lysimeters was only 27 L m(-2) year(-1), easily meeting Swedish criteria for the permeability of covers on non-hazardous waste landfills (? 50 L m(-2) year(-1)). Thus, the material seems to have promising potential for use in barrier constructions. PMID:20421245

Herrmann, Inga; Andreas, Lale; Diener, Silvia; Lind, Lotta



Field Performance Of A Compacted Clay Landfill Final Cover At A Humid Site  

EPA Science Inventory

A study was conducted in southern Georgia, USA, to evalaute how the hydraulic properties of the compacted clay barrier layer in a final landfill cover changed over a 4-year service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed ...



E-print Network

1 MONITORING LANDFILL COVER BY ELECTRICAL RESISTIVITY1 TOMOGRAPHY ON AN EXPERIMENTAL SITE2 3 4 infiltrate the stored waste. In order to locate such leaks, electrical resistivity tomography was18 used conditions for detecting defects in22 the cover. A statistical analysis carried out on the electrical

Paris-Sud XI, Université de


Landfill cover revegetation using organic amendments and cobble mulch in the arid southwest  

SciTech Connect

Cobble mulch and composted biosolids, greenwaste, and dairy manure were added to arid soil in an attempt to improve plant establishment and production, minimize erosion, increase evapotranspiration, and reduce leaching. Twenty-four plots (10 x 10 m) were established in a completely randomized block design (8 treatments, 3 plots per treatment). Treatments included (1) non-irrigated control, (2) irrigated control, (3) non-irrigated greenwaste compost (2.5 yd{sup 3} per plot), (4) irrigated greenwaste compost (5 yd{sup 3} per plot), (5) non-irrigated biosolids compost (2.5 yd{sup 3} per plot), (6) irrigated biosolids compost (5 yd{sup 3} per plot), (7) cobble-mulch, and (8) non-irrigated dairy manure compost (2.5 yd{sup 3} per plot). Soil samples were collected from each plot for laboratory analyses to assess organic matter contents, macro-nutrient levels and trace metal contents, and nitrogen mineralization potential. All plots were seeded similarly with approximately equal portions of cool and warm season native grasses. The organic composts (greenwaste, biosolids, dairy manure) added to the soils substantially increased soil organic matter and plant nutrients including total nitrogen and phosphorus. However, the results of a laboratory study of the soils' nitrogen mineralization potential after the application of the various composts showed that the soil nitrogen-supplying capability decreased to non-amended soil levels by the start of the second growing season. Thus, from the standpoint of nitrogen fertilizer value, the benefits of the organic compost amendments appear to have been relatively short-lived. The addition of biosolids compost, however, did not produce significant changes in the soils' copper, cadmium, lead, and zinc concentrations and thus did not induce adverse environmental conditions due to excessive heavy metal concentrations. Supplemental irrigation water during the first and second growing seasons did not appear to increase plant biomass production in the irrigated control plots over that produced in the non-irrigated control plots. This surprising result was probably due to the cumulative effects of other factors that influenced the initial establishment and production of plants in the plots (e.g., plant species competition, seed germination delay times, differences in nutrient release and availability). Variation within individual plots, and among the three replicate plots associated with each treatment, rendered many of the recorded differences in vegetation establishment and production statistically insignificant. However, after two complete growing seasons the highest total plant foliar cover and the greatest biomass production and plant species diversity occurred in the cobble-mulched plots. These results suggest that cobble-mulch may be the desired amendment in re-vegetated arid landfill covers if the principal objectives are to quickly establish vegetation cover, stabilize the site from erosion, and increase water usage by plants, thereby reducing the potential for leaching and contaminant movement from the landfill's waste-bearing zone.




Functional Environmental Genomics of a Municipal Landfill Soil  

PubMed Central

We investigated the toxicity of soil samples derived from a former municipal landfill site in the South of the Netherlands, where a bioremediation project is running aiming at reusing the site for recreation. Both an organic soil extract and the original soil sample was investigated using the ISO standardized Folsomia soil ecotoxicological testing and gene expression analysis. The 28 day survival/reproduction test revealed that the ecologically more relevant original soil sample was more toxic than the organic soil extract. Microarray analysis showed that the more toxic soil samples induced gene regulatory changes in twice as less genes compared to the soil extract. Consequently gene regulatory changes were highly dependent on sample type, and were to a lesser extent caused by exposure level. An important biological process shared among the two sample types was the detoxification pathway for xenobiotics (biotransformation I, II, and III) suggesting a link between compound type and observed adverse effects. Finally, we were able to retrieve a selected group of genes that show highly significant dose-dependent gene expression and thus were tightly linked with adverse effects on reproduction. Expression of four cytochrome P450 genes showed highest correlation values with reproduction, and maybe promising genetic markers for soil quality. However, a more elaborate set of environmental soil samples is needed to validate the correlation between gene expression induction and adverse phenotypic effects. PMID:22623925

Roelofs, Dick; de Boer, Muriel; Agamennone, Valeria; Bouchier, Pascal; Legler, Juliette; van Straalen, Nico



Two-year performance by evapotranspiration covers for municipal solid waste landfills in northwest Ohio  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer All ET covers produced rates of percolation less than 32 cm yr{sup -1}, the maximum allowable rate by the Ohio EPA. Black-Right-Pointing-Pointer Dredged sediment provided sufficient water storage and promoted growth by native plant species. Black-Right-Pointing-Pointer Native plant mixtures attained acceptable rates of evapotranspiration throughout the growing season. - Abstract: Evapotranspiration (ET) covers have gained interest as an alternative to conventional covers for the closure of municipal solid waste (MSW) landfills because they are less costly to construct and are expected to have a longer service life. Whereas ET covers have gained acceptance in arid and semi-arid regions (defined by a precipitation (P) to potential evapotranspiration (PET) ratio less than 0.75) by meeting performance standards (e.g. rate of percolation), it remains unclear whether they are suitable for humid regions (P:PET greater than 0.75). The goal of this project is to extend their application to northwest Ohio (P:PET equals 1.29) by designing covers that produce a rate of percolation less than 32 cm yr{sup -1}, the maximum acceptable rate by the Ohio Environmental Protection Agency (OEPA). Test ET covers were constructed in drainage lysimeters (1.52 m diameter, 1.52 m depth) using dredged sediment amended with organic material and consisted of immature (I, plants seeded onto soil) or mature (M, plants transferred from a restored tall-grass prairie) plant mixtures. The water balance for the ET covers was monitored from June 2009 to June 2011, which included measured precipitation and percolation, and estimated soil water storage and evapotranspiration. Precipitation was applied at a rate of 94 cm yr{sup -1} in the first year and at rate of 69 cm yr{sup -1} in the second year. During the first year, covers with the M plant mixture produced noticeably less percolation (4 cm) than covers with the I plant mixture (17 cm). However, during the second year, covers with the M plant mixture produced considerably more percolation (10 cm) than covers with the I plant mixture (3 cm). This is likely due to a decrease in the aboveground biomass for the M plant mixture from year 1 (1008 g m{sup -2}) to year 2 (794 g m{sup -2}) and an increase for the I plant mixture from year 1 (644 g m{sup -2}) to year 2 (1314 g m{sup -2}). Over the 2-year period, the mean annual rates of percolation for the covers with the M and I plant mixtures were 7 and 8 cm yr{sup -1}, which are below the OEPA standard. The results suggest the application of ET covers be extended to northwest Ohio and other humid regions.

Barnswell, Kristopher D., E-mail: [Department of Environmental Sciences, University of Toledo, Lake Erie Center, 6200 Bayshore Rd., Oregon, OH 43616 (United States); Dwyer, Daryl F., E-mail: [Department of Environmental Sciences, University of Toledo, 2801 W. Bancroft, Mail Stop 604, Toledo, OH 43606 (United States)



A fully coupled model for water-gas-heat reactive transport with methane oxidation in landfill covers.  


Methane oxidation in landfill covers is a complex process involving water, gas and heat transfer as well as microbial oxidation. The coupled phenomena of microbial oxidation, water, gas, and heat transfer are not fully understood. In this study, a new model is developed that incorporates water-gas-heat coupled reactive transport in unsaturated soil with methane oxidation. Effects of microbial oxidation-generated water and heat are included. The model is calibrated using published data from a laboratory soil column test. Moreover, a series of parametric studies are carried out to investigate the influence of microbial oxidation-generated water and heat, initial water content on methane oxidation efficiency. Computed and measured results of gas concentration and methane oxidation rate are consistent. It is found that the coupling effects between water-gas-heat transfer and methane oxidation are significant. Ignoring microbial oxidation-generated water and heat can result in a significant difference in methane oxidation efficiency by 100%. PMID:25489976

Ng, C W W; Feng, S; Liu, H W



Feasibility Study, Primary Designs and Development of Alternative Evapotranspiration Covers for Landfills and Waste Dump Sites in Tropical Locations  

Microsoft Academic Search

People generate a large and ever-increasing volume of waste, which originates in rural and urban areas, industrial operations and other activities. In spite of waste recycling, which is the solution to the huge amount of solid waste, a large part of it is deposited into landfills, dumps, etc.Landfills are, at present, the most widely used waste disposal facilities. Final cover

Francisco Jose Escobar



Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner  

NASA Astrophysics Data System (ADS)

Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.

Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert



75 FR 50930 - Final Determination To Approve Alternative Final Cover Request for the Lake County, Montana Landfill  

Federal Register 2010, 2011, 2012, 2013, 2014

...Cover Request for the Lake County, Montana Landfill AGENCY: Environmental Protection...owned and operated by Lake County, Montana on the Confederated Salish and Kootenai Tribes' Flathead Reservation in Montana. EPA is promulgating a...



Methane flux and oxidation at two types of intermediate landfill covers  

SciTech Connect

Methane emissions were measured on two areas at a Florida (USA) landfill using the static chamber technique. Because existing literature contains few measurements of methane emissions and oxidation in intermediate cover areas, this study focused on field measurement of emissions at 15-cm-thick non-vegetated intermediate cover overlying 1-year-old waste and a 45-cm-thick vegetated intermediate cover overlying 7-year-old waste. The 45 cm thick cover can also simulate non-engineered covers associated with older closed landfills. Oxidation of the emitted methane was evaluated using stable isotope techniques. The arithmetic means of the measured fluxes were 54 and 22 g CH{sub 4} m{sup -2} d{sup -1} from the thin cover and the thick cover, respectively. The peak flux was 596 g m{sup -2} d{sup -1} for the thin cover and 330 g m{sup -2} d{sup -1} for the thick cover. The mean percent oxidation was significantly greater (25%) at the thick cover relative to the thin cover (14%). This difference only partly accounted for the difference in emissions from the two sites. Inverse distance weighing was used to describe the spatial variation of flux emissions from each cover type. The geospatial mean flux was 21.6 g m{sup -2} d{sup -1} for the thick intermediate cover and 50.0 g m{sup -2} d{sup -1} for the thin intermediate cover. High emission zones in the thick cover were fewer and more isolated, while high emission zones in the thin cover were continuous and covered a larger area. These differences in the emission patterns suggest that different CH{sub 4} mitigation techniques should be applied to the two areas. For the thick intermediate cover, we suggest that effective mitigation of methane emissions could be achieved by placement of individualized compost cells over high emission zones. Emissions from the thin intermediate cover, on the other hand, can be mitigated by placing a compost layer over the entire area.

Abichou, Tarek [Department of Civil and Environmental Engineering, Florida A and M University, Florida State University, College of Engineering, Tallahassee, FL 32310 (United States)]. E-mail:; Chanton, Jeffery [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Powelson, David [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Fleiger, Jill [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Escoriaza, Sharon [Department of Civil and Environmental Engineering, Florida A and M University, Florida State University, College of Engineering, Tallahassee, FL 32310 (United States); Lei, Yuan [Department of Civil and Environmental Engineering, Florida A and M University, Florida State University, College of Engineering, Tallahassee, FL 32310 (United States); Stern, Jennifer [Department of Geology, Florida State University, Tallahassee, FL 32306 (United States)



A laboratory study of landfill-leachate transport in soils.  


Continuous flow experiments were conducted using sand-packed columns to investigate the relative significance of bacterial growth, metal precipitation, and anaerobic gas formation on biologically induced clogging of soils. Natural leachate from a local municipal landfill, amended with acetic acid, was fed to two sand-packed columns operated in upflow mode. Degradation of the influent acetic acid resulted in the production of methane and carbon dioxide, and simultaneous reduction of manganese, iron, and sulphate. Subsequent increase in the influent acetic acid concentration from 1750 to 2900 mg/l, and then to 5100 mg/l, led to rapid increase in the dissolved inorganic carbon, solution pH, and soil-attached biomass concentration at the column inlet, which promoted the precipitation of Mn(2+) and Ca(2+) as carbonate, and Fe(2+) as sulphide. An influent acetic acid concentration of 1750 mg/l decreased the soil's hydraulic conductivity from an initial value of 8.8 x 10(-3)cm/s to approximately 7 x 10(-5)cm/s in the 2-6 cm section of the column. Increasing the influent acetic acid to 5100 mg/l only further decreased the hydraulic conductivity to 3.6 x 10(-5)cm/s; rather, the primary effect was to increase the length of the zone experiencing reduced hydraulic conductivity from 0-6 cm to the entire column. As bioaccumulation was limited to the 0-5 cm section of the column, and the effect of metal precipitation was negligible, the reduction on the deeper sections of the column is attributed to gas flow, which was up to 1440 ml/day. Mathematical modelling shows that biomass accumulation and gas formation were equally significant in reducing the hydraulic conductivity, while metal precipitation contributed only up to 4% of the observed reduction. PMID:15087184

Islam, Jahangir; Singhal, Naresh




EPA Science Inventory

Characteristics of Resource Conservation and Recovery Act hazardous waste landfills and of landfilled hazardous wastes have been described to permit development of models and other analytical techniques for predicting, reducing, and preventing landfill settlement and related cove...


Soils and the soil cover of the Valley of Geysers  

NASA Astrophysics Data System (ADS)

The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

Kostyuk, D. N.; Gennadiev, A. N.



Soil seed bank of the waste landfills in South Korea  

Microsoft Academic Search

The restoration of urban landfill is a topic of growing interest in reclamation ecology as the acreage of abandoned sites near cities increases. The goals of this study were to assess the ecological status of waste landfills and to elucidate the role of seed banks in the establishment of vegetation at these sites. The study sites were located at five

Kee Dae Kim; Eun Ju Lee



Effects of substrate induced respiration on the stability of bottom ash in landfill cover environment.  


The municipal solid waste incineration bottom ash is being increasingly used to construct landfill covers in Sweden. In post-closure, owing to increased cover infiltration, the percolating water can add external organic matter to bottom ash. The addition and subsequent degradation of this external organic matter can affect metal mobility through complexation and change in redox conditions. However, the impacts of such external organic matter addition on bottom ash stability have not been fully evaluated yet. Therefore, the objective of this study was to evaluate the impact of external organic matter on bottom ash respiration and metal leaching. The samples of weathered bottom ash were mixed with oven dried and digested wastewater sludge (1%-5% by weight). The aerobic respiration activity (AT4), as well as the leaching of metals, was tested with the help of respiration and batch leaching tests. The respiration and heavy metal leaching increased linearly with the external organic matter addition. Based on the results, it was concluded that the external organic matter addition would negatively affect the quality of landfill cover drainage. PMID:25395160

Ilyas, A; Lovat, E; Persson, Km



A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico  

SciTech Connect

The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and once in ten year events, respectively, whereas corresponding values for runoff were 13% and 16%; these changes were accompanied by corresponding decreases in evapotranspiration, which accounted for 86% and only 78% of the precipitation occurring on the average and once in ten year even~ respectively.

David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar



Steel slags in a landfill top cover--experiences from a full-scale experiment.  


A full scale field study has been carried out in order to test and evaluate the use of slags from high-alloy steel production as the construction materials for a final cover of an old municipal landfill. Five test areas were built using different slag mixtures within the barrier layer (liner). The cover consisted of a foundation layer, a liner with a thickness of 0.7 m, a drainage layer of 0.3 m, a protection layer of 1.5 m and a vegetation layer of 0.25 m. The infiltration varied depending on the cover design used, mainly the liner recipe but also over time and was related to seasons and precipitation intensity. The test areas with liners composed of 50% electric arc furnace (EAF) slag and 50% cementitious ladle slag (LS) on a weight basis and with a proper consistence of the protection layer were found to meet the Swedish infiltration criteria of ?50 l (m(2)a)(-1) for final covers for landfills for non-hazardous waste: the cumulative infiltration rates to date were 44, 19 and 0.4 l (m(2)a)(-1) for A1, A4 and A5, respectively. Compared to the precipitation, the portion of leachate was always lower after the summer despite high precipitation from June to August. The main reason for this is evapotranspiration but also the fact that the time delay in the leachate formation following a precipitation event has a stronger effect during the shorter summer sampling periods than the long winter periods. Conventional techniques and equipment can be used but close cooperation between all involved partners is crucial in order to achieve the required performance of the cover. This includes planning, method and equipment testing and quality assurance. PMID:24393476

Andreas, L; Diener, S; Lagerkvist, A



Evaluating biotoxicity variations of landfill leachate as penetrating through the soil column.  


Recent studies of leachate-induced ecotoxicity have focused on crude samples, while little attention has been given to changes in biotoxicity resulting from the environmental behavior of landfill leachate. Therefore, we set up a soil column to simulate the underground penetration of leachate into the soil layer, define the rules of migration and transformation of leachate pollutants, and determine the variation in toxicity of landfill leachate during penetration. The results demonstrated that: (1) landfill leachate inhibited the growth and chlorophyll levels, elevated the levels of lipid peroxidation and protein oxidation, and stimulated the antioxidant enzyme activities of barley seedlings. The effects generally displayed a peak value at 12-24 cm, slowly declined at 36-48 cm, and then rapidly decreased with penetrating distance in the column. (2) Statistical correlation analysis of the properties of leachate and the observed biotoxic effects revealed that COD, conductivity and heavy metals (esp. Ni, Mn, Cd) were positively correlated with variations in biotoxicity. (3) The microbial activity of outflowing leachate sampled from the 48 cm port was significantly higher than the activity from succedent ports, and the types of contaminants increased in the leachate outflowing from the same port, implying that microbial behaviors near the 48 cm port could be used to partially evaluate variations in the composition and biotoxicity of landfill leachate. Taken together, the above results illustrate the polluting characteristics of landfill leachate when penetrating a soil column and provide guidance for pollution control and risk assessment of landfill leachate. PMID:23522605

Zhu, Na; Ku, Tingting; Li, Guangke; Sang, Nan



Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.  


Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture. PMID:25254294

Schnabel, William; Munk, Jens; Byrd, Amanda




EPA Science Inventory

The liquids management strategy for any municipal or hazardous waste landfill requires a knowledgeable design strategy for the leachate collection system located at the base of the waste mass. Such leachate collection systems generally consist of sumps, perforated pipes, drainag...


Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier.  


The intrusion of moisture into landfills can pose a health hazard because of the possibility that the moisture will carry harmful substances into the groundwater. Early detection of moisture anywhere within these landfills is essential if corrective action is to be taken well before an occurrence of this kind. This paper presents the results of a field-scale simulation test of the use of fiber optics to detect the presence of moisture within landfill covers, using a detection method based on the thermal response of soils as a function of their moisture content. By sending electrical current through an embedded stainless-steel tube, soils of varying moisture content were heated and time-dependent temperature measurements were obtained with a fiber-optic distributed temperature sensor system. The optical fiber itself lay within the tube, but its temperature was a function of how rapidly heat was conducted into the surrounding medium. The results of this experiment, which are in agreement with those obtained using more traditional "point" sampling and laboratory analysis, are presented along with the strengths and limitations of the thermal-response method of detecting moisture. PMID:13678370

Weiss, Jonathan D



Soil contamination by heavy metals in landfills: measurements from an unlined leachate storage basin.  


Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of soil pollution within and around the Jebel Chakir landfill, located in the Tunis City, Tunisia. The main objective was to characterize soil samples of an unlined storage basin in relation to heavy metal concentrations in the Jebel Chakir landfill to the southwest of Tunis, Northern Tunisia. Twenty-four soil samples taken from different locations around the storage basin were analyzed by atomic absorption spectrophotometry for Cr, Cu, Ni, Pb, and Zn investigation. Our results indicated high concentrations of Cr (54.4-129.9 mg/kg of DM), Zn (4.1-81.8 mg/kg of DM), Ni (15.1-43.9 mg/kg of DM), Pb (5.6-16.1 mg/kg of DM), and Cu (0.2-1.84 mg/kg of DM). These results suggested that contaminant migration is controlled by an active clay layer acting as an insulating material in the landfill. It is therefore necessary to set a treatment system for the landfill leachates and place a liner under the storage basin to reduce the pollution threat. PMID:24723123

Bouzayani, Fethi; Aydi, Abdelwaheb; Abichou, Tarek




Microsoft Academic Search

This article reviews literature about the impacts of cover crops in cropping systems that affect soil and water quality and presents limited new information to help fill knowledge gaps. Cover crops grow during periods when the soil might otherwise be fallow. While actively growing, cover crops increase solar energy harvest and carbon flux into the soil, providing food for soil

S. M. Dabney; J. A. Delgado; D. W. Reeves



Study of Soil Washing for Remediation of Pb and Zn Contaminated Coastal Landfill  

NASA Astrophysics Data System (ADS)

As a result of analyzing the pre-treatment process of Pb, Zn in contaminated coastal landfill soil presented by Korean Soil Analysis Method, the each concentration was presented 577.00mg/kg, 3894.34mg/kg. This soil was critically contaminated with Pb and Zn because it was exceeded the Standard of soil contamination(2area: Pb-400mg/kg, Zn-600mg/kg). Soil remediation efficiency of the soil washing process for the removal of Pb and Zn was determined to be consistent with the results. The batch experiment on the several washing solutions(HCl, HNO3), washing solutions concentrations(0.1-0.8M) and the ratio of soil vs. solution for soil washing(1:3, 1:5 and 1:10) was performed. The results of experiments, washing time was appropriate in 30 minutes. The removal efficiency of soil washing increased as the ratio of soil vs. washing solution increased. But, in the case of heavy metals, the soil vs. solution for soil washing was determined as the optimal ratio of 1 : 5. Five consecutive soil washing with 0.5M of HCl and HNO3 solutions were performed. Results of experiments, in case of Pb was removed by target removal efficiency from soil on the twice washing. With in case of Zn was over on the first washing by target removal efficiency, but suggesting that twice consecutive soil washing is desirable as stability at field. Results of consecutive soil washing experiments, the removal efficiency maintained lower than 10 % after the 4th washing. From the results, demanding consecutive washing is not recommended. Results about the heavy metal contaminated soil washing experiments of the coastal landfill, in the case of HCl with more than 0.5 M of solution was performed at 1:5 of soil ratio vs. solution, 30 minutes of washing time and 2-3 consecutive soil washing. And in the case of HNO3 with 0.8 M of solution was performed various ratios of soil vs. washing solution, suggesting that 2-3 consecutive soil washing was reached to Pb and Zn target removal efficiency. Key words : landfill soil; washing solution; heavy metal contamination; soil remediation; soil washing; soil contamination

Park, S.; Kim, S.; Lee, M.



Treatment of landfill leachate by using lateritic soil as a natural coagulant.  


In this research, the capability of lateritic soil used as coagulant for the treatment of stabilized leachate from the Penang-Malaysia Landfill Site was investigated. The evaluation of lateritic soil coagulant in comparison with commercialized chemical coagulants, such as alum, was performed using conventional jar test experiments. The optimum pH and coagulant dosage were identified for the lateritic soil coagulant and the comparative alum coagulant. It was found that the application of lateritic soil coagulant was quite efficient in the removal of COD, color and ammoniacal-nitrogen content from the landfill leachate. The optimal pH value was 2.0, while 14 g/L of lateritic soil coagulant was sufficient in removing 65.7% COD, 81.8% color and 41.2% ammoniacal-nitrogen. Conversely, the optimal pH and coagulant dosage for the alum were pH 4.8 and 10 g/L respectively, where 85.4% COD, 96.4% color and 47.6% ammoniacal-nitrogen were removed from the same leachate sample. Additionally, the Sludge Volume Index (SVI) ratio of alum and lateritic soil coagulant was 53:1, which indicated that less sludge was produced and was an environmentally friendly product. Therefore, lateritic soil coagulant can be considered a viable alternative in the treatment of landfill leachate. PMID:22964042

Syafalni; Lim, Han Khim; Ismail, Norli; Abustan, Ismail; Murshed, Mohamad Fared; Ahmad, Anees



The use of cover crops to manage soil  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cover crops are used to manage soils for many different reasons. Inserting cover crops into fallow periods and spaces in cropping systems is a beneficial soil management practice. Natural ecosystems typically have some plants growing, covering the soil, transpiring water, taking up nutrients, fixing...


Barometric pumping of burial trench soil gases into the atmosphere at the 740-G Sanitary Landfill  

SciTech Connect

In 1991, a soil gas survey was performed at the Savannah River Site Sanitary Landfill as part of the characterization efforts required under the integrated Resource Conservation and Recovery Act (RCRA) Facility Investigation and Comprehensive Environmental Resource Conservation and Recovery Act (CERCLA) Remedial Investigation (RFI/RI) program. This report details the findings of this survey, which identified several areas of the landfill that were releasing volatile organic compounds to the atmosphere at levels exceeding regulatory standards. Knowledge of the rates of VOC outgassing is necessary to protect site workers, provide input into the human health and environmental risk assessment documents and provide input into the remedial design scenario.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.



Effect of Cover Crops on Soil Fungal Diversity and Biomass  

Technology Transfer Automated Retrieval System (TEKTRAN)

The effects of various cover crops (sordan, mustard, canola, honeysweet, and fallow) to influence soil fungal biomass and diversity were tested in a potato field in the San Luis Valley, Colorado. Soil samples (0-5 cm depth) were randomly selected from each cover crop plot and soil fungal communitie...


Remote sensing of crop residue cover and soil tillage intensity  

Microsoft Academic Search

Management of plant litter or crop residues in agricultural fields is an important consideration for reducing soil erosion and increasing soil organic C. Current methods of quantifying crop residue cover are inadequate for characterizing the spatial variability of residue cover within fields or across large regions. Our objectives were to evaluate several spectral indices for measuring crop residue cover using

C. S. T. Daughtry; P. C. Doraiswamy; E HUNTJR; A. J. Stern; J MCMURTREYIII; J. H. Prueger



Methane emissions from MBT landfills  

SciTech Connect

Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

Heyer, K.-U., E-mail:; Hupe, K.; Stegmann, R.



Estimation on the self recovery behavior of low-conductivity layer in landfill final cover by laboratory conductivity tests.  


This study examined the application of a Self Recovering Sustainable Layer (SRSL) as a landfill final cover. Low-conductivity layers in landfill covers are known to have problems associated with cracking as a result of the differential settlement or climatic changes. A SRSL is defined as a layer with chemical properties that reduces the increased hydraulic conductivity resulting from cracking by forming low-conductivity precipitates of chemicals contained in the layer. In this study, the formation of precipitates was confirmed using a batch test, spectroscopic analysis and mineralogical speciation tests. The possibility of secondary contamination due to the chemicals used for recovery was evaluated using a leaching test. A laboratory conductivity test was performed on a single layer composed of each chemical as well as on a 2-layer system. The recovery performance of the SRSL was estimated by developing artificial cracks in the specimens and observing the change in hydraulic conductivity as a function of time. In the laboratory conductivity test, the hydraulic conductivity of a 2-layer system as well as those of the individual layers that comprise the 2-layer system was estimated. In addition sodium ash was found to enhance the reduction in conductivity. A significant increase in conductivity was observed after the cracks developed but this was reduced with time, which indicated that the SRSL has a proper recovering performance. In conclusion, a SRSL can be used as a landfill final cover that could maintain low-conductivity even after the serious damages due to settlement. PMID:17203605

Kwon, O; Park, J



Soil erosion under different vegetation covers in the Venezuelan Andes  

Microsoft Academic Search

This comparative study of soil erosion considered different environments in an ecological unit of the Venezuelan Andes. The soils belong to an association of typic palehumults and humic dystrudepts. Soil losses were quantified by using erosion plots in areas covered by four types of vegetation, including both natural and cultivated environments. The highest soil erosion rate evaluated corresponded to horticultural

Luz Amelia Sánchez; Michele Ataroff; Roberto López



Remote sensing of crop residue cover and soil tillage intensity  

Microsoft Academic Search

Crop residues on the soil surface reduce soil erosion and affect water infiltration, evaporation, and soil temperatures. Crop residues also influence the flow of nutrients, carbon, water, and energy in agricultural ecosystems. Current methods of measuring crop residue cover are inadequate for monitoring large areas. One promising remote sensing approach for discriminating crop residues from soil is based on a

C. S. T. Daughtry; P. C. Doraiswamy; A. L. Russ




EPA Science Inventory

This investigation was conducted to assess the applicability of currently available (ca. 1992) alternative materials for use as daily cover at landfills. Information on characteristics, material and equipment requirements, methods of preparation and application, climatic and ope...


The release of As, Cr and Cu from contaminated soil stabilized with APC residues under landfill conditions.  


The aim of this study was to investigate the stability of As, Cr and Cu in contaminated soil treated with air pollution control residues under landfill conditions. The influence of landfill gas and temperature on the release of trace elements from stabilized soil was simulated using a diffusion test. The air pollution control residues immobilized As through the precipitation of Ca-As minerals (calcium arsenate (Ca5H2(AsO4)3 × 5H2O), weilite (CaAsO4) and johnbaumite (Ca5(AsO4)3(OH)), incorporation of As into ettringite (Ca6Al2(SO4)3(OH)12 × 26H2O) and adsorption by calcite (CaCO3). The air pollution control residues generally showed a high resistance to pH reduction, indicating high buffer capacity and stability of immobilized As in a landfill over time. Generation of heat in a landfill might increase the release of trace elements. The release of As from stabilized soil was diffusion-controlled at 60 °C, while surface wash-off, dissolution, and depletion prevailed at 20 °C. The air pollution control residues from the incineration of municipal solid waste immobilized Cr, indicating its stability in a landfill. The treatment of soil with air pollution control residues was not effective in immobilization of Cu. Contaminated soils treated with air pollution control residues will probably have a low impact on overall leachate quality from a landfill. PMID:25528268

Travar, I; Kihl, A; Kumpiene, J



Passive and active soil gas sampling at the Mixed Waste Landfill, Technical Area III, Sandia National Laboratories/New Mexico  

SciTech Connect

The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessing and remediating the Mixed Waste Landfill in Technical Area III. The Mixed Waste Landfill is a 2.6 acre, inactive radioactive and mixed waste disposal site. In 1993 and 1994, an extensive passive and active soil gas sampling program was undertaken to identify and quantify volatile organic compounds in the subsurface at the landfill. Passive soil gas surveys identified levels of PCE, TCE, 1,1, 1-TCA, toluene, 1,1,2-trichlorotrifluoroethane, dichloroethyne, and acetone above background. Verification by active soil gas sampling confirmed concentrations of PCE, TCE, 1,1,1-TCA, and 1,1,2-trichloro-1,2,2-trifluoroethane at depths of 10 and 30 feet below ground surface. In addition, dichlorodifluoroethane and trichlorofluoromethane were detected during active soil gas sampling. All of the volatile organic compounds detected during the active soil gas survey were present in the low ppb range.

McVey, M.D.; Goering, T.J. [GRAM, Inc., Albuquerque, NM (United States); Peace, J.L. [Sandia National Labs., Albuquerque, NM (United States)



Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.  


The effects of wastewater application on electrical conductivity, water retention and water repellency of soils planted with Populus deltoides (eastern cottonwood) and irrigated with different concentrations of landfill leachate and compost wastewater, tap water and nutrient solution were evaluated. Substrate water content at field capacity (-0.033 MPa) and at permanent wilting point (-1.5 MPa) was determined with a pressure plate extractor to assess available water capacity of the substrate. A water drop penetration test was used to determine substrate water repellency. The biomass of nutrient and landfill leachate treatments was significantly (P<0.05) greater compared to the tap water and compost wastewater treatments. All treatments increased substrate water content at field capacity and at permanent wilting point. Landfill leachate significantly increased available water capacity (up to 52%); treatment with compost wastewater significantly decreased it (25-47%). All substrates showed increased water repellency after the experiment at field capacity and permanent wilting point comparing to the original substrate. The strongest influence on water repellency at both field capacity and permanent wilting point showed irrigation with compost wastewater and tap water. Pronounced influence on substrate's water repellency of compost wastewater could be contributed to a high content of dissolved organic carbon, whereas Mg and Ca cations caused flocculation and consequent water repellency of the substrate irrigated with tap water. The results indicate that soil physical characteristics must be closely monitored when landfill leachate and compost wastewater are used for irrigation to avoid long term detrimental effects on the soil, and consequently on the environment. Due to the complexity of the compost wastewater quality the latter should be applied on open fields only after prior pre-treatment to reduce dissolved organic carbons, or alternatively, compost wastewater should be added only intermittently and in diluted ratios. PMID:20554192

Zupanc, Vesna; Justin, Maja Zupan?i?



Isolation of methanotrophic bacteria from a london landfill: a preliminary study using molecular and stable isotopic techniques  

Microsoft Academic Search

Methane emissions from landfills are an important source of European greenhouse emissions, and could be reduced by a biological management program that used methanotrophs in landfill cover soils. Topsoil samples taken from a London Landfill were incubated on Nitrate Mineral Salts medium in the presence of methane. The resulting colonies were probed for methanotrophic DNA using PCR amplification. DNA from

S. Sriskantharajah; S. Cutting; D. Lowry; N. Grassineau; E. Nisbet



Soil cover of gas-bearing areas  

NASA Astrophysics Data System (ADS)

Natural soils with disturbed functioning parameters compared to the background soils with conservative technogenic-pedogenic features were distinguished on vast areas above the artificial underground gas storages in the zones of spreading and predominant impact of hydrocarbon gases. The disturbance of the functioning parameters is related to the increase in the methane concentration, the bacterial oxidation intensity and destruction, and the complex microbiological and physicochemical synthesis of iron oxides. The technogenic-pedogenic features include neoformations of bacteriomorphic microdispersed iron oxides. The impurity components consist of elements typical for biogenic structures. New soil layers, horizons, specific anthropogenically modified soils, and soil-like structures were formed on small areas in the industrial zones of underground gas storages due to the mechanical disturbance, the deposition of drilling sludge, and the chemical contamination. Among the soils, postlithogenic formations were identified—chemotechnosols (soddy-podzolic soils and chernozems), as well as synlithogenic ones: strato-chemotechnosols and stratochemoembryozems. The soil-like bodies included postlithogenic soil-like structures (chemotechnozems) and synlithogenic ones (strato-chemotechnozems). A substantive approach was used for the soil diagnostics. The morphological and magnetic profiles and the physical, chemical, and physicochemical properties of the soils were analyzed. The micromorphological composition of the soil magnetic fraction was used as a magnetic label.

Mozharova, N. V.



Assessment of soil-gas, soil, and water contamination at the former hospital landfill, Fort Gordon, Georgia, 2009-2010  

USGS Publications Warehouse

Soil gas, soil, and water were assessed for organic and inorganic constituents at the former hospital landfill located in a 75-acre study area near the Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, from April to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone of a creek adjacent to the landfill and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Results from the hyporheic-zone assessment in the unnamed tributary adjacent to the study area indicated that total petroleum hydrocarbons and octane were the most frequently detected organic compounds in groundwater beneath the creek bed. The highest concentrations for these compounds were detected in the upstream samplers of the hyporheic-zone study area. The effort to delineate landfill activity in the study area focused on the western 14 acres of the 75-acre study area where the hyporheic-zone study identified the highest concentrations of organic compounds. This also is the part of the study area where a debris field also was identified in the southern part of the 14 acres. The southern part of this 14-acre study area, including the debris field, is steeper and not as heavily wooded, compared to the central and northern parts. Fifty-two soil-gas samplers were used for the July 2010 soil-gas survey in the 14-acre study area and mostly detected total petroleum hydrocarbons, and gasoline and diesel compounds. The highest soil-gas masses for total petroleum hydrocarbons, diesel compounds, and the only valid detection of perchloroethene were in the southern part of the study area to the west of the debris field. However, all other detections of total petroleum hydrocarbons greater than 10 micrograms and diesel greater than 0.04 micrograms, and all detections of the combined mass of benzene, toluene, ethylbenzene, and xylene were found down slope from the debris field in the central and northern parts of the study area. Five soil-gas samplers were deployed and recovered from September 16 to 22, 2010, and were analyzed for organic compounds classified as chemical agents or explosives. Chloroacetophenones (a tear gas component) were the only compounds detected above a method detection level and were detected at the same location as the highest total petroleum hydrocarbons and diesel detections in the southern part of the 14-acre study area. Composite soil samples collected at five locations were analyzed for 35 inorganic constituents. None of the inorganic constituents exceeded the regional screening levels. One surface-water sample collected in the western end of the hyporheic-zone study area had a trichlorofluoromethane concentration above the laboratory reporting level and estimated concentrations of chloroform, fluoranthene, and isophorone below laboratory reporting levels.

Falls, Fred W.; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.



Soil phosphorus forms as quality indicators of soils under different vegetation covers  

Microsoft Academic Search

The type of vegetation cover determines the physicochemical and biological properties of the soil over which they are developing. The objective of this study was to determine the effect of different vegetation covers on the forms of soil phosphorus, in order to know which of these forms can be used as a soil quality indicator. The experimental area was located

María-Belén Turrión; Olga López; Francisco Lafuente; Rafael Mulas; César Ruipérez; Alberto Puyo



Influence of cover crops and soil amendments on okra (Abelmoschus esculentus L.) production and soil nematodes  

Microsoft Academic Search

A pot experiment to determine the effects of summer cover crops and soil amendments on okra yields and population densities of various soil nematode taxa was conducted in two consecutive growing seasons in a subtropical region. Two cover crops, sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolorrS. bicolor var. sudanense), were grown and returned to the soil with fallow

Qingren Wang; Yuncong Li; Waldemar Klassen; Zafar Handoo



Assessment of soil-gas and groundwater contamination at the Gibson Road landfill, Fort Gordon, Georgia, 2011  

USGS Publications Warehouse

Soil-gas and groundwater assessments were conducted at the Gibson Road landfill in 201 to provide screening-level environmental contamination data to supplement the data collected during previous environmental studies at the landfill. Passive samplers were used in both assessments to detect volatile and semivolatile organic compounds and polycyclic aromatic hydrocarbons in soil gas and groundwater. A total of 56 passive samplers were deployed in the soil in late July and early August for the soil-gas assessment. Total petroleum hydrocarbons (TPH) were detected at masses greater than the method detection level of 0.02 microgram in all samplers and masses greater than 2.0 micrograms in 13 samplers. Three samplers located between the landfill and a nearby wetland had TPH masses greater than 20 micrograms. Diesel was detected in 28 of the 56 soil-gas samplers. Undecane, tridecane, and pentadecane were detected, but undecane was the most common diesel compound with 23 detections. Only five detections exceeded a combined diesel mass of 0.10 microgram, including the highest mass of 0.27 microgram near the wetland. Toluene was detected in only five passive samplers, including masses of 0.65 microgram near the wetland and 0.85 microgram on the southwestern side of the landfill. The only other gasoline-related compound detected was octane in two samplers. Naphthalene was detected in two samplers in the gully near the landfill and two samplers along the southwestern side of the landfill, but had masses less than or equal to 0.02 microgram. Six samplers located southeast of the landfill had detections of chlorinated compounds, including one perchloroethene detections (0.04 microgram) and five chloroform detections (0.05 to0.08 microgram). Passive samplers were deployed and recovered on August 8, 2011, in nine monitoring wells along the southwestern, southeastern and northeastern sides of the landfill and down gradient from the eastern corner of the landfill. Six of the nine samplers had TPH concentrations greater than 100 micrograms per liter. TPH concentrations declined from 320 micrograms per liter in a sampler near the landfill to 18 micrograms in a sampler near the wetland. Five of the samplers had detections of one or more diesel compounds but detections of individual diesel compounds had concentrations below a method detection level of 0.01 microgram per liter. Benzene was detected in three samplers and exceeded the national primary drinking-water standard of 5 micrograms per liter set by the U.S. Environmental Protection Agency. The concentrations of benzene, and therefore BTEX, were 6.1 micrograms per liter in the sampler near the eastern corner of the landfill, 27 micrograms per liter in the sampler near the wetland, and 37 micrograms per liter in the sampler at the southern corner of the landfill. Nonfuel-related compounds were detected in the four wells that are aligned between the eastern corner of the landfill and the wetland. The sampler deployed nearest the eastern corner of the landfill had the greatest number of detected organic compounds and had the only detections of two trimethylbenzene compounds, naphthalene, 2-methyl naphthalene, and 1,4-dichlorobenzene. The two up gradient samplers had the greatest number of chlorinated compounds with five compounds each, compared to detections of four compounds and one compound in the two down gradient samplers. All four samplers had detections of 1,1-dichloroethane which ranged from 42 to 1,300 micrograms per liter. Other detections of chlorinated compounds included trichloroethene, perchloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane and chloroform.

Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.



Nitrogen Mineralization of Cover Crop Residues in Calcareous Gravelly Soil  

Microsoft Academic Search

Tropical legumes like sunn hemp (Crotolaria juncea L.) and aeschynomene (Aeschynomene evenia L.) have potential as alternative cover crops in tropical regions. The objective of this study was to evaluate the N mineralization rates of three cover crops [aeschynomene (AE), sorghum sudangrass (Sorghum sudanense L.), and sunn hemp (SH)] residues used to amend a calcareous gravelly soil in order to

R. B. Rao; Y. C. Li



Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect

Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

Phelan, J.M.; Reavis, B.; Cheng, W.C.



Assessment of soil-gas contamination at the 17th Street landfill, Fort Gordon, Georgia, 2011  

USGS Publications Warehouse

Assessments of contaminants in soil gas were conducted in two study areas at Fort Gordon, Georgia, in July and August of 2011 to supplement environmental contaminant data for previous studies at the 17th Street landfill. The two study areas include northern and eastern parts of the 17th Street landfill and the adjacent wooded areas to the north and east of the landfill. These study areas were chosen because of their close proximity to the surface water in Wilkerson Lake and McCoys Creek. A total of 48 soil-gas samplers were deployed for the July 28 to August 3, 2011, assessment in the eastern study area. The assessment mostly identified detections of total petroleum hydrocarbons (TPH), and gasoline- and diesel-range compounds, but also identified the presence of chlorinated solvents in six samplers, chloroform in three samplers, 2-methyl naphthalene in one sampler, and trimethylbenzene in one sampler. The TPH masses exceeded 0.02 microgram (?g) in all 48 samplers and exceeded 0.9 ?g in 24 samplers. Undecane, one of the three diesel-range compounds used to calculate the combined mass for diesel-range compounds, was detected in 17 samplers and is the second most commonly detected compound in the eastern study area, exceeded only by the number of TPH detections. Six samplers had detections of toluene, but other gasoline compounds were detected with toluene in three of the samplers, including detections of ethylbenzene, meta- and para-xylene, and octane. All detections of chlorinated organic compounds had soil-gas masses equal to or less than 0.08 ?g, including three detections of trichloroethene, three detections of perchloroethene, three chloroform detections, one 1,4-dichlorobenzene detection, and one 1,1,2-trichloroethane detection. Three methylated compounds were detected in the eastern study area, but were detected at or below method detection levels. A total of 32 soil-gas samplers were deployed for the August 11–24, 2011, assessment in the northern study area. All samplers in the survey had detections of TPH, but only eight of the samplers had detections of TPH greater than 0.9 mg. Four samplers had TPH detections greater than 9 mg; the only other fuel-related compounds detected in these four samplers included toluene in three of the samplers and undecane in the fourth sampler. Three samplers deployed along the western margin of the northern landfill had detections of both diesel-and gasoline-related compounds; however, the diesel-related compounds were detected at or below method detection levels. Seven samplers in the northern study area had detections of chlorinated compounds, including three perchloroethene detections, three chloroform detections, and one 1,4-dichloro-benzene detection. One sampler on the western margin of the landfill had detections of 1,2,4-trimethylbenzene and 1,3,5-tr-methylbenene below method detection levels.

Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.



Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration  

Microsoft Academic Search

Pedological and botanical characteristics of a former metallurgical landfill were examined to assess the risks of heavy metals mobility and to evaluate remediation feasibility. In addition to very high heavy metals levels (Cu, Cr, Mn, Ni, Pb, Zn), the soil was characterized by a lack of clear horizonation, a relatively high pH, a high mineral and organic carbon contents, a

E. Remon; J.-L. Bouchardon; B. Cornier; B. Guy; J.-C. Leclerc; O. Faure



Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.  


Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy. PMID:21972508

Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H



Cover crops effectiveness for soil erosion control in Sicilian vineyard  

NASA Astrophysics Data System (ADS)

In vineyards, which are very common in Mediterranean area, cover crops are becoming increasingly used to reduce soil erosion. Cover crops reduce runoff by increasing infiltration and increasing roughness and then reducing the ovelandflow velocity. The aim of the present study was to quantify soil and water losses under different soil managements systems on vineyards. The study site was a Sauvignon blanc winegrape vineyard located in Southwestern Sicily. Vineyards were managed both traditionally (conventional tillage) and alternative management using cover crops: 1) Vicia faba ; 2) Vicia faba and Vicia sativa; 3) Trifolium subterraneum, Lolium perenne, Festuca rubra; 4)Trifolium subterraneum, Festuca rubra and Festuca ovina, 5) Triticum durum, 6) Triticum durum and Vicia sativa. To monitor water and sediment yield, a Gerlach trough was installed at each treatment on the vineyard inter-row, with the row vineyard used as a border (topographical border). Runoff was measured after each rainfall event (raingauge 0.2 mm accuracy) from November 2005 to April 2007. And sediments were measured after desiccation. The results show that runoff and erosion were reduced considerably under the treatments with Trifolium subterraneum, Lolium perenne, Festuca rubra and Trifolium subterraneum, Festuca rubra and Festuca ovina (treatments 3 and 4). The soil losses were reduced by 73% under treatment 4 compared to the tillage plot. Conventional tillage and alternative management using Vicia faba cover crop (treatment 1) result the most ineffective treatment to soil erosion. These results show that the use of a cover crop can be a simple soil and water conservation practice in Sicilian vineyards. Key words: soil erosion, cover crops, vineyard, Mediterranean area.

Gristina, L.; Novara, A.; Saladino, S.; Santoro, A.



Hydrological Perturbations Drive Biogeochemical Processes in Experimental Soil Columns from the Norman Landfill Site  

NASA Astrophysics Data System (ADS)

Fate and transport of contaminants in saturated and unsaturated zones is governed by biogeochemical processes that are complex and non-linearly coupled to each other. A fundamental understanding of the interactions between transport and reaction processes is essential to better characterize contaminant movement in the subsurface. The objectives of this study are to: i) develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes, and ii) characterize the effect of hydrologic perturbations on coupled processes occurring at the column scale. The perturbations correspond to rainfall intensity, duration of wet and dry conditions, and water chemistry (pH). Soils collected from two locations with significantly different geochemistry at the Norman landfill site are used in this study. Controlled flow experiments were conducted on: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. Experimental observations showed enhanced biogeochemical activity at the interface of the layered and lensed columns over the texturally homogeneous soil columns. Multivariate statistical analysis showed that the most important processes were microbial reduction of Fe(III) and SO42-, and oxidation of reduced products in the columns. Modeling results from HP1 indicate least redox activity in the homogeneous sand column while the structurally heterogeneous columns utilize oxygen and nitrate from recharge as well as iron sulfide minerals already present in the columns as electron acceptors. Furthermore, the interface of the layered and lensed soil columns acts as a hotspot of biogeochemical activity due to increased transport timescale as a result of reduced hydraulic conductivity of loam and clay in these columns. Although the coupled HP1 model was able to effectively capture redox dynamics in the experimental soil columns, findings suggest the need to incorporate: i) reduction in hydraulic conductivity due to the formation of iron sulfide precipitates, and ii) transport of aqueous iron sulfide clusters observed in all columns except homogeneous sand in such contaminant fate and transport models. Results indicate that textural differences across the layered, lensed, and macropore columns were directly responsible for redox gradient across these interfaces. Also, quantitative relationships observed between pH and total carbon, pe and redox couples, etc. are most significantly affected by wetting and drying cycles of the soil moisture regime for the different soil columns.

Arora, B.; Mohanty, B. P.; McGuire, J. T.



Barometric pumping of burial trench soil gases into the atmosphere at the 740-G Sanitary Landfill. Revision 1  

SciTech Connect

In 1991, a soil gas survey was performed at the Savannah River Site Sanitary Landfill as part of the characterization efforts required under the integrated Resource Conservation and Recovery Act (RCRA) Facility Investigation and Comprehensive Environmental Resource Conservation and Recovery Act (CERCLA) Remedial Investigation (RFI/RI) program. This report details the findings of this survey, which identified several areas of the landfill that were releasing volatile organic compounds to the atmosphere at levels exceeding regulatory standards. Knowledge of the rates of VOC outgassing is necessary to protect site workers, provide input into the human health and environmental risk assessment documents and provide input into the remedial design scenario.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.



Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R  

Microsoft Academic Search

The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL\\/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil,

Jennifer L. Gutzeit; Ellen P. Kennedy; Bruce N. Bjornstad; Michael R. Sackschewsky; James J. Sharpe; Ranae DeMaris; M. Venno; James R. Christensen



Carbon storage in a heavy clay soil landfill site after biosolid application.  


Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts>biosolids>biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2-2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha(-1) yr(-1) Mg(-1) biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C. PMID:23380138

Bolan, N S; Kunhikrishnan, A; Naidu, R



Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert  

SciTech Connect

Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites.

David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell



Fate of saline ions in a planted landfill site with leachate recirculation.  


Recirculation of leachate on a covered landfill site planted with willows or other highly evapotranspirative woody plants is an inexpensive option for leachate management. In our study, a closed landfill leachate recirculation system was established on a rehabilitated municipal solid waste landfill site with planted landfill cover. The main objective of the study was to evaluate the sustainability of the system with regard to high hydraulic loads of the landfill leachate on the landfill cover and high concentrations of saline ions, especially potassium (K(+)), sodium (Na(+)) and chloride (Cl(-)), in leachate. The results of intensive monitoring, implemented during May 2004 and September 2007, including leachate, soil and plant samples, showed a high sustainability of the system regarding saline ions with the precipitation regime of the studied region. Saline ion concentrations in leachates varied between 132 and 2592mg Cl(-) L(-1), 69 and 1310mg Na(+) L(-1) and between 66 and 2156mg K(+) L(-1), with mean values of 1010, 632 and 686mg L(-1), respectively. Soil salinity, measured as soil electrical conductivity (EC), remained between 0.17 and 0.38mS cm(-1) at a depth between 0 and 90cm. An average annual precipitation of 1000mm provided sufficient leaching of saline ions, loaded by irrigation with landfill leachate, from the soil of the landfill cover and thus prevented possible salinity shocks to the planted willows. PMID:19796928

Loncnar, Mojca; Zupancic, Marija; Bukovec, Peter; Zupancic Justin, Maja



Space monitoring of municipal solid waste landfills in Kazakhstan  

NASA Astrophysics Data System (ADS)

Municipal solid waste (MSW) landfills are special facilities designed for waste isolation and disposal ensuring sanitary and epidemiological safety of population. A solid waste landfill is a complex object with its own specific features. Modern remote-sensing methods are an indispensable source of information for the analysis of space images of solid waste landfills in Kazakhstan. Space monitoring of solid waste landfills includes the following tasks: 1. Identification and mapping of landfill areas according to the data of remote earth sensing. 2. Studying of energy and structural characteristics of landfills based on remote sensing data. 3. Analysis of the state of landfills based on a comparison of current and archive remote sensing data. Space monitoring of territories of municipal solid waste landfills uses modern computer technologies. They include satellite imagery combined with sub-satellite research, as well as other sources of information used for identification and mapping of landfill territories. Investigation of municipal solid waste landfills requires targeted survey of landfill areas, remote sensing using operational and archival data including theoretical foundations of physical optics and statistical data. Processing of digital satellite information uses methods of pattern recognition, automated image processing and correlation analysis. Based on spectral energy and textural characteristics of municipal solid waste landfills obtained by remote sensing methods, the technology of space monitoring of landfill areas, including landfill recognition and characterization of solid waste landfills from remote observations was developed. Monitoring of MSW landfills uses satellite images of ultrahigh and medium spatial resolution. Medium-resolution images are used to determine temperature, vegetation cover and soil degradation. High-resolution images are used to detect landfills, to determine forms of soil degradation, to calculate geometrical parameters, and to evaluate measures of control over the operation of landfill areas. Therefore, the technology of monitoring of landfills, based on reception and processing of multispectral data of different spatial resolution in the specialized software, enables us to detect and to analyze MSW, and to assess their impact on the ecological state of the environment. The introduction of space-based monitoring of MSW will save material and financial resources aimed at identification of solid wastes, assessment of their state and evolution in space and time, especially on vast areas, for example, on the territory of the Republic of Kazakhstan.

Skakova, Olga; Shagarova, Lyudmila


Evaporative losses from soils covered by physical and different types of biological soil crusts  

USGS Publications Warehouse

Evaporation of soil moisture is one of the most important processes affecting water availability in semiarid ecosystems. Biological soil crusts, which are widely distributed ground cover in these ecosystems, play a recognized role on water processes. Where they roughen surfaces, water residence time and thus infiltration can be greatly enhanced, whereas their ability to clog soil pores or cap the soil surface when wetted can greatly decrease infiltration rate, thus affecting evaporative losses. In this work, we compared evaporation in soils covered by physical crusts, biological crusts in different developmental stages and in the soils underlying the different biological crust types. Our results show that during the time of the highest evaporation (Day 1), there was no difference among any of the crust types or the soils underlying them. On Day 2, when soil moisture was moderately low (11%), evaporation was slightly higher in well-developed biological soil crusts than in physical or poorly developed biological soil crusts. However, crust removal did not cause significant changes in evaporation compared with the respective soil crust type. These results suggest that the small differences we observed in evaporation among crust types could be caused by differences in the properties of the soil underneath the biological crusts. At low soil moisture (<6%), there was no difference in evaporation among crust types or the underlying soils. Water loss for the complete evaporative cycle (from saturation to dry soil) was similar in both crusted and scraped soils. Therefore, we conclude that for the specific crust and soil types tested, the presence or the type of biological soil crust did not greatly modify evaporation with respect to physical crusts or scraped soils.

Chamizo, S.; Cantón, Y.; Domingo, F.; Belnap, J.



Beneficial uses of recycled asphalt-stabilized products as landfill cover and capping systems  

SciTech Connect

The American Reclamation Corporation (AMREC{reg_sign}) has played a major role in the development of new programs for the recycling of discarded materials from construction, demolition, remediation and manufacturing operations. Excavated petroleum-contaminated soils (oily soils), asphalt paving, concrete rubble, and discarded asphalt roofing shingles have been processed and recycled into beneficially useful construction products. AMREC uses a cold-mix, asphalt-emulsion technology to process many of the recyclables received at its recycling facility in Charlton, MA. Recyclable materials are processed and blended to produce recycled, asphalt-stabilized products. In addition, recycled, asphalt-stabilized products are being investigated and tested for other beneficial uses. This includes their uses as capping materials and as containment materials.

Camougis, G. [American Reclamation Corp., Northborough, MA (United States)



Transient soil moisture profile of a water-shedding soil cover in north Queensland, Australia  

NASA Astrophysics Data System (ADS)

In current agricultural and industrial applications, soil moisture determination is limited to point-wise measurements and remote sensing technologies. The former has limitations on spatial resolution while the latter, although has greater coverage in three dimensions, but may not be representative of real-time hydrologic conditions of the substrate. This conference paper discusses the use of elongated soil moisture probes to describe the transient soil moisture profile of water-shedding soil cover trial plots in north Queensland, Australia. Three-metre long flat ribbon cables were installed at designed depths across a soil cover with substrate materials from mining activities comprising of waste rocks and blended tailings. The soil moisture measurement is analysed using spatial time domain reflectometry (STDR) (Scheuermann et al., 2009) Calibration of the flat ribbon cable's soil moisture measurement in waste rocks is undertaken in a glasshouse setting. Soil moisture retention and outflows are monitored at specific time interval by mass balance and water potential measurements. These data sets together with the soil hydrologic properties derived from laboratory and field measurements are used as input in the numerical code on unsaturated flow, Hydrus2D. The soil moisture calculations of the glasshouse calibration using this numerical method are compared with results from the STDR soil moisture data sets. In context, the purpose of the soil cover is to isolate sulphide-rich mine wastes from atmospheric interaction as oxidation and leaching of these materials may result to acid and metalliferous drainage. The long term performance of a soil cover will be described in terms of the quantities and physico-chemical characteristics of its outflows. With the soil moisture probes set at automated and pre-determined measurement time intervals, it is expected to distinguish between macropore and soil moisture flows during high intensity rainfall events and, also continuously update data sets on soil moisture retention, especially during long periods of drought. As such, description of the soil cover water balance will be more elaborate as the soil moisture profile will be described in terms of temporal and spatial variability. Moreover, this field data set can lend support on the evaluation of the potential use of mine wastes as cover materials with respect to their hydrologic and geochemical properties.

Gonzales, Christopher; Baumgartl, Thomas; Scheuermann, Alexander



The Use of Biofilter to Reduce Atmospheric Global Warming Gas (CH4) Eemissions from Landfills  

NASA Astrophysics Data System (ADS)

The emission of greenhouse gasses resulting from anthropogenic activities is increasing the atmospheric concentration of these gases, which can influence the climatic system by changing the temperature, precipitation, wind and other climate factors. Methane (CH4) is a very potent greenhouse gas and CH4 emission from landfills in US has been reported as 37% of total anthropogenic source of CH4 emission. Properly designed soil biofilters may reduce atmospheric CH4 emissions from landfills and help reduce the accumulation of greenhouse gasses in the atmosphere. Biofilter performance was tested under a variety of environmental and design conditions. The results showed that biofilters have the potential to reduce CH4 emissions from landfills by as much as 83%. A quadratic equation was developed to describe the dependence of methane oxidation rate in a sandy loam textured soil as a function of soil temperature, soil moisture and ammonium nitrogen concentration. Using this equation and the averaged soil temperature and moisture contents, and census data for the largest cities of each of the 48 contiguous states, oxidation rates was calculated. A methane emission model was also developed to estimate the methane emission from municipal waste landfills with different covers. Older landfills with soil covers emitted an average of 83% of the generated CH4. Landfills with RCRA covers emitted 90% of the generated CH4 without biofilters and only 10% with biofilters. Thus, the installation of properly sized biofilters should significantly reduce atmospheric CH4 emissions from landfills.

Park, S.; Thomas, J. C.; Brown, K. W.; Sung, K.



Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers  

SciTech Connect

In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH{sub 4}) oxidation process were examined. The investigation was performed on compost experiments incubated with CH{sub 4} and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH{sub 4} oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs the V{sub max} value was 35.0 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1}. This value was reduced to 19.1 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1} when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH{sub 4} in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.

Albanna, Muna, E-mail: [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, Ontario, K1N 6N5 (Canada); Warith, Mostafa; Fernandes, Leta [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, Ontario, K1N 6N5 (Canada)



Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes  

Microsoft Academic Search

Landfills are major contributors to the atmospheric CHâ budget. A major uncertainty in estimating CHâ emission by methanotrophic bacteria in the aerobic outer portions of the cover soil. These bacteria intercept the gas as it migrates toward the atmosphere. To estimate cover soil oxidation, the authors made seasonal measurements of the difference in the δ¹³C of CHâ within the anoxic

J. P. Chanton; C. M. Rutkowski; B. Mosher



Soil phosphorus forms as quality indicators of soils under different vegetation covers.  


The type of vegetation cover determines the physicochemical and biological properties of the soil over which they are developing. The objective of this study was to determine the effect of different vegetation covers on the forms of soil phosphorus, in order to know which of these forms can be used as a soil quality indicator. The experimental area was located on the acidic plateau at the North of Palencia (North Spain), where an area was selected vegetation covers very close to each other: pine (Pinus sylvestris), oak (Quercus pyrenaica), and three different shrub species (Arctostaphylos uva-ursi, Erica australis and Halimium alyssoides). The Ah horizon was sampled and pH, total organic C (C(org)), total N (N), cationic exchange capacity (CEC), sum of bases (S) and P forms by a sequential fractionation were analysed. Results showed that oak and A. uva-ursi improve the considered soil parameters (pH, C(org)/N ratio, CEC, and S) and provide soils of better quality. Inorganic soil P forms were influenced in greater extent by the vegetation cover than were P organic forms. Labile inorganic P forms could be used as indicators of soil quality. The organic P forms were less sensitive than inorganic ones to the indicated improvements. PMID:17307240

Turrión, María-Belén; López, Olga; Lafuente, Francisco; Mulas, Rafael; Ruipérez, César; Puyo, Alberto



Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: a field and theoretical investigation.  


To assess the extent of leachate migration, continuous samples of clayey soils (about 9m) were obtained beneath a 17-year old uncontrolled landfill in southeastern China. The soil samples were sub sectioned and analyzed to determine the concentrations of chloride, sodium and COD in the pore water. Total nitrogen and soil organic matter content of the soil samples were also determined. Leachate-derived chloride was detected in the clayey soil to a maximum depth of 9m. Sodium and COD were found to migrate into the soils to depths of 3-4m due to the attenuation of solutes by the soil organic matter and clay minerals at the shallow soils. The estimated migration depths for the chloride are 3m in the case of pure diffusion. Advection and mechanical dispersion were found to be more important than molecular diffusion for this site with an 8m high leachate mound. By comparing the results obtained by the mathematical modeling for layered advection-dispersion problem with the measured concentration profiles, the ranges of the effective diffusion coefficient, retardation factor and dispersivity of the soils were estimated. Better fits are obtained by employing an artificial effective interface about 1m above the observed interface. The clayey soils showed a relatively high attenuation capacity for COD with the estimated retardation factor of 5. PMID:24144934

Zhan, T L T; Guan, C; Xie, H J; Chen, Y M



Calculations of radar backscattering coefficient of vegetation-covered soils  

NASA Technical Reports Server (NTRS)

The present investigation has the objective to develop a simple 'user's' model for simulating the measured radar backscattering coefficients from vegetation-covered fields in conjunction with the data obtained by Jackson et al. (1980, 1982). The theoretical work reported by Fung and Eom (1981) provides the basis for the model. Certain modifications are related to a consideration of the effect of a vegetation canopy. The first part of the model is concerned with a description of scatter from rough bare soil, while the second part takes into account the effect of a vegetation cover. It is shown that the measured angular distribution of the backscattering coefficient of vegetation-covered fields can be satisfactory reproduced by using the developed model.

Mo, T.; Schmugge, T. J.; Jackson, T. J.



Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types.  


Uptake of (137)Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant-soil (137)Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of (137)Cs concentrations in plants among soils was related to differences in soil solution (137)Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The (137)Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997-1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in (137)Cs and K concentrations in soil solution. It is concluded that differences in (137)Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted. PMID:19375202

Waegeneers, Nadia; Sauras-Yera, Teresa; Thiry, Yves; Vallejo, V Ramón; Smolders, Erik; Madoz-Escande, Chantal; Bréchignac, François



Assessment of soil-gas, soil, and water contamination at the former 19th Street landfill, Fort Gordon, Georgia, 2009-2010  

USGS Publications Warehouse

Soil gas, soil, and water were assessed for organic and inorganic constituents at the former 19th Street landfill at Fort Gordon, Georgia, from February to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone and flood plain of a creek and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The passive soil-gas samplers deployed in the water-saturated hyporheic zone and flood plain of the creek adjacent to the former landfill indicated the presence of total petroleum hydrocarbon (TPH) and octane above method detection levels in groundwater beneath the creek bed and flood plain at all 12 soil-gas sampler locations. The TPH concentrations ranged from 51.4 to 81.4 micrograms per liter. Octane concentrations ranged from 1.78 to 2.63 micrograms per liter. These detections do not clearly identify specific source areas in the former landfill; moreover, detections of TPH and octane in a soil-gas sampler installed at a seep on the western bank of the creek indicated the potential for these constituents to be derived from source areas outside the estimated boundaries of the former landfill. A passive soil-gas sampler survey was conducted in the former landfill from June 30 to July 5, 2010, and involved 56 soil-gas samplers that were analyzed for petroleum and halogenated compounds not classified as chemical agents or explosives. The TPH soil-gas mass exceeded 2.0 micrograms in 21 samplers. Most noticeable are the two sites with TPH detections which are located in and near the hyporheic zone and are likely to affect the creek. However, most TPH detections were located in and immediately adjacent to a debris field located within the former landfill and in areas where debris was not visible, including the northwestern and southeastern parts of the study area. Two of the four soil-gas samplers installed within a former military training area adjacent to the landfill also had TPH detections above the method detection level. Benzene, toluene, ethylbenzene, and xylene (as combined BTEX mass) were detected at 0.02 microgram or greater in three soil-gas samplers installed at the northwestern boundary and in five samplers installed in the southeastern part of the study area. There was no BTEX mass detected above the method detection level in samplers installed in the debris field. Toluene was the most frequently detected BTEX compound. Compounds indicative of diesel-range organics were detected above 0.04 microgram in 12 soil-gas samplers and had a distribution similar to that of TPH, including being detected in the debris field. Undecane was the most frequently detected diesel compound. Chloroform and naphthalene were detected in eight and two soil-gas samplers, respectively. Five soil-gas samplers deployed during September 2010 were analyzed for organic compounds classified as chemical agents and explosives, but none exceeded the method detection levels. Five composite soil samples collected from within the estimated boundaries of the former landfill were analyzed for 35 inorganic constituents, but none of the constituents detected exceeded regional screening levels for industrial soils. The sample collected in the debris field exceeded background levels for aluminum, barium, calcium, chromium, lead, nickel, potassium, sodium, and zinc. Three surface-water samples were collected in September 2010 from a stormwater outfall culvert that drains to the creek and from the open channel of the creek at upstream and downstream locations relative to the outfall. Toluene was detected at 0.661 mi

Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.



Soil carbon sequestration via cover crops- A meta-analysis  

NASA Astrophysics Data System (ADS)

Agricultural soils are depleted in soil organic carbon (SOC) and have thus a huge potential to sequester SOC. This can primarily be achieved by increasing carbon inputs into the soil. Replacing winter fallows by cover crop cultivation for green manure has many benefits for the soil and forms an additional carbon input. An increase in carbon concentration has been reported in several studies worldwide. However, the effect on SOC stocks, as well as the influence of environmental parameters and management on SOC dynamics is not known. We therefore conducted a meta-analysis to investigate those issues. A total of 33 studies, comprising 47 sites and 147 plots were compiled. A pedotransfer function was used to estimate bulk densities and calculate SOC stocks. SOC stock change was found to be a linear function of time since introduction, with an annual sequestration rate of 0.32 Mg C ha-1 yr-1. Since no saturation was visible in the observations, we used the model RothC to estimate a new steady state level and the resulting total SOC stock change for an artificial "average cropland". The total average SOC stock change with an annual input of 1.87 Mg C ha-1 yr-1 was 16.76 Mg C ha-1 for the average soil depth of 22 cm. We estimated a potential global SOC sequestration of 0.12±0.03 Pg C yr-1, which would compensate for 8 % of the direct annual greenhouse gas emissions from agriculture.

Poeplau, Christopher; Don, Axel



Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.  

SciTech Connect

A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)



Winter cover cropping influence on nitrogen mineralization, presidedress soil nitrate test, and corn yields  

Microsoft Academic Search

The mineralization and availability of cover crop N to the succeeding crop are critical components in the management of soil N to reduce N leaching. The effects of several leguminous and non-leguminous cover crops on soil N availability, N mineralization potential, and corn (Zea mays L.) yield were examined. The cover crops had variable effects on soil N availability and

S. Kuo; U. M. Sainju; E. Jellum



Cover distributions of vascular plants in relation to soil chemistry and soil depth in a granite rock ecosystem  

Microsoft Academic Search

The variability in the cover distribution of vascular plants, accounted for by soil chemical properties and soil depth, on a granite slope with shallow autochtonous soil in southeast Sweden was evaluated using multivariate statistical regression and graphical methods. Soil acidity and soil depth were, to an often high degree, able to account for the variability in the distributions of the

Germund Tyler



[Effects of seasonal snow cover on soil nitrogen transformation in alpine ecosystem: a review].  


Seasonal snow cover has pronounced effects on the soil nitrogen concentration and transformation in alpine ecosystem. Snowfall is an important form of nitrogen deposition, which directly affects the content of soil available nitrogen. Different depths and different duration of snow cover caused by snowfall may lead the heterogeneity of abiotic factors (soil temperature and moisture) and biotic factors (soil microbes, alpine plants, and alpine animals), and further, produce complicated effects on the mineralization and immobilization of soil nitrogen. This paper introduced in emphasis the inherent mechanisms of soil nitrogen mineralization and leaching under the effects of frequent freeze-thaw events during the durative melting of snow cover, and summarized the main research results of field in situ experiments about the effects of seasonal snow cover on soil nitrogen in alpine ecosystem based on the possible changes in snow cover in the future. Some suggestions with regard to the effects of seasonal snow cover on soil nitrogen were put forward. PMID:22097387

Liu, Lin; Wu, Yan; He, Yi-xin; Wu, Ning; Sun, Geng; Zhang, Lin; Xu, Jun-jun



Soils and the soil cover of the taiga zone in the northern Urals (upper reaches of the Pechora River)  

NASA Astrophysics Data System (ADS)

The territory in the upper reaches of the Pechora River is characterized by the predominance of Al-Fe-humus and metamorphic soils with gley features developing under the middle taiga fir-spruce forests rather than gley-podzolic soils as had been considered before. Some of the described soil profiles represent intergrades between brown taiga soils (burozems) and gleysols; these soils are absent in the new Russian soil classification system. General regularities of the soil cover are controlled by the geomorphic position of the soils on slopes and by the conditions of ground moistening and lateral soil water flows. The development of modern soil cover patterns is determined by the impact of herbaceous and woody vegetation, bioturbation of the soils by windfalls, the presence of dead tree trunks on the soil surface, and other factors.

Semikolennykh, A. A.; Bovkunov, A. D.; Aleinikov, A. A.



Land Cover Differences in Soil Carbon and Nitrogen at Fort Benning, Georgia  

SciTech Connect

Land cover characterization might help land managers assess the impacts of management practices and land cover change on attributes linked to the maintenance and/or recovery of soil quality. However, connections between land cover and measures of soil quality are not well established. The objective of this limited investigation was to examine differences in soil carbon and nitrogen among various land cover types at Fort Benning, Georgia. Forty-one sampling sites were classified into five major land cover types: deciduous forest, mixed forest, evergreen forest or plantation, transitional herbaceous vegetation, and barren land. Key measures of soil quality (including mineral soil density, nitrogen availability, soil carbon and nitrogen stocks, as well as properties and chemistry of the O-horizon) were significantly different among the five land covers. In general, barren land had the poorest soil quality. Barren land, created through disturbance by tracked vehicles and/or erosion, had significantly greater soil density and a substantial loss of carbon and nitrogen relative to soils at less disturbed sites. We estimate that recovery of soil carbon under barren land at Fort Benning to current day levels under transitional vegetation or forests would require about 60 years following reestablishment of vegetation. Maps of soil carbon and nitrogen were produced for Fort Benning based on a 1999 land cover map and field measurements of soil carbon and nitrogen stocks under different land cover categories.

Garten Jr., C.T.



Soil carbon accumulation after short-term use of rye as a winter cover crop  

Technology Transfer Automated Retrieval System (TEKTRAN)

The use of winter cover crops has been proposed to protect and enhance soil resources. Cereal rye (Secale cereale L.) can be an effective cover crop since it can produce large amounts of biomass in certain climates. However, short-term benefits of cover crop use on soil carbon accumulation are not w...


Role of Cover Crops in Improving Soil and Row Crop Productivity  

Microsoft Academic Search

Cover crops play an important role in improving productivity of subsequent row crops by improving soil physical, chemical, and biological properties. The objective of this article is to review recent advances in cover crops practice, in the context of potential benefits and drawbacks for annual crop production and sustained soil quality. Desirable attributes of a cover crop are the ability

N. K. Fageria; V. C. Baligar; B. A. Bailey



The effects of cover crops on soil physical properties and nutrient cycling  

Microsoft Academic Search

Cover crops improve soil aggregate stability, increase water infiltration, and legume cover crops also fix nitrogen and scavenge nutrients that are subject to leaching. Greenhouse and field experiments were conducted in Indiana to measure growth of different cover crops and their effects on soil properties. The objective of the greenhouse experiment was to study the response of three varieties of

Mohammad Zaman Amini



Microbial Biomass and Activities in Soil Aggregates Affected by Winter Cover Crops  

Microsoft Academic Search

vegetable cropping systems (Burket et al., 1997); how- ever, it is unclear whether legumes or nonlegumes are Winter cover crops may increase soil organic matter (SOM) and the most suitable for this task. Leguminous winter cover improve soil structure in intensively managed summer vegetable crop- ping systems. Our study examined the influence of three cover crop crops have the potential

I. C. Mendes; A. K. Bandick; R. P. Dick; P. J. Bottomley



Minimum depth of soil cover above long-span soil-steel railway bridges  

NASA Astrophysics Data System (ADS)

Recently, soil-steel bridges have become more commonly used as railway-highway crossings because of their economical advantages and short construction period compared with traditional bridges. The currently developed formula for determining the minimum depth of covers by existing codes is typically based on vehicle loads and non-stiffened panels and takes into consideration the geometrical shape of the metal structure to avoid the failure of soil cover above a soil-steel bridge. The effects of spans larger than 8 m or more stiffened panels due to railway loads that maintain a safe railway track have not been accounted for in the minimum cover formulas and are the subject of this paper. For this study, two-dimensional finite element (FE) analyses of four low-profile arches and four box culverts with spans larger than 8 m were performed to develop new patterns for the minimum depth of soil cover by considering the serviceability criterion of the railway track. Using the least-squares method, new formulas were then developed for low-profile arches and box culverts and were compared with Canadian Highway Bridge Design Code formulas. Finally, a series of three-dimensional (3D) finite element FE analyses were carried out to control the out-of-plane buckling in the steel plates due to the 3D pattern of train loads. The results show that the out-of-plane bending does not control the buckling behavior of the steel plates, so the proposed equations for minimum depth of cover can be appropriately used for practical purposes.

Esmaeili, Morteza; Zakeri, Jabbar Ali; Abdulrazagh, Parisa Haji



Fungal growth and biomass development is boosted by plants in snow-covered soil.  


Soil microbial communities follow distinct seasonal cycles which result in drastic changes in processes involving soil nutrient availability. The biomass of fungi has been reported to be highest during winter, but is fungal growth really occurring in frozen soil? And what is the effect of plant cover on biomass formation and on the composition of fungal communities? To answer these questions, we monitored microbial biomass N, ergosterol, and the amount of fungal hyphae during summer and winter in vegetated and unvegetated soils of an alpine primary successional habitat. The winter fungal communities were identified by rDNA ITS clone libraries. Winter soil temperatures ranged between -0.6°C and -0.1°C in snow-covered soil. We found distinct seasonal patterns for all biomass parameters, with highest biomass concentrations during winter in snow-covered soil. The presence of plant cover had a significant positive effect on the amount of biomass in the soil, but the type of plant cover (plant species) was not a significant factor. A mean hyphal ingrowth of 5.6 m g(-1) soil was detected in snow-covered soil during winter, thus clearly proving fungal growth during winter in snow-covered soil. Winter fungal communities had a typical species composition: saprobial fungi were dominating, among them many basidiomycete yeasts. Plant cover had no influence on the composition of winter fungal communities. PMID:22234510

Kuhnert, Regina; Oberkofler, Irmgard; Peintner, Ursula



The Challenges of Implementing Conservation Tillage and Cover Crops in Clay Soil  

Technology Transfer Automated Retrieval System (TEKTRAN)

Conservation practices, such as reduced tillage and cover crops, can improve soil quality and increase soil moisture for crop production. Benefits to production, soil quality, and water conservation have been observed especially in areas with rapidly draining soils. While historically enjoying high ...


Conservation tillage and cover cropping influence soil properties in San Joaquin Valley cotton-tomato crop  

E-print Network

the addition of cover- crop residues increased soil carboncover crop residues have been shown to effectively control weeds, reduce soilcover crop, soil salinity increased signi?cantly. Above, researchers evaluate no-till planting into tomato residues.

Veenstra, Jessica; Horwath, William; Mitchell, Jeffrey; Munk, Dan



Short-term effects of cover crop incorporation on soil carbon pools and nitrogen availability  

Microsoft Academic Search

Winter cover crops are increasingly used to maintain water quality and\\u000a agoecosystem productivity. Cover crop incorporation influences transient\\u000a soil microbial dynamics and nutrient availability at an early growth\\u000a stage of subsequent crops. Short-term (less than or equal to 35 d)\\u000a effects of cover crop incorporation on soil C pools and N availability\\u000a were evaluated using sandy loam soils from organically

S Hu; NJ Grunwald; AHC vanBruggen; GR Gamble; LE Drinkwater; C Shennan; MW Demment



The effects of different soil cover management practices on plant biodiversity and soil properties in Mediterranean ancient olive orchards  

NASA Astrophysics Data System (ADS)

The effects of different soil cover management practices on plant biodiversity and soil properties in Mediterranean ancient olive orchards Madzaric S., Aly A., Ladisa G. and Calabrese G. The loss of natural plant cover due to the inappropriate soil cover management is often a decisive factor for soil degradation in Mediterranean area. This accompanied with typical climate, characterized by cool, wet winters and hot and dry summers leads to soil erosion and loss of productivity. Due to simplification of agricultural practice and to the attempt to decrease cost of production, keeping soil bare is a widespread agricultural practice in Mediterranean ancient olive orchards (AOOs). The consequences of this are degradation of soil quality and reduction of plant biodiversity. In last year's some alternative practices are proposed in order to protect soil and biodiversity. One of these practices is the "grassing" i.e. covering the soil by selected autochthonous plant species. Objectives of our study are: (1) to evaluate impact of different soil cover management practices on soil properties and plant biodiversity in AOOs and (2) to define a minimum indicators' set (Minimum Data Set - MDS) to evaluate the effectiveness of different agricultural practices in environmental performance of AOOs. A comparison was carried on considering two management systems (conventional vs. organic) and three agricultural practices: conventional with bare soil (CON), organic with soil covered by selected autochthonous species (MIX) and organic left to the native vegetation (NAT). In general a clear positive influence of organic management system was recognized. Some soil quality indicators (physical, chemical and biological) showed responsiveness in describing the effects of management system and agricultural practices on soil properties. The both approaches with vegetation cover on the soil surface (either sowing of mixture or soil left to the natural plant cover) performed better than conventional one with repeated tillage and bare soil during the whole year. This is peculiarly visible in the case of soil erosion that presents an enormous problem in Mediterranean region. No clear differences resulted between the two organic practices for soil management (natural cover and grassing). Key words: organic agriculture, ecological indicators, agricultural practices, soil quality, olive groves

Madzaric, Suzana; Aly, Adel; Ladisa, Gaetano; Calabrese, Generosa



Soil vapor survey at the LLNL site 300 general services area, adjacent portions of the Connolly and Gallo Ranches and the site 300 landfill pit 6 area  

Microsoft Academic Search

During October through December 1988, a soil vapor survey was conducted by Weiss Associates at the Lawrence Livermore National Laboratory Site 300 General Services Area (GSA), adjacent portions of the Connolly and Gallo Ranches, and at the Site 300 Landfill Pit 6 area. The purpose of the investigation was to aid in identifying the sources and the extent of trichloroethylene

S. Vonder Haar; J. Pavletich; W. McIlvride; M. Taffet



Land cover heterogeneity and soil respiration in a west Greenland tundra landscape  

NASA Astrophysics Data System (ADS)

Multiple direct and indirect pathways underlie the association between land cover classification, temperature and soil respiration. Temperature is a main control of the biological processes that constitute soil respiration, yet the effect of changing atmospheric temperatures on soil carbon flux is unresolved. This study examines associations amongst land cover, soil carbon characteristics, soil respiration, and temperature in an Arctic tundra landscape in western Greenland. We used a 1.34 meter resolution multi-spectral WorldView2 satellite image to conduct an unsupervised multi-staged ISODATA classification to characterize land cover heterogeneity. The four band image was taken on July 10th, 2010, and captures an 18 km by 15 km area in the vicinity of Kangerlussuaq. The four major terrestrial land cover classes identified were: shrub-dominated, graminoid-dominated, mixed vegetation, and bare soil. The bare soil class was comprised of patches where surface soil has been deflated by wind and ridge-top fellfield. We hypothesize that soil respiration and soil carbon storage are associated with land cover classification and temperature. We set up a hierarchical field sampling design to directly observe spatial variation between and within land cover classes along a 20 km temperature gradient extending west from Russell Glacier on the margin of the Greenland Ice Sheet. We used the land cover classification map and ground verification to select nine sites, each containing patches of the four land cover classes. Within each patch we collected soil samples from a 50 cm pit, quantified vegetation, measured active layer depth and determined landscape characteristics. From a subset of field sites we collected additional 10 cm surface soil samples to estimate soil heterogeneity within patches and measured soil respiration using a LiCor 8100 Infrared Gas Analyzer. Soil respiration rates varied with land cover classes, with values ranging from 0.2 mg C/m^2/hr in the bare soil class to over 5 mg C/m^2/hr in the graminoid-dominated class. These findings suggest that shifts in land cover vegetation types, especially soil and vegetation loss (e.g. from wind deflation), can alter landscape soil respiration. We relate soil respiration measurements to soil, vegetation, and permafrost characteristics to understand how ecosystem properties and processes vary at the landscape scale. A long-term goal of this research is to develop a spatially explicit model of soil organic matter, soil respiration, and temperature sensitivity of soil carbon dynamics for a western Greenland permafrost tundra ecosystems.

Bradley-Cook, J. I.; Burzynski, A.; Hammond, C. R.; Virginia, R. A.



Summer cover crops and soil amendments to improve growth and nutrient uptake of okra  

SciTech Connect

A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

Wang, Q.R.; Li, Y.C.; Klassen, W. [University of Florida, Homestead, FL (United States). Center for Tropical Research & Education



Migrating landfill gas proves challenging  

SciTech Connect

Located in the San Fernando Valley at the foothills of the San Gabriel mountains, the 41-acre Sheldon-Arleta Landfill originated as one of many gravel pits in the area and was operated by CalMat as a gravel quarry pit from the mid 1950s until 1962. In 1967, methane gas was detected in the residential dwellings located across from the landfill along Sharp Street. Three landfill gas wells were installed at the north corner of the landfill to control off-site migration of landfill gas. Landfill gas, through diffusion, saturates soil pores below and around the landfill. Groundwater serves as an effective barrier to landfill gas migration. Thus a rising water table mobilizes landfill gas from soil pores. Where that gas cannot be effectively collected, off-site migration will occur. The solution to ensuring public safety is to collect landfill gas on-site before it escapes the influence of gas collection wells. This may require complete reevaluation of an existing landfill gas collection system and potential renovation to collect greater quantities of land-fill gas. Cost-effective implementation of this strategy calls for two gas collection systems: one for collection of methane-rich landfill gas for electrical generation and resource recovery, and the other to control off-site migration of landfill gas through on-site combustion. Installation/upgrades of the foregoing solutions are long-term options. For the short-term immediate mitigation of high landfill gas migration, installation of a passive vent system was necessary with the option of active extraction. However, one must recognize that the public is ultimately better served by controlling landfill gas on-site before it approaches dangerous off-site levels.

Dobrowolski, J.G.; Dellinger, A.S. [City of Los Angeles Bureau of Sanitation, CA (United States)



Effect-directed analysis of municipal landfill soil reveals novel developmental toxicants in the zebrafish Danio rerio.  


Effect-directed analysis (EDA) is an approach used to identify (unknown) contaminants in complex samples which cause toxicity, using a combination of biology and chemistry. The goal of this work was to apply EDA to identify developmental toxicants in soil samples collected from a former municipal landfill site. Soil samples were extracted, fractionated, and tested for developmental effects with an embryotoxicity assay in the zebrafish Danio rerio. Gas chromatograph mass selective detection (GC-MSD) chemical screening was used to reveal candidate developmental toxicants in fractions showing effects. In a parallel study, liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry was also applied to one polar subfraction (Hoogenboom et al. J. Chromatogr. A2009, 1216, 510-519). EDA resulted in the identification of a number of previously unknown developmental toxicants, which were confirmed to be present in soil by GC-MS. These included 11H-benzo[b]fluorene, 9-methylacridine, 4-azapyrene, and 2-phenylquinoline, as well as one known developmental toxicant (retene). This work revealed the presence of novel contaminants in the environment that may affect vertebrate development, which are not subject to monitoring or regulation under current soil quality assessment guidelines. PMID:21823594

Legler, Juliette; van Velzen, Martin; Cenijn, Peter H; Houtman, Corine J; Lamoree, Marja H; Wegener, Jan Willem



Cover crop effects on the fate of N following soil application of swine manure  

Microsoft Academic Search

Cereal grain cover crops increase surface cover, anchor corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] residues, increase infiltration, reduce both rill and interrill erosion, scavenge excess nutrients from the soil, and are easily obtained and inexpensive compared to other cover crop options. The use of cereal grain cover crops in fields where manure application occurs should increase

T. B. Parkin; T. C. Kaspar; J. W. Singer



Gas production and migration in landfills and geological materials  

NASA Astrophysics Data System (ADS)

Landfill gas, originating from the anaerobic biodegradation of the organic content of waste, consists mainly of methane and carbon dioxide, with traces of volatile organic compounds. Pressure, concentration and temperature gradients that develop within the landfill result in gas emissions to the atmosphere and in lateral migration through the surrounding soils. Environmental and safety issues associated with the landfill gas require control of off-site gas migration. The numerical model TOUGH2-LGM (Transport of Unsaturated Groundwater and Heat-Landfill Gas Migration) has been developed to simulate landfill gas production and migration processes within and beyond landfill boundaries. The model is derived from the general non-isothermal multiphase flow simulator TOUGH2, to which a new equation of state module is added. It simulates the migration of five components in partially saturated media: four fluid components (water, atmospheric air, methane and carbon dioxide) and one energy component (heat). The four fluid components are present in both the gas and liquid phases. The model incorporates gas-liquid partitioning of all fluid components by means of dissolution and volatilization. In addition to advection in the gas and liquid phase, multi-component diffusion is simulated in the gas phase. The landfill gas production rate is proportional to the organic substrate and is modeled as an exponentially decreasing function of time. The model is applied to the Montreal's CESM landfill site, which is located in a former limestone rock quarry. Existing data were used to characterize hydraulic properties of the waste and the limestone. Gas recovery data at the site were used to define the gas production model. Simulations in one and two dimensions are presented to investigate gas production and migration in the landfill, and in the surrounding limestone. The effects of a gas recovery well and landfill cover on gas migration are also discussed.

Nastev, Miroslav; Therrien, René; Lefebvre, René; Gélinas, Pierre



Soil quality assessment for peat-mineral mix cover soil used in oil sands reclamation.  


A soil quality (SQ) assessment and rating framework that is quantitative, iterative, and adaptable, with justifiable weighting for quality scores, is required for evaluating site-specific SQ at land reclamation sites. Such a framework needs to identify the minimum dataset that reflects the current knowledge regarding relationships between SQ indicators and relevant measures of ecosystem performance. Our objective was to develop nonlinear scoring functions for assessing the impact on SQ of peat-mineral mix (PMM) used as a cover soil at land reclamation sites. Soil functional indicators affected by PMM were extracted from existing databases and correlated with soil organic carbon (SOC). Based on defined objectives for SQ assessment, indicators with significant correlation ( < 0.05) to SOC were selected, normalized, and fitted to sigmoid functions using nonlinear regression procedure to establish SQ functions (SQFs) that can analyze changes in field capacity, permanent wilting point, soil nitrogen, and cation exchange capacity of PMM using SOC as input parameter. Application of the SQFs to an independent dataset produced ratings with mean differences similar to the treatment effects of mixing three levels of peat and mineral soil. These results show that derived ratings and weighing factors using SOC reflect the relationship between PMM treatment and other SQ indicators. Applying the developed SQFs to a long-term soil monitoring dataset shows that an increase or decrease in SOC from 10 to 20 g kg causes a significant change in SQ. This identifies the need for further nutrient and moisture management of PMM to support long-term SQ development in land reclamation. PMID:25603242

Ojekanmi, A A; Chang, S X



Landfill mining: A critical review of two decades of research  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.

Krook, Joakim, E-mail: [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden); Svensson, Niclas; Eklund, Mats [Department of Management and Engineering, Environmental Technology and Management, Linkoeping University, SE-581 83 Linkoeping (Sweden)



Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. The known benefits of winter cover crops include reduced nitrate leaching, soil erosion, and weed germination, but evidence of improvements in soil productivity would provide further incentive for famers to implemen...


Theory of Erosion on Soil-Covered Slopes Author(s): W. E. H. Culling  

E-print Network

Theory of Erosion on Soil-Covered Slopes Author(s): W. E. H. Culling Source: The Journal of Geology. #12;THEORY OF EROSION ON SOIL-COVERED SLOPES1 W. E. H. CULLING 44 Grenville Close, Burnham, Buckinghamshire, England ABSTRACT Slope erosion is subject to a minimal law; that factor, whether



Technology Transfer Automated Retrieval System (TEKTRAN)

Winter cover crops are essential in conservation tillage systems to protect soils from erosion and for improving soil productivity. Black oat (Avena strigosa Schreb) and oilseed radish (Raphanus sativus L.) could be useful cover crops in the Southeastern USA but successful adoption requires underst...


Reduced sulfur compounds in gas from construction and demolition debris landfills.  


The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices. PMID:16403620

Lee, Sue; Xu, Qiyong; Booth, Matthew; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel



Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.



Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.



Evaluation of vegetative cover on reclaimed land by color infrared videography relative to soil properties  

E-print Network


Pfordresher, Anne Augusta




Microsoft Academic Search

Cover crop residues on no-till soil will intercept a portion of applied herbicides. Thus, herbicide efficacy in no-till systems depends,in part, on rainfall to wash the herbicide onto the soil. Tillage and cover crop residue may also influence degradation of a herbicide in soil. This series of studies examined Cotoran (fluometuron, N,N ­ dimethyl-Nr-(3-(trifluoromethyl)phenyl) urea) wash- off from native vegetation,

L. A. Gaston; D. J. Boquet; S. D. Dotch; M. A. Bosch


The short-term cover crops increase soil labile organic carbon in southeastern Australia  

Microsoft Academic Search

Little information is available about the effects of cover crops on soil labile organic carbon (C), especially in Australia.\\u000a In this study, two cover crop species, i.e., wheat and Saia oat, were broadcast-seeded in May 2009 and then crop biomass was\\u000a crimp-rolled onto the soil surface at anthesis in October 2009 in southeastern Australia. Soil and crop residue samples were

Xiaoqi Zhou; Chengrong Chen; Shunbao Lu; Yichao Rui; Hanwen Wu; Zhihong Xu


Multi-scale variability in tropical soil nutrients following land-cover change  

Microsoft Academic Search

The effects of land-cover change on soil properties have reached regional proportions in the southwestern Amazon, and can be detected in their patterns at the scale of hundreds of thousands of square kilometers. Spatial analysis of an extensive soil profile database revealed four nested spatial scales at which different patterns in soil properties occur: 68 km. The shortest scales account for

Karen W. Holmes; Phaedon C. Kyriakidis; Oliver A. Chadwick; João Vianei Soares; Dar A. Roberts



Effects of soil composition and mineralogy on remote sensing of crop residue cover  

Microsoft Academic Search

The management of crop residues (non-photosynthetic vegetation) in agricultural fields influences soil erosion and soil carbon sequestration. Remote sensing methods can efficiently assess crop residue cover and related tillage intensity over many fields in a region. Although the reflectance spectra of soils and crop residues are often similar in the visible, near infrared, and the lower part of the shortwave

Guy Serbin; Craig S. T. Daughtry; E. Raymond Hunt; James B. Reeves; David J. Brown



Examining Changes in Soil Organic Carbon with Oat and Rye Cover Crops Using Terrain Covariates  

Microsoft Academic Search

Winter cover crops have the potential to increase soil organic C in the corn (Zea mays L.)-soybean (Glycine max (L.) Merr.) rotation in the upper Midwest. Management effects on soil C, however, are often difficult to measure because of the spatial variation of soil C across the landscape. The objective of this study was to determine the effect of oat

T. C. Kaspar; T. B. Parkin; D. B. Jaynes; C. A. Cambardella; D. W. Meek; Y. S. Jung



Relationships between rock fragment cover and soil hydrological response in a Mediterranean environment  

Microsoft Academic Search

Rock fragments are a key factor for determining erosion rates, particularly in arid and semiarid environments where vegetation cover is very low. However, the effect of rock fragments in non-cultivated bare soils is still not well understood. Currently, there is a need for quantitative information on the effects of rock fragments on hydrological soil processes, in order to improve soil

Lorena M. Zavala; Antonio Jordán; Nicolás Bellinfante; Juan Gil



Nitrogen mineralization and availability of mixed leguminous and non-leguminous cover crop residues in soil  

Microsoft Academic Search

Whereas non-leguminous cover crops such as cereal rye (Secale cereale) or annual ryegrass (Lolium multiflorium) are capable of reducing nitrogen (N) leaching during wet seasons, leguminous cover crops such as hairy vetch (Vicia villosa) improve soil N fertility for succeeding crops. With mixtures of grasses and legumes as cover crop, the goal of reducing\\u000a N leaching while increasing soil N

S. Kuo; U. M. Sainju



Management of cruciferous cover crops by mowing for soil and water conservation in southern Spain  

Microsoft Academic Search

In recent years, the use of cover crops in Mediterranean olive orchards has increased due to serious soil erosion problems and surface water contamination by herbicides. In these areas, the annual precipitation regime is strongly seasonal, with dry summers that require killing the cover crop before it competes with the trees for water. Cruciferous species are being introduced as cover

C. Alcántara; A. Pujadas; M. Saavedra



Modeling impact of small Kansas landfills on underlying aquifers  

USGS Publications Warehouse

Small landfills are exempt from compliance with Resource Conservation and Recovery Act Subtitle D standards for liner and leachate collection. We investigate the ramifications of this exemption under western Kansas semiarid environments and explore the conditions under which naturally occurring geologic settings provide sufficient protection against ground-water contamination. The methodology we employed was to run water budget simulations using the Hydrologic Evaluation of Landfill Performance (HELP) model, and fate and transport simulations using the Multimedia Exposure Assessment Model (MULTIMED) for several western Kansas small landfill scenarios in combination with extensive sensitivity analyses. We demonstrate that requiring landfill cover, leachate collection system (LCS), and compacted soil liner will reduce leachate production by 56%, whereas requiring only a cover without LCS and liner will reduce leachate by half as much. The most vulnerable small landfills are shown to be the ones with no vegetative cover underlain by both a relatively thin vadose zone and aquifer and which overlie an aquifer characterized by cool temperatures and low hydraulic gradients. The aquifer-related physical and chemical parameters proved to be more important than vadose zone and biodegradation parameters in controlling leachate concentrations at the point of compliance. ??ASCE.

Sophocleous, M.; Stadnyk, N.G.; Stotts, M.



Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. Black-Right-Pointing-Pointer Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). Black-Right-Pointing-Pointer Determined how compaction affects the hydraulic conductivity of clay soils. Black-Right-Pointing-Pointer Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 Multiplication-Sign 10{sup -10}, 2.08 Multiplication-Sign 10{sup -9} and 6.8 Multiplication-Sign 10{sup -10} m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m{sup 3}). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m{sup 3}) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

Hamdi, Noureddine, E-mail: [Centre National des Recherches en Science des Materiaux, Borj Cedria Techno-Park, B.P. 95-2050, Hammam Lif, Tunis (Tunisia); Srasra, Ezzeddine [Centre National des Recherches en Science des Materiaux, Borj Cedria Techno-Park, B.P. 95-2050, Hammam Lif, Tunis (Tunisia)



Stable isotopic signatures (?13C, ?D) of methane from European landfill sites  

NASA Astrophysics Data System (ADS)

The stable isotopic signatures (?13C, ?D) of CH4 from four German and Dutch landfill sites have been characterized using different techniques for isotope analysis (tunable diode laser absorption spectroscopy and isotope ratio mass spectrometry). Samples taken directly from the gas collection systems show fairly uniform, biogenic ?13C-?D isotopic signatures [?13C = (-59.0±2.2)‰ VPDB (n = 104); ?D = (-304±10)‰ VSMOW (n = 46)]. In contrast, emission samples taken with static chambers on soil-covered landfill areas exhibit a considerable ?13C-?D variability, mainly due to the influence of aerobic bacterial CH4 oxidation, which occurs when the biogas CH4 encounters atmospheric oxygen available in the uppermost region of the cover soil. Soil gas samples from the landfill covers clearly show the progressive isotopic enrichment within the aerobic regions of the soil. Isotope fractionation factors due to CH4 oxidation were determined to be ?(?13C) = 1.008±0.004 and ?(?D) = 1.039±0.026. On average, about 80% (70-97%) of CH4 is oxidized during the transport through cover soils, while no significant CH4 oxidation was found in uncovered areas consisting of freshly dumped waste. Area-integrated ?13C values of total emissions were derived from upwind-downwind measurements around the landfill and show very little temporal and site-to-site variation (?13C = (-55.4±1.4)‰ VPDB (n = 13; four different landfills)). CH4 budgets were established for two landfill sites, indicating that projected CH4 surface emissions from uncovered and covered areas are significantly lower compared to total CH4 production (for a landfill without gas collection) or compared to the difference between CH4 production and recovery (for a landfill with a gas collection system). For these two landfill sites the overall fraction of CH4 oxidation is estimated to be 46 and 39% (53%) of total CH4 production (minus recovery). Furthermore, the ?13C balance (comparing the ?13C values of the different emission pathways with the area-integrated ?13C results) implies that direct CH4 emissions via cracks or leakages constituted the major transport pathway (˜70%) into the atmosphere in both landfills.

Bergamaschi, P.; Lubina, C.; KöNigstedt, R.; Fischer, H.; Veltkamp, A. C.; Zwaagstra, O.



Mercury air-borne emissions from 5 municipal solid waste landfills in Guiyang and Wuhan, China  

NASA Astrophysics Data System (ADS)

A detailed study on atmospheric mercury emissions from municipal solid waste (MSW) landfills in China is necessary to understand mercury behavior in this source category, simply because China disposes of bulk MSW by landfilling and a large quantity of mercury enters into landfills. Between 2003 and 2006, mercury airborne emissions through different pathways, as well as mercury speciation in landfill gas (LFG) were measured at 5 MSW landfills in Guiyang and Wuhan, China. The results showed that mercury content in the substrate fundamentally affected the magnitude of mercury emissions, resulting in the highest emission rate (as high as 57 651 ng Hg m-2 h-1) at the working face and in un-covered waste areas, and the lowest measured at soil covers and vegetation areas (less than 20 ng Hg m-2 h-1). Meteorological parameters, especially solar radiation, influenced the diurnal pattern of mercury surface-air emissions. Total gaseous mercury (TGM) in LFG varied from 2.0 to 1406.0 ng m-3, monomethyl mercury (MMHg) and dimethyl mercury (DMHg) in LFG averaged at 1.93 and 9.21 ng m-3, and accounted for 0.51% and 1.79% of the TGM in the LFG, respectively. Total mercury emitted from the five landfills ranged from 17 to 3285 g yr-1, with the highest from the working face, then soil covering, and finally the vent pipes.

Li, Z. G.; Feng, X.; Li, P.; Liang, L.; Tang, S. L.; Wang, S. F.; Fu, X. W.; Qiu, G. L.; Shang, L. H.



Changes of Soil Microbial Biomass Carbon and Nitrogen with Cover Crops and Irrigation in a Tomato Field  

Microsoft Academic Search

In order to understand how soil microbial biomass was influenced by incorporated residues of summer cover crops and by water regimes, soil microbial biomass carbon (C) and nitrogen (N) were investigated in tomato field plots in which three leguminous and a non-leguminous cover crop had been grown and incorporated into the soil. The cover crops were sunn hemp (Crotalaria juncea

Q. R. Wang; Y. C. Li; W. Klassen



Sanitary landfill leachate  

SciTech Connect

This article reviews landfill leachate treatment methods. Contamination of groundwater, streams, and ponds by noxious materials from landfills in particular, leachate is a problem going back to the first dump''. However, it has only relatively recently received the attention it deserves. Leachate, soluble chemical compounds removed from degrading solid waste materials, is produced when water (usually from precipitation) passes through a landfill. Its quality varies with its source, among other factors, and reported values of leachate constituents vary over a wide range. The quantity produced is primarily a function of climate, but it is also affected by landfill cover and the collection system's configuration. Because uncollected leachate may contaminate ground-water or surface water, current regulations require containment, collection, treatment, and leachate disposal.

Shams-Khorzani, R.; Knox, T.D.; Brockway, R.C. (Black and Veatch, Kansas City, MO (United States))



Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management costs  

Microsoft Academic Search

Plant-soil relationships in the surface soil layer affect other processes in agroecosystems, including crop productivity, nitrate leaching and plant-pest interactions. This study investigated the effect of altering surface soil dynamics, using a winter cover crop rotation, on biotic and abiotic characteristics of the soil profile. Two cover crop treatments, phacelia and Merced rye (Phacelia tanacetifolia cv. ‘Phaci’, and Secale cereale

L. J. Wyland; L. E. Jackson; W. E. Chaney; K. Klonsky; S. T. Koike; B. Kimple




EPA Science Inventory

This presentation will describe the interim data reaulting from a CRADA between USEPA and Waste Management, Inc. at the outer Loop Landfill Bioreactor research project located in Louisville, KY. Recently updated data will be presented covering landfill solids, gas being collecte...


Pendimethalin Wash?Off from Cover Crop Residues and Degradation in a Loessial Soil  

Microsoft Academic Search

Tillage and cover crops affect soil biological, chemical and physical properties that control the fate of herbicides in soil. Effects of conventional tillage (CT) and no tillage (NT) and either native winter annual vegetation, hairy vetch (Vicia villosa) or wheat (Triticum aestivum) on degradation of pendimethalin [N?(1?ethylpropyl)?3,4?dimethyl?2,6?dinitrobenzenamine] were investigated. Effect of pendimethalin sorption on residues of these cover crops on

L. A. Gaston; D. J. Boquet; M. A. Bosch



Changes in soil properties and soil cover structure due to intensive erosion and accumulation processes in loess soils  

NASA Astrophysics Data System (ADS)

Intensive water and tillage erosion and consequent accumulation are the most important processes affecting the agroecosystems in loess regions and changing soil properties, e.g. organic carbon content, carbonate content or structure stability, and general distribution of soil units in the landscape. South Moravian loess belt, formerly covered mostly by Haplic Chernozem, is now formed by a highly diversified soil mosaic. At a morphologically heterogenous study plot (6 ha), a study on relationship between soil properties and terrain characteristics was held. DTM analysis, detailed terrain survey and laboratory analysis were the main methods adopted in the study. Three main soil units were identified: Haplic Chernozem, calcareous Regosol and Colluvial soil. The distribution of each soil unit correlates with different terrain attributes. Regosols are significatly connected to the steep slope, while their correlation with the curvature or hydrological indexes is lower. On the contrary, the Colluvial soils distribution depends mainly on values of curvature and topographical wetness index and is independent on the slope. Chernozem is related to a specific terrain position more than to any of the terrain attributes. Soil depth and humus horizon thickness vary extremelly - from 0.2 m at the erosionally exposed slopes to more than 2.5 m at the concave parts and the toeslope. Soil depth is significantly correlated with all of the tested terrain attributes except of the slope - the strongest correlation was proved in case of mean curvature, topographical wetness index and catchment area. Different degree of changes in particular soil properties results from the specificity of both erosion process and parent material character. Organic carbon content in the topsoil varies significantly. Humus is practically absent in the steepest parts of the slope where the loess is exposed. High amounts of Corg were identified in the undisturbed A horizons of the Chernozem unit. In the concave parts of the slope and at the toeslope, the Corg content in the plough layer is lower due to an admixture of non-humus material transported from the steep parts of the plot. Nevertheless, the deeper (0.7 - 2 m), buried parts of the colluvial profiles are very rich in organic carbon (up to 4 %). These horizons may represent fossil chernic horizons of former Chernozems, buried by intensive sedimentation of humic material. Similar variability was found in carbonate content values, always due to amount of loess admixture in the plough horizon. While the soil structure stability, depending strongly on humus content, was the highest in the Chernozem unit, in the eroded parts it was highly unstable. Changes in the cation exchange capacity and pH are less distinctive. CEC slightly increases in humus-rich soils and pH is higher in the eroded parts of the plot due to the loess exposition. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic (grant No. GA CR 526/08/0434) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. MSM 6046070901).

Zadorova, Tereza; Penizek, Vit; Jaksik, Ondrej; Kodesova, Radka; Jirku, Veronika; Fer, Miroslav



Changes in Soil Moisture with Cover Crops and Tillage: Impact on Cotton Yield and Quality  

Technology Transfer Automated Retrieval System (TEKTRAN)

The alluvial soils of the lower Mississippi River flood plain are highly productive, but low in organic matter. Use of irrigation in the area has increased in order to ensure adequate yield return. Use of cover crops has been used in other areas to increase soil organic matter and improve infiltrati...


Soil and crop nitrogen as influenced by tillage, cover crops, and nitrogen fertilization  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil and crop management practices may influence soil mineral N, crop N uptake, and N leaching. We evaluated the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)],...


Influence of Herbicide-Desiccated Cover Crops on Biological Soil Quality in the Mississippi Delta  

Microsoft Academic Search

The effect of crop residue management (CRM) systems on selected biological properties (microbial biomass\\/populations and soil enzyme activity) of Dundee soils under two cropping systems was investigated. In a cotton (Gossypium hirsutum L.) study, the influence of conventional tillage (CT) and no-tillage (NT) with and without an annual ryegrass cover crop (Lolium multiforum Lam.) on these properties was determined. Annual

S. C. Wagner; R. M. Zablotowicz; M. A. Locke; R. J. Smeda; C. T. Bryson


Effect of Pinyon–Juniper Tree Cover on the Soil Seed Bank  

Microsoft Academic Search

As pinyon-juniper (specifically, Pinus monophylla and Juniperus osteosperma) woodlands in the western United States increase in distribution and density, understory growth declines and the occurrence of crown fires increases, leaving mountainsides open to both soil erosion and invasion by exotic species. We examined if the loss in understory cover that occurred with increasing tree cover was reflected in the density

Elizabeth A. Allen; Robert S. Nowak



Capturing residual soil nitrogen with winter cereal cover crops  

Technology Transfer Automated Retrieval System (TEKTRAN)

The wide-spread drought during the 2012 summer has resulted in reduced crop growth, poor yields, and an anticipated increase in residual nitrate (NO3) nitrogen (N) in the soil profile. This residual N can potentially increase NO3-N losses to ground and/or surface waters, as well as increase carry-ov...


Landfill restoration and biodiversity: a case of study in Northern Italy.  


Landfilling is a worldwide common waste treatment method. Final recovery usually consists of capping the area with top soil on which vegetation can grow. Depending on the suitability of the recovery pattern, landfill sites can work as potential reserve of semi-natural habitats. A recovery pattern applied to land reclamation of two hazardous waste landfills sited in Northern Italy (Po floodplain) was studied to assess the results in terms of biodiversity. These landfills lie within a landscape dominated by intensive agriculture. After final sealing, both landfills were covered by soil on which a meadow was sown and a hedgerow was planted around the borders. One of the compared areas was not provided with a pond and the hedgerow was incomplete. Butterflies and birds were used as indicators, and their seasonal abundance was related to habitat structure and ecological factors. Meadows grown on both areas supported a rich butterfly population (30 species), including some species that are by now uncommon in the Po floodplain. In both areas butterfly abundance was affected by summer drought. The birds' community included 57 species; 16 Species of European Conservation Concern (SPECs) were observed. Each bird community was different in the compared study areas because of their different size and habitat structure. For example, landfill A, provided with a pond and a more complex structure of the hedgerow, supported a richer birds community (52 species versus 39). Both restored landfills worked well as a stepping stone for migratory birds, but they were a reproductive habitat of poor quality. PMID:25161277

Camerini, Giuseppe; Groppali, Riccardo



The soil-air exchange characteristics of total gaseous mercury from a large-scale municipal landfill area  

NASA Astrophysics Data System (ADS)

The cycle of mercury (Hg) from a gigantic landfill area (area ˜2.72 km 2) was investigated by conducting micrometeorological measurements of its exchange rates across soil-air boundary during the spring season of 2000. Based on this field campaign, we attempted to provide various insights into the Hg exchange processes, especially with respect to the decoupling of the mixed signatures of complex source processes. According to our analysis, the cycle of Hg in the study site appeared to be affected significantly by the vent processes; excessive amount of Hg was expected to be released via ventpipes penetrating up to 60 m depths of the deep landfilled waste layer. The influence of these vent source processes was reflected very sensitively by the windrose pattern. The data collected during the non-easterly winds were representing the typical pattern for a strong source area in which upward emission is predominant in both strength and frequency. On the other hand, the data collected from the easterly winds were characterized by excessive deposition of Hg which we suspect is due mostly to the nearest vent located easterly from our measurement spot. The unique characteristics of each data group, divided by windrose pattern, were consistent from apparent difference in: (1) the absolute magnitude of gradient/flux data sets, (2) frequency of exchange for each of two vertical directions, and (3) E/ D (emission/deposition) ratios for most relevant parameters. The analysis of the short-term variability of exchange patterns over a 24-h scale, also exhibited that the patterns for two different conditions were quite contrasting as a function of time. The magnitude of bidirectional fluxes in the present study is significantly high with values of 254±224 ( N=71 emissions out of 79 fluxes quantified during non-easterly winds) and -1164±1276 ng m -2 h -1 ( N=14 depositions out of 16 fluxes during easterly winds), respectively. If the computed emission rate is extrapolated, we estimate that annual emission of Hg from the study area can amount to approximately 6 kg which is comparable with the estimates for other areas around the globe under strong Hg-pollution.

Kim, Ki-Hyun; Kim, Min-Young; Lee, Gangwoong



EPA Science Inventory

Buried wastes are isolated from the environment by barriers constructed entirely or in part of compacted soil. he chief concern in barrier design has been to isolate the waste in the short term by preventing movement of water into and through the waste. owever, in the long term a...



E-print Network

-forming materials on brownfield, landfill or otherwise disturbed sites. Forest Research is able to give advice No limitations; however, the placement location of materials of different texture on site should be related Regeneration Introduction Many sites in the UK have been left with little or no soil cover suitable


Occupational Exposure to Airborne Dust, Respirable Quartz and Metals Arising from Refuse Handling, Burning and Landfilling  

Microsoft Academic Search

Industrial hygiene investigations were conducted in 1983 at a refuse derived fuel (RDF) burning plant, a refuse transfer station and three municipal landfill sites. The field surveys were conducted during the warmer and drier seasons of the year. The investigations included air sampling for total dust, respirable quartz and airborne metals. Bulk samples of soil cover, precipitator\\/boiler ash and transfer




Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards  

NASA Astrophysics Data System (ADS)

When soil nitrate levels are low, plants suffer nitrogen (N) deficiency but when the levels are excessive, soil nitrates can pollute surface and subsurface waters. Strategies to reduce the nitrate pollution are necessary to reach a sustainable use of resources such as soil, water and plant. Buffer strips and cover crops can contribute to the management of soil nitrates, but little is known of their effectiveness in semiarid vineyards plantations. The research was carried out in the south coast of Sicily (Italy) to evaluate nitrate trends in a vineyard managed both conventionally and using two different cover crops (Triticum durum and Vicia sativa cover crop). A 10 m-wide buffer strip was seeded with Lolium perenne at the bottom of the vineyard. Soil nitrate was measured monthly and nitrate movement was monitored by application of a 15N tracer to a narrow strip between the bottom of vineyard and the buffer and non-buffer strips. Lolium perenne biomass yield in the buffer strips and its isotopic nitrogen content were monitored. Vicia sativa cover crop management contributed with an excess of nitrogen, and the soil management determined the nitrogen content at the buffer areas. A 6 m buffer strip reduced the nitrate by 42% with and by 46% with a 9 m buffer strip. Thanks to catch crops, farmers can manage the N content and its distribution into the soil over the year, can reduced fertilizer wastage and reduce N pollution of surface and groundwater.

Novara, A.; Gristina, L.; Guaitoli, F.; Santoro, A.; Cerdà, A.



Size-fractionation and characterization of landfill leachate and the improvement of Cu{sup 2+} adsorption capacity in soil and aged refuse  

SciTech Connect

Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH{sub 4}{sup +}, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW < 1 kDa) predominated in the leachate, accounting for 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu{sup 2+} was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48 h with leachate in the ratio of 5 g of sample per 50 ml of leachate. Cu{sup 2+} uptake by the raw soil was {approx}4.60 {mu}g/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11 {mu}g/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu{sup 2+}.

Lou Ziyang [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Chai Xiaoli; Niu Dongjie; Ou Yuanyang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhao Youcai [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)], E-mail:



Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico  

NASA Technical Reports Server (NTRS)

Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.



Salt and N leaching and soil accumulation due to cover cropping practices  

NASA Astrophysics Data System (ADS)

Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth, using daily soil water content measurements, based on calibrated capacitance probes. Our results showed that drainage during the irrigated period was minimized, because irrigation water was adjusted to crop needs, leading to soil salt and nitrate accumulation on the upper layers after maize harvest. Then, during the intercrop period, most of salt and nitrate leaching occurred. Cover crops use led to shorter drainage period, lower drainage water amount and lower nitrate and salt leaching than treatment with fallow. These effects were related with a larger nitrate accumulation in the upper layers of the soil after cover crop treatments. But there was not soil salt accumulation increase in treatments with cover crops, and even decreased after years with a large cover crop biomass production. Then, adoption of cover crops in this kind of irrigated cropping system reduced water drainage beyond the root zone, salt and nitrate leaching diminished as a consequence but did not lead to salt accumulation in the upper soil layers. Acknowledgements: Financial support by CICYT, Spain (ref. AGL2005-00163 and AGL 2011-24732) and Comunidad de Madrid (project AGRISOST, S2009/AGR-1630).

Gabriel, J. L.; Quemada, M.



Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China  

NASA Astrophysics Data System (ADS)

We studied the impacts of re-vegetation on soil moisture dynamics and evapotranspiration (ET) of five land cover types in the Loess Plateau in northern China. Soil moisture and temperature variations under grass (Andropogon), subshrub (Artemisia scoparia), shrub (Spiraea pubescens), plantation forest (Robinia pseudoacacia), and crop (Zea mays) vegetation were continuously monitored during the growing season of 2011. There were more than 10 soil moisture pulses during the period of data collection. Surface soil moisture of all of the land cover types showed an increasing trend in the rainy season. Soil moisture under the corn crop was consistently higher than the other surfaces. Grass and subshrubs showed an intermediate moisture level. Grass had slightly higher readings than those of subshrub most of the time. Shrubs and plantation forests were characterized by lower soil moisture readings, with the shrub levels consistently being slightly higher than those of the forests. Despite the greater post-rainfall loss of moisture under subshrub and grass vegetation than forests and shrubs, subshrub and grass sites exhibit a higher soil moisture content due to their greater soil retention capacity in the dry period. The daily ET trends of the forests and shrub sites were similar and were more stable than those of the other types. Soils under subshrubs acquired and retained soil moisture resources more efficiently than the other cover types, with a competitive advantage in the long term, representing an adaptive vegetation type in the study watershed. The interactions between vegetation and soil moisture dynamics contribute to structure and function of the ecosystems studied.

Wang, S.; Fu, B. J.; Gao, G. Y.; Yao, X. L.; Zhou, J.



Using high-resolution radar images to determine vegetation cover for soil erosion assessments.  


Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. PMID:23624425

Bargiel, D; Herrmann, S; Jadczyszyn, J



Landfill methane oxidation across climate types in the U.S.  


Methane oxidation in landfill covers was determined by stable isotope analyses over 37 seasonal sampling events at 20 landfills with intermediate covers over four years. Values were calculated two ways: by assuming no isotopic fractionation during gas transport, which produces a conservative or minimum estimate, and by assuming limited isotopic fractionation with gas transport producing a higher estimate. Thus bracketed, the best assessment of mean oxidation within the soil covers from chamber captured emitted CH(4) was 37.5 ± 3.5%. The fraction of CH(4) oxidized refers to the fraction of CH(4) delivered to the base of the cover that was oxidized to CO(2) and partitioned to microbial biomass instead of being emitted to the atmosphere as CH(4) expressed as a percentage. Air samples were also collected at the surface of the landfill, and represent CH(4) from soil, from leaking infrastructure, and from cover defects. A similar assessment of this data set yields 36.1 ± 7.2% oxidation. Landfills in five climate types were investigated. The fraction oxidized in arid sites was significantly greater than oxidation in mediterranean sites, or cool and warm continental sites. Sub tropical sites had significantly lower CH(4) oxidation than the other types of sites. This relationship may be explained by the observed inverse relationship between cover loading and fractional CH(4) oxidation. PMID:21133420

Chanton, Jeffrey; Abichou, Tarek; Langford, Claire; Hater, Gary; Green, Roger; Goldsmith, Doug; Swan, Nathan



Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover  

Microsoft Academic Search

Crop residues on the soil surface decrease soil erosion and increase soil organic carbon and the management of crop residues is an integral part of many conservation tillage systems. Current methods of measuring residue cover are inadequate for characterizing the spatial variability of residue cover over large fields. The objectives of this research were to determine the effects of water

C. S. T. Daughtry; E HUNTJR



Effects of tillage and winter cover cropping on microbial substrate-induced respiration and soil aggregation in two Japanese fields  

Microsoft Academic Search

We hypothesized that cover cropping could increase soil microbial activities under various tillage systems and that increased microbial activities would improve soil properties. Soil sampling was conducted at two fields in Japan in 2009. At the Ibaraki field (Andosol, clay loam), three tillage practices (no-tillage, plowing to 30?cm, and rotary tillage to 15?cm) and three types of winter cover cropping

Tomomi Nakamoto; Masakazu Komatsuzaki; Toshiyuki Hirata; Hajime Araki



Microbacterium immunditiarum sp. nov., an actinobacterium isolated from landfill surface soil, and emended description of the genus Microbacterium.  


A Gram-positive, non-endospore-forming bacterium, designated strain SK 18(T), was isolated from surface soil of a landfill site by dilution plating on trypticase soy broth agar. Preliminary characterization of strain SK 18(T) via biochemical tests, analysis of fatty acid methyl esters and partial 16S rRNA gene sequencing placed it within the genus Microbacterium. Analysis of the cell wall indicated that the peptidoglycan was of cross-linkage type B, containing the amino acids lysine and ornithine and with muramic acid in the N-glycolyl form. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid and an unidentified glycolipid. The major fatty acids of the cell membrane were anteiso-C(17 : 0), anteiso-C(15 : 0) and iso-C(16 : 0). These data further strengthened placement of the strain within the genus Microbacterium. Strain SK 18(T) shared highest 16S rRNA gene sequence similarity (97.2 %) with Microbacterium ulmi DSM 16931(T). Levels of similarity with the type strains of all other recognized Microbacterium species were less than 97.0 %. DNA-DNA hybridization experiments with strain SK 18(T) and its closest relative, M. ulmi DSM 16931(T), revealed a low reassociation value of 39.0 % (? = 3.8 %). Moreover, strain SK 18(T) showed a number of differences in phenotypic characteristics (colony colour, catalase activity, hydrolysis of polymers, acid production from sugars and oxidation of various substrates), and its DNA G+C content was also higher than that of M. ulmi DSM 16931(T). These data indicated that strain SK 18(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium immunditiarum sp. nov. is proposed. The type strain is SK 18(T) (= MTCC 7185(T) = JCM 14034(T)). An emended description of the genus Microbacterium is also provided. PMID:22058326

Krishnamurthi, Srinivasan; Bhattacharya, A; Schumann, P; Dastager, Syed G; Tang, Shu-Kun; Li, Wen-Jun; Chakrabarti, T



Snow Cover Depletion and Soil Moisture Recharge at Three Cold Land Processes Experiment (CLPX) Meteorological Sites  

NASA Astrophysics Data System (ADS)

With increasing concern regarding water supply in arid and semiarid regions, knowledge of water resources in the Earth's cold regions is critical. Snow-cover depletion and soil moisture recharge are elements used in hydrologic modeling and climate modeling, as well as remote sensing applications. Modeled snow-cover depletion and soil moisture recharge are important parameters in hydrologic forecasting. We evaluate the ability of a one-dimensional mass and energy balance model (SNTHERM.89) to predict snow-cover depletion and to test the accuracy of Fast All season Soil STrength (FASST) in modeling the evolution of soil moisture recharge based on data from three NASA Cold Land Processes Experiment (CLPX) sites. The objective is to evaluate the model's ability to predict observations at three CLPX sites: Buffalo Pass (near Steamboat Springs, CO); St. Louis Creek (in the Fraser Experimental Forest, CO); and Illinois River (located in North Park, CO). The three sites were chosen for their diverse climatic and physiographic differences. The Buffalo Pass site has a deep snowpack with discontinuous forest cover dominated by Englemann spruce (Picea englemannii) and alpine fir (Abies lasiocarpa). The St. Louis site has a moderate snowpack depth and forest cover dominated by lodgepole pine (Pinus contorta). The Illinois River site is irrigated grassland with no forest cover.

Holcombe, J. D.; Elder, K.; Davis, R. E.



Soil moisture and soil loss study under different cover densities in Ultisolsin Pernambuco State semi-arid (Brazil)  

NASA Astrophysics Data System (ADS)

Throughout Brazil occurs a large loss of soil and water runoff due to soil erosion especially in rural areas. The soil moisture monitoringhas been a practice increasingly important in agriculture, especially in regions where water scarcity is high and rainfed cropping is adopted. The soil cover is one of the factors that minimize these effects of degradation arising from agricultural land use. To monitor the water content in the soil profile, point measurements were performed using an FDR equipment, which is a capacitance probe, Diviner 2000 ® model, the Sentek Pty Ltd, Australia. The objective of this study was to investigate the dynamics of soil water content under different types of ground cover, using a probe and the Diviner soil loss in the semi-arid Pernambuco. The study was carried out in the Municipality of Pesqueira-PE, located in the State of Pernambuco, in the Alto Ipanema Representative Basin, with average annual rainfall of 730 mm and average annual potential evapotranspiration of 1683 mm. The soil of the study areas is classified as Eutrophic Yellow Ultisol abruptly (Area A) and typical Eutrophic Yellow Ultisol (Area B). For this, study three experimental plots were installed in two different areas, totalling six plots, bounded by brick, with 4.5 m wide and 11 m long in the direction of the slope, under three soil cover conditions. The treatments involved in this study are: bare soil (SD); with cactus (P) and natural cover (CN). The water content in soil was evaluated at 0.10, 0.20 and 0.30 m at the soil profile and sediment sampling were carried out fortnightly between April and July 2011 (rainy season). In this work we used cumulative precipitation for seven and fourteen days before the readings with the Divinerprobe. The highest rainfall is concentrated during the months of May and July of 2011, and May is the month with the highest cumulative rainfall. April received the lowest rainfall, considered the driest. The water content in the soil indicates that in all treatments there was a greater storage of water with increased rainfall and reduced runoff. In area A treatment with CN had a larger increase in moisture at all depths. These results prove that the presence of vegetation is important for the semi-arid region, especially during drought periods. In the area B, at a depth of 0.10 m, the cactus had the highest increase of moisture, while at depths of 0.20 and 0.30 m above the ground there was a lower water storage. This result is related to the fact that in areas with high vegetation density results in a higher water consumption due to the demand of the plants, resulting in less moisture compared to the bare soil plot. The erosion results obtained show that the highest soil losses occurred in the condition without cover and it can be verified that it was influenced by the presence or absence of cover used and demonstrated to be effective (CN and P) to control erosion, providing a greater protective effect in the soil to reduce the area exposed to the raindrops impact.

Borges, T. K. S.; Montenegro, A. A. A.; Santos, T. E. M.; Silva Junior, V. P.; Siqueira, G. M.



Assessing the use of poplar tree systems as a landfill evapotranspiration barrier with the SHAW model.  


The use of poplar tree systems (PTS) as evapotranspiration barriers on decommissioned landfills is gaining attention as an option for leachate management. This study involved field-testing the Simultaneous Heat and Water (SHAW) model for its ability to reliably estimate poplar transpiration, volumetric soil water content, and soil temperature at a landfill located in southern Ontario, Canada. The model was then used to estimate deep drainage and to ascertain the influence of a young PTS on the soil water balance of the landfill cover. The SHAW model tended to underestimate poplar transpiration [mean difference (MD) ranged from 0.33 to 3.55 mm on a daily total basis] and overestimate volumetric soil water content by up to 0.10 m3 m(-3). The model estimated soil temperature very well, particularly in the upper 1 m of the landfill cover (MD ranged from -0.1 to 1.6 x degrees C in this layer). The SHAW model simulations showed that deep drainage decreased appreciably with the presence of a young PTS largely through increased interception of rainfall, and that PTS have a good potential to act as effective evapotranspiration barriers in northern temperate climate zones. PMID:15462337

Preston, G M; McBride, R A



Biomarker measurements in Trifolium repens and Eisenia fetida to assess the toxicity of soil contaminated with landfill leachate: a microcosm study.  


To assess the toxicity of a soil contaminated with landfill leachate, biomarker measurements in two species living in close contact with the soil, i.e. a plant species Trifolium repens and an animal species Eisenia fetida, were conducted. Briefly, both species were studied after simultaneous exposure conducted in microcosms. The organisms were exposed to soil supplemented with pure leachate, leachate diluted to 50%; leachate diluted to 25% and without leachate. After a 10 weeks exposure period, we observed an increase in the Olive Trail Moment in T. repens, compared to the reference, for 50% and pure leachate. The response observed appears to be dose-dependent and linear in our experimental conditions. Addition of the leachate to the reference soil induced an increase in Cd-Metallothionein-coding mRNA quantity in E. fetida. In addition, expression level of another gene implied in detoxification and coding Phytochelatin synthase was significantly induced in worms exposed to the reference soil spiked with the leachate, regardless presence of T. repens. Thus, T. repens and E. fetida can be used in a complementary manner to assess soil quality. Sensitivities of the test species yield sensitive bioassays as both species responded at low doses despite the buffering effect of the soil. PMID:22520451

Manier, N; Brulle, F; Le Curieux, F; Vandenbulcke, F; Deram, A



Cover crops alter phosphorus soil fractions and organic matter accumulation in a Peruvian cacao agroforestry system  

Microsoft Academic Search

In many tropical soils, excessive weathering of primary minerals confounded by intense agricultural production has resulted\\u000a in the depletion of organic matter and plant available forms of phosphorus (P). Long-term growth of cover crops in tropical\\u000a agroforestry systems have been shown to influence nutrient cycling, and soil organic matter pools. The objective of this experiment\\u000a was to assess the affect

Hollie Hall; Yuncong Li; Nicholas Comerford; Enrique Arévalo Gardini; Luis Zuniga Cernades; Virupax Baligar; Hugh Popenoe



Emission characteristics and air-surface exchange of gaseous mercury at the largest active landfill in Asia  

NASA Astrophysics Data System (ADS)

The emission characteristics and air-surface exchange of gaseous elemental mercury (GEM) at Laogang landfill in Shanghai, China, the largest active landfill in Asia, has been investigated during two intensive field campaigns in 2011 and 2012. The mercury (Hg) content in municipal solid waste (MSW) varied widely from 0.19 to 1.68 mg kg-1. Over the closed cell in the landfill, the mean ambient air GEM concentration was virtually indistinguishable from the hemispherical background level (1.5-2.0 ng m-3) while the concentration downwind of ongoing landfill operation (e.g. dumping, burying and compacting of MSW) was clearly elevated. GEM emission through landfill gas (LFG) was identified as a significant source. GEM concentrations in LFGs collected from venting pipes installed in different landfill cells varied widely from 3.0 to 1127.8 ng m-3. The GEM concentrations were found negatively correlated to the age of LFG cells, suggesting GEM released through LFG declined readily with time. The GEM emission from this source alone was estimated to be 1.23-1.73 mg h-1. GEM emission from cover soil surfaces was considerably lower and at a scale comparable to that of background soil surfaces. This is in contrast to earlier reports showing enhanced GEM emissions from landfill surfaces in Southern China, probably due to the difference in soil Hg content and gas permeability characteristics of soils at different sites. Vertical concentration profiles of GEM in the interstitial gas of buried MSW were sampled, perhaps for the first time, which exhibited a wide spatial variability (4.9-713.1 ng m-3) in the 3-year-old landfill cell investigated. GEM emission from landfill operation was estimated to be 290-525 mg h-1 using a box model. This suggests that GEM degassing from Laogang landfill is quantitatively largely dominated by emissions from daily landfilling operations with a much smaller contribution from LFG venting and insignificant (bi-directional fluxes near zero) contribution from surfaces capped with a soil layer. This study reveals divergent GEM emission patterns among landfill cells of different ages, and provides essential emission estimates for formulating Hg emission reduction strategies for a large landfill.

Zhu, Wei; Li, Zhonggen; Chai, Xiaoli; Hao, Yongxia; Lin, Che-Jen; Sommar, Jonas; Feng, Xinbin



Spatial and temporal variability of grass cover in two olive grove catchments on contrasting soil types  

NASA Astrophysics Data System (ADS)

Mediterranean climate conditions -characterized by the concentration of the precipitation in the seasons of autumn and spring, the low temperatures in winter and extremely warm and dry summers- determine that ground cover by adventitious (or cover crop) vegetation shows significant seasonal and annual variability. In addition, its spatial variability associates also, partially, to water availability among the landscape. This is especially relevant in olive orchards, an agricultural system under high erosion risk in the region where the establishment of herbaceous cover has proved to improve soil protection reducing erosion risk, as well as the improvement of soil properties (Gómez et al., 2009). All these benefits are based on small scale studies where full ground cover by the cover crop is relatively easy to obtain. However, few information is available about the actual ground cover achieved at farm scale, although preliminary observations suggests that this might be extremely variable (Gómez and Giráldez, 2009). This study presents the preliminary results evaluating the spatial and temporal evolution of ground cover by adventitious vegetation (the preferred option by farmers to achieve a cover crop) in two commercial olive farms during 2 hydrological years (2011-2012). The study was conducted in two farms located in the province of Cordoba, Southern Spain. Both were olive orchards grown under deficit irrigation systems and present a gauge station where rainfall, runoff and sediment loads have been measured from the year 2005. The soil management in "La Conchuela" farm was based in the use of herbicide in the line of olive trees to keep the bare soil all year round, and the application of selective herbicide in the lane between the olive trees to promote the grown of graminaceae grasses . In addition, the grass is mechanically killed in June. In the another farm, "Arroyo Blanco", the grass spontaneous cover is allowed until mid-spring in which is also mechanically killed by several tractor passes. Ground cover was evaluated by a field surveys (4 per year) in which the same areas were measured at an approximate density of 4 samples/ha. In each point, over a 0.25 m2 area ground cover was measured using photographs, then point measurements were interpolated using method of Inverse Distance Weighting methods, to generate continuous distribution maps. The spatial and temporal evolution of ground cover in both farms presented a notably different patterns in both farms. In "La Conchuela", maximum values of cover can be reached in winter (61%, Dec-2011) while in "Arroyo Blanco", the maximum values were observed during the spring (50% May-2011) and are dramatically lower in the seasons of summer and autumn. These differences are justified by the influence of the management, the precipitation regime and the soil qualities such as the depth. On the other hand, the large spatial variability of ground cover measurements in both catchments, with coefficients of variation between 41 and 167%, was mainly led by the topography. In both farms the highest values of ground cover were found in those areas with deeper soils located in also in converging areas where surface runoff is concentrated. In the highest and shallowest area, soil management operations might improve the establishment of the vegetation as well as to address the growing in the most erosive periods. Finally, the impact of grass cover on the hydrological and erosive responses in the catchment is also discussed. References Aguilera, L. 2012. Estudio de cubiertas vegetales para el control de la erosión en olivar. Evaluación espacio-temporal en dos fincas comerciales, y exploración de nuevas opciones de cubiertas. Master Thesis. University of Cordoba. Gómez, J.A., Giráldez, J.V. Erosión y degradación de suelos. In: Sostenibilidad de la producción de olivar en Andalucía. Gómez, J.A. (Editor). Junta de Andalucía. Sevilla, p. 45-86. Gómez, J.A., Sobrinho, T.A., Giráldez, J.V., Fereres, E. 2009. Soil management effects on ru

Aguilera, Laura; Taguas, Encarnación V.; Gimeno, Enrique; Gómez, José A.



Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China.  


More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer microbes may differ in their ability/strategy to efficiently use soil organic carbon (SOC) within different phases of the year, understanding seasonal microbial process will increase our knowledge of biogeochemical cycling from the aspect of decomposition rates and corresponding nutrient dynamics. In this study, we measured soil microbial biomass, community composition and potential SOC mineralization rates in winter and summer, from six temperate ecosystems in northern China. Our results showed a clear pattern of increased microbial biomass C to nitrogen (N) ratio in most winter soils. Concurrently, a shift in soil microbial community composition occurred with higher fungal to bacterial biomass ratio and gram negative (G-) to gram positive (G+) bacterial biomass ratio in winter than in summer. Furthermore, potential SOC mineralization rate was higher in winter than in summer. Our study demonstrated a distinct transition of microbial community structure and function from winter to summer in temperate snow-covered ecosystems. Microbial N immobilization in winter may not be the major contributor for plant growth in the following spring. PMID:24667929

Zhang, Xinyue; Wang, Wei; Chen, Weile; Zhang, Naili; Zeng, Hui



Comparison of Seasonal Soil Microbial Process in Snow-Covered Temperate Ecosystems of Northern China  

PubMed Central

More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer microbes may differ in their ability/strategy to efficiently use soil organic carbon (SOC) within different phases of the year, understanding seasonal microbial process will increase our knowledge of biogeochemical cycling from the aspect of decomposition rates and corresponding nutrient dynamics. In this study, we measured soil microbial biomass, community composition and potential SOC mineralization rates in winter and summer, from six temperate ecosystems in northern China. Our results showed a clear pattern of increased microbial biomass C to nitrogen (N) ratio in most winter soils. Concurrently, a shift in soil microbial community composition occurred with higher fungal to bacterial biomass ratio and gram negative (G-) to gram positive (G+) bacterial biomass ratio in winter than in summer. Furthermore, potential SOC mineralization rate was higher in winter than in summer. Our study demonstrated a distinct transition of microbial community structure and function from winter to summer in temperate snow-covered ecosystems. Microbial N immobilization in winter may not be the major contributor for plant growth in the following spring. PMID:24667929

Zhang, Xinyue; Wang, Wei; Chen, Weile; Zhang, Naili; Zeng, Hui



Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate  

Microsoft Academic Search

It has been shown that cover crops can enhance soil nitrous oxide (N2O) emissions, but the magnitude of increase depends on the quantity and quality of the crop residues. Therefore, this study aimed to evaluate the effect of long-term (19 and 21 years) no-till maize crop rotations including grass [black oat (Avena strigosa Schreb)] and legume cover crops [vetch (Vigna

Juliana Gomes; Cimélio Bayer; Falberni de Souza Costa; Marisa de Cássia Piccolo; Josiléia Acordi Zanatta; Frederico Costa Beber Vieira; Johan Six



Factors influencing the establishment of floristically rich grasslands on a restored landfill site  

SciTech Connect

Natural revegetation on landfill sites often results in a species poor sward dominated by Elymus repens (Shaw, 1983; Davis, 1988; Wong, 1988). The aim of this study was primarily to investigate the mechanism by which E.repens achieved such apparent domination and secondly to investigate various methods to establish floristically rich grasslands on a restored landfill site. Low rates of germination and survival were recorded from seeds of Plantago lanceolata, Centaureau nigrand Leucanthemum vulgare sown into a sward of E.repens on a restored landfill site in Essex, even during periods with adequate soil water. Plants of P.lanceolata, C.nigra and L. vulgare were grown in pots and transplanted into the sward of E.repens. Over the following two years a significant decrease in crown cover of these species was recorded. In areas where E.repens had been treated with herbicide or mown, seedlings and introduced plants of P.lanceolata, C.nigra and L.vulgare increased in cover over two years. Stomatal conductance of P.lanceolata, C.nigra and L.vulgare was reduced when these species were growing with E.repens even during periods with adequate soil water. P.lanceolata, C.nigra and L.vulgare growing with E.repens on restored landfill has been shown experimentally to result in reduced cover. It is suggested that this is due to competition in combination potentially, with allelochemical effects of E.repens. Successful establishment of a floristically rich grass mix was achieved by the reduction in cover of E.repens by herbicide or mowing. On newly restored landfill a careful balance between soil treatments, fertilizer levels and subsequent management in the form of mowing must be attained in order to establish floristically rich grasslands. The results from this study show that by utilizing various management techniques a floristically rich grass mix could be established on a restored landfill site.

Ireland, E.M.



Calculation set for design and optimization of vegetative soil covers Sandia National Laboratories, Albuquerque, New Mexico.  

SciTech Connect

This study demonstrates that containment of municipal and hazardous waste in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers combining layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem will meet the technical equivalency criteria prescribed by the U. S. Environmental Protection Agency. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards. equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 3-foot (ft) cover in arid and semiarid environments is the minimum design thickness necessary to meet the U. S. Environmental Protection Agency-prescribed technical equivalency criteria of 31.5 millimeters/year and 1 x 10{sup -7} centimeters/second for net annual percolation and average flux, respectively. Increasing cover thickness to 4 or 5 ft results in limited additional improvement in cover performance.

Peace, Gerald L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)



Cover Crops and Nitrogen Matt Ruark UW Madison, Dept. of Soil  

E-print Network

in WI Cool-season grasses Green manures #12;Cool season grasses Oats, rye Grow quickly Provide ground are there other advantages? #12;oat triticale rye oat triticale rye oat triticale rye 0 5 10 15 20 25 30 35 Corn;Legume cover crops (aka Green Manure) Add free N to soil system Take longer to establish than rye

Balser, Teri C.


Modeling response of soil erosion and runoff to changes in precipitation and cover  

Microsoft Academic Search

Global climate has changed over the past century. Precipitation amounts and intensities are increasing. In this study we investigated the response of seven soil erosion models to a few basic precipitation and vegetation related parameters using common data from one humid and one semi-arid watershed. Perturbations were made to inputs for rainfall intensities and amounts, and to ground surface cover

M. A. Nearing; V. Jetten; C. Baffaut; O. Cerdan; A. Couturier; M. Hernandez; Y. Le Bissonnais; M. H. Nichols; J. P. Nunes; C. S. Renschler; V. Souchère; K. van Oost



Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study.  


An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2% and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60-80%. PMID:24656422

Yang, Na; Damgaard, Anders; Lü, Fan; Shao, Li-Ming; Brogaard, Line Kai-Sørensen; He, Pin-Jing



[Effects of snow cover on soil temperature in broad-leaved Korean pine forest in Changbai Mountains].  


A snow-shading experiment was conducted in a broad-leaved Korean pine forest in Changbai Mountains from 2004 to 2007 to observe the soil temperature with and without snow cover. Snow cover played an important buffering role in the change of soil temperature, namely, slowed down the change process of soil temperature. The effect of snow cover on preserving soil heat was quite obvious in shallow soil layer (0-20 cm), and enhanced with increasing snow depth. When the snow depth increased from 10 to 20 cm, the effect enhanced significantly. However, when the snow depth exceeded 30 cm, the increasing trend turned to indistinctive. In the period of snow-melting, soil temperature kept around 0 degrees C for some time, and after then, increased gradually. The length of the period keeping soil temperature around 0 degrees C was determined by snow depth and the duration of snow cover. PMID:21442984

Yu, Xiao-zhou; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing; Guan, De-xin



Response of tomato plants to simulated landfill gas mixtures  

SciTech Connect

The roots of tomato plants were fumigated with simulated refuse-generated gas mixtures at levels of methane (CH/sub 4/), carbon dioxide (CO/sub 2/), and oxygen (O/sub 2/) previously measured in the atmospheres of landfill cover soils associated with poor growth or death of plants. A concentration of 18% CO/sub 2/ or greater, exceeded in almost 30% of thirty-two landfills examined throughout the US, caused reduced growth and visible symptoms on tomato after 1 wk, regardless of O/sub 2/ level. Doubling the CO/sub 2/ level to that encountered in a typical local site (Edgeboro Landfill) resulted in more severe symptom development and the subsequent death of plants. Methane, in concentrations of 20% and above, found in more than 25% of the landfills visited, while not observed to be toxic per se; was associated with drastic O/sub 2/ depletion in the soil atmosphere, which activity was believed to be the cause of the plant decline.

Arthur, J.J.; Leone, I.A.; Flower, F.B.



Bringing new life to old landfills  

SciTech Connect

On the West Coast, Waste Management, Inc. is bringing new life to old landfills. The Bradley Landfill in Sun Valley, CA, just outside of Los Angeles, is being transformed into a recycling park, while a few hundred miles north, in the San Francisco Bay Area, an old landfill is now home to a transfer station and recycling center. WMI began transforming the landfill in the early 1990s.The first change was to process wood and green waste rather than landfilling it. In 1993, WMI added a sorting facility, and in 1994, after the Jan. 17 Northridge earthquake, the company added a construction and demolition debris (C and D) facility. There also is a landfill gas collection facility on the site. In the future, WMI hopes to add the following facilities: composting, railhaul, alternative fuels production, tire processing, and soil remediation. WMI also hopes several companies that use recycled materials as feedstock will build their plants at the landfill.

Rabasca, L.



Factors affecting temporal H2S emission at construction and demolition (C&D) debris landfills.  


Odor problems associated with H2S emissions often result in odor complaints from nearby residents of C&D debris landfills, especially in the early morning. As part of a field study conducted on H2S removal ability using different cover materials, daily and seasonal H2S emissions through a soil cover layer were monitored at a C&D debris landfill to investigate factors affecting H2S emissions. H2S emission rates were not a constant, but varied seasonally, with an average emission rate of 4.67×10(-6)mgm(-2)s(-1). During a the 10-month field study, as the H2S concentration increased from 140ppm to about 3500ppm underneath the cover soil in the testing cell, H2S emissions ranged from zero to a maximum emission rate of 1.24×10(-5)mgm(-2)s(-1). Continuous emission monitoring indicated that H2S emissions even changed over time throughout the day, generally increasing from morning to afternoon, and were affected by soil moisture and temperature. Laboratory experiments were also conducted to investigate the effects of H2S concentration and cover soil moisture content on H2S emissions. The results showed that increased soil moisture reduced H2S emissions by retarding H2S migration through cover soil and dissolving H2S into soil water. The field study also indicated that due to atmospheric dispersion, high H2S emissions may not cause odor problems. PMID:23968554

Xu, Qiyong; Townsend, Timothy



Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality  

SciTech Connect

Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen



Emissions of air-borne mercury from five municipal solid waste landfills in Guiyang and Wuhan, China  

NASA Astrophysics Data System (ADS)

China disposes of bulk Municipal Solid Waste (MSW) by landfilling, resulting in a large quantity of mercury that enters landfills through waste. A detailed study on atmospheric mercury emissions from MSW landfills in China is necessary to understand mercury behavior from this source. Between 2003 and 2006, mercury airborne emissions through different pathways, as well as mercury speciation in Landfill Gas (LFG) were measured at 5 MSW landfills in Guiyang and Wuhan, China. The results showed that mercury content in the substrate increased the magnitude of mercury emissions, with the highest emission rate measured at the working face and in uncovered waste areas, and the lowest measured near soil covers and vegetated areas. Meteorological parameters, especially solar radiation, influenced the diurnal pattern of mercury surface-air emissions. Total Gaseous Mercury (TGM) in LFG varied from 2.0 to 1406.0 ng m-3, Monomethyl Mercury (MMHg) and Dimethyl Mercury (DMHg) in LFG averaged at 1.93 and 9.21 ng m-3, and accounted for 0.51% and 1.79% of the TGM in the LFG, respectively. Total mercury emitted from the five landfills ranged from 17 to 3300 g yr-1, with the highest from the working face, then soil covering, and finally the vent pipes.

Li, Z.-G.; Feng, X.; Li, P.; Liang, L.; Tang, S.-L.; Wang, S.-F.; Fu, X.-W.; Qiu, G.-L.; Shang, L.-H.



Growing trees on completed sanitary landfills. [Nyssa sylvatica, Picea abies, Ginkgo biloba  

SciTech Connect

A 10-year old completed landfill in New Jersey consisting of 9 m (depth) of refuse covered with 15-25 cm of soil was cleared of debris and vegetation and covered with 30 cm of subsoil and 15-25 cm of topsoil. Nineteen coniferous and broadleaved species were planted on the landfill and on a control site in 1975, and trees were maintained and growth and condition monitored over 4 years. On the basis of shoot length and stem area increase, the most successful of the surviving trees were Nyssa sylvatica, Picea abies and Ginkgo biloba, in decreasing order of tolerance. Tolerance of landfill conditions appeared to be greatest in those species with low water requirements, a slow growth rate, high acid tolerance and a shallow root system. (Refs. 11).

Leone, I.A.; Gilman, E.F.; Flower, F.B.



Landfill gas-fired power plant pays cost of operating landfill  

SciTech Connect

This paper reports on recovery of energy from refuse that has become increasingly attractive in the past decade. The continuing urbanization of our society has created major challenges in the disposal of our waste products. Because of public concern over the potential presence of toxins, and for other environmental reasons, management and regulation of active and inactive landfills have become much more stringent and costly. Palos Verdes landfill, owned jointly by the Los Angeles County Sanitation Districts and Los Angeles County, is located about three miles from the Pacific Ocean in the city of Rolling Hills Estates, Calif. The landfill was closed in 1980. The garbage was covered with six to eight feet of soil, and the area was landscaped. Part of this area has already been developed as the South Coast Botanical Gardens and Ernie Howlett Park. The remainder is scheduled to become a golf course. As refuse decays within a landfill, the natural anaerobic biological reaction generates a low-Btu methane gas along with carbon dioxide, known as landfill gas (LFG). The gas also contains other less desirable trace components generated by the decomposing garbage. Uncontrolled, these gases migrate to the surface and escape into the atmosphere where they generate environmental problems, including objectionable odors. The Sanitation Districts have installed a matrix of gas wells and a gas collection system to enable incineration of the gas in flares. This approach reduced aesthetic, environmental and safety concerns. However, emissions from the flares were still a problem. The Sanitation Districts then looked at alternatives to flaring the gas, one of which was electrical generation. Since the Sanitation Districts have no on-site use for thermal energy, power generation for use in the utility grid was deemed the most feasible alternative.

Wallace, I.P.



The Observed Relationship Between Snow Cover, Soil Moisture, and The Indian Summer Monsoon  

NASA Astrophysics Data System (ADS)

Prediction of the strength of the Indian summer monsoon and of the amount of precip- itation generated is of importance to more than a billion people. Blanford more than a century ago suggested that Himalayan snow cover in the preceding winter could be used as a predictor of the monsoon, but subsequent investigations failed to clearly de- scribe the mechanisms involved. Does snow cover produce its effect through induced or related atmospheric circulation, or is the effect a direct one on local radiative or hydrological phenomena, such as soil moisture? Or is snow cover just an indicator of other circulation and temperature anomalies, and with no direct physical influence on the monsoon? There have been many climate model simulations addressed to this issue, but few examinations of actual observations of snow and soil moisture. Here, using updated actual observations of snow cover, soil moisture, and atmospheric cir- culation, we address these issues. We find that strong Indian summer monsoon precipitation is preceded by warmer than normal temperatures over Europe and North America in the previous winter and over western Asia in the previous spring, but colder temperatures over Tibet. The European temperature anomalies are related to the positive phase of the North Atlantic Oscil- lation. Negative snow cover anomalies in Europe, previously shown to be correlated with strong monsoons, are produced by circulation and temperature anomalies. The snow-albedo feedback is always operating, but the snow by itself does not physically control the monsoon. Strong Indian summer monsoon precipitation is actually accom- panied by higher than normal Tibetan snow cover in spring. After snow melts in the spring in Asia, soil moisture has a memory of one month at most in the upper 10 cm layer, and less than two months in the upper 1 m layer. Therefore, soil moisture cannot prolong a snow cover anomaly signal long enough to influence surface temperatures and the monsoon. There is no obvious relationship between soil moisture and the mon- soon. However the above relationships are only seen in certain periods and are not a robust relationship. For the past 130 years, Indian summer monsoon rainfall is related to the North Atlantic Oscillation in the previous winter only for the periods around 1885 (about 25 years) and 1950-1995 (about 45 years), and this relationship is now gone. The causes of these changing relationships need more study.

Robock, A.; Mu, M.; Vinnikov, K. Y.; Robinson, D.


Soil moisture modifications associated with land cover changes and their impacts on weather and climate  

NASA Astrophysics Data System (ADS)

Soil moisture plays an important role in the land surface atmosphere. Soil moisture status could be modified by human intervention and human caused land cover changes (LCCs). This presentation discusses LCCs due to human interventions and subsequent modifications in the near surface atmospheric variables and response of regional and meso-scale weather and climate. Using observational data and model applications, we show that soil moisture modification due to LCCs modifies long-term temperature, precipitation, atmospheric moisture, fluxes, and PBL circulations. Results will be presented from the Great Plains, southeastern US, and India. It is concluded that soil moisture modifications associated with LCCs noticeably impacts weather and climate. We suggest that further research is required to better understand this particular aspect of land-atmosphere interactions for weather and climate predictions and for climate change studies.

Mahmood, R.



Multiple-Year Water Balance of Soil Covers in a Semiarid Setting  

SciTech Connect

Surface covers are used to close hazardous and low-level radioactive sites for time frames ranging from hundreds of years to millennia or more. In the absence of data for such durations, the long-term performance of such barriers can only be represented with short-term tests or inferred from analogs and modeling. This paper provides evidence of field performance of soil covers for periods up to 17 years. The results of lysimeter studies from a semi-arid site in Washington State show that a soil cover of 1.5 m of silt loam above a sand/gravel capillary break can eliminate drainage. The results were similar if plants were present or not, demonstrating the robustness of the design. Furthermore, reducing the silt loam thickness to 1.0 m (as might occur via erosion), with or without plants, did not lead to drainage. When irrigated to mimic 3x precipitation conditions, the vegetated Hanford Barrier continued to prevent drainage. Overall, the results showed no diminution in performance during the 17 years of testing. Only when plants were eliminated completely from the 3x precipitation test did drainage occur (rates ranged from 6 to 16 mm/yr). In a separate test, replacing the top 0.2 m of silt loam with dune sand and reducing the plant cover did not lead immediately to the onset of drainage, but soil matric heads within the silt loam noticeably increased. This observation suggests that dune sand migration onto a surface cover has the potential to reduce a cover’s ability to minimize deep drainage.

Fayer, Michael J.; Gee, Glendon W.



Evaluation of landscape coverings to reduce soil lead hazards in urban residential yards: The Safer Yards Project.  


This study was designed primarily to evaluate the effectiveness of landscape coverings to reduce the potential for exposure to lead-contaminated soil in an urban neighborhood. Residential properties were randomized in to three groups: application of ground coverings/barriers plus placement of a raised garden bed (RB), application of ground coverings/barriers only (no raised bed, NRB), and control. Outcomes evaluated soil lead concentration (employing a weighting method to assess acute hazard soil lead [areas not fully covered] and potential hazard soil lead [all soil surfaces regardless of covering status]), density of landscape coverings (6 = heavy, > 90% covered; 1 = bare, < 10% covered), lead tracked onto carpeted entryway floor mats, and entryway floor dust lead loadings. Over 1 year, the intervention groups had significantly reduced acute hazard soil lead concentration (median change: RB, -478 ppm; NRB, -698 ppm; control, +52 ppm; Kruskal-Wallis, P = 0.02), enhanced landscape coverings (mean change in score: RB, +0.6; NRB, +1.5; control, -0.6; ANOVA, P < 0.001), and a 50% decrease in lead tracked onto the floor mats. The potential hazard soil lead concentration and the entryway floor dust lead loading did not change significantly. Techniques evaluated by this study are feasible for use by property owners but will require continued maintenance. The long-term sustainability of the method needs further examination. PMID:15325873

Binns, Helen J; Gray, Kimberly A; Chen, Tianyue; Finster, Mary E; Peneff, Nicholas; Schaefer, Peter; Ovsey, Victor; Fernandes, Joyce; Brown, Mavis; Dunlap, Barbara



Spreading topsoil encourages ecological restoration on embankments: soil fertility, microbial activity and vegetation cover.  


The construction of linear transport infrastructure has severe effects on ecosystem functions and properties, and the restoration of the associated roadslopes contributes to reduce its impact. This restoration is usually approached from the perspective of plant cover regeneration, ignoring plant-soil interactions and the consequences for plant growth. The addition of a 30 cm layer of topsoil is a common practice in roadslope restoration projects to increase vegetation recovery. However topsoil is a scarce resource. This study assesses the effects of topsoil spreading and its depth (10 to 30 cm) on two surrogates of microbial activity (?-glucosidase and phosphatase enzymes activity and soil respiration), and on plant cover, plant species richness and floristic composition of embankment vegetation. The study also evaluates the differences in selected physic-chemical properties related to soil fertility between topsoil and the original embankment substrate. Topsoil was found to have higher values of organic matter (11%), nitrogen (44%), assimilable phosphorous (50%) and silt content (54%) than the original embankment substrate. The topsoil spreading treatment increased microbial activity, and its application increased ?-glucosidase activity (45%), phosphatase activity (57%) and soil respiration (60%). Depth seemed to affect soil respiration, ?-glucosidase and phosphatase activity. Topsoil application also enhanced the species richness of restored embankments in relation to controls. Nevertheless, the depth of the spread topsoil did not significantly affect the resulting plant cover, species richness or floristic composition, suggesting that both depths could have similar effects on short-term recovery of the vegetation cover. A significant implication of these results is that it permits the application of thinner topsoil layers, with major savings in this scarce resource during the subsequent slope restoration work, but the quality of topsoil relative to the original substrate should be previously assessed on a site by site basis. PMID:24984137

Rivera, Desirée; Mejías, Violeta; Jáuregui, Berta M; Costa-Tenorio, Marga; López-Archilla, Ana Isabel; Peco, Begoña



Spreading Topsoil Encourages Ecological Restoration on Embankments: Soil Fertility, Microbial Activity and Vegetation Cover  

PubMed Central

The construction of linear transport infrastructure has severe effects on ecosystem functions and properties, and the restoration of the associated roadslopes contributes to reduce its impact. This restoration is usually approached from the perspective of plant cover regeneration, ignoring plant-soil interactions and the consequences for plant growth. The addition of a 30 cm layer of topsoil is a common practice in roadslope restoration projects to increase vegetation recovery. However topsoil is a scarce resource. This study assesses the effects of topsoil spreading and its depth (10 to 30 cm) on two surrogates of microbial activity (?-glucosidase and phosphatase enzymes activity and soil respiration), and on plant cover, plant species richness and floristic composition of embankment vegetation. The study also evaluates the differences in selected physic-chemical properties related to soil fertility between topsoil and the original embankment substrate. Topsoil was found to have higher values of organic matter (11%), nitrogen (44%), assimilable phosphorous (50%) and silt content (54%) than the original embankment substrate. The topsoil spreading treatment increased microbial activity, and its application increased ?-glucosidase activity (45%), phosphatase activity (57%) and soil respiration (60%). Depth seemed to affect soil respiration, ?-glucosidase and phosphatase activity. Topsoil application also enhanced the species richness of restored embankments in relation to controls. Nevertheless, the depth of the spread topsoil did not significantly affect the resulting plant cover, species richness or floristic composition, suggesting that both depths could have similar effects on short-term recovery of the vegetation cover. A significant implication of these results is that it permits the application of thinner topsoil layers, with major savings in this scarce resource during the subsequent slope restoration work, but the quality of topsoil relative to the original substrate should be previously assessed on a site by site basis. PMID:24984137

Rivera, Desirée; Mejías, Violeta; Jáuregui, Berta M.; López-Archilla, Ana Isabel; Peco, Begoña



The effect of surface cover and soil devastation on infiltration rate in steep forest plantations  

NASA Astrophysics Data System (ADS)

The Japanese cypress (Hinoki; Chamaecyparis obtusa) is a major commercial tree species in Japan, and without thinning of high-density stands, canopy closure prevents development of understory vegetation. Therefore there is a concern for overlandflow and sediment yield due to infiltration rate lowering. We developed a light-weight rainfall simulator based on the design of Meyer and Harmon (1979). A flat fan Veejet 80150 spraying nozzle (Spraying systems Co., USA) is mounted on the manifold at 2.13 m high from the plot surface. The nozzle oscillates so that the spray fan sweeps across the targeting 1 m x 1 m plot. The Veejet 80150 spraying nozzle produces large raindrops larger than 2 mm in diameter, and can simulate the high raindrop kinetic energy of natural throughfall. A targeted rainfall rate is 180 mm/h. About 30 sprinkling experiments have been conducted on 35-degree hillslopes with varying surface cover in 5 locations in Japan. We obtained the minimum infiltration rate of 14 mm/h where the surface cover is very little. The infiltration rates were plotted against the total understory vegetation and dry weight of total surface cover including litter. The infiltration rate increased with the increasing total surface cover, and generally higher regression coefficient was found for the case of the total surface cover. In some cases, high infiltration rates were obtained where surface cover is low. Two possible explanations can be made; 1) surface soil (especially fine particles) has been washed away, where soil is mostly composed of gravel and the percentage of fine fraction is low, or 2) because of long-term soil loss by raindrop detachment, remaining soil looks like "ghanging"h between exposed fine root networks of Japanese cypress, where soil bulk density is significantly lower than other site. Therefore the infiltration rate in the devastated Japanese cypress plantations is not only controlled by loss of surface vegetation by low light condition, but soil devastation through long-term erosion history would also control the infiltration rate and then geomorphic processes.

Onda, Y.; Hiraoka, M.; Kato, H.; Gomi, T.; Miyata, S.; Mizugaki, S.



Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: Effects on soil quality  

Microsoft Academic Search

Frequent tillage has been widely used in rainfed orchards in SE Spain in order to impede weed establishment and to increase water reposition in the soil profile. However, this practice may lead to soil degradation by decreasing structural stability, organic carbon content and microbial activity. This work examines the effect of different cover crop managements and frequent tillage on soil

María E. Ramos; Emilio Benítez; Pedro A. García; Ana B. Robles



Effect of cover crops and tillage system on symphylan (Symphlya: Scutigerella immaculata, Newport) and Pergamasus quisquiliarum Canestrini (Acari: Mesostigmata) populations, and other soil organisms in agricultural soils  

Microsoft Academic Search

The garden symphylan (Scutigerella immaculata: Newport) is a common myriapod soil pest of vegetable crops in the Pacific Northwest and other regions of the US. Symphylans consume germinating seeds, plant roots, and above-ground plant parts in contact with the soil. Factors regulating symphylan populations in agricultural soil systems are poorly understood, particularly the effects of farming practices such as cover

R. E Peachey; A Moldenke; R. D William; R Berry; E Ingham; Eric Groth



Role of vegetation cover on soil water balance in two Mediterranean areas: semiarid and dry at southeastern of Spain.  

NASA Astrophysics Data System (ADS)

Water is a limited resource in the semiarid areas, which affects both, the population services, the economic growth, like the natural ecosystems stability. In this context, an accurate knowledge of soil water balance and role of the vegetation cover contribute to improve the management of resources water and forest. These studies are increasingly important, if we consider the latest Assessment Reports of the Intergovernmental Panel on Climate Change. In this paper the main objectives were focused on:(1)To determine the soil water balance on two different climatic conditions, semiarid and dry climate and(2) Assess the effect of vegetation (structure and cover) on soil water balance under the studied climatic conditions. For this purpose we used HYDROBAL ecohydrological model, which calculates at a daily resolution the water flows through of the vegetation canopy, estimates daily soil moisture and predicts deep drainage from the unsaturated soil layer into the aquifer. In order to achieve these objectives, we have selected two sites in the south-eastern of Spain, on soils calcareous and different climatic conditions. Ventós site in a semiarid Mediterranean area and Confrides site in a dry Mediterranean area, with 303 and 611 mm of annual precipitation respectively. Both sites, the predominant vegetation are afforestations with Pinus halepensis on dry grasslands with some patches of thorn shrublands and dwarf scrubs; but it show difference on trees density, cover and height of pines.Soil water balance was determined in each site using HYDROBAL ecohydrological model on one hydrological year (October 2012 and September 2013).Model inputs include climatic variables (daily rainfall and temperature), as well as soil and vegetation characteristics (soil field capacity, soil wilting point, initial soil water content and vegetation cover index). Model outputs are interception, net rainfall, runoff, soil water reserves, actual evapotranspiration, direct percolation, and deep percolation (or aquifer recharge). In the last decade, HYDROBAL model has been used successfully in semiarid conditions, to assess the soil water balance on different vegetation cover types, and the effect of different land-use scenarios on water resources and aquifer recharge. Results highlight the role of vegetation cover type and volume of annual rainfall on the soil water balance. Both sites present similar percentage of vegetation cover(>80%), however in Ventós site (semiarid area), a lower pine cover (44%) and lower volume of annual rainfall produced differences in the soil water balance. In Confrides site (dry area), in spite of show the twice of annual rainfall, a higher pine cover (78%) reduced the net precipitation and consequently affected the soil water balance. An understanding the role of vegetation cover on soil water balance is a very useful tool to implement an optimal management of forest and water resources.

Manrique, Àngela; Ruiz, Samantha; Chirino, Esteban; Bellot, Juan



The Application Of Biofilter System For Reduction Of Methane Emissions From Modern Sanitary Landfills  

NASA Astrophysics Data System (ADS)

Increased atmospheric concentrations of greenhouse gases (GHG) caused by anthropogenic activities has been related to global climate change. Methane, the second most important GHG after CO2, is 21 times more effective at trapping heat than CO2. Therefore, methane emission control is of utmost importance for global warming reduction. To minimize leachate production and protect groundwater resources, modern sanitary landfills are equipped with composite covers and gas collection systems. Methane from modern sanitary landfills is vented directly to the atmosphere, except for some of the largest landfills where it is recovered as energy and burned at the site. However, the efficiency of energy recovery systems in larger landfills is reduced as the amount of CH4 generated from landfill begins to decrease. In this study, the performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills by conducting batch and column experiments using landfill cover soil amended with earthworm cast as the filter bed medium. From the batch experiments to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10-15% by weight and 25-35°C, respectively. The column experiment was conducted to measure the influence of inlet CH4 concentration and CH4 loading rate on CH4 removal capacity of a biofilter system. As the inlet CH4 concentration decreased, the percentage of CH4 oxidized increased. Up to a CH4 loading rate of 2785 g CH4 m3 h- 1 (EBRT = 7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Based on the results of the study, the installation of a properly managed biofilter system should be capable of achieving a reduction in atmospheric CH4 emissions from modern sanitary landfills at low CH4 generation stage.

Sung, K.; Park, S.



Remote sensing as a source of land cover information utilized in the universal soil loss equation  

NASA Technical Reports Server (NTRS)

In this study, methods for gathering the land use/land cover information required by the USLE were investigated with medium altitude, multi-date color and color infrared 70-mm positive transparencies using human and computer-based interpretation techniques. Successful results, which compare favorably with traditional field study methods, were obtained within the test site watershed with airphoto data sources and human airphoto interpretation techniques. Computer-based interpretation techniques were not capable of identifying soil conservation practices but were successful to varying degrees in gathering other types of desired land use/land cover information.

Morris-Jones, D. R.; Morgan, K. M.; Kiefer, R. W.; Scarpace, F. L.



1st International Conference on Final Sinks, September 23-25, 2010 Vienna, Austria From Sanitary to Sustainable Landfilling  

E-print Network

Recirculation Landfill using Resistivity Imaging Diana Caicedo (UK) Exploring the Use of Micro-focus Computed to in-situ aeration of landfills W.-U. Henken-Mellies (DE) Long-Term Performance of Landfill covers

Szmolyan, Peter


Geologic and hydrologic data for the municipal solid waste landfill facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas  

USGS Publications Warehouse

Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.

Abeyta, Cynthia G.; Frenzel, P.F.



Associations between land cover categories, soil concentrations of arsenic, lead and barium, and population race/ethnicity and socioeconomic status.  


The potential of using land cover/use categories as a proxy for soil metal concentrations was examined by measuring associations between Anderson land cover category percentages and soil concentrations of As, Pb, and Ba in ten sampling areas. Land cover category and metal associations with ethnicity and socioeconomic status at the United States Census 2000 block and block group levels also were investigated. Arsenic and Pb were highest in urban locations; Ba was a function of geology. Consistent associations were observed between urban/built up land cover, and Pb and poverty. Land cover can be used as proxy for metal concentrations, although associations are metal-dependent. PMID:24914533

Davis, Harley T; Aelion, C Marjorie; Lawson, Andrew B; Cai, Bo; McDermott, Suzanne



Rye cover crop effects on soil quality in no-till corn silage-soybean cropping systems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Corn and soybean farmers in the upper Midwest are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion prevention, and weed suppression; however, the effects of winter cover crops on soil quality in this region have ...


Chlorimuron ethyl sorption and desorption kinetics in soils and herbicide-desiccated cover crop residues  

Microsoft Academic Search

Interaction between a herbicide and plant residue on the soil surface in plant residue management systems such as no-tillage or cover crop is of interest in terms of environmental fate of the herbicide. This study was designed to evaluate sorption and desorption of chlorimuron ethyl {ethyl 2-(((((4- chloro-6-methoxy-2-pyrimidinyl)aminolc~bonyll~olsulfonyllbenzoic acid} in herbicide-desiccated rye (Secale cereale L.) and hairy vetch (Vicia villosa

Krishna N. Reddy; Martin A. Locke; Stephen C. Wagner; Robert M. Zablotowicz; Lewis A. Gaston; Reid J. Smeda



Sensitivity of methanotrophic community structure, abundance, and gene expression to CH4 and O2 in simulated landfill biocover soil.  


Pressure on mitigating CH4 emission in landfill requires better understanding of methanotrophs in landfill biocovers. Most previous studies focused on CH4 as the sole substrate. This study aims to understand the sensitivity of methanotrophs to both substrates CH4 and O2 concentrations in landfill biocovers. The estimated CH4 oxidation rates (4.66-98.7 × 10(-16) mol cell(-1) h(-1)) were evidently higher than the previous reports, suggesting that activity of methanotrophs was enhanced with both the increasing of O2 and CH4 concentrations. Denaturing gradient gel electrophoresis based on the amplification of pmoA genes suggested that methanotrophs were more sensitive to CH4 than O2. Quantification of methanotrophs using pmoA- and mmoX-targeted real-time polymerase chain reaction showed that Mbac and Mcoc as well as Mcys groups were significantly dominant. Mbac group with pmoA gene transcription was dominant. Results indicate that CH4 mitigation would have higher potential by increasing O2 at appropriate CH4 concentrations. PMID:24095811

Li, Huai; Chi, Zifang; Lu, Wenjing; Wang, Hongtao



Assessing the Biometeorology of a Newly Established Reclamation Soil Cover in Fort McMurray, Alberta  

NASA Astrophysics Data System (ADS)

Several experimental watersheds have been established in the Fort McMurray region as part of a risk-based assessment of various reclamation strategies for oil sands mining. This study has been undertaken to specifically evaluate if the most cost-effective reclamation option (minimal soil depth) can retain sufficient moisture to promote plant development and return the area to a functional boreal ecosystem. The eddy covariance technique was used during the second post-reclamation growing season to quantify the exchange of energy and water vapour atop a 25 cm soil cover, situated on a south facing slope. The 2008 growing season was both hotter and wetter than normal, resulting in large seasonal evapotranspiration (ET) values (309 mm from May 10th - Oct 8th). The majority of available energy was partitioned into latent heat, resulting in a mean Bowen ratio of 0.75 and a Priestley-Taylor alpha coefficient approaching unity (mean = 0.87). A low mean daytime (0900 to 1700 hrs) decoupling coefficient (? = 0.31), which decreased bi- weekly with increasing LAI, suggests that ET at this site was predominantly controlled by canopy resistance (rc). A total derivative analysis of the Penman-Monteith equation was used to demonstrate the sensitivity of ET to changes in available radiation (Ra), vapour pressure deficit (D) and rc between months. Results indicate that ET was particularly influenced by rc during the driest month of July when soil moisture became limited and the vegetation became stressed. ET was more sensitive to changes in D prior to leaf-out and during senescence. Although too early to predict whether this soil cover will be successful in sustaining regeneration, this study provides some insight into the unique biometeorology of the initial stages of engineered soil covers. Over time, this may allow for the detection of specific environmental indicators that may preclude the impending success or failure of reclamation efforts.

Goodbrand, S. C.; Carey, S. K.



Phytoremediation of landfill leachate  

SciTech Connect

Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

Jones, D.L. [School of Agricultural and Forest Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, Wales (United Kingdom)]. E-mail:; Williamson, K.L. [School of Agricultural and Forest Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, Wales (United Kingdom); Owen, A.G. [School of Agricultural and Forest Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, Wales (United Kingdom)



Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils  

NASA Technical Reports Server (NTRS)

The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

Eagleson, Peter S.; Jasinski, Michael F.



Appendix E: Research papers. Analysis of landfills with historic airphotos  

NASA Technical Reports Server (NTRS)

The nature of landfill-related information that can be derived from existing, or historic, aerial photographs, is reviewed. This information can be used for conducting temporal assessments of landfill existence, land use and land cover, and the physical environment. As such, analysis of low cost, readily available aerial photographs can provide important, objective input to landfill inventories, assessing contamination or health hazards, planning corrective measures, planning waste collection and facilities, and developing on inactive landfills.

Liang, T.; Philipson, W. R. (principal investigators); Erb, T. L.; Teng, W. L.



Late Holocene deforestation of a tree line site: estimation of pre-fire vegetation composition and black spruce cover using soil charcoal  

E-print Network

and black spruce cover using soil charcoal Hugo Asselin and Serge Payette Asselin, H. and Payette, S. 2005 and black spruce cover using soil charcoal. Á/ Ecography 28: 801Á/805. Anatomical identification of soil black spruce Picea mariana palaeo-cover. The site (a low-elevated hilltop) is presently devoid of spruce

Asselin, Hugo


Short-term cover crop decomposition in organic and conventional soils: Soil microbial and nutrient cycling indicator variables associated with different levels of soil suppressiveness to Pythium aphanidermatum  

Microsoft Academic Search

Stages of oat-vetch cover crop decomposition were characterized over\\u000a time in terms of carbon and nitrogen cycling, microbial activity and\\u000a community dynamics in organically and conventionally managed soils in a\\u000a field experiment and a laboratory incubation experiment. We subsequently\\u000a determined which variables describing soil microbial community dynamics,\\u000a C and N cycling could be used as predictors of Pythium aphanidermatum\\u000a damping-off

N. J. Grünwald; S. Hu; A. H. C. van Bruggen



Sulfide emissions from different areas of a municipal solid waste landfill in China.  


Degradation of municipal solid waste in landfills generates sulfide compounds, which are considered one of the main sources of odor emissions. Field sampling was conducted at surfaces of operating, inoperative, and soil-covered areas of a landfill site in northern China to characterize the sulfide compounds. The results showed that dimethyl disulfide dominated the sulfide compounds, accounting for up to 73.6% of the total detected sulfide. With the biggest odor concentration of 365, diethyl sulfide was the most significant sulfide compound. The estimated sulfide emission rates at surfaces of operating and soil-covered areas were similar, and the emission rate of dimethyl disulfide at Surface of Operating Area was up to 345.9 ?g/m(3) h. Dimethyl disulfide could be released from the fresh waste, and its normalized concentration at 0.2 m beneath operating surface was 10.4 times that at 0.4 m. PMID:23948050

Yue, Dongbei; Han, Bing; Sun, Yue; Yang, Ting



Infiltration through layered-soil trench covers: Response to an extended period of rainfall  

NASA Astrophysics Data System (ADS)

Four experimental waste disposal trench covers were constructed to test the effectiveness of layered-soil cover designs in reducing infiltration. Three covers each consisted of a layer of gravel between an overlying wick layer of compacted fine-grained material (either silt or loam) and a compacted loam base; the fourth consisted of compactd silt over a loam base. Capillary pressures were monitored at various depths within each cover during October through December, 1985, a period of high rainfall following a dry summer. Moisture movement in response to the rainfall was rapid within the upper layers of all four test covers, but was retained within the upper layers of the three wick-system trenches, despite variations in the design thickness and composition of the wick layers. In the wick systems, moisture did not enter the gravel until a threshold level of pressure approaching saturation was established in the wick layer. Once this level was reached, moisture moved into and through the gravel. This experiment demonstrates the functionality of field-scale wick systems.

Larson, T. H.; Keefer, D. A.; Albrecht, K. A.; Cartwright, K.



Infiltration through layered-soil trench covers: Response to an extended period of rainfall  

USGS Publications Warehouse

Four experimental waste disposal trench covers were constructed to test the effectiveness of layered-soil cover designs in reducing infiltration. Three covers each consisted of a layer of gravel between an overlying wick layer of compacted fine-grained material (either silt or loam) and a compacted loam base; the fourth consisted of compactd silt over a loam base. Capillary pressures were monitored at various depths within each cover during October through December, 1985, a period of high rainfall following a dry summer. Moisture movement in response to the rainfall was rapid within the upper layers of all four test covers, but was retained within the upper layers of the three wick-system trenches, despite variations in the design thickness and composition of the wick layers. In the wick systems, moisture did not enter the gravel until a threshold level of pressure approaching saturation was established in the wick layer. Once this level was reached, moisture moved into and through the gravel. This experiment demonstrates the functionality of field-scale wick systems. ?? 1988.

Larson, T.H.; Keefer, D.A.; Albrecht, K.A.; Cartwright, K.



Land-cover effects on soil organic carbon stocks in a European city.  


Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earth's biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km(2), 56% greenspace), and map citywide distribution of this ecosystem service. SOC was measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the city's greenspace was 9.9 kg m(-2), to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m(-2) to 21 cm depth, more than 3 kg m(-2) greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m(-2) greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways. PMID:24309424

Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R



Impact of urban cover fraction on SMOS and SMAP surface soil moisture retrieval  

NASA Astrophysics Data System (ADS)

L-band (~1.4 GHz) microwave radiometry has been widely acknowledged as the most promising technique for surface (top ~5cm) soil moisture observation at regional and global scales, due to its all weather capability, direct relationship to soil moisture, and reduced sensitivity to surface roughness and vegetation. Radiometer observations of microwave emission from the soil surface are used to estimate soil moisture through a radiative transfer model using ancillary information including land cover and soil properties etc. This technique has been applied to the ESA's (European Space Agency) Soil Moisture and Ocean Salinity (SMOS) satellite, the first soil moisture dedicated space mission, launched on 2nd Nov. 2009. Similarly, radiometer techniques will be employed by NASA's (National Aeronautics and Space Administration) Soil Moisture Active and Passive (SMAP) mission, in both the passive and active-passive products. However, passive microwave soil moisture retrieval suffers from land surface heterogeneity at coarse scales; with the radiometer footprints of both missions being ~40 km, which is the best spatial resolution currently achievable using current satellite antenna technology. In order to achieve the ~0.04 m3/m3 target volumetric soil moisture accuracies at such scales, microwave contributions of non-soil targets (such as urban areas) within the sensors' field-of-view needs to be considered in the retrieval algorithm error budget and implementation, since the impact could potentially be significant if ignored. Currently there is a lack of knowledge on the microwave behaviour of non-soil targets, with little assessment of their microwave emissions and impact on satellite scale footprints. Therefore, the objectives of this study are to 1) investigate the relationship between urban induced brightness temperature uncertainties and urban fraction, 2) extract urban fraction thresholds for negligible brightness temperature impact by urban areas based on the SMOS and SMAP error budgets, and 3) use these thresholds to identify SMOS and SMAP pixels with likely non-negligible urban impacts world-wide. In this work, airborne datasets from three field campaigns in the Murrumbidgee catchment, in southeast of Australia, were used: i) the NAFE'06 (National Airborne Field Experiment in 2006), ii) the AACES-1 (Australian Airborne Cal/val Experiment for SMOS), and iii) the AACES-2. During these campaigns, brightness temperature observations were made at 1-km resolution across 20 independent SMOS/SMAP sized footprints of which a number contain urban areas of different size. The NSW (New South Wales, Australia) Land use map with 50 m resolution was used to distinguish brightness temperature observations of the urban area and surrounding natural land surface, from which urban fraction thresholds for SMOS and SMAP were derived. These thresholds were then applied globally based on an urban fraction map calculated using the MODIS Urban Land Cover 500-m product.

Ye, N.; Walker, J. P.; Rudiger, C.; Ryu, D.; Gurney, R.



Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard.  


We investigated the ability of summer (Avena sativa [oat], Trifolium incarnatum [crimson clover], Chenopodium [goosefoot]) and winter (Vicia villosa [hairy vetch], Secale Cereale L. [Rye], Brassica napus L. partim [rape]) cover crops, including a mixed species treatment, to extract copper from an organic vineyard soil in situ and the microbial communities that may support it. Clover had the highest copper content (14.3mgCukg(-1) DM). However, it was the amount of total biomass production that determined which species was most effective at overall copper removal per hectare. The winter crop rye produced significantly higher amounts of biomass (3532kgDMha(-1)) and, therefore, removed significantly higher amounts of copper (14,920mgCuha(-1)), despite less accumulation of copper in plant shoots. The maximum annual removal rate, a summation of best performing summer and winter crops, would be 0.033kgCuha(-1)y(-1). Due to this low annual extraction efficiency, which is less than the 6kgCuha(-1)y(-1) permitted for application, phytoextraction cannot be recommended as a general method of copper extraction from vineyards. Copper concentration did not influence aboveground or belowground properties, as indicated by sampling at two distances from the grapevine row with different soil copper concentrations. Soil microorganisms may have become tolerant to the copper levels at this site. Microbial biomass and soil enzyme activities (arylsulfatase and phosphatase) were instead driven by seasonal fluxes of resource pools. Gram+ bacteria were associated with high soil moisture, while fungi seemed to be driven by extractable carbon, which was linked to high plant biomass. There was no microbial group associated with the increased phytoextraction of copper. Moreover, treatment did not influence the abundance, activity or community structure of soil microorganisms. PMID:25217742

Mackie, K A; Schmidt, H P; Müller, T; Kandeler, E




EPA Science Inventory

A methodology for using remote sensing to detect landfill leachate contamination of ground and surface water is described. Among the topics covered are leachate indicators, spatial and temporal aspects of leachate detection, sensor selection, flight design and data interpretation...


The applicability of ERTS-1 data covering the major landforms of Kenya. [landforms, vegetation, soils, forests  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Five investigators report on the applicability of ERTS-1 data covering the major landforms of Kenya. Deficiencies due to lack of equipment, repetitive coverage and interpretation know-how are also reported on. Revision of lake shorelines is an immediate benefit. Basement system metasediments are rapidly differentiated, but dune areas are not readily distinguishable from sandy soils. Forest, moorland, high altitude grass, tea, and conifer plantations are readily distinguished, with podocarpus forest especially distinguishable from podocarpus/juniperus forest. In the arid areas physiographic features, indicating the major soil types, are readily identified and mapped. Preliminary vegetation type analysis in the Mara Game Reserve indicates that in a typical savannah area about 36% of the vegetation types are distinguishable at a scale of 1:1 million as well as drainage patterns and terrain features.

Omino, J. H. O. (principal investigator)



Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem  

E-print Network

Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems has the potential to substantially improve our understanding of the vulnerability of alpine grassland

Ickert-Bond, Steffi



Technology Transfer Automated Retrieval System (TEKTRAN)

Carbon sequestration, as a process to reduce atmospheric CO2 level, can be influenced by crop management practices in tilled and non-tilled soils due to differences in crop residue C returned to the soil and rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (...



Technology Transfer Automated Retrieval System (TEKTRAN)

Soil and crop management practices may influence soil mineral N, crop N uptake, and N leaching. We evaluated the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)]...


Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops  

Technology Transfer Automated Retrieval System (TEKTRAN)

In this report we use Terminal Restriction Fragment Length Polymorphisms (TRFLP) in a tomato production system to “finger printing” the soil microbial community structure with Phylum specific primer sets. Factors influencing the soil microbes are a cover crop of Hairy Vetch (Vicia villosa) or Rye (...


Carbon mineralization in the soils under different cover crops and residue management in an intensive protected vegetable cultivation  

Microsoft Academic Search

Continuous cropping under plastic greenhouses, a common practice in intensive Chinese vegetable production systems, has led to the decline of soil productivity and crop yields. A 4-year greenhouse experiment on cucumber double-cropping systems was conducted in Changping country, Beijing, China, to investigate the effects of summer cover crops and residue management on soil microbial biomass carbon (MBC), C mineralization and

Yongqiang Tian; Juan Liu; Xuhui Wang; Lihong Gao



Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils  

NASA Technical Reports Server (NTRS)

This work focuses on the characterization of natural, spatially variable, semivegetated landscapes using a linear, stochastic, canopy-soil reflectance model. A first application of the model was the investigation of the effects of subpixel and regional variability of scenes on the shape and structure of red-infrared scattergrams. Additionally, the model was used to investigate the inverse problem, the estimation of subpixel vegetation cover, given only the scattergrams of simulated satellite scale multispectral scenes. The major aspects of that work, including recent field investigations, are summarized.

Eagleson, Peter S.; Jasinski, Michael F.



Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds  

NASA Astrophysics Data System (ADS)

There are strong ties between land cover patterns and soil erosion and sediment yield in watersheds. The spatial configuration of land cover has recently become an important aspect of the study of geomorphological processes related to erosion within watersheds. Many studies have used multivariate regression techniques to explore the response of soil erosion and sediment yield to land cover patterns in watersheds. However, many landscape metrics are highly correlated and may result in redundancy, which violates the assumptions of a traditional least-squares approach, thus leading to singular solutions or otherwise biased parameter estimates and confidence intervals. Here, we investigated the landscape patterns within watersheds in the Upper Du River watershed (8973 km2) in China and examined how the spatial patterns of land cover are related to the soil erosion and sediment yield of watersheds using hydrological modeling and partial least-squares regression (PLSR). The results indicate that the watershed soil erosion and sediment yield are closely associated with the land cover patterns. At the landscape level, landscape characteristics, such as Shannon’s diversity index (SHDI), aggregation index (AI), largest patch index (LPI), contagion (CONTAG), and patch cohesion index (COHESION), were identified as the primary metrics controlling the watershed soil erosion and sediment yield. The landscape characteristics in watersheds could account for as much as 65% and 74% of the variation in soil erosion and sediment yield, respectively. Greater interspersion and an increased number of patch land cover types may significantly accelerate soil erosion and increase sediment export. PLSR can be used to simply determine the relationships between land-cover patterns and watershed soil erosion and sediment yield, providing quantitative information to allow decision makers to make better choices regarding landscape planning. With readily available remote sensing data and rapid developments in geographic information system (GIS) technology, this practical and simple PLSR approach could be applied to a variety of other watersheds.

Shi, Z. H.; Ai, L.; Li, X.; Huang, X. D.; Wu, G. L.; Liao, W.



Carbon Supply and Storage in Tilled and Nontilled Soils as Influenced by Cover Crops and Nitrogen Fertilization  

Microsoft Academic Search

Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume (hairy vetch (Vicia villosa Roth)), non- legume (rye (Secale cereale L.)), biculture of legume and nonlegume (vetch and rye), and no cover crops

Upendra M. Sainju; Bharat P. Singh; Wayne F. Whitehead; Shirley Wang



Influence of Cover Crops and Inorganic Nitrogen Fertilization on Tomato and Snap Bean Production and Soil Nitrate Distribution  

Microsoft Academic Search

Commercial vegetable production depends almost solely on inorganic fertilizers. In an era of environmental sensitivity, enrichment of soils with green manures and cover crops may reduce the dependence on these fertilizers while maintaining and enhancing crop yields. The objectives of this research were to determine (1) if supplemental nitrogen (N) at 60 or 120 kg · ha following winter cover

Robert J. Dufault; Dennis R. Decoteau; J. Thomas Garrett; K. Dean Batal; Darbie Granberry; Jeanine M. Davis; Greg Hoyt; Douglas Sanders



Effect of cover crop on soil physical and chemical properties of an alfisol in the Sudan savannah of Burkina faso  

Microsoft Academic Search

The effect of several leguminous and graminaceous cover crops on soil physical and chemical properties was studied on a moderately eroded Alfisol in the Sudan savannah of Burkina Faso during the growing seasons of 1986 and 1987. Cover crops sown in 1986 were Macroptilium artropurpureum, M. lathyroides, Vigna radiata var. radiata, Cajanus cajan, Alysicarpus vaginalis, Lablab purpureus, Psophocarpus palustris, Digitaria

N. R. Hulugalle



Cover crop nitrogen availability to conventional and no?till corn: Soil mineral nitrogen, corn nitrogen status, and corn yield  

Microsoft Academic Search

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no?till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The

Jeffrey D. Vaughan; Greg D. Hoyt; Arthur G. Wollum II



A Preliminary Study of the Role of Cover Crops in Improving Soil Fertility and Yield for Potato Production  

Microsoft Academic Search

This study examined the potential of cover crops (fodder rape, oats, and white lupin) to improve phosphorus (P) availability in a high P-fixing Red Ferrosol soil at Robertson, New South Wales. Of particular interest was a fourth cover crop that consisted of white lupin which has P releasing characteristics, grown in combination with fodder rape, which scavenges P with its

S. A. Little; P. J. Hocking; R. S. B. Greene



Electromagnetic wave scattering from vegetation (Potato) and vegetation covered soil moisture for remote sensing  

NASA Astrophysics Data System (ADS)

In the country with limited resources, where the nutrition level of the population has to be maintained under inhospitable situation, the potato has a special value as food. Therefore efforts should be made for improvement and spreading the cultivation of this important crop. It demands an effective program that may provide information about potato growing areas and the growth conditions. Remote sensing has been acknowledged to be a valuable source of spatially comprehensive and temporally repeatable information of crop covered soil moisture, crop growth climatic information etc, which is useful and necessary for agriculture purposes. For this purpose, microwave remote sensing has evolved as an important tool. Since microwave are able to penetrate more deeply into vegetation and underneath ground surface. It is also preferred to the optical frequency band because microwave can work in all type of weather and have a wide signal dynamic range compared optical wavelengths. However interpretation of microwave scattering from agricultural crops requires an understanding the interaction among microwave, vegetative material and the soil. In order to develop useful forward and inverse models for retrieving the vegetation characteristic, it is necessary to know in detail the dielectric properties and plant structure of the vegetation over the range of expected growing conditions. In this paper, a theoretical model based on microwave interaction with potato crop along with examination of biomass of potato crop with the varying underlying soil moisture is studied. For this purpose, X-band (9.5GHz) scatterometer is used for studying the interaction of microwave with potato crop biomass and underlying soil moisture at various sensor parameters (i.e. angular variation and polarization, HH- and VV-). Although there may be a lot of crop parameters (i.e. crop height, leaf area index, etc) which also gives their effect on microwave. All this parameters are interlinked in the crop. So, this study is focused on biomass, which is one of the main parameter of crop and related with dielectric. Scattering coefficient at X-band showed strong sensitivity to different growth cycle of potato. The soil effect on scattering coefficient was prominent at steeper incidence angle (less than 40 degree) where as potato plant effects are more dominant at higher incidence angle (more than 40 degree). The microwave response of potato is polarization dependent and is more prominent for VV-Pol than HH-Pol at every stages of growth of potato and this strong polarization dependence can play a strong role for crop discrimination. The dependency of scattering coefficient on biomass is statistically checked by the linear regression analysis and results of regression analysis confirm the experimental results i.e., scattering coefficient increases as the biomass increases in the potato crop. The best angle to observe and retrieve the biomass by scattering coefficient is 55 degree and 60 degree incidence angles for HH-Pol and VV-Pol respectively. The regression results also revealed that scattering coefficient is positively correlated with soil moisture for both like pols. This result follows many earlier findings. The best incidence angle to compute the potato covered soil moisture from scattering coefficient is 35 degree and 30 degree for HH- and VV-Pol respectively. The HH- pol has edge over VV-pol for observing the potato the covered soil moisture. This approach provides a new direction to understand the potato scattering at X-band for remote sensing.

Singh, Keshev


Bowen ratio measurements above various vegetation covers and its comparison with actual evapotranspiration estimated by SoilClim model  

NASA Astrophysics Data System (ADS)

The principle of Bowen ratio is one of the available techniques for measurements of actual evapotranspiration (ETa) as one of essential water balance fractions. The main aims of submitted study were: (i) to compare the water balance of selected crops, (ii) to compare outputs of SoilClim model with observed parameters (including ETa on Bowen ratio basis). The measurements were conducted at two experimental stations in the Czech Republic (Polkovice 49°23´ (N), 17°17´ (E), 205 m a.s.l.; Domanínek 49°32´ (N), 16°15´ (E), 544 m a.s.l.) during the years 2009 and 2010. Together with Bowen ratio the global solar radiation, radiation balance, soil heat flux, volumetric soil moisture and temperature within selected depths, precipitation and wind speed were measured. The measurements were conducted simultaneously above various covers within the same soil conditions: spring barley vs. winter wheat, spring barley vs. winter rape; grass vs. poplars; harvested field after tillage vs. harvested field after cereals without any tillage. The observed parameters from different covers were compared with SoilClim estimates. SoilClim model is modular software for water balance and soil temperature modelling and finally could be used for soil Hydric and Thermic regimes (according to USDA classification) identification. The core of SoilClim is based on modified FAO Penman-Monteith methodology. Submitted study proved the applicability of SoilClim model for ETa, soil moisture within two defined layers and soil temperature (in 0.5 m depth) estimates for various crops, covers, selected soil types and climatic conditions. Acknowledgement: We gratefully acknowledge the support of the Grant Agency of the Czech Republic (no. 521/09/P479) and the project NAZV QI91C054. The study was also supported by Research plan No. MSM6215648905 "Biological and technological aspects of sustainability of controlled ecosystems and their adaptability to climate change".

Hlavinka, P.; Trnka, M.; Fischer, M.; Kucera, J.; Mozny, M.; Zalud, Z.



Effect of plant cover on distribution of soil organic matter pools  

NASA Astrophysics Data System (ADS)

Numerous studies reported that quality and quantity of primary production and also the rate of litter decomposition determine the carbon (C) content and its distribution in soils. Our objective was to examine how the type of plant cover affects C sequestration in the following pools: unprotected, spatial inaccessible, interacting with silt and clay, and biochemically protected SOM. The large lysimeters of Moscow State University allowed quantification of C stocks under broadleaf forest (Acer platanoides and Quercus robur), coniferous forest (Picea abies) and agricultural crops (9-field rotation), while other soil forming factors affecting SOC content were identical. In 1965 the lysimeters (S=9 m2, depth=1.5 m) were filled with carbonate free clay loam taken in Moscow region, originated from the Valday glaciation, and plant communities listed above were planted. We collected soil samples from the mineral horizons, from 0-5 cm depth, in spring 2012. The soils were physically separated by combination of the particle size and density fractionations (8 fractions in total), and C and N contents were analyzed. The total C and N contents in non-fractionated soil were higher under broadleaf forest (66 and 3.1 g kg-1), than under coniferous forest (34.5 and 1.23 g kg-1) and agricultural crops (13.7 and 0.9 g kg-1). Under forests 45-50% of Ctotal and 30% of Ntotal were in the unprotected pool, in agricultural soil these percentages were in 3 times less. The greatest portions of protected C were in spatial inaccessible pool: 28, 32 and 40% of the Ctotal for broadleaf forest, coniferous forest and agricultural crops, respectively. However, the total C amount in this pool under agricultural crops was in 3 times less, than under forests. This is indicative for the loss of C-rich macroaggregates and an increase of C-depleted microaggregates in agricultural soils due to the plowing. The amounts of C, stabilized by interactions with silt and clay, were nearly the same (3-6 g kg-1) because of the identical texture of soil parent material. The portion of biochemically protected C was maximal in agricultural soil - 27%, whereas on forest plots it was 2 times less. The amount of C in this pool did not strongly differ among the investigated soils, but C/N ratio was lower under agricultural crops than under forests. This indicates deeper degradation of organics in cultivated soil, N addition by fertilization, and a growing contribution of microbially-derived C to the biochemically protected pool. Wide C/N ratio in biochemically protected pool in the forest soils reflects the accumulation of primary recalcitrant plant substances with high C/N such as lignin and cellulose. Thus, forest vegetation contributes mainly to the SOM sequestration in the spatial inaccessible pool and is source of the high amount of non-protected C. Under agricultural crops however, the most of SOM is stabilized by interactions with silt and clay and is stabilized biochemically.

Gunina, Anna; Kuzyakov, Yakov; Ryzhova, Irina



Feasibility of using LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils  

NASA Technical Reports Server (NTRS)

Research activities conducted from February 1, 1985 to July 31, 1985 and preliminary conclusions regarding research objectives are summarized. The objective is to determine the feasibility of using LANDSAT data to estimate effective hydraulic properties of soils. The general approach is to apply the climatic-climax hypothesis (Ealgeson, 1982) to natural water-limited vegetation systems using canopy cover estimated from LANDSAT data. Natural water-limited systems typically consist of inhomogeneous vegetation canopies interspersed with bare soils. The ground resolution associated with one pixel from LANDSAT MSS (or TM) data is generally greater than the scale of the plant canopy or canopy clusters. Thus a method for resolving percent canopy cover at a subpixel level must be established before the Eagleson hypothesis can be tested. Two formulations are proposed which extend existing methods of analyzing mixed pixels to naturally vegetated landscapes. The first method involves use of the normalized vegetation index. The second approach is a physical model based on radiative transfer principles. Both methods are to be analyzed for their feasibility on selected sites.

Eagleson, P. S.



Fate and Transport of Pharmaceutical Compounds Applied to Turf-Covered Soil  

NASA Astrophysics Data System (ADS)

In arid and semi-arid regions, the use of treated wastewater for landscape irrigation is becoming common practice and a significant asset to conserve potable water supplies. Public interest and lack of field-scale data are leading to a concern that compounds found in reuse water could persist in the environment and contaminate groundwater. As part of a larger study, 2-yr experiments were conducted in CA and NV, where reuse water was the primary source of non-ambient water input. A total of 13 compounds were studied, all originating in irrigation water applied to soil covered in turf or left bare. The target compounds included atenolol, atorvastatin, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, ibuprofen, meprobamate, naproxen, primidone, sulfamethoxazole, triclosan, and trimethoprim. Analytical protocols for all compounds (detection at ng/L range) were established before the study commenced. The goals of the research were to increase available data on the fate and transport of these target compounds in turfgrass/soil systems, and to use these data to assess long-term risk from using water containing these compounds. Experiments conducted at two scales are discussed here: lysimeter-scale and field-scale. At the lysimeter-scale, 24 drainage lysimeters (120 cm thick) were exposed to treated wastewater as an irrigation source. Lysimeters varied by soil type (two types), soil cover (bare- versus turf-covered) and leaching fraction (5% and 25%). Upper and lower boundary conditions were monitored throughout the study. Water samples were collected periodically after water breakthrough. After the study, soil samples were analyzed for compound mass, allowing compound mass balance and removal to be assessed. At the field-scale, passive drain gages (Decagon Devices) were installed in triplicate in fairways at four operational golf courses, one in NV and three in CA, all with histories of using treated wastewater. The gages measure water fluxes through the 60-cm thick column and store water for subsequent sampling and analysis. Irrigation water was sampled and analyzed for input mass. Using output mass, removal efficiencies could also be assessed. Results of the lysimeter study showed that mass fluxes were reduced to less than 1 g/ha/yr for all compounds (sulfamethoxazole was highest at 0.25 g/ha/yr). Solute breakthrough was concentrated during fall and winter periods when turf was overseeded and sites received winter precipitation. Results of the golf course study were similar, showing scalability. We report more than 100 instances of target compounds detected in water that percolated through the turf and upper 60 cm of soil, but with total mass fluxes of <0.1 g/ha throughout the study. Sulfamethoxazole, meprobamate, and carbamazepine were most commonly found in drainage water, but gemfibrozil, diclofenac, naproxen, and triclosan were also found in more than one sample. The results allowed for a preliminary risk assessment to be conducted. Based on our results, restricting the use of recycled water, based solely on the presence of PPCPs should only be considered at sites where soils are extremely sandy and irrigation regimes are not based on an evapotranspiration feedback approach.

Young, M.; Green, R. L.; Devitt, D.; McCullough, M.; Wright, L.; Vanderford, B. J.; Snyder, S. A.



Sustainable treatment of landfill leachate  

NASA Astrophysics Data System (ADS)

Landfill leachate is a complex liquid that contains excessive concentrations of biodegradable and non-biodegradable products including organic matter, phenols, ammonia nitrogen, phosphate, heavy metals, and sulfide. If not properly treated and safely disposed, landfill leachate could be an impending source to surface and ground water contamination as it may percolate throughout soils and subsoils, causing adverse impacts to receiving waters. Lately, various types of treatment methods have been proposed to alleviate the risks of untreated leachate. However, some of the available techniques remain complicated, expensive and generally require definite adaptation during process. In this article, a review of literature reported from 2008 to 2012 on sustainable landfill leachate treatment technologies is discussed which includes biological and physical-chemical techniques, respectively.

Kamaruddin, Mohamad Anuar; Yusoff, Mohd. Suffian; Aziz, Hamidi Abdul; Hung, Yung-Tse



Public health assessment for J and L landfill, Avon Township, Oakland County, Michigan, Region 5. CERCLIS No. MID980609440. Final report  

SciTech Connect

The U.S. Environmental Protection Agency (U.S. EPA) placed the J L Landfill site on the National Priorities List (NPL) on March 31, 1989. Beginning in 1951, steel-making firms, including Jones Laughlin, used the site as a landfill for slag, dust from air cleaners at their plants, and general rubbish. By 1980, the landfill had been filled to capacity, and Jones Laughlin closed and coverd the site. The cover on the landfill is inadequate by current standards. Surface soils contain concentrations of metals that are of health concern. The groundwater contains metals and organic chemicals at concentrations of health concern, some of which may be attributable to other sites in the area. The site poses no apparent public health hazard under present conditions, however, several potential exposure pathways may pose hazards should they be completed in the future.

Not Available



A rule-based image analysis approach for calculating residues and vegetation cover under field conditions for soil erosion studies  

NASA Astrophysics Data System (ADS)

Estimation of soil cover by residues and vegetation is a fundamental issue for soil erosion, because the amount of cover is a basic driver for erosion risk. Soil cover measurement in the field and catchment scale is sometimes very time consuming or subjective. Our ambition for this study was to develop a quick and easy-to-handle field method for calculating the amount of different soil cover types, i.e. dead and living biomass, in a single-step analysis at field scale. We used an object-based image analysis methodology (OBIA) to quantify different cover types. Classification of the images used resulted in the following classes: residues, vegetation, stones, shadow and uncertainty. The shadow and uncertainty classes were used as an image quality parameter. We compared this method to manual image analysis for the range of between 0 and 50% total cover and different catch crops and winter crops. To increase the accuracy of manual analysis, it was necessary to repeat the assessment five times per image. Degree of agreement between the OBIA method and manual assessment for each of the three different cover types was in the region of 0.8 (r2 = 0.78 for total cover, r2 = 0.75 for residue cover, r2 = 0.82 for vegetation cover). Slopes of the regression intercepts between manual and automated analysis were not different from 1 for total cover and vegetation cover. 95% confidence intervals for the regression lines indicate that confidence limits at total soil cover of 25% (the mean of the investigated range of soil cover) are similar for both the manual evaluation (CI95% = 2.8) and the OBIA method (CI95% = 3.1). The time needed for evaluation was calculated at 115 min per manual image classification and 15 min per automated image classification, which we regard as a major advantage of the OBIA methodology. Finally we suggest that, while similar accuracies of evaluation for both methods have been obtained, the OBIA method allows greater objectivity because of predefined classification algorithms and thus the possibility of back tracing results.

Bauer, Thomas; Strauss, Peter



Comparative Landfills  

NSDL National Science Digital Library

This lesson plan from ATEEC will explain solid and hazardous waste management. The activity would be most appropriate for technology studies or high school science classes. In all, it would require about two hours of class time, plus a few minutes a day for several weeks. The purpose of the lesson is to demonstrate what happens to garbage in landfills, and compare it to the process of burying trash. The activity is explained in depth in this lesson plan handout. The lesson plan is available for download as a PDF; users must create a free, quick login with ATEEC to access the materials.

Wishart, Ray


Cleaner Landfills  

NASA Technical Reports Server (NTRS)

Osmotek, Inc. developed the Direct Osmosis treatment system through SBIR funding from Ames Research Center. Using technology originally developed for flight aboard the Space Station, the company brought it to their commercial water purification treatment system, Direct Osmosis. This water purification system uses a direct osmosis process followed by a reverse osmosis treatment. Because the product extracts water from a waste product, Osmotek is marketing the unit for use in landfills. The system can treat leachate (toxic chemicals leached into a water source), by filtering the water and leaving behind the leahcate. The leachate then becomes solidified into substance that can not seep into water.



Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

Widory, D., E-mail: [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Proust, E.; Bellenfant, G. [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Bour, O. [INERIS, Parc Technologique ALATA, 60550 Verneuil-en-Halatte (France)



Linking the planting of cover crops to soil and water nutrient dynamics in Shatto Ditch Watershed, IN  

NASA Astrophysics Data System (ADS)

Tile drainage systems are common in the Midwest, and facilitate the transfer of excess inorganic nitrogen (N) and phosphorus (P) from agricultural soils to adjacent streams. These non-point sources contribute to elevated nutrient loads to tributaries in the Mississippi River Basin, which have been linked to widespread hypoxia and associated ecological and economic problems in the Gulf of Mexico. In agricultural areas dominated by row-crops, the planting of cover crops after the cash crop has been harvested offers a potential mechanism to reduce nutrient leaching from fields to tile drains in the off-season. In general, cover crops retain nutrients on fields and increase soil organic matter (SOM) content after they are harvested. The planting of cover crops also promotes immobilization of soil N and reduction in losses of dissolved P from soils due to reduced erosion, resulting in significantly less leaching to surface waters through tile drains. As part of a demonstration project in the Shatto Ditch Watershed, located in the Tippecanoe River Basin, IN, we are testing whether the planting of cover crops will influence soil nutrient and organic matter, and how cover crops alter the dynamics of nutrient leaching from tile drains. We have been sampling tile drain outflows on a twice-monthly sampling regime and have been measuring dissolved inorganic N and P concentrations in tile water since November 2012. During Spring 2013, tile drain nitrate concentrations sampled synoptically throughout the watershed ranged from 2.6 - 38.9 mg NO3- L -1 (mean = 17.2 +/- 1.6 mg NO3- L -1) with the lowest concentrations coming from fields planted in cover crops (range = 2.6 - 19.0 mg NO3- L -1, mean = 9.7 +/- 1.5 mg NO3- L -1). In contrast, soluble reactive phosphorus (SRP) concentrations were much lower in tile drain water and ranged from 7.5 - 182.7 ?g L-1 (mean = 24.5 +/- 5.0 ?g L-1 SRP) and preliminary data suggest that there were no differences between fields with and without cover crops. In July 2012, we also sampled soils for SOM and inorganic N and P, 6 weeks after cover crop planting because the net effects of mineralization, leaching, and other potential losses that may have occurred since the cover crop was harvested are most accurately assessed at this time. Preliminary results suggest SOM content in the near-surface soil layer (i.e., 0 - 5 cm) in 3 fields planted in cover crops were similar (mean = 4.6 % +/- 0.3 %) to the mean SOM across the other 17 fields sampled without cover crops (mean = 5.8 % +/- 0.9 %). Finally, based on nutrient signatures in the tile drain samples, we predict that soil nitrate concentrations will be lower in soils planted with cover crops, but there will be little difference in soil extractable P between cover crop and non-cover crop fields. The combined sampling of both tile water and field soils will help assess whether cover crops provide a management compromise that allows farmers to improve their soil health, while at the same time improving adjacent stream water quality.

Christopher, S. F.; Tank, J. L.; Hanrahan, B. R.; Mahl, U. H.; Huang, K.



Organic Carbon and Nitrogen Storages of Soils Covering Yedoma Deposits in the Lena River Delta  

NASA Astrophysics Data System (ADS)

The Lena River Delta (LRD) is located in northeast Siberia and extends over a soil covered area of around 21,500 km2. LRD likely stores more than half of the entire soil organic carbon (SOC) mass stored in deltas affected by permafrost. LRD consists of several geomorphic units. Recent studies showed that the spatially dominating Holocene units of the LRD (61 % of the area) store around 240 Tg of SOC and 12 Tg of nitrogen (N) within the first meter of ground. These units are a river terrace dominated by wet sedge polygons and the active floodplains. About 50 % of these reported storages are located in the perennially frozen ground below 50 cm depth and are excluded from intense biogeochemical exchange with the atmosphere today. However, these storages are likely to be mineralised in near future due to the projected temperature increases in this region. A substantial part of the LRD (1,712 km2) belongs to the so-called Yedoma Region, which formed during the Late Pleistocene. This oldest unit of the LRD is characterised by extensive plains incised by thermo-erosional valleys and large thermokarst depressions. Such depressions are called Alases and cover around 20 % of the area. Yedoma deposits in the LDR are known to store high amounts of SOC. However, within the LRD no detailed spatial studies on SOC and N in the soils overlying Yedoma and thermokarst depressions were carried out so far. We present here our 'investigation in progress' on soils in these landscape units of the LRD. Our first estimates, based on 69 pedons sampled in 2008, show that the mean SOC stocks for the upper 30 cm of soils on both units were estimated at 13.0 kg m2 ± 4.8 kg m2 on the Yedoma surfaces and at 13.1 kg m2 ± 3.8 kg m2 in the Alases. The stocks of N were estimated at 0.69 kg m2 ± 0.25 kg m2and at 0.70 kg m2 ± 0.18 kg m2 on the Yedoma surfaces and in the Alases, respectively. The estimated SOC and N pools for the depth of 30 cm within the investigated part of the LRD add to 20.9 Tg and 1.1 Tg, respectively. The Yedoma surfaces (1,313 km2) store 17.1 ± 6.3 Tg SOC and 0.9 ± 0.3 Tg N, whereas the Alases (287 km2) store 3.8 ± 1.1 Tg SOC and 0.2 ± 0.05 Tg N within the investigated depth of 30 cm. Further analyses of the soil core material collected in 2013 will provide SOC and N pool estimates for a depth of 100 cm including both, the seasonally active layer and the perennially frozen ground. With continuing advanced analyses of an available digital elevation model, slopes will be designated with their extents and inclinations since the planar extents of slopes derived from satellite imagery do not correspond to the actual slope soil surface area, which is vital for spatial SOC and N storage calculations as well as trace gas release estimates. The actual soil surface area of slopes will be calculated prior to result extrapolations.

Zubrzycki, Sebastian; Kutzbach, Lars; Morgenstern, Anne; Grosse, Guido; Pfeiffer, Eva-Maria



The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China  

PubMed Central

The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R?=?0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h?1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p?0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858

Li, Xiang; Niu, Jianzhi; Xie, Baoyuan



Spatial variability of soil water content in the covered catchment at Gårdsjön, Sweden  

NASA Astrophysics Data System (ADS)

The spatial variability of soil water content was investigated for a 6300 m2 covered catchment on the Swedish west coast. The catchment podzol soil is developed in a sandy - silty till with a mean depth of 43 cm and the dominant vegetation is Norway spruce. The acid precipitation is removed by a plastic roof and replaced with lake water irrigated under the tree canopies. On two occasions, in April and May 1993, TDR measurements were made at 57-73 points in the catchment using 15 and 30 cm long vertically installed probes. The water content pattern at the two dates, which occurred during a relatively dry period, were similar. The range of water content was large, from 5 to 60%. In May 1993 measurements also were made in areas of 10 × 10 m, 1 × 1 m and 0·2 × 0·2 m. The range and standard deviation for the 10 × 10 m area, which apart from a small-scale variability in soil hydraulic properties and fine root distribution also had a heterogeneous micro- and macro-topography, was similar to the range and standard deviation for the catchment. The 1 × 1 m and 0·2 × 0·2 m areas had considerably lower variability. Semi-variogram models for the water content had a range of influence of about 20 m. If data were paired in the east--west direction the semi-variance reflected the topography of the central valley and had a maximum for data pairs with internal distances of 20-40 m. The correlation between soil water content and topographic index, especially when averaged for the eight topographically homogeneous subareas, indicated the macro-topography as the cause of a large part of the water content variability.

Nyberg, Lars



The effect of leaf litter cover on surface runoff and soil erosion in Northern China.  


The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R?=?0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p?0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858

Li, Xiang; Niu, Jianzhi; Xie, Baoyuan



Evapotranspiration (ET) covers.  


Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information about specific projects using ET covers. There are three general approaches for non-conventional cover systems to achieve approval for installation; the first is when equivalent performance to conventional final cover systems can be demonstrated directly on site. This is the approach used by the Sandia study, by most ACAP sites, and the Rocky Mountain Arsenal. A second approach is used when there are data from a site specific study such as an ACAP installation at a site that has analogous soil and climate conditions. Several sites in Colorado and Southern California have achieved approval based on data from similar sites. The third most common approach for regulatory approval is by installation of data collection systems with the agreement that the permanence of the ET cover installation is contingent on success of the cover in meeting certain performance goals. This article is intended as an introduction to the topic and is not intended to serve as guidance for design or construction, nor indicate the appropriateness of using an ET cover systems at a particular site. PMID:22574378

Rock, Steve; Myers, Bill; Fiedler, Linda



Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest  

USGS Publications Warehouse

Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

Striegl, R.G.; Wickland, K.P.



Arsenic concentration in porewater of an alkaline coal ash disposal site: Roles of siderite precipitation/dissolution and soil cover.  


The geochemical behavior of As in porewaters of an alkaline coal ash disposal site was investigated using multilevel samplers. The disposal site was in operation from 1983 until 1994 and was covered with 0.3-0.5m thick soils in 2001 when this study was initiated. Sequential extraction analyses and batch leaching experiments were also performed using the coal ash samples collected from the disposal site. The results suggest the important roles of siderite (FeCO(3)) precipitation/dissolution and soil cover, which have been ignored previously. Arsenic levels in the porewater were very low (average of 10microgL(-1)) when the site was covered with soil due to coprecipitation with siderite. The soil cover enabled the creation of anoxic conditions, which raised the Fe concentration by the reductive dissolution of Fe-(hydr)oxides. Because of the high alkalinity generated from the alkaline coal ash, even a small increase in the Fe concentration (0.66mgL(-1) on average) could cause siderite precipitation. When the soil cover was removed, however, an oxidizing condition was created and triggered the precipitation of dissolved Fe as (hydr)oxides. As a result, the dissolution of previously precipitated As-rich siderite caused higher As concentration in the porewater (average of 345microgL(-1)). PMID:19682722

Kim, Kangjoo; Park, Sung-Min; Kim, Jinsam; Kim, Seok-Hwi; Kim, Yeongkyoo; Moon, Jeong-Tae; Hwang, Gab-Soo; Cha, Wang-Seog



Application of Digital Image Processing Integration with Satellite Remote Sensing and GIS in Land Use Land Cover Change and Soil Erosion  

Microsoft Academic Search

The relationship between land use land cover change s and soil erosion is investigated using digital imag e processing integrated with Remote Sensing The Universal Soil Loss Equation (USLE -Wischmeier and Smith, 1978) was applied to build a model to estimate the annual soil loss from the watershed in 1976 and 2002. The analysis process on land use land cover

Kyaw Zaya Htun; Lal Samarakoon


Holocene climate evolution, human occupation, soil erosion and vegetation cover change in southeast Spain  

NASA Astrophysics Data System (ADS)

The Mediterranean region is commonly reported as the European region that is most affected by soil degradation. The degradation of Mediterranean soils has often been linked to inappropriate agricultural practices during the last decades besides its typical semiarid conditions. The present-day landscape in Southeast Spain is the result of a long occupation history. To have a better understanding of the impact of human societies on soil degradation, the main shifts in vegetation cover, climate and human occupation have to be taken into account. Recently published paleo-environmental data from continental pollen sequences, high-resolution marine cores, and estimations of the past Sea Surface Temperature (SST) of the Alborán Sea provide new insights in the evolution of the Mediterranean climate and vegetation during the Holocene. These data allow overcoming some of the shortcomings of previous studies on the interaction between humans and the landscape that were mainly based on extrapolations of site-specific information from continental deposits and archeological sites and large-scale regional correlations. Our compilation of multi-continental proxies from the Iberic Peninsula indicates that environmental conditions are strongly related to climatic oscillations and strongly correlated with the North Atlantic changes. By use of a vertical approach, several aridification episodes were detected from marine and continental records at 12000-11600 (H), 11100-10800 (G), 10300-9900 (F), 8600-8000 (E), 5500-4600 (D), 4000-3400 (C), 2700-2400 (B), 1800-1300 (A) cal. years BP. The data suggest that those severe aridification phases were most likely climatically induced, not human-driven and well correlated with the Bond events. We observe a clear association between climate, vegetation cover and sediment fluxes for the period from 12000 to 4600 cal. years BP. In contrast, during the last 4600 years, the reconstruction of various eco-historical periods indicated a weak to low association between sediment fluxes and climatic shifts. Periods of improved climatic conditions were associated with both low (end of Post Argaric-Omeya-Nazarene) and high (Chalcolithic-Roman-Early Phoenician I) erosion rates. Various prosperous civilizations (such as Agarics, Phoenicians and Romans) defined by a demographic explosion and associated with an overexploitation of natural resources, are accompanied with higher sediment fluxes. At the moment, we cannot exclude the possibility that the weak association observed between sediment fluxes and human-climatic factors for the last 4600 years is an artifact resulting from the low temporal resolution of soil erosion data from local sites compared to the high-resolution climatic data. It is clear that high-resolution data on sediment fluxes are required to test these hypotheses further.

Bellin, Nicolas; Vanacker, Veerle



Migration of inorganic ions from the leachate of the Rio das Ostras landfill: a comparison of three different configurations of protective barriers.  


Batch tests and diffusion tests were performed to analyze the efficiency of a protective barrier in a landfill consisting of compacted soil with 10% bentonite compared to the results obtained for only compacted soil and for compacted soil covered with a 1-mm-thick HDPE geomembrane; the soil and leachate were collected from the Rio das Ostras Landfill in Rio de Janeiro, Brazil. The diffusion tests were performed for periods of 3, 10 and 60 days. After the test period, the soil pore water was analyzed and the profiles for chloride, potassium and ammonium were determined along a 6-cm soil depth. The results of the batch tests performed to define sorption parameters were used to adjust the profiles obtained in the diffusion cell experiment by applying an ion transfer model between the interstitial solution and the soil particles. The MPHMTP model (Multi Phase Heat and Mass Transfer Program), which is based upon the solution of the transport equations of the ionic contaminants, was used to solve the inverse problem of simultaneously determining the effective diffusion coefficients. The results of the experimental tests and of the model simulation confirmed that the compacted soil with 10% bentonite was moderately efficient in the retention of chloride, potassium and ammonium ions compared to the configurations of compacted soil with a geomembrane and compacted soil alone, representing a solution that is technically feasible and requires potentially lower costs for implementation in landfills. PMID:25042116

Lacerda, Cláudia Virgínia; Ritter, Elisabeth; Pires, João Antônio da Costa; de Castro, José Adilson



Effects of continuous cover forestry on soil moisture pattern - Beginning steps of a Hungarian study  

NASA Astrophysics Data System (ADS)

Nowadays Hungarian foresters encounter a new challenge. The traditional management practices do not meet anymore with the demand of the civil society. The good old clearcut is no more a supported technology in forest regeneration. The transition to the continuous cover forestry induces much higher spatial variability compared to the even aged, more or less homogeneous, monoculture stands. The gap cutting is one of the proposed key methods in the Hungarian forestry. There is an active discussion among forest professionals how to determine the optimal gap size to maintain ideal conditions for the seedlings. Among other open questions for example how the surrounding trees modify the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we established four research plots to study the spatial and temporal variability of soil moisture in the forest gap and the surrounding undisturbed stand. Each plot is located in oak (Quercus spp.) stands. Natural regeneration of oak stands is more problematic in our climate compared to the beech (Fagus sylvatica) which is located in the more humid or semi-humid areas of our country. All plots are located in the western part of Hungary: close to Sopron, Bejcgyertyános, Vép and Vajszló settlements. The last plot is an extensive research area, which is located in the riparian zone of a tributary of Feketevíz River. We monitor here the close-to-surface groundwater level fluctuation with pressure transducers. With a diurnal fluctuation based method it is possible to quantify the evapotranspiration differences between the gap and the stand. In two of the remaining stands (Bejcgyertyános and Vép) the gaps were opened in 2010. The monitoring of soil moisture began in 2013. A mobile sensor is used to monitor soil-moisture in a regular grid. The spatial variability of soil-moisture time-series shows a characteristic pattern during the growing-season. The plot in Sopron was established in 2013. Gaps with three different sizes were opened and fenced round to close out wild game. The initial status of the gap was recorded by a terrestrial laser scanner (LIDAR). From the resulting 3D point cloud high-resolution digital terrain and canopy surface model are derived which will help the planned numerical modelling. To prevent the unnecessary disturbance in this plot, two perpendicular transects were selected in each gap. The soil-moisture is monitored along these lines together with additional investigations, for example throughfall, and litter interception, tension disc infiltrometry, plant composition and cover. The microclimatic parameters such as near surface air temperature, relative humidity, radiation, wind speed and soil temperature is continuously recorded along the transects and compared to a nearby reference meteorological station located at an open area. Acknowledgment: The research was financially supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0004 joint EU-national research project

Kalicz, Péter; Bartha, Dénes; Brolly, Gábor; Csáfordi, Péter; Csiszár, Ágnes; Eredics, Attila; Gribovszki, Zoltán; Király, Géza; Kollár, Tamás; Korda, Márton; Kucsara, Mihály; Nótári, Krisztina; Kornél Szegedi, Balázs; Tiborcz, Viktor; Zagyvai, Gergely; Zagyvai-Kiss, Katalin Anita



Strip-tilled Cover Cropping for Managing Nematodes, Soil Mesoarthropods, and Weeds in a Bitter Melon Agroecosystem  

PubMed Central

A field trial was conducted to examine whether strip-tilled cover cropping followed by living mulch practice could suppress root-knot nematode (Meloidogyne incognita) and enhance beneficial nematodes and other soil mesofauna, while suppressing weeds throughout two vegetable cropping seasons. Sunn hemp (SH), Crotalaria juncea, and French marigold (MG), Tagetes patula, were grown for three months, strip-tilled, and bitter melon (Momordica charantia) seedlings were transplanted into the tilled strips; the experiment was conducted twice (Season I and II). Strip-tilled cover cropping with SH prolonged M. incognita suppression in Season I but not in Season II where suppression was counteracted with enhanced crop growth. Sunn hemp also consistently enhanced bacterivorous and fungivorous nematode population densities prior to cash crop planting, prolonged enhancement of the Enrichment Index towards the end of both cash crop cycles, and increased numbers of soil mesoarthropods. Strip-tilled cover cropping of SH followed by clipping of the living mulch as surface mulch also reduced broadleaf weed populations up to 3 to 4 weeks after cash crop planting. However, SH failed to reduce soil disturbance as indicated by the Structure Index. Marigold suppressed M. incognita efficiently when planted immediately following a M. incognita-susceptible crop, but did not enhance beneficial soil mesofauna including free-living nematodes and soil mesoarthropods. Strip-tilled cover cropping of MG reduced broadleaf weed populations prior to cash crop planting in Season II, but this weed suppression did not last beyond the initial cash crop cycle. PMID:22736847

Wang, Koon-Hui; Sipes, Brent S.; Hooks, Cerruti R.R.




EPA Science Inventory

Batch equilibrium metal immobilization studies were conducted using seven soil and sediment materials spiked with varying concentrations of Cd, Ni, Pb, and Zn. The objective was to examine the potential mobility of metals in subsoils of metals-contaminated sites. Soil pH influenc...


Modelling soil moisture under different land covers in a sub-humid environment of Western Ghats, India  

NASA Astrophysics Data System (ADS)

The objective of this study is to apply and test a simple parametric water balance model for prediction of soil moisture regime in the presence of vegetation. The intention was to evaluate the differences in model parameterization and performance when applied to small watersheds under three different types of land covers ( Acacia, degraded forest and natural forest). The watersheds selected for this purpose are located in the sub-humid climate within the Western Ghats, Karnataka, India. Model calibration and validation were performed using a dataset comprising depth-averaged soil moisture content measurements made at weekly time steps from October 2004 to December 2008. In addition to this, a sensitivity analysis was carried out with respect to the water-holding capacity of the soils with the aim of explaining the suitability and adaptation of exotic vegetation types under the prevailing climatic conditions. Results indicated reasonably good performance of the model in simulating the pattern and magnitude of weekly average soil moisture content in 150 cm deep soil layer under all three land covers. This study demonstrates that a simple, robust and parametrically parsimonious model is capable of simulating the temporal dynamics of soil moisture content under distinctly different land covers. Also, results of sensitivity analysis revealed that exotic plant species such as Acacia have adapted themselves effectively to the local climate.

Venkatesh, B.; Nandagiri, Lakshman; Purandara, B. K.; Reddy, V. B.



Colluvisols as a Component of Erosional and Accumulative Soil Cover Structures of East Lithuania  

Microsoft Academic Search

About 30% of Lithuania is undulating and hilly. Under the influence of water and agriculture operations, soil erosion in hilly landscape changes the environment components. New soil parent material (colluvium) emerges. In some parts of hilly Lithuania, colluvium composes more than 20 % of the soil parent material. According to the former Lithuanian soil classification the soils developed on talus



Long-term winter cover cropping effects on corn (Zea mays L.) production and soil nitrogen availability  

Microsoft Academic Search

This study was conducted to determine effects of long-term winter cover cropping with hairy vetch, cereal rye and annual\\u000a ryegrass on soil N availability and corn productivity. From 1987 to 1995, with the exception of the first year of the study,\\u000a the cover crops were seeded each year in late September or early October after the corn harvest and incorporated

S. Kuo; E. J. Jellum



[Recovery of three tropical forest covers from mid-elevation sites in Costa Rica: oligochaetes, litter and soil analysis].  


In Costa Rica, the region of Rio Macho is a highly fragmented landscape with imminent risk of landslides. This area, which provides important environmental services, has been partially recovered to its original forest through intentional reforestation with exotic species or natural regeneration after abandonment. The aim of this study was to evaluate the bioindicator potential of oligochaete presence as well as some litter and soil characteristics. The ecosystem recovery of the two common restoration modes was measured within three different forest covers. For this, some substrate characteristics were analyzed and compared in a-50 years old secondary forest, a 13 years tacotal, and a 35 years cypress (Cupressus lusitanica) plantation. The three sites studied differed in density, biomass and average mass of oligochaetes, and in some litter (depth, nitrogen, phosphorus and C/N ratio of litter), and soil variables (soil water content (CA), pH, phosphorus, cation exchange capacity, and magnesium). The forest registered the lowest density of earthworms and soil pH, and the highest soil CA and phosphorus. CA was inversely related to the oligochaete density across sites. Besides, there were positive correlations between C/N and C/P ratios from the litter and soil pH, and inverse correlations of litter depth, litter N and P concentrations with soil P. Discriminant Analysis (AD) performed with all soil and litter variables, produced a sharp classification of the three forest cover types. AD suggests that site differences were mostly determined by soil CA and litter nitrogen concentration. Considering all the evaluated parameters, our results suggest in the first place, that oligochaetes are sensitive to changes in some soil and litter characteristics. Secondly, aside from the striking oligochaete differences between the old secondary forest and the other two sites, some soil and litter traits resulted good indicators of the present recovery of the three forest covers. In addition, comparing soil nutrients content (organic carbon, nitrogen, calcium, potassium and sulfur) among the three sites, our findings indicate that the cypress plantation had reached soil nutrient conditions similar to the old secondary forest, presumably by the accumulation of nutrients, as a result of low nutrient recirculation. In conclusion, ecosystem level studies throughout simple evaluation criteria (soils, oligochaetes and ground litter) can be used as rapid indicators of the state of some of the many and complex forest ecosystem compartments. PMID:23342500

Pérez-Molina, Junior Pastor; Cordero Solórzano, Roberto A



Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers  

Microsoft Academic Search

Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate




The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize  

Microsoft Academic Search

A field experiment was conducted to observe the influence of a cover crop (winter wheat, Triticum aestivum L.), and a perennial weed (dandelion, Taraxacum officinale Weber ex Wigg.), on vesicular-arbuscular mycorrhiza (VAM) inoculum potential, soil aggregation, and maize yield after one season. Mycorrhizal colonization of maize roots was higher following the autumn planting of either winter wheat or dandelion compared

Z. Kabir; R. T. Koide



Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content  

Microsoft Academic Search

No-tillage, N fertilization and cover crops are known to play an important role in conserving or increasing SOC and STN but the effects of their interactions are less known.In order to evaluate the single and combined effects of these techniques on SOC and STN content under Mediterranean climate, a long term experiment started in 1993 on a loam soil (Typic

Marco Mazzoncini; Tek Bahadur Sapkota; Paolo Bàrberi; Daniele Antichi; Rosalba Risaliti



Ecotoxicological diagnosis of a sealed municipal landfill.  


Assessing the environmental impact of a soil-topped landfill requires an accurate ecotoxicological diagnosis. This paper describes various diagnostic protocols for this purpose and their application to a real case: the urban solid waste (USW) municipal landfill of Getafe (Madrid, Spain). After their initial sealing with soil from the surroundings about 20 years ago, most USW landfills in the autonomous community of Madrid have continued to receive waste. This has hindered precise assessment of their impact on their environment and affected ecosystems. The procedure proposed here overcomes this problem by assessing the situation in edaphic, aquatic and ecological terms. The present study focused on the most influential soil variables (viz. salinity due largely to the presence of anions, and heavy metals and organic compounds). These variables were also determined in surface waters of the wetland most strongly affected by leachates running down landfill slopes. Determinations included the characterization of plant communities and microbial biodiversity. The study was supplemented with a bioassay under controlled conditions in pots containing soil contaminated with variable concentrations of Zn (as ZnCl(2)) intended to assess ecochemical actions in a population of Bromus rubens, which grows profusely in the landfill. PMID:21075508

Hernández, A J; Bartolomé, C; Pérez-Leblic, M I; Rodríguez, J; Alvarez, J; Pastor, J



Final construction quality assurance report for the Y-12 Industrial Landfill V, Area 2, Oak Ridge, Tennessee  

SciTech Connect

Lockheed Martin Energy Systems (LMES) has finished construction of Area 2 of the Y-12 Plant Industrial Landfill (ILF-V), classified as a Class 2 Landfill. This final Construction Quality Assurance (CQA) Report provides documentation that Area 2 was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. This report applies specifically to the Area 2 excavation, compacted clay soil liner, geomembrane liner, granular leachate collection layer, protective soil cover, and the leachate collection system. An ``As-Built`` survey was performed and is included. The drawings provide horizontal and vertical information for Area 2, the anchor trench, the leachate collection pipe, the temporary access road, and cross-sections of Area 2. This report provides documentation of the following items: the excavation activities of Area 2; the maximum recompacted coefficient of hydraulic conductivity or permeability of the soil is less than 1 {times} 10{sup {minus}7} centimeters per second (cm/sec); the total thickness of the compacted clay soil liner equals a minimum of 2 feet; a 40 mil impermeable geomembrane (polypropylene) flexible membrane liner (FML) and 16 oz. geotextile fabric was placed in direct contact with the compacted clay soil liner; a 12 inch granular leachate collection layer was installed and covered with a 8 oz. geotextile separation fabric; the installation of the leachate collection piping; and the two foot protective clay soil cover.

Bessom, W.H. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)



Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers  

SciTech Connect

Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited.

Bander, T.J.



Learning from Landfills.  

ERIC Educational Resources Information Center

Describes a project in which students developed an all-class laboratory activity called "The Decomposition of Organic and Inorganic Substances in a Landfill". Explores what conditions are necessary to facilitate decomposition in a landfill. (SAH)

Galus, Pamela



Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.  


Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area. PMID:25154685

Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad



Uptake of Heavy Metals in Landfill Leachate by Vetiver Grass  

Microsoft Academic Search

Many waste disposal sites in Thailand are sources of environmental pollution because waste is still largely disposed of at these places without effective and proper management control. Landfill leachate usually contains high concentrations of heavy metals that are seriously harmful to the environment and human health. The study was conducted using vetiver for phyto-remedying soil contaminated with landfill leachate. Surat

Nualchavee Roongtanakiat; Tanasun Nirunrach; Supitcha Chanyotha; Diti Hengchaovanich



LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC).  


This study compared the environmental impacts of composting yard wastes in windrows with using them in place of soil as alternative daily cover (ADC) in landfills. The Life Cycle Assessment was made using the SimaPro LCA software and showed that the ADC scenario is more beneficial for the environment than windrow composting. ADC use is also a less costly means of disposal of yard wastes. This finding applies only in cases where there are sanitary landfills in the area that are equipped with gas collection systems and can use yard wastes as alternative daily cover. Otherwise, the environmentally preferable method for disposal of source-separated yard wastes is composting rather than landfilling. PMID:20615683

van Haaren, Rob; Themelis, Nickolas J; Barlaz, Morton



2-Liter Landfill  

NSDL National Science Digital Library

In this activity, learners gain a better understanding of how household/school waste breaks down in a landfill. Learners collect trash and then create miniature landfills in 2-liter bottles. Learners record observations about their landfills at least once a week for a month. This activity is part of a larger curriculum related to amphibians and conservation.

Aquarium, Omaha'S H.



Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems?  


Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH(4) m(-2) d(-1). Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery. PMID:16198554

Spokas, K; Bogner, J; Chanton, J P; Morcet, M; Aran, C; Graff, C; Golvan, Y Moreau-Le; Hebe, I



Assessment of soil-gas, seep, and soil contamination at the North Range Road Landfill, Fort Gordon, Georgia, 2008-2009  

USGS Publications Warehouse

Inorganic concentrations in all four soil samples did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were two to three times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.

Landmeyer, James E.; Falls, William F.; Ratliff, W. Hagan; Wellborn, John B.



Winter Cereal Cover Crop Removal Strategy Affects Spring Soil Nitrate Levels  

Microsoft Academic Search

The use of winter cereal cover crops in no-till row crop systems has increased in the North Central Corn Belt. Timing of the cover crop removal can be managed to improve nitrogen availability for subsequently grown crops. Growers utilizing cover crop systems have several alternatives regarding the removal strategy for the winter cereal cover crop prior to seeding rotational corn

M. R. Jewett; K. D. Thelen




EPA Science Inventory

The two identical 12 ft by 12 ft by 12 ft, polished stainless steel, insulated Environmental Chambers, located within the Testing and Evaluation (T&E) Facility, incorporate unique design features. Each chamber is equipped with 16 light fixtures containing a total of 32 light bulb...



EPA Science Inventory

Municipal solid waste (MSW) from the nation is managed predominantly in anitary landfills. ue to the physical, chemical and biological makeup f he aste he landfill acts as a biochemical reactor and degrades the organic matter. urrent practices are to use covers and liners as engi...


Soil-erosion and runoff prevention by plant covers. A review  

Microsoft Academic Search

Soil erosion is a critical environmental problem throughout the world's terrestrial ecosystems. Erosion inflicts multiple, serious damages in managed ecosystems such as crops, pastures, or forests as well as in natural ecosystems. In particular, erosion reduces the water-holding capacity because of rapid water runoff, and reduces soil organic matter. As a result, nutrients and valuable soil biota are transported. At

Víctor Hugo Durán Zuazo; Carmen Rocío Rodríguez Pleguezuelo



Influence of different land-cover types on the changes of selected soil properties in the mountain region of Rawalakot Azad Jammu and Kashmir  

Microsoft Academic Search

The study focused on the impact of change in land-cover types on soil quality inferred by measuring the relative changes in\\u000a chemical and physical properties of non-disturbed and disturbed soil system. Soil samples were collected from major land-cover\\u000a types in the mountain region: natural forest, grassland and cultivated land (arable). The natural forest served as a control\\u000a against which to

M. Kaleem Abbasi; Mohsan Zafar; Sumyya Razaq Khan



Evaluation of soil erosion protective cover by crop residues using vegetation indices and spectral mixture analysis of multispectral and hyperspectral data  

Microsoft Academic Search

Crop residues are efficient in reducing erosion and surface water runoff on agricultural soils. Evaluating the crop residue cover fraction and its spatial distribution is important to scientists involved in the modelling of soil erosion and surface runoff, and also to authorities wishing to assess soil conservation adoption by farmers. This study focuses on the evaluation of four remote sensing

Éric Arsenault; Ferdinand Bonn



Rehabilitation materials from surface- coal mines in western USA. I. Chemical characteristics of spoil and replaced cover-soil.  

USGS Publications Warehouse

A range of at least one order of magnitude was observed for DTPA-extractable Cd, Cu, Fe, Mn, Ni, Pb and Zn and organic matter content of samples of spoil and cover-soil from eleven western USA surface-coal mines. The observed pH of these samples ranged from 3.9 to 8.9; however, most samples were near-neutral to alkaline in reaction. Most constituent levels were found to be below proposed guidelines for maximum permissible levels in mine soil. -from Authors

Severson, R.C.; Gough, L.P.



Estimating photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions using Landsat and MODIS data: Effects of site heterogeneity, soil properties and land cover  

NASA Astrophysics Data System (ADS)

Vegetation fractional cover is a key indicator for land management monitoring, both in pastoral and agricultural settings. Maintaining adequate vegetation cover protects the soil from the effects of water and wind erosion and also ensures that carbon is returned to soil through decomposition. Monitoring vegetation fractional cover across large areas and continuously in time needs good remote sensing techniques underpinned by high quality ground data to calibrate and validate algorithms. In this study we used Landsat and MODIS reflectance data together with field measurements from 1476 observations across Australia to produce estimates of vegetation fractional cover using a linear unmixing technique. Specifically, we aimed at separating fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (B). We used Landsat reflectance averaged over a 3x3 pixel window representing the area actually measured on the ground and also a 'degraded' Landsat reflectance 40x40 pixel window to simulate the effect of a coarser sensor. Using these two Landsat reflectances we quantified the heterogeneity of each site. We used data from two MODIS-derived reflectance products: the Nadir BRDF-Adjusted surface Reflectance product (MCD43A4) and the MODIS 8-day surface reflectance (MOD09A1). We derived endmembers from the data and estimated fractional cover using a linear unmixing technique. Log transforms and band interaction terms were added to account for non-linearities in the spectral mixing. For each reflectance source we investigated if the residuals were correlated with site heterogeneity, soil colour, soil moisture and land cover type. As expected, the best model was obtained when Landsat data for a small region around each site was used. We obtained root mean square error (RMSE) values of 0.134, 0.175 and 0.153 for PV, NPV and B respectively. When we degraded the Landsat data to an area of ~1 km2 around each site the model performance decreased to RMSE of 0.142, 0.181 and 0.166 for PV, NPV and B. Using MODIS reflectance data (from the MCD43A4 and MOD09A1 products) we obtained similar results as when using the 'degraded' Landsat reflectance, with no significant differences between them. Model performance decreased (i.e. RMSE increased) with site heterogeneity when coarse resolution reflectance data was used. We did not find any evidence of soil colour or moisture influence on model performance. We speculate that the unmixing models may be insensitive to soil colour and/or that the soil moisture in the top few millimetres of soil, which influence reflectance in optical sensors, is decoupled from the soil moisture in the top layer (i.e. a few cm) as measured by passive microwave sensors or estimated by models. The models tended to overestimate PV in cropping areas, possibly due to a strong red/ near infrared signal in homogeneous crops which do not have a high green cover. This study sets the basis for an operational Landsat/ MODIS combined product which would benefit users with varying requirements of spatial, temporal resolution and latency and could potentially be applied to other regions in the world.

Guerschman, J. P.; Scarth, P.; McVicar, T.; Malthus, T. J.; Stewart, J.; Rickards, J.; Trevithick, R.; Renzullo, L. J.



Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization.  


Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop. PMID:16825471

Sainju, Upendra M; Singh, Bharat P; Whitehead, Wayne F; Wang, Shirley



Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R  

SciTech Connect

The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.



Geohydrology of the unsaturated zone and simulated time of arrival of landfill leachate at the water table, municipal solid waste landfill facility, US Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas  

USGS Publications Warehouse

The U.S. Air Defense Artillery Center and Fort Bliss Municipal Solid Waste Landfill Facility (MSWLF) is located about 10 miles northeast of downtown El Paso, Texas. The landfill is built on the Hueco Bolson, a deposit that yields water to five public-supply wells within 1.1 miles of the landfill boundary on all sides. The bolson deposits consist of lenses and mixtures of sand, clay, silt, gravel, and caliche. The unsaturated zone at the landfill is about 300 feet thick. The Hydrologic Evaluation of Landfill Performance (HELP) and the Multimedia Exposure Assessment Model for Evaluating the Land Disposal of Wastes (MULTIMED) computer models were used to simulate the time of first arrival of landfill leachate at the water table. Site-specific data were collected for model input. At five sites on the landfill cover, hydraulic conductivity was measured by an in situ method; in addition, laboratory values were obtained for porosity, moisture content at field capacity, and moisture content at wilting point. Twenty-seven sediment samples were collected from two adjacent boreholes drilled near the southwest corner of the landfill. Of these, 23 samples were assumed to represent the unsaturated zone beneath the landfill. The core samples were analyzed in the laboratory for various characteristics required for the HELP and MULTIMED models: initial moisture content, dry bulk density, porosity, saturated hydraulic conductivity, moisture retention percentages at various suction values, total organic carbon, and pH. Parameters were calculated for the van Genuchten and Brooks-Corey equations that relate hydraulic conductivity to saturation. A reported recharge value of 0.008 inch per year was estimated on the basis of soil- water chloride concentration. The HELP model was implemented using input values that were based mostly on site-specific data or assumed in a conservative manner. Exceptions were the default values used for waste characteristics. Flow through the landfill was assumed to be at steady state. The HELP-estimated landfill leakage rate was 101.6 millimeters per year, approximately 500 times the estimated recharge rate for the area near the landfill. The MULTIMED model was implemented using input values that were based mainly on site-specific data and some conservatively assumed values. Landfill leakage was assumed to begin when the landfill was established and to continue at a steady-state rate of 101.6 millimeters per year as estimated by the HELP model. By using an assumed solute concentration in the leachate of 1 milligram per liter and assuming no delay or decay of solute, the solute serves as a tracer to indicate the first arrival of landfill leachate. The simulated first arrival of leachate at the water table was 204 to 210 years after the establishment of the landfill.

Frenzel, Peter F.; Abeyta, Cynthia G.



Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complexes Tonopah Test Range, Nevada Calendar Year 2001  

SciTech Connect

Corrective Action Unit (CAU) 424, the Area 3 Landfill Complexes at Tonopah Test Range, consists of eight Corrective Action Sites (CASs), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the general location of the landfill cells. Figure 2 shows in more detail the location of the eight landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan, contained in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complexes, Tonopah Test Range, Nevada, report number DOE/NV--283, July 1999. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 424 consists of the following: (1) Site inspections conducted twice a year to evaluate the condition of the unit. (2) Verification that landfill markers and warning signs are in-place, intact, and readable. (3) Notice of any subsidence, erosion, unauthorized use, or deficiencies that may compromise the integrity of the landfill covers. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 16, 2001, and November 6, 2001. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

K. B. Campbell



Effect of grass cover on water and pesticides transport through undisturbed soil1 columns, comparison with field study (Morcille watershed, Beaujolais)2  

E-print Network

1 Effect of grass cover on water and pesticides transport through undisturbed soil1 columns UR Milieux Aquatiques, Ecologie et Pollution, Cemagref, 69336 Lyon Cedex, France.10 11 Capsule: Grass is to assess the effectiveness of two grass covers (buffer zone and16 grass-covered inter-row), to reduce

Paris-Sud XI, Université de


Weed science and management, in soil sciences, land cover, and land use  

Technology Transfer Automated Retrieval System (TEKTRAN)

An integral component of conservation agriculture systems in cotton is the use of a high-residue winter cover crop; however, terminating such cover crops is a cost and planting into high-residue is a challenge. Black oat, rye, and wheat winter cover crops were flattened with a straight-blade mechan...


Use of Landsat imagery to detect land cover changes for monitoring soil sealing; case study: Bologna province (Italy)  

NASA Astrophysics Data System (ADS)

Landsat archives (made accessible by USGS at no charge since 2011) have made available to the scientific community a large amount of satellite multispectral images, providing new opportunities for environmental information, such as the analysis of land use/cover changes, which represent important tools for planning and sustainable land management. Processing a time series images, the creation of land cover maps has been improved in order to analyze phenomena such as the soil sealing. The main topic of this work is in fact the detection of roads and buildings construction or everything that involve soil removing. This subject is highly relevant, given the impact of the phenomenon on land use planning, environmental sustainability, agricultural policies and urban runoff. The analysis, still in progress, has been applied to Bologna Province (Emilia-Romagna Region, Italy) that covers 3703 Km2. This area is strongly urbanized: 8,9% of the total surface is sealed against a national value of 6,7%, with the soil sealing rate which has been defined from recent studies as the fourth Italian value in the 2001/2011 period. Other information available for this territory derive from CORINE Land Cover and Copernicus Projects. In the first one, the minimum mapping unit is 25 ha and the one for change is 5 ha; these values are too large for an accurate detection of the soil sealing dynamics. On the other hand, the Copernicus Project provides an imperviousness layer with a better resolution (20x20 m2), but its maps start from 2006. Therefore, the potential of multispectral remote sensing analysis over large areas and the multitemporal Landsat availability have been combined for a better knowledge about land cover changes. For this work, Landsat 5 and Landsat 8 images have been acquired between 1987 and 2013, according to basic requirements as low cloud cover and a common acquisition season (summer). A supervised pixel-based classification has been performed, with maximum likelihood algorithm. Due to landscape heterogeneity, classification has been improved with auxiliary data, such as NDVI. Therefore, the obtained maps have been compared with a post-classification change detection procedure in order to quantify land use changes, with particular attention to the soil sealing increase.

Casciere, Rossella; Franci, Francesca; Bitelli, Gabriele



Protective effect of floor cover against soil erosion on steep slopes forested with Chamaecyparis obtusa (hinoki) and other species  

Microsoft Academic Search

We evaluated the protective effects of floor cover against soil erosion in three types of forest located on steep slopes\\u000a under a humid climate: 22- and 34-year-old Chamaecyparis obtusa (hinoki), 34-year-old Cryptomeria japonica (sugi), and 62-year-old Pinus densiflora (red pine) stands. We measured sediment transport rates (sediment mass passing through one meter of contour width per millimeter\\u000a of rainfall), using

Satoru Miura; Shuichiro Yoshinaga; Tsuyoshi Yamada



Soil-Erosion and Runoff Prevention by Plant Covers: A Review  

Microsoft Academic Search

Soil erosion is a critical environmental problem throughout the world’s terrestrial ecosystems. Erosion inflicts multiple,\\u000a serious damages in managed ecosystems such as crops, pastures, or forests as well as in natural ecosystems. In particular,\\u000a erosion reduces the water-holding capacity because of rapid water runoff, and reduces soil organic matter. As a result, nutrients\\u000a and valuable soil biota are transported. At

V??ctor Hugo Durán Zuazo; Carmen Roc??o Rodríguez Pleguezuelo


Project test plan for runoff and erosion on fine-soil barrier surfaces and rock-covered side slopes  

SciTech Connect

Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company are working together to develop protective barriers to isolate near-surface radioactive waste. The purpose of the barriers is to protect defense wastes at the US Department of Energy's (DOE) Hanford Site from infiltration of precipitation, biointrusion, and surficial erosion for up to 10,000 years without the need for long-term monitoring, maintenance, or institutional control. The barriers will be constructed of layered earth and rock material designed to direct surface and groundwater pathways away from the buried waste. To address soil erosion as it applies to barrier design and long-term stability, a task designed to study this problem has been included in the Protective Barriers Program at PNL. The barrier soil-erosion task will investigate the ability of the soil cover and side slopes to resist the erosional and destabilizing processes from externally applied water. The study will include identification and field testing of the dominant processes contributing to erosion and barrier failure. The effects of rock mulches, vegetation cover on the top fine-grained soil surface, as well as the stability of rock armoring on the side slopes, will be evaluated. Some of the testing will include the effects of animal intrusion on barrier erosion, and these will be coordinated with other animal intrusion studies. 6 refs., 4 figs., 1 tab.

Walters, W.H.; Hoover, K.A.; Cadwell, L.L.




EPA Science Inventory

The effectiveness of landfill-liner designs is evaluated in terms of the slope, drainage length, and saturated hydraulic conductivity of the lateral drainage layer, the saturated hydraulic conductivity of the soil liner, and the fraction of the area under a synthetic liner where ...


Heavy Metal Pollution in Landfill Environment: A Malaysian Case Study  

Microsoft Academic Search

Heavy metal contamination of soil is of major concern from an ecological point of view. This study aims to characterize soil samples from different sites of two waste disposal grounds in Malaysia, to study heavy metal contamination in the landfill environment. The soil samples were obtained at different depths from 2m to 35m deep to find the possibility of heavy

P. Agamuthu; S. H. Fauziah



Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin  

NASA Astrophysics Data System (ADS)

Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated, bare soil and open water surfaces. The result of this study also shows that runoff is high in the clay, clay loam and sandy-clay loam due to the lack of infiltration process in clay soil from capping or crusting or sealing of the soil pores, therefore this situation will aid runoff. The application of the WetSpass model shows that precipitation, soil texture and land use / land cover are three controlling factors affecting the water balance in the LCB. Key words: Groundwater recharge, surface runoff, evapotranspiration, water balance, meteorological, draught, Landuse changes, climate changes, WetSpass, GIS.

Babamaaji, R. A.; Lee, J.



Concentrations and allelopathic effects of benzoxazinoid compounds in soil treated with rye (Secale cereale) cover crop.  


The concentration of benzoxazinoids (BX) was measured in field soils at selected intervals after rye residue was either incorporated or left on the soil surface. The spectrum of compounds arising in the soil persisted approximately two weeks and was dominated by methoxy containing BX compounds, which were only minor components of the rye foliage. Growth assays with lettuce and smooth pigweed species showed inhibition when treated soils were tested during the first two weeks after rye applications; however, there were no sufficient concentrations of any one BX compound in the soil to explain these affects. Solution applications of two pure BX compounds, benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), to the surface of soils revealed that movement into the soil column was minimal (greater than 70% BOA and 97% MBOA remained in the top 1-cm of soil profiles) and that the time course for their complete dissipation was less than 24 h. PMID:22500621

Rice, Clifford P; Cai, Guimei; Teasdale, John R



Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: A paired plot experiment  

Microsoft Academic Search

A dramatic reduction in soil frost depth has been reported for Hokkaido Island of northern Japan over the last 20 years. Since soil frost strongly affects snowmelt infiltration and runoff, the reduction in frost depth may have altered the water and nutrient cycles in this region. A paired-plot experiment was conducted in an agricultural field in Tokachi, Hokkaido, to compare

Yukiyoshi Iwata; Masaki Hayashi; Shinji Suzuki; Tomoyoshi Hirota; Shuichi Hasegawa



On the remote measurement of evaporation rates from bare wet soil under variable cloud cover  

NASA Technical Reports Server (NTRS)

Evaporation rates from a natural wet soil surface are calculated from an energy balance equation at 0.1-hour intervals. A procedure is developed for calculating the heat flux through the soil surface from a harmonic analysis of the surface temperature curve. The evaporation integrated over an entire 24-hour period is compared with daily evaporation rates obtained from published models.

Auer, S.



Won’t soil be damaged if cattle graze cover crops?  

Technology Transfer Automated Retrieval System (TEKTRAN)

Integration of crops and livestock could provide economic benefits to producers by intensifying land use and improving resource efficiency, but how this management might affect soil compaction, water infiltration, and soil strength has not been well documented. Key factors in balancing cattle produ...



EPA Science Inventory

Resource Purpose: This resource served as the main information source for national characteristics of landfills for the landfills effluent guidelines. The database was developed based on responses to the "1994 Waste Treatment Industry Questionnaire: Phase II Landfills" and...


Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth  

PubMed Central

The early life of terrestrial seed plants often starts under the soil in subterranean darkness. Over time and through adaptation, plants have evolved an elaborate etiolation process that enables seedlings to emerge from soil and acquire autotrophic ability. This process, however, requires seedlings to be able to sense the soil condition and relay this information accordingly to modulate both the seedlings’ growth and the formation of photosynthetic apparatus. The mechanism by which soil overlay drives morphogenetic changes in plants, however, remains poorly understood, particularly with regard to the means by which the cellular processes of different organs are coordinated in response to disparate soil conditions. Here, we illustrate that the soil overlay quantitatively activates seedlings’ ethylene production, and an EIN3/EIN3-like 1–dependent ethylene-response cascade is required for seedlings to successfully emerge from the soil. Under soil, an ERF1 pathway is activated in the hypocotyl to slow down cell elongation, whereas a PIF3 pathway is activated in the cotyledon to control the preassembly of photosynthetic machinery. Moreover, this latter PIF3 pathway appears to be coupled to the ERF1-regulated upward-growth rate. The coupling of these two pathways facilitates the synchronized progression of etioplast maturation and hypocotyl growth, which, in turn, ultimately enables seedlings to maintain the amount of protochlorophyllide required for rapid acquisition of photoautotrophic capacity without suffering from photooxidative damage during the dark-to-light transition. Our findings illustrate the existence of a genetic signaling pathway driving soil-induced plant morphogenesis and define the specific role of ethylene in orchestrating organ-specific soil responses in Arabidopsis seedlings. PMID:24599595

Zhong, Shangwei; Shi, Hui; Xue, Chang; Wei, Ning; Guo, Hongwei; Deng, Xing Wang



Effect of soil surface sealing on the hydrological response and the vegetation cover of semi-arid areas (Invited)  

NASA Astrophysics Data System (ADS)

Bare soil surfaces in semi-arid areas are prone to sealing, which involves the formation of a compacted and thus less permeable layer at the vicinity of the soil surface. This particular interface of the soil-atmosphere system affects the two main hydrologic fluxes in such areas: infiltration and evaporation. It follows that local rainfall-runoff relations are directly impacted by the formation of this layer with logical consequences to water availability for vegetation development. The role of soil surface sealing in shaping such hydrological responses of a semi-arid hillslope in Southern Israel is described on a quantitative basis using a modeling approach that links the seal hydraulic properties to the physical characteristics of the hillslope. A two-dimensional surface runoff model is applied to represent the joint impact of the seal layer, the microtopography and the vegetation patches on spatial and temporal features of the rainfall-runoff relationship. The seal layer and the vegetation patches affect runoff generation, while microtopography affects mainly overland flow patterns. More water is supplied to the vegetation patches via runoff re-infiltration under soil surface sealing conditions, thus enabling establishment and development of vegetation cover.

Assouline, S.; CHEN, L.; Sela, S.; Svoray, T.; Katul, G. G.



Soil Organic Matter Dynamics Following Land-Cover Change in a Subtropical Savanna: Insights from Soil Physical Fractionation and Stable Isotopes  

NASA Astrophysics Data System (ADS)

Soil physical structure is an important determinant of soil organic carbon (SOC) storage and turnover due to differential accessibility of SOC to decomposer organisms. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (d13C, d15N) of those soil fractions have been used to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees and shrubs (d13C = -27 o/oo) have largely replaced C4 grasslands (d13C = -14 o/oo) over the past 100-200 yr. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10-130 yr. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural d13C and d15N values. Rates of whole-soil C and N storage in the upper 15 cm of the soil profile averaged 10-30 g C/m2/yr and 1-3 g N/m2/yr, respectively, over the past 130 yr of woodland development. These rates of accumulation have increased soil C and N pool sizes in older wooded areas by 80-200 o/o relative to remnant grasslands. The relative proportions of the free light fraction (density less than 1.0 g/cc) and macroaggregate fraction (greater than 250 um) increased linearly with time following woody plant invasion of grassland. Conversely, the relative proportions of free microaggregate (53-250 um) and free silt+clay (less than 53 um) fractions decreased linearly with time after woody invasion, likely reflecting incorporation of these fractions into macroaggregates. C and N concentrations in all soil fractions increased with time following woody invasion, but most of the C and N accumulated in light (density less than 1.85 g/cc) particulate organic matter (POM) fractions not protected by stable soil structure. Mean residence times (MRTs) of soil fractions were calculated based on changes in their d13C with time after woody encroachment. The shortest MRTs (mean = 30 yr) were associated with all POM fractions not protected within aggregates. Fine POM (53-250 um) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 yr. All silt+clay fractions had the longest MRTs (mean = 360 yr) regardless of whether they were found inside or outside of aggregate structure. d15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher d15N values reflect an increased degree of humification. Increases in whole-soil C and N in wooded areas are probably being sustained by greater inputs and relatively slow turnover of POM, perhaps due to the biochemical recalcitrance of POM materials and/or nutrient-water limitations to microbial activity. These results indicate that soil structure may provide a mechanistic explanation for C and N processes and dynamics following land cover changes in terrestrial ecosystems.

Liao, J. D.; Boutton, T. W.; Jastrow, J. D.



Landfill disposal systems  

PubMed Central

The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated. A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables. ImagesFIGURE 3.FIGURE 4.FIGURE 7.FIGURE 7. PMID:738247

Slimak, Karen M.



Podzol development in S Norway - a soil chronosequence of 31 pedons covering soil ages from 85 to 9650 years  

NASA Astrophysics Data System (ADS)

The Oslofjord region in SE-Norway has undergone steady glacio-isostatic uplift all over the Holocene. Hence, in the coastal areas land surface age continuously increases with elevation, providing suitable conditions for studying soil development with time. A chronosequence of soils on beach sand and sandy terraces of the Lågen River, showing progressive podzolization with soil age, was studied on the western side of the Oslofjord. 31 pedons with soil ages ranging from 85 years (0.25 m a. s. l.) to ca. 9650 years (62 m a. s. l.) were described and are currently analysed. Soil ages were estimated by relating elevations of the sites to a Holocene relative sea level curve based on twelve AMS 14C-dates of gyttja from the isolation contact (marine / fresh water boundary) and six marine macrofossil 14C-dates (Sørensen et al., 2012). The climate in the study area is comparatively mild, with mean annual temperatures ranging from 5.3°C (Ramnes) to 6.3°C (Sandefjord, Larvik) and a mean annual precipitation of 909 mm (Sandefjord) - 1150 mm (Stokke). The vegetation consists predominantly of mixed forest. In this soil chronosequence, soil organic matter (SOM) accumulation in the A horizons reaches a steady state in less than 2300 years, while SOM in the B horizons continues to accumulate. Soil pH (in water) drops from pH 6.9 in the recent beach sand to pH 4.6 within about 4500 years and stays constant thereafter, which is attributed to sesquioxide buffering. Base saturation shows an exponential decrease with time. Progressive weathering is reflected by increasing Fed and Ald contents, and proceeding podzolization by increasing amounts of pyrophophate- and oxalate-soluble Fe and Al with soil age. Increases of most Fe and Al fractions can be best described by exponential models. Micromorphological analysis reveals accumulation of cloudy, iron-rich, reddish fine material in the Bs horizons that proceeds with soil age, leading to chitonic c/f-related distribution in the Bs horizons. The mineralogical composition of the parent material is dominated by quartz and feldspars, whereby the feldspar grains show features of proceeding weathering with time. In addition to podzolisation features, illuvial clay is observed below the Bs horizons. Apparently, the sand is sufficiently buffered during the first millennia of soil formation so that acidification proceeds slowly enough to allow for clay translocation prior to podzolisation. Reference Sørensen, R., Høeg, H.I., Henningsmoen, K.E., Skog, G., Labowsky, S.F., Stabell, B. (2012): Utviklingen av det senglasiale og tidlig preboreale landskapet og vegetasjonen omkring steinalderboplassene ved Pauler, Larvik kommune, Vestfold. In: Jaksland, L. (Ed.), E18 Brunlaneprospektet. Varia 79. Kulturhistorisk Museum, University of Oslo.

Sauer, Daniela; Svendgård-Stokke, Siri; Sperstad, Ragnhild; Sørensen, Rolf; Fuchs, Markus; Gebers, Henrik; Schülli-Maurer, Isabelle



Linkages between land Cover, enzymes, and soil organic matter chemistry following encroachment of leguminous woody plant into grasslands  

NASA Astrophysics Data System (ADS)

In the Rio Grande Plains of southern Texas, subtropical thorn woodlands dominated by the N-fixing tree Prosopis glandulosa have largely replaced native grasslands over the last 150 years as a result of fire suppression and over grazing. This land cover change has resulted in the increase of belowground stocks of C, N, and P, changes to the amount and chemical nature of soil-stabilized plant biopolymers, and the composition and activity of soil microbes. Given that extracellular enzymes produced by plants and microbes are the principal means by which complex compounds are degraded and the production of such enzymes is triggered or suppressed by changes in primary input and nutrient availability we sought to relate how these fundamental changes in this ecosystem are reflected in the activity of soil stabilized extracellular enzymes and soil organic matter (SOM) chemistry in this system. We focused upon a successional chronosequence from C4-dominant grassland to woody patches of up to 86 yrs age since mesquite establishment. We related the molecular composition and concentration of hydrolysable amino acids and amino sugars, as well as CuO extractable lignin and substituted fatty acid to the potential activities of five extracellular enzymes (arylamidase, acid phosphatase, ?-glucosidase, ?-glucosaminidase (NAGase, polyphenoloxidase (PPO)) and a general marker for hydrolytic activity, fluorescein diacetate (FDA). Each of these enzymes, with the exception of PPO, showed higher potential activity in soils from woody clusters than grasslands and had activities generally well correlated to carbon content. PPO, often defined as a proxy for microbial lignin decay activity, showed no statistical difference between grassland and forest sites and no significant relationship to soil C content. Yields of total amino acids and amino sugars all show increases in content with cluster age when normalized to soil mass, as did the enzyme activities targeted to their decomposition, but only weak trends with age when normalized to carbon content. Although, PPO was nearly invariant across the chronosequence, lignin content rose dramatically, normalized both to soil mass and to organic carbon content, indicating oxidase activity was not matched to input and lignin was selectively accruing in the below ground carbon pools. We propose that the dramatic increase in available N in the leguminous system suppressed microbial oxidase production allowing lignin to selectively accrue while microbial activity for the other plant biopolymers has nearly kept pace with input-consistent with recent findings in other temperate deciduous systems. These results have important implications for the modeling of woodland-grassland conversion and the dynamics of biogeochemical cycles in this globally significant land cover change.

Filley, T. R.; Stott, D. E.; Boutton, T. W.; Creamer, C. A.; Olk, D.



Quantification of tillage, plant cover, and cumulative rainfall effects on soil surface microrelief by statistical, geostatistical and fractal indices  

NASA Astrophysics Data System (ADS)

Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of the soil surface microrelief.

Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.



Effects of winter wheat cover crop desiccation times on soil moisture, temperature and early maize growth  

Microsoft Academic Search

Two tillage systems for maize (Zea mays) aer soybean (Glycine max), no-till (NT) and conventional till (CT), which consisted of double disking in the spring, were included in the experiment on two sites in Indiana, USA. Each til- lage plot had three winter wheat (Triticum aestivum L.) cover crop levels: no cover crop (N), early desiccation (E), 3-4 weeks prior

B. Stipeševi?; E. J. Kladivko



Integrating Geochemical and Morphologic Evolution of Soil-Covered Hillslopes in a Transient Tributary Basin  

NASA Astrophysics Data System (ADS)

When hillslopes respond to incision triggered by tectonic uplift, there is a competition between chemical and physical processes in shaping the landscape. We are studying a tributary basin of the Middle Folk Feather River (FR) in Sierra Nevada CA, where an incision signal is still propagating throughout the basin. Soils were sampled along 3 hillslope transects: POMD (30% slope at 766m), FTA (56% slope at 673m), and BRC (63% slope at 684m). Given their different elevations, slopes, and proximities to the rejuvenating channel, these hillslopes presumably reflect a wide range of denudation. To capture how the basin’s geophysical and geochemical signals propagate upslope, transects were chosen so that POMD is above the knickpoint, FTA is proximal to the knickpoint, and BRC captures erosion below the knickpoint transition. Surprisingly, the hillslopes--despite their varying rates of denudation--show a constant soil thicknesses along all transects (50cm). Despite this similarity, geochemical differences between the soils do exist, indicating a connection between soil geochemistry and the turnover time of the soils (i.e., soil thickness divided by physical erosion rate). For instance, POMD (with a residence time ~30kyr) visually and chemically had the highest degree of weathering based on soil color (10YR 5/4) and the abundance of pedogenic iron oxides (0.3-0.7%). FTA and BRC, on the other hand, had residence times ~2 & 4kyr, and were less red and less Fe-oxide enriched than the POMD soils (10YR 7/4, ND-0.5%). Geochemical differences were further shown by Zr enrichments in the fine fractions of POMD and FTA soils. In general, POMD soils show 20% more mass-loss of major elements, such as Fe, Al, Na, and K in the upper horizons. However, it’s important to note that despite this difference, the geochemical profiles of FTA and POMD show strikingly similar levels of element depletion. While we are working on understanding if this similarity is due to weathering rate differences or chemical weathering occurring below the soil-saprolite boundary, the transect chemical differences, combined with grainsize results, indicate that the breakdown of coarse fractions in the regolith (>2mm) can be responsible for much of the weathering in the FR basin. This is important because our findings indicate that despite order of magnitude differences in denudation rates and soil residence times, soils with relatively fast residence times can display remarkable similarities to those exhibited by long-residence time soils. These findings are consistent with the view that soils with shorter residence times do occur on steeper hillslopes, however they contrast original expectations that soils would thin and be more physically dominated along hillslopes with steeper gradients. We think, therefore, that another control beside the dynamic chemical and physical processes we report here--namely tree throw--is a key factor in the soil formation processes in both the older and newly incising areas of FR.

Weinman, B. A.; Yoo, K.; Mudd, S. M.; Hurst, M. D.; Maher, K.; Mayer, K.; Andersen, C.



SWS 4303/5305 Soil Microbial Ecology Course Description Lectures and laboratory exercises will cover the soil as a  

E-print Network

1 SWS 4303/5305 Soil Microbial Ecology Fall, 2014 Course Description Lectures and laboratory microorganisms, and the fundamentals of the microbial ecology of nutrient cycles, symbiotic associations by at least 30% from SWS 4303 exams. Objective: To provide students with the physiological bases for microbial

Ma, Lena


The influence of cover crops and tillage on actual and potential soil erosion in an olive grove  

NASA Astrophysics Data System (ADS)

The study was carried out in an olive grove in central Spain (South of Madrid; Tagus River Basin). In this semi-arid zone, the annual mean temperature is 13.8 ºC and the annual precipitation is 395 mm. Olive groves are planted in an erosion prone area due to steep slopes up to 15%. Soil is classified as Typic Haploxerept with clay loam texture. The land studied was formerly a vineyard, but it was replaced by the studied olive grove in 2004. It covers approximately 3 ha and olive trees are planted every 6 x 7 metres. They were usually managed by tillage to decrease weed competition. This conventional practice results in a wide surface of bare soil prone to erosion processes. In the long term soil degradation may lead to increase the desertification risk in the area. Storms have important consequences in this shallow and vulnerable soil, as more than 90 Mg ha-1 have been measured after one day with 40 mm of rainfall. In order to avoid this situation, cover crops between the olive trees were planted three years ago: sainfoin (Onobrychis viciifolia), barley (Hordeum vulgare), and purple false brome (Brachypodium distachyon), and they were compared with annual spontaneous vegetation after a minimum tillage treatment (ASV). The results regarding erosion control were positive. We observed (Oct. 2012/Sept. 2013) annual soil loss up to 11 Mg ha-1 in ASV, but this figure was reduced in the sown covers, being 8 Mg ha-1 in sainfoin treatment, 3,7 Mg ha-1 in barley treatment, and only 1,5 Mg ha-1 in false brome treatment. Those results are used to predict the risk of erosion in long term. Moreover, soil organic carbon (SOC) increased with treatments, this is significant as it reduces soil erodibility. The increases were found both in topsoil (up to 5 cm) and more in depth, in the root zone (from 5 to 10 cm depth). From higher to lower SOC values we found the false brome (1.05%), barley (0.92%), ASV (0.79%) and sainfoin (0.71%) regarding topsoil. In the root zone (5-10 cm depth) we found 0.76% in false brome and ASV, 0.70% in barley and 0.58% in sainfoin. Other important variable to estimate erosion processes is soil permeability. During the period of study there were no significant differences between treatments. An average of 45±20 mm h-1 was measured. This study addresses the comparison between soil erosion rates measured on the ground with soil erosion risk estimated by models. Mapping soil risk can provide the evidence to demonstrate that economic investments in research, good practices and agri-environment payments are worth to achieve sustainable land management. The use of case studies is usually recommended to help in the dissemination of research. This case also includes the influence of treatments in production and quality of olive oil to respond to the needs of land users.

Sastre, Blanca; Bienes, Ramón; García-Díaz, Andrés; Panagopoulos, Thomas; José Marqués, Maria



Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil  

USGS Publications Warehouse

Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate of CH4 oxidation and that summer droughts may increase the soil CH4 sink of temperate forest soils. ?? 2005 Elsevier Ltd. All rights reserved.

Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.



Vegetation cover plays the most important role in soil erosion control.  


To obtain, characteristics and behaviors of soil erosion phenomena, to control it's harms and reduce it's risks, realistic data from soil erosion rates are necessary. Mean while, measuring soil erosion rates particularly in large scale is a time consuming and expensive task. Moreover, spatial and temporal changes of soil erosion increase this problem. Therefore, to find out a certain way of creating capable methods which easily and quickly be able to estimate soil erosion rate, is quite logical. So, different models are widely used, but, may be the most important consideration with this regard is that, these models should be previously, tested and adopted to defined areas to stop probability of causing some huge and meaningful errors. Therefore, to achieve the above mentioned aim, different methods are used. Anyway, conditions which resulted to create a suitable model, should be considered in a defined area where, model is applied, unless, model application can leads to huge risks. This study is an attempt with this refer, that is, with comparing measured soil loss rates and predicted soil erosion rates from a defined catchment area, created a reasonable relationship between them and achieved the main aim of the study. That is, one of the small upland catchments of Emam kandi of Urmia with 75 ha area which is part of the Urmia lake catchment area and under layned by calcareous parent material, is selected as a study site. Selected catchment has natural pasture and has closured during the recent years. To calculate sediment yield the following processes were done: first, estimating the volume of trapped sediments, then, surveying the catchment area, for calculating sediment yield. Measured sediment yield is 6.19 t ha(-1) year(-1) which leads to soil loss rate of 13.76 t ha(-1) year(-1) by using Sediment Delivery Ratio (SDR). Also, inside the measurement of sediment yields and calculation of soil loss rates, two models of MUSLE and PSIAC were used respectively after exclosure and before exclosure to predict soil loss rates. Predicted soil loss rates by MUSLE and PSIAC respectively are 12.80 and 26.5 t ha(-1) year(-1). Finally, Comparisons and statistical analysis and scientific discussions were made. PMID:19069506

Mahmoudzadeh, A



Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A Field observation and analysis  

USGS Publications Warehouse

The effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge were studied with water level measurements collected from two monitoring wells over a period of 122 days. The two wells were installed under similar conditions except that one was drilled on the east side of a creek which was covered with grass, and the other on the west side of the creek which was burned into a bare ground. Substantial differences in water level fluctuations were observed at these two wells. The water level in the east grass (EG) well was generally lower and had much less response to rainfall events than the west no-grass (WNG) well. Grass cover lowered the water table, reduced soil moisture through ET losses, and thus reduced groundwater recharge. The amount of ET by the grass estimated with a water table recession model decreased exponentially from 7.6 mm/day to zero as the water table declined from near the ground surface to 1.42 m below the ground surface in 33 days. More groundwater recharge was received on the WNG side than on the EG side following large rainfall events and by significant slow internal downward drainage which may last many days after rainfall. Because of the decreased ET and increased R, significantly more baseflow and chemical loads may be generated from a bare ground watershed compared to a vegetated watershed. ?? 2005 Elsevier Ltd All rights reserved.

Zhang, Y.-K.; Schilling, K.E.



Superfund Record of Decision (EPA Region 3): Coker's Sanitation Service landfills, Kent County, DE. (First remedial action), September 1990. Final report  

SciTech Connect

The Coker's Sanitation Service Landfills site is comprised of two inactive landfills in Kent County, Delaware. Each landfill contains approximately 45,000 cubic yards of latex sludge waste in addition to the contaminated soil/waste. From 1969 to 1977, latex rubber waste sludge was disposed of at Landfill No. 1 into unlined trenches, which were topped off with local soil when nearly filled with sludge. From 1976 to 1980, latex sludge was also disposed of in lined trenches at Landfill No. 2. Excess levels of styrene and ethylbenzene were found in the waste trenches of both landfills and in the leachate collection system of landfill No. 2. The Record of Decision (ROD) addresses contamination in both landfills and in the leachate collection system at Landfill No. 2. The primary contaminants of concern affecting the soil and sludge are VOCs including benzene and metals.

Not Available



Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground cover, or uses water (including pressure washing) that  

E-print Network

Rev. 02/15/10 Construction: Any construction project regardless of size that disturbs soil, ground cover, or uses water (including pressure washing) that will be discharged onto or into soil surface. Small landscaping work performed by the grounds crew is exempt if it does not disturb new areas


Role of water balance in the long-term stability of hazardous waste site cover treatments  

SciTech Connect

After the 30-year post-closure maintenance period at hazardous waste landfills, long-term stability must be assured without continued intervention. Understanding water balance in the established vegetative cover system is central to predicting such stability. A Los Alamos National Laboratory research project has established a series of experimental cover treatment plots on a closed waste disposal site which will permit the determination of the effects of such critical parameters as soil cover design, leaf area index, and rooting characteristics on water balance under varied conditions. Data from these experiments are being analyzed by water balance modeling and other means. The results show consistent differences in soil moisture storage between soil profiles and between vegetation cover treatments.

Barnes, F.J.; Rodgers, J.C.; Trujillo, G.



Response of saprotrophic microfungi degrading the fulvic fraction of soil organic matter to different N fertilization intensities, different plant species cover and elevated atmospheric CO 2 concentration  

Microsoft Academic Search

The response of the cenosis composition of soil saprotrophic microfungi able to utilize the fulvic fraction of soil organic\\u000a matter to increased concentration of atmospheric carbon dioxide, plant species cover quality and different levels of nitrogen\\u000a fertilization was determined under field conditions in a free-air carbon dioxide enrichment experiment. Twenty-nine species\\u000a of microfungi were isolated from the tested soil. The

V. Strnadová; H. Hršelová; M. Kola?ík; M. Gryndler



doi:10.1016/j.gca.2004.08.024 Zinc mobility and speciation in soil covered by contaminated dredged sediment  

E-print Network

in a pseudogley soil (pH 8.2­8.3) before and after contamination by land-disposition of a dredged sediment ([Zndoi:10.1016/j.gca.2004.08.024 Zinc mobility and speciation in soil covered by contaminated dredged and dissolved Zn from the sediment downwards to a soil depth of 20 cm over a period of 18 months. Gravitational


Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA  

Microsoft Academic Search

We investigated the effects of an autumn sowing of contrasting cover crops (oats, rye and a combination of oats and rye) on soil aggregate stability, mycorrhizal colonization, phosphorus uptake and yield of sweet corn planted the following summer. Rye is a common cover crop in the middle Atlantic region of the United States of America. It grows slowly in the

Z. Kabir; R. T. Koide



Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy  

SciTech Connect

Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup ?2} h{sup ?1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup ?2} h{sup ?1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup ?2} h{sup ?1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ? Mercury air/surface exchange from grass covered soil is different from bare soil. ? Light enhances mercury emissions and is the main parameter driving the process. ? The presence of wild vegetation covering the soil reduces mercury emission. ? Vegetative covers could be a solution to reduce atmospheric mercury pollution.

Fantozzi, L., E-mail: [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy); Ferrara, R., E-mail: [CNR-Institute of Biophysics, San Cataldo Research Area, Via G. Moruzzi 1, 56124 Pisa (Italy); Dini, F., E-mail: [University of Pisa, Department of Biology, Via A. Volta 4, 56126 Pisa (Italy); Tamburello, L., E-mail: [University of Pisa, Department of Biology, Via Derna 1, I-56126 Pisa (Italy); Pirrone, N.; Sprovieri, F. [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)] [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)



Cover Crops  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cover crops have many potential benefits for both soil and water quality in annual grain cropping systems, like the corn-soybean rotation. Studies in Iowa have shown that rye and oat winter cover crops can reduce erosion and nitrate leaching in corn-soybean rotations, which improves both water and s...


Effects of winter cover crops residue returning on soil enzyme activities and soil microbial community in double-cropping rice fields.  


Residue management in cropping systems is useful to improve soil quality. However, the studies on the effects of residue management on the enzyme activities and microbial community of soils in South China are few. Therefore, the effects of incorporating winter cover crop residue with a double-cropping rice (Oryza sativa L.) system on soil enzyme activities and microbial community in Southern China fields were studied. The experiment has conducted at the experimental station of the Institute of Soil and Fertilizer Research, Hunan Academy of Agricultural Science, China since winter 2004. Four winter cropping systems were used: rice-rice-ryegrass (Lolium multiflorum L.) (R-R-Ry), rice-rice-Chinese milk vetch (Astragalus sinicus L.) (R-R-Mv), rice-rice-rape (Brassica napus L.) (R-R-Ra) and rice-rice with winter fallow (R-R-Fa). The result indicated that the enzyme activities in the R-R-Ry, R-R-Mv and R-R-Ra systems were significantly higher (P<0.05) than in the R-R-Fa system during the early and late rice season. The ?-glucosidase activities reached peak values at the tillering stage after residue application, and alkaline phosphatase activities reached peak values at the booting stage after residue application, respectively, the activities of ?-glucosidase and alkaline phosphatase gradually decreased after this. Arylsulfatase activities reached peak values at the maturity stage. Arylamidase activities reached peak values at the maturity stage. The numbers of aerobic bacteria, actinomycete and fungus of residue treatments were significantly higher (P<0.05) than that the R-R-Ra system. However, the number of anaerobic bacteria under the R-R-Ry and R-R-Mv systems was significantly lower (P<0.05) than that under the R-R-Fa system during early rice and late rice growth stage. Thus, incorporation of winter cover crops into rotations may increase enzyme activities and microbial community in soil and therefore improve soil quality. PMID:24956152

Hai-Ming, Tang; Xiao-Ping, Xiao; Wen-Guang, Tang; Ye-Chun, Lin; Ke, Wang; Guang-Li, Yang